
Dissertation Summary

Time resolved chromatin architecture 

and transcription regulation during the 

yeast respiratory cycle

Cornelia Amariei

Keio University
Institute for Advanced Biosciences

Graduate School of Media and Governance

This dissertation is presented for the fulfllment of the requirements for the degree of
Doctor of Philosophy

September 2014



Abstract

Cellular rhythms, spanning from fast metabolic
oscillators to circadian rhythms, are pervasive in
many organisms. Their orchestration, crucial for
the maintenance of  cellular coherence, is poorly
characterized due to difficulties in obtaining high-
density time-series data where the cellular state is
precisely defined. A system that overcomes these
limitations is the continuous culture of
Saccharomyces cerevisiae, in which cells auto-
synchronize to produce respiratory oscillations
that alternate between reductive and oxidative
cellular states. This system has been used to
inve s t i g a t e the i n t e r p l ay be twee n the
redox/energetic state and transcription, metabolite
production and DNA replication, which revealed
that the oscillation revolves around an alternation
of  anabolic and catabolic transcriptional programs
leading to anabolic and catabolic phenotypes. This
thesis investigates the role of  chromatin
architecture and its dynamics in the regulation of
the transcriptional program. Previous datasets
were analyzed with new computational tools
developed for characterizing periodicities in high-
throughput data, and the results pointed to an
energy-dependent transcription regulation
mechanism mediated by chromatin structure.
Through CE-MS analyses of  adenylate
nucleotides, ChIP-qPCR and tiling array analyses
of  DNA occupancy, this study shows the
existence of  a global transcriptional reset point
between the catabolic and anabolic transcriptional
programs, characterized by a global nucleosome
focusing event. The highly dynamic DNA
occupancy correlates with changes in energy
availability rather than transcriptional timing,
suggesting that the initiation of  anabolic and
catabolic genes stems from differential effects of
global remodeling events at gene promoters. An
analysis of  promoter regions revealed that a
majority of  genes are in close proximity, and many
properties of  gene transcription, i.e., average
expression, noise, nucleosome occupancy, co-
expression, correlate with the intergenic distance.
These results point to global mechanisms
underlying transcription regulation in eukaryotes,
where the energetic state regulates global
ch r o m a t i n s t r u c t u r e , a nd d i f f e r e n t i a l
transcriptional outcomes stem from subtle
differences in the promoter architecture.

Keywords: Yeast respiratory cycle • Transcription
regulation • Redox oscillation • Chromatin
dynamics •  Time-series computational analysis

Chapter 1 Introduction

Rhythmicity within an organism spans a wide
range of  temporal scales, from fast neural rhythms
(~10 ms)1 to century-long flowering cycles2. Due
partially to convenience and technical limitations,
biological rhythms occurring on different time-
scales have often been studied as separate
phenomena, despite evidence that many processes
show a temporal coordination3–6. In particular,
studies on the interplay between circadian
rhythms, cell cycle and metabolic rhythms have
pointed to a coupling of  these processes that seem
to revolve around the cellular energetics and redox
state6–9, and involved transcriptional, translational
and post-translational oscillators10–12. The medical
implications are exemplified by the numerous links
found between desynchronization or decoupling
of  these rhythms (e.g., heart rate, respiratory
activity, hormone production, sleep cycle) and a
variety of  pathologies, such as mood disorders13,14,
obesity15, breast cancer16 and Parkinson's17.

Between the frequencies of  the most studied time
domains, the circadian and the metabolic rhythms,
lie the majority of  cellular functions, such as
metabolic transformations, transcription, trans-
lation, assembly of  membranes and organelles, as
well as the organization of  chromosomal
dynamics and the cell division cycles (typically in
the minute and hour domains)18. Global rhythms
have been shown in all these highly conserved
processes in lower eukaryotes19–23, some shown to
be endogenous24, or to occur in single mammalian
cells6. In most studies however, the underlying
rhythms remain masked by the lack of  frequent
time-series measurements necessary. Even when
high temporal resolution is achieved, in a sample
derived from a cell population, rhythms present in
single cells can be hard to detect due to the
asynchrony of  the population, where time-
averaging of  processes and events that occur in
out-of-phase individuals blur the dynamics of
single cell organization. Therefore, the study of
such dynamic processes requires either single-cell
analyses or synchronized cell populations. While
the former is greatly limited by the available
technology and by difficulties in measuring an
individual cell without irreversibly damaging it25,
the latter poses issues in the preparation of
material without perturbation26.

