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Abstract

This dissertation proposes a scriptable packet processing architecture, "EtherPIPE",
which is capable of precise timing controlled packet injection and precise timestamp-
ing.

With the diversification and performance of Internet services, the backbone of the
Internet is growing steadily. Intelligent Network Interface Cards (NICs) of 10 Gbps
bandwidth became a commodity and are widely deployed as server-to-server inter-
connections. Thus, packet processing controlled by software provides programming
flexibility with high throughput, applicable for network troubleshooting, benchmark-
ing, packet forwarding and Internet measurement.

Unfortunately, software packet processing cannot achieve precise timing control.
Existing software processing is limited by the timer accuracy of the OS scheduler, and
transmit and receive timing of packets are controlled at microsecond accuracy. Hard-
ware packet processing can manage the timing to nanosecond accuracy. But network
hardware devices are not programmable and supporting complex packet processing
using them is difficult. Also, in a high-throughput network with more than 10 Gbps
bandwidth, time resolution greatly affects the performance. Thus, timing-sensitive
packet processing requires specialized hardware such as FPGA or ASIC.

EtherPIPE is a new architecture for a software packet processing designed for
timing-sensitive network applications, which make use of the NIC hardware functions,
its device driver and a programmable scripting framework. The EtherPIPE NIC con-
sists of two functions to control packet receiving and transmission timing. The NIC
receives a packet with a timestamp of PHY-clock accuracy and schedules the time of
packet transmission as designated by scripts. The EtherPIPE packet I/O is abstracted
as a character device and each packet data can be translated from a binary stream into
an ASCII character string. By using this convention, we can program in the UNIX shell
programming manner via character devices that can be connected by Stdin and Stdout.
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As a result, the EtherPIPE architecture provides a flexible packet processing frame-
work for applications that need a precise packet timing with the same precision as
network special hardwares. To validate the effectiveness of our approach, we have de-
veloped a packet generator and a middlebox for latency emulation, and demonstrate
that their timing is 100 times more accurate than software packet processing. Both ap-
plications required only a small number of lines of code. This architecture contributes
the rapid and low-cost development of high-precision network features for network
device prototyping and troubleshooting.
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要旨

本論文では，NICにパケット送受信の時刻管理を持たせることにより，高精度かつ
操作が柔軟なパケット処理が可能になる EtherPIPEアーキテクチャを提案する．
現在，インターネットサービスの高品質化と多様化に従って，バックボーンネッ

トワークの広帯域化が進んでいる．サーバ間接続には，10Gbpsを超えるネットワー
クインタフェースカード (NIC)が広く利用されるようになった．それにより，ソフ
トウェアによるパケット処理を用いることで，柔軟性と高スループットを両立し

たネットワークのベンチマークやトラブルシュート，パケット転送，ネットワーク

計測を可能になった．

しかし，ソフトウェアによるパケット処理では，専用ハードウェアのような精

密なパケット処理が難しいために，未だ専用のネットワークハードウェアが多く

利用されている．既存のソフトウェア処理は，OSスケジューラのタイマー精度の
限界によって，パケットの送受信タイミングはマイクロ秒精度で制御されている．

ハードウェアでは，ナノ秒精度でパケットの送受信タイミングが管理できるため，

ソフトウェアに比べて精密なネットワーク機器検証が可能である．一方で，ネット

ワークハードウェアでは，ソフトウェアのような柔軟なパケット処理内容の変更

が難しく，特に，現在ソフトウェアでの開発が主流であるインターネット計測のよ

うな複雑な計測シナリオの実施が難しい．現在のソフトウェアパケット処理によ

るタイミング精度では，今後の広帯域化進むアプリケーションの性能を制限して

しまう可能性がある．

EtherPIPEは，NICハードウェアによるパケット送受信時刻管理機能，デバイ
スドライバ，そして，パケット処理プログラミングフレームワークで構成される．

EtherPIPE NICは，ソフトウェアから制御可能な送信パケットの時刻管理機能と受
信パケットのタイムスタンプ機能を，Ethernet PHYチップと同等の時間分解能で
提供する．また，EtherPIPEデバイスドライバは，シリアルデバイスのようにシン
プルにパケットデータを読み書きするために，汎用的なデバイスであるキャラク

タデバイスとしてネットワーク I/Oを抽象化する．それにより，Shell Script環境上
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で，既存のテキスト処理関数やOSコマンドを組み合わせることでパケット処理が
可能になる．

本アーキテクチャを用いることで，専用ハードウェアと同等のナノ秒精度での

パケット処理アプリケーションを，ソフトウェアで開発可能になる．評価では，既

存のソフトウェアに比べて，ネットワークテスタやミドルボックス機能を 100倍以
上の精度かつ，数行のネットワークスクリプティングで構築可能なことを示した．

本アーキテクチャは，ソフトウェアのみの変更で高精度なネットワーク機能開発

を可能にし，迅速かつ低コストでネットワーク機器評価やトラブルシューティン

グを行える新しいネットワーク計測基盤を提供することに貢献した．

キーワード: Software-Defined Network, NIC hardware, Network I/O, Shell script-
ing,インターネット計測.
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Chapter 1

Introduction

Depending on diversification and quality of the Internet services, Internet backbone
bandwidth is growing steadily. Network Interface Controller (NIC) throughput is
growing over 10 Gbps and it widely used on the server-to-server interconnections.
Current Operating System (OS) support multiple core packet processing, modern PC
bus and memories and many offloading functions on intelligence NIC. Then, current
software can run with the wide bandwidth packets with commodity PC. Software
packet processing is utilized a lot of packet processing application with high through-
put such as network troubleshooting, benchmarks, packet forwarding and Internet
measurement.

Software packet processing is difficult to manage packet timing with high preci-
sion such as network hardwares. The precision of timing-sensitive applications is lim-
ited on software such as delay emulation, traffic shaping and latency measurement.
The software is possible to control a complex packet process but the timing of packet
processing is dependent on the OS timer interrupt. Usually, a OS timer resolution is
set to 1 to 10 milliseconds, but, a hardware packet processing is controlled every few
nanoseconds. The gap of software and hardware timer resolution significantly affects
the performance of packet processing. It is important for the precise timing control as
well as high throughput on the future software packet processing.

The packet processing required more precise timing developed with FPGA or ASIC
based hardware. These purposefully designed hardware has a transmission buffer in
order to control the accurate packet transmission time. So the network tester sends

1



Chapter 1. INTRODUCTION 2

the packets to a different API from the generic NIC, and it isn’t available for general
packet processing. Moreover, special network hardware is difficult to update the test
scenarios and components. Current OS network stack has a lot of network functions
and support protocols, but only hardware is difficult support various protocols.

EtherPIPE resolves the timing gap of the current software processing and special
network hardware. All of packets generated by the software can be managed to send
and receive time in EtherPIPE NIC hardware. Therefore, EtherPIPE is available on
commodity server environment, and all traffic processed in software with flexible pro-
gramming. Existing OS architecture cannot manage the only packet timing control of
the microsecond-level. EtherPIPE enables control packet timing with the nanosecond-
level. EtherPIPE enables both hardware precise timing control with software pro-
grammability.

The dissertation details NIC hardware design, device driver abstraction, software
API and programming model on EtherPIPE architecture. On the implementation,
EtherPIPE is developed on commercial 1G Ethernet FPGA NIC and its Linux device
driver. In the result, we developed the nanosecond ping tool, delay emulation mid-
dlebox and other benchmark tools on chapter 6, and we confirmed that many timing-
sensitive applications can be developed by EthPIPE framework with a small number of
lines. The performance of device driver architecture supports 12.6 Mpps packet pro-
cessing.

By the proposed architecture, many packet processing applications which need a
precise packet timing such as benchmark equipments and middlebox can become to
develop by software. In the future, we’ll extend the EthPIPE architecture not only the
packet processing applications but Also general purpose network applications such as
transport protocol.

1.1 Contributions

The contributions of this dissertation are as follows:

Hardware-assisted Packet-Timing Control

Hardware-assisted Timing-Control architecture is a function of NIC hardware
and it controls transmission timing of every packet data and managed a trans-



Chapter 1. INTRODUCTION 3

mission and receive timestamp for software packet processing. From the soft-
ware side, all packets have EthPIPE header, and userspace applications rewrite
the timestamp field data on EthPIPE header. The transmission function of NIC
hardware watches the timestamp field of every packet and sends a packet at
schedule time of transmission. The schedule time can be managed in parts per
8 nanosecond. Due to software applications assign the transmission timing, it’s
possible to program any timing-sensitive applications.

Ethernet Character Device

Ethernet Character Device is a network device for packet processing that can
handle the high throughput and flexibility. Many network devices have been
implemented as a special device to be accessed using the BSD Socket API. The
BSD socket provides an interface to control packets with flexibility and good
performance, however, we have to obey the programming paradigm of the BSD
socket that forces us to write a long passage of the code for accessing raw pack-
ets. Ethernet Character Device abstract a network I/O of common character de-
vice. So applications access packet data only using read(2) / write(2) system calls
on Ethernet Character Device API. And each packet data convert ASCII format,
thus, to handle packets in the UNIX shell programming manner, input and out-
put for packets must be expressed in character devices that can be connected
by stdin and stdout. This dissertation proposes a scripting framework by Ether-
net Character Device and EthPIPE, was compatible with the development flexible
and easy for the software, the control packet processing of high-precision timing
hardware.

1.2 Dissertation Outline

Chapter 2 introduces the research backgrounds and motivations, and Chapter 3
presents an overview of the proposed EtherPIPE architecture. Next, Chapter 4 explains
the Hardware-assisted Packet-Timing control architecture and its API for software de-
velopment and Chapter 5 explains a new packet scripting architecture which use shell
script and UNIX command-line. Chapter 7 The overall evaluation of this dissertation
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is shown in Chapter 6. Chapter 8 discusses related works on packet scripting and NIC
hardwares. Finally, Chapter 9 concludes the dissertation.



Chapter 2

Backgrounds and Motivation

Testing the complex network is a really hard work. Server and network became vi-
sualization and interconnects are increasingly faster. To develop the network appli-
cations needs a stress test using common traffic with high-throughputs and a inter-
interoperability test between network protocols.

The cost-effective servers enabled the network testing with high throughput by
software packet processing. The test with complex scenarios needs the packet scripting
on the high-performance servers. These software packet scripting supports a device
development, protocol implementation, troubleshooting and measurement of the com-
plex networks. The packet scripting is developed as a library of programming language
or special command. In addition, the current Intelligence NIC has some hardware-
assisted functions for high-bandwidth packet processing such as the checksum offload
and TCP segment offload.

On the other hand, special hardware equipments are still used for measuring the
details of network hardware. In particular, the verification of network hardware needs
to measure the precise throughput, PPS (packet per second) and internal latency[9, 10].

The requirements of software network tester capabilities and performance of the
software packet processing are as follows:

Throughput
The Ethernet 1G, 10G and 100G are widely deployed on the data center. Cur-
rent server environment supports the intelligent NIC with 1G Ethernet (1GE) or
10G Ethernet (10GE) ports. The servers have a capability of 1GE/10GE line-rate

5
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Figure 2.1: RFC2544 Latency testing environment

throughput on software processing.

