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Abstract 
 
 

Tumor or cancer immunology is a new and fast growing field where the interactions of 

the inherent immune system with malignant cancers have shown the suppression of 

disease progression. In this field, systems biology approach is required to understand 

and control the cellular response, since cellular behaviors are highly dynamic, complex 

and well orchestrated. This thesis describes the current understanding of the systems 

biology approach and addresses the connectivity between immunology and systems 

biology. The main aims of this research are i) to regulate the proinflammatory response 

in Tumor necrosis factor (TNF) signaling pathway and ii) to understand the resistance 

mechanisms for cancer treatment in TNF related apoptosis inducing ligand (TRAIL) 

signaling pathway. Therefore dynamical computational models were developed using 

the well-established perturbation response approach, and analyzed the dynamics of key 

signaling molecules and gene expressions were analyzed. Using this systems biology 

approach, a key molecule was identified to effectively regulate, but not abolish, the 

proinflammatory response in TNF signaling and we also found a target to enhance cell 

death in TRAIL resistant cancer cells. This work shows systems biology approach 

integrating computational approaches and wet bench experiments shed light on the drug 

development for the regulation of the immune-mediated diseases. 

 

 

Keywords: TNF, TRAIL, Cell signaling, Computational model, Inflammation, Cancer, 

Apoptosis 
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Introduction 

 

 



	
  

 2 

1.1 Background 

The field of mathematical biology has very old history for understanding of biological 

problems such as the genetics of natural selection, nerve systems, epidemics and 

morphological patterns (Fisher 1930; Hodgkin et al. 1952; Kermack et al. 1933; Turing 

1952). However, it is difficult to uncover crucial biological problems only by the 

mathematical modeling and experimental advancement is also required (Murray 2012). 

Over the last decades, a rapid progress was made in the development and improvement 

of wet bench approaches including high throughput analyses such as DNA microarrays 

(DeRisi et al. 1996), RNA-seq (Wang et al. 2009), CE-MS (Monton et al. 2007) and 

protein chips (Zhu et al. 2001), and low throughput analysis such as RT-PCR 

(Vandesompele et al. 2002) and western blotting (Burnette 1981). These experimental 

technologies has generated huge amount of information for gene regulatory networks, 

metabolic networks and protein-protein interactions. In parallel, roles of genes, 

metabolites and proteins have also being investigated. Although these works have 

allowed understanding complex cellular systems, the dynamical intracellular behaviors 

of their systems are still not fully understood. For example, how and when cancerous 

cells are mutated and change their behavior from normal cells? Nevertheless, the 

amount of biological information is increasing, and to analyze this information, systems 

biology approaches, integrating computational and theoretical methods with 
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experiments, are essential to understand the complexity of biological systems (Hood et 

al. 2004; Kitano 2002).  

One of the main focuses of systems biology is to infer unknown components 

and interactions in network structures (Barabási et al. 2004; Kitano 2002). For this 

purpose, bottom-up and top-down systems biology approaches are considered for the 

comprehensive network analysis of gene regulatory networks and signal transduction 

networks (Bruggeman et al. 2007; Kholodenko et al. 2002; Selvarajoo et al. 2009). The 

bottom-up approach is used when the network topology is already known for signal 

transduction analysis, kinetic metabolic network analysis and gene regulatory network 

analysis (Guido et al. 2006). Since the network is developed from known components 

and reactions, the bottom-up approach does not consider the unknown factors, which 

are not fully understood (Bruggeman et al. 2007). And, for the bottom-up approach, it is 

required to investigate the details of kinetic parameters to understand the formation and 

depletion forms in each component (Aldridge et al. 2006; Karlebach et al. 2008). To 

overcome the parameter issues, flux balance analysis (FBA) is one of the major 

methods (Orth et al. 2010; Selvarajoo 2014). For FBA analysis, the reaction topologies 

or stoichiometry of the network need to be known (Selvarajoo 2014). Boolean network 

models, multi-valued logical models and Petri nets are also known (Albert et al. 2009; 

Aldridge et al. 2009; Chaouiya et al. 2007). Those approaches discretize the dynamic 

behaviors and it is not required for the detailed temporal and kinetic parameters. It 
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makes possible to understand the cellular network causality by using input-output 

information (Wang et al. 2012; Yeo et al. 2007).  

The top-down approach, where each component has the flexibility to design 

the network, allows for the addition of new factors and the rewiring of the network in 

the system. Although the components in the systems are gradually elucidated through 

the progresses of technologies, their roles are not fully understood. Moreover, although 

common networks can be shared among species, tissues and cell types, their roles and 

functions can be different. Therefore, it is required to modify the networks according to 

the biological systems and cell types. Using the top-down approach enables to find the 

unknown components and processes without knowing the detailed information about 

the network (Helmy et al. 2009; Piras et al. 2011; Selvarajoo 2006). Therefore, systems 

biology top-down approaches can bring valuable insights and understandings to control 

and predict of the cellular behaviors and intercellular networks. In this thesis, an 

original top-down approach was developed to reveal novel biological features and drug 

targets in immune and cancer cell signaling.   
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1.2 Systems immunology 
1.2.1 The immune system  

The immune system is a well-organized and complex system to protect from the 

invading pathogens. This immune system is composed of two major components, innate 

and adoptive immunity (Akira et al. 2006). That provide the various proteins, called 

cytokines or chemokines, to protect the hosts and mediate communication between 

immune-related cells, such as macrophages, dendritic cells, monocytes (Janeway et al. 

2002). These cells are called phagocytic cells and mainly work in innate immune 

system. Their roles are mainly, (i) recognition of the pathogens, (ii) killing these 

pathogens once they are recognized. Through the recognition of pathogens, 

macrophages and dendritic cells also initiate the adaptive immune response by 

presenting antigen to naïve CD4+ T cells via class II MHC (Major Histocompatibility 

Complex) (Beutler 2004). As another important role, they also produce inflammatory 

cytokines, such as Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), IL-6, IL-12 

and IL-8. Those cytokines have pivotal roles in several diseases such as diabetes, 

rheumatoid arthritis, heart disease and ulcerative diseases, and also takes part in the 

important cellular responses, such as proliferation and differentiation (Coussens et al. 

1997). The cytokines have a large variety of crucial functions to support the immune 

system, however, once they are compromised, they can cause immune diseases. 
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Therefore large numbers of experiments have been performed from single cell level to 

cell population level to control the immune response. Nevertheless, we are still far from 

a systematic understanding. To address this issue, systems biology approaches for 

immune systems are crucial.  

1.2.2 Immunotherapy   

Immunotherapy has the focus for the development of drugs to target malignant tumor 

cells, since their cellular behavior is tightly liked to inherent immune systems. For 

example, a particular attention has recently been paid to Natural Killer (NK) cells for 

the immunotherapy (Hayakawa et al. 2006; Wu et al. 2003). NK cells are recognized as 

the subset of the innate lymphoid cells (ILCs), distinct from T and B cells, which 

support the initiation of the immune response by secreting several cytokines, such as 

Interleukin-5 (IL-5), IL-13 and IL-17 (Spits et al. 2011). NK cells also produce 

Interferon-γ  (IFN-γ), which consolidates the adaptive immune systems (Viver et al. 

2011). NK cells can also directly attack the infected cells and tumor cells without 

affecting normal cells (Lanier et al. 2005). One of the strategies of NK cells to kill the 

tumor cells is to utilize the MHC class I molecule to distinguish the normal cells from 

tumor cells. When tumor cells are identified, NK cells release the cytotoxic components 

such as granzyme and perforin (Ljunggren et al. 2007). Furthermore, NK cells express 

TNF superfamily members to induce the apoptosis in tumor cells (Ljunggren et al. 
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2007). Thus, an effective treatment could be achieved by enhancing by NK cells 

activity.  

Small molecule targeted therapy has also shown promising results for new 

treatment by blocking biochemical pathways that are crucial for cell survival and tumor 

progression. Imatinib is a small molecule inhibitor for BCR-ACL kinase and a drug for 

the certain types of leukemia (Druker 2011; O’Brien et al. 2003). This drug shows 

significant effect for about 76% of chronic myeloid leukemia (CML) patients, however 

some patients do not respond well yet (O’Brien et al. 2003). Likewise, the inhibitors for 

epidermal growth factor receptor (EGFR), BRAF, KIT and HER2 also have great 

potential to be drug targets (Abrams et al. 2003; Slamon et al. 2001; Su et al. 2012; 

Yaish et al. 1988). There are several types of BRAF inhibitors for melanoma depending 

on the target domain, however, several targets can enhance the tumor progression 

(Heidorn et al. 2010). Since intracellular systems are highly complex and robust, the 

effect of drugs can activate bypass pathways to compensate network changes and 

induce drug resistance. Therefore it is required to understand the resistance mechanism 

for drugs in dynamical signaling processes.  
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1.3 Objectives and summary 

First, this thesis describes the current understanding of the complex immune system to 

protect hosts from the outside invaders. Although the immune system is well 

orchestrated, once it is compromised by pathogens or genetic mutations, it can lead to 

diseases, such as rheumatoid arthritis, bowel disease and cancers. For example, in 

cancer, the intensely investigated anti-cancer treatments remain suboptimal, notably 

there is still a large number of cancer deaths despite careful treatment. The interactions 

of the immune system with malignant tumors have shown the suppression of disease 

progression. Hence, there has recently been great interest to use the understanding of the 

immune process to regulate the progression of cancer. Thus we focused on the major 

proinflammatory cytokine, Tumor Necrosis Factor (TNF) and it’s family member, 

Tumor Related Apoptosis Inducing Ligand (TRAIL), that have great potential to 

suppress the immune response and kill the cancerous cells.      

In chapter 2, we analyzed TNF receptor 1 (TNFR1) signaling pathway using 

dynamical computational model based on the well-established perturbation response 

approach and experimental data from murine embryonic fibroblast cells (MEF). TNF is 

a widely studied cytokine (ligand) that induces proinflammatory signaling and regulates 

a myriad of cellular processes. In major illnesses, such as rheumatoid arthritis and 

certain cancers, the expression of TNF is elevated. Despite much progress in the field, 
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the targeted regulation of TNF response for therapeutic benefits remains suboptimal. 

Here, to effectively regulate the proinflammatory response induced by TNF, a systems 

biology approach was adopted. We developed a computational model to investigate the 

temporal activations of MAP kinase (p38), nuclear factor (NF)-κB, and the kinetics of 3 

groups of genes, defined by early, intermediate and late phases, in murine embryonic 

fibroblast (MEF) and 3T3 cells. To identify a crucial target that suppresses, and not 

abolishes, proinflammatory genes, the model was tested in several in silico knock out 

(KO) conditions. Among the candidate molecules tested, in silico RIP1 KO effectively 

regulated all groups of proinflammatory genes (early, middle and late). To validate this 

result, we experimentally inhibited TNF signaling in MEF and 3T3 cells with RIP1 

inhibitor, Necrostatin-1 (Nec-1), and investigated 10 genes (Il6, Nfkbia, Jun, Tnfaip3, 

Ccl7, Vcam1, Cxcl10, Mmp3, Mmp13, Enpp2) belonging to the 3 major groups of 

upregulated genes. As predicted by the model, all measured genes were significantly 

impaired. These results demonstrate that Nec-1 modulates TNF-induced 

proinflammatory response, and may potentially be used as a therapeutic target for 

inflammatory diseases such as rheumatoid arthritis and osteoarthritis.  

In chapter 3, using our original systems biology approach, combining with 

computational and experimental analysis, we addressed the resistance mechanism in 

cancer cells. Cancer cells are highly variable and resistant to therapeutic intervention. 

Recently, the use of the tumor necrosis factor related apoptosis-inducing ligand 
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(TRAIL) induced treatment is gaining momentum, due to TRAIL’s ability to 

specifically target cancers with limited effect on normal cells. Nevertheless, several 

malignant cancer types still remain non-sensitive to TRAIL. Previously, we developed a 

dynamic computational model, based on perturbation-response differential equations 

approach, and predicted protein kinase C (PKC) as the most effective target, with over 

95% capacity to kill human fibrosarcoma (HT1080) in TRAIL stimulation (Piras et al. 

2011). Here, to validate the model prediction, which has significant implications for 

cancer treatment, experiments on two TRAIL-resistant cancer cell lines (HT1080 and 

HT29) were conducted. Inhibiting PKC using Bisindolylmaleimide I showed cell 

viability is significantly impaired with over 95% death of both cancer types, in 

consistency with the predictions. Next, caspase-3, Poly (ADP-ribose) polymerase 

(PARP), p38 and JNK activations were measured in HT1080, confirming cell death 

occurs through apoptosis with significant increment in caspase-3 and PARP activations. 

Finally, to identify a crucial PKC isoform, the mRNA expressions from 10 known 

members in HT1080 cells were analyzed and shortlisted to the highest 4 for further 

siRNA knock-down (KD) experiments. From these KDs, PKCδ produced the most 

cancer cell death in conjunction with TRAIL.  

Taken together with our novel findings in TNF and TRAIL signaling pathway, 

we demonstrate our approach combining model predictions with experimental 

validation holds promise for systems biology based tumor or cancer therapy. The 
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conventional experimental approach to understand the intercellular process is still 

required, however it is not sufficient to control the dynamics of the cellular behavior 

such as tumor progression or cancer growth. It is therefore crucial to develop 

approaches to elucidate the cellular behaviors and to control cellular systems. Thus, this 

work is anticipated to provide better understanding of system-level behaviors as well as 

to predict novel/original drug targets, which is difficult using conventional wet bench 

experiments alone. 
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2.1 Introduction 

The tumor necrosis factor (TNF), first termed in 1962 (O’Malley et la. 1962), was 

initially known for its ability to induce programmed cell death or apoptosis. As a result, 

throughout the years, the TNF has been intensely investigated for its anticancer property 

(Balkwill 2009). Today, this cytokine is central to the regulation of myriad important 

cellular processes such as proliferation, differentiation, growth, and the immune 

response. 

TNF binds to two types of outer membrane bound receptors on target cells, 

TNFR1 and TNFR2, and triggers the cell survival and proinflammatory NF-κB and 

MAP kinases activations (Locksley et al. 2001). In addition, the TNFR1 induces 

intracellular cell death pathways via caspases after internalization through endocytosis. 

It is, therefore, conceivable that the dysregulation of the TNF signaling process will 

misbalance proinflammatory and/or apoptotic responses. Notably, the chronic 

aberration in the baseline levels of TNF in human circulatory system has been attributed 

to the pathogenesis of numerous diseases, including rheumatoid arthritis, osteoporosis, 

sepsis and cancer (Bradley 2008; van Horssen et al. 2006). 

