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Summary

In this research, BitTorrent as one of the most popular and successful P2P

applications in the current Internet, is taken as an example in a study of un-

coordinated P2P operation. The first problem to be addressed in this research

is how to reveal the topology of real BitTorrent swarms, how dynamic the

topology is, and how it affects overall behavior. We study BitTorrent net-

works, where real-world BitTorrent swarms were measured using a rigorous

and simple method in order to understand the BitTorrent network topology.

We propose usage of the BitTorrent Peer Exchange (PEX) messages to infer

the topology of BitTorrent swarms listed on a BitTorrent tracker claiming to

be the largest BitTorrent network on the Internet, instead of building small

BitTorrent networks on testbeds such as PlanetLab and OneLab as other re-

searchers have done. We also performed simulations using the same approach

to show the validity of the inferred topology resulted from the PEX messages

by comparing it with the topology of the simulated network. Our result, ver-

ified using the Kolmogorov-Smirnov goodness of fit test and the likelihood

ratio test and confirmed via simulation, show that a power-law with expo-

nential cutoff is a more plausible model than a pure power-law distribution.

We also found that the average clustering coefficient is very low, implies the

BitTorrent swarms are close to random networks. BitTorrent swarms are far

more dynamic than has been recognized previously, potentially impacting at-

tempts to optimize the performance of the system as well as the accuracy of
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simulations and analyses.

In the current content delivery architecture, many CDN companies and

ISPs adopt hybrid CDN-P2P because of the advantages of P2P. On the P2P

side, peers are organized in a tree-based overlay on a per substream basis for

live streaming. This ensures that all peers contribute some upload bandwidth.

Each CDN server keeps track of clients currently assigned to it to avoid the

undesirable side effects of P2P. Each client learns about other peers assigned

to its designed CDN server. Since in a hybrid CDN-P2P architecture, some of

the workload or data delivery is done by peers, CDN servers benefit from a po-

tential reduction in power consumption. The second problem to be addressed

in this research is the trade-off of hybrid CDN-P2P architecture compare to

CDN. We solve this problem by proposing a simple model of power consump-

tion of CDN server and router, including the cost of cooling needed generated

from the power consumption of the CDN server and router. Furthermore, this

power reduction can be used for capacity planning of data centers.

Finally, our proposed methodology can contribute to further characterizing

P2P networks and promotion of relaxing capacity planning data center in term

of energy consumption by hybrid CDN-P2P.

Keywords: P2P, BitTorrent, Peer-Assisted CDN, Power-Law, CDN, Energy.



論文要旨

本研究では、uncoordinated P2P の運用の研究のために、BitTorrent を

取り上げる。BitTorrent は今日のインターネットで最も広く使われている

P2P アプリケーションである。一つ目の問題は、現実の BitTorrent Swarm

のトポロジが如何に動的であり、全体の動作にどう影響するのか、その実

態をどうやって解明するかである。本研究では、正確で単純な手法を用

いて現実の BitTorrent swarm を計測することで BitTorrent のネットワー

クトポロジを明らかにし、BitTorrent ネットワークについて研究した。先

行研究が PlanetLb や OneLab 上に BitTorrent ネットワークの小型テスト

ベッドを作成して研究しているのと異なり、本研究では、BitTorrent Peer

Exchange (PEX) メッセージを利用して、BitTorrent tracker に記載されて

いる BitTorrent swarm のトポロジを推測し、インターネット上で最大の

BitTorrent ネットワークを求めた。この推測手法の正当性の検証にはシ

ミュレーションを利用し、シミュレートされたネットワークと、そのネッ

トワークの PEX メッセージから推測したネットワークを比較した。コル

モゴロフ -スミルノフ検定と尤度比検定を用いて検証した結果、べき乗分

布より、指数関数的カットオフの存在するべき乗分布に近いことがわかっ

た。また、クラスタ係数の平均はとても小さく、現実の BitTorrent swarm

はランダムネットワークに近いことも分かった。BitTorrent swarm は、従

来考えられてきたように潜在的にパフォーマンスを最適化を試みていると

言うより、動的である。

現在のコンテンツ配送アーキテクチャでは、CDN 事業者と ISP は P2P
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の長所を活かしてハイブリッド CDN-P2P を採用している。P2P 側では、