Packet Per Second
Processing capacity of shortest packet (64 byte) with line-rate required 1.48Mpps
performance on 1GE interface, and the 10GE required 14.88 Mpps. For the soft-
ware processing, this is the same meaning to process a packet in between 67.2
nanosecond and it means the 201 CPU cycle on 3 GHz of CPU. The handling
the 10GE line-rate traffic on current OS network stack is difficult. But the soft-
ware is capable of processing of the line-rate traffic by using libraries for packet
manipulation[42, 15]. The frameworks bypass the OS network stacks and pro-
cess the traffic by connecting directly with the network device.

Latency
The Fig 2.1 shows a simple network test environment. In this configuration,
the Tester sends packets to the DUT (Device under test), and DUT send back
the received packets to the Tester. The Tester needs two hardware features to
measure the internal delay of the DUT; scheduling of transmit timing or transmit
timestamp, and timestamping of the received packet.

This dissertation calls the timing of packet transmission and received timestamp
control to packet timing. Also the required resolution of the measurement is in
accordance with the internal clock source of the network device. Ethernet PHY
is connected to the PHY and the internal system logic (MAC Layer) via the MII
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(Media Independent Interface)[45]. The 1GE uses GMII bus interface which is
operating as a clock source of 125 MHz (a clock means 8 nanosecond). And the
10GE uses XGMII interface and it operating at 156.25 with double words or 312.5
MHz (a clock means 6.4/3.2 nanosecond).

The detailed testing of 1GE / 10GE needs the both performance the potential of 1.48
Mpps / 14.88Mpps packet processing and Ethernet PHY-level traffic control. Therefore,
almost network tester is implemented in ASIC or FPGA hardware.

The hardware tester has different data manipulation API to the generic NIC. Traf-
fic data and test scenario will be loaded with a specific buffer of the hardware tester
by GUI frontend or special userspace API. The transmission logic sends packets from
the buffer directly and tests scenarios build by setting the parameters. This architec-
ture cannot be changed the flexible test scenarios like programming framework with
software. The construction of the new test scenarios, there is a need to modify the
firmware or hardware circuit logic.

2.1 Packet processing with Timing control

The performance of network measurement and analysis is dependent on the precisions
of the transmission timing and reception timing of the packet. In order to implement
the packet filtering and scheduling, OS manages the transmission and reception timing
of packets in the kernel. The precision of packet transmission timing on software is
greatly affected by the OS scheduler and the OS tick value for software interrupts. The
default value of tick value on the Linux is set at the 1 4 millisecond (ms).Therefore, OS
can only control packet timing in the order of milliseconds. But a hardware packet pro-
cessing is controlled every few nanoseconds depend on the Ethernet MII clock source.
In addition, timing of packet processing these might be further delayed depending on
CPU utilization. In particular, measurement error in the delay measurement and end-
node bandwidth estimation might increase at the burst packet processing.

Meanwhile, network measurement and performance analysis measure the elapsed
time in the own application. The time precision may be improved by the use of hard-
ware support functions such as CPU utilization counter. However, it packet timing
control is function of OS kernel, so it’s difficult to control from the processing applica-
tions. The OS need to offload the packet timing controls to support of timing in same
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as hardware device.

2.2 Timing-sensitive packet processing

This section describes the timing-sensitive applications and its performance impact of
timing precisions.

2.2.1 Network hardware benchmarking and prototyping

In many cases, network tester is designed by hardware for the performance measure of
the network device. Because of various device testing is a necessary performance anal-
ysis of nanosecond accuracy and high-throughput. The hardware tester is provided in
box type or NIC type of capture card. The box type tester is possible to test using a
plurality of physical ports simultaneously. On the other hand, those of the PCIe card
type are used for traffic analysis. The analysis device has a hardware assist function
of packet sending and received timestamping. Also, the recent NIC has the function
of IEEE1588v2 that is used for improving the accuracy of network time synchroniza-
tion and packet time stamping. It’s possible to correct the receive timestamp using
Precision Time Protocol (PTP)[2] NIC hardware function. However, the PTP imple-
mentation on commodity NIC generates the timestamp on software, and the hardware
timestamp is used for correction of the software value. To achieve the same accuracy
of hardware value is necessary to generate timestamp on hardware.

2.2.2 Internet measurement

The timing of packet sending and receiving has a significant effect on a result of Inter-
net measurement and analysis. The Internet structure is always evolving and growing,
and the capturing the structural big-picture is difficult. Typically, we can measure and
analyze the Internet properties by sending from the outside to the Internet hosts. Ping
and traceroute[4] which are a measurement tools can estimate the distance between
the target network structure from the outside. The possible time resolution of ping
measurement is millisecond order. The RTT measurement with high accuracy can be
expected to be the location and distance of Internet nodes.
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For instance, some BitTorrent client guesses the distance and location of con-
nected client by using ping-based RTT measurement for improving data-transfer
throughput[43]. The precision of the RTT measurement is possible to improve of the
estimated range of positions and distances of the BitTorrent node.

In other cases, Chapter 7 describes the measurement technique of Regional AS
structure. The technique is combining the RTT and the path information by tracer-
oute and ping which measured from the multiple locations and the result showed that
the association between the logical network path information and the physical location
on the Internet is possible. However, the existing ping and traceroute can only mea-
sure the RTT value with millisecond accuracy. In general, packet data goes about 197
kilometers in optical fiber at each millisecond. Therefore, ping-based measurement is
possible to infer the continent-level and country-level Internet structure, but inferring
the more detail such as city-level and PoP-level structure is difficult. The hardware-
assisted ping is possible to measure the detail of geographic location of Internet hosts.

2.3 Summary

This chapter presented the needs of new packet scripting architecture which com-
bines software and hardware approach. Currently, applications that require packet
timing control with high accuracy are implemented as a special network hardware by
ASIC/FPGA. The software packet processing is possible to control a complex tasks, but
its time resolution is dependent on the OS timer interrupts. Developing the software
packet processing with high precision is necessary to use both methods with hardware
timing control and software programmability. The next chapter gives an overview of
EtherPIPE precise packet scripting architecture.



Chapter 3

EtherPIPE Overview

The network hardware is capable of high-precision packet timing management but is
difficult to circuit update of network applications. EtherPIPE is a new architecture for
a software packet processing designed for timing-sensitive network applications. This
chapter explains the approach of EtherPIPE how to manage the packet timing on NIC
hardware.

3.1 Basics

The packet timing on software processing is managed on the scheduler of operating
system. Thus, the timing accuracy is difficult to achieve the same precision of network
hardware.

The packet timing can be expected high accuracy by controlling on hardware. This
section discusses the abstraction and API of the packet timing that can support packet
processing applications.

The EtherPIPE constructed from the following two functions:

1. Hardware-assisted Timing-Control: functions of the scheduled packet transmis-
sion and received timestamp on NIC hardware

2. Ethernet Character device: a network device for shell-based packet scripting
with high-throughput and flexible programming

10
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Figure 3.1: EtherPIPE NIC manages the transmission timing on the hardware.

And all of the network applications could be developed the same hardware

structure.

The EtherPIPE NIC gives the header of the transmission timing for all packets for
software processing. In this design, software does not manage the packet timing with
an OS scheduler, to control the transmission time by updating the value of the times-
tamp header. The EtherPIPE NIC observes the value of timestamp header and waits to
send a packet until the scheduled timing.

Figure 3.1 shows the comparison of EtherPIPE design and the existing network
hardware. The hardware is consisted of special hardware logic and its software API.
This approach is difficult to change the applications of hardware logics.

Meanwhile, EtherPIPE architecture is possible to change the packet timing by us-
ing software. All of the network applications could be developed the same hardware
structure.

3.2 Target applications

Figure 3.2 shows target of EtherPIPE architecture; Middlebox and End host. This is
different method to manage the packet timing. The Middlebox such as delay emulator
and traffic shaper uses the received timing and transmission timing. And the End host
such as traffic generator and high accuracy ping uses process own timing and packet
received timing.
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Figure 3.2: Target applications of EtherPIPE

3.3 System design

Fig 3.3 show EtherPIPE architecture overview. EtherPIPE is constructed of two func-
tions; hardware assisted Timing Control architecture and shell script-based packet pro-
cessing architecture.

The hardware assisted Timing Control architecture is a function of NIC hardware
and it control transmission timing of every packet data and managed a transmission
and receive timestamp for software packet processing. This architecture is constructed
of two hardware logics; Received timestamp and scheduled transmission. From soft-
ware side, all packets has EthPIPE header, and userspace applications rewrite the times-
tamp field data on EthPIPE header. The transmission function on NIC hardware watch
the timestamp filed of every packets and send a packet at schedule time of transmis-
sion. The received function on NIC hardware add the received timetstamp value from
NIC conter logic to EtherPIPE timestamp header field.

Next, shell script-based packet processing architecture supports the high through-
put processing and flexibility deployment. This architecture use specific device I/O,
Pktdev, which is common character device for packet processing. Many network de-
vices have been implemented as a special device to be accessed using the BSD Socket
API. The BSD socket provides an interface to control packets with flexibility and good
performance, however, we have to obey the programming paradigm of the BSD socket
that forces us to write a long passage of code for accessing raw packets. Pktdev ab-
stract a network I/O to common character device. So applications access packet data
only using read(2) / write(2) system calls on pktdev API. And each packet data convert
ASCII format, thus, to handle packets in the UNIX shell programming manner, input
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Figure 3.3: EtherPIPE network scripting architecture

and output for packets must be expressed in character devices that can be connected
by stdin and stdout. In this paper, I propose a scripting framework by Pktdev and
EthPIPE, was compatible with the development flexible and easy by the software, the
control packet processing of high-precision timing hardware.

3.4 Comparison with the existing approach

Fig 3.4 show the comparison with EtherPIPE timing controlled architecture and ex-
isting methods as network hardware tester and sofware packet processing. Ether-
PIPE manage the packet timing by using EtherPIPE header. EtherPIPE NIC looks and
rewrites the header value.

EtherPIPE NIC add timestamp value when received packets. Other method, soft-
ware packet processing, NIC doesn’t add timestamp value for each packets. Userspace
application such as tcpdump[46] and Wireshark[49] add timestamp value on own pro-
cessing application. In this softwaremethod, it’s difficult to generate precise timestamp
value because timestamp is depend on software time resolutions.

And EterPIPE control the packet sending time by using EtherPIPE header value.
The based timing is generated from same counter logic on NIC. Meanwhile, software
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approach control sending packet timing on OS kernel. Using OS software packet pro-
cessing, user can select any timing control algorithm which implemented on OS. But
this timing resolution is depend on software timer resolution.

3.5 Summary

In this chapter, we proposed a new packet scripting architecture for a software packet
processing designed for timing-sensitive network applications. EtherPIPE constructs
the two functions of the scheduled transmission and the received timestamping. The
next chapter describes the details of NIC hardware design and implementation. And
Chapter 5 explains the design and implementation of the device driver and the pro-
gramming framework which use shell script and UNIX command-line.