The vast majority of TNF related biological processes are initiated by the 

death-domain (DD) containing TNFR1, which is also called TNFRSF1A. Unlike 

TNFR2, TNFR1 is present in almost all cell types in humans. Upon TNF binding, 
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TNFR1 trimerizes, and its intracellular DD recruits TRADD, which then creates a 

platform for RIP1 and TRAF2 to collectively form the receptor-signaling complex I. 

Cellular inhibitor of apoptosis proteins (cIAP)-1 and -2 bind to complex I and, 

consequently, together with K63-linked ubiquitin chains, modify RIP1 and TRAF2 

(Falschlehner et al. 2012). This creates docking sites for an E3 ligase or linear ubiquitin 

chain assembly complex (LUBAC) consisting of heme-oxidized IRP2 ubiquitin ligase-1 

(HOIL-1), HOIL-1-interacting protein (HOIP), and SHANK-associated RH domain 

interacting protein (SHARPIN). Subsequently, the activation of TAK1 and the 

ubiquitination of NEMO (or IKKγ), a subunit of IKK complex, lead to cell survival or 

proinflammatory response through NF-κB and MAP kinases activations. Other TRAF 

superfamily members (TRAF5 and 6) are also known to play a role in the NF-κB and 

MAP kinases activations (Funakoshi-Tago et al. 2009; Tada et al. 2001). 

On the other hand, for the apoptotic pathways, clathrin, AP-2 and Dyn first 

mediate receptor internalization. Receptor-signaling complex I becomes modified, and 

dissociates from TNFR1, allowing FADD and caspase-8 to form complex II. Within 

complex II, caspase-8 becomes activated to induce extrinsic apoptosis through 

caspase-3 activation. Alternatively, caspase-8 activates caspase-7, and eventually, the 

cleavage of Bid to tBid in the mitochondria activates caspase-9 via cathepsin D. This 

induces the intrinsic apoptosis through caspase-3 activation. 
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Due to its ability to signal numerous cellular processes via the survival and 

death pathways, the TNFR1 signaling research has received immense attention over the 

years, especially on understanding the downstream signaling cascades to regulate and 

control proinflammatory diseases and cancer. Despite numerous studies, the control of 

proinflammatory diseases through therapeutic treatments, where TNF is over-expressed, 

remains suboptimal. For example, biologic response modifiers or biologics, such as 

Etanercept and Infliximab, are TNF decoy receptors or antibodies that suppress TNFR1 

signaling through competition for TNF. Although these drugs have shown successful 

downregulation of inflammation in many cases, they can immuno-compromise patients 

to secondary infections such as tuberculosis (Fallahi-Sichani et al. 2012), or have been 

ineffective in a substantial number of administered patients (Wien et al. 2010). 

To find alternatives, there have been major efforts on selectively suppressing 

the intracellular signaling of TNFR1. For example, genetic knockouts (KOs) of TRAFs 

and TRADD acting on the proinflammatory pathways have been investigated 

(Ermolaeva et al. 2008; Funakoshi-Tago et al. 2009; Tada et al. 2001). However, the 

experimental outcomes, so far, have not been optimistic. In TRAF2 KO, there is 

compensatory activation of NF-κB through TRAF5 (Tada et al. 2001) or TRAF6 

(Funakoshi-Tago et al. 2009), and vice-versa. On the other hand, TRADD KO almost 

completely abolishes NF-κB activation (Ermolaeva et al. 2008), which is not desirable 

for the general survivability of cells. Thus, a systemic approach where the propagation 
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of signal transduction to all known branching pathways during target intervention 

should be monitored. This will allow the elucidation of effective target candidate(s) that 

overcomes and balances the deficiencies of current investigations. 

In this chapter, we adopted a systems biology approach to study TNFR1 

signaling dynamics. Firstly, we developed a computational model of TNF-induced 

proinflammatory response leading to NF-κB, MAP kinase activations, and three groups 

of gene expressions (classified according to their temporal profiles (Hao et al. 2009)). 

The model is based on the perturbation-response approach (Moran et al. 2007; Ross et 

al. 2008; Selvarajoo et al. 2009; Vance et al. 2002), which has been successfully used 

to elucidate novel signaling features and behaviors in Toll-like receptor-4 (Selvarajoo et 

al. 2006; Selvarajoo et al. 2008), -3 (Helmy et al. 2009), and TNF-related 

apoptosis-inducing ligand (TRAIL) signaling (Piras et al. 2011). Secondly, the TNFR1 

model parameters were selected to fit the temporal activation profiles of NF-κB and 

MAP kinase p38 for fibroblast cell type in several available conditions (wildtype (Tada 

et al. 2001), TRAF2 KO (Tada et al. 2001), TRAF5 KO (Tada et al. 2001), 

TRAF2/TRAF5 double KO (DKO) (Tada et al. 2001), TRAF6 KO (Funakoshi-Tago et 

al. 2009), TRADD KO (Ermolaeva et al. 2008) and RIP1KO (Devin et al. 2000)). 

Using the resultant TNFR1 model with robust parameters, we performed simulations of 

multiple in silico KOs to determine an optimal target that suppresses, but not abolishes, 

proinflammatory genes. Finally, to validate the modeling results, we performed 
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experiments measuring various key proinflammatory gene expressions in MEF and 3T3 

cells for TNF stimulation. Overall, our study presents evidence that systems biology 

research can be useful to elucidate important target(s) to suppress proinflammatory 

diseases such as rheumatoid arthritis and osteoarthritis. 

2.2 Materials and methods 

2.2.1 Computational model 

The model is based on perturbation-response approach (Helmy et al. 2009; Piras et al. 

2011; Selvarajoo 2006; Selvarajoo et al. 2008; Selvarajoo et al. 2009). The basic 

principle behind the approach is to induce a controlled perturbation of input reaction 

species of a system (TNFR1), and monitor the response of the activation/concentration 

levels of other output species (e.g. TAK1, p38, NF-κB, Il6, etc.) from steady-state. To 

briefly explain the principle, let a stable network consisting of n species be perturbed 

from the reference steady-state. In general, the resultant changes in the concentration of 

species are governed by the kinetic evolution equation (Ross et al. 2008; Moran et al. 

2007): 

∂Xi

∂t
= Fi X1,X2,..,Xn( ), i =1,..,n

 
(1) 
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where the corresponding vector form of equation 1 is ( )
t

∂
=

∂

X F X  . F is a vector of 

any non-linear function including diffusion and reaction of the species vector X = (X1, 

X2, .., Xn), which represents activated concentration levels of reaction species. The 

response to perturbation can be written by X = X0 + δX, where X0 is the reference 

steady-state vector and δX is the relative response from steady-states (δXt=0 = 0). 

The generally non-linear kinetic evolution equation 1 can be approximated or 

linearized by using Taylor series: 

( ) ( )2
2

2 ...
t
δ

δ δ
∂ ∂∂

= +
∂ ∂ ∂

F X F XX X + X
X X

 (2) 

As the general volume of perturbing substance is usually very small (order of 1%) 

compared to the total volume of cells that are perturbed (Theobald et al. 1997), now 

consider a small perturbation around the steady-state in equation 2, in which 

higher-order terms become negligible and result in the approximation of the first-order 

term. In vector form ( )

0X X
t
δ

δ
=

∂∂
=

∂ ∂

F XX X
X

 (note the change from partial derivative 

to total derivative of time), where the zeroth order term F(X0) = 0 at the steady-state X0 

and the Jacobian matrix, or linear stability matrix, is ( )

0X X=

∂
=

∂

F X
J

X
 . The elements 

of J, based on the initial activation topology, are chosen by fitting δX with 
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corresponding experimental profiles. Hence, the amount of response (flux propagated) 

along a biological pathway can be approximated using first order mass-action response, 

i.e. d J
dt
δ

δ=
X X . That is, the basic principle so far suggests that the response rate of 

species in a mass-conserved system at an initial steady-state can be approximated by 

first order mass-action response equations, given a small perturbation to one or more 

species. 

Note that Jacobian matrix elements (or response coefficients) can include not 

only reaction information, but also spatial information such as diffusion and transport 

mechanisms. Thus, each species in the perturbation-response model can represent a 

molecule, a different modified state of a molecule (e.g. ubiquitinated state) or a 

molecular process such as diffusion, endocytosis, etc. That is, each species in the 

biological network does not necessarily represent a specific molecular species. For 

illustration, in a pathway X1 → X2 → X3 → X4 → X5, X1 to X5 can each be a different 

species or the same species at different stages in signaling, for example, X1 being 

internalized (becoming X2), transported to a different organelle (X3), ubiquitinated (X4) 

and become part of a protein complex (X5). 

2.2.2 Sensitivity analysis 

We performed a sensitivity analysis to test the robustness of the optimized model 

parameters using the COPASI sensitivities module with default values. The variation in 
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the response of signaling molecules/steps, xi(t), was analyzed when a small variation of 

each model parameter kj was applied. The response sensitivity coefficient (Zi 2011) of 

the ith molecule with regard to the jth parameter is defined by 

Ri, j =
∂xi (t)
∂kj

k j
xi (t)  

(3) 

The obtained values, Ri,j are then scaled, to reflect the relative changes in response, such 

as a change of p% in the value of parameter kj, results in a Ri,jŊp% change in the value of 

the peak activation of the ith molecule. The response sensitivity coefficients of p38, 

IκBα, and Group I, Group II and Group III genes were obtained at peak time (t = 15 min 

for p38 and IκB, 30 min, 2 h and 12 h for Group I, II and III respectively, see Table 

2.2). 

2.2.3 Experiments 

Reagents and cell culture 

Recombinant mouse TNF was purchased from R&D systems. Necrostatin-1 was 

purchased from Merck Millipore. 3T3 cells were obtained from JCRB cell bank. 3T3 

and MEF were grown in DMEM (Nissui Seiyaku Co.) containing 10% calf serum, 100 

U/mL of penicillin at 37 °C in a 5% CO2 humidified atmosphere. 
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Evaluation of cell survival by 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay 

The sensitivity of cells to hyperosmotic stress was measured with the MTT colorimetric 

assay in 96-well plates. Cells (2 × 104) were inoculated in each well and incubated for 

24 h. Thereafter, 50 µL of MTT (2 mg/mL in PBS) was added to each well and the 

plates were incubated for a further 2 h. The resultant formazan was dissolved with 100 

µL of dimethyl sulfoxide after aspiration of culture medium. Plates were placed on a 

plate shaker for 1 min and then read immediately at 570 nm using TECAN microplate 

reader with Magellan software (Männedorf, Switzerland). 

Real-time PCR analysis 

Total cellular RNA was extracted from cells using the TRIzol reagent according to the 

manufacturer’s instructions (Invitrogen). One microgram of RNA was 

reverse-transcribed using a first-strand cDNA synthesis kit (ReverTra Aceα; Toyobo). 

Quantitative real-time PCR was performed using SYBR premix Ex Taq (Takara) on the 

Applied Biosystems StepOnePlusTM according to the technical brochure of the company. 

RT-PCR primers designed in this study are listed in Table 2.1 Quantitative 

measurements were determined using the ΔΔCt method and expression of GAPDH was 

used as the internal control. Melt curve analyses of all real-time PCR products were 

performed and shown to produce the sole DNA duplex.
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Table 2.1 List of primer sequences for RT-PCR  

Name Species Primer name Sequence 
Tnfaip31 mouse A20_F GAACAGCGATCAGGCCAGG 

A20_R GGACAGTTGGGTGTCTCACATT 
Il61 mouse IL6_F TAGTCCTTCCTACCCCAATTTCC 

IL6_R TTGGTCCTTAGCCACTCCTTC 
Nfkbia1 mouse IkBa_F CTGCAGGCCACCAACTACAA 

IkBa_R CAGCACCCAAAGTCACCAAGT 
Jun1 mouse Jun_F ACTCGGACCTTCTCACGTC 

Jun_R CGGTGTAGTGGTGATGTGCC  
Ccl71 mouse CCL7_F GCTGCTTTCAGCATCCAAGTG  

CCL7_R CCAGGGACACCGACTACTG 
Vcam11 mouse Vcam1_F AGTTGGGGATTCGGTTGTTCT  

Vcam_R CCCCTCATTCCTTACCACCC  
Cxcl101 mouse Cxcl10_F AGGACGGTCCGCTGCAA 

Cxcl10_R CATTCTCACTGGCCCGTCAT 
Mmp3 mouse mmp3_F CTCGTGGTACCCACCAAGTC 

mmp3_R AGTCCTGAGAGATTTGCGCC 
Mmp13 mouse mmp13_F CTTCTGGCACACGCTTTTCC 

mmp13_R ATCCAGACCTAGGGAGTGGC 
Enpp2 mouse Enpp2_F ACTCCGAGCAGCCTGATTTT 

Enpp2_R CCGGAGTAAGAGGTGAGCCA 
 
(1) Sequences obtained from Hao & Baltimore (2009). 
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2.3 Results 

2.3.1 TNFR1 signaling topology and model 

To develop a computational model of proinflammatory TNFR1 signaling dynamics, we 

first require the known signal transduction pathways. We curated the KEGG database, 

and performed literature survey of the latest TNF research. After carefully considering 

several sources, we were able to propose a signaling topology mainly by combining the 

knowledge from KEGG, Falschlehner et al. (2012) and Wertz et al. (2010) (Figure 2.1). 
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Figure 2.1 Schematic of TNFR1 signaling of cell survival/proinflammatory and 

apoptosis pathways. Upon TNF receptor activation, complexes I (survival pathway) 

and II (apoptosis) are formed. Complex I subsequently activates transcription factors, 

such as activator protein (AP)-1 and NF-κB through MAP kinases and IKK complex, 

respectively, which subsequently bind to promoter regions of genes to induce numerous 

proinflammatory genes. 
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Next, to simulate TNF-induced dynamics of NF-κB and MAPK activations using the 

topology, we developed a dynamic model based on perturbation-response approach 

(Materials and Methods), using COPASI simulation platform (Hoops et al. 2006). 

Unlike common biochemical reaction models (Tasseff et al. 2010; Werner et al. 2005), 

the perturbation-response approach does not require detailed knowledge of all signaling 

species and their reaction kinetics. This is because it analyses the response waves of 

signal transduction instead of individual reaction kinetics (Helmy et al. 2009; Moran et 

al. 2007; Piras et al. 2011; Ross et al. 2008; Selvarajoo 2006; Selvarajoo et al. 2008; 

Selvarajoo et al. 2009). The response waves can be approximated using linear response 

rules (Response Rules, Figure 2.2) combined with the law of mass conservation, and 

this approach has been previously used to successfully model the TLRs and TRAIL 

signaling pathways (Helmy et al. 2009; Piras et al. 2011; Selvarajoo 2006; Selvarajoo et 

al. 2008).  

