

Doctoral Dissertation Academic Year 2015

Security Platform for Embedded End-point Devices
 in a Smart Grid

Hiroshi Isozaki

Graduate School of Media and Governance
Keio University

A dissertation
submitted in partial fulfillment

of the requirements for the degree of
DOCTOR OF PHILOSOPHY IN

MEDIA AND GOVERNANCE

 Thesis Committee:
 Prof. Yoshiyasu Takefuji, Chair
 Prof. Yasushi Kiyoki
 Prof. Tatsuya Hagino
 Prof. Keiji Takeda

Copyrighted
by

Hiroshi Isozaki
All rights reserved.

©Hiroshi Isozaki, 2015

Abstract Academic Year 2015

Security Platform for Embedded End-point Devices in a Smart Grid

In this dissertation, we present a software security platform for embedded
end-point devices in a smart grid. Specifically, we propose a method to
isolate security-sensitive processes from general-purpose processes
utilizing security functions of a commodity embedded processor, identify
the functions to be included in the security-sensitive processes, perform a
full implementation of a system based on the proposed method, and
present evaluation results with respect to both security functions and
performance.

The proposed security platform provides secure updatability and high
availability as well as satisfying legacy security requirements, such as
confidentiality and integrity, to enable a fault-tolerant system with long-
term security. In order to keep long-term security, the method provides a
function to dynamically load and update a legitimate security-sensitive
module only with sufficient robustness against tampering. Since the
security-sensitive processes are executed in a secure environment,
illegitimate modification and information leakage of the security-sensitive
processes can be prevented even if the general-purpose processes are
modified or their control is taken over. To keep availability, the system
introducing our proposed method monitors the status of the operating
system and recovers even if the operating system stops working owing to
unexpected behavior or cyber-attacks.

Based on the proposed methods, we further propose an autonomous
distributed smart grid architecture by introducing a secure mobile agent
system in which the protection-required module of a mobile agent can be
executed securely without interference by attackers. The proposed secure
mobile agent system is very useful and enables new applications in field
area networks of smart grids, such as privacy information protection and
pay-per-use software charging.

Keyword: Security, Trusted Computing, Embedded Software, Smart Grids,
Mobile Agents

Hiroshi Isozaki

 Graduate School of Media and Governance
Keio University

論文要旨 2015 年度

スマートグリッドで活用する
組込み機器向けセキュリティプラットフォームの提案

本論文では，スマートグリッドで活用する組込み機器向けソフトウェア

セキュリティプラットフォームについて述べている．本論文では，汎用

の組込み向けプロセッサのセキュリティ機能を活用してセキュリティを

確保すべき処理と汎用の処理を分離する方法を提示し，セキュア状態で

実行させるべき機能を明確化した．さらに，提案手法に基づくシステム

を実装し，セキュリティ機能と性能の両面から評価を行った．
提案するセキュリティプラットフォームは，長期安全性と耐障害性を

備えたシステムを実現するために，従来のセキュリティ要件である秘匿

性と完全性の確保に加え，セキュアにモジュールをアップデートする方

法と高い可用性を実現している．長期安全性を確保するために，正規の

セキュリティモジュールに限定して動的にロードし，アップデートする

機能を実現している．提案手法では，セキュリティに関連する処理はセ

キュア環境で実行されるため，汎用処理が不正に改変されたり制御が奪

われたりしても，モジュールの不正改変やモジュールに含まれる情報の

漏えいを防ぐことができる．また，提案手法を適用したシステムでは予

期せぬエラーや攻撃によってオペレーティングシステムが停止したとし

ても，オペレーティングシステムの監視と回復処理が行える仕組みを提

供することで，高い可用性を実現している．
さらに本論文ではこれらの提案手法を要素技術とし，セキュアモバイ

ルエージェントシステムを実現することで自律分散型のスマートグリッ

ドアーキテクチャを提案している．このシステムでは，攻撃者に妨害さ

れる事なくモバイルエージェントに含まれる保護対象モジュールをモバ

イルエージェントシステム上で実行することができる．また，提案する

セキュアモバイルエージェントシステムにより，プライバシ保護，利用

状況に応じたソフトウェア課金のような新しいアプリケーションがスマ

ートグリッドのフィールドエリアネットワークで実現できる．

キーワード：セキュリティ，トラステッドコンピューティング，組込み

ソフトウェア，スマートグリッド，モバイルエージェント

慶應義塾大学 大学院
政策・メディア研究科

磯崎宏

i

Acknowledgements

First and foremost, I would like to express my great appreciation to my
supervisor, Professor Yoshiyasu Takefuji for his valuable and constructive
suggestions throughout this work. He has been always supportive since I
started my research career as an undergraduate student. Ever since, he has
guided me with his great patience and tolerance. This dissertation would
not have been possible without him. I would also like to express my
appreciation to thesis committee members, Professor Yasushi Kiyoki,
Professor Tatsuya Hagino, and Professor Keiji Takeda for their services
and help they have given to me.

I would like to thank all the people in Toshiba Corporation who have
helped me to finish this work, especially Dr. Mutsumu Serizawa, Mr.
Atsushi Inoue, and Mr. Takashi Yoshikawa for their encouragement and
supports to keep up both my studies and my jobs. I would also like to thank
the co-authors of my journal articles and a conference paper. Especially, Dr.
Jun Kanai is gratefully acknowledged for his tremendous help and
insightful suggestions.

Lastly, and most significantly, I would like to thank my family. To my
parents, for the gift of an education, and the example of a work ethic. To
my wife, Miho, for her love and faithful support. To my children, Riku and
Rui, who brought joy into my life and inspired me to hurry up to complete
my study. Without them, none of this study would have happened.

Hiroshi Isozaki
 Graduate School of Media and Governance

Keio University

ii

Contents

Chapter 1 Introduction ... 1
1.1 Motivation ... 1
1.2 Objective ... 4
1.3 Main contributions ... 5
1.4 Dissertation overview ... 9

Chapter 2 Problem definition ... 11
2.1 Security problems in smart grids .. 11
2.2 Problem of keeping long-term security .. 14
2.3 Problem of keeping availability .. 17

Chapter 3 Background .. 20
3.1 ARMv7 architecture .. 20
3.2 TrustZone .. 22
3.3 Trusted Platform Module (TPM) ... 24

Chapter 4 The proposed method.. 25
4.1 A method to keep long-term security ... 25

4.1.1 Framework of the virtual security hardware system 25
4.1.2 Functions of the virtual security hardware system 27
4.1.3 Process flow .. 33
4.1.4 Prototype implementation ... 37
4.1.5 Evaluation ... 40

4.2 A method to keep availability ... 56
4.2.1 Framework of the recovery system ... 56
4.2.2 Functions of the recovery system ... 57
4.2.3 Prototype implementation ... 63
4.2.4 Evaluation ... 71

Chapter 5 Secure mobile agent system .. 80

iii

5.1 Security threat to mobile agent system ... 80
5.1.1 Mobile agent system ... 80
5.1.2 Security threat ... 81
5.1.3 Apply secure mobile agent system to smart grids 84

5.2 Architecture of the secure mobile agent system 86
5.3 Functions of the secure mobile agent system ... 88
5.4 Process flow .. 93
5.5 Prototype implementation ... 96
5.6 Evaluation ... 98

5.6.1 Security and cost analysis ... 98
5.6.2 Performance analysis .. 103

5.7 Application examples ... 108

Chapter 6 Related work .. 111

Chapter 7 Future work ... 117

Chapter 8 Conclusion .. 120

References .. 123

iv

List of Figures

Figure 1.1: Overview of a smart grid. ... 2
Figure 3.1: Mode and world in ARM. .. 22
Figure 4.1: Architecture of the virtual security hardware system. 27
Figure 4.2: Execution flow of the Re-encryption module. 30
Figure 4.3: Execution flow of the update process of .. 35
Figure 4.4: Execution flow of remote attestation. .. 37
Figure 4.5: Throughput of the re-encryption process. .. 49
Figure 4.6: Performance ratio of the re-encryption process 49
Figure 4.7: Evaluation result of the network latency. ... 50
Figure 4.8: Performance result of the module update process. 51
Figure 4.9: Architecture of the recovery system. ... 56
Figure 4.10: Flowchart of the periodic surveillance and recovery process. 60
Figure 4.11: Memory protection mechanism. ... 62
Figure 4.12: Assignment of the timer interrupt. ... 66
Figure 4.13: Flowchart of the access violation handling. 70
Figure 4.14: Result of the performance degradation. ... 77
Figure 4.15: Result of the performance degradation with message
notification. ... 77
Figure 5.1: Network architecture of a smart grid. .. 85
Figure 5.2: Architecture of the secure mobile agent system. 87
Figure 5.3: Process to develop and install the SMA module. 91
Figure 5.4: Execution flow of Secure Mobile Agent module installation. 95
Figure 5.5: Performance result of SMA module installation (plaintext). 105
Figure 5.6: Performance result of SMA module installation (encrypted). 105
Figure 5.7: Performance result of SMA module installation (encrypted and
signed)... 106
Figure 5.8: Performance ratio of the SMA module execution. 108

v

List of Tables

Table 2.1: Differences between information and communication system
and control system .. 12
Table 3.1: ARM processor modes and bank registers .. 21
Table 4.1: Memory map of the virtual security hardware system 38
Table 4.2: Configuration of access control policy .. 61
Table 4.3: Memory map of the recovery system .. 63
Table 4.4: Configuration of TZASC ... 65
Table 4.5: Configuration of hardware interrupt .. 67
Table 4.6: CPSR and SCR register configuration .. 68
Table 5.1: Access control policy and its mapping .. 88
Table 5.2: Memory map of the virtual security hardware module 97

Chapter 1 Introduction

Introduction

Security is a prerequisite for the commercialization of smart grids. This
dissertation focuses on a secure system to keep embedded end-point
devices in a smart grid secure, and pays particular attention to realization
of a robust mechanism against attacks, including illegitimate modification
and eavesdropping, at reasonable cost in terms of development,
deployment and maintenance. This chapter provides an overview of the
research presented in this dissertation.

1.1 Motivation

A smart grid is a next-generation energy-providing system combining
energy infrastructure and communication network infrastructure.
Widespread deployment of smart grids is expected in view of the need for
clean energy through large-scale use of renewables and optimization of
distributed energy resources to deliver electricity efficiently and reliably.

Figure 1.1 shows an overview of a smart grid. A smart grid consists of
many components: end-point devices in the household, such as a smart
meters, Home Energy Management Systems (HEMSs); head-end systems
including Energy Management Systems (EMSs) that control power flow
in order to balance and optimize power generation and consumption, and
Meter Data Management Systems (MDMSs) that receive meter data from
smart meters and utilize utility operations, such as billing and outage
management; concentrators that relay data between the end-point devices
and the head-end system; distributed power generation equipment, such as

CHAPTER 1. INTRODUCTION 2

wind turbines and photovoltaic generators; conventional power plants,
such as thermal power plants, nuclear power plants, and coal-fired power
plants; factories; buildings; and electric vehicle charging stations. These
various components are interconnected and transmit control signals and
data through networks.

Applications of smart grids vary. The typical applications are home
energy management, demand response management, outage management,
electric vehicle charging and overhead transmission line monitoring [1][2].
All applications effectively utilize the advantages of the network.

Since the assets handled in smart grids are valuable and the transmitted
control signals and the data include confidential information, security
breaches in smart grids may involve serious damage to utilities,
government, and end-users. Examples of such damage include massive
outages or power shortages, reconfiguring or compromising of equipment,
economic damage due to a utility company’s loss of revenue, and privacy-
related information leakage as a result of theft of power usage [3].
Therefore, security is a prerequisite for the commercialization of smart
grids.

In order to address the security concerns, much work involving many

Figure 1.1: Overview of a smart grid.

CHAPTER 1. INTRODUCTION 3

researchers and engineers has been done to establish security standards for
smart grids. For example, in the U.S., in 2010 the National Institute of
Standards and Technology (NIST) published Interagency Report 7628,
Guidelines for Smart Grid Cyber Security, providing an analytical
framework including characteristics, risks, and vulnerabilities related to
smart grids [4]. In Europe, in 2014 the European Smart Grid Coordination
Group (SG-CG) finalized a report, Smart Grid Information Security,
providing guidance, standards landscape and requirements [5].

Although those documents are useful for sharing the basic concept,
making specifications, and designing an entire system securely, they are
insufficient because systems are not always implemented correctly. It is
very difficult to exclude implementation errors from a system even if
developers carefully design the system and review its source code.
Furthermore, whereas most previous research proposed crypto algorithms
and security protocols, there have been few proposals of security
architecture to withstand attacks that exploit implementation vulnerability
and the matter is left largely to the efforts of individual vendors [6]. In
light of the history of information and communication systems, it is
inevitable that implementation vulnerability will lead to security incidents
in control systems such as smart grids in the near future. Stuxnet, the
computer worm that attacked Iran's nuclear facilities in 2010, is well
known because the importance of control-system security is widely
recognized. Besides Stuxnet, attacks on critical infrastructure have been
reported from many places in the world and those attacks exploit
implementation vulnerability. Although Stuxnet targeted head-end
systems, end-point devices can be targets too. In fact, the damage of an
attack is more serious than the head-end server since tremendous numbers
of embedded end-point devices will be deployed in the near future. In fact,
the deployment of a smart meter, which is a typical example of an
embedded end-point device in a smart grid, is in progress in many
countries. In Japan in April 2014, Cabinet approved the new Basic Energy
Plan that sets a target to introduce smart meters to all households by the
early 2020s. Followed by the approval, Ministry of Economy, Trade and
Industry (METI) disclosed the introduction plan of a smart meter of each
power utility in December 2014. The plan describes that Tokyo Electric
Power Company will complete the introduction of 28 million smart meters
by 2020. If such a large number of smart meters are deployed without
security protection mechanism, there is a great threat to the industrial
infrastructure. Actually, it was reported that researchers found a security
flaw in a smart meter installed in Spain, which potentially could cause

CHAPTER 1. INTRODUCTION 4

widespread power outages [7]. Therefore, a security system for embedded
end-point devices is strongly desired. However, since the problems and
the requirements concerning the keeping of security have yet to be clearly
defined, reasonable and effective methods have yet to be developed.

This research is motivated by the intrinsic difficulties of keeping
security of embedded end-point devices in smart grids and social needs
associated with this issue. With a view to accelerating the spread of smart
grids, the approach in this dissertation realizes sufficient robustness
against attacks on embedded end-point devices.

1.2 Objective

The objective of this research is to propose a method of enhancing the
security of embedded end-point devices in smart grids. Although the
importance of security is widely recognized and many cryptographic
techniques and authentication protocols have been proposed, security
problems concerning implementation vulnerability have not been well
defined. As well as enhancement of robustness, cost is an important aspect
when evaluating security architecture. If the new security architecture
requires costly dedicated hardware or a complete software rebuild, it will
never be commercialized. It is necessary to strike the right balance
between security and cost.

Moreover, security is often regarded as add-on functions to complement
applications. In other words, security functions are sometimes viewed as
interference with applications or network architecture and the existing
system is restricted because of security concerns. However, there is a way
to utilize security that enables the introduction of new applications to smart
grids. To achieve the above objectives, the following goals have been set.

(1) To clarify security problems unique to embedded end-point
devices in smart grids and to develop methods and demonstrate
security systems for embedded end-point devices on existing
platforms, including software and hardware, with minimum
performance degradation and at reasonable cost.

(2) To propose a software security platform for embedded end-point
devices that enables the introduction to smart grids of new
applications that work efficiently and reliably.

Several types of embedded end-point devices are used in smart grids.

Some are PC-based systems with high-end processors, some are

CHAPTER 1. INTRODUCTION 5

embedded systems with embedded application processors, and others are
small-scale embedded systems with microcontrollers. Since existing
security technologies are applicable to PC-based systems, they are beyond
the scope of this dissertation. In addition, since small-scale embedded
systems with microcontrollers have limited functions, capabilities, and
network interfaces, security threats are minimized. Therefore, they are
beyond the scope of this dissertation too. In traditional control systems, as
it is assumed that embedded devices neither connect to the network nor
have rich functions, small-scale embedded systems have had sufficient
processing power. In smart grids, however, the requirements for
supporting various applications increase, network connectivity becomes a
mandatory function, and small-scale embedded systems are insufficient.
Embedded systems with application processors will replace small-scale
embedded systems and be widely introduced in the near future. In view of
this situation, the primary target of this dissertation is set to embedded
systems with embedded application processors.

1.3 Main contributions

The research in this dissertation makes a number of contributions to the
security platform for embedded end-point devices: keeping long-term
security, satisfying the three pillars of information security, demonstrating
feasibility with full implementation, and a security platform enabling the
introduction of new applications to smart grids.

Keeping long-term security

It is assumed that embedded end-point devices in smart grids are kept in
use for a long period of time once they are deployed in the field. Even if
all bugs and vulnerabilities are eliminated from the embedded end-point
devices at the time of shipment, new vulnerabilities may be found after
deployment. In fact, new vulnerabilities are frequently reported [8][9].
Therefore, a mechanism to prevent an attack found after deployment is
required. Furthermore, tremendous numbers of embedded end-point
devices will be deployed in the field for smart grids. In the case of a
cyber-attack, since many embedded end-point devices could be targets of
the attack and the attack could be done in a very short period of time
through the network, it is impracticable in terms of both cost and time for
field service engineers to physically visit each site and replace the devices
with new ones.

CHAPTER 1. INTRODUCTION 6

Although providing an update mechanism through the network is a
solution to keep devices at the latest status, it is not easy to implement it
since there is no trust anchor in a software system. Furthermore, previous
methods require rebooting an entire system, including an operating system,
when installing update modules, including security-sensitive functions,
since general-purpose functions and security-sensitive functions are
integrated. However, rebooting the system is unacceptable for embedded
end-point devices in smart grids since it would be necessary to stop
services while rebooting the operating system.

To solve these problems, we propose a method to dynamically and
securely load and update a module, which includes security-sensitive
processes and data, without requiring rebooting the system by providing a
secure isolated execution environment, in which a protection-required
module transmitted through the network is securely loaded, updated, and
executed on working memory [10]. The overhead of executing the
protection-required module in the environment is sufficiently small. In
particular, depending on the applications, the performance degradation is
less than 10% in a severe case compared with a solution based on
vulnerable legacy software. Furthermore, in order to minimize the
development cost, the proposed method provides the same interface as the
traditional security hardware although implemented as software with
robustness equivalent to hardware, so that developers can use the
protection-required module in the traditional manner.

Satisfying the three pillars of information security

The purpose of information security is to ensure the three pillars of
information security: confidentiality, integrity, and availability. Whereas
most previous research endeavored to keep confidentiality and integrity,
few attempts were made to keep high availability of the devices although
it is strongly desired since they must always be working in order to
provide various services in smart grids. As a single vulnerability may
cause the system to go down, developers need to exclude any vulnerability
from the system when designing and implementing it using legacy
approaches. However, requirements for the support of various protocols
and their associated functions increase the complexity of embedded end-
point devices in smart grids, making it very difficult to exclude
vulnerability. Therefore, the need to keep device availability in smart
grids poses a significant challenge. We propose a novel method involving
isolation from general-purpose processes, including the operating system,

CHAPTER 1. INTRODUCTION 7

of a surveillance process observing the state of the system and a recovery
process that reboots the operating system when it detects the system
freezes [11][12]. In the proposed method, even if the operating system is
attacked and crashes, it is possible to prevent interference in the
surveillance and recovery processes, and consequently sufficient
robustness is kept against attacks. Furthermore, the overhead of the
surveillance process is sufficiently small in our proposed method. In
particular, the performance degradation is under 0.2% in a normal use
case. Furthermore, we propose a method of notifying administrators when
a crash through the network is detected, thus helping administrators
investigate the result of the crash.

Demonstrating feasibility with full implementation

Developers desire the total architecture in order to evaluate the feasibility
in terms of both security and performance. We demonstrate a full
implementation of the proposed methods on existing widely available
embedded processors to show that it is applicable to various embedded
end-point devices. The evaluation with the implementation clarified that
the architecture makes it possible to keep the three pillars and
performance degradation is sufficiently small to be ignored. Moreover, the
implementation shows that it is possible to reuse existing software assets,
which contributes to reduction of the development cost. The embedded
end-point devices need to support many functions, which are not directly
related to security functions, in order to provide various services. For
example, smart meters have a two-way communication function, a data
collection function, a data storing function, a display function, and a
billing function [13]. Therefore, it is unreasonable to force developers to
discard existing software assets and build software from scratch when
introducing security functions. We design a system in which developers
can reuse all existing programs, including operating system, libraries,
middleware, and applications, enabling them to minimize development
costs.

Enabling new applications in a smart grid with a security platform

In PC-based systems, it is possible to include many security features with
the supports of powerful processing power and sufficient computational
resources. However, it is unreasonable to have rich functions in embedded
end-point devices in smart grids due to the limited computational

CHAPTER 1. INTRODUCTION 8

resources. Furthermore, such complex systems require large verification
costs, which is unacceptable for developers. We propose security
architecture where a function can be dynamically added to embedded end-
point devices, depending on the role of devices by applying a concept of a
secure mobile agent system to smart grids. A mobile agent system is a
distributed system where a program called a mobile agent autonomously
moves from one host to another connected through a network. Although
many mobile agent systems have been proposed, few studies address the
problem of keeping secrecy and integrity of mobile agents. If this problem
is addressed properly, it will be useful for many applications since it is
possible to reduce the risk of illegitimate interception or modification of a
mobile agent’s data and code through the network or on the host. Smart
grids are a potential application of a secure mobile agent system. In smart
grids, several network architectures are considered. The lack of security
may restrict the network architecture even if some architectures offer great
advantages, causing utilities to hesitate to introduce network architecture.
In particular, a wireless mesh network is considered to be well suited to
mobile agent systems. We propose a secure mobile agent system in which
a mobile agent is divided into a general-purpose module and a security
module. Only the security module is executed in a secure isolated
execution environment. Our proposed method enables mobile agents to
execute their processes on untrusted mobile agent platforms. As the result,
developers can dynamically add functions securely before and after
deployment, improving flexibility of system design significantly.
Furthermore, since the security module is transmitted in an encrypted
manner with the general-purpose module when migrating, it is possible for
the mobile agents to protect security-sensitive processes and data. We
show that the secure mobile agent platform enhances the capability of the
Field Area Network (FAN) in smart grid network architecture and enables
many new applications that have not been achieved previously, such as
privacy information protection, pay-per-use software charging and
software activation, and safety vault. Whereas security is frequently
regarded as cost, we successfully present that security features can bring
additional values to smart grids by showing new useful and valuable
application examples.

CHAPTER 1. INTRODUCTION 9

1.4 Dissertation overview

Chapter 2: Problem definition

In this chapter, we define the problems to be solved in this dissertation.
First, we show an overview of security problems in smart grids and clarify
the differences between information and communication systems and
control systems. Then, we primarily focus on two critical problems unique
to the control system: problems concerning the keeping of long-term
security and problems concerning the keeping of availability.

Chapter 3: Background

In this chapter, we provide background information necessary to
understand the remainder of this dissertation. Since the target devices of
this dissertation are embedded end-point devices in smart grids, we briefly
explain available security functions of embedded processors. We also
introduce available security hardware whose functions our proposed
method replaces.

Chapter 4: The proposed method

In this chapter, we present a security platform for embedded end-point
devices in a smart grid. We propose two methods: a method to
dynamically load and update a security-sensitive module only without
rebooting an operating system, and a method to achieve a fault-tolerant
system. We also demonstrate a prototype implementation of those
methods. Finally, we present the results of experiments in terms of both
qualitative and quantitative evaluation. In the qualitative evaluation, we
verify that our proposed methods resolve the problem described in the
previous chapter. In order to enhance robustness, performance degradation
is unavoidable. In the quantitative evaluation, we evaluate the extent to
which our proposed methods degrade performance.

Chapter 5: Secure mobile agent system

In this chapter, we propose a secure mobile agent system utilizing the
proposed methods. First, we summarize the security threat to a mobile
agent system. Although mobile agent systems have a long history and
many systems with security mechanisms have been proposed, the threat
that a mobile agent platform will attack mobile agents has yet to be solved.
We propose the provision of a secure isolated execution environment for

CHAPTER 1. INTRODUCTION 10

mobile agents to protect their resources. We also demonstrate prototype
implementation and show experimental results. Furthermore, we show
that the FAN architecture in smart grids is well suited to a secure mobile
agent system and present application examples that have not been
achieved previously.

Chapter 6: Related work

In this chapter, we refer to papers related to this dissertation. The research
field of this dissertation is trusted computing. We introduce technologies
to enable trusted computing, including dedicated security hardware and
virtualization. The proposed methods achieve a fault-tolerant system. We
will refer to related work on existing methods to enable fault-tolerant
systems. We will also refer to related work on secure mobile agent
systems.

Chapter 7: Future work

In this chapter, we refer to future work to be addressed in order to improve
the proposed method.

Chapter 8: Conclusion

In this chapter, we present our conclusions.

Chapter 2 Problem definition

Problem definition

In this chapter, we define the problems to be solved in this dissertation.
First, we clarify security problems unique to embedded end-point devices
in smart grids. Then, we focus on two major problems that have not been
fully solved in previous research: problems concerning the keeping of
long-term security and problems concerning the keeping of availability.

2.1 Security problems in smart grids

Keeping security is a great challenge in smart grids. Since smart grids are
complex systems, analyzing security of smart grids is also a complex
matter. Much work has been done to expose threats to smart grids and
clarify requirements for smart grids in order to minimize security risks
[14]. For example, requirements in smart grids can be summarized as
high-level security requirements in general and the major security
requirements and vulnerabilities with respect to confidentiality, integrity,
availability, authentication, authorization, auditability, nonrepudiability,
privacy, third-party protection, and trust components for smart grid
communications [15]. In order to fulfill the requirements,
countermeasures have been analyzed [16][17]. However, many problems
still remain since smart grids have many assets to be protected. In
particular, smart meters are important assets to be protected because
vulnerability can easily be monetized, making them extremely attractive
targets for attackers [18]. For example, if smart meters are attacked,
attackers can manipulate the energy cost or fabricate energy meter

CHAPTER 2. PROBLEM DEFINITION 12

readings by compromising smart meters. In fact, at a security conference
in 2009, researchers showed that it is potentially possible to gain control
of all exposed smart-meter capabilities, including remote power on, power
off, usage reporting, and communication configurations, by exploiting the
vulnerability of smart meters [19].

Many security technologies and solutions have been developed for
information and communication systems and are widely used. Although
some of them are applicable and useful for control systems, since there are
many differences between control systems of smart grids and those of
information and communication systems, features unique to control
systems make it difficult to apply them without modification. Table 2.1
summarizes the differences from the viewpoint of security [20][21].

Table 2.1: Differences between information and
communication system and control system

 Information and
communication system Control system

Features

Life cycle 3-5 years Over 20 years

Availability Accepted Need to work on
24h/365d

Function
Changed by user

operations (e.g. install
application)

Controlled and fixed

Delay Accepted Not accepted
C

ounterm
easure

Virus
protection Widely used Rarely,

vendor dependent

Security patch Periodically applied Slow,
vendor dependent

Update Periodically update No update
Vulnerability

check Check periodically Non-periodical

A typical example of the differences concerns device lifetimes.
Whereas device lifetimes in smart grids is expected to be over 20 years,
they are expected to be 3-5 years in the case of information and
communication systems. Therefore, a method of updating the system is
essential. However, it is not easy to introduce an updating mechanism in a
software system. For example, when a module to be updated has
confidential information, it is necessary to encrypt the module when
distributing it and to decrypt it when installing it in the system. However,

CHAPTER 2. PROBLEM DEFINITION 13

since there is no trust anchor in the current software system, it is difficult
to protect a key necessary to decrypt the module. Furthermore, an update
mechanism sometimes requires rebooting an operating system since
general-purpose functions and security-sensitive functions are integrated
and it is difficult to replace security-sensitive functions only. However, it
is unacceptable in the case of a control system since the unplanned outage
could have catastrophic effects on the control system [22]. Moreover, a
tremendous number of devices are deployed at remote sites, as opposed to
being deployed in a local area network in the case of an information and
communication system, which means administrators are unable to operate
devices on site. Therefore, a mechanism for secure remote updating of
embedded end-point devices is essential in smart grids although the
method is as yet unclear.