Chapter 4

Hardware assisted Packet Timing

Control

This chapter introduces the EtherPIPE NIC architecture and implementation with
FPGA-based NIC prototype.

4.1 Overview

The EtherPIPE NIC presents hardware assisted receive time stamping and send timing
control with 8 ns precision. The system can be controlled by simple shell scripts using

RX w/ timestamp 
on the hardware

Scheduled TX using 
timestamp

Userspace

EthPIPE
NIC

write(2)read(2)

traffic

Figure 4.1: EtherPIPE NIC
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the Ethernet character device.
The performance of a software dataplane using a commodity NIC is increasing and

we can more easily build network applications having both the high performance and
programmable flexibility. However, it’s difficult to build applications which require
packet sending with strict latency control, such as network device benchmarking and
delay emulation with high accuracy. Therefore, these network applications require an
ASIC or FPGA logic as single purpose hardware.

The EtherPIPE NIC is a new architecture for a software dataplane for timing-
sensitive network applications and which consists of an FPGA-based NIC and de-
vice driver [Fig 4.1]. This NIC implementation has two offloading functions to con-
trol packet input and output timing. The NIC receive a packet with a timestamp of
PHY-clock accuracy and schedules the time of packet transmission as designated by
userspace scripts.

4.2 Timestamp accuracy

EtherPIPE NIC targeted value of controllable receive and send timing is the same as
the PHY chip. The current NIC implementation is on Lattice Inc’s FPGA development
board which has two 1GE ports and a PCI express interface[30]. The NIC defined a
48 bit counter on the FPGA-based NIC, and send, receive, and timestamp logic use the
same 125 MHz clock source. Each received packet has the value from the 48 bit counter
and the scripts on userspace can schedule the timing of transmission to compare the
designated value by scripts and the counter value.

4.3 Timestamp format

The timestamp format is different between packet forwarding and packet generation.
When building packet forwarding applications such as delay emulation, the transmis-
sion timing should define the difference from the received hardware timestamp. Mean-
while, when programming a packet generator such as a network hardware benchmark
tool should be represented by a difference from the first packet. The current NIC imple-
mentation supports both timestamp formats and applications can choose the format.
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4.4 Implementation

4.4.1 FPGA NIC hardware

Figure 4.2 shows an overview of EtherPIPE implementation. This is developed an im-
plementation of Ethernet Character Device for a commodity FPGA network card on
Linux, and implemented almost all of the primitive functions.

The FPGA implementation supports basic transmit and receive function for
1000BASE-T and hardware offloading functions such as hardware timestamp and five-
tuple hash of the Ethernet Character Device Raw interface. The NIC design of the
FPGA logic supports ring buffers for transmitting and receiving packets, and the bus
master mode to transfer data between the NIC and the main memory.

The EtherPIPE NIC was developed the FPGA logic using the LatticeECP3 versa
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development kit[30] by Lattice Semiconductor Inc. The Lattice ECP3 versa kit has two
1000BASE-T interfaces and one PCI Express interface, therefore, it can be used to test
the forwarding case by Ethernet Character Device network scripting.

The receive logic is the same design as an ordinary NIC. The FPGA becomes a bus
master and writes packet data directly to the host RX Raw ring buffer.

The transmission logic used PCI Express PIO (Programmed I/O) write. The device
driver writes packet data to the FPGA using PCIe with write combining. The prior
experiments showed that normal PCI Express PIO writing performs at 40 MB/s but
PIO writing with PCIe write combining performs at about 175 MB/s, or over 1Gbps.

We developed the FPGA logic with only a 32KB ring buffer in order to simplify the
circuit. The Data format of the Raw interface has the frame size of the packet in the
head of the data, so the FPGA TX logic can find the data boundary. In the design of
TX logic, the device driver doesn’t need to update the write pointer of the FPGA ring
buffer with respect to writing each packet. The device driver only updates the write
pointer when it has finished all of the data in the TX Raw ring buffer in the device
driver.

4.4.2 Device driver

The Ethernet Character Device device driver has two 1MB ring buffers for Raw and
Shell interface used for the sending and receiving device of each port. The Ethernet
Character Device is a general character device, so userspace applications can send and
receive packet data with any buffer size of write(2)/read(2) system call. The buffer
size of write(2)/read(2) depends on the implementation of user commands.

When sending a packet using the Shell interface, the device driver gets the packet
data from userspace and writes it to the TX ASCII ring buffer in the device driver. Next,
the device driver converts the ASCII packet data in the TX ASCII ring buffer to the
binary format of the Raw interface, and writes to the TX Raw ring buffer. Finally, the
device driver reads the binary packet data from the TX Raw ring buffer and writes the
packet data to the FPGA sending buffer using memcpy(3). When it finishes writing
the packet data, the device driver updates the write pointer of the FPGA sending slot
to the frame size. If the sending ring buffer still has data, the device driver repeats the
sending process.

When sending a packet using the Raw interface, the device driver writes the binary



Chapter 4. HARDWARE ASSISTED PACKET TIMING CONTROL 19

data to the TX Raw ring buffer directly.



Chapter 5

Ethernet Character Device

This chapter proposes the Ethernet Character Device which is new network scripting
framework[28, 29].

In order to realize Software-Defined Networking (SDN), many APIs and libraries
have been proposed, such as OpenFlow and its controller[36, 37, 50], and API for Com-
mercial Network Device[6, 24]. If we could use the UNIX shell commands for network
processing, the scripting environment isn’t depend the software libraries, and we think
it become new lightweight network processing tools.

However, current network devices on a UNIX-like OS are implemented as special
device with a specific API, and can not be used in an shell environment. One of the
reasons why network I/O is usually implemented as a network device rather than a
character device is the need to access different layers in a packet such as the Ethernet
frame, the IP packet and the UDP/TCP datagram.

The BSD socket is one abstraction allowing network devices to access raw pack-
ets, and behaves as glue or a buffer to read/write a payload as characters. The BSD
socket provides an interface to control packets with flexibility and good performance,
however, applications have to obey the programming paradigm of the BSD socket that
forces us to write a long passage of code for accessing raw packets. Of course, appli-
cations can inject packet streams more easily by using a virtual network device[26] or
one of several libraries to access raw sockets[13]. These APIs provide easy access to
raw socket but still require programming specific to networking. Following the char-
acteristics and friendliness of these APIs, we would like to provide a simple network

20
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I/O for network processing on an OS in the same manner of device files for storage
devices.

Ethernet Character Device provides a character device interface for a network de-
vice. A network device on Ethernet Character Device is abstracted as a device file on
an OS, and packets on the network device are transformed to files or streams on the de-
vice file. Ethernet Character Device also serves as truly simple input/output functions
for scripting packets like file processing on a UNIX command line. In Ethernet Char-
acter Device’s network scripting, various packet processing can be achieved by I/O
redirection through standard input (<), standard output (>) and pipe (|). We believe
that the Ethernet Character Device network scripting framework brings a more flexi-
ble/lightweight programming paradigm that allows us to develop a packet processing
application for a SDN.

Many features of the network have been fixed in hardware until the advent of SDN.
With the advent of SDN, we can now develop new network functions quickly and
flexibly using a commodity PC and its software.

To provide further flexibility to software-based development in networking, we
developed Ethernet Character Device as an Ethernet device driver for a commodity
FPGA network card on Linux. Our software and FPGA circuit are available as open
source2. Combining Ethernet Character Device with hardware offloading functions of
the FPGA or other network processors, more powerful network scripting or network
processing can be achieved.

5.1 Programing model

5.1.1 Primitive Functions for Packet Processing

As a network scripting framework, primitive network processing functions should
be provided by Ethernet Character Device as commands on an OS. Before designing
the Ethernet Character Device network scripting framework, we explore the primitive
functions needed to program network applications as shell scripts, and try to define a
primitive function set.

We focus on network applications on the data-link layer as a first step. Note that we

2Ethernet Character Device, https://github.com/sora/pktdev

https://github.com/sora/pktdev
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refer to Ethernet frames, IP packets and/or TCP/UDP datagrams, all as packets''
in the following sentences. We use the termsEthernet frames’‘,
IP packets'' andTCP/UDP datagrams” when we would like to distinguish the
data format on each layer.

Typical network applications on the data-link layer are as follows, network test and
diagnosis tools such as packet generators and packet capture, and network elements
such as Ethernet switch and tunnel gateways. These applications can be composed
of five primitive functions 1) packet generation (packet sending), 2) packet capturing
(packet receiving), 3) forwarding, 4) packet filtering, and 5) header modification.

5.1.2 Packet Sending and Receiving

All network equipments minimally require the functions of packet sending and/or
packet receiving. TCP connections normally employ both packet sending and packet
receiving. An application uses read(2) and write(2) on a socket file descriptor for a
TCP connection.

Packet capture tools such as tcpdump[46] or WireShark[49] require only the
packet receiving function. On the other hand, packet generator applications, such as
pktgen[40] or scapy[8], are mainly composed of the packet sending function.

OpenFlow defines Packet-in and Packet-out functions[48]. Various OpenFlow li-
braries provide Packet-in and Packet-out APIs. Using these APIs, an open flow con-
troller can send and receive arbitrary packets from OpenFlow switches.
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Table 5.1: Translate functions from packet processing to Ethernet character

device
Packet processing Ethernet character device

receive packets read from input device

send packets write to output device

forward copy from inputs to outputs

filter search data pattern

modify headers translate characters

5.1.3 Filtering

Filtering function is required by a firewall, port mirroring or network injector. Berkeley
Packet Filter (BPF)[35], OpenBSD Packet Filter (PF)[21] or IPFW[31] are supported in
various BSD Operating Systems.

5.1.4 Forwarding

Repeaters, switches and routers require a forwarding function to interconnect an input
port and an output port. Several OSes support the forwarding function in the kernel.
Recently, Linux brctl(8) and Open vSwitch[7] provide more flexible forwarding con-
trol.

5.1.5 Header Modification

Header modification is a key function to achieve forwarding, routing or encapsula-
tion. Filtering tools on various OSes or Flow-Mod action of Open vSwitch enable users
to modify protocol headers. Usually, a header modification function is hidden in the
kernel space. The RUMP (Runnable Userspace Meta Program) kernel of NetBSD[5]
provides a header modification environment in the user space.
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5.2 Network scripting

We define “network scripting” to be processing packets in the UNIX shell interface or
shell programming. In this section, we explain the design of the Ethernet Character
Device network scripting framework to achieve the basic functions for network pro-
cessing mentioned in Section 5.1.1 on the UNIX shell interface.

Table 5.1 shows the correspondence between basic functions and commands on the
UNIX shell interface. In the UNIX shell programming framework, an application can
be written by a chain of device files, files, and commands, concatenated by redirection
expressions, using stdin (<), stdout (>) and pipe (|).

To handle packets in the UNIX shell programming manner, input and output for
packets must be expressed in character devices that can be connected by stdin and
stdout. Character device type network I/O uses the read(2) system call to a device file
for packet receiving, and the write(2) system call to send packets to the device file.

The forwarding function can be simply achieved by copying data from the output of
a device file to the input of the another device file. Also, redirection and concatenating
commands will provide forwarding packets to multiple ports.