Briefly, each reaction in model is represented by a first-order response 

equation with activation or deactivation term. The activation term generally refers to 

protein binding, transformation, complex formation, phosphorylation and transcription. 

The deactivation term refers to protein unbinding, dephosphorylation and negative 

regulation such as mRNA decay through microRNA regulation. 
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Figure 2.2 Response rules. 
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Figure 2.2 Response rules (continued) 
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Figure 2.2 Response rules (continued) 
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Figure 2.2 Response rules (continued) 
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Figure 2.2 Response rules (continued)  

Response rules. Rule 1, Controlling flux: Controlling the upstream parameter (k1) of a 

hypothetical molecule X2 mostly affects the slope of the formation part of the expression profile. 

Alternatively, controlling the downstream parameter (k2) mainly modifies the expression 

profile’s depletion part. Rule 2, Time delay: by comparing the time to reach peak activation, 

any time delay in target signaling molecule’s activation represents ‘missing’ cellular features 

such as directed transport machinery, protein complex formation, and novel molecular 

interactions. Rule 3, Feedforward flux: (A) Rapid kinetics: when simulation of a downstream 

molecule is noticeably quicker than experimental dynamics, (B) Similar kinetics: when 

removing a molecule along a pathway does not completely abolish its downstream 

intermediates, (C) Delayed kinetics: when removing a molecule along a pathway show 

significant delay. In all these cases, the superposition principle suggests a novel feedforward 

pathway with different number of intermediates. Rule 4, Feedback flux: when a response 

profile shows multiple peaks or continuous increase of activation not following pulse 

perturbation response, this indicates feedback pathways such as posttranslational effect or 

secondary (autocrine/paracrine) signaling. Rule 5, Signaling Flux Redistribution (SFR): At 

pathway junctions, removing a molecule enhances the entire alternative pathways. Rule 6, No 

SFR: At pathway junctions, removing a molecule does not enhance the alternative pathway, 

suggesting novel i) intermediate(s) between the removed molecule and the pathway junction or 

ii) pathway link between the removed molecule and the alternative pathway. Rule 7, 

Differential flux: quantifies each pathway branch by comparing activation levels between 

wildtype and mutants data. Rule 8, Reversible flux: when a response profile show limiting 

decay that cannot be modeled by first-order decay, the presence of reversible step is expected to 

produce limiting decay. Rule 9, Non-linearity: When complex dynamics is observed, the linear 

response approach breaks down, and non-linear approaches are needed. 
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2.3.2 Simulating TNF-induced ΝF-κΒ and MAP kinase dynamics 

The parameters of the initial model (rate constants, or the elements of Jacobian matrix J, 

Materials and Methods) were estimated by fitting the simulation profiles with 

experimental profiles of signaling molecules where data is available. We obtained 

published semi-quantitative experimental profiles of IκBα phosphorylation (ΝF-κΒ 

activation) and p38 (MAP kinase) activation in wildtype and various genetically mutant 

MEFs generally treated with 10 ng/mL of TNF (Figure 2.3A, Figure 2.4 and Table 2.2) 

(Devin et al. 2000; Ermolaeva et al. 2008; Funakoshi-Tago et al. 2009; Tada et al. 

2001). (Note that the kinetics of other MAP kinases, JNK and ERK, were also similar to 

p38 (Devin et al. 2000; Ermolaeva et al. 2008; Funakoshi-Tago et al. 2009; Tada et al. 

2001). Thus, we used p38 as a representative MAP kinase for our investigation). 
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Figure 2.3 Experimental and simulated profiles of IκBα and p38 activations in 

wildtype and mutant conditions. (A) Experimental profiles, MEFs were generally 

treated with 10 ng/mL of TNF, and (B) simulated profiles of IκBα (top panels) and p38 

(bottom panels) activations up to 30 min in wildtype (WT), TRAF2 KO, TRAF5 KO, 

TRAF2/TRAF5 double KO (TRAF2/5 DKO), TRAF6 KO, TRADD KO and up to 15 

min in RIP1 KO. Note: p38 experimental profiles are available only for WT, TRAF6 

KO and TRADD KO. Experimental details and data are found in references (Devin et al. 

2000; Ermolaeva et al. 2008; Funakoshi-Tago et al. 2009; Tada et al. 2001). ImageJ 

was used to estimate the intensities of the activation dynamics (Table 2.1) for each 

molecule in each condition relative to wildtype peak activation values found in Figure 

2.4. IκBα phosphorylation refers to NF-κB activation throughout the text. 
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Figure 2.4 Experimental data used for model fitting. 

ImageJ was used to estimate the intensities of the activation dynamics for each molecule 

in each condition relative to wildtype peak activation values. We obtained the temporal 

activation profiles of signaling molecules after TNF stimulation (10 ng/mL) in (A) 

wildtype and TRADD KO from Ermolaeva et al. (2008) (Fig. 1A, adapted) for p38 and 

IκBα, (B) wildtype and TRAF6 KO murine fibroblasts from Funakoshi-Tago et al. 

(2009) (Fig. 2B and 3B, adapted) for p38 and IκBα, (C) wildtype and RIP1 KO from 

Devin et al. (2000) (Fig. 1A, adapted) for IκBα, and (D) wildtype, TRAF2 KO, TRAF5 

KO and TRAF2/5 double KO from Tada et al. (2001) (Fig. 1A, adapted) for IκBα. 

Figures adapted from their respective publications. 

 



 34 

Table 2.2 Estimation of the relative intensities of IκBα and p38 activation 

dynamics 
IκBα Time 

(min) 
WT1 TRADD 

KO1 
TRAF6 

KO2 
TRAF2 

KO3 
TRAF5 

KO3 
TRAF2/5 

DKO3 
RIP1 
KO4 

0 0 0 0 0 0 0 0 
5 0.3 0 0.6    0.1 

10    0.9 1.05 0.15  
15 1 0 1.9    0.1 
30 0.45 0.1 0.75 0.4 0.5 0.22  

         
p38 Time 

(min) 
WT1 TRADD 

KO1 
TRAF6 

KO2 
    

0 0 0 0     
5 0.35 0 0.45     

15 1 0 1.15     
30 0.45 0 0.4     

 
ImageJ was used to estimate the intensities of the activation dynamics for each molecule 

in each KO condition relative to wildtype peak activation values. Data was obtained 

from (1) Ermolaeva et al. (2008), (2) Funakoshi-Tago et al. (2009), (3) Tada et al. 

(2001), (4) Devin et al. (2000). 
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The parameter values were selected by using Genetic Algorithm (Carroll 1996) module 

in COPASI software (Hoops et al. 2006) to fit the experimental profiles (Figure 2.3A, 

WT). Following, we performed sensitivity analysis (Materials and Methods) of the 

model parameters and found them to be robust to a small degree of uncertainty to their 

values (Table 2.3). As a further validity of the parameter values, we tested the wildtype 

model in other conditions, namely TRAF2 KO, TRAF5 KO, TRAF2/5 double KO, 

TRAF6 KO, RIP1 KO and TRADD KO (Figure 2.3B). (Note that in silico KOs were 

generated from the wildtype model by setting the activation parameter value of the KO 

molecule to null). 

Remarkably, we were able to obtain a single set of model parameters (Table 

2.4, reactions 1–29), which could be used to simulate the semi-quantitative profiles of 

IκBα phosphorylation and p38 kinase activation in multiple experimental conditions. In 

wildtype, TRAF2 KO, TRAF5 KO and TRAF6 KO, the IκBα phosphorylation and p38 

kinase activation reach peak values around 15 min and gradually decay at 30 min. 

Notably, TRAF6 KO shows enhanced IκBα phosphorylation and p38 kinase activation 

due to Signaling Flux Redistribution (Response Rule 5, Figure 2.2) (Selvarajoo et al. 

2008). In the remaining conditions, the activation levels of both molecules are very 

weak (RIP1 KO and TRAF2/5 DKO) or absent (TRADD KO). 

It is noteworthy that although there have been previous models on TNF 

signaling (Cho et al. 2003; Werner et al. 2005; Werner et al. 2008), to our knowledge, 
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this is the first time a single model of TNF signaling with fixed parameter values 

recapitulates the proinflammatory signaling dynamics in multiple experimental 

conditions. 

To compare our linear response model (TNFR1 model A) simulations with 

other models that contain more detailed descriptions of IKK (Cho et al. 2003) and 

MAPK (Kholodenko 2000) signaling, using higher order terms and Michaelis-Menten 

type kinetics, we developed an alternative TNFR1 model B incorporating the relevant 

reaction details (Table 2.5). Notably, the simulations of TNFR1 models A and B show 

very similar dynamics for a fixed amount of TNF perturbation (Figure 2.5). Thus, we 

concur that our linear response model can be appropriately used for further 

investigations. 
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Table 2.3 Sensitivity analysis 

 

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Increasing positive !
sensitivity (R > 1)!

Increasing negative!
sensitivity (R < –1)!

Scaled sensitivity!
coefficient!

– 1 ≤ R ≤ 1!
low sensitivivity!

k IκBα p38 GI GII GIII k IκBα p38 GI GII GIII
1 TNFR1 → TRADD 0.18 0.13 0.04 0.00 0.00 33 GI2pre5mRNA → GI2mRNA 0.00 0.00 0.00 0.00 0.00
2 TRADD → cIAP1/2 0.27 0.17 0.14 )0.01 0.01 34 GI2mRNA → GI2mRNA2decay 0.00 0.00 )0.78 0.00 0.00
3 cIAP1/2 → TRAF2 0.01 0.00 0.00 0.00 0.00 35 AP1 → GII2promoter 0.00 0.00 )0.09 0.51 )0.02
4 cIAP1/2 → TRAF5 0.01 0.00 0.00 0.00 0.00 36 NF5κBn → GII2promoter 0.00 0.00 0.00 0.43 )0.02
5 TRAF2 → RIP1 0.29 0.23 0.15 )0.01 0.01 37 GII2promoter → GII2pre5mRNA/1 0.00 0.00 0.00 0.00 0.00
6 TRAF5 → RIP1 0.23 0.19 0.12 )0.01 0.00 38 GII2pre5mRNA/1 → GII2pre5mRNA/2 0.00 0.00 0.00 0.00 0.00
7 TRADD → TRAF6 )0.26 )0.16 )0.14 0.01 )0.01 39 GII2pre5mRNA/2 → GII2mRNA 0.00 0.00 0.00 0.00 0.00
8 TRAF6 → RIP1 0.09 0.08 0.08 0.04 0.01 40 GII2mRNA → GII2mRNA2decay 0.00 0.00 0.00 )0.46 0.00
9 TRAF6 → TAK12complex 0.11 0.22 0.22 0.16 0.03 41 AP1 → GIII2promoter 0.00 0.00 )0.04 )0.02 0.16
10 RIP1 → LUBAC )0.02 0.38 0.32 0.15 0.02 42 NF5κBn → GIII2promoter 0.00 0.00 0.00 0.00 0.04
11 RIP1 → SHARPIN 0.05 )0.37 )0.33 )0.15 )0.02 43 GIII2promoter → GIII2pre5mRNA/1 0.00 0.00 0.00 0.00 0.00
12 LUBAC → TAK12complex 0.00 0.00 0.00 0.00 0.00 44 GIII2pre5mRNA/1 → GIII2pre5mRNA/2 0.00 0.00 0.00 0.00 0.05
13 SHARPIN → IKKγ 0.04 0.00 0.00 0.00 0.00 45 GIII2pre5mRNA/2 → GIII2pre5mRNA/3 0.00 0.00 0.00 0.00 0.02
14 TAK12complex → IKKγ 0.09 )0.82 )0.73 )0.41 )0.05 46 GIII2pre5mRNA/3 → GIII2mRNA 0.00 0.00 0.00 0.00 0.10
15 IKKγ → IκBα 0.06 0.00 0.00 0.00 0.00 47 GIII2mRNA → GIII2mRNA2decay 0.00 0.00 0.00 0.00 )0.32
16 IκBα → NF5κBc )0.90 0.00 0.00 0.01 0.01 48 GI2mRNA → X1 0.00 0.00 0.00 0.00 0.00
17 NF5κBc → NF5κBn 0.00 0.00 0.00 0.01 0.01 49 NF5κBn → X1 0.00 0.00 )0.09 )0.42 0.00
18 TAK12complex → MKK1/2 )0.01 )0.01 0.05 0.03 0.00 50 X1 → X2 0.00 0.00 0.00 0.02 0.06
19 TAK12complex → MKK3/6 )0.04 0.92 0.34 0.19 0.03 51 X2 → X3 0.00 0.00 0.00 0.02 0.06
20 TAK12complex → MKK4/7 )0.04 )0.08 0.34 0.19 0.03 52 X3 → X4 0.00 0.00 0.00 0.02 0.06
21 MKK1/2 → ERK 0.00 0.00 0.01 0.00 0.00 53 X4 → X5 0.00 0.00 0.00 0.02 0.06
22 MKK3/6 → p38 0.00 0.13 0.01 0.00 0.00 54 X5 → X6 0.00 0.00 0.00 0.02 0.06
24 MKK4/7 → JNK 0.00 0.00 0.01 0.00 0.00 55 X6 → X7 0.00 0.00 0.00 0.02 0.06
24 p38 → p38n 0.00 )0.99 0.00 0.00 0.00 56 X7 → X8 0.00 0.00 0.00 0.02 0.06
25 JNK → JNKn 0.00 0.00 0.00 0.00 0.00 57 X8 → X9 0.00 0.00 0.00 0.02 0.06
26 ERK → ERKn 0.00 0.00 0.01 0.00 0.00 58 X9 → X10 0.00 0.00 0.00 0.02 0.06
27 p38n → AP1 0.00 0.00 0.00 0.00 0.00 59 X10 → X11 0.00 0.00 0.00 0.02 0.06
28 ERKn → AP1 0.00 0.00 0.00 0.00 0.00 60 X11 → X12 0.00 0.00 0.00 0.02 0.06
29 JNKn → AP1 0.00 0.00 0.00 0.00 0.00 61 X12 → X13 0.00 0.00 0.00 0.02 0.06
30 AP1 → GI2promoter 0.00 0.00 0.12 )0.48 )0.15 62 X13 → X14 0.00 0.00 0.00 0.02 0.06
31 NF5κBn → GI2promoter 0.00 0.00 0.09 0.00 )0.02 63 X14 → IkBa 0.00 0.00 0.00 0.02 )0.71
32 G12promoter → GI2pre5mRNA 0.00 0.00 0.00 0.00 0.00 64 X14 → Y 0.00 0.00 0.00 0.00 0.78