A convenient system that surpasses these
challenges is exemplified by continuously-grown
cultures of S. cerevisiae, which can become
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spontaneously self-synchronized with respect to
the cellular respiratory activity when grown at high
density27. The period of  the respiratory oscillation,
characterized by alternation between oxidative and
reductive phases, can range from 35 minutes to
over a day depending on culture conditions27–31.
Easy to monitor, to sample at high frequencies
and without perturbation, this system has been
reliable tool for acquiring time-series experimental
data on the redox and energetic state21,32, and
various aspects of  cellular life, e.g., metabolism23,30,
transcription20,33,34, cel l cycle20, mitochondrial
structure and organelle remodeling23. 

The respiratory oscillation in yeast is temperature-
compensated35 and its timekeeping characteristics
define it as an ultradian clock. Moreover, several
other properties of  the respiratory oscillation are
shared with the circadian clock, e.g., cell cycle
gating20,36, cellular energetics31,37, redox biology4,
system-wide oscillations in mRNA34,38 a n d
metabolite abundances21,39,40. A recent study
identified a redox-sensing clock in all domains of
life9, where the oxidation cycles of  peroxiredoxins
show clock characteristics and are coupled with
circadian rhythmicity. These findings demonstrate
a mechanism through which redox rhythmicity
underlying cellular physiology could prove to be
the rule rather than the exception across species41.
In this context, the study of  the respiratory
ultradian rhythm in yeast continuous cultures,
which involves alternation of  redox states, can
have a great impact on studies of  higher
organisms, where such analyses are more difficult
to perform. 

Chapter 2 The transcriptional program 
during the yeast respiratory cycle

A similar analysis was used to investigate the
phase-relationship between transcription, energy
availability and redox state (Fig. 1). The transcript
abundance (Fig. 1A) for the anabolic, catabolic and
noisy gene superclusters from time-series
transcriptome dataset34 were used to calculate the
rate of  change, as a proxy measure for
transcriptional activity (Fig. 1B), revealing both the
transcription initiation points (when rate of
change becomes positive) for the anabolic (~280°)
and catabolic (~50°) superclusters, and global
patterns, such as an increase in transcript rate in
mid-reductive phase (~220°) followed by a sharp
drop before anabolic transcription. CE-MS time-
series measurements showed oscillations of  ATP
which temporally coincide with global increases in

transcription rates (Fig. 1B,C). ATP:ADP (as a
measure of  ATP availability; Fig. 1D, red) and the
adenylate energy charge, which spans the entire
range reported for yeast42 (EC; Fig. 1D, orange),
peak in the oxidative phase and their recovery
coincides with the transcription initiation in the
anabolic supercluster. NAD(P)H (Fig. 1D, blue), as
a proxy for cellular redox state, also shows a phase
relationship with respiration and coincides with
catabolic transcription initiation.

This high variability of  energetic and redox
potential during the yeast respiratory cycle
emphasizes the diversity of  naturally occurring
physiological states. The phase relationships with
the transcriptional activity, where maximal
transcript turnover of  anabolic and catabolic
genes corresponds to the phases of  transition
between low and high energy states, implies an
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Figure 1 Transcription, energetics and redox state
during an average respiratory cycle
Total mRNA abundances34 for the gene expression super-
clusters31 (A; ∑[mRNA]) were used to calculate mRNA
abundance rate of  change (B; ∑[mRNA]'), as the change in
mRNA abundance every 15°. Red shades indicate anabolic,
blue shades indicate catabolic, and yellow shades indicate
noisy genes. AMP, ADP & ATP concentrations (C) measured
by CE-MS were used to calculate the energy charge (EC, D,
red) and ATP:ADP (D, orange). NAD(P)H (D, blue) was
measured by in situ fluorimetry32. An average cycle was
constructed by a cubic spline fitting. Dotted lines represent
the DO, scaled to the y-axis range of  each panel, and datasets
were aligned using the minimum and maximum first
derivative of  DO. The minimum first derivative of  DO
represents 0°/360°. 



energy dependent general regulatory mechanism
which underlies the global and pervasive
expression dynamics. 

A comparative analysis of  two distinct oscillatory
transcriptome datasets31 reported that differentially
expressed gene clusters have different nucleosome
configurations in terms of  positioning, occupancy
and size of  the NDR (nucleosome-depleted
regions), and differential effects on nucleosome
configurations of  global transcription factor
mutants and ATP-dependent nucleosome
remodelers43,44. Chromatin remodeling in yeast is
mediated by at least two complexes, RSC which is
involved in maintaining nucleosome-free
promoters for efficient transcription45, and the
Isw2 remodel ing complex, which shifts
nucleosomes towards the promoter regions to
inhibit transcription43 and appears to influence
predominantly catabolic genes31. The activity of
both these complexes is ATP dependent. These
observations suggest chromatin structure as the
target of  ATP-driven regulation of  transcription.