Each packet is a simple string, therefore, a combination of grep(1) and tr(1) will
give a filtering function and a header modification function. Using regular expressions
in grep(1) or sed(1), we will describe a complex search pattern in a line shell script.

Figure 5.1 shows an overview of network scripting. Concatenating character de-
vice type network I/O and shell commands, we can process packets as files in a UNIX
shell interface. Of course, the network scripting inherits the UNIX shell programming
paradigm, so a custom network scripting command can be reused in another network
script. Through our network scripting, interactive processing against network streams
can be realized.

5.3 Design of Device formats

The Ethernet Character Device device tree and its name space are shown in Figure 5.2.
For simplicity, we consider the case where only onemulti-port network card is inserted
into a computer. We locate a network device in /dev as is the case with other devices.
Therefore, Ethernet Character Device provides abstracted character device files under
/dev/ethpipe/. Each physical port on a network card is labeled as an independent

/dev
/dev/ethpipe/
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/dev/
|-- /ethpipe/

|-- 0 # Shell IF port 0
|-- 1 # Shell IF port 1
|-- r0 # Raw IF port 0
|-- r1 # Raw IF port 1

Figure 5.2: Ethernet Character Device device names

[TIMESTAMP] [DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX XX ...
[TIMESTAMP] [DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX XX ...
[TIMESTAMP] [DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX XX ...

Figure 5.3: Shell interface format

device such as /dev/ethpipe/0 or /dev/ethpipe/1.
Ethernet Character Device creates two device interfaces at each physical port; one

is the shell interface and the other is the raw interface. The shell interface is de-
signed to access packets by using ASCII for network processing on a shell. The device
name is described by only port number in /dev/ethpipe/.

The raw interface enables to access packets in a binary format for high-bandwidth
network processing. The device name on the raw interface is labeled with ‘r’ + port
number. For instance, physical port ‘0’ and ‘1’ can be described as in Figure 5.2.

5.3.1 Shell interface

The shell interface is used for network scripting in the shell. Figure 5.3 presents the
format of the shell interface. Packets are presented in ASCII, one packet per line and
Ethernet header fields and payload in hexadecimal notation are separated with space
characters by the kernel driver. Using the shell interface, we can parse packets by
traditional command-line tools.

This shell interface on Ethernet Character Device is simple, however, two alterna-
tives for the ASCII expression are considered. One is expressing MAC addresses and
IP Addresses in ASCII, the other is expressing all protocol headers in ASCII. Of course,

/dev/ethpipe/0
/dev/ethpipe/1
/dev/ethpipe/
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+----------------------------+
| Magic code (2 Byte) |
+----------------------------+
| Frame length (2 Byte) |
+----------------------------+
| |
| Hardware timestamp |
| (8 Byte) |
| |
+----------------------------+
| Five-tuple hash |
| (4 Byte) |
+----------------------------+
| Ethernet frame data |
| |
+----------------------------+

Figure 5.4: Raw interface format

adopting these expressions on Ethernet Character Device will give more control to
network scripting, these expressions sacrifice processing time, data size and overhead
on kernel drivers. Considering these trade-offs on ASCII expression, we take a simple
ASCII expression described in Figure 5.3.

5.3.2 Raw Interface

The raw interface is used for network processing in high-bandwidth network connec-
tions. Figure 5.4 shows the format of the raw interface. This interface has metadata
that indicates a hardware timestamp, a frame length, a five-tuple hash and Ethernet
frame data. All Ethernet Character Device metadata are computed by hardware, and
can be used by network processing software in the user space.

The hardware timestamp is described in a 64-bit counter value with 8 nanosec-
onds resolution taken when the head of a packet arrives at the network hardware.
Wireshark[49] and its capture format PcapNG[17] support a nanosecond timestamp
with NIC hardware counters. We use the same 64-bit timestamp by converting the
Ethernet Character Device raw format to the PcapNG format.

The five-tuple hash is a hash value of {source IP address, destination IP address, pro-
tocol number, source port number, and destination port number} for the high throughput
packet processing. Network processing often uses five-tuple hash values for identify-
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Figure 5.5: Comparison of Ethernet Character Device and existing network

scripting architecture

ing unique IP flows on routers, firewalls and load-balancers.

5.4 Implementation

Figure 5.5 and 5.6 compare the Ethernet Character Device and existing network script-
ing architecture. Ethernet Character Device device driver only focuses the packet pro-
cessing. So the device driver bypasses protocol layer functions. The device driver
directly use Linux NIC transmission API as ndo_start_xmit.

Figure 5.8 and 5.7 show the high-level description of transmission implementation.
Ethernet Character Device uses multiple CPU core for packet transmission and each
kernel thread directly send packets to NIC driver.
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Figure 5.6: Ethernet Character Device device directly use Linux NIC transmis-

sion API as ndo_start_xmit

5.5 Applications

This section shows examples of network scripting by Ethernet Character Device.
Mainly, we explain the examples of primitive functions mentioned in Section 5.1.1.

5.5.1 Packet capture and generation

Command 1: packet generation
$ cat packet.dump > /dev/ethpipe/r1

Command 2: packet capture
$ cat /dev/ethpipe/r0 > packet.dump

Command 3: decapsulating Ethernet header and store IP packets
$ cut -d’ ’ -f4- /dev/ethpipe/0 > ip-packets.dump
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Figure 5.7: Ethernet Character Device TX overview: the device driver use

kthread for packet transmission

Command 4: packet capture with PcapNG format
$ ethdump < /dev/ethpipe/r0 > dump.pcapng

Command 5: Port mirroring
$ cat /dev/ethpipe/0 \

| tee /dev/ethpipe/0 > /dev/ethpipe/1

Packet monitoring or packet analysis often employs tcpdump(1) or WireShark
to store packets in Pcap format or PcapNG format files. Ethernet Character Device is
suited to capture packets or to generate packets from both the Raw and Shell interfaces.

Command 1 shows an example to generate (replay) packets from the Raw interface.
Simply reading a Raw format file by cat(1) and redirecting stdout to the raw interface
to Port~1, packets will be sent through Port~1.

Command 2 describes packet capturing via shell scripting. In contrast to Command
1, the packet capturing scripts redirects the raw interface to a file.
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Figure 5.8: Ethernet Character Device TX overview: sending packets by multi-
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Command 3 removes the Ethernet header of each packet from Port~0 and stores
the IP packets into a file by redirection of stdout. Because of the shell interface of the
character device (/dev/ethpipe/0), Ethernet Character Device enables cut(1) to
separate the Ethernet header from a packet.

ethdump in Command 4 is the original shell command to store packets in the
PcapNG formatwith hardware offloading of a FPGAnetwork card. Through ethdump,
a nanosecond-accuracy timestamp will be contained in each PcapNG format packet.

Port mirroring can be composed of chains of tee(1) and the shell interfaces of Eth-
ernet Character Device like Command 5. The example of Command 5 mirrors received
packets from Port~0 to Port~0 and Port 1. Adding a set of tee(1) and pipe (|), the number
of the destination ports can be extended.

5.5.2 Mac address filtering

Command 6: filtering dstmac
$ gawk ’$1=="001122334455"{print $0}’ \

< /dev/ethpipe/0 > /dev/ethpipe/1

/dev/ethpipe/0
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Command 6 forwards packets from Port 0 to Port 1 on the network interface card
only when the destination MAC address of a packet matches 00:11:22:33:44:55 by
gawk(1).

5.5.3 Decapsulation and Encapsulation

Command 7: VLAN tagging
$ sed -e ’s/^\([^ ]* \)\{2\}/&8100 00 01 /’ \

< /dev/ethpipe/0 > /dev/ethpipe/1

Command 8: VLAN untagging
$ sed -e ’s/8100 00 01 //’ \

< /dev/ethpipe/0 > /dev/ethpipe/1

Command 9: VLAN translation
$ sed -e ’s/8100 00 02 /8100 00 01 /’ \

< /dev/ethpipe/0 > /dev/ethpipe/1

Command 3 decapsulates the Ethernet header from a packet. An 802.1Q VLAN
operation can be described by sed(1); VLAN tagging, VLAN untagging and VLAN
translation are depicted in Command 7, 8 and 9 respectively.

5.5.4 Overlay tunneling

Command 10: L2 over TCP tunneling
[192.168.0.1] $ nc -l 9999 < /dev/ethpipe/0 \

> /dev/ethpipe/0
[10.0.0.1] $ nc 192.168.0.1 9999 \

< /dev/ethpipe/0 > /dev/ethpipe/0

Command 11: ssh tunneling
$ cat /dev/ethpipe/r0 \

| ssh sample.com "cat >/dev/ethpipe/r0"

Several types of overlay tunneling can be described in Ethernet Character Device.
In Command 10, L2 over TCP tunnel is achieved by nc(1). nc(1) of the node 192.
168.0.1 (the first line) reads packets from Port~0 and encapsulates read packets

192.168.0.1
192.168.0.1
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into a TCP (port 9999). In the second line, node 10.0.0.1 connects stream to 192.
168.0.1 TCP port 9999, decapsulates packets, and throws decapsulated packets into
port 0 of node 10.0.0.1.

On the other hand, Command~11 forwards captured packets to sample.com
through ssh(1). This example shows a unidirectional ssh tunnel. If a bidirectional ssh
tunnel is required, the same setting should be configured on sample.com.

5.5.5 Learning switch

Next, we show an example of shell scripting of complicated packet processing using
broadcast transfer.

Fig. 6 shows the code of learning switchwhich has four ports. By using the network
scripting environment, a full-function Learning switch can be developed in less than 50
lines. The example is developed using existing shell and UNIX commands. If a network
script isn’t fast enough, you can use the APIs to write simple C utilities that can then
be used in shell scripts.

In particular, computationally intensive functions and common network functions
such as Forwarding DataBase (FDB) and routing database should be implemented as a
command using in network script.

5.5.6 Existing network tools compatibility

More advanced packet processing needs the functionality of various layers. For in-
stance, the negotiation of ARP packet with network device and IP address setup is a
function of both layer 2 and layer 3.

On the other hand, Ethernet Character Device is an input-and-output device of the
packet data of a physical Ethernet port, and does not have those upper layer functions.
It is necessary to make a network stack for each network application in the construc-
tion of a complicated network application.

Tappipe[34] is Ethernet Character Device application which connects the Linux
network stack with the device. Ethernet Character Device provides raw packet data.
It’s easy to connect the OS network stack to the application simply by converting the
frame format.

Command 13 show usage of tappipe. In the first line, tappipe makes a virtual

10.0.0.1
192.168.0.1
192.168.0.1
10.0.0.1
sample.com
sample.com
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Ethernet device using physical port 0 on EtherPIPE. By specifying an EtherPIPE device
as stdout and stdin of tappipe, the device is created using Linux TAP.

Because pipe0 is at the virtual Ethernet device for OS, it can offload the setup of
an IP address, and the work of a data link layer called the negotiation of ARP to the
existing network stack. Moreover, existing network software such as ping, dhclient,
and wireshark can be used with an EtherPIPE port. By using Network scripting and
tappipe together, we can narrow our focus to scripting our new network functionality.