65 Y → GIII2promoter 0.00 0.00 0.00 0.00 0.01

Reaction Reaction
RR

 
 

The scaled response sensitivity coefficients, R, of each molecule/gene response at peak 

activation time (p38: 15 min, IκBα: 15 min, Group I: 30 min, II: 2 h, and III: 12 h) 

indicate the relative changes in response when individual parameters (rows) are varied, 

such as a change of p% in the value of parameter k, results in a R⋅p% change in the 

value of the peak activation of each molecule of interest. Absolute values of R higher 

than 1 indicate increasingly sensitive parameters.  
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Table 2.4 TNFR1 model A 

 
 Reaction Formula and parameters (s-1) Remarks 

11 TNFR1 → TRADD k1 * TNFR1 k1 = 5e-3 Activation of TRADD by TNFR1 
22 TRADD → cIAP1/2 k2 * TRADD k2 = 2e-2 Formation of Complex 1 containing TRADD, 

cIAP1/2, TRAF2, TRAF5, RIP1 and the 
TAB/TAK complex 

33 cIAP1/2 → TRAF2 k3 * cIAP1/2 k3 = 1e-2 
44 cIAP1/2 → TRAF5 k4 * cIAP1/2 k4 = 8e-3 
55 TRAF2 → RIP1 k5 * TRAF2 k5 = 1e-3 
65 TRAF5 → RIP1 k6 * TRAF5 k6 = 1e-3 
76 TRADD → TRAF6 k7 * TRADD k7 = 2e-2 Activation of TRAF6 by TRADD 
85 TRAF6 → RIP1 k8 * TRAF6 k8 = 1e-4 Activation of RIP1 and TAK1 complex by 

TRAF6 97 TRAF6 → TAK1 
complex 

k9 * TRAF6 k9 = 1.3e-4 

108 RIP1 → LUBAC k10 * RIP1 k10 = 7e-3 Complex 1 ubiquitination by LUBAC and 
SHARPIN 119 RIP1 → SHARPIN k11 * RIP1 k11 = 7e-3 

127 LUBAC → TAK1 
complex 

k12 * LUBAC k12 = 1e-1 

13 SHARPIN → IKK complex k13 * SHARPIN k13 = 1e-2 Activation of IKK complex by Complex 1 
14 TAK1 

complex 
→ IKK complex k14 * TAK1 complex k14 = 1e-1 

1510 IKK 
complex 

→ IκBα k15 * IKK complex k15 = 1e-2 Phosphorylation of IκBα by IKK 

16 IκBα → NF-κBc k16 * IκBα k16 = 8e-3 Degradation of IκBα forms NF-κB 
17 NF-κBc → NF-κBn k17 * NF-κBc k17 = 1.7e-2 Translocation of NF-κB to nucleus 
18 TAK1 

complex 
→ MKK1/2 k18 * TAK1 complex k18 = 1.5e-3 Activation of MAP kinases kinases by TAK1 

complex 
1911 TAK1 

complex 
→ MKK3/6 k19 * TAK1 complex k19 = 1e-2 

20 TAK1 
complex 

→ MKK4/7 k20 * TAK1 complex k20 = 1e-2 

21 MKK1/2 → ERK k21 * MKK1/2 k21 = 5e-3 Activation of MAP kinases 
2212 MKK3/6 → p38 k22 * MKK3/6 k22 = 5e-3 
24 MKK4/7 → JNK k23 * MKK4/7 k23 = 5e-3 
24 p38 → p38n k24 * p38 k24 = 5e-2 Translocation of MAP kinases into nucleus 
25 JNK → JNKn k25 * JNK k25 = 5e-2 
26 ERK → ERKn k26 * ERK k26 = 5e-3 
27 p38n → AP1 k27 * p38n k27 = 1e-2 Activation of AP1 by MAP kinases 
28 ERKn → AP1 k28 * ERKn k28 = 1e-2 
29 JNKn → AP1 k29 * JNKn k29 = 1e-2 
30 AP1 → GI promoter k30 * AP1 k30 = 1e-1 Promoter binding of AP1 and NF-κB for group I 

genes 31 NF-κBn → GI promoter k31 * NF-κBn k31 = 5e-3 
32 G1 promoter → GI 

pre-mRNA 
k32 * GI promoter k32 = 1e-2 Group I genes transcription, splicing (1 step) and 

decay 
33 GI 

pre-mRNA 
→ GI mRNA k33 * GI pre-mRNA k33 = 5e-2 

34 GI mRNA → GI mRNA 
decay 

k34 * GI mRNA k34 = 2e-3 

3513 AP1 → GII promoter k35 * AP1 k35 = 1.1e-2 Promoter binding of AP1 and NF-κB for group II 
genes 36 NF-κBn → GII promoter k36 * NF-κBn k36 = 4e-3 

37 GII 
promoter 

→ GII 
pre-mRNA/1 

k37 * GII promoter k37 = 2e-3 Group II genes transcription, splicing (2 steps) 
and decay 

38 GII 
pre-mRNA/1 

→ GII 
pre-mRNA/2 

k38 * GII 
pre-mRNA/1 

k38 = 5e-2 

39 GII 
pre-mRNA/2 

→ GII mRNA k39 * GII 
pre-mRNA/2 

k39 = 5e-2 

4013 GII mRNA → GII mRNA 
decay 

k40 * GII mRNA k40 = 1.2e-4 
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Table 2.4 TNFR1 model A (continued) 

 
41 AP1 → GIII 

promoter 
k41 * AP1 k41 = 5e-3 Promoter binding of AP1 and NF-κB for group 

III genes 

42 NF-κBn → GIII 
promoter 

k42 * NF-κBn k42 = 1e-4 

43 GIII 
promoter 

→ GIII 
pre-mRNA/1 

k43 * GIII promoter k43 = 1e-1 Group III genes transcription, splicing (3 steps) 
and decay 

44 GIII 
pre-mRNA/1 

→ GIII 
pre-mRNA/2 

k44 * GIII 
pre-mRNA/1 

k44 = 4e-4 

45 GIII 
pre-mRNA/2 

→ GIII 
pre-mRNA/3 

k45 * GIII 
pre-mRNA/2 

k45 = 1e-3 

46 GIII 
pre-mRNA/3 

→ GIII mRNA k46 * GIII 
pre-mRNA/3 

k46 = 2e-4 

47 GIII mRNA → GIII mRNA 
decay 

k47 * GIII mRNA k47 = 2e-5 

48 GI mRNA → X1 k48 * GI mRNA k48 = 1e-5 Feedback processes via group I genes or NF-κB 
49 NF-κBn → X1 k49 * NF-κBn k49 = 5e-1 

Steps of the secondary feedback processes 
(cytosolic or autocrine signaling): 

50 X1 → X2 k50 * X1 k50 = 2e-3 
51 X2 → X3 k51 * X2 k51 = 2e-3 
52 X3 → X4 k52 * X3 k52 = 2e-3 
53 X4 → X5 k53 * X4 k53 = 2e-3 
54 X5 → X6 k54 * X5 k54 = 2e-3 
55 X6 → X7 k55 * X6 k55 = 2e-3 • expression (e.g. translation) 
56 X7 → X8 k56 * X7 k56 = 2e-3 • transport (e.g. secretion) 
57 X8 → X9 k57 * X8 k57 = 2e-3 • signaling (e.g. receptor binding, activation 

of transcription factors) 58 X9 → X10 k58 * X9 k58 = 2e-3 
59 X10 → X11 k59 * X10 k59 = 2e-3  
60 X11 → X12 k60 * X11 k60 = 2e-3 
61 X12 → X13 k61 * X12 k61 = 2e-3 
62 X13 → X14 k62 * X13 k62 = 2e-3 
63 X14 → IκBα k63 * X14 k63 = 2e-3 IκBα feedback activation 
64 X14 → Y k64 * X14 k64 = 1e-5 Group III feedback activation via transcription 

factor Y 65 Y → GIII 
promoter 

k65 * Y k65 = 2e-3 

 

Table 2.4 TNFR1 model A 
(1–12): in-silico knock-out conditions are performed by setting parameter values (ki) to 

0 for targeted reactions in TRADD KO (1), cIAP1/2 KO (2), TRAF2 KO (3), TRAF5 

KO (4) TRAF2/5 DKO (3,4), RIP KO (5), TRAF6 KO (6), TAK1 complex KO (7), 

LUBAC KO (8), SHARPIN KO (9), IκBα KO (10), MKK3/6 KO (11) and p38 KO (12). 

(13) Kinetics of Group II mRNA transcription and decay processes were refitted after 

adding feedback (without feedback: k35 = 7e-3, k40 = 1.2e-5). Bold italic fonts (reactions 

48–65) indicate additional feedback activation pathways required for group III 

continuous activation. * indicates the multiplication sign. 
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Table 2.5 TNFR1 model B 
 
 
  Reaction Formula and parameters  Remarks 
1 TNFR1 → TRADD k1 * TNFR1 k1 = 5e-3 Activation of TRADD by TNFR1 
2 TRADD → cIAP1/2 k2 * TRADD k2 = 2e-2 

Formation of Complex 1 containing 
TRADD, cIAP1/2, TRAF2, TRAF5, 
RIP1 and the TAB/TAK complex 

3 cIAP1/2 → TRAF2 k3 * cIAP1/2 k3 = 1e-2 
4 cIAP1/2 → TRAF5 k4 * cIAP1/2 k4 = 8e-3 
5 TRAF2 → RIP1 k5 * TRAF2 k5 = 1e-3 
6 TRAF5 → RIP1 k6 * TRAF5 k6 = 1e-3 
7 TRADD → TRAF6 k7 * TRADD k7 = 2e-2 Activation of TRAF6 by TRADD 
8 TRAF6 → RIP1 k8 * TRAF6 k8 = 1e-4 Activation of RIP1 and TAB/TAK by 

TRAF6 9 TRAF6 → TAK1 k9 * TRAF6 k9 = 1.3e-4 
10 RIP1 → LUBAC k10 * RIP1 k10 = 7e-3 Complex 1 ubiquitination by LUBAC 

and SHARPIN 11 RIP1 → SHARPIN k11 * RIP1 k11 = 7e-3 
12 LUBAC → TAK1 k12 * LUBAC k12 = 1e-1 
13 SHARPIN → IKKγ k13 * SHARPIN k13 = 1e-2 Activation of IKK complex by 

Complex 1  14 TAK1 → IKKγ k14 * TAK1 k14 = 1e-1 

15 
IKKγ + 

IκBα/NF-κB 
→ IκB complex k15 * IKKγ * IκBα/NF-κB k15 = 2.1e-3 

Formation of the IκB complex 
(IKKγ/IκBα/NF-κB) (and reverse step) 

16 IκB complex → 
IKKγ + 

IκBα/NF-κB 
k16 * IκB complex  k16 = 8.9e-7 

17 IκB complex → IKKγ + IκBα 
+ NF-κB k17 * IκB complex k17 = 2e0 Dissociation of the IκB complex into 

IKKγ, phosphorylated IκBα and NF-κB 

18 IκBα → IκBα 
degradation k18 * IκBα k18 = 1.7e-2 Degradation of IκBα 

19 IKKγ → IKKγ 
degradation k19 * IKKγ k19 = 4.6e-3 Degradation of IKKγ 

20 NF-κB → NF-κBn k20 * NF-κB k20 = 1.5e-2 Translocation of NF-κB to nucleus 
21 TAK1 + TAB → TAK1/TAB k21 * TAK1 * TAB k21 = 1e-2 Formation and degradation terms for 

the TAK1/TAB complex  22 TAK1/TAB → TAK1/TAB 
degradation k22 * TAK1/TAB k22 = 7.1e-2 

23 MKK → MKKp k23 * (MKK * TAK1/TAB) 
(K23 + MKK) 

k23 = 2.7e-2 

Activation (double phosphorylation) of 
MAP kinase kinases (MKKs, e.g. 
MKK3/6) by the TAK1/TAB complex 

K23 = 5.9e-2 

24 MKKp → MKK V24 * (MKKp) 
(K24 + MKKp) 

V24 = 5.7e-4 
K24 = 2.9e-2 

25 MKKp → MKKpp k25 * (MKKp * TAK1/TAB) 
(K25 + MKKp) 

k25 = 2.6e-2 
K25 = 1.9e-7 

26 MKKpp → MKKp V26 * (MKKpp) 
(K26 + MKKpp) 

V26 = 3.8e-4 
K26 = 9e-2 

27 MAPK → MAPKp k27 * (MAPK * MKKpp) 
(K27 + MAPK) 

k27 = 6.1e-2 

Activation (double phosphorylation) of 
MAP kinases (MAPKs, e.g. p38) by 
MKKs 

K27 = 3.9e-1 

28 MAPKp → MAPK V28 * (MAPKp) 
(K28 + MAPKp) 

V28 = 9.7e-5 
K28 = 5.2e-4 

29 MAPKp → MAPKpp k29 * (MAPKp * MKKpp) 
(K29 + MAPKp) 

k29 = 2.5e-1 
K29 = 9.9e-7 

30 MAPKpp → MAPKp V30 * (MAPKp 
(K30 + MAPKp) 

V30 = 2.6e-6 
K30 = 4.4e-1 

31 MAPKpp → MAPKn k31 * MAPKpp k31 = 8.2e-2 Translocation of MAPKs into nucleus 
32 MAPKn → AP1 k32 * MAPKn k32 = 1e-2 Activation of AP1 by MAPKs 
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Table 2.5 TNFR1 model B (continued) 

Initial concentrations (nmol.mL-1): [TNFR1]t=0 = 1, [TAB]t=0 = 1, [MAPK]t=0 = 46, 

[MKK]t=0 = 52, [IκB/NF-κB]t=0 = 5. Units: Ki in nmol.mL-1, Vi in nmol.mL-1.s-1, ki in s-1 

except k15 and k21 in mL.nmol-1.s-1 Colored rows indicate IKK (orange) and MAPK (light 

purple) modules adapted from Cho et al. (2003) and Kholodenko (2000) respectively. 