Another major difference concerns the acceptable level of availability.
As in the case of information and communication systems, the high-level
security objectives for smart grids, including smart meters, are the keeping
of confidentiality, integrity and availability [23][24][25]. To ensure
confidentiality and integrity, many cryptographic techniques and
authentication protocols have been proposed. Furthermore, they have been
evaluated to check their applicability to embedded devices, particularly to
those with low processing power [26][27][28][29]. Besides confidentiality
and integrity, high availability of the devices is strongly desired since they
must always be working to provide various services [16][30]. Although
embedded end-point devices in smart grids have fewer functions than
devices used in information and communication systems, requirements
concerning the support of various protocols and the associated functions
make their systems more complicated. As a single vulnerability may cause
the system to go down, it is very difficult to keep high availability in a
complicated system. Furthermore, unlike in the case of interactive devices,
such as PCs or smartphones, it is unreasonable to expect end users to reset
and restart embedded end-point devices once they freeze or hang since
end users cannot recognize the status of the embedded end-point devices
and cannot determine whether they should be rebooted or not. Thus, the
need to keep the availability of embedded end-point devices in smart grids
poses a significant challenge.

In the following section, we describe the two major problems in detail:
the problem of keeping long-term security and the problem of keeping
availability.

CHAPTER 2. PROBLEM DEFINITION 14

2.2 Problem of keeping long-term security

Hardware vs. software

In most security systems, a cryptosystem is used to ensure confidentiality
and integrity. Since crypto processes incur high calculation cost, the usual
approach has been for crypto processes to be implemented as dedicated
hardware and for software to use the hardware functions in the case of
embedded devices in legacy systems. However, in view of the evolution
of embedded processor and development of fast calculation algorithms,
developers increasingly tend to implement crypto processes as software.

When crypto processes are implemented as hardware, it is possible to
keep high confidentiality since confidential processes and data are
embedded inside hardware and it is very difficult to modify hardware
functions without specialized tools, but there is a disadvantage in that
physical replacement is required when updating crypto functions. This
disadvantage is critical for embedded end-point devices in smart grids
since a tremendous number of embedded end-point devices are deployed
at households and it is impracticable to physically replace all of them in a
short period of time in the event of security incidents, such as information
leakage including the key value.

On the other hand, when crypto processes are implemented as software,
it is easy to implement an update mechanism to replace a crypto algorithm,
key length, or key values, but the risks of information leakage and
illegitimate modification become high since it is much easier to analyze or
modify software than hardware. Furthermore, it is difficult to establish a
trusted base in the case of a software-only implementation. If crypto
processes and confidential data are implemented in application programs
and an operating system or middleware has vulnerability, attackers may
exploit these weaknesses, resulting in modification of the update
mechanism, invalidation of the crypto system, or eavesdropping of secret
information.

To make matters worse, embedded end-point devices introduced in
smart grids are used for much longer than those applied in information
technology systems. There is a great risk that new vulnerability will be
found while end-point devices are in service. Therefore, it is desirable to
make the system updatable in order to prevent attacks caused by misuse of
new vulnerability found after the deployment of end-point devices. In fact,
according to guidelines in the U.S., vendors are required to design and
implement systems for application in smart grids that are updatable
[4][31].

CHAPTER 2. PROBLEM DEFINITION 15

Difficult to exclude vulnerability in a large system

In order to keep a system secure, a system needs to be implemented
without vulnerability. Various testing methods have been proposed to
detect and eliminate vulnerability in source code [32][33]. However, since
embedded end-point devices will be deployed without maintenance over a
long period of time in smart grids and new vulnerabilities are frequently
found, there is a large risk that such devices will continue operating
without vulnerabilities being fixed even if those devices had no
vulnerabilities when shipped. For example, Ret2Libc is a well-known
attack against x86 processors that enables an attacker to inject and execute
code. ARM processors had been considered invulnerable to Ret2Libc.
However, since a new attack extending Ret2Libc against ARM processors
has been proposed, the buffer overflow of ARM processors has been
regarded as a threat [34]. Therefore, attackers may exploit vulnerability,
such as a buffer overflow or a malformed network input, in order to cause
an embedded end-point device to crash. To make matters worse, attackers
are in a somewhat advantageous position in launching a large attack since
the number of device vendors is limited and the software installed in the
embedded end-point devices is uniform. Furthermore, attackers can
reverse engineer code without administrators noticing in order to find
vulnerability because, unlike a server application, embedded end-point
devices are located at the user side. Therefore, when attackers find a
vulnerability in a single device, they can exploit it on many embedded
end-point devices.

Besides the problem at the end-point device’s side, information
leakage could occur at the head-end system side. In order to authenticate
each other, a head-end system shares secret information with end-point
devices. In particular, when a head-end system is implemented as a server
application working in an operating system, there is a risk of an attack on
the application by means of widely available exploit tools. Therefore,
even if the end-point devices have no security flaw, their data or software
needs to be updated once information leakage occurs at the head-end
system side.

Risk of compromising cryptosystem

There is a risk that the cryptosystem itself will be compromised since
embedded end-point devices are deployed for a long period of time. The
latest algorithm may not be used in some cases in smart grids. The newly
deployed embedded end-point devices may need to support an old crypto

CHAPTER 2. PROBLEM DEFINITION 16

algorithm in order to communicate with old devices. When old devices are
physically replaced with new ones, the embedded end-point devices need
to update their algorithm and keys. For example, although Data
Encryption Standard (DES) is no longer secure, when considering the long
lifetime of a control system it should be recognized that old devices
supporting the DES algorithm remain in legacy systems.

Whereas there are many techniques to update a key, a process that
implements an algorithm must be updated besides the key in order to
update the cryptosystem. If a module implementing the process is
illegitimately modified, the key is vulnerable since there is a risk of the
modified module stealing the key. Furthermore, since it is impossible to
estimate the workload of the future cryptosystem in advance, flexibility is
required to support the update function for an unknown cryptosystem.
However, it is hard to introduce the function in legacy system.

Difficult to attest the system

Since embedded end-point devices are deployed at sites remote from a
head-end system, it is desirable that administrators check whether the
embedded end-point devices are modified or not. For example, when a
head-end system collects meter data from each smart meter through a
network, an administrator is eager to verify that the unmodified software
is installed in the smart meter from the head-end system so that the
administrator has sufficient confidence that the data is transmitted from
legitimate smart meters.

In order to verify the status of the system, trusted boot is proposed [35].
In trusted boot, the expected status of the system is calculated in advance.
When booting the system, the status of the system is calculated and stored
in dedicated trusted hardware. Since the hardware is tamper-proof, the
attacker cannot modify the stored value. Therefore, a verifier can have
sufficient confidence that the system is in the expected status by checking
whether the stored value is identical to the value calculated previously.
Although trusted boot provides a method of verifying the status of a
system when booting, the verification cost is high since it requires
verifying an entire system, including modules unrelated to protection-
required modules. Especially for complicated systems, such as the
embedded end-point devices used in smart grids, which have various
functions whose protection is not required, modules are updated
frequently in order to add or delete services or to fix problems regardless
of security reasons. Therefore, it is impracticable for security

CHAPTER 2. PROBLEM DEFINITION 17

administrators to manage all versions of the modules. In order to minimize
a verifier’s cost, it is desirable to provide a method that enables the
verifier to check the status only of the modules whose integrity is required.

Furthermore, a trusted boot has fatal restrictions in that only the state
at the time of system boot can be checked. Therefore, even if the system is
attacked and functions whose integrity is required are modified after
booting the system, the verifier cannot notice the modification since the
stored value in the dedicated tamper-proof hardware does not reflect the
current status of the system whereas the stored value is identical to the
expected value.

In order to solve these problems, it is necessary to provide a
mechanism whereby only modules to be protected can be verified and the
status to be verified reflects the current status so that verification can be
performed at an arbitrary time. Moreover, in order to reduce a verifier’s
cost, it is desirable that a verifier can attest the system status at an
arbitrary time from a remote host through a network. In order to enable
remote attestation, it is necessary to protect the verification data by a
certain method, since there is a risk of data being modified on a network
or an operating system that executes general-purpose processes. However,
the technique is as yet unclear.

2.3 Problem of keeping availability

In a legacy system including a server system, surveillance and recovery
processes and their execution environment are monolithically configured.
In other words, the reliability of surveillance and recovery processes
depends on the reliability of their execution environment. This is a
reasonable approach in the case of a tiny system. However, since
embedded end-point devices used in smart grids require a large system,
such an approach becomes infeasible. In the following, we explain the
problems concerning the keeping of availability and the reasons why they
are difficult to solve.

Difficult to keep a high level of surveillance continuity

End-point devices need to support various network protocols and data
formats depending on countries or use cases in smart grids [36][37][38].
In order to minimize the implementation cost of a complicated application
program or a minor network protocol on end-point devices, Linux will be
used as a software execution environment. In Linux, the surveillance and

CHAPTER 2. PROBLEM DEFINITION 18

recovery processes can be implemented as a user task executed on the
operating system or as an interrupt handler in the operating system. When
a surveillance target process is implemented as a user task running on the
operating system, then support functions in the operating system, such as
the "cron" service in Linux, can be used to detect a failure of the user task
and to automatically restart the target process. When the surveillance
process is implemented as an interrupt handler in the operating system,
then a more sophisticated implementation is necessary than for an
application program; it is automatically and periodically called by a timer
interrupt as long as the operating system works.

Another legacy approach is implementation of a monitoring and
detecting mechanism in the operating system. For example, in order to
find buffer overflow attacks, an anomaly detection method is proposed
where a protection element monitors system call frequencies, and if the
frequencies are different from normal behavior, it determines that an
attack occurs [39].

However, the fundamental problem of a legacy approach is that there
is no way to restart the process if the operating system itself crashes for
any reason. Furthermore, the protection mechanism itself could be a target
of the attack, and as a result the protection mechanism could be
invalidated. Thus, there is a large risk of devices in a smart grid breaking
down and the attack may cause an extensive blackout in the worst case.

In order to prevent devices breaking down, a robust method of
recovering the system from failure is required in order to keep a high level
of availability. Still, some existing hardware devices support a watchdog
timer function that detects the status of the operating system and
automatically reboots the operating system [40]. Since not all devices
support the function and it is difficult to implement complicated functions
in the system as discussed below, a new approach is desired. To clarify the
conditions, only a software failure including an attack is assumed in this
dissertation. A physical fault, such as a hardware failure or loss of power,
or a hardware attack, such as physically destroying devices or cutting
cables, are beyond the scope of this dissertation.

Difficult for an administrator to detect when an incident occurs

End-point devices are connected with a head-end system through the
network to provide demand-response services. When the devices detect an
error status, such as a surveillance target process being stopped for an
unknown reason, it is desirable that these devices send a report to the

CHAPTER 2. PROBLEM DEFINITION 19

head-end system so that an administrator can realize the situation and use
the report to investigate the reason for the failure. However, for the reason
described above, there is no way for devices to send a message to the
head-end system if the operating system crashes in a system where the
network connectivity function is implemented as a user task or it is
implemented within the operating system. Even in such a case, it is
desirable to provide a method enabling devices to send a message to
acknowledge the error situation to the system administrator. In addition to
the unexpected failure, attacks on the network connectivity function need
to be considered. When an attacker gains full access to the system under
control, the attacker may try to disable the network connectivity function
in the operating system or totally destroy the system in the worst case.
Therefore, it is desirable not simply to provide a method of sending a
message but to keep the network connectivity function secure to protect it
against the attack even if the operating system is modified or the control
of the operating system is taken over.

Besides notification of the error situation to the system administrator, a
software update function is also desirable. However, since many existing
hardware devices already support a secure firmware update function and
its method is highly dependent on each device, it is beyond the scope of
this dissertation.

Development and production cost

Cost is an important aspect in evaluating the proposed security
architecture. Generally, there are two types of cost: development cost,
consisting primarily of personnel expenses, and production cost, which is
charged per device. When implementing an end-point device, if the new
security architecture requires a complete software rebuild, the architecture
will never be commercialized. Thus, it is desirable to reuse existing
software assets, such as libraries, middleware and applications, as much as
possible in order to minimize the development cost, including the
verification cost. In the case of smart grids, the verification cost is large
since reliability is strongly required. Besides the development cost, we
need to consider the cost per device. One approach to solve the problems
described above is to utilize a dedicated hardware security chip. However,
since such chips tend to be very expensive, their use may raise production
cost per device. Therefore, the use of widely available existing commodity
hardware is desirable in order to minimize the production cost.

Chapter 3 Background

Background

In this chapter, we provide background information on the hardware
technologies leveraged by the proposed method. Since the target of this
dissertation is embedded end-point devices in a smart grid, we present
available security functions of hardware devices. ARM processors are
widely used in embedded end-point devices because of low power
consumption, midrange performance, and the cost benefits. We present
security functions of ARM processors. Besides the central processing unit,
dedicated security hardware is widely available and some is used in
personal computers. That dedicated security hardware can be used as a
trust anchor to enable trusted computing. Although it is too expensive to
introduce the dedicated security hardware in embedded end-point devices
in smart grids, the concept is very useful and applicable to them. Thus, we
present the functions of typical dedicated security hardware.

3.1 ARMv7 architecture

ARM processors support different processor modes depending on the
architecture version. The ARMv7 architecture on which the proposed
system is implemented supports the seven processor modes shown in
Table 3.1.

The processor is executed by selectively switching the modes
depending on the process. The processor mode is changed either when a
program, such as an operating system, calls a dedicated instruction or
when software or hardware exception occurs. The seven modes are

CHAPTER 3. BACKGROUND 21

categorized as either non-privileged mode or privileged mode by privilege
level. In general, an operating system is executed in privileged mode and
application programs are executed in unprivileged mode. In privileged
mode, execution of all instructions and access to all memory regions are
allowed, whereas in unprivileged mode availability of instructions and
accessibility of memory regions are restricted.

The ARMv7 processor has 40 registers, consisting of 33 general
registers and 7 status registers. These registers are arranged in partially
overlapping banks. For example, r13, which is a bank register and usually
used for a stack pointer, refers to different physical registers in User mode
and Supervisor mode. For non-banked registers, which refer to the same
physical register in different modes, an operating system needs to save
and restore in working memory when switching from one mode to another
mode so that execution can be subsequently resumed from the same point.
On the contrary, the operating system does not need to save the context of
banked registers. For example, the operating system does not need to save
the context of r13 when switching from User mode to Supervisor mode.
Therefore, rapid context switching is enabled.

Table 3.1: ARM processor modes and bank registers

Mode level description Bank
register

of bank
registers

USR unprivileged User mode r8-r14 7

SVC privileged Supervisor mode r13-r14,
spsr 3

IRQ privileged IRQ mode r13-r14,
spsr 3

FIQ privileged FIQ mode r8-r14, spsr 8

ABT privileged Abort mode r13-r14,
spsr 3

UND privileged Undefined mode r13-r14,
spsr 3

MON privileged Monitor mode r13-r14,
spsr 3

CHAPTER 3. BACKGROUND 22

3.2 TrustZone

TrustZone is a hardware security function supported by a part of the ARM
processor [41][42]. In addition to unprivileged mode and privileged mode,
a TrustZone-enabled ARM processor supports two worlds that are
independent of the modes. One is the secure world for the security process
and the other is the non-secure world for everything else. Each processor
mode shown in Table 3.1 is available in both the secure world and the
non-secure world. Figure 3.1 shows the relationship between worlds and
modes conceptually. The world in which the processor is executing is
indicated by the NS-bit in the Secure Configuration Register (SCR) except
when the processor is in monitor mode. When the processor is in monitor
mode, it is in the secure world regardless of the value of the NS-bit of
SCR. The processor is executed by selectively switching the worlds if
necessary. For example, it is assumed that the key calculation process is
executed in the secure world and all other general processes, such as
storage access or network access are executed in the non-secure world.

The software that manages switching between the secure world and the
non-secure world is called the monitor. The monitor is executed in
monitor mode. TrustZone provides a dedicated instruction, the Secure
Monitor Call (SMC) instruction, to transit between the worlds. As soon as
the SMC instruction is called, the processor switches to monitor mode.
The monitor saves a context of the program running in the current world

Figure 3.1: Mode and world in ARM.

CHAPTER 3. BACKGROUND 23

on the memory and restores a context of the program running in the
previous world, then changes the world to set the NS-bit of SCR, and
finally executes the program running in the previous world. Besides the
SMC instruction, hardware exceptions can be configured to cause the
processor to switch to monitor mode.

Note that general registers and Saved Program Status Register (spsr)
are not banked between worlds. For example, when r13 in User mode of
the secure world is referred and the monitor switches from the secure
world to the non-secure world, and then r13 in User mode of the non-
secure world is referred, the same physical register is referred. Therefore,
the monitor needs to save and restore both bank registers and non-bank
registers when it switches worlds.

By using TrustZone-capable hardware, it is possible to make a system
where a process running in the secure world can access all system
resources, such as memory or peripherals, whereas a process running in
the non-secure world can access only a part of system resources. For
example, when SCR is used in combination with the TrustZone Address
Space Controller (TZASC), access to a particular region of working
memory can be restricted for a process running in the non-secure world
even if the process runs in privileged mode. When a process running in
the non-secure world accesses a memory region that it is configured to be
prohibited from being accessed from a process running in the non-secure
world, TZASC generates an interrupt signal and it is sent to the processor.
As a result, the violation causes an external asynchronous abort. Similar to
TZASC, when used in combination with the TrustZone Protection
Controller (TZPC), access to a peripheral can be restricted for a process
running in the non-secure world. In contrast to TZASC, the access control
policy of TZPC can be configured per peripheral, such as DRAM, Timer,
or Real-Time Clock (RTC). That is, the configuration of TZPC is
performed peripheral by peripheral. There is a correlation between
TZASC and TZPC. For example, when configuring a policy such that
access to a particular region of DRAM is restricted, the access control of
TZPC corresponding to DRAM is set to off and the proper access control
policy with the corresponding region is installed on TZASC. TZPC is
configured as secure when booting the system. Therefore, for all
peripherals whose access controls are valid by TZPC, access by a process
running in the non-secure world is prohibited by default. TZASC and
TZPC can only be configured by a process running in the secure world, in
order to protect those configurations from illegitimate modification.

CHAPTER 3. BACKGROUND 24

3.3 Trusted Platform Module (TPM)

Trusted Platform Module (TPM) is security hardware with various crypto
functions, such as an encryption function, a random number generation
function, a key generation function, and a secure hash calculation function.
A non-profit organization, Trusted Computing Group, standardizes its
functions and interface, and publishes specifications [43]. TPM is widely
used in many consumer appliances, including personal computers. TPM is
a hardware module independent of a host CPU. Since the interface for
operating TPM is defined in the specification and it is implemented as
hardware, it is impossible to eavesdrop or modify data and functions
processed inside TPM from outside. That is, software running on a host
CPU cannot acquire or change data and functions processed inside TPM.
Therefore, TPM can be used as a security anchor for protecting a system
from software level attacks [44].

Moreover, TPM has registers called Platform Configuration Register
(PCR) inside, which temporarily save the state of the memory at a certain
point, in which a program or data are stored. When new data are input in
PCR, it concatenates the old value of PCR with the input data, and
calculates the hash value of the concatenated value, serving a new value or
PCR. It is prohibited to set an arbitrary value for PCR. PCR can be reset
only when booting the system and cannot reset the value at arbitrary
timing. TPM can be used as a tool to realize trusted boot that verifies the
status of the system, ascertaining whether it is in the same status as the
system designer intended. First, hash values of programs loaded from the
time of booting the system are stored in PCR one by one in order, such as
BIOS, OS, middleware, and applications. Then, the final result is
compared with the predicted value calculated beforehand. If the values
match, it can be regarded that the system’s status is legitimate. Otherwise,
some programs have been modified and the system is regarded as not
being in an expected status. Furthermore, TPM has a function to calculate
a signature for the value of PCR with the secret key embedded in TPM by
a public key algorithm. TPM can be used to realize remote attestation that
verifies the status of the system from a remote host, such as a server
connected in the network.

Chapter 4 The proposed method

The proposed method

Security platform for embedded end-point devices in a
smart grid
In this chapter, we present a method to achieve a security platform for
embedded end-point devices in a smart grid with commodity hardware.
We describe a method for a system enabling dynamic loading and
updating of a security-sensitive module only with sufficient robustness
against tampering. Furthermore, it does not require rebooting the entire
system, including an operating system. We also describe a method for a
fault-tolerant system enabling the embedded end-point devices to monitor
the status of the operating system and to recover even if they stop working
owing to unexpected behavior or cyber-attacks, including zero-day attacks.
We demonstrate a full implementation of the proposed methods on a
commodity embedded processor. We also show experimental results and
verify that the proposed methods satisfy the goal.

4.1 A method to keep long-term security

4.1.1 Framework of the virtual security hardware system

The proposed system provides a method for an embedded end-point
device to distribute a protection-required module through a network and
update it only while keeping its secrets, including secret information, such
as keys, and secret processes, such as crypto processes, securely without
exchanging hardware. It also minimizes performance degradation of

CHAPTER 4. THE PROPOSED METHOD 26

general-purpose processes. Figure 4.1 shows the entire architecture of the
proposed system. It consists of three components: Rich OS, Virtual
Hardware, and Monitor. In order to solve the problem described in
Chapter 2, it is necessary to include the protection-required module,
Virtual Hardware, Monitor, and initialization code in Trusted Computing
Base (TCB), which is the basis of trust and provides a secure environment.

 Virtual Hardware: Virtual Hardware consists of the following
components: The Re-encryption module, which is a protection-
required module containing confidential data and processes, such as
keys and re-encryption processes; the Update module, which verifies,
decrypts, and updates the Re-encryption module; the TPM module,
which processes crypto processes; the Time management module,
which supervises the execution time of processes in the secure world;
and the Common module, which loads other modules from a memory
and executes them, and requests Monitor to context switch to Rich OS.
Virtual Hardware runs in privileged mode in the secure world. In the
following explanation, we use the Re-encryption module as an
example of a module to be updated and protected running in Virtual
Hardware.

 Rich OS: An operating system that executes general-purpose
processes. It also requests Monitor to execute the protection-required
processes. The proposed system supports Linux as Rich OS. Since a
device driver in Rich OS has functions to exchange data with Virtual
Hardware, and to request Monitor to invoke context switch to Virtual
Hardware, applications running on Rich OS can use functions of
Virtual Hardware as if they use physical hardware devices, although
Virtual Hardware is implemented as software actually.

 Monitor: In order to execute Virtual Hardware and Rich OS
exclusively and concurrently, Monitor provides a context switching
function between Virtual Hardware and Rich OS based on the request
from them by utilizing functions of TrustZone. Moreover, it installs
an access control policy to configure TZASC appropriately when
booting a system.

The proposed system has five functions: baseline common functions,
execution of the protection-required module, dynamic load and update of
the protection-required module, protection of the protection-required
module, and remote attestation.

CHAPTER 4. THE PROPOSED METHOD 27

4.1.2 Functions of the virtual security hardware system

Baseline common functions

Monitor serves baseline common functions to execute Rich OS and
Virtual Hardware concurrently and exclusively. It has three baseline
common functions: configuration of access control policy, data
transmission, and context switching between worlds.

1) Configuration of access control policy

When booting the system, Monitor sets up a policy of memory access
control as one of the initialization processes using TZASC of
TrustZone. Monitor divides a memory area into three regions: a
shared region used for the data exchange between Virtual Hardware
and Rich OS, a non-secure region, in which Rich OS and applications
running on Rich OS are used, and a secure region for Virtual
Hardware. The shared region and the non-secure region are
configured so that both Virtual Hardware and Rich OS can access
data in them. Although an access control policy installed in the shared
region and the non-secure region is the same, we use different names
for clarification. On the other hand, the secure region is set up so that
only Virtual Hardware can access the data on it.

Figure 4.1: Architecture of the virtual security hardware system.

CHAPTER 4. THE PROPOSED METHOD 28

2) Data transmission

Monitor provides a data transmission function to exchange data
between Virtual Hardware and Rich OS. Since the more complicated
the system becomes, the larger the risk of including vulnerability
becomes, Virtual Hardware does not include device drivers to control
devices in order to minimize the risk. Therefore, Virtual Hardware
cannot directly access hardware devices. In order for Virtual
Hardware to access a disk drive, or a network device, Virtual
Hardware indirectly uses device drivers in Rich OS to exchange data
with Rich OS. First, Rich OS controls hardware devices, and reads
data from the hardware devices. Then, Rich OS writes data on the
memory area configured as the shared region. Since the device driver
maps the shared region into a virtual memory address region on Rich
OS, programs running on Rich OS can read and write data in the same
manner as they access the normal memory area. The device driver
requests Monitor to invoke context switch to Virtual Hardware.
Virtual Hardware reads data from the memory area configured as the
shared region and processes it in the secure world. When Virtual
Hardware sends data to Rich OS, Virtual Hardware writes data on the
shared region. Then, Virtual Hardware requests Monitor to invoke
context switch to Rich OS. Finally, Rich OS reads data from the
shared region. In this manner, data are exchanged between Virtual
Hardware and Rich OS.

3) Context switching between worlds

Monitor provides a context-switching function between worlds. In
addition to changing the state of the processor by configuring NS bit,
Monitor also saves and restores context of Rich OS and Virtual
Hardware. Since Rich OS and Virtual Hardware use the same register,
either one could destroy the context of another one without saving the
context when context is switched. Therefore, Monitor needs to save
the content of registers belonging to the current world on working
memory, and restores the content of registers belonging to the
transition destination world from the working memory while
changing the value of NS bit. Moreover, we implemented a device
driver in Rich OS in order to execute SMC instruction to transit the
status of the processor from the non-secure world to monitor mode.

CHAPTER 4. THE PROPOSED METHOD 29

Execution of the protection-required module

We explain a re-encryption process as an example of a process to be
updated and protection-required running in Virtual Hardware.

Embedded end-point devices, such as smart meters, need to support
multiple network interfaces with different communication protocols. For
example, they support ZigBee to communicate with proximity devices,
such as sensor devices, in addition to TCP/IP to communicate with
devices outside the home, such as head-end systems. Since the
cryptographic algorithm and data length used by each network interface
are different depending on protocols, it is necessary to re-encrypt data
when translating protocols. Therefore, protection of the re-encryption
process is required since data become plaintext when re-encrypting data.
Moreover, it is desirable to execute Rich OS concurrency in order to
process network communication functions simultaneously, since a
network protocol requires responding in a certain period time, or
otherwise it is disconnected.

Figure 4.2 depicts how the re-encryption process works in the
proposed system. First, Rich OS loads encrypted data from sensor devices,
a network, or disks and writes data on the shared region of a memory area
(process (1)), and executes SMC instruction to request Monitor to invoke
context switch (process (2)). When SMC instruction is called, a processor
calls Monitor. Monitor context switches from Rich OS to Virtual
Hardware (process (3)). The Common module in Virtual Hardware is
initiated and calls the Re-encryption module that reads data from the
shared region (process (4)). After executing the re-encryption process in
the secure world (process (5)), the Re-encryption module writes re-
encrypted data on the shared region (process (6)). It calls back to the
Common module. The Common module requests Monitor to invoke
context switch to Rich OS (process (7)). The processor calls Monitor
again, and Monitor context switches from Virtual Hardware to Rich OS
(process (8)). Finally, Rich OS reads the re-encrypted data from the shared
region (process (9)). A series of these processes is repeated until the re-
encryption of the data is completed.