Command 13: A virtual device for connecting an EtherPIPE and OS net-
work stack
$ tappipe pipe0 </dev/ethpipe/0 \

> /dev/ethpipe/0 &
$ ifconfig pipe0
$ tcpdump -i pipe0

5.6 Discussion

This section describes the limitations of the current EtherPIPE design and its imple-
mentation, and discuss the extensions.

5.6.1 Interface namespace

Our current device naming rules cannot express multiple network cards. For support-
ing multiple network cards, each EtherPIPE device may be put in subdirectory of each
cards such as /dev/ethpipe/slot0/0. Because the control plane of packet pro-
cessing is complex, it would be handled well by the network stack of OS.

We also will develop virtual network devices for OS network stack under /dev/
ethpipe/. Further discussion on the EtherPIPE device namespace is required, how-
ever, we do not examine it in detail due to the limitation of space.

5.6.2 Configuration of Interfaces

EtherPIPE currently focuses on lightweight scripting of packets over the data link layer.
One of the limitations of the current EtherPIPE is that it ignores metadata of physical
devices or socket options for TCP/IP. Ignoring the configuration functions, EtherPIPE

/dev/ethpipe/slot0/0
/dev/ethpipe/
/dev/ethpipe/
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can access packets in a simple way. To handle upper layers, some metadata handling
scheme is required in EtherPIPE.

To implement suchmetadata, we can add other devices that have their own purpose
for packet processing. The current EtherPIPE raw interface should be kept for perfor-
mance. And the EtherPIPE shell interface may need to improve the ASCII format for
usability on shell scripting even if it needs to pay a performance penalty. If it needs
scalability, a device should be developed to set socket like options or store dynamic
parameters in data format.

5.7 Summary

Shell scripting is a powerful approach to manipulating files, however, it has not sup-
ported network processing. The EtherPIPE device allows shell scripting to deal with
network devices and network I/O in the same manner as file devices and file I/O.
Through the development of the EtherPIPE, we have shown that many packet process-
ing operations can be described by chains of standard UNIX commands with standard
input/output and pipe.

EtherPIPE is a low-layer network device yet, its data format is simple and easy
to handle in commands and scripting languages. Therefore, Pktdev can be used not
only for simple network scripting but also for more complex packet processing using
scripting languages. We believe that EtherPIPE is suitable for SDNwhere simple packet
manipulations are often required.
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Figure 5.9: A learning switch script
1 #!/bin/bash
2 #
3 # usage: learning_switch.sh </dev/ethpipe/0
4
5 MY_PORT="0"
6 TEMP_DIR="/tmp/"
7
8 while true
9 do
10 read FRAME
11
12 DMAC=${FRAME:0:12}
13 SMAC=${FRAME:13:12}
14
15 # regist SMAC LEARNING TABLE
16 if [ ! -f $TEMP_DIR$SMAC ]; then
17 if [ $((0x$SMAC & 0x010000000000)) -eq 0 ]; then
18 echo $MY_PORT >$TEMP_DIR$SMAC
19 fi
20 fi
21
22 # search port number by DMAC
23 if [ -f $TEMP_DIR$DMAC ]; then
24 exec 3< $TEMP_DIR$DMAC
25 read PORT 0<&3
26 exec 3<&-
27 echo $FRAME >/dev/ethpipe/$PORT
28 else
29 # flooding
30 if [ ! $MY_PORT == "0" ]; then
31 echo $FRAME >/dev/ethpipe/0
32 fi
33 if [ ! $MY_PORT == "1" ]; then
34 echo $FRAME >/dev/ethpipe/1
35 fi
36 if [ ! $MY_PORT == "2" ]; then
37 echo $FRAME >/dev/ethpipe/2
38 fi
39 if [ ! $MY_PORT == "3" ]; then
40 echo $FRAME >/dev/ethpipe/3
41 fi
42 fi
43 done



Chapter 6

Evaluation

This chapter describes the evaluation of our two proposed architecture for shell script-
based packet processing and hardware assisted timing control.

Section 6.1 studies throughputs of shell script based packet processing using some
UNIX commands. And section 6.2 discusses some EtherPIPE applications and its timing
accuracy of packet transmission and receive timing.

6.1 Ethernet Character Device

6.1.1 Potential throughput of shell scripting-based packet pro-

cessing

We evaluate the performance of general network scripting with a dummy driver. There
are two major factors. One is memory access throughput because entire packets are
passed between UNIX commands through standard I/O. The other is character-based
processing (e.g., string matching) used in UNIX commands. We have developed a
dummy device driver for EtherPIPE. When reading from the device, the driver returns
a dummy shortest (64 byte) Ethernet frame data pre-populated in the device driver.
When writing to the driver, the driver simply copies the data into a buffer in the driver.
The driver does not take it into account the timing constraints of the Ethernet spec-
ification (e.g., Inter-frame gap). The measurements were performed on a PC with an

36
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Table 6.1: Measuring Shell command-based packet proceedings using dummy

driver

dummy driver (frame size: 64B) throughput (MB/s) throughput / 1GE line-rate

capture1 1,097 11.52

MAC address filtering (one rule)2 833 8.75

MAC address filtering (five rules)3 184 1.93

decap ethernet header4 8 0.08
1 cat /dev/ethpipe/0 > dump
2 grep "ˆ002222222222" /dev/ethpipe/0 > dump
3 grep "ˆ001111111111|ˆ002222222222 ... ˆ005555555555" /dev/ethpipe/0 > dump
4 cut -d’ ’ -f4- /dev/ethpipe/0 > dump

1GE line-rate (excluded Ethernet preamble and Interframe Gap): 95.24 MB/s

CPU: Intel Core i5 760 2.80 GHz

Intel Core i5 760 running at 2.8 GHz and a ramdisk (tmpfs).
Table 6.1 shows the throughput of typical applications of network scripting using

the dummy driver. The results show that simple packet capturing by cat(1) achieves
more than 10 Gbps, but header rewriting using grep(1) and cut(1) is much slower.

Modern PCs have enough memory bandwidth (e.g., 10.6 GB/s for DDR3-1333) so
that memory copy is not a bottleneck on simple network scripting. Moreover, we
can take advantage of multi-core processors and their shared cache when using piped
commands.

On the other hand, string matching used in header rewriting requires us to process
data byte-by-byte. Many UNIX commands are line-oriented and need to check every
byte in search for newline characters. Also, a stringmatch stopswhen amatch is found,
but needs to search to the end of a packet when no match is found. It becomes even
worse when regular expressions require backtracking. Therefore, the performance of
network scripting is heavily influenced by the string matching rules used in a com-
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mand.
To further improve the performance, one possible way is to provide a special com-

mand to extract specific header fields and apply commands only to the extracted field.
For example, to apply grep(1) to only the Ethernet headers in packets, it would look
something like “epcmd –extract etherheader –command ‘grep PATTERN’ ”. An-
other way is to keep the command syntax but add hardware-based offloading functions
to make use of GPU, FPGA or other parallel processing methods.

6.1.2 PPS of Ethernet Character Device on Linux with a comod-

ity NIC
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Figure 6.1: TX Performance of Ethernet Character device using Intel 82599 10G

NIC

Fig 6.1 shows the performance of transmission by binary format of Ethernet Char-
acter Device using Intel 82599 10G NIC. We developed a yet another Ethernet Charac-
ter Device implementation for Linux native device driver by Intel 10G Ethernet NIC to
measure actual 10Gbps environment. In the result, performance of Ethernet Character
Device is the 12.6 Mpps using 4 CPU core. The reason of performance decreasing on
CPU 5 8 core is this PC use hyper-threading and the number of physical CPU is 4
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cores. Thus, the limitation of the Linux with Intel NIC device driver is about 12 or 13
Mpps[3]. So this architecture achieved the almost 10G line rate.
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Figure 6.2: Sending 64 byte packets by pktgen and received by ’cat /dev/eth-

pipe/0’ and tcpdump

6.2 Performance of EtherPIPE NIC

6.2.1 Received timestamp

Ethernet Character Device can be used to rapidly build simple network tools such as
packet capturing and generating tools. In particular, the performance of “cat /dev/eth-
pipe/0” and “cat ./pkt > /dev/ethpipe/0” shows primitive throughput, and is important
in network scripting. Therefore, we compared the throughput of our FPGA-based im-
plementation with that of tcpdump(1), by “cat /dev/ethpipe/0”.

This evaluation has two purposes. One is to confirm the data transfer performance
of our hardware design and implementation. The other is to show the accuracy of the
hardware timestamp in our FPGA implementation.
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pipe/0’ and tcpdump (First 1000 packets)

We compare the performance of the FPGA-based EtherPIPE implementation with
that of tcpdump(1) on a commodity NIC. The capturing machine is equipped with
Intel Core i3-3220 and Intel 82579LM Gigabit Ethernet NIC.

The sender uses the Linux pktgen tool to send 10,000 packets with 64 or 1518 byte-
long frame sizes. The sender transmits packets at the line-rate so that packets of the
same size should arrive with the corresponding constant interval at the receiver.

Figure 6.2, 6.3 shows the evolution of packet sequence number with received times-
tamp for 64-byte-long packets. The received timestamp on the X-axis shows the offsets
from the timestamp of the first packets, and lost packets are shown at the right end.
The left figure shows the entire 10,000 packets, whereas the right figure shows the
magnified view for the first 1,000 packets.

As can be observed in the figures, Ethernet Character Device successfully received
all packets, while tcpdump(1) received only 14.1% of packets and failed to receive
85.9% of packets. The device implementation works at 1Gbps line-rate even with 64-
byte-long packets.

Figure 6.4 shows the performance for 1518-byte-long packets; only the first 200
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Figure 6.4: The result of 200 packets which sending 1518 byte packets by pktgen

and received by ’cat /dev/ethpipe/0’ and tcpdump

packets are shown in the figure. This time, tcpdump(1) was able to receive all the
packets without any packet loss. However, the evolution of the timestamp is very
bursty for tcpdump(1) because timestamps are taken by software whenmultiple pack-
ets are processed at a time. 1 On the other hand, the timestamp of Ethernet Character
Device evolves linearly, reflecting the theoretical packet arrival interval at 1Gbps line-
rate.

These results show that our Ethernet Character Device implementation can work
at 1Gbps line-rate even with 64-byte-long shortest size packets, as well as the accuracy
and benefit of hardware-based timestamp.

6.3 EtherPIPE applications

In this section, we discuss some EtherPIPE applications and its timing accuracy of
packet transmission and receive timing.