The proposed a dual negative feedback loop
model (Fig. 2), that shapes gene expression to the
energetic landscape, can have a highly oscillatory
output. This involves ATP activation of  the RSC
complex resulting in the expression of  genes with
well defined nucleosome depleted regions, while
simultaneously repressing the expression of
catabolic genes through the Isw2 complex.
Decreased intracellular ATP results in reversal of
all these processes. Anabolism and catabolism
become therefore globally partitioned: mediated
by direct feedback loops between the energetic
and redox state of  the cell and chromatin state via
enzymatic cofactors and coenzymes. This model is
supported in higher eukaryotes by previously
reported in vivo and in vitro ultradian oscillations in
the nucleosome remodeling in glucocorticoid and
estrogen systems, where pulses of  stimulant or
ATP caused a damped ultradian oscillation in
nucleosome structure46,47.

Recently, the respiratory oscillation has been
correlated with the growth and the general stress
responses of  yeast 30,31. The model proposed here
can describe these phenomena with respect to
ATP availability and chromatin remodeling, and
would require only minimal regulation framework
to switch cellular states, i.e., cells would express
“growth” or “stress” expression profiles based on
cellular energetics feeding back onto chromatin
structure, through remodeling complexes. 

Chapter 3 Quantifying periodicity in time-
series, high-throughput datasets

Cellular network dynamics are excitable and
inherently non-linear, properties that stem from
the multitude of  feedback and feedforward loops
involved in biological processes18,48. These systems
form an intimate feedback with the environment
to generate the dynamic phenotype of  the cell
(e.g., oscillation/pulsing, bursting bistability)49,50.
The feedback and feedforward systems have
drastically different time scales that vary over
several orders of  magnitude51 and the interaction
between different dynamical processes remains
poorly characterized. Understanding the dynamical
interactions between time scales are key to
understanding the complex phenotypes of
embryogenesis52, circadian biology in disease53 and
psychology13,14. 

Generally, analysis methods are restricted to the
period of  interest, such as the perturbation length
or oscillation period, and the sampling frequency
limits the use of  many powerful time-series
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Figure 2 A dual negative feedback model depicting the
direct influence of  ATP on gene expression
High intracellular ATP availability leads to the activation of
anabolic genes and repression of  the catabolic genes through
nucleosome-remodeling processes acting on differential
chromatin structures. This results in the expression of  the
anabolic program, which leads to cellular growth. As ATP is
consumed, the anabolic genes become down-regulated, the
nucleosomes remodeling activity decreases, easing the
repression of  the catabolic genes. This leads to the expression
of  the catabolic program which results in increased ATP
production. With the increasing ATP production, the
mitochondria eventually becomes de-energized, halting
energy production. 



analysis tools54. Autocorrelation55 and Fourier
transform55,56 methods rely on targeting a
particular frequency, and can be prone to
generating false calls due to frequency changes and
multi-oscillators. Singular Value Decomposition
(SVD)/Principal Component Analysis (PCA)
generally assumes that the largest variances are the
most interesting (neglecting subtle effects), and
also does not allow for the use of  a priori
knowledge to the analyses57. Furthermore, it is
difficult to assign meaning to the contributions of
each time-series to the components58,59. Wavelets
analyses are powerful, but require data of  higher
density than high-throughput experiments usually
provide23,60–62. Among the methods proposed, one
major limitation is the inability to separate,
quantify and unambiguously describe different
periods in a multi-oscillatory signal. We63 therefore

focused on the discrete Fourier transform (DFT)
spectral analysis, which addresses these issues, and
developed a tool that expands on the signal-to-
noise (SN) ratio approach31,55. After a DFT
decomposition Fig. 3), the SN ratio and its
significance for each frequency is calculated, the
non significant frequencies are removed and the

signal reconstructed, thus generating a model
waveform, whose goodness of  fit to the original
data is calculated using the coefficient of
determination (R2) . The reasoning behind the
construction of  the model is that removing time-
points for reducing the complexity of  the dataset
or smoothing time-series offers little control over
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Figure 3 Graphical representation of  the waveform
model construction
The raw gene expression time-series of  gene YAL067C (A;
arbitrary fluorescence units) is first decomposed by fast
Fourier transform (B). The significant powers which
comprise the signal based on the significance cutoff  specified
(C) are then recomposed to produce the model (D). A linear
fit is then used to determine the coefficient of  variation (E;
R2 = 0.695) for the data (A) vs. the model (D).