ライブストリーミングのために、サブストリーム毎に木構造を基本とした

オーバーレイネットワークを構築している。これは、全てのピアがアップ

ロード帯域に貢献することを保証する。各々の CDN サーバは、P2P の悪

い副作用を回避するために、現在そのサーバに割り当てられているクライ

アントを記憶している。各々のクライアントは、自分の CDN サーバに割

り当てられている他のクライアントを学習する。ハイブリッド CDN-P2P

アーキテクチャなので、データ配送のワークロードのうちいくらかはピア

に分担され、CDN サーバは電力消費を抑えられる。本研究で扱う二番目

の問題は、CDN と比較してハイブリッド CDN-P2P アーキテクチャが持

つトレードオフである。本研究では、電力消費によって必要となる冷却の

コストを含め、CDN サーバとルータの電力消費量の単純なモデルを提案

する。さらに、本研究による電力節約は、データセンターの容量計画にも

利用できる。最後に、我々が提案する方法は、P2P ネットワークを特徴づ

けることにも利用でき、ハイブリッド CDN-P2P のよるエネルギー消費の

意味で、データセンターの容量緩和の促進に利用できる。

キーワード: P2P, BitTorrent, Peer-Assisted CDN, Power-Law, CDN, エネ

ルギー
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Chapter 1

Introduction

1.1 Background

Internet-based multimedia content delivery enables users to watch desired

content from any location at any point of time. With the increasing capacities

of end-user devices and faster Internet connections, the popularity of such

services is growing steadily. Cisco VNI predicts that video streaming will

significantly outweigh other types of consumer Internet traffic, such as file

sharing, Web, Voice over IP (VoIP), and online gaming [11]. In contrast to file

transfers, video streaming enables users to watch the video while downloading

it, which imposes strict requirements on the delivery infrastructure. The users

expect performance similar to traditional television, with short startup delays

and without performance degradations or playback stalling during watching.

This is exacerbated by the growing requirements on video quality, such as

higher resolutions and additional features (high-definition and 3D videos). The

higher quality typically results in increased video bitrates that require higher

download bandwidth.

Today, users are increasingly able to consume videos directly from their

TV screens using Internet-enabled Set-top Boxes (STBs) such as digital video

12



CHAPTER 1. INTRODUCTION 13

recorders, game consoles, or other entertainment devices. Questions arise as

to which delivery architecture is able to provide this vast amount of video

content to end-user devices and which mechanisms are required to make this

architecture scalable and cost-efficient. Common solutions are centralized and

decentralized delivery architectures employing various mechanisms to deliver

video streams to end-users. These delivery architectures build overlay networks

on top of the underlying Internet infrastructure. The simplest architecture for

video streaming is based on the centralized client-server model. Here (one

or many) video servers send a separate video stream to each client, which

results in high bandwidth costs for popular content and potential scalability

issues for large numbers of concurrent users. The peer-to-peer (P2P) paradigm

offers a promising alternative to pure server-based video distribution networks.

Here, the users, called peers, not only consume but also provide services to

other peers. The application of the P2P paradigm to video streaming uses

peers’resources, such as local storage, computational power, and bandwidth,

to reduce the load and costs of content servers. In the extreme case of pure P2P

streaming, there are no dedicated servers anymore and all services are provided

by regular peers. If we consider a commercial streaming system, a pure P2P

solution turns out to be insufficient because it lacks important properties such

as service guarantees for users, security, and control by the content provider. In

order to overcome these limitations, a peer-assisted architecture can combine

content servers and peers intelligently.