Rich OS is suspended after Rich OS requests Monitor to invoke
context switch until Monitor restores the context of Rich OS. Since the
time of the re-encryption process becomes long when the data size for re-
encryption is large, suspension time of Rich OS also becomes long. Since
acceptable length of time for suspension of Rich OS to be allowed
depends on applications, we cannot specify the target value. However, it is
possible to shorten the time required for one re-encryption process

CHAPTER 4. THE PROPOSED METHOD 30

including context switch by dividing data to be re-encrypted into small
chunks, thus preventing Rich OS from being suspended for a long time. In
general, the block size of data to be encrypted depends on cryptographic
algorithms. For example, in the case of AES with 128 bit key length,
block size of data must be 128 bits. It can encrypt only by the multiple
whose data size is 128 bits, and the minimum unit of division is 128 bits.
Therefore, the minimum suspension time of Rich OS is the time necessary
to encrypt 128 bits data. For clarification, it is possible to switch back to
Rich OS in the middle of the encryption process. Furthermore, it is
possible to process data of less than 128 bits by padding data within the
Re-encryption module, the data size that Virtual Hardware accepts to
handle does not depend on a cryptographic algorithm.

In this manner, even if general-purpose processes, such as the
operating system, which is not directly related to the re-encryption process,
have vulnerability and attackers completely take control of the processes
by misusing the vulnerability, it is possible to prevent attacks, such as
eavesdropping key or plaintext data, or modifying the protection-required
process flow by illegitimate debug.

Figure 4.2: Execution flow of the Re-encryption module.

CHAPTER 4. THE PROPOSED METHOD 31

Dynamic load and update of the protection-required module

The proposed method provides a function for dynamic loading and
updating the protection-required module only, such as the Re-encryption
module, without requiring updating of the whole system. As described
above, Virtual Hardware itself does not have the device driver that
accesses a disk device. Therefore, in order to update the Re-encryption
module in Virtual Hardware, Virtual Hardware indirectly uses the device
driver in Rich OS. First, Rich OS loads the binary object file of a new
protection-required module, the Re-encryption module in this case, from a
disk, and writes it on the shared region of a memory area. Monitor assigns
a memory area in which the Re-encryption module will be placed in the
secure region in an initialization process. The Update module in Virtual
Hardware has the information about the memory map of this secure region,
and overwrites the binary object of the new Re-encryption module written
in the shared region to the secure region for which an old Re-encryption
module is arranged. The Update module checks that the binary object of
the size of the new Re-encryption module is smaller than the size assigned
to the Re-encryption module. If it fits the size of the area assigned to the
Re-encryption modules, the Update module can overwrite the new Re-
encryption module even if the size of the binary object of the new Re-
encryption module is larger than that of the old Re-encryption module.
However, if the size exceeds it, the Update module quits the update
process, and requests Monitor to invoke context switch to Rich OS with
an error code. When the Common module in Virtual Hardware calls the
Re-encryption module, it executes the first instruction placed on the first
address of the memory area assigned to the Re-encryption module.
Therefore, if it is configured so that the Re-encryption module starts its
execution from the first address, the Common module can call the new
updated Re-encryption module.

Moreover, the proposed method provides a function to update the
protection-required module only when it is successfully verified since
there is a risk that the protection-required module is illegitimately
modified on a network or on Rich OS. First, a secret key (a secret key for
a signature) to sign the binary object of the protection-required module is
assigned to a developer of the protection-required module. A public key
corresponding to the secret key for a signature is embedded in the TPM
module in Virtual Hardware. The developer of the protection-required
module calculates the hash value of the binary object, signs the hash value
with the secret key for a signature, attaches it to the binary object, and
distributes it.

CHAPTER 4. THE PROPOSED METHOD 32

When the Update module reads the binary object of the Re-encryption
module from the shared region, it calculates the hash value of the Re-
encryption module, verifies the signature with the public key that the TPM
module in Virtual Hardware manages, and loads it only when the
verification succeeds. In this manner, it is possible to prevent Virtual
Hardware from installing the illegitimately modified Re-encryption
module. For clarification, the signature verification process is executed in
the secure world. It is recommended to choose the latest cryptographic
algorithm and longer key for the signature process, which is available and
defined as a standard at the time.

Therefore, attackers can modify neither verification process nor data,
such as the key used in the verification process, even if general-purpose
processes, such as Rich OS, are modified. Moreover, it is possible to
update the protection-required module independently with Rich OS.

Protection of the protection-required module

The protection-required module could contain secret data. For example,
the Re-encryption module contains keys for decryption and re-encryption.
However, since the binary object of the protection-required module is
managed as a file by Rich OS, there is a risk of those keys being exposed
by analysis with tools, such as a disassembler or a debugger. To solve this
problem, the proposed method provides a function to protect the secrecy
of the protection-required module by encryption. First, a key (an
encryption key) for encrypting the protection-required module is assigned
to a developer of the protection-required module. The developer encrypts
the protection-required module with the encryption key and distributes the
encrypted protection-required module. Rich OS downloads the encrypted
binary object of the protection-required module via a network, and writes
it on the shared region. The Update module in Virtual Hardware copies
the encrypted binary object of the protection-required module to the
secure region, decrypts it with a key (a decryption key) embedded in the
TPM module in Virtual Hardware. Except for the secure region, since the
protection-required module does not become a plaintext, it is possible to
keep the keys and processes in the Re-encryption module secret. It is
recommended to choose the latest cryptographic algorithm and longer key
for the decryption process, which is available and defined as a standard at
the time.

CHAPTER 4. THE PROPOSED METHOD 33

Remote attestation

In the case of trusted boot by using TPM, a verifier checks whether the
expected modules are loaded on a system as follows: calculate hash values
of all the modules loaded from the time of booting, store the hash value in
PCR, verify a signature for the hash value, which TPM signs to the value
of PCR with a secret key, check the result of the verification.

On the other hand, in the proposed method, hash value of the binary
object of the plaintext protection-required module is calculated by the
Update module in Virtual Hardware when the Update module copies the
binary object of the protection-required module to the secure region. And
the value of PCR in the TPM module is reset and the newly calculated
hash value is stored in PCR. Since the protection-required module is
expected to be updated at arbitrary timing, PCR must be updatable at
arbitrary timing. However, existing physical TPM is not allowed to reset
PCR at arbitrary timing. Therefore, it is insufficient just to transplant the
function of the existing TPM as it is. To solve this problem, we introduced
the new restriction that only the Update module can reset PCR at any time
and removed the restriction that reset of PCR in the TPM module is
allowed only when booting a system, thus enabling reset of the value of
PCR at arbitrary timing. As a result, a hash value can be stored at the time
of update of the protection-required module, thus preventing illegitimate
resetting of PCR.

Furthermore, the proposed method provides a function of verifying the
value of PCR from outside the system. The Update module requests the
TPM module for the signature of PCR. First, the TPM module generates a
signature for PCR with a secret key stored in itself by a public key
algorithm, and gives it back to the Update module. The Update module
writes the signature value on the shared region. Finally, Rich OS gets the
signature from the shared region. In this manner, a verifier can check that
the intended protection-required module is loaded from outside the system.

4.1.3 Process flow

In this section, we describe the process flows of update and remote
attestation.

Process flow of updating the protection-required module

First, we describe the process flow of development of the protection-
required module. A developer develops a protection-required module, and

CHAPTER 4. THE PROPOSED METHOD 34

generates a binary object. A hash value of the binary file is calculated and
the binary object is encrypted with a key (an encryption key) for
encrypting the protection-required module. Furthermore, the hash value of
the encrypted binary object is calculated, a signature is generated with the
secret key for a signature, and the signature is attached to the binary object.

Next, we describe the update process of the protection-required
module. Figure 4.3 depicts the process. When booting the system, a
memory area where the Re-encryption module is placed has been assigned
to the secure region (process (1)) by Monitor. Rich OS downloads an
encrypted and signed binary object via a network, and saves it on the disk
(process (2)). This preprocessing is followed by processes to update the
protection-required process. Rich OS reads the encrypted and signed
binary object from a disk, and writes on the shared region (process (3)).
Rich OS executes SMC instruction and a processor transits to monitor
mode. Monitor context switches to Virtual Hardware (process (4, 5)). The
Update module in Virtual Hardware gets a decryption key for decrypting
the encrypted binary object and a public key for a signature for verifying a
signature attached to the binary object from the TPM module (process (6)).
The Update module decrypts and calculates a hash value of the encrypted
and signed binary object. The size of a binary object could be larger than
the block size of decryption or hash algorithm. Therefore, rather than
reading the whole encrypted and signed object at one time, it reads a part
of the encrypted and signed object from the shared region, it copies it to a
part of the secure region that the Update module manages (process (7)),
and it decrypts and calculates a hash value (process (8)). It appends a part
of the binary object, which becomes plaintext, to the temporary area
assigned in the secure region that the Update module manages (process
(9)). The hash calculation and decryption continue until the entire binary
object is processed. It verifies a signature attached to the binary object
with the hash value to the whole encrypted binary object with the public
key retrieved from the TPM module (process (10)). If the verification of
the signature fails, it deletes the plaintext binary object copied to the
secure region, and requests Monitor to invoke context switch from Virtual
Hardware to Rich OS with an error code. When verification succeeds, the
Update module reads the plaintext binary object placed in the temporary
area assigned in the secure region, calculates a hash value for the plaintext
binary object, and copies it to the area where the old Re-encryption
module is placed (process (11, 12)). This process continues until the entire
plaintext binary object is copied. The Update module resets the value of
PCR in the TPM module, and it stores the hash value to the plaintext

CHAPTER 4. THE PROPOSED METHOD 35

object file in PCR (process (13)).
Embedded end-point devices execute various processes to achieve

various functions. When the size of the protection-required module is
large, the decryption and verification processes may take a long time.
Since those processes are suspended while executing the update process, a
problem arises. For example, in the case of the smart meter that is an
application of the proposed method, it is necessary to execute various
tasks: transmitting home area power consumption data to a head-end
system via a network, or performing home area electric power adjustment
based on the request from a head-end system, for example in order to
process a demand-response service. The longer the time taken by the
verification processing of the protection object module, the longer the
suspension time of Rich OS becomes. Therefore, it may miss receiving
commands from a head-end system or disconnect from the head-end
system, thereby disabling the demand-response service. Since the
performance depends on applications, management system of the entire
system, implementation, and hardware performance, it is difficult to
determine the specific target performance value. As an application
example, it is reported that the acceptable delay to the data transmitted
from a head-end system is 50-300[ms] in a smart grid [45]. Although it is
also possible to shorten the delay by introducing a high-performance

Figure 4.3: Execution flow of the update process of
 the protection-required module.

CHAPTER 4. THE PROPOSED METHOD 36

processor, it will increase cost. To avoid a long suspension time of Rich
OS, the Time management module in Virtual Hardware measures the
execution time of the updating process using hardware timer interrupt.
When a particular time passes, it requests Monitor to invoke context
switch, resulting in compulsorily returning to Rich OS. In this manner, it
mitigates the effect of lengthy suspension of Rich OS.

Furthermore, the data used for decrypting the binary object,
calculating the hash value, and the plaintext binary object are stored in the
secure region that Rich OS cannot access. Therefore, even if attackers
illegitimately modify Rich OS, the attackers cannot get or modify
intermediate value of hash, decryption, or the plaintext binary object.
Moreover, even if Rich OS modifies an encrypted and signed binary
object loaded to the shared region, the attackers can neither execute an
illegitimate module, nor overwrite the existing protection-required module
in the modified module, since the process copies the plaintext binary
object to the memory area where the old protection-required module is
placed only when the verification succeeds.

Process flow of remote attestation

Figure 4.4 depicts the execution flow of remote attestation. Premising, it is
assumed that a verification device has a public key corresponding to the
secret key for a signature stored in the TPM module. First, Rich OS
receives a command that indicates a request for remote attestation from
the verification device through a network (process (1)). Rich OS executes
SMC instruction to invoke context switch to Virtual Hardware (process (2,
3)). The Update module in Virtual Hardware requests the TPM module for
the signature for the PCR value (process (4)). The TPM module generates
the signature for the value of the present PCR with the secret key for a
signature stored in itself, and transmits to the Update module (process (5)).
The Update module writes the signature received from the TPM module
on the shared region (process (6)), and requests Monitor to invoke context
switch to Rich OS. Rich OS reads the signature for PCR from the shared
region, and transmits to the verification device through the network
(process (7)). The verification device verifies the signature with the public
key (process (8)). Since the value of PCR is a hash value of the protection-
required module that is currently executing, a verifier can verify from a
remote location that the expected protection-required module is executed
at arbitrary timing.

CHAPTER 4. THE PROPOSED METHOD 37

4.1.4 Prototype implementation

We used ARM C/C++ Compiler 5.01 to build Monitor and Virtual
Hardware. We used gcc 4.4.1 to build Rich OS. Linux 3.6.1 is supported
as Rich OS. We chose Motherboard Express uATX with the CoreTile
Express A9x4 processor that supports TrustZone as an execution
environment. As for the memory map, from 0x60000000 to 0xA0000000
is assigned to DRAM. Table 4.1 shows the memory map of main memory.

Figure 4.4: Execution flow of remote attestation.

CHAPTER 4. THE PROPOSED METHOD 38

Table 4.1: Memory map of the virtual security hardware system

Data Start
address Size Region

Vector table +
Initialization code
(code/data)

0x60000000 0x00008000 Secure region

Rich OS(Linux)
(code/data) 0x60008000 0x2FFF8000 Non-secure

region
Monitor +
Update module +
TPM module +
Common module
(code/data)

0x90000000 0x01000000
Secure region

Re-encryption module
(code/data) 0x91000000 0x0E200000

Shared memory 0x9F200000 0x00E00000 Shared region

To demonstrate feasibility of the proposed method, we implement the
following components: a device driver in Rich OS, the Re-encryption
module in Virtual Hardware, the TPM module, and the Update module.

 Device driver in Rich OS: execute SMC instruction in order to
transit to monitor mode

 Re-encryption module in Virtual Hardware: a decryption process
with XOR and an encryption process with 128 bit AES in ECB
mode. Padding process is not implemented

 TPM module: a signature generation process and a signature
verification process with 1024 bit RSA algorithm.

 Update module: A process to update the Re-encryption module. It
takes out the decryption key stored in the TPM module, and
decrypts the Re-encryption module with 128 bit AES in CBC
mode. It overwrites the binary object of the new Re-encryption
module in the memory area where the old Re-encryption module
is placed. Furthermore, it verifies the signature of the new Re-
encryption module.

 Time management module: A process to monitor execution time

CHAPTER 4. THE PROPOSED METHOD 39

of processes running in Virtual Hardware. We use two timers for
timer interrupt. One is assigned to IRQ and the interrupt handler of
Linux is called when IRQ occurs. Since timer interrupt is assigned
to IRQ in the current Linux implementation, the modification of
Linux source code is unnecessary. The second timer is assigned to
FIQ and the vector table is set up to jump to the Time
management module when FIQ occurs.

It is necessary to give and compile the same address map as that of the

original Re-encryption module, when building the binary object of the Re-
encryption module. The content of the binary object of the Re-encryption
module is the same as that of the binary image placed in a memory.
Therefore, the Update module loads the Re-encryption module to a
memory, without distinguishing code region and data region. The Update
module overwrites the binary object of the new Re-encryption module to
the memory area assigned for the old Re-encryption module only when
the signature verification process succeeds. Since it does not have the
function to change the size of the memory area dynamically, if the size of
the decrypted binary object of the new Re-encryption module fits the
predefined size of the memory area assigned for the protection-required
module, it is able to overwrite it. However, if the size exceeds the memory
area, it cannot update the new Re-encryption module.

It is necessary for the Re-encryption module and Rich OS to agree on
the size of the data they transmit and receive through the shared region
before executing the re-encryption process so that the data size does not
exceed the size of the shared region. When transmitting data to the Re-
encryption module from Rich OS, Rich OS requests the invoking of
context switch after completion of data transmission, whose size is
predefined. Then, the Re-encryption module reads data of the size agreed
with Rich OS.

When the Time management module determines that the Update
module continues to execute beyond the predefined period of time, it
requests the Common module to invoke context switch to Rich OS.
Therefore, it is possible to prevent Rich OS suspending for a long time.

While Rich OS is executing its processes after context switch to Rich
OS caused by the time out, the other processes may invoke another
context switch to Virtual Machine to execute the re-encryption process
whereas the Update module has not yet completed the update process of
the protection-required module. To prevent this invocation, we implement
an exclusive control function in the device driver in Rich OS. While the

CHAPTER 4. THE PROPOSED METHOD 40

Update module is updating the new Re-encryption module, it does not
accept a request of context switch from a process for the purpose of re-
encryption, blocks the execution of the process and switch, and executes
another process. The device driver invokes context switch after a
predefined period of time in order to resume the execution of the Update
module. Once the Update module has completed updating the new Re-
encryption module, it sets the status of the blocked task to executable, and
invokes context switch to Virtual Hardware.

We build Monitor and Virtual Hardware as the same binary object.
The implementation does not support multi-core.

4.1.5 Evaluation

In this section, we describe the result of the evaluation. We evaluate
functions for the design items, and show performance results. We also
describe the result of evaluation compared with the case where the
protection-required processes are implemented by hardware.

Evaluation environment

As well as the implementation environment, we used Motherboard
Express uATX that contains the ARM Cortex-A9x4 processor running at
400 MHz as an experimental environment. Level 1 instruction cache, level
1 data cache, and level 2 cache are 32[KB], 32[KB], and 512[KB],
respectively. It contains 1[GB] DRAM as the main memory and we
assigned the same memory map as that previously described. The size of
the shared region, the non-secure region, and the secure region are
14[MB], 768[MB], and 242[MB], respectively.

Functional analysis

1) Secure update

A protection-required module can be securely updated by the Update
module. Since the Update module is executed in the secure world,
even if attackers can successfully take control of Rich OS, they can
neither skip the signature verification process, nor modify Virtual
Hardware, and therefore the update is performed securely. Moreover,
it is possible to prevent updating to an illegitimate protection-required
module by verifying the signature given to the protection-required

CHAPTER 4. THE PROPOSED METHOD 41

module when updating it. In order to verify the correctness of the
implementation of the update function described in the previous
section, we checked whether the protection-required module could be
modified from Rich OS, or not. As a result, we confirmed that the
protection-required module is loaded, updated, and executed in
Virtual Hardware. We also confirmed that modification of the
protection-required module running in the secure world fails if Rich
OS is modified intentionally and an attempt is made to modify the
protection-required module from Rich OS. Furthermore, we modified
the protection-required module and the signature portion on a
memory area, respectively, after loading the protection-required
module to the shared region. And we checked whether the modified
protection-required code is updated. As a result, we confirmed that
the signature verification process fails with an error code in each case
and the protection-required module was not updated and the old
protection-required module correctly remains in the secure region.

The Re-encryption module, which is an example of the protection-
required module, is distributed via a network from the head-end
system in the encrypted manner, the decryption process is executed in
the secure world when updating it, and the protection-required
module is placed in the secure region. In this manner, the protection-
required module is encrypted on the communication path and it is
protected by access control when executed. Therefore, there is no risk
of the secret data contained in the protection-required module being
acquired by illegitimately modified Rich OS either at the time of
distribution or execution. Furthermore, since it is necessary to update
neither Rich OS nor Virtual Hardware, and the proposed method
requires the protection-required module only to be updated on
working memory, it does not require rebooting of the entire system at
the time of update, and thus it can minimize downtime. Since the
update process can be divided into small processes in the case where
the update process takes much time, the proposed method prevents
lengthy suspension of Rich OS.

Besides, as described in the previous section, it is possible to
introduce a cryptographic algorithm and a key length that are different
both from those of the protection-required module that is the target of
update and those being used for protection of the protection-required
module. In particular, the latest available cryptographic algorithm and
the key length are not necessarily generally adopted by that time due
to the restriction of performance, implementation cost, or hardware

CHAPTER 4. THE PROPOSED METHOD 42

cost. In fact, in the late 2000s, Triple DES was still considered to be
an available cryptographic algorithm with sufficient robustness for
industrial systems [15], although AES was already standardized and is
used in information and communication systems. In our proposed
method, the system can continue to be employed for a long period of
time without having to replace hardware to introduce the newer
encryption algorithm and longer key length in order to protect the
protection-required module, than those implemented in the protection-
required module.

Besides, the proposed system enables provision of a service
available only for specific devices. For example, Kanda [46] and
Forsberg [47] provide a method of managing a key to protect the
communication channel separately for each application, such as
collecting data measured by smart meters, or demand-response
service. It enables addition and deletion of services that service
providers provide to devices by preparing a different key for each
application, and distributing the protection-required module encrypted
with a different key. Since services are expected to be added and
deleted frequently during the lifetime of devices, our proposed
method can minimize the cost compared with the legacy case where
devices must be updated whenever a key is updated. Therefore, even
if long processing time is required to update the protection-required
module to introduce the latest cryptographic algorithm and long key
length used for protection of the protection-required object module,
the side effect on the whole performance can be mitigated.

2) Module verification

The remote attestation function serves as a method to verify the
protection-required module. It is possible to verify the integrity of the
entire system including an operating system in trusted boot. However,
in trusted boot, the verification cost is high since a verifier needs to
update the expected value whenever it updates a module, even if a
general-purpose module not directly related to security functions,
such as a device driver, is updated, causing the verification value to
change. It is ideal that we can provide a method whereby a verifier
checks only the changed portion that is the base of the trust anchor,
namely, the protection-required module. In our proposed method,
since only the protection-required module is the target of verification,
even if a system administrator updates Rich OS, which is unrelated to

CHAPTER 4. THE PROPOSED METHOD 43

the protection-required process, it does not need to update an
expected value. Therefore, cost of the verifier can be greatly reduced.
Moreover, trusted boot has a disadvantage in that it is impossible to
detect system modification if it occurs after boot, since it calculates
hash value of the module at the time of boot, and a verification value
is the same value as the expected value, even if the value indicating
the current modified status and the original status when booting are
different. On the other hand, our proposed method calculates hash
value of the protection-required module and uses the hash value as the
target verification value when loading and executing it. Therefore, our
proposed method shortens the time between execution and
verification, greatly mitigating the risk that the verification value
becomes different from the value indicating the current status of the
system. Since it is valuable to use trusted boot for verifying the entire
system including Rich OS, it is also possible to use our proposed
method and legacy trusted boot complementarily for different
purposes. For example, in order to make the system more robust, it is
possible to use our proposed method for the verification of the
protection-required module in combination with trusted boot for
verification of the entire system.

In order to verify the correctness of the implementation of the
remote attestation described in the previous section, we implemented
a small application program that requests a signature of the
protection-required module from a remote location through a network
and Rich OS. Based on the request, the Update module in Virtual
Hardware returns the signature to Rich OS. The application program
verifies the signature with the hash value of the protection-required
module and a public key corresponding to the secret key in the TPM
module. As a result, we confirmed that the verification succeeds.
Moreover, we also checked that the hash value is updated and it
corresponds to the new protection-required module. We confirmed
that Rich OS returns the same hash value of the protection module in
Virtual Hardware, even if Rich OS is updated. Thus, even when
modules except the protection-required module were updated, it is
confirmed that the verification value did not change. Since Rich OS
does not have a secret key to calculate a signature, it is impossible for
Rich OS to generate a legitimate signature. However, in the proposed
method, it is possible to discard the signature without transmitting it
to a verifier, or to modify the signature on a network. In this case,
even if the Update module writes the signature to the shared region,

CHAPTER 4. THE PROPOSED METHOD 44

the verification fails. In future work, we intend to consider this type of
DoS attack. When the verification fails and an administrator receives
the error messages, since the administrator can recognize that the
device is in error status, the purpose of the verification is achieved.
Similarly, it is possible for attackers to call Virtual Hardware
unnecessarily and repeatedly by modified Rich OS in order to disrupt
the execution of the protection-required module. In future work, we
also intend to consider such DoS attacks.

3) Module data protection

It is possible to protect the data of the protection-required module by
the execution function of the protection object module. Only the
encrypted Re-encryption module and encrypted data are written on
the shared region that Rich OS can access. The binary object of
Virtual Hardware, and the stack and heap area for storing intermediate
data are reserved in the secure region. Therefore, even if Rich OS is
illegitimately modified and it is under attackers’ control, Rich OS
cannot access the data placed on these secure regions, and there is no
risk of Rich OS acquiring or modifying the data including the
intermediate data generated in the crypto process, which Virtual
Hardware handles. The proposed method cannot prevent attacks, such
as disrupting a system, replacing the re-encrypted data with invalid
data, or blocking data transmission of the re-encrypted data by
modifying Rich OS. In future work, we intend to consider those DoS
attacks.

4) Module size

It is reported that defect density, which is a rate computed by dividing
the number of defects found by the size of the code base in 1000 lines
of code, is 0.35 to 0.75, depending on the size of codebase [48].
Although it counts all bugs including vulnerability, it indicates that
the greater the code size, the greater is the risk that software includes
vulnerability caused by implementation errors. Although ideally the
size of the entire system should be minimized and reviewed carefully,
since developers sometimes need to use the source code developed by
other organizations, such as an open source, organizations, to
implement general-purpose functions, such as an operating system, it
is difficult to reduce implementation faults by the developers' efforts

CHAPTER 4. THE PROPOSED METHOD 45

in many cases. Therefore, it is desirable to build a system in which the
size of the source code of only the portion that developers review
carefully is minimized. In our proposed method, the size of Virtual
Hardware is sufficiently small compared with the entire system. The
protection-required module, Virtual Hardware, and Monitor are TCB
in the proposed method. The source code of Virtual Hardware and the
Re-encryption module are 6300 lines in total, and the code and data
are 12[KB] and 5[KB], respectively. Among these, the source code of
the Re-encryption module is 1200 lines, and the code and data are
2[KB] and 200[B], respectively. Moreover, the source code of
Monitor is 900 lines, and the code and data are 5[KB] and 19[KB],
respectively. On the other hand, since the source code of Linux 3.6.1
is more than 15 million lines, TCB is sufficiently small to be
practicable for building a module from which the implementation
faults are removed by source code review.

Performance analysis

It is necessary to minimize the overhead at the time of executing crypto
processes in a secure environment. If performance degrades, a high-
performance processor is necessary but raises the cost. Therefore, it is
desirable to minimize the performance degradation compared with the
case where the protection-required module is executed in a general
environment that is not secure. In order to check the extent to which the
proposed method affects the performance degradation, we measured the
execution performance of the re-encryption process. Besides minimizing
performance degradation, it is ideal to minimize suspension time of Rich
OS. In order to check whether it is possible to keep the suspension time of
Rich OS within an acceptable range, we measured the degradation of
network latency by using a ping program. The following shows the results
of the experiments.

1) Performance of re-encryption process

In order to evaluate the execution performance of the re-encryption
process of the Re-encryption module, we measured two cases: the
case where the re-encryption process is executed only in Rich OS, and
the case where Rich OS and Virtual Hardware communicate with one
another and the Re-encryption module in Virtual Hardware executes

CHAPTER 4. THE PROPOSED METHOD 46

the re-encryption process. In this evaluation, we prepared the random
data of 10[MB] and placed it on the shared memory region
beforehand, divided the data into several blocks whose sizes are
16[B], 32[B], 64[B], 256[B], 1[KB], 4[KB], and 16[KB], executed
the Re-encryption module in Virtual Hardware that retrieves data
from the shared region and executes the re-encryption process with
context switch between the worlds, and measured the performance
(throughput) of the re-encryption process in each block size. When
the block size is 16[B], for example, context switch occurs 1310720
times (2×10×1024×1024/16). Since context switch occurs twice in
one round-trip, from Rich OS to Virtual Hardware and from Virtual
Hardware to Rich OS, we need to double 10×1024×1024/16. Figure
4.5 shows the performance results of the two cases: the case where
the re-encryption process is executed only in Rich OS, and the case
where the Re-encryption module executes it by exchanging data
between Rich OS and the Re-encryption module. Figure 4.6 shows
the performance ratio of those two cases.