Figure 4 Identification of  phase-relationships in a flow
cytometry dataset23 
Each datapoint represents the number of  cells (CN) in a
DNA intensity bin (peak propidium iodide channel)20. These
were aligned and scaled according to the G1 and G2 peaks (A;
histogram of  the average CN over the time-series is shown in
right panel). Residuals (B) were calculated by subtracting the
average CN over the time-series and then filtered using the
waveform algorithm (C; R2 values in sidebar). The dissolved
oxygen (DO) trace during the experiment is shown in D. The
major component (4 cycles) was characterized by the phase-
angles with respect to the respiratory oscillation and SN ratio
at each DNA concentration (E); the mean (DC) is shown in
sidebar. The dashed line represents the DO trace over one
cycle, scaled to the range of  the panel. Phase-angles 0°/360°
indicate the phase of  minimum DO uptake rate. 



the temporal patterns that are being eliminated.
However, a DFT decomposition of  the dataset
provides the user with means to decide which
frequencies are of  interest and remove low
amplitude components or frequencies that are
outside the temporal window analyzed.

The algorithm was developed in R64 and is called
waveform. The main parameters passed are the
cutoff  method (SN ratio or its P value) and cutoff
threshold (default to 2 and 0.05, respectively). It
can be used in an exploratory manner (untargeted
approach, preserves all significant oscillatory
components) or directed towards a set of
periodicities (targeted approach, also screens out
oscillatory components that are not targeted). The
significance can be calculated using either a model
or permutations. The statistics necessary for a full
characterization of  the Fourier components (DC,
amplitude and phase) are also calculated.

The tool was used for clarifying the phase
relationship, significance of  oscillation and
duration of  the DNA division cycle in a flow
cytometry time-series dataset23 (Fig. 4A). While
subtracting the background (Fig. 4B) already
reveals the main patterns, information such as the
precise timing of  DNA replication with respect to
the respiratory oscillation and the amplitude in the
S-phase regions are not trivial to extract. The
waveform model was used to accentuate the
regions of  interest by using an untargeted
approach with the default parameters (Fig. 4C).
Interestingly, S-phase was shown to be a linear
time-series that continues throughout the
respiratory cycle, starting during the phase where
DO was lowest (Fig. 4E), which was earlier than
previously reported20, and may resolve conflicting
timings of  mid S-phase found for different
oscillation periods22,65. This could only be
observed after filtering out the contaminating
frequency components from the much larger G1

and G2 cell cycle phase peaks. 

The algorithm has a variety of  other applications,
such as exploratory analysis of  mass spectrometry
data, identification of  differential responses to
perturbation, and identification of  least oscillatory
values to assist normalization of  highly oscillatory
datasets56,66. The temporal characterization shown
in Figure 4E, i.e., calculation of  mean value (DC),
phase-angle, SN ratio and its significance for a
particular periodicity, provides metrics by which
data across experiments can be easily correlated. 

Chapter 4 Global DNA occupancy during 
the yeast respiratory cycle

The chromatin landscape, defined by the
occupancy and the state of  histone octamers along
the DNA (nucleosomes), is a major determinant
of  gene transcription. While nucleosome
positioning is partially determined by the DNA
sequence67–69, energy-dependent processes such as
nucleosome remodeling43,70,71. The nucleosome
downstream of  TSS and the upstream nucleosome
depleted region (NDR) stand out as a target of
regulation for nucleosome remodeling complexes,
where inclusion of  the H2A.Z histone variant,
covalent histone modifications and transcription
factors facilitate the entry of  RNA polymerase II
(PolII) into the gene71–74. 

Previous studies have produced high-resolution
maps of  nucleosome positioning 69,75 and
investigated genome-wide chromatin remodeling
and histone modifications using chemical and/or
genetic perturbations44,71,76,77. However, these
studies rarely account or measure the energetic
state of  the culture, which is one of  the principal
drivers of  chromatin remodeling, transcription
and cellular growth. This is probably best
exemplified by the strict requirement of  ATP, but
not of  transcription or replication, for in vitro
reconstitution of  nucleosome configurations at
promoters70. 

This study measured the genome-wide DNA
occupancy using tiling arrays that were hybridized
with DNA extracted from time-series samples
taken over three respiratory cycles (Fig. 5).
Spatially, the average DNA occupancy profiles
around the transcription start sites of  protein-
coding genes (TSS; Fig. 5A) follow the canonical
pattern of  a NDR centered at ~75 bp upstream
of  TSS, flanked by well organized nucleosome
arrays. Temporally, a DFT analysis of  the dataset
revealed the major period (67 minutes; 15% of
probes; P value < 0.05), but it was immediately
apparent that the DNA occupancy data comprises
of  higher frequencies (Fig. 5A). However, the
resolution of  the tiling arrays used made
identification of  nucleosomes unreliable, and a
published high-resolution map of  S. cerevisiae
nucleosomal dyads69 was cross-referenced with the
DNA occupancy dataset to define preferential
nucleosomal positions.