1The timestamp of tcpdump is shifted to the right for the delay of the first timestamp so as to not

exceed the theoretical value of timestamp.
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Figure 6.5: Scheduled transmission (10 ms)
1 #!/bin/bash
2 # usage: ./oneway.sh > /dev/pktdev/1
3
4 delay=$(( 10000000 / 8 )) # 10 ms
5
6 pkt="$(cat ./ping_echo.pkt)"
7 ts=0
8
9 printf "1100000000000000 $pkt\n" $ts
10 for (( j=0; j<100; j++ ))
11 do
12 ts=$(( $ts + $delay ))
13 printf "01%014X $pkt\n" $ts
14 done
15
16 echo "Done" > /dev/stderr

The evaluation environment consists of two Host PCs with our FPGA-based NICs.
We developed oneway.sh, ping.sh and delay.sh for measuring the accuracy of EtherPIPE
packet timing control architecture. The each shell code only use bash functions and
source code is 105̃0 lines.
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Figure 6.7: Delay emulation (1 sec)
1 #!/bin/bash
2 # usage: ./sec.sh < /dev/pktdev/0 > /dev/pktdev/1
3
4 delay=$(( 1000000000 / 8 )) # 1 sec
5
6 while true
7 do
8 read pkt # recv
9
10 if [[ $pkt =~ ^[0-9A-F]{16} ]]; then
11 recv_ts=${pkt:0:16}
12 frame=${pkt:16}
13
14 printf "%016X$frame\n" $(( 16#$recv_ts + 10#

$delay )) # send
15 # echo "received: ts=$recv_ts" > /dev/stderr
16 fi
17 done

6.3.1 Scheduled transmission

First, we evaluate the timing accuracy of scheduled transmission by using oneway.sh.
oneway.sh [Fig 6.5] send packets with 10 ms interval. And the receiver PC capture the
packets by cat /dev/ethpipe/1 one-line command.

Fig 6.6 shows the result of packet arrival time interval on receiver PC. In the result,
the average interval is about 9.9947409 ms and standard devision is 73.1 ns.

6.3.2 Ping and delay emulation

Next, we evaluate the timing accuracy of the delay emulation script and RTT script.
The ping.sh [Fig 6.11] script is able to measure RTT with 8 nanosecond accuracy and
it can measure the PHY chip processing delay and a length of cables. And the delay.sh
[FIg 6.7] script can emulate one second delay over the total latency of packet processing
on the software.

Fig 6.8 shows the measurement environment of ping.sh and delay.sh.
And we compare the EtherPIPE delay accuracy with Linux kernel delay emulation

function. Fig 6.9 and 6.10 show the result of RTT value of EtherPIPE and Linux one
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Figure 6.9: 1 second delay emulation by linux kernel and EtherPIPE

second delay emulation. From Linux delay emulation, average delay is 997.832 ms and
standard devision is 8640.7 ns. And EtherPIPE result, average delay is 1000.053 ms and
standard devision is 58.25 ns. Using our EtherPIPE implementation, the timing accu-
racy of packet processingwas improved about 148 times than software delay emulation
by Linux kernel.
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Figure 6.11: ping.sh
1 #!/bin/bash
2 # usage: ./ping.sh < /dev/pktdev/0 > /dev/pktdev/0
3 #
4
5 while true
6 do
7
8 ...
9 build a ping request packet
10 ...
11
12 # send PING request
13 printf "ping from %s.%s.%s.%s to %s.%s.%s.%s\n" ${

SRC_IP_ADDR} ${DST_IP_ADDR}
14 echo $PING_REQ
15
16 while true
17 do
18 read recv
19
20 if [[ $recv =~ "${PING_ID} ${PING_NO_TMP:0:2}

${PING_NO_TMP:2:4}" ]]; then
21 echo "pong" > /dev/stderr
22 TX_TIME=‘cat /sys/kernel/pktdev/

local_time1‘
23 RX_TIME=${recv:0:16}
24 printf "RTT: %d ns\n" $(( (0x${RX_TIME}

- 0x${TX_TIME}) * 8 )) > /dev/stderr
25 break
26 fi
27 done
28
29 sleep 1
30
31 done
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Case Study

High-precision packet timing control has not only performance impact for local net-
work benchmarking, Internet measurement can be expected to improve the measure-
ment accuracy. This chapter describes the inferring methods and analysis of the Re-
gional AS topology by existing Internet measurement tools[27, 54]. The proposed
method enables to infer the continent-level AS topologies using traceroute data mea-
sured from multiple vantage points. But the method can’t scale with the detail of
continent-level AS topology analysis because RTT accuracy isn’t enough for infer-
ring the country and city-level AS topology. EtherPIPE is expected to be utilized in the
analysis of more detail of Internet structure.

7.1 On inferring Regional AS topologies

The section describe the technique to compare Asian Internet structure in each years
and visualize the development of the Asian Internet.

Internet structure is more large and complex in accordance with the development
of international traffic. In the background of the growth of international traffic, there
is economic growth that information infrastructure strategy in each country. In recent
years, cloud providers called hyper-giants such as Google and Akamai tend to operate
their own networks. These ASes expands the region of world wide directly, and the
traffic exchange closed in the each region.

In general, the analysis of changes in large Internet architecture, AS topology anal-

47
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ysis is an effectivemeans. However, AS topology is a representation of a logical connec-
tion relationship between AS, is independent of the physical geographic information.
Only current analysis techniques, such as connection bases such as regional strategy
and regional IX by country level, it is difficult to closely observe the changes in the
macro Internet structure related to the region. Further, in order to physically exten-
sive disorders such as cutting of the submarine cable is to analyze the impact of the
Internet, but require analysis of AS topology data in consideration of the geographical
information, current analysis techniques is established is not without analysis of each
incident is made based on operational experience.

The purpose of this study is to establish a method of analysis Internet structure by
local perspective. The method enables a Internet topology analysis method of area in
which the network measurement technique based on, especially to perform the anal-
ysis of regional development of Asia. The approach that we focus on the operation
method of the network to infer the AS connection between the bases location origi-
nally is intended to correspond to AS topology data that is independent of geographi-
cal information. We believed to affect the connections between AS logical connections
from router configuration, data center location and the arrangement of the submarine
cable. This analysis technique allows to take into account physical limitations on these
management, BGP router position used for AS connections to infer the position of the
AS connection. In addition to what AS and AS are connected, where it is possible to
focus on or between the AS is connected, the connection information between the AS
originally represent only the logical connection relationship, physical such countries
and continents and clarify the relationship of the Na position. By this method, only
the existing approach has enabled analysis of AS topology considering spatial analysis
is difficult.

The proposed method has the same data as the existing AS topology measurements
collected by the network measurement technique, BGP data, traceroute data, based on
the DNS data. These measurement data, it is recorded by the research organization
of network measurement, respectively, is widely exposed to the research community.
In this section, we used these past measurement data, and review of the measurement
data of 2001-2010, it was actually compare the AS topology in Asia in 2004 and 2010. As
a result, the main AS and its connection relationship in Asia, even, was difficult in the
existing global AS topology analysis, is Asia outside of AS organization active in Asia
became possible grasp. Moreover, the proposed method makes use of the traceroute
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data measured from the multipoint. Therefore, this approach cannot parse the areas
where there is no measurement data.

7.2 IP Geo-location techniques for inferring location

of AS links

In general, when the customer ISP bought IP transit from the provider ISP, they set up
town routers in the data center of the provider ISP. Or to extend the access line to the
own data center, BGP connections between routers are placed in the same data center.
BGP border router IP address pair this topology at the IP level located AS boundary
becomes physically be located in the same data center.

Figure 7.1 shows the inferred techniques AS connection between sites where the
proposed method. This method collects the inter-AS connection data using the tracer-
oute. Furthermore, this proposed method assumes the IP address of the BGP router
is installed IP address pairs AS boundaries found from traceroute data (link AC in the
figure) in the same data center. The IP address pair of AS boundary found by the
traceroute is referred to as the inter-AS connection.

7.2.1 DNS-based method

There is a case in which AS give a hostname to own router with the own organization
which can be inferred geographic information the router location. For example, xe-1-
3-0.r21.tokyjp01.jp.bb.gin.ntt.net is a router of the NTT Communications (AS2914), and
it has tokyjp01word in hostname, and it can guess the router that exist in Tokyo, Japan.

Scriptroute project[44] of Washington University provides to reverse lookup the IP
address of the router in the DNS, have published undns tool to infer the geographic in-
formation from the DNS name[53]. undns, the pattern of the host name of the naming
convention for the AS 271 at the time in 2008 has been registered. In addition, Wash-
ington University iPlane project[52] build the set of own name database for undns.
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Figure 7.1: The link AC that was discovered in traceroute is called AS link. This

method guesses the pair of IP addresses of AS link exist in the same place

7.2.2 RTT-based method

The proposedmethod utilizes the data that was traceroute from physically installed has
been measured based on wide area for the entire Internet. Therefore, to estimate the
geographic information of AS connections using the IP geolocation method using the
RTT value by Gueye et al[20]. This method, previously investigated the geographical
information of traceroute measurement bases, to compute the reachable physical range
from the measurement base for traceroute measurement results RTT. Furthermore,
by utilizing the measurement results from a plurality of measurement locations, to
determine the physical existence possible. For certain IP address, and guess the range
reached by RTT values from all emerging traceroute base, and guess success only if
the location where the ranges overlap was a single continent.

Conversion of RTT values and distance according to the method, the propagation
velocity of the packets in the optical fiber to determine the range utilizing RTT 1ms to
be approximately 0.6 times the speed of light as 100km.

Figure 7.2 represents a black circle measurement bases executes traceroute, reach-
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RTT 1ms -> 100km

Figure 7.2: Inferred IP geolocation technique of BGP routers using traceroute

data measured from the multipoint

able range circles with dotted lines based on the RTT value, gray range of IP addresses
that narrowed specifically geographically. By using the traceroute data measured from
multipoint, to identify a range of existence of the IP address of the AS connection.

7.2.3 Exclusion techniques for exception data

In Section 7.2, General be to focus on inter-AS connection method, it was examined
guess how the AS connection between locations. However, the connection mode be-
tween the AS, the addition to being present many, might be built in a distributed IX or
a wide area L2 on the connection, that case, in this guess method guess incorrectly AS
connections location may.

Therefore, in this proposed method, by the use of multiple IP geolocation, and
performs elimination of the exception data. First, to infer the geographic information
by the procedure described in Section 7.2.1 and Section 7.2.2for the IP address pairs
of all the inter-AS connection. At that time, if the IP address pair showed a different
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location, that AS connections are assumed not to exist in the same data center, and to
eliminate from the data used in the analysis technique described in Section 7.3.

7.3 Techniques for Inferring Regional AS-level

Topologies

This section describes the AS topology analysis method considering the geographi-
cal information. The proposed method combines the AS topology analysis method
using traceroute data, the guess method of inter-AS connection bases mentioned in
Section 7.2.

Figure 7.3 describes the proposed method. (1) First, it extracts the inter-AS con-
nection using a traceroute data measured from the multipoint wide area, it is assumed
that the IP address pair (dashed lines in the figure) are in the same location. (2) Next,
using a traceroute data measured from the multipoint wide area, and any IP address of
the extracted AS connection between the key, will continue to search for other inter-
AS connection data. Thus, geographic information is unknown I will clustering AS
connections that exist in the same data center. Figure AS connections expressed by a
dotted line, because they share the same IP address, the IP address of each of the AS
connection between the inferred to exist in the same location. (3) Finally, to estimate
the specific geographic information of the cluster that was estimated to be present
in the same location. In this method, by IP geolocation technique described in Sec-
tion 7.2.1 and Section 7.2.2, to infer the geographic information from the IP address
of the BGP router. So, if the geographical information of any IP address in the cluster
can be identified, I will be the IP address of the geographic information of the entire
cluster.