Parameters and initial concentrations were determined through automated fitting of 

wildtype model using Genetic Algorithm optimization module in COPASI software. 
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Figure 2.5 Experimental vs. simulated profiles of IκBα and p38 activations in 

wildtype and mutant conditions using model B. (A) Experimental profiles and (B) 

simulated profiles of TNFR1 model B (see Table 2.5) for IκBα (top panels) and p38 

(bottom panels) activations. 
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2.3.3 Simulating distinct TNF-induced gene expression patterns 

Next, we extended the TNFR1 model (we will now simply call TNFR1 model A as 

TNFR1 model) to simulate downstream proinflammatory gene expression dynamics. 

Recently, time-series high throughput microarray and quantitative real time PCR 

experiments on TNF simulated mouse 3T3 fibroblasts cells have revealed 3 distinct 

groups of upregulated gene expression patterns, with possibly corresponding distinct 

biological roles (Hao et al. 2009; Hao et al. 2013). The groups were labeled into “early 

I”, “intermediate or middle II” and “late III” response, according to their time to reach 

peak expressions between 0.5-1, 2-3, and 6-12 h, respectively, after TNF stimulation 

(Figure 2.6A) (Hao et al. 2009; Hao et al. 2013; Tian et al. 2005). Here, we extended 

the TNFR1 model to simulate the temporal profiles of the 3 groups of gene expressions. 
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Figure 2.6 Three distinct groups of TNF-activated genes. (A) Average expression 

profiles of genes in groups I (red), II (green) and III (blue) in 3T3 fibroblasts stimulated 

for 0.5, 2 or 12 h with recombinant mouse TNF. Figure was reproduced from Hao et al. 

(2009). (B) Simulation profiles of the 3 groups of genes using TNFR1 model. (C) 

Simulation of the modified TNFR1 model with transcriptional delay and novel feedback 

mechanisms (solid lines) or with transcriptional delay and without feedback 

mechanisms (dotted lines) or with transcriptional delay and novel feedback mechanisms 

(solid lines). (D, E) Proposed novel feedback pathway to provide additional signaling 

flux through translation of group I genes into proteins for autocrine signaling (red lines; 

D) or cytosolic positive feedback (blue lines; E). Red and blue dotted lines indicate 

several intermediary molecular reactions (refer to Table 2.4). X1 to X14 refer to the 

novel intermediates included in the updated TNFR1 model (refer to Table 2.4, reactions 

48–65), and Y refers to a novel transcription factor. 
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According to our modeling approach, the time to peak activation can be 

controlled by reaction parameter values and/or the number of signaling intermediates 

(Helmy et al. 2009; Piras et al. 2011; Selvarajoo 2006; Selvarajoo et al. 2008; 

Selvarajoo et al. 2009). Briefly, decreasing (increasing) the activation or transcription 

parameter value will show lower (sharper) gradients of formation part of the expression 

profiles. Alternatively, decreasing (increasing) the deactivation or decay parameter 

value will show lower (sharper) gradients of depletion part of expression profiles 

(Response Rule 1, Figure 2.2). In addition, inserting intermediary reactions between 

transcription process and gene induction will increase delay for gene expression 

dynamics (Response rule 2, Figure 2.2). The intermediates can represent the 

complexities of transcription process involving the pre-initiation, initiation, promoter 

clearance, elongation and termination (Solomon et al. 2011), or post-transcriptional 

processes such as messenger RNA editing and splicing. Using this approach, the 

TNFR1 model was extended to simulate the temporal dynamics of group I, II and III 

genes. Note that the response rules (Figure 2.2) are used to modify an initial signaling 

topology only after all parameter space has been exhaustively searched, and a 

reasonable model fit is unable to be achieved (Piras et al. 2011).  

Previous investigations on the 3 groups of genes have indicated distinct 

mechanisms for the differential dynamical response (Hao et al. 2009; Hao et al. 2013). 

Hao and Baltimore have found lesser presence of AU Rich Element (ARE) region on 
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the 3’UTR of group III genes, targeted by microRNAs and ARE-binding proteins (such 

as tristetraprolin) that enhance RNA decay processes. Hence, it was postulated as one 

possible reason for the lower decay response of group III genes compared with genes 

from groups I and II (Hao et al. 2009). More recently, by studying the kinetics of 

pre-mRNA and mRNA, Hao and Baltimore observed delays in splicing of groups II and 

III genes compared to group I genes. The differential delays were suggested as another 

biological mechanism for the distinct gene profiles (Hao et al. 2013). 

In our extended model, we, therefore, considered both mechanisms to 

reproduce the temporal profiles of the 3 groups of genes. Notably, our simulations of 

pre-mRNA and mRNA for all groups of genes matched the data of Hao and Baltimore 

for the first 60 min (Figure 2.7). However, subsequently for 12 h, although the 

simulations of group I and II genes were recapitulated, group III simulation was poor 

(Figure 2.6B, blue line). Specifically, reducing the parameter value for the decay term 

representing lower miRNA and ARE-binding proteins regulating decay processes 

(Response rule 1, Figure 2.2), and adding intermediates (Response rule 2, Figure 2.2) to 

provide delays in RNA splicing in our model were not sufficient to produce the 

continuous activation of group III genes (Figure 2.6C, cyan dotted line). 

To overcome the shortfall in the model simulations, we hypothesized that 

novel activation or transcription term(s) (positive feedback) may be present to provide 

additional flux for the continuous increase in group III expressions (Response rule 4, 
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Figure 2.2). This could result from secondary post-transcriptional/translational 

mechanisms through i) autocrine signaling such as IL-1 (Chaudhry et al. 2013), IL-6 

(Grivennikov et al. 2008) or TGF-β (Ihn 2008) signaling (Figure 2.6D), or ii) cytosolic 

feedback mechanisms specifically for group III genes (Hoffmann et al. 2002) (Figure 

2.6E). Thus, a novel feedback mechanism predominantly affecting the transcription of 

group III genes was added to the TNFR1 model (Table 2.4, equations 30–65). 

The modified TNFR1 model with feedback mechanisms to group III genes 

produced simulations that matched all 3 groups of gene expression profiles (Figure 

2.6A and 2.6C, solid lines). To scrutinize the feedback mechanism, we re-monitored the 

simulation profile of NF-κB for 10 hours (Figure 2.8). The resultant profile mimics the 

damped oscillatory dynamics of NF-κB previously observed in murine fibroblasts 

(Hoffmann et al. 2002). Overall, these data suggest that low miRNA regulation and 

additional delay in RNA splicing are not sufficient to produce the continuous activation 

of group III genes, and that a novel transcription process, possibly through secondary 

post-transcriptional/translational autocrine signaling, such as IL-1 signaling or other 

novel feedback mechanisms that activate NF-κB, and not MAPK (Figure 2.8), are 

required. 
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Figure 2.7 Simulation of pre-mRNA and mRNA expression profiles of the 3 groups 

of genes. Upper panels: experimental pre-mRNA (red lines) and mRNA (blue lines) 

expression profiles in 3T3 cells of 3 representative genes from groups I, II and III, 

respectively, up to 60 minutes after TNF stimulation (10 ng/mL). Lower panels: 

simulations of pre-mRNA (red lines) and mRNA (blue lines) expressions using updated 

TNFR1 model. Upper panels are obtained from Hao & Baltimore (2013). 
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Figure 2.8 Simulation of NF-κB activation profiles with and without feedback 

mechanisms. (A) Simulations of nuclear NF-κB activation profiles up to 6 hours after 

TNF stimulation in wildtype condition without (dotted blue lines) feedback mechanisms 

and with feedback mechanism branched to IκBα (solid blue lines) or MAP kinases 

pathway (dotted orange lines) activation, are compared with experimental profiles 

obtained in TNF stimulated (10 ng/mL) 3T3 cells (red dots). (B) ImageJ was used to 

estimate the intensities of the activation dynamics relative to peak activation values 

from the data presented in Hoffmann et al. (2002) (Fig. 2E, adapted). 
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2.3.4 Predicting key target for regulating proinflammatory response 

Now that the TNFR1 model is able to successfully simulate the three groups of 

upregulated genes in wildtype, we investigated the significance and effect of removing 

or suppressing key intracellular signaling molecules for controlling proinflammatory 

response, in silico. 

It is well known that TNFR1 signaling is enhanced in proinflammatory 

diseases and cancer (Balkwill 2009; Bradley 2008; Locksley et al. 2001; O’Malley et al. 

1962). To investigate which known molecules would be potential target to regulate the 

cell survival or proinflammatory activity, we performed in silico KOs of all possible 

signaling molecules within the TNFR1 model. In total, we simulated groups I, II and III 

dynamic gene expressions in 12 (TRADD, cIAP1/2, TRAF2, TRAF5, TRAF6, RIP1, 

SHARPIN, LUBAC, TAK1 complex (TAK1/TAB1/2), IκBα, MKK3/6 and p38) KO 

conditions and compared with wildtype profiles (Figure 2.9). 

Among the candidates, the removal of TAK1 complex or RIP1 produced the 

most noticeable downregulation of all 3 gene groups, which chiefly consist of 

well-known proinflammatory mediators (Figure 2.10). However, in TAK1 complex KO, 

our simulations show almost no induction for group 1 genes. The substantial 

impairment in gene expressions (> 90%) is usually detrimental to the general 

survivability of living cells, and this has been particularly demonstrated in 
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TAK1-deficient mice (Lamothe et al. 2013; Tang et al. 2008). RIP1, on the other hand, 

showed about 50-70% impairment compared to wildtype peak expressions. Our 

simulations, therefore, suggest that RIP1 is possibly a crucial single molecule target for 

controlling enhanced proinflammatory response due to TNFR1 signaling in 

proinflammatory disease conditions, such as in rheumatoid arthritis, without 

compromising the normal functioning of other cellular activities. 
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Figure 2.9 The effects of in silico KOs on the expression profiles of the 3 groups of 

genes. Simulated expression profiles of groups I (A), II (B), and III (C) genes in 

wildtype and 12 in silico KOs conditions for 12 hours using the modified TNFR1 model 

A (with feedback). 
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Figure 2.10 The effects of in silico KOs on the expression profiles of the 3 groups of 

genes (best candidates). Simulated expression profiles of group I (A), group II (B), and 

group III (C) genes in 4 experimental conditions: wildtype (WT), IκBα KO, RIP1 KO 

and TAK1 complex KO for 12 hours using the modified TNFR1 model (with feedback). 

Predictions of RIP1 KO (orange curves) indicate suppression, but not abolishment, of 

all groups of gene expressions compared to wildtype (black curve). 
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2.3.5 Experimental inhibition of RIP1 downregulates proinflammatory 

genes in TNF stimulation 

To verify the predictions of TNFR1 model simulations, we prepared corresponding 

MEF and BALB/3T3 cells treated with TNF in wildtype and in RIP1 suppression. 

Necrostatin-1 (Nec-1) was originally identified as a potent small molecule inhibitor of 

necroptosis or non-apoptotic cell death (Degterev et al. 2005). Further interests in Nec-1 

led to its specificity towards the inhibition of RIP1 (Degterev et al. 2008). Although 

Nec-1 has recently been extensively studied, its effect on the expressions of groups I, II 

and III genes in TNF stimulation remains largely unknown. Therefore, here, we used 

Nec-1 to suppress RIP1 in vivo. 

To check the effect of cell death by Nec-1, we compared MEF and 

BALB/3T3 cells treated with different doses of Nec-1 in the presence or absence of 

TNF (Figure 2.11). The data revealed that Nec-1 has no substantial effect on cell death 

after 24 h incubation, and hence, could be tested for its efficacy on the 3 groups of 

genes. We next performed quantitative RT-PCR for a total of 10 genes: Il6, Tnfaip3, 

Jun, Nfkbia (group I), Ccl7, Vcam1, Cxcl10 (group II), and Mmp3, Mmp13, Enpp2 

(group III). We intentionally included key proinflammatory mediators, genes of matrix 

metalloproteinase (Mmp3, Mmp13), which are known to degrade collagen in cartilage 

and thereby enhance rheumatoid arthritis and osteoarthritis progression (Liacini et al. 

2002; Liacini et al. 2003; Roman-Blas et al. 2006; Sellam et al. 2010). 
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A previous study has shown that 30 µM of Nec-1 effectively inhibited RIP1 

kinase activity (Liacini et al. 2002). Therefore, we investigated gene expressions for 

cells stimulated with 10 ng/mL TNF, in the presence or absence of 30 µM Nec-1 for a 

period of 10 hours with measurements made at least every hour (Figure 2.12). 

Remarkably, as predicted by the TNFR1 model, RIP1 inhibition by Nec-1 resulted in 

the suppression of all 3 groups of genes. The effect of suppressing RIP1 is significant 

for groups I and II genes in both MEF and BALB/3T3 cells, especially during the first 

2–3 hours after stimulation. For group III genes, Nec-1 had more pronounced effect in 

MEF compared with BALB/3T3 cells. Overall, these results are consistent with the 

TNFR1 model predictions that suppressing RIP1 in TNF stimulation significantly 

impairs the activation of all 3 groups of genes. 
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Figure 2.11 Cell viability using Nec-1. Cell sensitivity (MTT) assay for (A) 3T3 and 

(B) MEF cells treated in absence (light blue bars) or presence (brown bars) of 10 ng/mL 

of TNF, with indicated doses (0, 1, 5, 10, 15, 30 mM) of Nec-1 for 24 h. Average cell 

viability percentage for n = 3 independent experiments is shown. Error bars indicate 

mean values ± SD. 
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Figure 2.12 Experimental verification of RIP1 inhibition through Nec-1. Temporal 

gene expressions of groups I (Tnfai3p, Il6, Jun, Nfkbia) (A), II (Ccl7, Vcam1, Cxcl10) 

(B), and III (Mmp3, Mmp13, Enpp2) (C) genes in 10 ng/mL of TNF-stimulated 

BALB/3T3 (top panels) and MEF (bottom) cells, treated without (blue curves) and with 

(red curves) Nec-1. Nec-1 treatment was applied for 30 min before TNF stimulation. 

Curves indicate average profiles relative to GAPDH gene expression for n = 3 

independent experiments, and error bars show mean values ± SD.
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2.4 Discussion 

TNF is a crucial cytokine that regulates myriad vital cellular processes. However, its 

levels are enhanced in major proinflammatory diseases. Here, to understand the 

TNF-induced proinflammatory signaling process, and to carefully regulate its dynamic 

response, a systems biology approach was adopted. We first developed a dynamic 

computational model using well-established publicly available experimental data of 

NF-κB, MAP kinase p38, and the average profiles of 3 groups of 180 upregulated genes 

in mouse fibroblast cells. 