Nucleosomes found +2 to the penultimate
nucleosome were defined as gene body
nucleosomes (Fig. 5B; GB) and showed two peaks

5



per cycle (GB60° and GB225°), while all nucleosomes
found in NDR-flanking regions at both 5' and 3'
ends of  genes, including the TSS-covering
nucleosome, show three peaks (Fig. 5B; TSS75°,
TSS225° and TSS330°). TSS225° and the major GB225°

events coincide, whereas TSS75° and TSS330°

coincide with the metabolic transitions between
oxidative and reductive phases. DNA occupancy at
the NDR is lowest during two temporal windows
(45° & 240°; Fig. 5A). To explore DNA occupancy
data in the context of  gene expression, the dataset
was compared with the temporal program of  co-
expressed and functionally coherent gene cohorts
during the respiratory oscillation31. Surprisingly,
little difference could be observed in the temporal
profiles of  DNA occupancy at nucleosomal
positions of  the anabolic and catabolic clusters
(Fig. 6A), despite differential transcription. Thus, a
global chromatin restructuring event during the
respiratory cycle occurs similarly for all genes
regardless of  promoter architecture. 

To further characterize these genome-wide events
in promoter, histone H3 presence and the

acetylation state (H3K9ac:H3) were tested by
ChIP-qPCR. Again, the differences between
differentially transcribed genes are at best subtle,

but show clear correlations to the global
occupancy dynamics (Fig. 6A – C ) . TSS H3
occupancy gradually increases over the reductive
phase in all genes and its peak coincides with the
global event (GB225° & TSS225°), not exhibiting
major secondary peaks. In contrast, H3K9
acetylation is enriched at the two transition events
that are seen at TSS, suggesting these peaks in TSS
protein occupancy may rather reflect binding of
promoter-remodeling or transcription initiation
complexes rather than an increase histone
occupancy. Notably, a large decrease in acetylation
during the mid reductive phase coincides with the
nucleosomal focusing event, providing evidence
that this event was a result of  histone
deacetylation. The total transcript levels of  the
two superclusters (∑[mRNA]; Fig. 6D) were used
to calculate global changes in transcript turnover
(first derivative ∑[mRNA]'; Fig. 6E), which
revealed a short increase, then sharp drop of
∑[mRNA]' in both superclusters at the
nucleosomal focusing point, thus potentially
reflecting a co-release of  transcripts with PolII
and a subsequent global halt on transcription, or
increased RNA degradation. These transcription
rate profiles closely matched the PolII occupancy
in the gene body at two anabolic and two catabolic
genes (Fig. 6F), confirming these changes are a
result of  transcriptional activity. 

In summary, this study correlates DNA occupancy
dynamics, mRNA expression timing and the
metabolic state of  the culture. Protein occupancy
at NDR-flanking nucleosomes increases at the
transitions between high and low energy states,
coinciding with the transitions between the
expression superclusters. A rapid sequence of
genome-wide events occur after energy state has
reached a minimum during the reductive phase,
i.e., a genome-wide increase of  histone occupancy,
clearance of  the NDR, and a global decrease in
transcription rates. After this sequence, ATP:ADP
recovers quickly and the expression of  anabolic
supercluster genes proceeds. These time-resolved
data imply the observed nucleosome focusing
event as a key step that resets transcription during
the respiratory oscillation. Furthermore, while the
three TSS events correspond to increases in
transcript abundance globally, they are not
reflected in the differential expression profiles of
the anabolic and catabolic superclusters,
suggesting that differential expression does not
result from targeted chromatin remodeling, but
stems from effects these global remodeling events
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Figure 5 Average DNA occupancy dynamics around
gene TSS per respiratory cycle 
An average cycle was constructed by a cubic spline fitting of
the dataset (normalized by the least variant set66) comprising
three respiratory cycles (33 samples; sampling every 6
minutes; oscillation period 67 minutes), where protein-bound
and genomic DNA sample pairs were extracted using a novel
one-pot method. The average occupancy dynamics are shown
as median DNA occupancy (color-coded, capped at –1 for
increased resolution) around the TSS of  5140 genes (A) and
around nucleosome dyads69 (B), which were classified
according to their position with respect to TSS: GB (gene
body nucleosomes except for +1/terminal nucleosomes),
TSS (nucleosome at TSS). Time is represented as phase-
angles calculated according to the DO (represented as a
subscript throughout the text), where the minimum first
derivative of  the DO data (bottom panels) represents
0°/360° and gray areas indicate the reductive phase. 



have on different promoter structures.