In Figure 4.5 and Figure 4.6, block size indicates a size of data
Rich OS sends to Virtual Hardware via the shared region in one
transition. When block size is small, the overhead of context switch is
large and performance degrades about 62% in the case where block
size is 16[B] compared with the case where only Rich OS executes
the re-encryption process. On the other hand, when the block size is
256[B], 1[KB], and 16[KB], the performance degrades 8.5%, 1.2%,
and 0.1%, respectively, indicating that the performance degradation is
negligible compared with the case where only Rich OS executes the
re-encryption process. Although the amount of calculation depends on
the crypto algorithm, it is considered that the overhead can be kept
within an acceptable range by choosing a suitable block size
depending on applications.

On the other hand, when block size becomes large, it is necessary
to prepare a large shared region to exchange data between Rich OS
and Virtual Hardware, and the suspension time of Rich OS becomes
long. Therefore, it is not necessarily true that large block size is better.
There is a tradeoff between block size and other parameters, such as a
crypto algorithm, the suspension time of Rich OS, performance
degradation, and memory size for the shared region, and thus it is
necessary to choose suitable block size depending on those
parameters.

For clarification, since there is no difference in performance

CHAPTER 4. THE PROPOSED METHOD 47

between the secure world and the non-secure world in TrustZone,
there is no difference in performance between the case where the re-
encryption process is executed in the secure world only and the case
where it is executed in the non-secure world only.

2) Performance of network latency

When Rich OS is suspended for a long time, response time, such as
network access and Graphical User Interface (GUI) operation,
becomes slow. In order to evaluate the extent to which the suspension
time of Rich OS affects response time of applications running on Rich
OS, we measured the network latency (Round Trip Time (RTT))
using the ping program, which is a network utility program that
measures the response time of network access. A host that sends a
ping command is on the same local network as the proposed method
and they are connected by 1[Gbps] wired network. We measured the
case where Rich OS is idle, the case where the re-encryption process
is executed by Rich OS only, and the case where the re-encryption
process is executed by the Re-encryption module cooperating with
Virtual Hardware and Rich OS with data divided into several blocks
whose sizes are 16[B], 32[B], 64[B], 256[B], 1[KB], 4[KB], and
16[KB].

Figure 4.7 shows the result of the experiment. As shown in Figure
4.7, RTT value at the time of idle state and at the time of processing
Rich OS only is 0.43[ms] and 0.44[ms], and thus there is no
difference between them. When the Re-encryption module executes
the re-encryption process, cooperating with Virtual Hardware and
Rich OS, with data divided into several blocks whose sizes are 16[B]
and 256[B], the RTT values are 0.45[ms] and 0.48[ms], indicating
there is no difference from the case where it is executed by Rich OS
only. However, the larger the block size, the longer the suspension
time of Rich OS becomes. In particular, when the block size is 1[KB]
and 4[KB], the RTT values are 0.75[ms] and 1.3[ms]. When block
size is 1[KB], the throughput is 3.38[MB/s] based on Figure 4.7 and
context switch is executed 1000 times. Therefore, the processing time
per block, which is equivalent to the suspension time of Rich OS per
context switch is (1000/3.38) / 1000 = about 0.30[ms] in total. This
value is mostly identical with 0.31[ms], which is the difference of
RTT compared with the case where it is processed only by Rich OS.

As indicated by the result of the performance of the re-encryption

CHAPTER 4. THE PROPOSED METHOD 48

process, there is a trade-off between throughput and suspension time
of Rich OS, since the performance improves in the case of larger
block size whereas throughput improves in the case of smaller block
size. In this experiment, we implemented decryption for XOR and
AES for re-encryption. When block size is 256[B], throughput
degrades 8% and the RTT value increases 0.04[ms], whereas
throughput degrades 1.2% and the RTT value increases 0.32[ms]
when block size is 1[KB], compared with the case where processing
is only by Rich OS. Considering that security improves in both cases,
the degradation of throughput and RTT is sufficiently small. In the
real world, developers need to determine the block size in light of
various restrictions, such as response time, performance degradation,
and physical memory size. For example, if a high priority is accorded
to the performance of the protection-required module, they will
choose the block size of 256[B], whereas they will choose the block
size of 1[KB] if a high priority is accorded to the performance of Rich
OS.

In the proposed method, context switch in a round trip takes
1.66[us], and converted into the number of processor cycles, it is 664
cycles. Other than the approach we show in this dissertation, there is a
legacy method implemented by software only in order to isolate
protection-required processes and their data by classifying the user
tasks handling secret data, such as crypto process, into those that do
not access the secret data. In such a system, context switching of
processes occurs to exchange data between processes in Rich OS.
Kanai shows that context switching takes slightly less than 1000
cycles on Linux [49]. Therefore, the proposed method enables context
switch at lower cost than that of an operating system. Moreover,
Otani indicates that acceptable delay is 50-300[ms] in a smart grid
[45]. Even if data size is 1[KB] and it is divided into 128 bits blocks,
the re-encryption process completes at 1.29[MBps] / 1024 = about
1.26[ms], re-encryption processing is completed from the
performance result shown in Figure 4.5, and it is sufficiently small
compared with the acceptable delay, which is 50-300[ms]. Therefore,
even if the time for context switch between worlds and the re-
encryption processing time are added, the delay can be kept within an
acceptable range. In summary, the evaluation shows that the proposed
method enables reduction of the suspension time of Rich OS, in
addition to enhancing confidentiality and integrity.

CHAPTER 4. THE PROPOSED METHOD 49

Figure 4.6: Performance ratio of the re-encryption process

(Rich OS ony = 1.0).

Figure 4.5: Throughput of the re-encryption process.

CHAPTER 4. THE PROPOSED METHOD 50

Figure 4.7: Evaluation result of the network latency.

CHAPTER 4. THE PROPOSED METHOD 51

3) Performance of module update

We evaluated the processing time of the update of the security-
required module. In this evaluation, we prepared binary objects whose
sizes are 1[KB], 10[KB], and 100[KB]. We measured processing time
from loading the binary object from the disk through copying the
decrypted protection-required module to the memory area of the secure
region assigned to the protection-required module.

Figure 4.8 shows the result of the experiment. When the size of the
binary object is 1[KB] and 10[KB], 100[KB] and 1[MB], the processing
time is 0.35[s], 0.36[s], 0.4[s], and 0.9[s], respectively with 256 bit key
length. The larger the binary object, the longer the time to update the
protection-required module becomes. We also measured processing time
with different key lengths. When the binary object is 100[KB] and key
length is 256 bits, 512 bits, and 1024 bits, the processing time is 0.4[s],
2.51[s], and 18.89[s], respectively. The longer the key length, the longer
the processing time becomes. Next, we analyzed the processing time in
detail. Processing time consists of a hash calculation process, a decryption
process, an RSA signature verification process, and a memory copy
process. We measured the RSA signature verification process only. When
key length is 1024 bits and the binary object is 100[KB], the signature
verification process accounts for 18.84[s] of the whole processing time of

Figure 4.8: Performance result of the module update process.

CHAPTER 4. THE PROPOSED METHOD 52

18.89[s]. Similarly, when the binary object is 1[MB], the RSA signature
verification process accounts for 18.9[s] of the whole processing time of
19.4[s]. The result shows that the RSA signature verification process
accounts for the greater portion of processing time whereas a hash
calculation process, a decryption process, and a memory copy process
together takes a relatively small portion of processing time. Although a
module update process takes a long time, the update process is rarely
executed as described above. Therefore, even if the public key crypto
process that requires processing time is used, the suspension time of Rich
OS is mitigated by invoking context switch from Virtual Hardware to
Rich OS after executing the Update module for a certain period of time by
the Time management module.

In the result of the experiment shown in Figure 4.8, the Time
management module does not periodically invoke context switch by timer
interrupt. We configured the timer in the Time management module and
measured the processing time in the case of invoking periodic context
switch to Rich OS. As a result, when the key length is 1024 bits and the
binary object is 1[MB], the processing time is 19.4[s] without timer
interrupt, whereas the processing time is 19.43[s] and 19.7[s], when the
timer is set to 1[ms] and 100[us]. The result shows the additional
performance degradation of RSA signature verification process is small,
since the processing time of context switching is short, even if context
switch to Rich OS is invoked periodically.

Comparative evaluation with hardware implementation

We evaluated our proposed method, comparing it with the case where it is
implemented by hardware, in terms of performance, functions and cost.

1) Performance

When 128 bit AES algorithm is implemented as a hardware
accelerator, throughput of hundreds of Mbps through several Gbps
can be realized, which is 100 to 1000 times faster than the proposed
method although it depends on the implementation techniques
[50][51]. However, when an application such as a smart meter is
assumed, since data size to be encrypted is small, the disadvantage of
performance speed is not a big issue in practice.

2) Functions

Functions realizable equivalent to those of the crypto hardware:

CHAPTER 4. THE PROPOSED METHOD 53

The Re-encryption module of Virtual Hardware is functionally
equivalent to that implemented as hardware in terms of decrypting
input data and encrypting the data by different keys and algorithms. In
addition, the signature generating process included in the TPM
module of Virtual Hardware is functionally equivalent to that
implemented as physical hardware TPM. However, as described in
section 4.1.2, we modified the function so that PCR value of TPM can
be reset at the time of loading of a protection module. Generally, it is
impossible for software to change hardware functions physically.
Similarly, since writing a memory area of Virtual Hardware from
Rich OS that uses a function of the protection-required module by
configuring memory access control policy is restricted, it is prohibited
for software to change hardware functions. Moreover, in order to
prevent information leakage of confidential data, such as a key during
execution of the protection-required processes, confidential data are
generally implemented inside hardware in the case of hardware
implementation. In the proposed method, confidential data are not
revealed to Rich OS executed in the non-secure world since they are
managed by Virtual Hardware whose memory area is configured as
secure. Many general-purpose SoCs have a function that encrypts
firmware and saves it in a flash memory. The proposed method can be
used in combination with the function to store Virtual Hardware and
Monitor to realize a more robust system. From the viewpoint of
software development, when application programs use crypto
functions implemented as hardware, it is common to access the
functions through interfaces device drivers in most systems with
crypto hardware. In the proposed system, application programs access
functions of Virtual Hardware via device drivers. Therefore,
application developers using Virtual Hardware can use the same
interface as the conventional hardware features.

Functions realizable by crypto hardware only:
There are functions realizable only by hardware in exchange for
additional cost. It is unnecessary to generate a random number in an
application example in our proposed method. However, there are use
cases where a high-quality random number generator is required. It is
possible to generate a true random number using the physical
phenomenon when it is implemented as hardware. Moreover, some
physical crypto hardware has a hardware-level tamper-proof function,
such as TPM. Such hardware is robust against advanced physical
side-channel attacks, such as a power analysis attack or a timing
attack, by attackers having special skill and dedicated tools such as an

CHAPTER 4. THE PROPOSED METHOD 54

electron probe, whereas the proposed method is vulnerable to the
attacks since there is no hardware protection mechanism.

Functions realizable by the proposed method only:
It becomes impossible to update the value of a key used for
encryption and decryption when the key is included in a hardware
module. Although many crypto hardware modules are configured to
update the value of the key from software, since it is necessary to
process the key in a plaintext manner by software, there is a great risk
that the key will be leaked. On the other hand, since the protection-
required module that includes a key is distributed from a server in an
encrypted manner in our proposed method, it is possible to update the
key securely. It is also possible to update a crypto algorithm in the
proposed system. Furthermore, not only cryptographic algorithms,
such as AES, but more complex protection-required processes are
updatable. For example, in order to manage keys of smart meters
efficiently in a group or to revoke a specific smart meter, applying
broadcast encryption with Media Key Block (MKB) is proposed [52].
It requires execution of complicated processing to retrieve the key
value from MKB. Whereas it is difficult to replace the processing
when implemented as hardware, it is easy for the proposed method to
update a part of key derivation processing while concealing know-
how, such as by a high-speed processing algorithm of MKB.

Cost analysis

Cost can be classified at the time of manufacture and deployment. The
cost at the time of manufacture is a manufacturing cost per device. In the
proposed method, since additional hardware is unnecessary except for an
ARM processor, the additional manufacturing cost is zero. On the other
hand, when crypto functions are implemented as hardware, there is an
additional manufacturing cost per device. Although a small quantity of
parts will have only a slight impact on total cost, total cost will become
immense when installing tens of millions of devices such as smart meters.

The cost at the time of deployment is the cost incurred when updating
a key and an algorithm. When realizing crypto functions as hardware,
field engineers need to replace hardware physically. Similar to the cost at
the time of manufacture, a small quantity of parts will have only a slight
impact on the total replacement cost, but it will increase according to the
number of devices to be installed. Furthermore, when replacement is
required for a security reason, immediate replacement is required since the
equipment is at great risk of succumbing to attack until replacement is

CHAPTER 4. THE PROPOSED METHOD 55

executed. However it is unrealistic to expect field engineers to replace
tens of millions of devices in a short period of time. Since the proposed
method enables remote updating of embedded end-point devices securely
and immediately, deployment cost can be greatly reduced. On the other
hand, since the proposed method assumes updating of a protection-
required module via a network, the maintenance cost of a server that
distributes the module is additionally incurred. However, the maintenance
cost of a server decreases because of the evolution of cloud computing.

Thus, compared with hardware implementation, cost at both the time
of manufacture and at the time of deployment can be reduced by using the
proposed method.

CHAPTER 4. THE PROPOSED METHOD 56

4.2 A method to keep availability

4.2.1 Framework of the recovery system

The proposed system provides a method for an embedded end-point
device to automatically recover from an error status. It also provides a
high-level memory protection mechanism. Hence, the recovery process is
securely executed without interference. Figure 4.9 shows the entire
architecture of the proposed recovery system. It consists of three
components: Rich OS, Tracker Application, and Monitor.

Since the proposed recovery system reuses some functions of the
method described in the previous section, functions of each component are
similar with the ones described in the previous section. However, we will
describe each component in detail for clarification in this section.

 Rich OS: An operating system that executes general-purpose
processes, such as storage access or network communication. It is
executed in the non-secure world. All applications implementing
smart meter functions or concentrator functions run on this operating
system.

Figure 4.9: Architecture of the recovery system.

CHAPTER 4. THE PROPOSED METHOD 57

 Tracker Application: Surveillance and recovery processes executed
in privileged mode in the secure world. Tracker Application includes
three modules: the Watcher module, the Recovery module, and the
Notification module. The Watcher module is an entry point of
Tracker Application. It is executed periodically by a timer interrupt
through Monitor. Whenever it is called, it investigates the status of
Rich OS. If it detects Rich OS is not working, it calls the Recovery
module to reboot the entire system. Otherwise, it calls the SMC
instruction to switch to Rich OS. Moreover, the Notification module
is called before the Recovery module reboots the system. It sends a
message to notify that the system is about to reboot to the head-end
system through network

 Monitor: A program running in the monitor mode. It initializes
configurations of TrustZone-related hardware when booting the
system. It also provides a context switching function between worlds
in the hardware interrupt handler and the SMC handler. Moreover,
Monitor manages the access control policy and installs the policy on
TZASC when booting. Policy Manager takes on their roles.

The primary feature of the proposed recovery system is to provide a

method for the end-point device to detect the status of Rich OS and to
recover it even if Rich OS crashes or stops working. Furthermore, it
provides two additional functions. One is to enhance the security
protection for Monitor, Tracker Application and Rich OS against attacks.
The other is to send a message to the head-end system when an incident
occurs. The details of these functions are described below.

4.2.2 Functions of the recovery system

Baseline common functions

Monitor has the role of providing baseline common functions to operate
Rich OS and Tracker Application concurrently. Monitor has two
functions: system initialization and context switching between worlds.

1) System initialization

When booting the system, the processor is in the secure world and
Monitor is firstly executed. To run Rich OS and Tracker Application
concurrently, it needs to load and execute both of them. It first

CHAPTER 4. THE PROPOSED METHOD 58

initializes the status of the processor in both worlds, and loads
Tracker Application in the secure world. Then, it invokes context
switching to transit from the secure world to the non-secure world,
loads the boot loader program of Rich OS, and executes it in the non-
secure world. Finally, the boot loader program loads Rich OS and
executes it.
The TrustZone-enabled processor supports the function that is either
Monitor or Rich OS traps each processor exception (IRQ, FIQ, and
external abort). When booting the system, Monitor configures that
hardware interrupt handler in Monitor traps timer interrupt so that
Rich OS cannot interfere with the execution of Tracker Application
when timer interrupt occurs. As well as timer interrupt, Monitor
configures that hardware interrupt handler in Monitor traps external
abort. Since the access violation causes external abort as described
above, this configuration enables Tracker Application to detect the
occurrence of a memory access violation.
TZPC is configured to be accessed from the secure world only when
booting the system. Since Rich OS needs to use peripherals, Monitor
needs to change the configuration of TZPC to non-secure. The only
exception is Timer, which triggers periodical execution of Tracker
Application. Since it is necessary to prevent the configuration of
Timer from changing by a process running in the non-secure world,
Monitor remains the configuration of TZPC corresponding to Timer
as secure.

2) Context switching between worlds

The trigger of context switching between worlds is either the SMC
instruction or the Timer interrupt caused by the hardware timer. The
SMC handler in Monitor is executed when the SMC instruction is
called and it transits from the secure world to the non-secure world. In
contrast to the SMC handler, the timer interrupt triggers transit from
the non-secure world to the secure world. In both cases, Monitor
invokes context switching between worlds. It first determines the
current world. As described in Chapter 3, general registers and Saved
Program Status Register are not banked between worlds. Therefore,
Monitor needs to save the contents of the registers belonging to the
current world on working memory to prevent loss of the previous
context, and then change the world. Finally, it restores the contents of
the registers belonging to the transition destination world and resumes

CHAPTER 4. THE PROPOSED METHOD 59

the execution.

Periodical surveillance and recovery

While executing Rich OS, whenever the timer interrupt occurs, the
processor jumps to the hardware interrupt handler in Monitor. The
hardware interrupt handler context switches from the non-secure world to
the secure world and calls Tracker Application. Specifically Monitor
saves a context of Rich OS to memory and restores a context of Tracker
Application, then changes the world and finally calls the Watcher module
of Tracker Application. The Watcher module checks the status of Rich OS.
If it judges that Rich OS is not working, the Watcher module calls the
Recovery module that reboots the system. Otherwise, it calls the SMC
instruction. Then, the SMC handler in the Monitor is executed. It context
switches from Tracker Application to Rich OS, and restarts Rich OS at the
point just before the timer interrupt occurred. While executing Monitor
and Tracker Application, the execution of Rich OS is suspended. That is,
Rich OS continues to be processed as if nothing were executed during the
execution of Tracker Application. Figure 4.10 shows the flowchart of the
periodic surveillance and recovery process.

There are many ways for the Watcher module to determine whether
Rich OS is working or not. One of the methods is to check the data area of
Rich OS. In general, when an operating system is working, there must be
a certain data area that is updated regularly. By checking this data area, it
is possible for the Watcher module to judge whether Rich OS is working
or not.

Memory protection

By utilizing TZASC, Monitor provides an access control function such
that access of Rich OS running in non-secure mode to the working
memory area, which Tracker Application running in the secure world uses,
is subject to restrictions. Policy Manager in Monitor manages three kinds
of access control policies: full access, access denied, and read-only. When
booting the system, Policy Manager divides working memory into several
regions and it installs one of the three access control policies for each
working memory region on TZASC before loading Rich OS.

CHAPTER 4. THE PROPOSED METHOD 60

Table 4.2 shows how each policy works. Full access indicates no
restriction. A process running in both non-secure world and secure world
can freely access the region configured according to this policy. This
policy is primarily used to share data between Rich OS and Tracker
Application. Access denied indicates full restriction. A process running in
the non-secure world can neither read nor write to a region configured
according to this policy, whereas a process running in secure world can
read and write to the region. Read-only indicates a process running in the
non-secure world cannot overwrite the content on the memory but is
allowed to read it, whereas a process running in the secure world can
freely access the region using ordinary random access memory, such as
DRAM or SRAM, as the working memory which is, of course, physically
writable memory.

Figure 4.10: Flowchart of the periodic surveillance and recovery process.

CHAPTER 4. THE PROPOSED METHOD 61

Table 4.2: Configuration of access control policy

Policy From secure world
process

From non-secure world
process

Read Write
Full access OK OK OK

Access denied OK NG NG
Read-only OK OK NG

Using these policies, the proposed system provides two memory
protection mechanisms. Figure 4.11 shows how these memory protection
mechanisms work. One is protection for the kernel area of Rich OS. The
other mechanism is protection for Monitor and Tracker Application.

To realize protection for the kernel area of Rich OS, Monitor provides
read-only memory. In general, when a program is loaded into memory, a
data region (data segment) and a code region (code segment) are assigned.
In the initial state before booting the system, all regions are allowed to be
accessed from the non-secure world by default. In order to allow the boot
loader to write the code segment into the memory, Monitor leaves the
memory region as is until the code segment is loaded. Just after executing
the kernel of Rich OS, Monitor sets the memory region as read-only for
kernel code segment of Rich OS. As a result, even Rich OS is prohibited
from overwriting its own code segment.

To protect Monitor and Tracker Application, Policy Manager in
Monitor installs an access control policy such that Rich OS cannot access
the memory area allocated to Monitor and Tracker Application, whereas
Tracker Application and Monitor can access all areas when booting the
system. This policy protects Monitor and Tracker Application from
illegitimate falsification by Rich OS, even if Rich OS is attacked and
under the control of an attacker.

CHAPTER 4. THE PROPOSED METHOD 62

Besides the protection for Monitor and Tracker Application, memory
protection provides a hardware access control mechanism. One of the
possible attacks to disable end-point devices is that of shutting down the
system. To prevent such an attack, Policy Manager in Monitor installs an
access control policy so that Rich OS cannot access the registers
corresponding to power management. Thus, it is possible to protect the
system against the shutdown attack even if Rich OS is under the control of
an attacker.

In the case of policy configured to access denied or read-only, TZASC
generates an interrupt signal when the access violation caused by a
process running in the non-secure world occurs. Monitor configures the
hardware interrupt handler in Monitor to trap the interrupt so that the
system will continues to work without crashing even if access violation
occurs, and Monitor can detect the access violation.

Message notification

The proposed recovery system provides a function to notify the head-end
system that Rich OS has stopped working and is rebooting the system by
sending a message through the network even if the operating system is

Figure 4.11: Memory protection mechanism.

CHAPTER 4. THE PROPOSED METHOD 63

modified or the control of the operating system is taken over; resulting
network function is disabled by an attacker or the operating system is
completely destroyed in the worst case. The Notification module has the
role of sending a message. Although Rich OS has a network connectivity
function, such as TCP/IP stack, Tracker Application cannot use the
function since there is a case where it is not working when sending a
message. Thus, Tracker Application supports the network connectivity
function including the network application, the network protocol stack and
the network driver to notify the error situation to the system administrator
through the network. Obviously, it is possible to send a head-end system a
message whenever Tracker Application is executed to notify that the
system works correctly.

4.2.3 Prototype implementation

We used ARM C/C++ Compiler 5.01 to build Monitor and Tracker
Application. We used gcc 4.4.1 to build Linux 3.6.1 as Rich OS. We
chose Motherboard Express uATX with the CoreTile Express A9x4
processor that supports TrustZone as an execution environment.

Regarding a memory map, from 0x48000000 through 0x4A000000 is
assigned for SRAM, and from 0x60000000 through 0xE0000000 is
assigned for DRAM. Table 4.3 shows the memory map with the access
control policy of the memory. In Table 4.3, Rich OS (code) indicates the
Linux kernel code. Rich OS (data) includes the Linux data, the application
code and the application data. For clarification, full access is applied from
the non-secure world for an area not described in Table 4.3.

Table 4.3: Memory map of the recovery system

Data Start
address Size

Security
permission
(From non-

secure world)
Vector tables +

Initialization code
+ Monitor +

Tracker Application

0x48000000 0x01B00000 Access denied

Rich OS (code) 0x60000000 0x002FE000 Read-only
Rich OS (data) 0x602FE000 0x3EF02000 Full access
Shared memory 0x9F200000 0x00C00000 Full access

CHAPTER 4. THE PROPOSED METHOD 64

For the Policy Manager in Monitor to install an access control policy
on TZASC, the start address and the size of each memory region are
predefined. After the boot loader loads Linux at the predefined value,
Monitor installs the access control policy on TZASC. As shown in Table
4.3, the access to the memory regions allocated to Monitor, Tracker
Application and the code segment of Rich OS is restricted for the Rich OS
running in the non-secure world, whereas the access to the region
allocated to the data segment of Rich OS and shared memory is not. For
clarification, Monitor and Tracker Application running in the secure world
can access all regions. Furthermore, since Monitor sets the configuration
registers of TZASC to prohibit Rich OS from accessing them, Rich OS
cannot change this configuration.

Table 4.4 shows the configuration of TZASC. In Table 4.4, the
meaning of the value of the security permissions field is as follows:
0b1111 indicates full access from both the secure world and the non-
secure world, 0b1100 indicates secure read/write is permitted but non-
secure read/write is restricted (access denied), and 0b1110 indicates
secure read/write and non-secure read are permitted but non-secure write
is restricted (read-only). An entry with larger entry number is accorded
higher priority than one with smaller entry number. Therefore, we first set
all regions with a policy of full access as entry number 0, and then set
access control policies from entry number 1 through 7. The size of a
region to which access control is applied is discrete, such as 32[KB],
64[KB], …, 1[MB], 2[MB], 4[MB], …, 2[GB], 4[GB]. Therefore, to set
policy for Monitor and Tracker Application whose size is 0x01B00000
(27[MB]), we used four entries: entry number 1 (16[MB]), entry number 2
(8[MB]), entry number 3 (2[MB]), and entry number 4 (1[MB]). In
contrast to the size of Monitor and Tracker Application, the size of Rich
OS (code) is a fraction (32[MB] – 8[KB]), and TZASC has restrictions
such that it is impossible to define an entry whose size is smaller than
32[KB]. Instead, it is possible to define a subregion to equally divide a
region into eight with the access control policy, and enable the policy for
each subregion. For example, when the size of a region is 32[KB], it is
possible to enable a policy for each 4[KB] subregion. An 8 bits subregion
disable field controls enabling and disabling the policy. Each bit in a
subregion disable field enables the corresponding subregion to be disabled.
For example, when zero is set to the value of the highest bit in a subregion
disable field, the policy for subregion 0 (the subregion having the highest
address) is enabled. To set the policy for a Rich OS (code) region, we first
defined two regions, 2[MB] (entry number 5) and 1[MB] (entry number 6)

CHAPTER 4. THE PROPOSED METHOD 65

and set the read-only policy. Then, we defined the region with a size of
64[KB] (entry number 7) that overlaps the last portion of entry number 6,
equally divides the region into eight, sets the policy of full access, and
enables the policy for the last subregion only. As a result, the policy of
full access is set to the subregion having the highest address only, and the
policy of read-only remains for the rest of the subregions.

As shown in Table 4.3 and Table 4.4, the policies can be clearly
defined and there is no overlapped region. Thus, no policy conflict exists
in the proposed recovery system.