Despite the simplicity of using first-order response equations to simulate the 

profiles of the intracellular molecules, the computational model of TNFR1 recapitulated 

the experimental response in wildtype and several mutant conditions for NF-κB and p38 

activations. This result is surprising, as we know that the innate immune response of 

TNF is highly complex. It is important to note here that there have been previous other 

computational efforts on NF-κB and MAPK signaling that had utilized detailed 

biochemical reactions modeling, to elucidate local properties of signal transduction, 

such as the ability of common molecules to produce distinct feedback mechanisms to 

different stimuli (Bruggeman et al. 2002; Santos et al. 2007; Werner et al. 2005). In our 

work, however, we have shown that even a simpler representation of the signal 

transduction pathways, through first order response equations and the law of mass 
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conservation can reproduce experimental dynamics. This strongly indicates the presence 

of simple organizing rules governing the deterministic population average signaling 

response (Selvarajoo 2011; Selvarajoo 2012; Selvarajoo 2013a; Selvarajoo 2013b; 

Selvarajoo et al. 2012; Selvarajoo et al. 2013). 

Next, through the analyses of downstream temporal gene expression profiles, 

the model suggests the presence of additional novel post-transcriptional/translational 

processes that is required for the continuous activation of group III genes. This result is 

additional to previous postulations, which had indicated that the continuous activation is 

due to lesser ARE region for group III genes leading to a very low decay process (Hao 

et al. 2009), and due to the presence of differential delays in the RNA splicing process 

(Hao et al. 2013). Our model suggests that, on top of these effects, a novel time-delayed 

secondary transcriptional mechanism is required. 

Literature survey indicates that the novel positive feedback processes could be 

a result of autocrine signaling, example through IL-1 or IL-6, or derive from a still 

unknown intracellular feedback mechanisms regulating mainly the promoter regions of 

group III genes. For example, the role of interferon regulatory transcription factor (IRF) 

family in inducing Ccl5 or RANTES expression, which belongs to one of the group III 

genes, is reported in a previous study (Yarilina et al. 2008), however, was not 

considered in the initial TNFR1 model. It is, therefore, necessary to perform further 
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experimental work to confirm and elucidate the exact mechanisms for the continuous 

activations of group III genes. 

On the other hand, for down-regulating TNF signaling, which is enhanced in 

several proinflammatory diseases and cancer, we performed the simulations for 12 in 

silico KOs of signaling molecules. The resultant simulations indicated that RIP1 is a 

major regulator of the 3 groups of upregulated gene expressions. To verify the result, 

we performed experiments on MEF and BALB/3T3 cells using Nec-1 as an inhibitor of 

RIP1. The measurement of 10 genes belonging to groups I (Il6, Tnfaip3, Jun, Nfkbia), II 

(Ccl7, Vcam1, Cxcl10) and III (Mmp3, Mmp13, Enpp2) all showed significant 

impairment with Nec-1 compared to wildtype. 

Most importantly, the expressions of key proinflammatory genes such as Il6, 

Vcam1, Ccl7, Mmp3, Mmp13, enhanced in rheumatoid arthritis and osteoarthritis 

(Liacini et al. 2002; Roman-Blas et al. 2006), were reduced. In particular are the levels 

of matrix metalloproteinase genes Mmp3, Mmp13, which are known to directly affect 

type II collagen in bone cartilages and degrade the extracellular matrix. Although recent 

therapeutics have been focusing on the specific regulations of MMPs (Kaneva et al. 

2012; Liacini et al. 2003; Roman-Blas et al. 2006; Sellam et al. 2010), it remains to be 

seen what effect such treatments will have on other proinflammatory or vital genes. 

In summary, our approach provides a systemic analysis of TNFR1 signaling, 

and suggests Nec-1 is potentially an important therapeutic target for effectively 
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regulating major proinflammatory mediators in chronic diseases where TNF is 

overexpressed. 
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Chapter 3 
 

Systems biology strategy reveals PKCδ is key 

for sensitizing TRAIL-resistant human 

fibrosarcoma 
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3.1 Introduction 

Numerous recent studies have revealed the close link between inflammation and cancer. 

Firstly, various types of immune cells, which support tumor growth progression, are 

found within the tumor microenvironment (Grivennikov et al. 2010; Swann et al. 2008). 

Secondly, the vicinity of cancer cells displays increased proinflammatory activity, 

through the detection of elevated levels of major cytokines such as the tumor necrosis 

factor (TNF) (Balkwill 2006; Mantovani et al. 2002). One notable cytokine found 

within the tumor microenvironment is the TNF related apoptosis-inducing ligand or 

TRAIL, which has been shown to induce apoptosis in certain types of malignant cancers 

with no significant effect on normal cells (Pitti et al. 1996; Wiley et al. 1995). The 

findings have led to a major stride in the ongoing research aimed at optimizing 

TRAIL-induced cancer therapy (Jo et al. 2000; Zhang et al. 2000;). Despite some 

success, TRAIL-based therapies still show dismal results for several types of cancers 

such as the breast cancer, neuroblastoma, adenocarcinoma, glioma, etc. (Eggert et al. 

2001; Hao et al. 2001; Keane et al. 1999; Trauzold et al. 2006). 

Computational modeling approaches are becoming increasing useful for 

interpreting complex dynamical cellular responses (Birtwistle et al. 2007; Hoffmann et 

al. 2002; Piras et al. 2014; Selvarajoo 2012; Selvarajoo et al. 2013; Selvarajoo et al. 

2014; Vance et al. 2002; Yeo et al. 2007). Previously, to understand the mechanism for 
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TRAIL-resistance in cancer, we developed a dynamic computational model of TRAIL 

signaling, from extracellular receptor activation to downstream intracellular activation 

of cell survival (MAP kinases and IκB) and apoptosis (caspases -8 and -3) pathways 

(Piras et al. 2011, appendix A). Our model was based on perturbation-response 

approach utilizing first-order response equations (Hayashi et al. 2013; Helmy et al. 

2009; Piras et al. 2011; Selvarajoo 2006; Selvarajoo 2011; Selvarajoo et al. 2008; 

Selvarajoo et al. 2009; Selvarajoo et al. 2007; Tan et al. 2003), that was shown to 

successfully simulate the temporal experimental profiles IκB, JNK, p38, caspase-8 and 

-3 in wildtype and four (FADD, RIP1, TRAF2 and caspase-8) knock-down conditions 

for human fibrosarcoma (Varfolomeev et al. 2005). We, subsequently, predicted 

targeting a novel molecule interacting with p62 in the model would significantly 

increase caspase-3 activation and enhance cancer apoptosis to TRAIL stimulation. 

Further protein-protein interaction (PPI) database analysis suggested that the novel 

molecule is most probably a protein kinase C (PKC) family member. 

Here, we tested the model prediction by experimentally verifying whether 

targeting PKC will enhance apoptosis in TRAIL-resistant cancer cell lines. Experiments 

were performed on TRAIL-induced human fibrosarcoma (HT1080) and human colon 

adenocarcinoma (HT29) cells, and the cell viability was compared with control normal 

fibroblasts (TIG-1 and MRC-5). Moreover, to investigate the intracellular mechanisms 

for resultant cell viability, we measured time-course activation levels of caspase-3, 
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PARP, p38 and JNK. Subsequently, we analyzed the expressions of each PKC isoform 

member in HT1080 cells. To identify a crucial target member for enhanced cancer 

apoptosis, we prepared relevant siRNA knock-down experiments. In summary, our 

study investigates i) whether the model prediction of PKC suppression will enhance 

cancer cell death is true, and ii) whether computational modeling using 

perturbation-response approach are valuable for biological research focusing on cancer 

treatment.  

3.2 Materials and methods 

3.2.1 Reagents and cell culture 

Recombinant human TRAIL was purchased from Peprotech. Bisindolylmaleimide I 

(BIM-I) was purchased from Merck Millipore. Human fibrosarcoma cell lines 

(HT1080), human embryo fibroblasts (TIG-1), human colorectal adenocarcinoma cells 

(HT29) were obtained from Japanese Collection of Research Bioresources (JCRB) cell 

bank. Human fetal lung fibroblasts (MRC-5) were obtained from American Type 

Culture Collection (ATCC). HT1080, TIG-1, HT29 and MRC-5 were grown in DMEM 

(Nissui Seiyaku Co.) containing 10% calf serum, 100 U/mL of penicillin at 37°C in a 

5% CO2 humidified atmosphere.  
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3.2.2 Cell viability assay 

The cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) assay and trypan blue exclusion. MTT assay: Cells (10×104) were 

inoculated in each well and incubated for 24 h. Thereafter, 50 µL of MTT (2 mg/mL in 

PBS) was added to each well and the plates were incubated for a further 2 h. The 

resultant formazan was dissolved with 100 µL of dimethyl sulfoxide (DMSO) after 

aspiration of culture medium. Plates were placed on a plate shaker for 1 min and then 

read immediately at 570 nm using TECAN microplate reader with Magellan software 

(Männedorf, Switzerland). Trypan blue exclusion: Cells were detached with 1 mL of 

trypsin and suspended in DMEM. After staining with trypan blue, viable cells were 

counted using a microscopy (n = 3). The percentage of trypan blue exclusive viable 

cells was determined as a percentage of the total number of cells. 

 

3.2.3 Western blot analysis 

Anti-PARP, anti-phospho-p38 and anti-β-actin antibody were purchased from Cell 

Signaling Technology. Proteins were extracted from the cell lines using 

radioimmunoprecipitation assay (RIPA) buffer according to the manufacturer's 

instructions. Next, their concentrations were measured by Bradford protein assay. Equal 

amounts of protein were loaded in each well and separated by 10% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was subsequently 
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transferred onto a polyvinylidene difluoride (PVDF) membrane. The membrane was 

blocked for 1 h with 5% BSA in TBST on the shaker at room temperature. The 

membrane was placed on PARP and p-p38 antibody diluted at a 1:1000 proportion in 

diluent buffer (5% (w/v) BSA and 0.1% Tween 20 in TBS) and incubated overnight at 

4°C on the shaker. The membrane was washed three times in TBS as above and 

incubated with secondary antibody diluted at a 1:10000 proportion for 1 h on the shaker 

at room temperature. The membrane was again washed three times for 5 min each time 

as above and finally the results were generated by using an enhanced 

chemiluminescence (ECL) Western blotting kit. 

 

3.2.4 Enzyme linked immunosorbent assays (ELISA) of cleaved 

caspase-3 and phosphorylated JNK  

Cleaved caspase-3 and phosphorylated JNK concentrations were measured by ELISA 

Duo Sets IC Kit (R&D Systems) following the instructions of the manufacturer.  

 

3.2.5 Transfection 

siRNA duplexes were purchased from Sigma. The transfection of classic PKCs (PKCα, 

PKCβ, PKCγ), the novel PKCs (PKCδ, PKCε, PKCη, PKCµ, PKCθ) and the atypical 

PKCs (PKC ζ, PKCι) and scrambled siRNA were carried out using Lipofectamine 2000 

according to the manufacturer’s instructions (Invitrogen). 
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3.2.6 Quantitative real-time PCR analysis 

Total cellular RNA was extracted from cells using the TRIzol reagent according to the 

manufacturer's instructions (Invitrogen). One microgram of RNA was 

reverse-transcribed using a first-strand cDNA synthesis kit (ReverTra Aceα; Toyobo). 

Quantitative real-time PCR (qRT-PCR) was performed using SYBR premix Ex Taq 

(Takara) on the Applied Biosystems StepOnePlusTM according to the technical brochure 

of the company. qRT-PCR primers in this study are listed in Table 3.1. Quantitative 

measurements were determined using the ΔΔCt method and expressions of GAPDH 

gene for pkc and RPL27 gene for rela, mtor, bcl2, bax, cytoc and jun were used as the 

internal control. Melt curve analyses of all qRT-PCR products were performed and 

shown to produce the sole DNA duplex. 

3.3 Results 

3.3.1 Effect of PKC inhibitor in TRAIL-resistant HT1080 cells 

Based on our previous computational TRAIL model, the removal of PKC family 

members would enhance HT1080 cell death by 95% (Piras et al. 2011). Here we 

investigated the actual experimental effect of PKC inhibition to HT1080 cells in TRAIL 

stimulation. HT1080 cells were stimulated with 1000 ng/mL of TRAIL in the presence 

or absence of 10 µM of PKC inhibitor (Davis et al. 1989; Toullec et al. 1991; 

Wilkinson et al. 1993), BIM-I, pre-treatment and compared with unstimulated control 
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with and without BIM-I pre-treatment (Figure 3.1). We observed, phenotypically, that 

HT1080 cell death was significantly increased in combinatorial treatment of TRAIL and 

BIM-I (Figure 3.1A, forth column), while control pre-treated with BIM-I did not induce 

any noticeable cell death (Figure 3.1A, second column). 

Next, we investigated cell survival ratio using MTT assays for HT1080 cells 

pre-treated with BIM-I with increasing dosage (0, 3, 10 µM) for 30 min prior to 

increasing TRAIL stimulation (0, 100, 200, 400 and 1000 ng/mL) for 24 h (Figure 

3.1B). Notably, from these experiments, it is clear that HT1080 cell death is almost 

unaffected with any dosage of BIM-I without TRAIL stimulation. However, when 

BIM-I was treated in the presence of TRAIL, the effect synergistically produced 

significant cell death, compared with TRAIL alone (Figure 3.1B). Remarkably, as 

predicted by our previous computational TRAIL model (Piras et al. 2011), the 

inhibition of PKC (with 10 µM of BIM-I) resulted in about 99% cell death for TRAIL 

stimulation (with 100 ng/mL or more) in HT1080 cells. We further investigated the cell 

viability of HT1080 with respect to stimulation time, and noticed that significant cell 

death occurs at 3 hours and onwards (Figure 3.1C). 

Next, in addition to HT1080, we also investigated another TRAIL-resistant 

cancer cell type (HT29) and compared with normal fibroblasts (TIG-1 and MRC-5). 