Chapter 5 The infuence of intergenic 
distances on gene expression

Upstream nucleosomes (namely –1, –2) are
commonly thought to regulate the exposure of  the
promoter and the recruitment of  factors necessary
for transcription, and are often represented in the
regulatory structure of  the gene. By extension, the
length of  the nucleosome depleted region (NDR)
which is formed between the +1 and –1
nucleosomes, is considered a crucial factor in
transcription regulatory processes such as the
incorporation of  the H2A.Z histone variant and
the recruitment of  nucleosome remodeling
complexes73,74. However, when taking into
consideration the compactness of  the yeast
genome where intergenic regions, calculated from
start to start/end codons are on average shorter
than 400 bp and can be as short as 71 bp78, it is
soon apparent that many upstream nucleosomes
intersect with the upstream features (e.g., other
genes). Recent nucleosome maps revealed that few
well-positioned nucleosomes can be seen outside
non-coding regions70,75, and that nucleosome in
intergenic regions have shorter inter-dyad
distances, thus are sometimes partially wrapped79. 

Analysis of  the distance from gene TSS to the
start/end of  adjacent upstream features showed
that a majority of  genes are less than 305 bp away
from their neighbor (distance referred to as the
length of  the upstream regulatory region, URR).
Since most start and end codons are occluded by a
well-position nucleosome, this distance is
comparable to the length of  the NDR if  no well-
positioned nucleosomes were to be found in this
intergenic region. Indeed, the distribution of  the
URR peaks at 225 bp, which coincides with
position of  the –1 nucleosome on a majority of
genes (200 – 250 bp upstream of  TSS)80,
suggesting that –1 nucleosomes are often the well-
positioned +1 or terminal nucleosomes of  the
upstream feature, and that the upstream NDR
length is mostly dictated by this intergenic
distance. Moreover, the URR length distribution
did not show any secondary peaks, suggesting the
URR length, and by extension the NDR length, do
not occur at any set frequency overall. This
confirms recent data81 which shows a continuum
of  positions where the –1 nucleosome could be
found. When taking the directionality of  the
intergenic regions into account, the divergent
regions (where two gene promoters are shared or
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Figure 6 Defining the respiratory oscillation reset point 

Median profiles aligned to gene nucleosome dyads of  the
anabolic and catabolic superclusters (A) were calculated as in
Figure 5B. Histone H3 (B) and H3K9ac (C, log-ratio values
with respect to H3) ChIP time-series (14 samples; sampled
every 4 minutes; oscillation period 53 minutes) were amplified
by qPCR at TSS regions of  2 anabolic (red hues) and 2
catabolic genes (blue hues). Total mRNA abundances34 for
each supercluster (D; ∑[mRNA) were used to calculate
mRNA abundance rate of  change (E; ∑[mRNA]'), as the
change in mRNA abundance every 15°. The same samples
for B & C were used for PolII ChIP-qPCR at gene body  of  2
anabolic (red hues) and 2 catabolic (blue hues) genes (F).
PolII signals were normalized with respect to a subtelomeric
region on chromosome VI. ATP:ADP and EC (G, red hues)
were calculated from CE-MS measured ADP & ATP
concentrations40 . NAD(P)H (G, blue) was measured by in situ
fluorimetry32. An average cycle was constructed by a cubic
spline fitting for each time-series spanning several cycles (A,
D, E, G). Error bars in B, C, F represent the standard error
of  mean of  qPCR triplicates.  Dotted lines represent the DO,
scaled to the y-axis range, and datasets were aligned using the
minimum and maximum first derivative of  DO. The
minimum first derivative of  the DO data represents 0°/360°.



adjacent) have an apparent ~200 bp periodicity,
while unidirectional regions (where the promoter
of  a gene is adjacent to the end of  another gene)
did not have visible periodicities. 

The URR length was binned to the average
distance between dyads (~162bp69) and promoter
structure averages (Fig. 7A) confirmed that, in a

majority of  genes, the first upstream nucleosome
coincides with the start of  the upstream feature (in
the divergent case) or the end of  the upstream
feature (in the unidirectional case), thus
supporting the equivalence of  the URR and the
upstream NDR. Moreover, when the dominant
transcription initiation machinery82 was compared
to the URR length (Fig. 7B), the TFIID-
dominated genes (representing ~80% of  genes)

are enriched in short URR genes in both divergent
and unidirectional gene pairs, and SAGA-
dominated targets are enriched in genes with
longer unidirectional URR or very long URR. 