Table 4.4: Configuration of TZASC
Entry

number
Start

address Size Subregion
disable

Security
permission

0 -- -- -- 0b1111
1 0x48000000 0x17(16MB) 0x0 0b1100
2 0x49000000 0x16(8MB) 0x0 0b1100
3 0x49800000 0x14(2MB) 0x0 0b1100
4 0x49A00000 0x13(1MB) 0x0 0b1100
5 0x60000000 0x14(2MB) 0x0 0b1110
6 0x60200000 0x13(1MB) 0x0 0b1110
7 0x602F0000 0xF(64KB) 0x7F 0b1111

Figure. 4.12 shows the assignment of the timer interrupt. We allocated
a timer interrupt caused by a timer (timer 1) to Fast Interrupt Request
(FIQ) and the timer interval was set to 1[s]. The FIQ interrupt is handled
by the hardware interrupt handler in Monitor, then it calls Tracker
Application and, as a result, Tracker Application is periodically called.
We used another timer (timer 2) and allocated it to Interrupt Request
(IRQ), and the timer interval was set to 4[ms]. The IRQ interrupt is
handled by the interrupt handler in Linux. Since Linux assumes the timer
interrupt is allocated to IRQ, modification of the Linux source code to
adopt Monitor is unnecessary.

CHAPTER 4. THE PROPOSED METHOD 66

Table 4.5 shows a configuration of hardware interrupt. We configured
Secure Configuration Register (SCR) and Current Program Status
Register (CPSR) so that the FIQ handler of Monitor is called when the
FIQ interrupt occurs, whereas the IRQ handler in Linux is called when the
IRQ interrupt occurs during executing Linux. Table 4.6 shows the register
setting to achieve the configuration of Table 4.5. CPSR.I indicates the
Interrupt disable bit and is used to mask the IRQ interrupt. CPSR.F
indicates the Fast interrupt disable bit and is used to mask the FIQ
interrupt. CPSR.A indicates the asynchronous abort disable bit and is used
to mask asynchronous abort. SCR.FIQ controls which mode the processor
enters when the FIQ interrupt occurs. If one is set, it enters monitor mode,
otherwise it enters FIQ mode. SCR.IRQ controls which mode the
processor enters when the IRQ interrupt occurs. If one is set, it enters
monitor mode, otherwise it enters IRQ mode. SCR.FW controls whether
the F bit in the CPSR can be modified in the non-secure world. SCR.EA
controls which mode the processor enters when external abort including
the one generated by TZASC. If one is set, it enters monitor mode,
otherwise it enters abort mode. SCR.AW controls whether the A bit in the
CPSR can be modified in the non-secure world. If zero is set, CPSR.A can
be modified only in the secure world, otherwise it can be modified in both
worlds.

Figure 4.12: Assignment of the timer interrupt.

CHAPTER 4. THE PROPOSED METHOD 67

Table 4.5: Configuration of hardware interrupt
World when

interrupt occurs Interrupt Jumps to

Non-secure world
FIQ Hardware interrupt handler

(FIQ handler) in Monitor
IRQ IRQ handler in Rich OS

(Linux)

Secure world FIQ Pending FIQ
IRQ Pending IRQ

As shown in Table 4.6, when a processor is in the non-secure world

and the FIQ interrupt assigned for timer 1 occurs, the FIQ handler in
Monitor is called since one is set to SCR.FIQ. The FIQ handler in Monitor
switches from the non-secure world to the secure world and calls the FIQ
handler in Tracker Application. Finally, the FIQ handler in Tracker
Application calls the Watcher module. The entry point to Tracker
Application from Monitor is only the FIQ handler in Tracker Application
and it never returns to Tracker Application after the Watcher module calls
SMC instruction under the current implementation. When considering
returning to the original location in Tracker Application when entering the
secure world next time as future extension, the FIQ handler in monitor
mode sets the instruction located in the address next to the address of the
instruction just after calling the SMC instruction in the previous time to
r14 before calling the FIQ handler of Tracker Application. On the other
hand, when the IRQ interrupt occurs, the IRQ handler in Rich OS is called.
Furthermore, Rich OS cannot change the configuration of CPSR.F since
zero is set to SCR.FW. Therefore, the FIQ interrupt is always enabled and
the timer interrupt is input to the monitor.

CHAPTER 4. THE PROPOSED METHOD 68

Table 4.6: CPSR and SCR register configuration

Non-secure world
Secure world

(Tracker
Application)

Secure world
(Monitor)

C
P
S
R

I
0/1 (depending on
the configuration of
Rich OS)

1 (IRQ disabled) 1 (IRQ disabled)

F 0 (FIQ enabled) 1 (FIQ disabled) 1 (FIQ disabled)

A 0 (Asynchronous
abort enabled)

0 (Asynchronous
abort enabled)

1 (Asynchronous
abort disabled)

S
C
R

FIQ 1 (enter monitor
mode)

0 (enter FIQ
mode)

0/1 (depending on
which world
transiting to)

IRQ 0 (enter IRQ mode) 0 (enter IRQ
mode)

0 (enter IRQ
mode)

FW
0 (can be modified
CPSR.F only in
secure)

0 (can be
modified CPSR.F
only in secure)

0 (can be
modified CPRS.F
only in secure)

EA
1 (enter monitor
mode)

0 (enter abort
mode)

0/1 (depending on
which world
transiting to)

AW
0 (can be modified
CPSR.A only in
secure)

0 (can be
modified CPSR.A
only in secure)

0 (can be
modified CPSR.A
only in secure)

When a processor is in the secure world and FIQ or IRQ interrupt
occurs, the interrupt is pending since zero is set to CPSR.F and CPSR.I.
For future extension, Monitor changes SCR.FIQ setting during context
switching so that Tracker Application handles the FIQ interrupt directly
without Monitor when the FIQ interrupt occurs in the secure world. That
is, zero is set to SCR.FIQ when it transits from the non-secure world to
the secure world to jump to the FIQ handler in Tracker Application when
the FIQ interrupt occurs in the secure world. On the other hand, one is set
when it transits from the secure world to the non-secure world to enter
monitor mode when the FIQ interrupt occurs in the non-secure world.

When a processor is in monitor mode, FIQ and IRQ interrupt are
disabled to avoid occurrence of multiple interrupt.

In order to determine whether Rich OS is working or not, we made a
small application program, which runs on Linux and communicates with
Tracker Application. Shared memory is used to exchange data between

CHAPTER 4. THE PROPOSED METHOD 69

Tracker Application and Rich OS. The application program writes a
counter value into the shared memory periodically. Then Tracker
Application reads the counter value from the shared memory. When Rich
OS is crashed, the application program cannot update the counter value. If
the counter value is not updated in a certain amount of time or the counter
value is not an expected value, Tracker Application determines that Rich
OS is not working. Another method of checking the status of Rich OS is
to monitor the status of a specific field, such as a task structure or page
tables in Rich OS, but we have not implemented it. Thanks to the memory
protection function, it is impossible for Rich OS to analyze the checking
process running in Tracker Application. Since it is possible to maintain
secrecy of Rich OS as to which memory area of Rich OS Tracker
Application monitors or how often Tracker Application checks it, it is
difficult for an attacker to plan a countermeasure to circumvent the
checking.

The proposed recovery system provides a method to continue working
even if a memory access violation caused by TZASC occurs. Figure 4.13
shows the flowchart of how Tracker Application and Monitor recover
from the error status to the normal status when an access violation caused
by TZASC occurs. When booting the system, Monitor configures
SCR.EA so that external aborts including the ones TZASC generates are
handled in Monitor mode, instead of by the abort handler in Rich OS.
Furthermore, it is prohibited to mask external abort from the non-secure
world to configure SCR.AW. Therefore, when an access violation occurs
in user mode in the non-secure world, for example, a processor jumps to
the abort handler in Monitor. At this time, the values of r14 (lr) and spsr
are the values of PC (Program Counter) and spsr of the mode just before
the access violation occurs, respectively. The abort handler in Monitor
saves registers including r14 and spsr of original mode in the non-secure
world on working memory, context switches from the non-secure world to
secure world, and calls the abort handler in Tracker Application. The abort
handler in Tracker Application checks the status of Rich OS. For example,
Tracker Application checks which process running in Rich OS triggers
access violation or checks memory address where an access violation is
triggered to investigate the reason for the access violation later. After
Tracker Application checks the status, it calls the SMC instruction and
jumps to Monitor. While Tracker Application works in the background
when an access violation occurs, the proposed recovery system behaves as
if data abort occurs from the viewpoint of Rich OS. When data abort
occurs, a processor automatically stores PC and cpsr of the mode just

CHAPTER 4. THE PROPOSED METHOD 70

before data abort occurs to r14 and spsr respectively. Monitor carries out a
similar operation with the processor when an access violation occurs.
Monitor switches from the secure world to the non-secure world, restores
the saved values including setting the saved value of r14 and spsr just
before the access violation occurs to banked registers for abort mode in
order to be able to return to the original location after exiting abort mode,
and calls the abort handler of Rich OS. Therefore, when Rich OS restarts a
process, the data abort handler is executed.

When Tracker Application determines that Rich OS is not working, it
sends the head-end system a message. In order to send a message to the
head-end system when Tracker Application detects that Rich OS is not
working, we ported a network driver and UDP/IP stack to Tracker
Application. We defined a proprietary protocol and data format over UDP
to notify the head-end system that Tracker Application starts reboot of the
system. An application data size of UDP packet is 32[B], and it consists of
4[B] of device ID, 1[B] of flag indicating the status of the device, and
27[B] of reserved area.

Figure 4.13: Flowchart of the access violation handling.

CHAPTER 4. THE PROPOSED METHOD 71

4.2.4 Evaluation

In this section, we describe the result of the evaluation in terms of security
functions to verify the problems of the legacy system defined in Chapter 2
can be solved. Performance and cost analysis of the propose system is also
described below.

Functional analysis

1) Surveillance and recovery

The proposed recovery system can recover from a failure to reboot
the system even if Rich OS crashes. The reason for the crash could be
a software bug or a cyber-attack, including a zero-day attack
prompted by unknown vulnerabilities. In either case, since the
hardware timer interrupt continues working regardless of the state of
Rich OS, Tracker Application is always periodically called and can
detect a failure of Rich OS. At the next level, it is desirable to detect
the failure as soon as possible.

Detection time depends on how frequently Tracker Application
checks the status of Rich OS. Since the execution time of Tracker
Application and context switching by Monitor is very short, the
proposed recovery system can detect the crash of Rich OS very
quickly. Some attackers may continue to attack just after rebooting
the system. One possible approach to a countermeasure for the attack
is to let Tracker Application have a minimum function like the “safe
mode”, but we have not implemented that.

2) Attack prevention

The proposed recovery system provides two levels of attack
prevention mechanism. The first level is to prevent Rich OS from
illegitimate modification. When an attacker gains full control of Rich
OS to misuse the vulnerability, the attacker may overwrite the code
segment of Rich OS to directly overwrite the memory. In fact, many
vulnerabilities (e.g., CVE-2013-4342, CVE-2013-1969, and CVE-
2008-1673) allowing a remote attacker to execute arbitrary code are
reported [8]. In the case of Linux, for example, once arbitrary code is
executed with an administrator privilege by an attacker, it is possible
for the attacker to overwrite an arbitrary area of code segment through
/dev/mem, resulting in system crash or misbehavior. Although
overwriting the code segment in memory is generally difficult, it is

CHAPTER 4. THE PROPOSED METHOD 72

relatively easy in the case of end-point devices since the software is
uniform and the hardware configuration is fixed. As a result, the
system may go down. However, since Monitor sets the access control
of the memory region for the code segment of Rich OS as read-only,
and its configuration can be changed only from the secure world, it is
impossible for attackers to overwrite the code segment of Rich OS.

An advantage is that the protection does not cause any side effects.
Since a data segment is used to store the state of the program, Rich
OS updates the content of the data segment frequently during its
execution. In contrast to the data segment, since a code segment is
used to store program code, it is not expected to update its content
after booting the system. In particular because devices such as smart
meters or concentrators are not expected to change their core function
after being deployed, the dynamic update function to working
memory is not required. Thus, this protection mechanism can protect
Rich OS from illegitimate modification without side effects.

Moreover, the feature of read-only memory is very useful for the
data, whose value is only changed by Tracker Application and to
which Rich OS only refers. The typical application is a secure clock.
In a legacy system, it is very difficult to provide a secure clock on an
operating system without network connectivity or dedicated hardware
if illegitimate modification of the operating system is premised.
However, Tracker Application can provide a local secure clock
function by software. Since Tracker Application is executed
periodically and it knows the frequency of the execution, it is possible
for Tracker Application to update a counter value written in a read-
only memory in a certain amount of time periodically. Because the
counter value is read-only from Rich OS, Rich OS cannot rewind the
counter value.

The second level is to protect Monitor and Tracker Application
from illegitimate modification and suspension. Since the first level of
protection is effective only for a code segment of Rich OS, an attack
that overwrites a data segment cannot be prevented. Thus, there are
still possibilities that control of Rich OS is gained by an attacker.
Even in such cases, thanks to TZASC, since Rich OS is prohibited
from overwriting the content of memory where Tracker Application
and Monitor are allocated, illegitimate modification is prevented.
Since communication interface between Rich OS and Tracker
Application is limited, it is impossible to compromise Tracker
Application by an attack. Moreover, since the interrupt configuration

CHAPTER 4. THE PROPOSED METHOD 73

register is accessible only from the secure world, there is no way for
Rich OS to stop the timer interrupt.

Furthermore, the proposed recovery system provides a mechanism
to protect against shutdown attack. Since it is impossible to prevent
Rich OS from executing a shutdown procedure with a privileged
instruction in the non-secure world, when a process running in the
non-secure world tries to shutdown the system, Tracker Application
can detect it and discard the shutdown request. Since end-point
devices usually keep working all the time, devices could be
implemented without having a shutdown or reboot function. However,
it is necessary to have a shutdown function in some cases. For
example, the system may need to reboot when updating firmware.
Another example is that a service engineer may need to reboot the
system when inspecting the status of the end-point devices and fixing
problems on site for maintenance purposes. Although it has not been
implemented, it is possible to endow Tracker Application with a
function to determine whether it should shutdown or not based on the
status of the system. For example, when Tracker Application detects
an access to the memory region mapped to the registers corresponding
to power management and determines that the system is under a
particular status, such as a maintenance mode, it may allow executing
a shutdown procedure. Similarly, when Tracker Application detects
the access, it sends a head-end system a message to inquire whether
the shutdown request is accepted or not by using the message
notification function. Based on a response to the inquiry, it can
determine whether or not a shutdown procedure can be executed
without interference of Rich OS.

3) System reliability

In a legacy system, one single bug could affect the entire system,
causing a critical failure. Ideally, from a defensive viewpoint, the
entire system including the operating system should be bug-free to
achieve high availability. However, it is impracticable to build a
complicated system without bugs. Linux 3.6.1 consists of over 15
million lines of code and many new bugs that cause critical crash are
reported frequently (e.g., CVE-2013-4563, CVE-2013-4387, and
CVE-2012-2127) even though it is carefully reviewed by many
professionals [8]. Thus, the smaller the critical component that has to
be robust within a system, the better. In the case of the proposed
recovery system, the critical components correspond to Tracker

CHAPTER 4. THE PROPOSED METHOD 74

Application and Monitor. In contrast to Linux, the code size of
Monitor and Tracker Application is relatively small. The volume of
source code for Monitor is about 700 lines and its code and data size
are 2.1[KB] and 1.6[KB], respectively. Similarly, the volume of
source code of Tracker Application is about 41200 lines and its code
and data size are 1.09[MB]. Compared to the volume of source code
of Linux, the risk of Monitor and Tracker Application including bugs
is small.

4) Response to failure

The Notification module in Tracker Application sends a message to
the head-end system just before rebooting the system. The message,
which notifies that particular devices are about to reboot, is
sometimes useful information for administrators. For example, if
messages are sent by devices having a particular software version
number, the reboot could be caused by an attack aimed at a
vulnerability specific to the software. If messages are sent by devices
located in one particular network, the reboot could be caused by a
network worm distributed in that specific network. Although the
proposed recovery system cannot prevent an attack in advance, the
notification feature can help the administrator investigate the reason
for the failure during or after the incident. For example, it is
impossible for the proposed recovery system to prevent an attacker
from compromising Rich OS and causing reboot frequently. However,
the administrator can notice that frequent reboot occurs to the device
through network since the Notification module sends a message each
time when rebooting. The attackers may try to block sending of the
message to circumvent the notification. However, Rich OS cannot
interfere with the Notification module sending a message to the head-
end system since the Notification module is executed inside Tracker
Application. Moreover, since Tracker Application is processed in an
environment isolated from Rich OS, security processes, such as
encrypting a message, are easy to implement in Tracker Application.
Therefore, once an encryption key and an encryption process are
implemented Tracker Application, it is possible to keep them secret
from Rich OS. In the next step, it is possible to include a firmware
update feature to implement functions receiving data from the head-
end system and writing the data into the file system to extend the
function of the Notification module. In combination with the “safe

CHAPTER 4. THE PROPOSED METHOD 75

mode” described above, this function is effective against a continuous
attack that occurs just after the system recovers.

Performance analysis

As well as the implementation environment, we used Motherboard
Express uATX that contains the ARM Cortex-A9x4 processor running at
400 MHz as an experimental environment. Level 1 instruction cache, level
1 data cache, and level 2 cache are 32[KB], 32[KB], and 512[KB],
respectively. It contains 1[GB] DRAM as the main memory and we
assigned the same memory map as that of previously described.

First, we measured the execution time of Tracker Application during
execution of Rich OS; to be precise, the time period from the beginning of
the hardware interrupt handler in Monitor through the execution of the
SMC instruction. Without calling the Notification module, the average
time is 1.7[ms] over 10,000 trials. However, if the Notification module is
called, the average time is 4.1[ms] over 10,000 trials. Note that the
Notification module is called when rebooting the system, which rarely
occurs. Thus, this performance overhead poses no problem.

Next, we measured the performance degradation of Rich OS. Since the
execution of Rich OS is suspended during execution of Tracker
Application, the performance of Rich OS degrades in any case. The total
of Rich OS suspension time depends on the frequency of calling Tracker
Application. There is a tradeoff between the performance degradation of
Rich OS and the delay in detecting the crash of Rich OS. When the
frequency is increased, the performance degradation of Rich OS is also
increased. On the other hand, when the frequency is decreased, the delay
for detecting the crash of Rich OS becomes larger. Since a general
application is assumed to be executed on Rich OS, we used dhrystone as a
benchmark program to measure the performance degradation [53].

Figure 4.14 shows the result of the experiment. The bar graph shows
the dhrystone score and the line graph shows the performance degradation.
The higher the score, the better the performance is. Each bar shows the
timer interval of calling Tracker Application and its value is default (never
called), 5[s], 3[s], 1[s], 0.2[s] and 0.04[s] respectively. When the timer
interval was set to 5[s], the performance degradation was suppressed
within 0.001 %. Even if the interval was set to 0.04[s], the performance
degradation was less than 0.2 %. The result shows that although there is a
tradeoff between performance degradation of Rich OS and detection rate
logically, the performance degradation can be ignored in practice even if

CHAPTER 4. THE PROPOSED METHOD 76

the frequency of calling Tracker Application is increased.
Figure 4.15 shows another result of the experiment. In the case of

Figure 4.14, it is assumed that the Notification module sends a head-end
system a message only when Rich OS stops working and the system is
rebooting. Therefore, the result does not include processing time of the
Notification module. On the other hand, Figure 4.15 assumes that the
Notification module sends a head-end system a 32[B] message whenever
Tracker Application is executed even if Rich OS is working correctly.
This experiment assumes that the Notification module sends the head-end
system a message periodically even if Rich OS keeps working so that an
administrator can monitor the status of each device. Although the result of
the experiment shows that the performance slightly degrades compared
with the experiment without message transmission, it can still be ignored
in practice. Note that the score was better for the experiment with message
transmission than for the experiment without message transmission when
the interval was set to 5[s], 3[s], and 1[s]. When the timer interval is long,
the execution times of Tracker Application and Monitor are negligible
compared with the execution time of Rich OS since the task is too small to
measure accurately. Thus, this can be regarded as an error.

CHAPTER 4. THE PROPOSED METHOD 77

Figure 4.14: Result of the performance degradation.

Figure 4.15: Result of the performance degradation

with message notification.

CHAPTER 4. THE PROPOSED METHOD 78

Cost analysis

1) Development cost

The proposed recovery system does not require any modification to
Linux in order to run it as Rich OS on Monitor. Thus, in terms of
application developer’s cost, since developers can reuse all existing
programs including libraries, middleware, and applications running
on Linux, no additional development cost is necessary. In terms of
device developer’s cost, configuration, such as network address
setting of the Notification module, and memory address setting and
security permission setting of TZASC is necessary to integrate the
proposed system into a device. In addition to the development cost,
verification cost in order to check that the configuration is correct is
necessary. For embedded devices in a smart grid, there are cases
where the performance requirement is specified. For example, in the
case of a smart meter, it is reported that an acceptable delay in
responding to a management server is in the range of 50-300[ms]
under a specific condition [54]. As described in the performance
analysis, since performance degradation is insignificant when
introducing our proposed method, the cases requiring performance
tuning are limited. Therefore, the development cost can be controlled.

2) Production cost

The proposed recovery system is software-based technology and no
additional hardware except a TrustZone-capable ARM processor and
an address space controller is required. TrustZone-capable processors
are widely available. In fact, all ARM Cortex A series processors
support TrustZone. Therefore, the additional cost is mitigated. As a
result, development cost per device can be minimized.

3) Maintenance cost

It is assumed that a tremendous number of devices will be deployed in
the field for smart grids. In the case of a cyber-attack, since many
devices could be a target of the attack and the attack could be done in
a very short period of time through the network, it is impracticable in
terms of both cost and time for field service engineers to physically
visit each site and reboot them. The auto-recovery feature of the
proposed recovery system mitigates this problem. Moreover, the

CHAPTER 4. THE PROPOSED METHOD 79

report is sent to the head-end system once the device reboots. This
function contributes to reduction of the cost of troubleshooting. Thus,
the proposed recovery system provides an opportunity to reduce
maintenance cost compared with legacy systems.

Chapter 5 Secure mobile agent system

Secure mobile agent system

In this chapter, we present a secure mobile agent system, utilizing the
proposed method described in the previous chapter as underlying technology,
and apply it to Field Area Network (FAN) in smart grids in order to achieve
autonomous distributed smart grid architecture. First, we present an
overview of a mobile agent system and its security threats. Although many
mobile agent systems have been proposed, few studies address the
problem of keeping secrecy and integrity of mobile agents, as most
previous research endeavored to prevent attacks from agent to platform or
from agent to agent. We propose a secure mobile agent system in order to
keep secrecy and integrity of mobile agents. The method enables mobile
agents to execute their processes on untrusted mobile agent platforms. We
demonstrate a full implementation of the proposed secure mobile agent
system. We also present experimental results of the proposed system.
Furthermore, we propose to apply the secure mobile agent system to smart
grids, in particular, to FAN in smart grids. Finally, we present some new
application examples that were previously difficult to achieve.

5.1 Security threat to mobile agent system

5.1.1 Mobile agent system

A mobile agent system is a distributed system where a program called a
mobile agent autonomously moves from one host to another connected
through a network [55]. The mobile agent working on a mobile agent
platform performs various tasks by using resources on the platform or

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 81

communicating with other agents, and achieves its goal on behalf of its
owner. The key feature of a mobile agent system is that the execution state
of the mobile agent is saved when leaving a host, transmitted with its
execution code, and reused on another host.

Therefore, the mobile agent can get information depending on each
host, process it, and use the result of the process on a different host by
traversing hosts.

In a smart grid, a tremendous number of connected embedded devices
will be deployed and many kinds of applications will work on the devices.
If a mobile agent system is applied to a smart grid, it will be very useful
and contribute to cost reduction since a mobile agent system offers several
advantages, including reduced communication costs, asynchronous task
execution, dynamic software deployment and ease of development [56].
However, it is difficult to use existing mobile agent systems because many
security problems remain although many mobile agent architectures and
implementations have been proposed. In particular, there is a high risk of
illegitimate interception of data and code managed by the mobile agent
whose secrecy and integrity need to be kept or of corruption of content of
working memory used by the mobile agent when a target host platform
and network are untrustworthy. To treat those risks, cryptography may be
useful. For example, it is possible to keep secrecy and integrity of data
managed by the mobile agent through a communication channel for
encrypting and signing the data when migrating to hosts. However, since
the mobile agent executes the decryption process on the platform, the data
could be intercepted or modified if the platform were malicious or
illegitimately modified. To solve those problems, some approaches have
been proposed, such as obfuscating the mobile agent execution code, or
attesting to the integrity of a target host platform with dedicated hardware.
However, those approaches do not tackle the root of the problem. In the
following section, we will look the security threats in depth.

5.1.2 Security threat

In order to identify the possible source and target of an attack, we
summarized security threats to a mobile agent system corresponding to the
following four based on the NIST classification from the viewpoint of the
components of the mobile agent system [57].

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 82

1) Agent-to-Platform

The mobile agent runs on the mobile agent platform. When the
mobile agent is malicious, it may attack the platform. The attacks
include masquerading as an authorized agent to gain access to
services and resources to which it is not entitled, unauthorized access
to services and resources by bypassing access control mechanisms,
modifying and damaging the platform to exploit security faults on the
platform, and denial of service by consuming a tremendous amount of
platform resources.

2) Agent-to-Agent

In a multi-agent system, the mobile agents communicate and
exchange data with one another to accomplish their tasks. When the
mobile agent is malicious, it may masquerade to deceive other agents
to gain unauthorized information from them or to cause them to
misbehave by sending false messages. Moreover, the malicious agent
may launch a denial-of-service attack by sending spammed messages
or tremendous amount of messages.

3) Platform-to-Agent

When the mobile agent migrates from host to host, the code and its
context are transmitted through an unprotected network. Similarly, the
agent may exchange messages with other agents or remote platforms
through an unprotected network. When the network intermediate
device is malicious, there is a risk of those messages being
illegitimately modified or eavesdropped, resulting in overwriting or
theft of the information. It is possible to prevent the attack by
establishing secure channels between platforms. However, if the
mobile agent platform is malicious, the problems are more serious.
Since the code of mobile agents and their context must be in plaintext
on the mobile agent platform to execute the mobile agents, the
platform can monitor any instructions and data of the mobile agents,
modify the mobile agent code and its context, or disturb the execution
of the mobile agents without being noticed by the mobile agents;
posing the same threats on the network.

4) Other-to-Agent Platform

Since the mobile agent platform is on the network, there is a risk that
a remote attacker may try to penetrate the system and modify the

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 83

mobile agent system or gain control of resources by exploiting
security faults. Furthermore, a system administrator could be
malicious. Therefore, even if the mobile agent platform itself is not
malicious, if a system below the platform, such as an operating
system is modified or the system administrator is malicious, the same
problem described in 3) occurs.

Many agent architectures and implementations with security functions
have been proposed and some of them try to address the challenges
described above.

Agent Tcl supports secure communication and agent transfer [58].
Each mobile agent platform of Agent Tcl manages its own public and
private key. When the mobile agent is transferred, it is encrypted and
signed by the mobile agent platform so that the secrecy of the mobile
agent can be kept through the network and a remote mobile agent platform
can confirm that the mobile agent is not modified.