Experiment-matched MTT assays revealed that both HT1080 and HT29 cell cultures 

treated with BIM-I were sensitized to TRAIL-induced cell death (approximately 99% 
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and 95% cell death, respectively), while normal TIG-1 and MRC-5 largely survived 

(Figure 3.1D and E). These results indicate that PKC inhibitor, BIM-I, has specific 

ability to enhance cell death in TRAIL-resistant cancer cells while having little effect on 

normal cells. 
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Figure 3.1 The effect of TRAIL and PKC inhibitor (BIM-I) on cancer (HT1080 

and HT29) and normal (TIG-1 and MRC-5) cells. 
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Figure 3.1 The effect of TRAIL and PKC inhibitor (BIM-I) on cancer (HT1080 

and HT29) and normal (TIG-1 and MRC-5) cells (continued) (A) Phase contrast 

microscopic images of HT1080 cells in the presence or absence of TRAIL (1000 

ng/mL) and/or BIM (10 µM). Living cells appear as adherent cells, while dead cells 

float in the dish and are highlighted in white. (B) TRAIL and BIM-I dosage-dependent 

cell survival (MTT assay) rate of HT1080 cells (1 x 105), 24 h after treatment (TRAIL: 

0, 100, 200, 400, 1000 ng/mL, BIM-I: 0, 3, 10 µM). (C) Cell viability (trypan blue 

assay) of HT1080 over time cells (3 x 105) at 1, 3, 12, 24 h after treatment (TRAIL: 200 

ng/mL, BIM-I: 10 µM). (D) Cell survival (MTT assay) rate of HT1080 (1 x 105), HT29 

(1.5 x 105) cancer cells and TIG-1 (2 x 105) normal cells was observed 24 h after 

treatment in presence of TRAIL (200 ng/mL) or BIM-I (10 µM), or both, compared to 

unstimulated cells (control). (E) BIM-I dosage-dependent (0, 1.25, 2.5, 5, 10, 20 µM) 

cell survival rate of MRC-5 (0.5 x 105) normal cells after TRAIL stimulation (200 

ng/mL) obtained through MTT assay after 24 h. Average cell viability is shown in 

percentage for n=3 independent experiments. Error bars indicate mean values±SD. 
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3.3.2 Treatment of PKC inhibitor with TRAIL enhances cell death 

through apoptosis 

The experimental results, so far, are consistent with our previous model simulations. To 

further scrutinize the result, that is, to explore the origins of cell death, we performed 

analysis to observe intracellular markers prior to cell death. According to our model, 

PKC inhibition causes enhancement of apoptotic pathways through signaling flux 

redistribution (SFR) (Piras et al. 2011; Selvarajoo et al. 2008). To check whether 

apoptosis is increased in TRAIL stimulated and BIM-I treated HT1080 cells, we 

measured PARP cleavage and p38 phosphorylation using western blotting assays and, 

caspase-3 activation and JNK phosphorylation using ELISAs (Figure 3.2).  

Consistent with the prediction of computational model, we observed 

substantial induction of PARP and caspase-3 cleavage, indicating increased apoptosis in 

HT1080 cells treated with BIM-I when compared with untreated cells in TRAIL 

stimulation (Figure 3.2A, top panel and 3.2B, right panel). We further noticed enhanced 

p38 activations and low activity of JNK in TRAIL-stimulated cells treated with BIM-I 

(Figure 3.2A, middle panel and 3.2B, left panel), in agreement with our model 

predictions for SFR at p62 pathway junction (Piras et al. 2011) (Figure 3.2C). Note that 

the housekeeping protein β-actin remained almost unaffected in the western blots. These 

results clearly demonstrate that BIM-I is a potential therapeutic target for HT1080 

treatment.  
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Figure 3.2 Enhancement of apoptotic signaling molecules in the presence of BIM-I 

in TRAIL-stimulated HT1080 cells. 
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Figure 3.2 Enhancement of apoptotic signaling molecules in the presence of BIM-I 

in TRAIL-stimulated HT1080 cells (continued) (A) Cleavage of PARP, 

phosphorylation of p38 and concentration β-actin were determined by western blotting 

at 0, 30, 60, 120 and 180 min after TRAIL stimulation (200 ng/mL) of HT1080 cells in 

absence or presence of BIM-I (10 µM). Right panels represent the quantification of 

fraction of cleaved PARP (top, cleaved PARP/total PARP for each time point) and p38 

activation (bottom, relative to maximum value of TRAIL stimulation without BIM-I) 

using ImageJ (http://imagej.net). (B) Phosphorylation of JNK and levels of cleaved 

caspase-3 protein were measured by ELISA at 0, 10, 30, 60, 120 and 180 min after 

TRAIL stimulation (200 ng/mL) of HT1080 cells in absence or presence of BIM-I (10 

µM). Error bars indicate mean values±SD for n = 3 independent experiments. (C) 

Schematic representing the mechanism of signaling flux redistribution at p62 pathway 

junction towards p38 and caspase-3 signaling branches when PKC is inhibited. 
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To examine the expression levels of appropriate genes in TRAIL stimulated 

HT1080, with and without BIM-I, we performed qRT-PCR experiments for several 

survival and apoptotic genes (rela, mtor, bcl2, bax, cytoc and jun) at 0, 20, 40, 60, 120 

and 180 min (Figure 3.3). Except for jun, the levels of genes were stable for up to 60 

min, after which their expressions were significantly reduced, especially for BIM-I 

treated HT1080 cells, in correlation with the cell death dynamics (Figure 3.1C). This 

data indicates that, except for jun, transcription of the genes does not occur, perhaps due 

to the increased signaling flux through the apoptosis process depriving transcriptional 

signaling and, or due to the repression of pre- and post-transcriptional mechanisms 

found during apoptosis (Bushell et al. 2006; Bushell et al. 2004; Del Prete et al. 2002; 

Elmore et al. 2008; Tomas et al. 2013). Our observations are also consistent with other 

TRAIL-induced apoptosis studies investigating gene expressions in HeLa (Bushell et al. 

2004) and MCF7 (Bushell et al. 2006) cells.  

Interestingly, jun levels showed an initial decrease during the first 20 min and 

then increased and stabilized after 120 min. This pattern indicates jun may evade the 

global transcriptional repression and play a role during apoptosis. Such behavior has 

been previously observed for other genes, in particular, genes translated through 

Internal Ribosome Entry Site (IRES)-mediated translation, which is known to occur 

during apoptosis after TRAIL stimulation of MCF7 cells (Bushell et al. 2006; Spriggs et 

al. 2005). Notably, the presence of IRESs in jun transcriptional machinery has also been 
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previously shown (Blau et al. 2012). Nevertheless, further investigation is required to 

define the exact role of jun during TRAIL and BIM-I mediated apoptosis.  

Overall, the experiments demonstrate that the enhancement of cell death of 

BIM-I pre-treated TRAIL-stimulated cancer occurs through apoptosis. 
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Figure 3.3 Temporal relative mRNA expression in TRAIL and BIM-I treated 

HT1080 cells. Temporal expression profiles of anti-apoptotic (rela, mtor, bcl2 and jun) 

and pro-apoptotic (bax and cytoc) genes in HT1080 cells at 0, 20, 40, 60, 120, and 180 

min after TRAIL stimulation (200 ng/mL) without (red line) or with (blue line) 

pre-treatment of BIM-I (10 µM) 30 min prior to TRAIL stimulation. Note that jun can 

also be considered as a pro-apoptotic gene (Blau et al. 2012). Reported values are the 

mean expression values (n = 3 independent experiments) relative to time 0 of each 

condition. Error bars indicate mean values±SD. 
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3.3.3 Identification of specific PKC isoform target for enhanced cell 

death 

Although we have demonstrated that PKC is a key target to enhance apoptosis in 

TRAIL-resistant cancer cells, it is unknown which PKC family isoform, among the 10 

major members (α, β, γ, δ, ε, ι, θ, η, ζ, µ), is a crucial single target. To investigate this, 

we first measured the mRNA expressions of all 10 isoforms (the sequence of primers 

are available in Table 3.1) in unstimulated HT1080 cells using qRT-PCR.  

We observed the gene expressions of four PKC isoforms (α, δ, ε and ι) were 

noticeably elevated, indicating that these isoforms may be crucial targets (Figure 3.4A). 

To investigate the effect of suppressing each of the four isoforms in TRAIL-stimulated 

HT1080 cells, we next performed siRNA-mediated PKC (α, δ, ε and ι) knockdowns. 

The effect of each PKC knockdown was first confirmed after 24h (Figure 3.4B). 

Consequently, we investigated cell viability by trypan blue for each of the 4 PKC 

knockdown conditions with and without TRAIL stimulation (200 ng/mL). Notably, 

PKCδ knockdown produced the most significant cell death of approximately 83% after 

3 h (Figure 3.4C). Note that this result is almost identical to TRAIL-stimulated HT1080 

pretreated with BIM-I at 3 h (Figure 3.1C). Thus, our experiments reveal that PKCδ is 

the optimal single target for enhancing cancer apoptosis in TRAIL-based therapy. 



 80 

 
Figure 3.4 Identification of specific PKC isoform target to enhance apoptosis in 

HT1080 cells. (A) Relative mRNA expressions of 10 PKC isoform in HT1080 

unstimulated cells. (B) Effect of siRNA knock-down (KD) for PKCα, PKCι, PKCε, and 

PKCδ . HT1080 cells were incubated in the presence of each isoform of PKC siRNA 

(50 µM) for 24 h. Relative mRNA expressions of 4 PKC isoforms are measured by 

qPCR. (C) Cell viability assay (trypan blue) of HT1080 cells incubated in the presence 

of PKC isoforms siRNA (50 µM) for 3 h. *** indicate p < 0.05 in student t-test. Error 

bars indicate mean values±SD for n = 3 independent experiments. 
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Table 3.1 List of primer sequences for RT-PCR (2) 
 

Name Species Primer name Sequence(5’-3') 

PKCα human PKCα_F CCACACTAAATCCGCAGTGG 
human PKCα_R CAGCTCCGAAACTCCAAAGGA 

PKCβ human PKCβ_F TTGTGGACCTGAAGGCGAAC 
human PKCβ_R CGGGTGAAAAATCGGTCGAAG 

PKCγ human PKCγ_F GCTTGTAACTACCCCCTGGAAT 
human PKCγ_R GAAGCTGAAGTCGGAGATGTG 

PKCδ human PKCδ_F TGGTGGTTGGTGCGTTGTAG 
human PKCδ_R ATAGGAGTTGAAGGCGATGCG 

PKCε human PKCε_F CAAGCCACCCTTCAAACCAC 
human PKCε_R CGTCCACAAGGGTGAGTACC 

PKCη human PKCη_F GTGTCGTCCATAAACGCTGC 
human PKCη_R ATCCCGAACCTCTGTTCTGC 

PKCµ human PKCµ_F GAGGACGCCAACAGAACCAT 
human PKCµ_R CCTTGCTGGTGTAGTGGACC 

PKCθ human PKCθ_F GCTGATTGGTCAGTCGCCTT 
human PKCθ_R TCTTCTCAGGTTCTCGCACG 

PKCζ human PKCζ_F CACATGCAGAGGCAGAGGAA 
human PKCζ_R GAGGACGTTGTCCAGCTTCA 

PKCι human PKCι_F GCCATCTGCACAGACCGAAT 
human PKCι_R TCCATGGGCATCACTGGTTC 

rela human RelA_F GTGGGGACTACGACCTGAATG 
human RelA_R AGATCTTGAGCTCGGCAGTG 

mtor human mTOR_F TCGCTGAAGTCACACAGACC 
human mTOR_R CTTTGGCATATGCTCGGCAC 

bcl2 human BCL2_F AACATCGCCCTGTGGATGAC 
human BCL2_R TTCACTTGTGGCCCAGATAGG 

bax human BAX_F ACAGGGGCCCTTTTGCTTC 
human BAX_R CTTGGTGGACGCATCCTGAG 

cytoc human Cytochorome c_F AGCGGGAGTGTTCGTTGTG 
human Cytochorome c_R CCTCCCTTTTCAACGGTGTG 

jun human Jun_F ACGGCGGTAAAGACCAGAAG 
human Jun_R CCAAGTTCAACAACCGGTGC 

GAPDH human GAPDH_F GTCAACGGATTTGGTCGTAT 
human GAPDH_R TGGTGATGGGATTTCCATTG 

RPL27 human RPL27_F CTGTCGTCAATAAGGATGTCT 
human RPL27_R CTTGTTCTTGCCTGTCTTGT 
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3.4 Discussion 

TRAIL, a proinflammatory cytokine produced by the mammalian immune system, is 

known to induce apoptosis in cancer cells while leaving non-diseased cells largely 

unharmed (Johnstone et al. 2008; Kim et al. 2000). Hence, there has been intense 

interest in using TRAIL has a therapeutic target to treat cancers (Smyth et al. 2003; 

Wang et al. 2003). However, not all cancers respond to TRAIL (Ehrhardt et al. 2003; 

Khanbolooki et al. 2006). 

Previously, we investigated the TRAIL resistant mechanism in HT1080 cells 

using a computational model (Piras et al. 2011). We predicted that the suppression of a 

novel pro-survival molecule would result in significant enhancement of apoptosis 

through signaling flux redistribution (Selvarajoo et al. 2008). PPI Database search 

indicated that the pro-survival molecule is a member of PKC. To experimentally 

validate this result, in this paper, we investigated the effects of two TRAIL-resistant 

cancer cells to PKC inhibition. 

Firstly, using different doses of PKC inhibitor BIM-I together with various 

levels of TRAIL stimulation, we observed approximately 99% and 95% cell death 

occurred for HT1080 and HT29 cells, respectively (Figure 3.1). Notably, the effect on 

control TIG-1 and MRC-5 cells were less significant, at approximately 40% and 20% 

cell death, respectively. 
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Secondly, to confirm the mechanism for cell death is through apoptosis, we 

measured the activations of PARP and caspase-3 over 3 h in TRAIL-stimulated HT1080 

cells untreated and treated with BIM-I, and compared with activations of p38 and JNK. 

We found that PARP, caspase-3 cleavages and p38 phosphorylation were significantly 

enhanced in BIM-I treated cells (Figure 3.2), while JNK activity was very low. These 

results are in consistency with the previous prediction of our computational model 

(Piras et al. 2011). We also investigated the expressions of major pro- and 

anti-apoptotic genes, and found them to be mostly repressed at their transcription levels, 

especially after 1 h for BIM-I treated cells (Figure 3.3). 

Thirdly, to identify the crucial PKC family member for single specific target, 

we investigated the mRNA expressions of all 10 major isoforms in HT1080 cells. We 

selected the top 4 significantly expressed isoforms for developing siRNA KDs, and 

subsequent experiments demonstrated that PKCδ is a key target for enhancing cell death 

in TRAIL-resistant HT1080 cells (Figure 3.4).  

It is worthy to mention other previous works that have studied PKC in 

different cancer types (Gatsinzi et al. 2012; Harper et al. 2003; Okhrimenko et al. 