The URR of  the gene targeted by various
chromatin remodelers43,83,84 (Fig. 7C) was analyzed,
and it was apparent that remodelers investigated
are principally enriched in divergent genes. A high
enrichment of  INO80 targets was primarily found
on shorter URR, which agrees with the more
regular nucleosomal distributions that can be
observed on these genes85,86. Divergent genes
spaced further apart are enriched in RSC targets,
while unidirectional gene pairs show little
significant enrichment of  chromatin remodelers
by URR length, except for the very long URR
genes that are enriched in Isw2 remodeling
regardless of  directionality. This indicates an
increased regulation on genes that share
promoters. The URR length also showed a
significant positive correlation with the expression
mean, amplitude, and signal-to-noise ratio34 (Fig.
7D).

Adjacent divergent gene pairs in high proximity
show strong temporal correlations in both
superclusters, suggesting that their transcription is
initiated simultaneously. The noisy expression
clusters, which encompass a third of  the yeast
genome and generally have short URR, are most
enriched in this co-expression, reflecting the
overall trend of  the transcriptional program which
starts at high energy levels and stops when
chromatin structure is reset (Fig. 5). The high
correlation with ATP dynamics (Fig. 1C) suggests
these genes are not under specific regulatory
mechanisms, but are most influenced by cofactor
availability, hindered by the small NDR, resulting
in a low abundance, “noisy” expression. 

In summary, a majority of  genes either do not
have upstream nucleosomes or share their single
upstream nucleosome with the adjacent feature,
thus questioning the regulatory importance of
these nucleosomes. The intergenic distance
between adjacent features showed a positive
correlation with gene expression levels, signal-to-
noise and amplitude, and a negative correlation
with the well-positioning of  nucleosomes and
nucleosome occupancy levels observed in the gene
body, suggesting these properties could be a side-
effect of  the nucleosomal crowding on the
genome. These results did not translate in
differences between anabolic and catabolic genes,
but provided substantial clues on the temporal
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Fi gur e  7 Promoter structure, transcription initiation
machinery, remodeling activity and gene expression
statistics with respect to intergenic (URR) length
The distance from TSS to the nearest upstream start or stop
codon (x-axis) of  3816 genes (excluding genes with unknown
TSS, their upstream and non-protein coding features) was
binned by 162 bp and classified by the directionality of
adjacent genes (divergent = opposite strands, unidirectional =
same strand). The number of  genes in each bin is shown in
the rightmost column. A static promoter profile for each gene
group (A) was obtained by averaging all time-points of  the
DNA occupancy dataset (Fig. 1A). The enrichment of  genes
classified by their dominant transcriptional machinery82 (B),
and binding targets (C) of  INO8084, RSC83 and Isw243 were
calculated by hypergeometric tests, and the color gradients for
B and C indicate 2-fold enrichment compared to the expected
number of  hits assuming a normal distribution; gray indicates
0 hits. Statistics on gene expression (D), namely the amplitude
of  the transcriptional oscillation (Am, log2), mean expression
(DC, log2) and signal-to-noise ratio (SNR, decibels) for each
gene were obtained using a DFT decomposition (Fig. 4D) on
a time-series expression dataset34. White denotes the mean
value for each statistic in the dataset, and P values were
calculated by t-test. In all panels, *: P value < 0.05, **: P value
< 0.005, ***: P value < 0.0005,  ****: P value < 0.00005.



organization of  divergent pairs of  genes which
tend to be co-expressed (that likely share
promoters or have adjacent promoters). Further
studies should focus on the DNA structure, e.g.,
the positioning of  TATA boxes with respect to
nucleosomes and common DNA sequences31, and
the potential mechanisms of  co-regulation of
adjacent or overlapping promoters. 

Chapter 6 Concluding remarks

Rhythmicity plays a significant role in biological
systems, with examples spanning a wide range of
time-scale domains, from milliseconds to
hundreds of  years, and careful orchestration of
these time-scales is required in order to maintain
spatio-temporal coherence from cells to
ecosystems. Cellular rhythms in particular are
being investigated with increasing interest due to
evidence that their interplay with circadian
rhythmicity has significant health implications.
However, technical limitations in acquiring high-
density time-series samples that are either
synchronized with respect to the rhythm being
investigated or monitoring single cells without
perturbation present a bottleneck for these
investigations. Yeast continuous cultures, in which
individual cells auto-synchronize their behavior to
produce stable ultradian respiratory oscillations
that can be precisely monitored provide an ideal
system for studying cellular dynamics.