Voyager is a Java-based mobile agent platform. Because Voyager uses
a Java virtual machine (Java VM) as a mobile agent platform, a mobile
agent runs in a sandbox, which is designed to protect a host from
misbehaving or malicious mobile agent code [59]. Aglets is also a Java-
based mobile agent platform [60]. Aglets provides a platform
authentication mechanism where mobile agent platforms mutually
authenticate one another before the mobile agent moves to a target remote
host. Since transfer of the mobile agent to an untrusted platform can be
prevented, it is possible to keep the secrecy of the mobile agent. Moreover,
Aglets provides an access control mechanism to protect the mobile agent
from receiving unauthorized messages. It defines a security policy that
describes a sender of the message and approved actions so that the mobile
agent can determine whether the received message should be accepted or
not.

In this manner, most previous research endeavored to remove threats
1) and 2) whereas very few attempts were made to remove threats 3) and
4). If threats 3) and 4) cannot be removed, an application of a mobile
agent system will be severely limited. For example, it is difficult for the
owner of the mobile agent to keep data which the mobile agent gets on
one host secret even if it migrates to another host, or to keep the algorithm
implemented inside the mobile agent secret without removing threats 3)
and 4). Furthermore, the previous research assumes that the mobile agent
platform works correctly. However, it is impossible to prevent all possible
attacks and remove all security faults in practice. In fact, much

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 84

vulnerability is frequently reported [8] and middleware such as a Java VM
or an operating system such as Linux is no exception. If the mobile agent
platform is modified or tampered with by the malicious owner of the
platform, methods proposed in previous research are invalid. Moreover, in
most previous research, mobile agent platforms are built on virtual
machines or middleware that typically works on an operating system and
the mobile agents are under the control of the mobile agent platform.
Therefore, it is difficult for the mobile agent to detect that the mobile
agent platform is malicious and is attempting an attack. Moreover, even if
the integrity of the mobile agent platform is verified, if the owner of the
host is untrustworthy or the operating system is modified, there is a high
risk that the secrecy and integrity of the mobile agent platform cannot be
kept.

5.1.3 Apply secure mobile agent system to smart grids

In smart grids, a communication network can be represented by a
hierarchical multi-layer architecture [61]. Figure 5.1 shows an example of
network architecture of a smart grid. Typically, it comprises Wide Area
Network (WAN), Field Area Network (FAN), and Home Area Network
(HAN). Since requirements are different for each network, different
communication technologies are used for each network. In particular,
since a tremendous number of connected embedded devices will be deployed
and many kinds of applications will work on the devices in FAN, several
network architectures are considered in order to operate and manage devices
efficiently. For example, Tokyo Electric Power Company lists candidate
communication systems for application in FAN [62]: RF mesh network
where data are transmitted via other wireless terminals, wireless star
network where data are transmitted between a base station and a wireless
terminal directly, and Power Line Communications (PLC) where electrical
power lines are used as communication lines. Each of them has
advantages and disadvantages in terms of efficiency, robustness, and ease
of maintenance.

Gungor surveys network architecture for electrical systems and indicates
that a wireless sensor network can enhance the performance of electric utility
operations for automatic meter reading and reliable, real-time monitoring
[63][64]. As well as Gungor, Gharavi presents mesh network architecture for a
smart grid [65]. In a mesh network, only Internet gateway devices connect
with a head-end system, relaying messages and data, and other devices
directly communicate with one another. The model is very similar to a
mobile agent system. In a mobile agent system, an application program

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 85

autonomously moves from one host to another connected through a network.
Therefore, if a smart meter is regarded as a mobile agent platform, the
topology is well suited to mobile agent systems. Furthermore, it is very
useful since the advantages of the mobile agent system, including reduced
communication costs, asynchronous task execution, dynamic software
deployment and ease of development, are applicable to the mesh network.
Particularly, Zhabelova proposes to introduce multi-agent model in a
smart grid and the simulation result indicates its efficiency [66]. Similarly,
Hernandez presents a multi-agent system model for virtual power plants
by utilizing intelligence of agent in order to improve the precision of the
prediction of future energy demand [67]. Pipattanasomporn presents that
mobile agent system can enhance management capability in the
distributed smart grids by utilizing its flexible and updatable feature [68].

Although it has great advantages, the lack of security may restrict the
network architecture since there is a great risk that intermediate nodes will
eavesdrop or modify data, prompting utilities to hesitate to introduce a
particular network architecture. Therefore, if we can provide a method to
prevent the threats, it would create a good opportunity to enhance the
performance of electric utility operations.

Figure 5.1: Network architecture of a smart grid.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 86

5.2 Architecture of the secure mobile agent system

The proposed secure mobile agent system provides a secure execution
environment on which a part of a mobile agent that needs to be protected
executes securely. Hence, even if a mobile agent platform or an operating
system on which the mobile agent platform runs is modified by an
attacker, the part of the mobile agent is still securely executed without
illegitimate modification and eavesdropping. Figure 5.2 shows the entire
architecture of the proposed secure mobile agent system. It consists of
four major components: Mobile Agent, Mobile Agent Platform, Secure
Execution Environment (SEE), and Monitor.

 Mobile Agent: Mobile Agent is an autonomous program whose
migration from one host to another is under its control. In the
proposed secure mobile agent system, Mobile Agent consists of the
Basic module, the Secure Mobile Agent (SMA) module, and context.
The Basic module is a program setting up an initialization process to
execute the SMA module, accessing file and network resources and
communicating with other Mobile Agent by using functions provided
by Mobile Agent Platform, and executing various processes whose
secrecy and integrity do not need to be kept. The SMA module is a
program independent from the Basic module to execute processes
whose secrecy and integrity need to be kept. The Basic module and
Secure Mobile Agent cooperate with each other to exchange data via
shared memory. The Basic module is executed on Mobile Agent
Platform whereas the SMA module is executed on SEE. Context is an
execution state of the Mobile Agent. When Mobile Agent migrates,
all three elements are transferred to a remote host.

 Mobile Agent Platform: Mobile Agent Platform provides an
execution environment to run Mobile Agents. It also provides
migration of Mobile Agent. It saves the context of Mobile Agent,
transports the code of Mobile Agent and saved context to the target
remote host, and resumes execution from the saved context. Most of
the mobile agent platforms proposed in previous research are built on
a middleware, such as Java VM, which is executed on an operating
system. Since the proposed secure mobile agent system supports
Linux as the operating system, any mobile agent platform running on
Linux is able to run on the proposed secure mobile agent system.
Besides Mobile Agent Platform, the operating system executes
general-purpose processes, such as storage access or network

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 87

communication, implemented as native applications or device drivers.
The operating system, native applications, Mobile Agent Platform,
and the Basic module of the Mobile Agent are all executed in the non-
secure world.

 Secure Execution Environment (SEE): SEE includes two modules:
The Common module and the Installer module. The Common module
is an entry point of SEE. It initializes context of SEE, starts the
Installer module, and executes it when booting a system. It also calls
the SMC instruction to switch to the operating system executed in the
non-secure world when necessary. The Installer module reads the
SMA module from shared region and executes it on SEE. If the SMA
module is encrypted and signed, the Installer module verifies and
decrypts it before executing it.

 Monitor: A program running in the monitor mode. It initializes
configurations of TrustZone-related hardware when booting the
system. It also provides a context switching function between worlds
in the SMC handler. Moreover, Monitor contains Policy Manager
which manages the access control policy and installs the policy on
TZASC when booting.

Figure 5.2: Architecture of the secure mobile agent system.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 88

5.3 Functions of the secure mobile agent system

The primary feature of the proposed mobile agent system is provision of a
method that gives mobile agents a secure environment, thus preventing
them from being subject to modification or eavesdropping even if a
mobile agent platform or an operating system is illegitimately modified.

Since the proposed mobile agent system is based on the proposed
method described in the previous chapter, the architecture is similar with
the ones depicted in Figure 4.1 and Figure 4.9. However, we will describe
each component in detail for clarification in this section.

1) Memory access control

Monitor provides an access control function such that access of the
operating system running in the non-secure world to the working
memory, which SEE running in the secure world uses, is subject to
restrictions. When booting the system, the processor is in the secure
world and Monitor is firstly executed. Policy Manager in Monitor
configures TZASC to install memory access policy. Table 5.1 shows
how each policy works and how each policy is applied.

Table 5.1: Access control policy and its mapping

Policy From secure
world process

From non-
secure world

process
Applied to

Full access OK OK Non-secure region
Shared region

Access denied OK NG Secure region

Policy Manager in Monitor manages two kinds of access control
policies: full access and access denied. Full access indicates no
restriction. A process running in both the non-secure world and the
secure world can freely access the region configured according to this
policy. Access denied indicates full restriction. A process running in
the non-secure world can neither read nor write to a region configured
according to this policy, whereas a process running in the secure
world can read and write to the region. In the initial state before
booting the system, all regions are allowed to be accessed from the
non-secure world by default. When booting the system, Policy

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 89

Manager divides the working memory into three regions: non-secure
region, shared region, and secure region. It applies full access policy
to non-secure region and shared region whereas it applies access
denied policy to secure region before starting the operating system.
Note that although the policies applied to non-secure region and
shared region are identical, we refer to the regions by different names
for clarification. Secure region is divided into several sub-regions:
code and data area for an initial code, Monitor, and SEE. The size of
each sub-region is predefined.

2) Mobile agent migration

Mobile Agent Platform provides a function for Mobile Agent to
migrate between hosts. Migration is invoked by the request of Mobile
Agent. Three elements are transferred to the remote Mobile Agent
Platform: code of the Basic module, code of the SMA module, and
context. Since the code of the Basic module and the SMA module is a
file whereas context is not, the context must be transformed into data
format to be able to be transmitted. Mobile Agent Platform collects
context of the Mobile Agent from the working memory, assembles
the three elements into a form suitable for transmission, and transmits
to the remote Mobile Agent Platform. The remote Mobile Agent
Platform receives and disassembles them, puts the context on the
working memory so that Mobile Agent can restart the process, and
installs and executes the SMA module.

3) Context switch between worlds

To execute the operating system and SEE concurrently in the same
host, Monitor provides a context switching function between worlds.
General registers and Saved Program Status Register are not banked
between worlds. Therefore, Monitor saves the contents of the
registers belonging to the current world on working memory to
prevent loss of the previous context, and then changes the setting of
the world. Finally, it restores the contents of the registers belonging to
the transition destination world and resumes the execution. In SEE, a
device driver of the operating system and a native application
implemented in Mobile Agent Platform are provided to call SMC
instructions from Mobile Agent since the Basic module can neither
directly access arbitrary memory regions nor call CPU native

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 90

instructions. For the initialization process, Monitor first initializes the
status of the processor in both worlds, and executes SEE in the secure
world. Then, it invokes context switching to transit from the secure
world to the non-secure world and executes the boot loader program
of the operating system in the non-secure world. Finally, the boot
loader program executes the operating system and the operating
system executes Mobile Agent Platform.

4) Installation and Execution of the SMA module

Mobile Agent consists of the Basic module and the SMA module and
it processes various tasks by communicating one another. Since the
processing details are different for each Mobile Agent, code of the
SMA module is also different. It is not feasible to implement and
install all security-sensitive functions of the SMA module in SEE in
advance. Therefore, in the proposed mobile agent system, the SMA
module is transferred with the Basic module attached as a file to the
remote Mobile Agent Platform and enabled before the Basic module
calls it each time Mobile Agent migrates. The Basic module requests
Mobile Agent Platform to install and execute the SMA module with a
file containing the transmitted SMA module. Mobile Agent Platform
reads it from storage and writes it on the shared region. The Installer
module in SEE reads it from the shared region and executes it in the
secure world.

Figure 5.3 illustrates the protocol when the SMA module needs to

be protected. After completion of developing the SMA module, an
SMA module developer encrypts it with a program key (Kprog) that is
generated by the developer and unique to each developer or each
Mobile Agent. Then, the hash value of the encrypted SMA module is
calculated and signed with a private key (K-1

sig) in order to generate a
signature. The program key is encrypted with an encryption key (Kenc).
The encrypted SMA module, the encrypted program key, and the
signature are transferred to Mobile Agent Platform. After they are
received and written on the shared region, the Installer module reads
them from the shared region. The Installer module manages a
decryption key (K-1

enc) corresponding to the encryption key (Kenc)
inside. It decrypts the encrypted program key with the decryption key
(K-1

enc) and retrieves a plaintext program key. Then, it decrypts the
encrypted SMA module with the plaintext program key. It verifies the

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 91

signature with the public key (Ksig) corresponding to the private key
(K-1

sig) and if it fails, it stops installing. Otherwise, it installs the
plaintext SMA module on secure region. Because both decryption and
verification processes are executed in the secure world, an attacker
can neither get nor modify the plaintext SMA module even if the
attacker modifies the operating system or Mobile Agent Platform. To
make a trust chain of keys, Public Key Infrastructure (PKI) can be
introduced to the encryption key (Kenc) and the public key (Ksig) when
deploying in the market. For clarification, when the SMA module is
encrypted and signed, it contains the encrypted SMA module, the
signature and the encrypted program key as explained below.

Figure 5.3: Process to develop and install the SMA module.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 92

5) Mobile Agent internal interface

In the proposed mobile agent system, Mobile Agent is divided into
the Basic module and the SMA module, and the modules
communicate and exchange data with each other via the shared region.
The proposed mobile agent system supports the data exchange
function. Here, data include content data the SMA module uses, or an
operation that is an instruction to the SMA module. The Basic module
requests Mobile Agent Platform to send data. Mobile Agent Platform
writes the data on the shared region. Then, Monitor context switches
from the non-secure world to the secure world. Finally, the SMA
module reads the data from the shared region.

When designing Mobile Agent, developers need to clarify which
function belongs to which module and they need to define an internal
interface between the Basic module and the SMA module. The
internal interface includes data structure and coding rule of the
operation. Furthermore, when the size of data is large or the operation
consists of several steps, the Basic module requests context switch
several times. Although it is easy for the developers to use a data
exchange function since Mobile Agent Platform provides API, the
data exchange, including context switch needs processing time.
Consequently, in order to prevent performance degradation, the
developers need to consider how often and how many times the Basic
module calls the data exchange function.

6) Encryption key and host restriction

From the viewpoint of security architecture, the fact that the
decryption key (K-1

enc) is a shared key between SEE of different hosts
poses no problem, since it is managed by the Installer module and an
attacker cannot get the decryption key even if it successfully modifies
Mobile Agent Platform or the operating system. However, it is
vulnerable once the decryption key is leaked from one of the hosts for
any reason, for example, mismanagement attributable to a human
factor. Therefore, in view of the possibilities of security incidents, it is
preferable to assign unique key.

From the viewpoint of an application provider, it is also preferable
that a unique decryption key (K-1

enc) be assigned to each host. Let us
assume that the owner of Mobile Agent wants to restrict the host in
terms of where the SMA module is allowed to be executed or restrict
the number of hosts where the SMA module is allowed to be installed.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 93

If a shared key is used, since all hosts have the same decryption key
(K-1

enc) and can decrypt the SMA module, it can neither restrict the
host, nor identify each host. In contrast to a shared key, if a unique
key with public key algorithm is used, it becomes possible to restrict a
host allowed to execute the SMA module. Although it has not been
implemented, if SEE provides a function to encrypt the program key
(Kprog), it encrypts the program key (Kprog) with the encryption key
(Kenc) corresponding to the decryption key (K-1

enc) of a host allowed
to execute the SMA module before Mobile Agent migrate to the host.
Depending on the application, the encryption keys (Kenc) of the
allowed hosts are either included in the SMA module when
distributed Mobile Agent, or the SMA module dynamically collects
and chooses the host.

5.4 Process flow

In this section, process flows of the proposed mobile agent system are
described to summarize the functions described above.

1) Installation and uninstallation of the SMA module

Figure 5.4 depicts the process flow when installing the SMA module.
The explanation below assumes that the SMA module is encrypted
and signed. When receiving Mobile Agent from a remote host,
Mobile Agent Platform also receives the SMA module, including the
encrypted program key and the signature, as an encrypted file. The
Basic module of Mobile Agent requests Mobile Agent Platform to
install the SMA module (process (1)) and Mobile Agent Platform
reads the encrypted SMA module from a disk, writing them on the
shared region (process (2, 3)). Then, Mobile Agent Platform requests
the operating system to switch to the secure world. The device driver
of the operating system calls SMC instruction to switch to the non-
secure world with the operation that this world transition is to install
the SMA module (process (4)). SMC handler in Monitor context
switches from the operating system to SEE (process (5)). The
Common module identifies that the operation is installation of the
SMA module and calls the Installer module (process (6)). The
Installer module manages the public key (Ksig) and the decryption key
(K-1

enc). It first verifies the signature. Then, it decrypts the encrypted
program key with the decryption key (K-1

enc) and retrieves a plaintext

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 94

program key. It decrypts the encrypted SMA module to read it from
the shared region with the plaintext program key.

Since the size of the encrypted SMA module is generally larger
than the block size of decryption, it cannot read the entire module at
once. Therefore, the Install module reads it by some block units,
copies the block units to secure region, calculates a hash value, and
decrypts them with the plaintext program key (process (7)). And it
appends the plaintext block units to the temporary area of the secure
region. The calculation and decryption continue until the entire
module is processed. Then, it verifies the signature based on the hash
value for the entire module with the public key (Ksig). If the
verification fails, it stops installing and switches back to the operating
system via SMC handler as an error status. Otherwise, it copies the
plaintext module from the temporary area to the area where the code
of the SMA module is placed in the secure region (process (8)).
Finally, the Common module calls SMC instruction to switch back to
the operating system (process (9)). SMC handler in Monitor context
switches from SEE to the operating system (process (10)). In this
manner, it is ready for the Basic module to use the SMA module.

Uninstall is a process to clear the memory area where the SMA
module is placed. The uninstall process is executed when Mobile
Agent explicitly requests, for example, when migrating to another
host. Mobile Agent Platform writes the operation indicating that the
operation is uninstallation and requests the operating system to switch
to the secure world. The Common module identifies that the operation
is uninstallation of the SMA module and clears the memory area that
the old SMA module uses. The uninstall process is also executed just
before being overwritten by the new SMA module. When the new
SMA module is installed, the Installer module simply overwrites the
old SMA module in the new SMA module. If the owner of the new
SMA module is different from the old one and the size of the old
SMA module is larger than the new one, the new SMA module can
access the data of the area where it was not overwritten, resulting in
information leakage. Therefore, it is necessary to uninstall the old
SMA module before installing the new one. In this case, the Installer
module clears the memory area that the old SMA module uses.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 95

2) Communication between the Basic module and the SMA module

The process flow when the Basic module communicates with the
SMA module is very similar to the flow of installation of the SMA
module. The explanation below shows an example in which the Basic
module requests the SMA module to encrypt plaintext data and gets
encrypted data processed in the secure world. First, the Basic module
requests Mobile Agent Platform to execute the SMA module attached
with a plaintext data. Mobile Agent Platform writes the plaintext data
on the shared region. Then, Mobile Agent Platform requests the
operating system to switch to the secure world. The device driver of
the operating system calls SMC instruction to switch to the secure
world attached with the operation that this world transition is to call
the SMA module. SMC handler in Monitor context switches from the
operating system to SEE. The Common module identifies the
operation and calls the SMA module. The SMA module manages a
key to encrypt data. It reads the plaintext data from the shared region,
encrypts the plaintext data with the key. The SMA module executes
the encryption process including intermediate data in the secure world.
Then, it writes the encrypted data on the shared region. Finally, the
Common module calls SMC instruction to switch back to the
operating system. SMC handler in Monitor context switches from
SEE to the operating system. The operating system resumes its
processes, including the execution of Mobile Agent Platform.

The operating system stops working while the SMA module
works. If the data size becomes large, the time necessary to encrypt
the data becomes long. Consequently, the suspension time of the

Figure 5.4: Execution flow of Secure Mobile Agent module installation.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 96

operating system becomes longer. For end-point devices in a smart
grid, there are cases where some tasks coexist and some of them are
not required to be protected, but long suspension time is unacceptable.
For example, when devices need to measure data from a sensor every
period of time, or devices need to respond to a server within a certain
amount of time after receiving data, they may miss measuring data or
delay to respond if the suspension time is very long. Mobile Agent
developers need to design the interface to avoid these situations. For
example, it is necessary to design the SMA module so that it suspends
in the middle of its task and switches back to the operating system.
Since the upper limit time of suspension depends on an application,
Mobile Agent developers also needs to design the data structure and
the size of data that the Basic module writes on the shared region at
one time to exchange data with the SMA module.

5.5 Prototype implementation

We used ARM C/C++ Compiler 5.01 to build Monitor and SEE. We used
gcc 4.4.1 to build Linux 3.6.1 as the operating system. We used JDK 1.8
to build Mobile Agent Platform. We chose Motherboard Express uATX
with the CoreTile Express A9x4 processor that supports TrustZone as an
execution environment.

We developed very simple Mobile Agent Platform and the Basic
module in the Java environment using Remote Method Invocation (RMI).
Java RMI provides an infrastructure where the method of remote object
executed on Java VM of a remote host can be invoked from an object
executed on Java VM of different hosts [69]. Furthermore, Java supports
object serialization that transforms an object into bytecode that can be
transmitted over a network [70]. By utilizing these technologies, we
implemented an RMI server that provides methods available to incoming
objects and serializable objects that call remote methods on the RMI
server. The RMI server and the serializable object are regarded as “Mobile
Agent Platform” and “Basic module”, respectively. In order to share data
via the shared region, a program needs to access memory managed by the
operating system. Furthermore, SMC instruction can only be executed in
privileged mode. However, Java applications can neither directly access
memory, nor directly call CPU native instruction. Therefore, we
implemented a device driver that executes SMC instruction and provides
an interface that allows a native application to call SMC instruction. We
also implemented Mobile Agent Platform with proxy methods that invoke

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 97

a native application program running on the operating system. The native
application writes the encrypted SMA module and data to be processed in
the secure world on the shared region, and calls the device driver to
execute SMC instruction based on the request from the Basic module
through Mobile Agent Platform.

Monitor supports Linux 3.6.1 as the operating system. Regarding a
memory map, from 0x48000000 through 0x4A000000 is assigned for
SRAM, and from 0x60000000 through 0xE0000000 is assigned for
DRAM. Table 5.2 shows the memory map with the access control policy
of the memory. In Table 5.2, the operating system indicates the Linux
kernel code and data, and application code and data. For clarification, full
access is applied for an area not described in Table 5.2.

Table 5.2: Memory map of the virtual security hardware module

Data Start
address Size

Security
permission
(From non-

secure world)
Vector tables +

Initialization code 0x60000000 0x00008000 Access denied

Operating system 0x60008000 0x2FFF8000 Full access
Monitor + SEE 0x90000000 0x01000000 Access denied
SMA module 0x91000000 0x0E200000 Access denied
Shared region 0x9F200000 0x00E00000 Full access

For the Policy Manager in Monitor to install an access control policy
on TZASC, the start address and the size of each memory region are
predefined. After the boot loader loads Linux at the predefined value,
Monitor installs the access control policy on TZASC. Since Monitor sets
the configuration registers of TZASC to prohibit a program running in the
non-secure world from accessing them, the operating system cannot
change this configuration.

We implemented the Installer module with 128 bit AES algorithm in
CBC mode to decrypt the encrypted SMA module and the encrypted
program key, and with 1024 bit RSA algorithm to verify a signature of the
SMA module. When the SMA module has already been installed, the
Installer module clears and overwrites the memory area where the original
SMA module is located when the new SMA module is installed. The
Installer module installs the SMA module only when its size does not

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 98

exceed the predefined size of the area provided for the SMA module.
Since the Installer module just copies the plaintext SMA module on the
memory without distinguishing code and data, developers need to
generate a binary image of the SMA module so that the binary image
becomes identical to the image on the memory. Similarly, the Basic
module or the SMA module can write data on the shared region, whose
size is predefined, only when the size of the data does not exceed the size
of the shared region. If they need to exchange data, whose size exceeds
the size of the shared region, they need to divide data so that the size does
not exceed it, and context switch each time they write the chunk of data on
the shared memory until all data are sent.

We implemented the SMA module with an encryption function with
128 bit AES algorithm in ECB mode. The size of code and data is 8[KB]
and 2.4[KB], respectively. Padding process has not been implemented.

We have not implemented a function whereby SEE automatically
saves and restores the context of the SMA module at an arbitrary point.
Instead, the SMA module sends its intermediate data to the Basic module
via the shared region if Mobile Agent needs to restart its process on SEE
of a remote host after migration. Although it is possible to execute several
Basic modules on Mobile Agent Platform, only one SMA module can be
installed in SEE at one time. Therefore, Mobile Agent needs to reinstall its
own SMA module if another Mobile Agent installs its SMA module since
the SMA module has been overwritten by another Mobile Agent.

When building SEE and Monitor, we configured them so that they are
the same binary module.

Monitor does not support multi-core.

5.6 Evaluation

5.6.1 Security and cost analysis

1) Basic security property

In the evaluation of a security system, a key aspect is the preservation
of confidentiality, integrity and availability. Regarding confidentiality,
the proposed mobile agent system can keep the secrecy of mobile
agents, including that of data and code. Since memory access control
is configured when booting the system and the protection-required
module is executed in the secure world, it is impossible for attackers
to intercept data and code even if they modify the mobile agent

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 99

system or the operating system. The mobile agent system consists of
various subsystems and most of the subsystems do not require
security-sensitive processes. For example, network access or the file
access utility process itself does not contain secret information. It is
almost impossible to exclude all vulnerability from an entire system,
and especially so when the system is large. To make matters worse,
users of mobile agents or administrators of mobile agent platforms
cannot maintain the entire system by themselves because the
middleware on which the mobile agent platforms run, such as Java
VM or the operating systems are developed by someone else, or some
parts of the components are proprietary software and their source
codes are not disclosed. In those cases, it is difficult to exclude the
vulnerability even if the components of the system are known to be
vulnerable. Rather, it is practicable to divide a system between a
small security core subsystem and general-purpose subsystems, and to
focus on carefully checking the code of the security core subsystem
only. In fact, the source code of Linux 3.6.1 comprises over 15
million lines whereas that of Monitor, SEE, and the SMA module
comprises 1100, 3800, and 1300 lines, respectively. Therefore, the
volume of the code of the security core subsystem is sufficiently
small to enable careful review and testing in order to exclude
vulnerability. Moreover, since the proposed mobile agent system
provides a secure isolated execution environment for the SMA
module by utilizing the memory access control function and the
context switch function, attackers cannot get the code and data of the
security-sensitive core subsystem consisting of Monitor, SEE and the
SMA module even if they can take control of the operating system or
the mobile agent platform. Furthermore, since the SMA module is
transferred over the network in an encrypted manner, the attackers
cannot eavesdrop on the plaintext code and data of the SMA module
on the network. Similarly, because the key to decrypt the SMA
module is managed and the decryption process is executed in the
secure world only, the attackers cannot get the plaintext SMA module
on the host.

Regarding integrity, the proposed mobile agent system can detect
the illegitimate modification of mobile agents. Since the proposed
mobile agent system provides a method to attach a signature with the
SMA module, it is possible to detect illegitimate modification to
verify the signature before executing it. In the same manner as the
SMA module encryption process, since the verification process is

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 100

executed in the secure world only, attackers can neither modify the
verification process nor skip it. Furthermore, since the SMA module
is executed on SEE only when the signature verification succeeds, the
risk of SEE or Monitor being attacked by the illegitimate SMA
module is mitigated unless developers of the SMA module are
malicious.

Regarding availability, the proposed mobile agent system does not
provide a method to prevent Denial of Service (DoS) attacks. For
example, although it can prevent attackers from stopping the SMA
module during execution of the SMA module, the attackers can
corrupt or delete a file of the SMA module on the operating system or
even shut down the entire system. We describe the limitations in the
following section.