7.4 Inferring the regional AS topologies

This section shows the result of continent-level AS topologies by using the proposed
method in section 7.3. The continent means Africa, Asia, Europe, Oceania, North
America and South America.
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Figure 7.3: A clusteringmethod IP address of the BGP routers using the location

of AS links

7.4.1 Topology data

This section shows the data used to evaluate the proposed method. The method use
the traceroute data from 2001 to 2010, BGP, and DNS data for illustrating the regional
AS topology analysis.

Table 7.1 shows data size of traceroute, BGP and DNS data. The proposed method is
based on the analysis method of the AS topology with existing traceroute data. tracer-
oute data, I was using the Skitter[14] and Ark[12] data CAIDA project is collecting.
In addition, in order to extract the inter-AS connection from traceroute data, you are
using the routing table of BGP full route of Routeviews[51] and RIP NCC. Size is the
number of attempts traceroute table in traceroute data, size is the number of paths of
BGP data, size of DNS data represents reverse lookup the IP address number, respec-
tively.

Skitter and Ark measures the traceroute data of world wide during about three
days. Measurement technique is to divide the advertisement prefix in the path of /24,
executes a traceroute to any IP addresses in each prefix object. The traceroute data is



Chapter 7. CASE STUDY 54

Table 7.1: The data size and measurement years of traceroute data, BGP data

and DNS data DNS data
Year traceroute data BGP data DNS data

src date size src date size src date size

2001 Skitter Sep/1-15 59M Routeviews, RIPE Sep/1 114K ISC - -

2002 Skitter Sep/1-15 81M Routeviews, RIPE Sep/1 119K ISC Q3 238M

2003 Skitter Sep/1-15 98M Routeviews, RIPE Sep/1 136K ISC - -

2004 Skitter Sep/1-15 146M Routeviews, RIPE Sep/1 157K ISC Q3 357M

2005 Skitter Sep/1-15 136M Routeviews, RIPE Sep/1 184K ISC Q3 419M

2006 Skitter Sep/1-15 125M Routeviews, RIPE Sep/1 210K ISC Q3 511M

2007 Skitter Sep/1-15 96M Routeviews, RIPE Sep/1 238K ISC Q3 576M

2008 Ark Sep/1-15 94M Routeviews, RIPE Sep/1 283K ISC Q3 663M

2009 Ark Sep/1-15 125M Routeviews, RIPE Sep/1 316K ISC Q3 791M

2010 Ark Sep/1-15 154M Routeviews, RIPE Sep/1 349K ISC Q3 857M

the five cycles of the data at every 1st to 15th September. BGP data, using the data
of every year September 1 that Routeviews and RIPE NCC has been published. In
addition, as a result of the scrutiny of the data, the traceroute data from 2001 to 2003,
RTT value of traceroute has not been archived.

Next, in order of IP geolocation by DNS name mentioned in Section 7.2.1, the
method uses the DNS data of the entire IPv4 space. DNS data is collected by the Do-
main Survey project of ISC[25]. ISC of Domain Survey has measured all IPv4 space
on a quarterly basis, this time I was using the data of the DNS name of the Q3. The
archive data in 2001/Q3 is broken and can’t unarchived.

Figure 7.4 shows the size of BGP data and traceroute data used in this analysis. The
white bar in graph shows the total number of AS that has been observed in the tracer-
oute data, and the shaded bar shows all AS number observed from the BGP data, and
the line graph represents the traceroute measurement base number of CAIDA Skitter
and Ark. AS number that could be observed by the traceroute is decreased from 2005 to
2007 in proportion to the decrease in measurement locations. This relies on the tracer-
oute by the measurement environment CAIDA is reduced from 2004 to 2007. Since
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Figure 7.4: Data size of traceroute and BGP information

2008, the measurement environment and techniques it is possible to increase the num-
ber of sites simultaneously measuring the change in Ark from Skitter, all AS numbers
in the measured traceroute data is increasing.

Finally, the organization information such as addresses andAS name of eachAS, the
method uses RIR data from AfriNIC, APNIC, ARIN, LACNIC, RIPE NCC. In addition,
the organization name of AS is from the WHOIS information[1].

7.4.2 Number of the landmarks of geolocation

Next, Table 7.2 shows the analysis results using IP geolocation technique described in
Section 7.2.1 and Section 7.2.2. The values in the table shows the number of IP addresses
that geographic information can be inferred by the IP geolocation methods from the
IP addresses of all inter-AS connection data.

DNS is the data from described in the section 7.2.1, RTT technique described in
Section 7.2.2, miss is the number of IP addresses showed different continents in the



Chapter 7. CASE STUDY 56

DNS and RTT, uniq is at least one IP total number of addresses that you can guess,
uniq/TR shows the percentage of uniq for the IP address number that is included
in all inter-AS connection. In the method using the DNS data, can not be inferred
geographical information only been AS only registered in undns, the method using the
RTT value, could guess the location of more IP addresses. Moreover, when comparing
the IP address of geographic information can be inferred by both methods, the data to
infer a different location in the two methods were not present.

In 2004, but was able to guess continent IP address of 70CAIDA Ark data set that
was used from 2008 and later, compared to 2004, China and Africa, the measurement
bases in regions such as South America has increased. These areas, measurement base
number is less than the United States and Europe, even a wide area of the region.
The reason the number of guesses of 2010 has decreased, China, to Africa and South
America of IP address, I considered speculation of area using RTT value is difficult.
However, the proposed method clusters the IP address in the same data center in the
key IP address of the AS connection. Landmark data, it is therefore not necessary to
guess the IP address of all inter-AS connection data in auxiliary those used for spatial
transformation of each cluster.

In the next section I show the clustering size of each continent is the result analysis
(AS between the number of connections).

7.4.3 Inferring continent-level AS topologies

Table7.3 shows the number of connections between different AS continent in 2004 to
2010. The traceroute technique is used in this analysis, because it is easy to measure
the major ISP or regional IX as appearing in the path to the destination IP address,
the US and Europe, easily discover routes in Asia. On the other hand, when viewed
from a macroscopic point of view, such as Africa and South America, is difficult path
observation area located in the end point of the Internet. In these areas, it is consid-
ered necessary to measure to place the measurement locations in that area. Table in
Unknown, this is the proposed method represents the inter-AS number of connection
data that could not guess geographical information, in parentheses represent the per-
centage of from between the whole of the AS number of connections.
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Table 7.2: The resulting number of could be inferred data
Year DNS RTT miss uniq uniq/TR

2001 30K - - 30K 18%

2002 33K - - 33K 22%

2003 36K - - 36K 19%

2004 36K 98K 0 116K 70%

2005 41K 99K 0 119K 59%

2006 92K 113K 0 138K 58%

2007 37K 80K 0 104K 51%

2008 114K 123K 0 219K 25%

2009 150K 137K 0 265K 24%

2010 177K 206K 0 358K 18%

7.5 Comparison of Asian AS topology of 2004 and

2010

Next, we compared the Asian AS topology during the 2004 and 2010 by using the topol-
ogy data analyzed by this analysis method. The result is was performed to compare by
visualization using the AS Core Map technique of CAIDA, comparison of distribution
due to the inter-AS connection number of major Asian countries, a comparison of the
leading AS to focus the inter-AS connection number of countries. In this dissertation,
the hub AS is referred as a AS connected with international and regional AS links.

7.5.1 Comparison of AS topology using CAIDA AS Core MAP

First, the section analyzed the Asian AS topology by using the AS Core Map technique
of CAIDA.

AS Core Map is a visualization technique of AS topology by Skitter project of
CAIDA. This method is visualized using the number of AS links of each ASes and
organization address. The map plots ASes by mapping the registered geographic loca-
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Table 7.3: comparison of the number of AS links in each continent
Year Africa Asia Europe Oceania NorthAmerica SouthAmerica Unknown

2004 661 22K 59K 4K 94K 5K 23K(11%)

2005 268 34K 57K 4K 105K 12K 18K(8%)

2006 0 14K 39K 0 92K 0 26K(15%)

2007 302 22K 56K 6K 99K 13K 21K(10%)

2008 546 75K 206K 10K 323K 34K 112K(15%)

2009 830 79K 258K 10K 395K 42K 158K(17%)

2010 1,327 97K 438K 12K 825K 50K 197K(12%)

tion of the AS in the WHOIS database to the corresponding longitude. A link between
two ASes shows that the two ASes are directly connected. The radius of an AS, the dis-
tance from the center, is computed based on the out-degree of the AS that is a number
of its outgoing links (shown in Equation 7.1) so that ASes with higher out-degree are
placed closer to the center. radius(ASi) is, ASi of radius, outdegree(ASi) is ASi of
out-degree, outdegree(ASmax) is the most out-degree is often ASmax means number
of the out-degree. By Equation (7.1), and most out-degree are placed close Fig mainly
AS often, to determine the placement of each standard the out-degree of each AS. The
AS is often out-degree of inter-AS connection is disposed near the center of the figure,
AS outdegree is small is positioned near the outer periphery. Out-degree and that it be
placed in the center of the circle is large AS, AS that is the Internet core is disposed in
the center of the graph connected by a hub AS is emphasized.

radius(ASi) = 1− log

(
outdegree(ASi) + 1

outdegree(ASmax) + 1

)
(7.1)

Figure 7.5 and 7.6 show the result of the Asian AS topology in 2004 and 2010 using
the AS Core Map visualizing of CAIDA. In the figure longitude 70E range from (70
degrees east longitude) of 140E (in the figure upper left) is approximate Asia and Ocea-
nia, under in 120W (figure from 60E (in the figure upper right) is Europe and Africa,
60W (west longitude 60 degrees) from 0 ) AS of North America and South America are
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Figure 7.5: Asian AS topology in 2004

located in. For example, AS Japanese tissue is placed at an angle of 139 degrees east
longitude.

In Asia in 2010 in Figure 7.6, as compared to 2004, confirmed that the upper left
of the line overlaps the complex. It has been that the AS Asian countries are tightly
connected within Asia and from Asia AS, can also be confirmed connection with US
AS located below in FIG. An AS connection between in Asia, not only Asian countries,
it has been shown that are many connection with the US AS doing business in Asia.

In Asia AS topology 2004, several Japanese AS is located closer to the center, I can
be seen that the whole of Asia AS topology is formed. In contrast, in 2010, AS of each
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Figure 7.6: Asian AS topology in 2010

major countries of Asia can be confirmed. With the growth of Asian Internet, Asia AS
to perform the major countries in Thai of AS connection was confirmed appearance
that you are experiencing.