The yeast respiratory oscillation has clock
characteristics and displays an alternation of
oxidative and reductive cellular states. Previous
high-throughput time-series analyses showed that
transcription, metabolite production and DNA
replication are highly oscillatory and have a phase-
re lat ionship with the respiratory cycle.
Computational analyses revealed a temporal
separation between the anabolic and catabolic
transcriptional programs which occur out-of-
phase with the physiology, where the “switch”
points correlated with changes in energetic and
redox states. Comparisons between these
differentially-expressed gene cohorts and a
compendium of  high-throughput datasets
available for yeast genes pointed to chromatin
structure and remodeling as the discriminating
factor. Taken together, these data led to a model
of  gene transcription regulation in which cellular
energetics feedback on the chromatin state
through nucleosome remodeling or nucleosome
modifications, resulting in differential transcription
of  the anabolic and catabolic cohorts depending

on energy availability.

To address issues related to characterizing and
correlating periodicity in the increasing amount of
high-throughput time-series data on the
physiology, cell cycle, redox biochemistry,
energetics, metabolism, transcription, post-
translational modifications, etc., computational
tools to identify and quantify multi-periodicities
were developed. These tools can be used for
processing, normalizing, clustering data and
identifying biological signals without distorting the
temporal structure of  the dataset.

Following the evidence that points to a global
regulation of  chromatin structure through energy-
dependent processes, the DNA occupancy was
investigated during the respiratory cycle, for which
time-series friendly protein-bound DNA
extraction methods were also developed. The
study revealed a point of  global nucleosome
focusing that temporally coincides with a general
transcriptional slow-down, between the end of  the
catabolic and beginning of  the anabolic
supercluster transcription. Evidence indicates this
event is facilitated by global histone deacetylation,
and the subsequent global acetylation event kick-
starts the transcription of  the anabolic
supercluster. This chromatin reset point provides a
mechanistic explanation for the shut-down of
catabolism when energy becomes available and the
subsequent start of  the anabolic program. 

When put in the context of  circadian rhythms,
where a similar succession of  events has been
observed87, the existence of  this reset point, that
corresponds to a point of  high robustness to
oxidative stress in the yeast continuous culture
system88, may explain the resilience of  pathogens
and tumors, considering the cell heterogeneity.
Furthermore, evidence that tumor cell growth is
coupled with circadian rhythmicity of  the host89,90,
but that the temporal windows in which the host
and tumor cells undergo DNA replication may be
out of  phase with each other91 imply that the
efficiency of  chemotherapy could be greatly
enhanced by taking into account the timing of
drug delivery.

Another significant result of  this study was that
RNA polymerase II occupancy, nucleosome
occupancy and acetylation levels display global
oscillatory patterns that are not dictated by the
gene transcription timing, but instead seem to be
determined by the cellular state. This supports the
hypothesis that differential regulation of
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transcription is encoded in the gene promoter
structure, providing a substrate that responds
differently to the same cellular environment. A
computational analysis of  the nucleosomal
landscape at gene promoters found that, due to
the compactness of  the yeast genome, a majority
of  genes either do not have upstream
nucleosomes or share their single upstream
nucleosome with the adjacent feature, thus
questioning the regulatory importance of  these
upstream nucleosomes. Furthermore, the
intergenic distance between adjacent features
showed a positive correlation with gene expression
levels, signal-to-noise and amplitude, and a
negative correlation with the well-positioning of
nucleosomes and nucleosome occupancy levels
observed in the gene body, suggesting these
properties could be a side-effect of  the
nucleosomal crowding on the genome. The
predominant initiation machinery was also found
to be differentially enriched in genes with long and
short upstream intergenic distances. These results
did not translate in differences between anabolic
and catabolic genes, but provided substantial clues
on the temporal organization of  divergent pairs of
genes (that are likely sharing their promoter region
or have adjacent promoters), which tend to be co-
expressed. Overall, these studies emphasize the
importance of  the chromatin structure at
promoter regions, but put in question the
regulatory role of  nucleosomes found outside
gene bodies, and instead suggest further studies
should be undertaken on the DNA structure, such
as the positioning of  TATA boxes with respect to
nucleosomal dyads and common DNA
sequences31, the spacing between genomic
features, and the potential mechanisms of  co-
regulation of  adjacent or overlapping promoters. 

Taken together, the results presented indicate
global chromatin dynamics, that are largely driven
by the cellular energetic and redox state. The
regulation of  anabolic and catabolic gene
expression programs is likely carried out through
differential effects of  chromatin remodeling
complexes acting on differential DNA structure of
promoter region. Considering the observed drop
in nucleosome occupancy specific only to TSS
nucleosomes, which occurs at the transition
between the anabolic and catabolic transcriptional
programs, this regulation may only affect these
nucleosomes, where shifts of  less than 10 bp can
hinder transcription43,71. Therefore, obtaining time-
series data in which the metabolic state is taken

into account  to assess the activity of  chromatin
remodeling complexes at these regions is crucial
for uncovering the precise mechanisms of  gene
regulation. 
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