2005a; Okhrimenko et al. 2005b; Shankar et al. 2008). Although these works have 

demonstrated the importance of PKC, the investigations were performed in different 

cell lines or stimulations. In this work, however, we focused mainly on HT1080 and 

limitedly on HT29 cells. In addition, we bring to the attention the power of using 
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multidisciplinary research to systemically identify a key target that can be 

experimentally tested. Therefore, to our knowledge, this is the first time the usefulness 

of a computational model is shown to identify a consistent and key target for regulating 

TRAIL-resistance. In summary, our work provides further evidence for the utility of 

systemic approaches in providing effective treatment strategies to tackle complex 

diseases. 
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4.1 Main findings 
This thesis describes the understanding of the proinflammatory response in TNF 

signaling pathway and the TRAIL resistant mechanisms in cancer cells using a 

dynamical computational model based on the well-established perturbation response 

approach. Using computational models in TNF and TRAIL signaling pathway, we 

found key molecules to control the proinflammatory response and to enhance the cancer 

cell death. Following the model predictions, experiments were also conducted to verify 

the model prediction.  

In chapter 2, to identify the key target to suppress the expression of the 

proinflammaory genes, such as Il-6, ccl-7, mmp-3, mmp-13, we developed a 

computational model. Among the candidate molecules, we found that in silico RIP1 KO 

highly regulates the expression of proinflammatory genes. To validate these results, we 

experimentally tested our predictions and finally, using RIP1 inhibitor Necrostatin-1, 

we verified all measured genes were significantly impaired.   

In chapter 3, to identify the most effective target to enhance the cell death in 

TRAIL-resistant human fibrosarcoma (HT1080) cells, we also developed a 

computational model for TRAIL signaling pathway. Using this model, we simulated 

cell survival and apoptotic molecule activations, such as MAP kinase, NF-κB and 

caspase-3. Next, we performed several in silico KO and found that protein kinase C 

(PKC) is the crucial target. To validate our prediction, we performed experiments using 
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PKC inhibitor, Bisindlymaleimide I (BIM-I) on HT1080 and human colon 

adenocarcinoma (HT29) cells. As a result, we verified that the inclusion of BIM-I 

showed significant enhancement of apoptosis through the suppression of PKC family 

members with corresponding impairment of cancer cell viability (over 95% cell death 

for HT1080 and HT29.) On the other hand, the control unstimulated cancer and normal 

cells (TIG1 and MRC5) with BIM-I did not show any adverse results.  

 

4.2 Future directions 
Further analysis is required to understand the heterogeneous response in TRAIL 

signaling. In chapter 3, we showed that TRAIL (200ng/ml) and PKC inhibitor BIM-I 

(10µM) co-stimulation lead 99% cell death in TRAIL resistant HT1080 cells. This 

shows that, although the populations of the cancer cells are highly variable and 

heterogeneous (40% cell death in wildtype), TRAIL and BIM-I co-stimulation showed a 

highly deterministic response of cancer cells towards cell death. This raises a novel 

question about the cause of heterogeneous response in cancer cells. To reveal this issue, 

it is required to understand the biological noise that occurs at single cells level (Eldar et 

al. 2010, Losick et al. 2008, Raj et al. 2010).         

The computational model for TRAIL signaling pathway is originally 

developed using the first order linear response approach to understand the response of 

each signaling molecule at population level (Piras et al. 2011). For further understating 
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of the single cell response, we have extended our original TRAIL signaling model using 

Gellespie algorithm, where each reaction is turned 'on' or 'off' randomly or 

stochastically in time, according to the absolute values of their average reaction rates 

(Gillespie 2007; Piras et al. 2012). We observed stochastic behavior of each molecule 

(IκB, JNK, p38 and canspase-8) in each of the 1000 cells under four conditions 

(wildtype, FADD KD, RIP KD, TRAF2 KD) with low, medium and high number of 

activated TRAIL receptors. The lower number of receptors showed noisier response and 

higher number showed the temporal profiles that converged towards the deterministic 

population response (Figure 4.1). Therefore single cell analysis can support the 

understanding of the heterogeneous response of cancer cells.  

Nevertheless, although cancer cells behavior is heterogeneous, targeting PKC 

leads to 99% of the cell death in HT1080 cells. Therefore PKC can be a “noise 

generator” in cancer cells. Hence by hitting PKC, the biological noise is eliminated and 

the response of cancer cells could switch from heterogeneous state to deterministic state. 

However this is still a hypothesis, and to prove this, more theoretical study and 

experiments are required.  

Although the issue of heterogeneous response is still remaining, we plan to 

investigate the other TRAIL resistant cancer cells, such as pancreatic cancer, melanoma, 

and neuroblastoma (Eggert et al. 2001; Fulda et al. 2001; Hinz et al. 2000) using our 

average perturbation response approach and the experimental verification. Doing so, we 
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hope to identify other candidates to enhance the cell death in resistance cell types. Cell 

type differences in signaling networks may also be revealed through this approach.  

Throughout this thesis, understanding the intracellular system was shown to 

be essential to discover the target molecules to kill the cancerous cells or suppress the 

proinflammatory responses. Using the original top-down approach, we predicted the 

potential intracellular targets from the computational models and verified them 

experimentally. This work shows systems biology strategies pave the way for the drug 

development to regulate the immune-mediated diseases and contributes the 

advancement of systems immunology.  
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Figure 4.1 Stochastic simulation profiles of TRAIL signaling molecules. Stochastic 

response simulation profiles of p38, JNK, IκB, caspase-8 and -3 in wildtype (blue), 

FADD KD (brown), RIP KD (purple) and TRAF2 KD (green) for 1000 cells with (A) 

low, (B) medium and (C) high number of activated TRAIL receptors (adapted from 

Piras et al. 2012).  
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Appendix A 
Description of the computational model in TRAIL signaling pathway 

In chapter 3, the experiments are conducted based on our original TRAIL computational 

model published in 2011 (Piras et al. 2011). Here, the details about TRAIL 

computational model are shown below. In this computational model, we utilized the 

perturbation response approach using the law of conservation (see Materials and 

methods in chapter 2).   

A.1   TRAIL signaling pathway and experimental activation profiles of 

signaling molecules 

 

(A) Schematic topology of TRAIL signaling pathway. 
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(B) Experimental activation profiles of p38, IκB, JNK, caspase-8 and -3 in wildtype, 
RIP1 KD*, FADD KD*, caspase-8 KD*, and TRAF2 KD in arbitrary units (a.u.) at t = 
0, 10, 30, 60** and 120 min after TRAIL stimulation of HT1080 cells. The original 
source was obtained from Varfolomeev et al. (2005) and was processed through imageJ. 
*data is unavailable for caspase-8 and -3, ** available only for caspase-8 and -3. Note: 
interpolated dotted lines between experimental data points are inserted as a guide, they 
might not represent the actual temporal dynamics. 
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A.2   Simulation of initial TRAIL signaling model 
 

 
 
 
(A) Static topology of the TRAIL signaling pathway used in developing our 
computational model. Note that we lump the similar effects of DR4/5 as TRAILR1/2, 
and ignore the response of DcR1/R2/OPG. Also, note that we include molecular 
conditions such as receptor clustering as additional first-order terms. (B) Comparison of 
simulations (solid lines) with experimental data (dotted lines) in wildtype, RIP1 KD, 
FADD KD, caspase-8 KD* and TRAF2 KD in arbitrary units (a.u.). *caspase-8 KD 
also refers to pro-caspase-8 KD. 
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A.3   Revealing novel features of TRAIL signaling using modeling 
strategy and response rules 
 
 

 
 
 
Model simulations compared with experiments. For p38, (A) M0, the initial model, (B) 
M1 with the addition of a rapid bypass, and (C) M2 with the addition of a missing link 
between RIP1 and p38 pathway. For JNK (D) M2, (E) M3 with intermediates to 
introduce delay in activation, (F) M4 with a missing link for the activation of JNK in 
FADD and caspase-8 KDs, and (G) M5 a missing link between p62 and JNK pathway 
to show enhancement through SFR in TRAF2 KD. 
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A.4   Simulations of the proposed TRAIL signaling topology 

 

 

 
 
(A) Comparison of M5 simulations (solid lines) with experimental data (black points) in 
wildtype, RIP1 KD, FADD KD, caspase-8 KD and TRAF2 KD. (B) Static topology of 
the proposed model for TRAIL signaling pathway. Modifications are indicated by blue 
arrows. Here, Z indicates PKC. 
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A.5   The finalized TRAIL model reactions and parameters 
 

Reaction/process k (1/s) Remarks 
1 Apo2/TRAIL è TRAIL receptor 8.13E-3 Binding of TRAIL ligand to receptor 
2 TRAIL receptor è Receptor process 1 8.17E-3 O-glycosylation, internalization of receptors, 

formation of lipid rafts, etc. 3 Receptor process 1 è Receptor process 2 7.89E-3 
4 Receptor process 2 è Y 1.04E-3 Activation of novel molecule Y 
5 Y è MKK3/6 4.31E-1 Rapid activation of MKK3/6 via Y 
6 Receptor process 2 è FADD 1.08E-3 FADD binds to TRAIL receptors 
7 FADD è pro-caspase-8 1.06E-3 pro-caspase-8 binds to FADD  
8 pro-caspase-8 è CUL3 1,99E-3 Activation of CUL3 
9 pro-caspase-8 è c-FLIP 1.00E-3* Activation of cFLIP (*arbitrary value)  
10 CUL3 è Ubiquitination of caspase-8 1.00E-2 Ubiquitination of caspase-8 
11 Ubiquitination of caspase-8 è p62 9.92E-1 Activation of p62/sequestosome 
12 Ubiquitination of caspase-8 è TRAF2 8.67E-2 Activation of TRAF2 by pro-caspase-8 
13 p62 è Z 3.09E-1 Activation of novel molecule Z by p62 
14 p62 è RIP1 6.77E-2 Activation of RIP1 by p62 
15 p62 è caspase-8 (active form) 2.72E-2 Activation of caspase-8 (cleaved) 
16 caspase-8 (active form) è tBid 1.13E-5 Activation of tBid by caspase-8 
17 caspase-8 (active form) è caspase-3 1.48E-6 Activation of caspase-3 (extrinsic pathway) 
18 tBid è mitochondria 5.09E-2 Apoptotic intrinsic pathway via tBid 
19 mitochondria è Cytochrome C 2.64E-1 Activation of Cytochrome C 
20 mitochondria è Smac 2.79E-1 Activation of Smac 
21 Cytochrome C è caspase-3 2.81E-1 Activation of caspase-3 via apoptosome 
22 Smac è caspase-3 1.68E-1 Smac-dependent activation of caspase-3 
23 caspase-3 è Apoptosis process 8.85E-3 caspase-3 depletion term 
24 RIP1 è IKK 4.00E-4 Activation of IKK by RIP1 
25 RIP1 è MKK3/6 5.04E-1 Activation of MKK3/6 by RIP1 (novel) 
26 IKK è IκB 3.45E-1 Activation of IκB by IKK 
27 IκB è NF-κB 8.99E-4 Activation of NF-κB by IκB 
28 NF-κB è Survival process 1.00E-1* NF-κB depletion term (*arbitrary value) 
29 TRAF2 è MKK3/6 7.24E-5 Activation of MKK3/6 by TRAF2 
30 TRAF2 è MKK4/7 2.63E-6 Activation of JNK pathway by TRAF2 
31 MKK3/6 è p38 2.37E-4 Activation of p38 by MKK3/6 
32 p38 è Survival process 1.31E-5 p38 depletion term 
33 Y è Z 3.07E-1 

Intermediates for delayed JNK activation  34 Z è X1 8.76E-4 
35 X1 è X2 3.18E-3 
36 X2 è X3 7.48E-3 
37 X3 è MKK4/7 2.21E-3 Activation of JNK through bypass 
38 MKK4/7 è JNK 1.81E-4 Activation of JNK by MKK4/7 
39 JNK è Survival process 2.36E-4 JNK depletion term 

 
 
Note that to simulate each KD condition, we imposed null parameter value(s) for all 
reaction(s) involving the KD molecule.  
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A.6   Identifying key target for sensitizing TRAIL resistance 
 

 
 
(A) Simulation profiles of p38, JNK, IκB, caspase-8 and -3 in Y and Z (=PKC) KDs. 
(B) Cell survival metric (CSM) for all KDs. (C) Survival ratio, SR, (experimental versus 
evaluated, from t = 0 to 120 min) in all conditions. Evaluated data is obtained using 
experimental data of RIP1 and FADD KDs. (D) Wildtype HT1080 and HT29 (control) 
cells shows 60% and 95% survival, respectively, for 1000 ng/mL of TRAIL stimulation. 
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Appendix B 

List of Abbreviations 

AP     activating protein 

ARE    AU rich element; miRNA, micro RNA 

BIM-I    bisindolylmaleimide I  

BSA     bovine serum albumin 

cIAP    cellular inhibitor of apoptosis proteins 

DD     death domain  

DKO    double knock out  

DMSO    dimethyl sulfoxide 

ECL     enhanced chemiluminescence 

ELISA    enzyme linked immunosorbent assays 

ERK    extracellular signal-regulated kinase 

FADD    fas-associated death domain protein 

HOIL-1   heme-oxidized iron regulatory protein 2 ubiquitin ligase-1 

HOIP    HOIL-1-interacting protein;  

IL      interleukin 

IRES     internal ribosome entry site 

IRF     interferon regulatory factor 

IκB     inhibitors of NF-κB 

JNK     c-Jun N-terminal kinases 

KO     knock out  

LUBAC   linear ubiquitin chain assembly complex 

MAP    mitogen-activated protein 
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mRNA    messenger RNA 

MEF    murine embryonic fibroblast  

MMP    matrix metalloproteinase 

MTT    methyl thiazolyl tetrazorium 

NF-κB    nuclear factor-κB 

Nec-1    necrostatin-1  

PKC     protein kinase C 

PVDF    polyvinylidene difluoride  

RIP1    receptor-interacting protein 1 

SDS-PAGE  sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SFR     signaling flux redistribution 

SHARPIN SH3 and multiple ankyrin repeat domains protein-associated RH domain 

interacting protein  

TAK1    transforming growth factor β (TGFβ)-activated kinase 1  

TBST    tris-buffered saline with tween 20 

TNF    tumor necrosis factor 

TNFR    TNF receptor 

TNFRSF   TNFR superfamily 

TRADD   tumor necrosis factor receptor 1 associated death domain protein  

TRAIL    TNF-related apoptosis-inducing ligand 

qRT-PCR  quantitative real-time polymerase chain reactions 

 

 