7.5.2 Comparison of number of out-degrees on hubASes in Asia

This section focus on the hub AS of major Asian countries. Table 7.4 shows those
listed the out-degree order to 20 organization of inter-AS connections in Asia in 2004
and 2010. In the table, ASN means AS number, AS Name is AS organization name, CC
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Table 7.4: Ranking of Asian ASes of out-degrees of AS links in 2004 and 2010
2004 2010

ASN AS Name CC degree ASN AS Name CC degree

1 2914 NTT US 177 3491 PCCW US 277

2 2516 KDDI JP 90 3356 LEVEL3 US 206

3 4637 REACH HK 79 4766 KIXS-AS-KR KR 181

4 7527 JPIX JP 77 3216 SOVAM-AS RU 177

5 10026 PACNET HK 77 2914 NTT US 165

6 3216 SOVAM-AS RU 72 2516 KDDI JP 157

7 2497 IIJ JP 69 1299 TELIANET EU 157

8 4725 ODN JP 59 3786 LGDACOM KR 154

9 4713 OCN JP 56 10026 PACNET HK 146

10 3786 LGDACOM KR 54 9318 HANARO-AS KR 129

11 703 UUNET US 50 23947 CEPATNET-AS-ID ID 117

12 4694 IDC JP 49 9729 IS-AP HK 116

13 4766 KIXS-AS-KR KR 47 2497 IIJ JP 98

14 1239 SPRINTLINK US 43 7527 JPIX JP 91

15 4716 POWEREDCOM JP 41 18302 SKG_NW-AS-KR KR 87

16 2907 SINET-AS JP 39 6453 GLOBEINTERNET CA 85

17 15412 FLAG-AS GB 37 9121 TTNET TR 84

18 9121 TTNET TR 34 4713 OCN JP 81

19 7473 SINGTEL-AS-AP SG 32 4725 ODN JP 72

20 5511 OPENTRANSIT FR 31 9304 HUTCHISON-AS-AP HK 68

notation by country code country information of AS organization, degree represents
each the out-degree of inter-AS connection.

Although the 2004 Asian can confirm 8 organization of Japan, is a 5 organization in
2010 against it. In addition, in the ranking of 2010, has increased the AS of Hong Kong
(HK) and South Korea (KR), in Asia, Russia AS (RU) was confirmed to be very large. In
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Figure 7.7: CCDF of node degrees for Asian AS topology in 2004 and 2010
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Figure 7.8: CDF of node degrees for Asian AS topology in 2004 and 2010

addition, NTT from Japan can be confirmed in the ranking (JP) (AS2914), Korea KIXS-
AS-KR (KT, AS4766) of (KR), Turkey TTNET (AS9121) is a ISP in each country of the
largest.

7.5.3 Comparison of the distribution of the inter-AS connec-

tions

Finally, the section shows the distribution by out-degree of inter-AS number of con-
nections by country of organization in Asia.

Figures 7.5.3 and 7.5.3 in 2004 and CCDF by AS between the number of connec-
tions in 2010, as in figure 7.7 and 7.7 represent the CDF by AS between the number of
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Table 7.5: Country average and Top 5 average number of out-degrees in 2004

and 2010
CN HK JP KR RU TW

2004 mean 2.71 8.77 6.05 7.81 5.13 4.06

top 5% 8.00 79.00 63.00 54.00 48.50 19.00

2010 mean 8.44 12.71 7.43 8.87 5.92 7.67

top 5% 62.67 131.00 93.50 121.80 54.29 43.50

connections in 2004 and 2010. Table 7.5 represents the 2004 and the country of average
out-degree in Asia of 2010, the average out-degree of out-degree order top 5 % of AS as
a hub AS of countries. Countries in the figure is selected from the country emerging
AS organized in Table 7.4.

In comparison by CCDF of figures 7.7 and 7.7, Asian countries, especially Taiwan
(TW), China (CN), grows to become the hub AS in Asia. In addition, Table 2, Hong
Kong, Taiwan, the average degree of China is rising.

Next, in the comparison by CDF in Figure 2 and 3, out-degree are noted AS of about
1 to 10. First, Korea (KR), has been an increase in the proportion of small and medium-
sized AS number of Hong Kong (HK). The growth of the information infrastructure
in each country is necessary to go into the active participation of these small ISPs. In
addition, Table 7.5 shows the growth of Hong Kong and Taiwan presences.

7.6 Summary

This chapter shows the inferring method of regional AS topology by using traceroute,
DNS, BGP data from each research groups. The proposedmethod enables to extract the
actual AS links from ambiguous measurement data such as the route by RTT value or
traceroute, and visualized from the macro viewpoint of the local Internet by combining
them. The Data used in the proposed method are common measurement data gathered
and archived by the research organization. The analysis result shows comparing the
Asian AS topology in 2004 and 2010, and visualized the growth of Taiwan and Hong
Kong AS in Asia. In addition, the result clarifies some regional AS growth such as
TTNET in Turkey.
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The current method has many limitation which is difficult to visualize areas of the
network is developing, such as Africa and South America. In the future, we plan by
improvement of adding and methods of data, consider a visualization method of AS
topology structure of relatively measurement data is small region.

Moreover, AS rankings are used in the current hub AS analysis contains IX AS
number. The IX AS number is necessary to devise such as exclude IX by aggregating
as inter-AS connection. Furthermore, in the current analysis, it is aggregated ranking
in out-degree of each AS number. ISP companies, including NTT has distinguish the
plurality of AS numbers in the operation, it does not consider them in this paper. The
related works by Cai et al.[11] proposed a method to analyze aggregate the AS number
for each organization. As future work, we considered necessary analysis that takes
into account the trend of acquisitions of analysis and ISP of each organization.
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Related Works

8.1 Network device abstractions

The concept of character-based network interfaces is not new. STREAMS[16] employs
amodular architecture for implementing I/O between device drivers including network
subsystems. Plan 9[39] pushes it further to abstract everything including network as
a file, and controls the network stack and services through files. Other systems such
as x-kernel[23] and Netgraph[18] provide a framework for building a network stack
by connecting protocol modules. The main focus of these systems is to provide an
abstraction of network interfaces and protocol stack components.

There exist network interface devices that allow the programmer to access Ethernet
frames such as DLPI (Data Link Provider Interface)[38], a STREAMS device driver of
SunOS, and the TUN/TAP device driver. They are often used to implement a tunneling
or bridging function in user space.

The purpose of the Ethernet Character device is to allow network scripting. To
this end, it provides a simple abstraction of Ethernet ports as a character device, and
converts Ethernet frames to and from ASCII representation for easy processing by
UNIX commands.

65
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8.2 Internet measurement

AS topology has been widely analyzed as basic data of the Internet of actual conditions
and the next-generation Internet architecture examination of from the macro perspec-
tive. Many AS topology analysis, BGP data, traceroute data can be classified into three
types by the data to be used in the WHOIS data[33].

Technique using BGP data is used to analyze the AS topology. BGP is the only
routing protocol that is used between AS and it is a path vector type routing method.
BGP has AS path attribute which manages all the information of the relay AS number
of the destination routing routing table. From the path table of the BGP router with all
advertised route called full route, and by referring to the AS path attribute, it is possible
to obtain the connection relations between the AS. However, BGP router has a mecha-
nism that collectively multiple paths advertised by aggregating the external route AS.
Therefore, only BGP routing table measured from a single AS is grasped all AS connec-
tions that exist on the Internet is difficult. Research organizations such as Routeview
and RIPE / NCC is externally publish BGP routing table that was observed from the
own AS[51, 41]. Also, the Cyclops project UC, have published a variety of by research
organizations are analyzed by combining the BGP route information is published, the
analysis results by collecting more inter-AS connection data. Cite cyclops.

Then the traceroute data enables to measure the IP address-level Internet topology.
In addition, combination of traceroute data and BGP routing table enables to infer the
AS topology structure. The AS path attribute of BGP routing table, called the Origin
AS, contains the path prefix of advertising the original AS number. Therefore, it was
found in traceroute, from the IP address of each router on the path, it is possible to
investigate the prefix of the BGP routing table that contains it, associated route IP
address and route advertisement original AS number of the traceroute[19]. Check the
route advertisement original AS number of the router IP address of the traceroute data,
by extracting the connection of AS numbers, it is possible to collect the AS connection
between the data using the traceroute.

The CAIDA project based in the University of California, called Ark[12], utilizes the
measurement locations which are disposed around the world, it is possible to execute
a traceroute from the multipoint, and perform the global topology data collection. In
addition, CAIDA has published a graph visualization me a visualization method of AS
topology called AS CoreMap has proposed[22], was measured AS topology data to this
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visualization technique. Other The, DIMES projects and iPlane projects, is collecting
AS topology data using a traceroute techniques[47, 32]

Finally, it is possible to acquire the routing policy of the part and the inter-AS con-
nection data by referring to the IRR (Internet Routing Registry) in the WHOIS com-
mand. IRR is a pathway database for sharing routing information between network
operator. Can investigate inter-AS connection by analyzing the entire AS in the IRR.
However, the point that registration of the routing information to the IRR is being
performed by any per AS, there is a possibility that erroneous input of the path infor-
mation generated for the operator’s manual input occurs.



Chapter 9

Conclusion

The dissertation introduced EtherPIPE, a new packet scripting architecture with high-
precision packet timing control and for flexible development. EtherPIPE aims at rapid
and low-cost development of timing-sensitive network applications bymeans of Ether-
net character device that is a packet scripting framework for shell scripting and UNIX
commands, and Hardware-assisted Timing-Control NIC hardware.

The Ethernet character device allows shell scripting to deal with network devices
and network I/O in the same manner as with file devices and file I/O. The Ethernet
Character device can be used for complex packet processing such as packet forward-
ing and latency emulation using scripting languages. The Hardware-assisted Timing-
Control architecture allows receiving a packet with a timestamp in PHY-clock ac-
curacy, and schedules the timing of packet transmission as designated by userspace
scripts. The NIC function allows to develop many packet processing applications
which require precise packet timing control such as benchmark equipment by soft-
ware.

The EtherPIPE implemented on a commercial 1G Ethernet FPGA NIC allows to
develop a nanosecond ping tool, a delay emulation middlebox and other benchmarking
tools. And the evaluation shows that EtherPIPE device achieves 10 Gbps by network
scripting.

Overall, EtherPIPE scripting architecture facilitates network hardware verification,
research prototyping and Internet measurement. In particular, rEtherPIPE would be
useful for recent data center networks equipped with a number of special hardware
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acceleration to improve performance of software applications. We believe that Ether-
PIPE has a potential to be an indispensable debugging tool for developing network
applications on mixed environments of software and hardware,

9.1 Future Directions

The timing resolution of packet processing affects the performance of all traffic control,
and the EtherPIPE architecture can be expected to improve these performances. For
example, to achieve near 100% link utilization of fibers is a hot topic for the network
research. It requires all network process would to have hardware-level packet shaping
so that EtherPIPE would match the need to solve this future problem.

The future direction of EtherPIPE is the acceleration of functions of traffic con-
trol on the existing operating systems. The API of EtherPIPE NIC is only for packet
timing control so that it is orthogonal to the existing OS implementations. Although
the current EtherPIPE supports only its own special device driver for packet scripting,
EtherPIPE NIC can be extended to support the existing framework for the device driver
of the OS network stack. Once this is done, EtherPIPE would accelerate packet timing
of many traffic control functions and protocols.

The current EtherPIPE prototype is developed on the FPGA NIC with 1G Ethernet
ports. Another important future direction of this dissertation is to support 10G or
higher bandwidth networking. We will develop 10G EtherPIPE NIC and explore the
possibility of EtherPIPE in general usage.
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