2) Flexibility, extensibility, and mobile agent usage

In PC-based systems, it is possible to include many security features
with the supports of powerful processing power and sufficient
computational resources. However, it is unreasonable to have rich
functions in embedded end-point devices in smart grids due to the
limited computational resources. Furthermore, necessary features are
different for each embedded end-point devices in smart grids. It is
desirable to provide a method to selectively install functions after
deployment, depending on the features of devices. In order to keep
flexibility, our proposed method provides a function to dynamically
add and update a module after deployment by Mobile Agent
migrating and installing the SMA module in a target device.

Moreover, the encryption algorithm and the key length depend on
the application, or a new encryption algorithm may be developed in
the future. Therefore, it is not feasible to provide the mobile agent
platform with every variety of algorithm and key length in advance;
rather, it is reasonable for each Mobile Agent to have the security
functions necessary to complete its task and to migrate to a host with
the SMA module by exploiting the features of Mobile Agent.
Therefore, our proposed method provides extensibility to end-point
devices.

The proposed mobile agent system allows mobile agents to
exchange data. Mobile Agent developers can freely define an
interface to exchange data between Mobile Agents or define a set of
Mobile Agent among which sharing of data is allowed. For example,

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 101

by giving plural Mobile Agents a shared key, Mobile Agents having
the same shared key can decrypt data securely to exchange data. Or,
by giving a Mobile Agent a set of public keys of other Mobile Agents,
the Mobile Agent allows only other Mobile Agents having the
corresponding private key for decrypting data to exchange data.

Developers of Mobile Agent can also limit Mobile Agent Platform
where Mobile Agent works. For example, they can build Mobile
Agents with the SMA module having a set of public keys of SEE so
that only SEE having the corresponding private key can decrypt and
run the SMA module. They can also limit the number of times the
SMA module is used by building Mobile Agent with the upper limit
of times of decryption of the SMA module. In the case of previous
research, it was necessary to provide a trusted server that counts the
number of times of use since there is a risk of the counter being
modified by attackers. However, on the proposed mobile agent
system, they can build Mobile Agent with the upper limit of times of
execution of the SMA module without connecting to the network
because the execution of the SMA module is protected and there is no
concern that attackers may modify the counter.

3) Cost

In terms of hardware cost per device, since the proposed mobile agent
system runs on general ARM processor and does not require any
additional dedicated hardware, no additional cost is necessary.

In terms of software development cost, the additional cost is
mitigated since developers can reuse most of their software assets.
Since the proposed mobile agent system supports Linux as an
operating system, they can reuse all software assets built on Linux.
Furthermore, since we build our prototype implementation of the
Mobile Agent Platform on Java VM, it is easy to port functions of
Mobile Agent Platform to the existing mobile agent platform written
in Java. The only additional requirements specific to the proposed
mobile agent system are division of the mobile agent into two parts –
general-purpose processes and security-sensitive processes, defining
the interface between the processes, and implementing the security-
sensitive processes in C language. Although developers of mobile
agents need to carefully review the security-sensitive code to exclude
vulnerability, the additional work could be minimized since the code
volume is small.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 102

4) Limitations

There are some limitations and attacks beyond the scope of the
proposed system.

First, we have not yet implemented auto-saving and auto-restoring
the context of the SMA module in SEE. If Mobile Agent needs to
migrate to a host with the context of the SMA module, the SMA
module itself needs to save its context as a file, send the file and
restore the context from the file. As well as migrating, the SMA
module needs to save its context and restore it when reinstalling and
restarting the SMA module to avoid losing the context when other
SMA modules overwrite it.

Second, the proposed mobile agent system cannot prevent DoS
attacks. For example, attackers can disturb the execution of the SMA
module. Since SEE does not inspect the origin of issuing an operation,
any Basic module can send it the operation although the Basic module
cannot modify or eavesdrop on SEE. For example, malicious Basic
module may try to send an install operation with a corrupted SMA
module. As a result, the execution of the SMA module is suspended
during verifying the requested SMA module; causing extra time to be
required to complete its task. Malicious Basic module may also try to
send an install operation with the SMA module copied from a
legitimate Mobile Agent during execution of another Mobile Agent.
Since the SMA module has a valid signature, the installation succeeds
and the SMA module is overwritten by the instruction of the
malicious Mobile Agent. As a result, the Mobile Agent needs to
reinstall its SMA module; causing extra time to be required to verity
the SMA module again, or the intermediate result of the calculation
may be destroyed and it may need to restart the calculation from the
beginning.

Third, the proposed mobile agent system does not prevent attacks
on the middleware or the operating system. For example, when there
is vulnerability in the middleware or the operating system and a
malicious program reboots the system during executing the SMA
module or deleting system files to corrupt the system, the proposed
mobile agent system does not prevent those attacks.

Finally, there are physical attacks, such as a power analysis attack
or differential fault analysis using professional tools. There are some
devices with hardware tamper resistance to resist physical attacks in
the market. Since this dissertation focuses on the software system,
physical attacks are beyond the scope of this dissertation.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 103

5.6.2 Performance analysis

Whereas our proposed system greatly enhances security, the
performance degradation is inevitable since it needs context switch to
execute security-sensitive processes. We measured installation and
execution time of the SMA module in order to evaluate the extent to
which our proposed system degrades performance.

1) Installation time of the SMA module

Since the operating system is suspended while installing the SMA
module, the shorter the installation time becomes, the more the
performance of the operating system improves. We measured the
processing time necessary to install the SMA module in three cases:
the SMA module is in plaintext, the SMA module is encrypted, and
the SMA module is encrypted with a signature.

When the SMA module is in plaintext, we measured the
transaction time of the Installer module to copy the SMA module
from the shared region to the secure region including context switch.
In our prototype implementation, the Basic module launches a native
application that is executed as an external process from Java VM, and
the native application writes the SMA module on the shared region
and triggers context switch. We measured the overall time from
requesting Mobile Agent Platform and installing the SMA module to
getting the response measured by the Basic module. Figure 5.5 shows
the result of the measurement. When the size of the SMA module is
1[KB], 10[KB], 100[KB], and 1[MB], the time measured by the Basic
module is 80[ms], 87[ms], 89[ms], and 92[ms], respectively. When
the size of the SMA module is larger, the time measured by the Basic
module tends to become longer, but the difference is negligible since
the execution time of memory copy is very short. The measurement
time consists of two processes: the time of launching an external
application program by the Basic module, and the time of context
switch by Monitor and the time of memory access to copy the SMA
module by the Installer module. We also measured the execution time
of Monitor and the Installer module only in order to break down the
overall time measured by the native application. When the size of the
SMA module is 100[KB], the context switch and memory access are
9[ms]. The result indicates that the execution time of Monitor and the
Installer module is much smaller than the overall time; implying that
launching an external program out of Java VM takes most of the

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 104

execution time.
Next, in the case where the SMA module is encrypted, we

measured the transaction time of the Installer module to decrypt the
SMA module in addition to memory copy and context switch. Figure
5.6 shows the result of the measurement. When the size of the SMA
module is 1[KB], 10[KB], 100[KB], and 1[MB], the time measured
by the Basic module is 81[ms], 91[ms], 135[ms], and 580[ms],
respectively. In the same manner as the previous case, when the size
of the SMA module is larger, the time measured by the Basic module
becomes longer. Since AES decryption process is added to the
previous case, the time becomes longer than the previous case for
every size.

Finally, in the case where the SMA module is encrypted and a
signature is attached, we measured the transaction time of the Installer
module to calculate hash and verify the signature in addition to
memory copy, decryption, and context switch. Figure 5.7 shows the
result of the measurement. When the size of the SMA module is
1[KB], 10[KB], 100[KB], and 1[MB], the time measured by the Basic
module is 18.97[s], 18.99[s], 19.03[s], and 19.53[s], respectively. It
takes much more time than the previous two cases since asymmetric
key calculation cost is higher than the memory copy or symmetric key
calculation cost. Furthermore, we have not optimized the code of
RSA algorithm. There is no significant difference between the sizes
of the SMA module. We measured the RSA signature verification
process only. When the size of the SMA module is 100[KB], the time
is 18.89[s]. The result indicates that the RSA signature verification
process dominates the overall time. For clarification, the RSA
signature verification process does not depend on the size of the SMA
module. Although it depends on an application, the suspension time
of the second order may be too long for the operating system and
mobile agents. Hence, we modified the Installer module to set a timer
so that the installation process is divided into several parts and it
context switches to the operating system periodically when the timer
expires. We also modified the native application to continue to call
the Installer module until it finishes the installation process. The
measurement shows that when the size of the SMA module is 1[MB],
the time measured by the Basic module is 19.56[s] and 19.94[s] when
the timer is set to 1[ms] and 100[us], respectively. The result indicates
that the additional overhead is very small even if we introduce the
time-out mechanism. In this mechanism, the situation that the

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 105

operating system is suspended for a long time can be mitigated.

Figure 5.5: Performance result of SMA module installation
(plaintext).

Figure 5.6: Performance result of SMA module installation
(encrypted).

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 106

2) Execution time of the SMA module

There is a relationship between the performance of the SMA module
and the suspension time of the operating system. When we configure
the SMA module to shorten the execution time at one time to divide
processes into several chunks and to increase the number of times of
context switch, the suspension time of the operating system decreases
whereas the performance of the SMA module degrades since the
overhead of context switch increases. It is difficult to set the target
performance since the acceptable suspension time of the operating
system and the target performance of the SMA module highly depend
on the application. We measured the relationship to show developers
of the Mobile Agent the guideline for designing it.

First, we developed the SMA module that encrypts data with 128
bit AES algorithm in ECB mode and a native application that
communicates with the SMA module via the shared region. We also
developed a test native application program with 128 bit AES
algorithm in ECB mode for the evaluation purpose. We prepared
10[MB] random data and wrote them on the shared memory in
advance, and measured the performance of the SMA module when

Figure 5.7: Performance result of SMA module installation
(encrypted and signed).

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 107

the data are divided into 16[B], 32[B], 64[B], 256[B], 1[KB], 4[KB],
and 16[KB]. When the SMA module is executed, context switch
occurs twice; one is from the non-secure world to the secure world,
and the other is from the secure world to the non-secure world.
Therefore, when block size is 16[B], context switch occurs 1310720
times (2×10×10242/16). Similarly, when block size is 32[B], 64[B],
256[B], 1[KB], 4[KB], and 16[KB], the number of context switch is
655360, 327680, 82920, 20480, 5120, and 1280 times, respectively.
In this case, we implemented a test application program running on
the operating system, which decrypts data with 128 bit AES algorithm
in ECB mode without context switch, for evaluation purpose. Figure
5.8 shows the result of the measurement. When block size is 16[B],
32[B], 64[B], 256[B], 1[KB], 4[KB], and 16[KB], the throughput
measured by the Basic module is 1.32[MB/s], 1.91[MB/S],
2.49[MB/s], 3.28[MB/s], 3.56[MB/s], 3.62[MB/s], and 3.59[MB/s],
respectively. The throughput of the test application program is
3.79[MB/s]. The result indicates that when the block size is small, the
overhead of context switch becomes large as expected. In fact, when
the block size is 16[B], the performance degrades 64.3% compared
with the performance of the test application program. However, when
the block size is 256[B], 1[KB], and 16[KB], the degradation
becomes 11.4%, 3.9%, and 2.9%, respectively, indicating almost no
difference from the test native application. The result shows that
choosing the appropriate block size mitigates the performance
degradation.

Note that there is no data exchange between the Basic module and
the native application in this measurement. It is not recommended to
design Mobile Agent such that the Basic module calls the native
application each time it requests to encrypt the block of the data since
the overhead of launching the external process for Java VM is large.
Rather, it is recommended that the Basic module calls the native
application once and the native application calls context switch
several times.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 108

5.7 Application examples

1) Privacy information protection in a smart grid

As shown in section 5.1.3, the proposed system can be applied to end-
point devices in a smart grid. One of the primary services of a smart
grid is demand response that dynamically changes the electricity tariff
depending on the power consumption. To measure the electricity
consumption, smart meters are deployed at each household. When we
apply the proposed secure mobile agent system to smart meters, a
mobile agent dispatched from a head-end system circulates among
hosts deployed at each household while collecting power
consumption data from smart meters, and returns to the server after
collecting all the data. Besides collecting data, the mobile agent may
execute calculation that the server performed in a legacy system, on
residential devices, such as calculating average power consumption or
forecasting the future trend of power consumption from historical
data based on a particular statistical model. Although power
consumption data of each household is not each resident’s secret
information, privacy is an issue concerning the data since it includes
when and how much electricity the resident consumes, which

Figure 5.8: Performance ratio of the SMA module execution.

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 109

corresponds to the resident’s activity. Therefore, the data collected at
other residences must be kept secret whereas the data collected from
the resident can be handled in plaintext. Otherwise, power
consumption data may be disclosed for each neighborhood by
analyzing the context of the mobile agent. The requirement is a
suitable for the proposed mobile agent system. The Basic module
collects plaintext data and the SMA module encrypts collected data
and processes calculation inside SEE. Thus, end-users cannot
eavesdrop any data except the data collected by the owner of the data,
and only the owner of the mobile agent, which is an electric utility in
this example, can get it.

2) Pay-per-use software charging and software activation

There are use cases in which end-users are charged to the extent that
they used functions of a mobile agent whereas software is bundled
and charged per device in the legacy business model. In a smart grid,
since required functions of devices in smart grids vary, it is ideal if we
can provide a method whereby a mobile agent brings only the
functions required to a particular usage model and charges depending
on use frequency, and returns to a head-end system to report the result
of the usage. However, no such system has yet been deployed in the
market because the devices are located on the user side, which makes
it difficult to detect and prevent tampering. The proposed mobile
agent system enables the SMA module to have the required core
functions, and counts how many times and how long the SMA
module is used. Since only the owner of a mobile agent can access the
counter whereas end-users of the mobile agent and the administrator
of mobile agent platform cannot, attackers cannot cheat the mobile
agent out of its functions.

There is another use case in which a mobile agent is distributed
with full functions and end-users are permitted to use partial functions
only if they are successfully authenticated. For example, it is desirable
for developers to have a maintenance mode in mobile agents to debug
devices on site, which is available for field engineers only. Legacy
systems need to have network connectivity to authenticate end-users
since a mobile agent cannot have secret information, such as PIN
code inside since there is a risk of tampering the mobile agent. For the
proposed mobile agent system, it is easy to realize the maintenance
mode to have the SMA module PIN code inside. If PIN code and PIN

CHAPTER 5. SECURE MOBILE AGENT SYSTEM 110

code verification process is implemented in the SMA module and
particular functions are activated only when the verification succeeds,
end-users cannot use the functions. Only the field engineers who
know the secret PIN code can activate full functions, including
maintenance mode, of the mobile agent.

3) Safety vault

A smart grid consists of a tremendous number of sensors and
actuators. Connected sensors and actuators exchange data and they
are operated through a network. If attackers modify parameters input
to the actuators, they may misbehave or it may lead to serious
accidents in the worst case. Since the appropriate range of parameters
varies depending on applications, it is difficult to preset them in
actuators in advance. By utilizing the proposed mobile agent system,
it is possible to build a system where mobile agents bring the
parameters securely to each host and the SMA module checks the
parameters before the parameters are sent to the actuator. Since
attackers can neither modify the parameters nor invalidate the check
process, the SMA module can be used as a safety valve.

Chapter 6 Related work

Related work

In this chapter, we refer to work related to this dissertation. The research
field of this dissertation is trusted computing. There are many techniques
to realize trusted computing. One approach is to utilize a dedicated
hardware module, such as the Trusted Platform Module (TPM), in order to
establish secure storage to protect confidential information, such as a key,
or to attest the integrity of the target system. Another approach is to utilize
virtualization technology in order to make an isolated secure environment.
Furthermore, in terms of applications of the proposed methods, we
introduce related work on fault-tolerant systems and secure mobile agent
systems.

Trusted computing

The concept of trusted computing has a long history. In 1983, the U.S.
Department of Defense published a computer security standard, referred
to as the “Orange Book,” which describes trusted computer system
evaluation criteria [71]. The basic concept of trusted computing is
introduced in the standard. For example, Trusted Computing Base (TCB)
is defined as follows:

The heart of a trusted computer system is the Trusted
Computing Base (TCB) which contains all of the elements of the
system responsible for supporting the security policy and
supporting the isolation of objects (code and data) on which the
protection is based.

CHAPTER 6. RELATED WORK 112

Based on this concept, various approaches have been proposed in
order to implement TCB. In a modern computer system, TCB is realized
as a small amount of built-in hardware in order to create a foundation of
trust for software processes [72]. In regard to industry, an industrial
consortium, Trusted Computing Platform Alliance (TCPA), published a
specification that defines a subsystem containing an isolated computing
engine in 2001 [73]. Followed by the specification, a non-profit
organization, Trusted Computing Group (TCG), which is the successor of
TCPA, publishes overall architectures of trusted computing and defines
specifications [74].

Dedicated security hardware for trusted computing

TCG publishes many specifications that define functions of dedicated
hardware modules, such as the Trusted Platform Module (TPM) or
Trusted Storage, which are the root of trust. Those hardware modules and
hardware devices have been implemented by various vendors and used as
trust anchors to realize trusted computing.

McCune proposes a method that provides a secure execution
environment to minimize TCB by utilizing TPM and a commodity
processor for personal computers [75]. However, the current TPM
assumes that a secure execution environment is provided only when
booting a system, and does not assume context switching between the
secure world and the non-secure world while the system is working. The
result of the experiment shows that 10[s] is required for context switching
between worlds. Since the operating system working in the non-secure
environment is suspended during context switching, it is impracticable to
introduce embedded end-point devices.

There are some proposals to implement functions equivalent to TPM
by software. Strasser proposes emulating functions of TPM with software
[76]. The results of his experiments show the performance degradation
compared with hardware implementation. However, his objective is
testing or debugging only. Thus he does not mention a method for using it
in real applications to keep confidentiality, integrity, and availability. Liu
proposes virtual TPM for cloud architecture [77]. Since his purpose is the
provision of crypto functions for users so that they can move to a platform
that they do not own, he neither provides an execution environment nor
does he target embedded end-point devices.

CHAPTER 6. RELATED WORK 113

Virtualization

In the field of general-purpose computer systems, processors supporting a
virtualization function are widely available and there are a number of
reports on attempts to execute two operating systems concurrently and
efficiently on one processor. Some of the research results have led to
commercial products widely deployed in the market [78][79]. However,
the inclusion of vulnerability is inevitable even in a virtual machine [80].
Furthermore, most embedded processors do not yet support the
virtualization function. Although it is technically possible to implement
the virtualization function by software, it is impracticable for embedded
end-point devices since many functions need to be implemented, such as
memory management, resulting in large performance degradation.

To make a secure environment by utilizing TrustZone, various systems
have been proposed. Santos proposes runtime execution for secure
component for embedded devices by using TrustZone [81]. Yan-ling
proposes a secure embedded system environment with a multi-policy
access control mechanism and a secure reinforcement method based on
TrustZone [82]. He assumes various applications and services run in the
environment. Winter presents a method to implement Mobile Trusted
Module which is defined in TCG specification on a software-only base by
utilizing TrustZone [83]. Sangorrin proposes a software architecture on
which a real-time operating system and a general-purpose operating
system are executed concurrently on a single ARM processor with low
overhead and reliability by utilizing TrustZone [84]. Sangorrin further
proposes a method to minimize communication overhead while satisfying
the strict reliability requirements of the real-time operating system [85]. In
addition, Nakajima proposes using TrustZone to enable dependability and
real-time capability [86]. Baseline common functions in our proposed
systems use the same techniques as in the existing approaches. Our
contribution is clarification of an overall architecture and functions that
work in a secure environment with a full implementation to enable end-
point devices to keep long-term security and automatically recover from
an error status in a smart grid.

Fault-tolerant system

To recover from an operating system failure, various approaches have
been proposed.

The simplest approach is that of including the recovery mechanism

CHAPTER 6. RELATED WORK 114

within the operating system. One method is to use Non-maskable Interrupt
(NMI) as a watchdog timer [87]. NMI is a processor interrupt that cannot
be ignored. When NMI is generated, the NMI handler implemented within
the operating system is called regardless of the status of the operating
system. Since it is unnecessary to save and restore registers to execute a
process implemented in the NMI handler, performance overhead is
mitigated. Thus, NMI can be used as a surveillance and recovery process
to implement the NMI handler so that it detects whether the operating
system hangs or not. Dolev proposes a self-stabilizing operating system
utilizing NMI [88]. Although NMI is easy to use as a watchdog timer
because it has already been implemented in Linux, it is vulnerable because
the NMI handler could be invalidated to overwrite the code segment of the
operating system. Furthermore, since implementation of a rich application
in an interrupt handler, such as a network communication function or a
data encryption function, is not anticipated, it is difficult to realize the
notification function.

Another approach to recover from failure is to check the status of the
operating system from outside using virtualization technology. It is easy to
realize an isolation environment by utilizing virtualization technology.
Karfinkel developed the trusted virtual machine monitor (TVMM), on
which a general-purpose platform and a special-purpose platform
executing security-sensitive processes run separately and concurrently
[89]. The libvirt project is developing a virtualization abstraction layer
including a virtual hardware watchdog device [90]. To cooperate with the
watchdog daemon installed in a guest OS, a virtual machine monitor can
notice that the daemon is no longer working when periodically trying to
communicate with it. Although virtualization technology is widely
deployed in PC-based systems, it is difficult to implement it in embedded
devices as fewer hardware devices support it. Moreover, since the volume
of source code for a virtual machine monitor (VMM) tends to become
large, the risk of VMM including bugs also becomes large. To overcome
the restriction, Kanda developed SPUMONE, a lightweight virtual
machine monitor designed to work on embedded processors [91]. It
provides a function to reboot the guest OS. However, SPUMONE does
not provide a memory protection mechanism between the virtual machine
monitor and the guest OS (Rich OS). Thus, it is vulnerable to an attack on
the virtual machine monitor from the guest OS.

CHAPTER 6. RELATED WORK 115

Secure mobile agent system

There is little prior work on protection of mobile agents. Badger [92],
Shah [93], and Balachandran [94] propose the application of code
obfuscation techniques to mobile agents. They implemented their
proposed techniques as Java bytecode transition tools that generate
obfuscated platform-independent bytecode formats of mobile agents. The
obfuscated code is functionally identical to the original one. Obfuscating a
mobile agent code makes it difficult for an attacker to reverse engineer the
code. As a means of supplementing code obfuscation, Hohl proposes a
technique that defines the time necessary for analyzing the mobile agent
code that was obfuscated as the lifetime [95]. After the lifetime expires,
data of the mobile agent are invalid and the mobile agent cannot migrate
or interact anymore. Although those techniques are useful and robust to
some extent against automatic software analysis tools, such as
decompilers, they basically aim to delay an attacker, thereby preventing
the attacker from completing the analysis of the code and data.
Furthermore, because techniques to bypass the effects of obfuscation are
rapidly becoming more sophisticated [96], the time necessary to analyze
the obfuscated code is becoming shorter. Moreover, since the code must
be executable, the attackers can manually analyze the code if they take
enough time. Besides, the execution time of the obfuscated code tends to
become larger than the original one. Since programmers need to tune up
the speed of the program in the case of embedded devices with poor
processors, the development cost becomes high. Therefore, code
obfuscation mitigates the threat but does not solve the problem.

To self-check the modification of the mobile agent, Vigna [97] and
Holh [98] propose using execution trace. They trace the execution states
of the mobile agent generated by a mobile agent platform, and after
executing the mobile agent, compare them with those generated by an
honest platform. If they do not match, occurrence of modification on a
remote host is detected. Although it may be useful to find the trace of
modification after an attack, it does not provide a method to protect
against the modification itself.

Batarfi [99] and Sander [100] propose using homomorphic encryption.
In homomorphic encryption, the computation is done on the encrypted
data themselves without decrypting them. Therefore, once the mobile
agent is encrypted on the owner’s host, the mobile agent does not need to
be in plaintext on the mobile agent platform when processing on a remote
host, nor does the mobile agent platform need to have a secret key to
decrypt the mobile agent. Although homomorphic encryption is a

CHAPTER 6. RELATED WORK 116

powerful and useful schema to protect the mobile agent in that it is
possible to keep the secrecy of the mobile agent, there are problems in that
computational cost is high and a long length of the encrypted message is
necessary under the currently proposed schema. Therefore, application of
homomorphic encryption to a mobile agent platform with embedded
devices remains impracticable.

In earlier work, Yee [101] briefly describes a trusted execution
environment where mobile agents run within a secure coprocessor,
allowing Java-based agents to run securely. Wilhelm [102] proposes
introducing dedicated trusted and tamper-proof hardware on which a
virtual machine serves as an execution environment for a mobile agent.
The mobile agent is first encrypted by a public key installed in the
hardware and then distributed. Since only the mobile agent platform
having a private key corresponding to the public key can decrypt the
mobile agent, the mobile agent’s code and data are protected. Muñoz
proposes a protocol for the secure migration of the mobile agent to
introduce remote attestation with the Trusted Platform Module (TPM) in
order to authenticate the integrity of the platform [103]. By utilizing
dedicated hardware, their proposed method greatly improves robustness
compared with a software solution, such as code obfuscation, since it is
difficult to analyze or modify the hardware without deep knowledge and
specialized tools. However, since the dedicated hardware is separated
from the main processor, additional cost is incurred that poses an obstacle
to commercialization. Besides, it is effective only for the mobile agent
platform on which the hardware is installed. Furthermore, since there has
been no implementation, it is unclear whether performance would be
degraded.

Chapter 7 Future work

Future work

As in all research, the work presented in this dissertation is by no means
complete. Rather, we believe that the ideas are just a starting point for
establishing a security platform for embedded end-point devices in a smart grid.

With regard to the extension of the method proposed in this dissertation,
issues to be addressed are the enhancement of performance and the extension
of functions. The first issue is performance enhancement. Similar to processors
for personal computer systems, there is a trend toward the use of multi-core
processors in embedded end-point devices to enhance processing speed. Our
proposed method uses one core only even if a processor supports multi-cores.
In order to minimize the performance degradation of Rich OS, we must
support multi-cores. However, it is not easy since we need to support an
exclusive control mechanism in terms of security. The proposed method
provides an isolated secure environment in which general-purpose
processes and protection-required processes are concurrently executed.
Therefore, the exclusive control mechanism is much more complex than
the existing multi-core exclusive control. The second issue is the
extension of functions of secure mobile agent systems. Ideally, it is
desired to support auto-saving and auto-restoring the context of the Secure
Mobile Agent (SMA) module in Secure Execution Environment (SEE). If
a mobile agent needs to migrate to a host with the context of the SMA
module, the SMA module itself needs to save its context as a file, send the
file and restore the context from the file. As well as migrating, the SMA
module needs to save its context and restore it when reinstalling and
restarting the SMA module to avoid losing the context when other SMA
modules overwrite it. The third issue is prevention of Denial of Service

CHAPTER 7. FUTURE WORK 118

(DoS) attacks. The proposed method cannot prevent DoS attacks. For
example, attackers can disturb the execution of the SMA module. Since
SEE does not inspect the origin of issuing an operation, any Basic module
can send it the operation although the Basic module cannot modify or
eavesdrop on SEE. For example, a malicious Basic module may try to
send an install operation with a corrupted SMA module. As a result, the
execution of the SMA module is suspended during verifying the requested
SMA module, and consequently extra time is required to complete its task.
The malicious Basic module may also try to send an install operation with
the SMA module copied from a legitimate Mobile Agent during execution
of another Mobile Agent. As a result, the Mobile Agent reinstalls its SMA
module since the SMA module has a legitimate signature and its SMA
module is overwritten by the instruction of the malicious Mobile Agent,
and consequently extra time is required to verity the SMA module again,
or the intermediate result of the calculation may be destroyed and it may
need to restart the calculation from the beginning. In order to prevent
those attacks, a mechanism for inspecting the origin of issuing an
operation is necessary. However, it is not easy to solve the attack since it
is essentially impossible to establish a trusted area in Rich OS. Even if we
successfully identify a process issuing the operation, another process that
controls the process might be the source of an attack. We need a method
of finding the sources of attacks, which poses a problem that is very
difficult to solve.

Another approach is to enhance usability for developers. The proposed
method assumes that it is possible for developers to clearly divide a
security-sensitive module from a general-purpose process. If a system is
developed from scratch, it might not be a big issue since developers have
a chance to consider how to divide modules when designing the system
from an early stage in the development. However, if developers need to
reuse existing modules in which security-sensitive modules and general-
purpose modules are tightly bound, it is difficult to divide functions into
those of security-sensitive modules and those of general-purpose modules,
and extra cost is incurred. Therefore, it is desirable to provide methods to
minimize the porting cost for developers. From a technical viewpoint, it is
desirable to support functions that make it possible to flexibly define the
security-sensitive module and protect modules initially loaded in the non-
secure world.

Besides the technical improvement, a deployment issue of the result of
the proposed method should be addressed. One approach is exploring new
other application examples to motivate developers and end-users to

CHAPTER 7. FUTURE WORK 119

introduce our proposed methods. Security is frequently regarded as cost,
hesitating to introduce security features. By showing new application
examples that are attractive to service providers or end-users, penetration
of introducing the security features will improve. Another approach is
building a security requirement through standardization activity. Although
existing technical standards and guidelines conceptually indicates security
requirements that we proposed in this dissertation, such as upgradability
and availability, no specific method has been defined. However, the
importance of implementation method will become larger since most
critical security incidents are caused by implementation faults. Therefore,
there will be a good opportunity to discuss methods that provide a robust
mechanism against attacks that exploit implementation vulnerability in
standardization bodies. Such standardization activities will be an effective
way in order to help momentum to introduce sophisticated security
technologies, which we presented in this dissertation, in a smart grid
society.

Chapter 8 Conclusion

Conclusion

In this dissertation, we proposed a security platform for embedded end-
point devices in a smart grid. The proposed method addressed two critical
problems that have not been solved by previous research: keeping long-
term security and keeping availability. Furthermore, we proposed a secure
mobile agent system that provides a secure execution environment for
mobile agents in order to achieve autonomous distributed smart grid
architecture. We also presented examples of new application that
enhanced efficiency and reliability for Field Area Network in smart grids.

In Chapter 1, we outlined the methods proposed in this dissertation.
We introduced the motivation for this dissertation together with a brief
explanation of a smart grid. The principal concern of this dissertation is
realization of a secure system to keep embedded end-point devices in a
smart grid secure, in particular, provision of a robust mechanism against
attacks that exploit implementation vulnerability, including illegitimate
modification and eavesdropping, at reasonable cost in terms of
development, deployment and maintenance. We summarized our
contributions: keeping long-term security, satisfying the three pillars of
information security, demonstrating feasibility with full implementation,
and enabling new applications in a smart grid with a security platform.

In Chapter 2, we defined the problems. We provided an overview of
the security problems in smart grids, including the clarification of
differences between information and communication systems and control
systems. As a result of the analysis, it is clarified that the major problems
in embedded end-point devices in smart grids concern keeping long-term
security and keeping availability. Then, we analyzed the reasons why the

CHAPTER 8. CONCLUSION 121

problems are difficult to solve. Regarding keeping long-term security, the
following reasons were clarified: it is difficult to prevent tampering of
software, it is difficult to exclude vulnerability in a large system, it is
difficult to eliminate the risk of compromising a crypto system, and it is
difficult to attest a part of a software module only. Regarding keeping
availability, the following reasons were clarified: it is difficult to keep a
high level of surveillance continuity, it is difficult for an administrator to
detect when an incident occurs, and it is difficult to minimize
development cost and production cost.

In Chapter 3, we provided background information on the hardware
technologies leveraged by the proposed method. We presented security
functions of ARM processors. In addition, we presented functions of
typical dedicated security hardware.

In Chapter 4, we proposed a method to keep long-term security and a
method to keep availability. The proposed methods basically consist of
three components: a secure module that executes security-sensitive
processes and runs in the secure world, Rich OS that is an operating
system executing general-purpose processes and running in the non-secure
world, and Monitor that provides a context switch function. We clarified
the functions of each component and process flows. The features of our
proposed method to keep long-term security are virtual hardware with a
dynamic loading function, a decryption function, a verification function,
and an attestation function that works in the secure world. We
demonstrated full implementation of the proposed method. The results of
experiments showed that performance degradation of the Rich OS is less
than 10% in a severe case whereas robustness was greatly improved
compared with the existing vulnerable system implemented only with
software. The features of our proposed method to keep availability are a
surveillance function, a read-only memory function, and a notification
function. We demonstrated full implementation of the proposed method.
The results of experiments showed that the performance degradation is
under 0.2% in a normal use case.

In Chapter 5, we proposed a secure mobile agent system. The method
enabled mobile agents to execute their processes on an untrusted mobile
agent system in order to keep secrecy and integrity of mobile agents. We
demonstrated a full implementation of the proposed secure mobile agent
system. The results of experiments showed that although installation of
the secure module takes a long time, performance degradation of the Rich
OS was mitigated by introducing context switch while executing
installation. Furthermore, we proposed the application of the secure

CHAPTER 8. CONCLUSION 122

mobile agent system to smart grids, in particular, Field Area Network in
smart grids, and showed that it enables the introduction of new
applications that are difficult to realize by previous methods.

In Chapter 6, we referred to work related to this dissertation. The
research field of this dissertation is trusted computing. We referred to
papers that realize trusted computing to utilize dedicated security
hardware and virtualization. We also referred to papers related to fault-
tolerant systems and secure mobile agent systems.

In Chapter 7, we discussed future work to be addressed in order to
improve our proposed method by extending it and enhancing usability for
developers.

Finally, we provide a brief overview of this dissertation. The proposed
method isolates a protection-required process from general-purpose
processes, including an operating system, and provides an execution
environment to run both processes concurrently. Since the protection-
required process is executed in the secure world whereas the general-
purpose processes are executed in the non-secure world, the protection-
required process can be securely executed without interference even if
attackers completely take control of the general-purpose processes by
exploiting the vulnerability. In order to keep long-term security, the
proposed method enables dynamic loading and updating of the security-
sensitive module only with sufficient robustness against tampering.
Furthermore, it does not require rebooting the entire system including the
operating system. In order to keep availability, the proposed method
realizes a fault-tolerant system enabling the embedded end-point devices
to monitor the status of the operating system and to recover even if they
stop working owing to unexpected behavior or cyber-attacks. Furthermore,
we proposed a secure mobile agent system to provide an isolated
execution environment for a mobile agent by generalizing methods to
keep long-term security and availability.

References

[1] K. C. Budka, J. G. Deshpande, and M. Thottan, "Smart Grid
Applications," in Communication Networks for Smart Grids: Making
Smart Grid Real, Springer-Verlag, London, UK, 2014, pp. 111-145.

[2] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati,
and G. P. Hancke, "A Survey on Smart Grid Potential Applications
and Communication Requirements," in IEEE Transactions on
Industrial Informatics, vol. 9, no. 1, pp. 28-42, 2013.

[3] Y. Mo, T. H. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and
B. Sinopoli, "Cyber-Physical Security of a Smart Grid
Infrastructure," in Proceedings of the IEEE, vol. 100, no. 1, pp. 195-
209, 2011.

[4] National Institute of Standard and Technology, NISTIR 7628
Guidelines for Smart Grid Cyber Security, 2010.

[5] CEN-CENELEC-ETSI, Smart Grid Information Security, 2014.

[6] H. Li, "Enabling Secure and Privacy Preserving Communications in
Smart Grids," Springer International Publishing, 2014.

[7] E. Auchard, "Popular electricity smart meters in Spain can be hacked,
researchers say", Reuters, Oct. 2014 [Online]. Available:
http://www.reuters.com/article/2014/10/07/us-cybersecurity-spain-
idUSKCN0HW15E20141007 [Accessed 30, Jul. 2015].

[8] MITRE. “Common vulnerabilities and exposures,” [Online].
Available: http://cve.mitre.org [Accessed 30 Jul. 2015].

[9] U.S. Department of Homeland Security. "ICS-CERT," [Online].
Available: https://ics-cert.us-cert.gov [Accessed 30 Jul. 2015].

REFERENCES 124

[10] H. Isozaki and J. Kanai, "Embedded System with Long-term
Security Utilizing Hardware Security Function," in Transactions of
Information Processing Society of Japan (in Japanese and in press).

[11] H. Isozaki, J. Kanai, S. Sasaki, and S. Sano, "Keeping High
Availability of Connected End-point Devices in Smart Grid,” in
Proceedings of the Fourth International Conference on Smart Grids,
Green Communications and IT Energy-aware Technologies, 2014, pp.
73-80.

[12] H. Isozaki, J. Kanai, S. Sasaki, and S. Sano, "Security system for
connected end-point devices in a smart grid with commodity
hardware," in International Journal on Advances in Intelligent
Systems, vol. 7, no. 3&4, pp. 533-546, 2014.

[13] J. Zheng, D. W. Gao, and L. Lin, "Smart Meters in Smart Grid: An
Overview," in Proceedings of 2013 IEEE Green Technologies
Conference, 2013, pp. 57-64.

[14] European Network and Information Security Agency, Smart Grid
Threat Landscape and Good Practice Guide, 2013.

[15] D. Dzung, M. Naedele, M., T. P. v. Hoff, and M. Crevatin, "Security
for Industrial Communication Systems," in Proceedings of the IEEE,
vol. 93, no. 6, pp. 1152-1177, 2005.

[16] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, "A Survey on Cyber
Security for Smart Grid Communications," in IEEE Communications
Surveys & Tutorials, vol. 14, no. 4, pp. 998-1010, 2012.

[17] A. R. Metke and R. L. Ekl, "Smart Grid Security Technology," in
Proceedings of the Innovative Smart Grid Technologies, 2010, pp. 1-
7.

[18] P. McDaniel and S. McLaughlin, "Security and Privacy Challenges
in the Smart Grid," in IEEE Security & Privacy, vol. 7, no. 3, pp. 75-
77, 2009.

[19] M. Davis, "SmartGrid Device Security: Adventures in a New
Medium," in Black Hat USA 2009, 2009.

[20] T. Goda, S. Morozumi, "Smart Grid TEXTBOOK," Impress Japan,
Tokyo, Japan, 2011 (in Japanese).

[21] National Institute of Standard and Technology, Guide to Industrial

REFERENCES 125

Control Systems (ICS) Security, Special Publication 800-82, 2011.

[22] S. Clements, "Cyber-security Considerations for the Smart Grid," in
Proceedings of 2010 IEEE Power and Energy Society General
Meeting, 2010, pp. 1-5.

[23] W. Wang and Z. Lu, "Cyber security in the Smart Grid: Survey and
challenges," in Computer Networks, vol. 57, no. 5, pp. 1344-1371,
2013.

[24] F. M. Cleveland, "Cyber Security Issues for Advanced Metering
Infrasttructure (AMI)," in Proceedings of IEEE Power and Energy
Society General Meeting - Conversion and Delivery of Electrical
Energy in the 21st Century, 2008, pp. 1-5.

[25] Idaho National Laboratory, Cyber Security Procurement Language
for Control Systems Version 1.8, 2008.

[26] G. Gaubatz, J.-P. Kaps, and E. Ozturk, and B. Sunar, "State of the
Art in Ultra-Low Power Public Key Cryptography for Wireless
Sensor Networks," in Proceedings of the Third IEEE International
Conference on Pervasive Computing and Communications
Workshops, 2005, pp. 146-150.

[27] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F.
Mueller, and M. Sichitiu, "Analyzing and Modeling Encryption
Overhead for Sensor Network Nodes," in Proceedings of the 2nd
ACM international conference on Wireless sensor networks and
applications, 2003, pp. 151-159.

[28] Y. W. Law, J. Doumen, and P. Hartel, "Benchmarking Block
Ciphers for Wireless Sensor Networks," in Proceedings of the 1st
IEEE international conference on Mobile Ad-hoc and Sensor
Systems, 2004, pp.447-456.

[29] H. Khurana, R. Bobba, T.Yardley, P. Agarwal, and E. Heine,
"Design Principles for Power Grid Cyber-Infrastructure
Authentication Protocols," in Proceedings of the 43rd Hawaii
International Conference on System Sciences, 2010, pp. 1-10.

[30] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, "Smart-Grid
Security Issues,", in IEEE Security & Privacy, vol. 8, no. 1, pp. 81-85,
2010.

[31] National Electrical Manufacturers Association, Requirements for

REFERENCES 126

Smart Meter Upgradeability, 2009.

[32] K. Li, "Towards Security Vulnerability Detection by Source Code
Model Checking," in Proceedings of the Third International
Conference on Software Testing, Verification, and Validation
Workshops, 2010, pp. 381-387.

[33] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, and T. Leu, "A
Dynamic Technique for Eliminating Buffer Overflow Vulnerabilities
(and Other Memory Errors)," in Proceedings of the 20th Annual
Computer Security Applications Conference, 2004, pp. 82-90.

[34] Z. Huang and I. G. Harris, "Return-oriented Vulnerabilities in ARM
Executables," in Proceedings of IEEE 2012 Conference on
Technology for Homeland Security, 2012, pp. 1-6.

[35] R. Sailer, X. Zhang, T. Jaeger, and L. v. Doorn, "Design and
Implementation of a TCG-based Integrity Measurement
Architecture," in Proceedings of the 13th conference on USENIX
Security Symposium, 2004, pp. 223-238.

[36] K. D. Craemer and G. Deconinck, "Analysis of State-of-the-art
Smart Metering Communication Standards," in Proceedings of the
5th young researchers symposium, 2010.

[37] W. Wang, Y. Xu, and M. Khanna, "A survey on the communication
architectures in smart grid," in Computer Networks, vol. 55, no. 15,
pp. 3604-3629, 2011.

[38] A. Liotta, D. Geelen, G. v. Kempen, and F. v. Hoogstraten, "A
survey on networks for smart-metering systems," in International
Journal of Pervasive Computing and Communications, vol. 8, no.1,
pp. 23-52, 2012.

[39] S. M. Varghese and K. P. Jacob, "Anomaly Detection Using System
Call Sequence Sets," in Journal of Software, vol. 2, no. 6, pp. 14-21,
2007.

[40] M. J. Pont and R. H. L. Ong, "Using watchdog timers to improve the
reliability of single-processor embedded systems: Seven new patterns
and a case study," in Proceedings of the First Nordic Conference on
Pattern Languages of Programs, 2002, pp. 159-200.

[41] ARM, "ARM Security Technology," [Online]. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-

REFERENCES 127

009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf [Accessed 30 Jul. 2015].

[42] T. Alves and D. Felton, "TrustZone: Integrated Hardware and
Software Security," in Information Quarterly, vol. 3, no. 4, pp. 18-24,
2004.

[43] Trusted Computing Group: TPM Main Specification Part 1 Design
Principles, Specification Version 1.2 Revision 116, 2011.

[44] D. Kleidermacher and M. Kleidermacher, "Embedded Systems
Security", Newnes, Oxford, UK, 2012.

[45] T. Otani, "A Primary Evaluation for Applicability of International
Standard Protocol for Meter Reading to Next-generation Grids,"
CRIEPI Research Report, R09009, 2010 (in Japanese).

[46] M. Kanda, Y. Ohba, and Y. Tanaka, "AMSO (TM) Unified Key
Management Mechanism Integrating Authentication and Encryption
for Smart Meters," in Toshiba Review, vol. 65, no. 9, pp. 23-27, 2010
(in Japanese).

[47] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin,
"Protocol for Carrying Authentication for Network Access (PANA),"
IETF RFC 5191.

[48] Coverity, "Coverity Scan: 2013 Open Source Report", Available:
http://softwareintegrity.coverity.com/rs/coverity/images/2013-
Coverity-Scan-Report.pdf [Accessed 30 Jul. 2015].

[49] J. Kanai, H. Sasaki, M. Kondo, H. Nakamura, and M. Namiki,
"Energy-Eflicient Scheduler by Statistical Analysis for Linux", in
The Special Interest Group Technical Reports of IPSJ OS-106, pp. 9-
16, 2007 (in Japanese).

[50] P. B. Ghewari, J. K. Pati, and A. B. Chougule, "Efficient Hardware
Design and Implementation of AES Cryptosystem," in International
Journal of Engineering Science and Technology, vol. 2, no. 3, pp.
213-219, 2010.

[51] A. Gielata, P. Russek, and K. Wiatr, "AES hardware implementation
in FPGA for algorithm acceleration purpose," in Proceedings of the
International Conference on Signals and Electronic Systems, 2008,
pp. 137-140.

REFERENCES 128

[52] F. Zhao, Y. Hanatani, Y. Komano, B. Smyth, S. Ito, and T.
Kamibayashi, "Secure Authenticated Key Exchange with Revocation
for Smart Grid," in Proceedings of the third IEEE PES Conference on
Innovative Smart Grid Technologies, IEEE Power & Energy Society,
2012, pp. 1-8.

[53] ARM, "Dhrystone Benchmarking for ARM Cortex Processors,"
[Online]. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.dai0273a/DAI027
3A_dhrystone_benchmarking.pdf [Accessed 30 Jul. 2015].

[54] M. Miyashita and T. Ohtani, "Transmission Characteristics
Evaluation of Demand-side Communication -Evaluation of Response
Time Using International Standard Protocol for Meter Reading and
Wireless LAN-," in CRIEPI Research Report, R10035, 2011 (in
Japanese).

[55] I. Sato, “Mobile Agent,” in Handbook of Ambient Intelligence and
Smart Environments. Springer US, 2010, pp. 771-791.

[56] D. P. Buse and Q. H. Wu, "Mobile Agents for Remote Control of
Distributed Systems," in IEEE Transactions on Industrial Electronics,
vol. 51, no. 6, pp. 1142-1149, 2004.

[57] W. Jansen and T. Karygiannis (1999, Oct.). Mobile Agent Security.
NIST Special Publication 800-19.

[58] R. Gray, “Agent Tcl: A flexible and secure mobile-agent system,” in
Proceedings of the Fourth Annual Tcl/Tk Workshop, 1996, pp. 9-23.

[59] G. Graham, “ObjectSpace voyager - The agent ORB for Java,” in
Lecture Notes in Computer Science, vol. 1368, Springer-Verlag
Berlin Heidelberg, 1998, pp. 38-55.

[60] G. Karjoth, D. B. Lange, and M. Oshima, “A Security Model for
Aglets”, in Mobile Agents and Security. Springer-Verlag Berlin
Heidelberg, 1998, pp. 188-205.

[61] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, "Communication
network requirements for major smart grid applications in HAN,
NAN and WAN," in Computer Networks, vol. 67, pp. 74-88, 2014.

[62] Tokyo Electric Power Company, "Basic Concept for Smart Meter
Specification based on RFC", [Online]. Available:
http://www.tepco.co.jp/en/press/corp-

REFERENCES 129

com/release/betu12_e/images/120712e0101.pdf [Accessed 30 Jul.
2015].

[63] V. C. Gungor and F. C. Lambert, "A survey on communication
networks for electric system automation," in Computer Networks, vol.
50, no. 7, pp. 877-897, 2006.

[64] V. C. Gungor, B. Lu, and G. P. Hancke, "Opportunities and
Challenges of Wireless Sensor Networks in Smart Grid", in IEEE
Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3557-3564,
2010.

[65] H. Gharavi and B. Hu, "Multigate Communication Network for
Smart Grid," in Proceedings of the IEEE, 2011, vol. 99, pp. 1028-
1045, no. 6.

[66] G. Zhabelova, V. Vyatkin, “Multiagent Smart Grid Automation
Architecture Based on IEC 61850/61499 Intelligent Logical Nodes,”
in IEEE Transactions on Industrial Electronics, vol. 59, no. 5, pp.
2351-2362, 2012.

[67] L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. Sanchez-
Esguevillas, J. Lloret, D. Chinarro, J. J. Gomez-Sanz, and D. Cook,
"A Multi-Agent System Architecture for Smart Grid Management
and Forecasting of Energy Demand in Virtual Power Plants," in IEEE
Communications Magazine, vol. 51, no. 1, pp. 106-113, 2013.

[68] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-Agent
Systems in a Distributed Smart Grid: Design and Implementation,“ in
Proceedings of the IEEE Power Systems Conference and Exposition,
2009, pp.1-8.

[69] Oracle. Remote Method Invocation Home. [Online]. Available:
http://www.oracle.com/technetwork/articles/javaee/index-jsp-
136424.html [Accessed 30 Jul. 2015].

[70] Oracle. Java Object Serialization Specification version 6.0. [Online].
Available:
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serial
-arch.html [Accessed 30 Jul. 2015].

[71] U.S. Department of Defense, "Trusted Computer System Evaluation
Criteria," Department of Defense Standard, 1983.

[72] S. Pearson, B. Balacheff, L. Chen, D. Plaquin, and G. Proudler,

REFERENCES 130

"Trusted (Computing) Platforms: An Overview," in Trusted
Computing Platforms: TCPA Technology in Context Prentice Hall,
New Jersey, U.S, 2002, pp. 3-42.

[73] Trusted Computing Platform Alliance, "Trusted Computing
Platform Specifications," 2001.

[74] Trusted Computing Group: TCG Specification Architecture
Overview , Specification Revision 1.2, 2004.

[75] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
"Flicker: An Execution Infrastructure for TCB Minimization," in
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference
on Computer Systems, 2008, pp. 315-328.

[76] M. Strasser and H. Stamer, "A Software-Based Trusted Platform
Module Emulator,"in Lecture Notes in Computer Science, vol. 4968,
Springer-Verlag Berlin Heidelberg, 2008, pp. 33-47.

[77] D. Liu, J. Lee, J. Jang, S. Nepal, and J. Zic, "A New Cloud
Architecture of Virtual Trusted Platform Modules," in IEICE
Transactions on Information and Systems, vol. E95-D, no. 6,
pp.1577-1589, 2012.

[78] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, and A. Warfield, "Xen and the Art of Virtualization," in
Proceedings of the nineteenth ACM symposium on Operating
Systems Principles, 2003, pp. 164-177.

[79] C. A. Waldspurger, "Memory Resource Management in VMware
ESX Server", in Proceedings of the 5th symposium on Operating
Systems Design and Implementation, vol. 36, issue SI, pp. 181-194,
2002.

[80] S. T. King and P. M. Chen, "SubVirt: Implementing malware with
virtual machines," in Proceedings of the 2006 IEEE Symposium on
Security and Privacy, 2006, pp. 314-327.

[81] N. Santos, R. Himanshu, S. Stefan, and W. Alec, "Using ARM
TrustZone to Build a Trusted Language Runtime for Mobile
Applications," in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2014, pp. 67-80.

[82] Z. Yan-ling and P. Wei, "Design and Implementation of Secure

REFERENCES 131

Embedded Systems Based on Trustzone," In Proceedings of
International Conference on Embedded Software and Systems, 2008,
pp. 136-141.

[83] J. Winter, "Trusted Computing Building Blocks for Embedded
Linux-based ARM TrustZone Platforms," in Proceedings of the 3rd
ACM workshop on Scalable Trusted Computing, 2008, pp.21-30.

[84] D. Sangorrin, S. Honda, and H. Takada, "Dual Operating System
Architecture for Real-Time Embedded Systems," in Proceedings of
6th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, 2010, pp. 6-15.

[85] D. Sangorrin, S. Honda, and H. Takada, "Reliable and Efficient
Dual-OS Communications for Real-Time Embedded Virtualization,"
in Japan Society for Software Science and Technology, vol.29, no.4,
pp. 182-198, 2012.

[86] K. Nakajima, S. Honda, S. Teshima, and H. Takada, "Enhancing
reliability in Hybrid OS system with security hardware,", in the
IEICE Transactions on Information and Systems, vol. J93-D, no. 2,
pp. 75-85, 2010.

[87] A. Kleen, "Machine check handling on linux," Technical report,
SUSE Labs, Aug. 2004 [Online]. Available:
http://halobates.de/mce.pdf [Accessed 30 Jul. 2015].

[88] S. Dolev and R. Yagel, "Towards Self-Stabilizing Operating
Systems," IEEE Transaction on Software Engineering, vol. 34, no. 4,
pp. 564-576, 2008.

[89] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
"Terra: A Virtual Machine-Based Platform for Trusted Computing,"
In Proceedings of the nineteenth ACM symposium on Operating
Systems Principles, 2003, pp. 193-206.

[90] "libvirt - the virtualization API.," [Online]. Available:
http://libvirt.org [Accessed 30 Jul. 2015].

[91] W. Kanda, Y. Yumura, Y. Kinebuchi, K. Makijima, and T.
Nakajima, "SPUMONE: Lightweight CPU Virtualization Layer for
Embedded Systems," In Proceedings of IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing, 2008, pp. 144-
151.

REFERENCES 132

[92] L. Badger, L. D'Anna, D. Kilpatrick, B. Matt, A. Reisse, and T. V.
Vleck, "Self-Protecting Mobile Agents Obfuscation Techniques
Evaluation Report," Network Associates Laboratories, Report, 01-
036, 2002.

[93] S. W. Shah, P. Nixon, R. I. Ferguson, S. R. Hassnain, M. N. Arbab,
and L. Khan, "Securing Java-Based Mobile Agents through Byte
Code Obfuscation Techniques," in Proceedings of the IEEE
Conference on Multitopic INMIC, 2006, pp. 305-308.

[94] V. Balachandran and S. Emmanuel, "Potent and Stealthy Control
Flow Obfuscation by Stack Based Self-Modifying Code," in IEEE
Transactions on Information Forensics and Security, vol. 8, no. 4, pp.
669-681, 2013.

[95] F. Hohl, "Time Limited Blackbox Security: Protecting Mobile
Agents from Malious Hosts," in Lecture Notes in Computer Science,
vol. 1419, Springer-Verlag Berlin Heidelberg, 1998, pp. 92-113.

[96] S. K. Udupa, S. K. Debray, and M. Madou, "Deobfuscation:
Reverse Engineering Obfuscated Code," in Proceedings of the IEEE
12th Working Conference on Reverse Engineering, 2005.

[97] G. Vigna, "Protecting Mobile Agents through Tracing," in
Proceedings of the 3rd ECOOP Workshop on Mobile Object Systems,
1997.

[98] F. Hohl, "A Protcol to Detect Malicious Hosts Attacked by Using
Reference States," Technical Report Nr. 09/99, Faculty of
Informatics, University of Stuttgart, Germany, 1999.

[99] O. A. Batarfi and A. I. Metro, "Protecting Mobile Agents against
Malicious Hosts Using Dynamic Programming Homomorphic
Encryption," in International Journal of Science & Emerging
Technologies, vol. 1, 2011.

[100] T. Sander and C. F. Tschudin, "Protecting Mobile Agents Against
Malicious Hosts," in Lecture Notes in Computer Science, vol. 1419,
Springer-Verlag Berlin Heidelberg, 1998, pp. 44-60.

[101] B. Yee, "A Sanctuary for Mobile Agents," in Lecture Notes in
Computer Science, vol. 1603, Springer-Verlag Berlin Heidelberg,
1999, pp. 261-273.

[102] U. G. Wilhelm, L. Buttyan, and S. Staamann, "On the Problem of

REFERENCES 133

Trust in Mobile Agent Systems," in Symposium on Network and
Distributed System Security, Internet Society, 1998, pp. 114-124.

[103] M. Antonio and M. Antonio, "A Hardware Based Infrastructure for
Agent Protection," in Advances in Soft Computing, vol. 51, Springer
Berlin Heidelberg, 2009, pp. 39-47.