In order to understand the relationships between entities in a P2P-CDN

ecosystem and to identify the possible tensions, we must understand their roles

in the architecture:

• Overlay providers contribute the initial content and host servers for con-

tent injection and indexing. In a pure commercial scenario the overlay

provider also acts as a content provider, while in a scenario with user-
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generated content the content is contributed by users that upload it to

content servers. Typically, an overlay provider receives certain payments

for the hosted content, either directly from users (usage-dependent or

subscription-based) or indirectly via advertisements.

• Users consume the streamed videos but also provide their resources to

the system, such as upload bandwidth, local storage space, and online

time. The users typically pay flat-rate fees for the Internet access, which

explains why they allow an overlay provider to use their upload band-

width.

• Network operators provide infrastructure for Internet access and receive

flat-rate payments from the users for this service. Typical delivery over-

lays span several network domains controlled by different network op-

erators. Therefore, network operators must manage both the internal

and external traffic flows to avoid congestion and excessive payments for

traffic transit.

A peer-assisted solution shifts the main load of content delivery from the

overlay providers’servers to users. However, the actual delivery costs are

shifted from the overlay providers to the network operators. The reason is

the widespread acceptance of flat-rate based pricing for the Internet access.

These pricing schemes allow network operators to attract users and to sell

high-speed Internet connections. But peer-assisted overlays can also lead to

bottlenecks and link congestions, since the Internet architecture is built for

the client-server traffic pattern where the traffic flows from content servers to

the users. In recent years, the management of overlay traffic that crosses the

boundaries of network operators’domains has gained a lot of attention in the

research community. Thereby, various traffic management methods have been

proposed to relieve the tension between the overlays and network operators.
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However, most of them fail to satisfy the demands of both parties.

1.2 Challenges

In this section, we discuss the specific challenges of peer-assisted architec-

tures. Most of these challenges arise from the necessity to achieve quality of

service (QoS) comparable to the current client-server systems, while using the

limited resources of unreliable peers.

• Limited resources of an individual peer compared to a typical server mean

that the resources of many peers must be combined to serve the same

streaming request. This applies in particular to the upload bandwidth,

which is typically much smaller than the download bandwidth.

• Heterogeneity of peers in terms of their resources and behavior. For

example, the upload capacity is a resource that differs between the users

and affects the system’s performance significantly.

• Lack of service guarantees at peers makes it difficult to ensure a qual-

ity streaming experience to the users (comparable to well-dimensioned

server-based systems). In a commercial scenario, in contrast to pure

P2P-based systems, all users should be able to receive the quality they

paid for, which makes the coupling between the peer’s contribution of

resources and received streaming quality undesirable.

• Missing or insufficient incentives for users to contribute their resources

are a common issue for P2P-based systems. In a commercial scenario, it

can be partially solved by offering rewards or discounts for contributed re-

sources. For example, a peer might get certain credits for each megabyte

of data uploaded to other peers. However, this does not solve the issue of

users that should remain online in order to provide content availability.
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• Energy consumption is becoming an important challenge for content de-

livery. While various approaches were proposed to increase the energy

efficiency of servers and routers in terms of reduced power consumption,

the same issue applies for the users’devices. One interesting aspect here

is whether an idle peer should stay online to serve new requests or leave

the system. While the first option would maximize the peer’s contribu-

tion to the system, the second option would save energy that might be

wasted if the services of this peer are not required.

• Negative impact on the network infrastructure is another issue in peer-

assisted and pure P2P delivery architectures. Most P2P and peer-assisted

overlays apply their own application level routing mechanisms that might

have undesired effects on the underlying network such as congested links

or high costs for the transit traffic.

1.3 Motivation

BitTorrent as one of the most popular P2P file sharing applications, dom-

inated the Internet traffic and is still growing even thought recent studies

suggest that its growth is slower than the growth of Internet traffic and its

proportion to the Internet traffic is declining. This popularity reflects the ro-

bustness and efficiency of the BitTorrent protocol. These characteristics of

BitTorrent come from its peer and piece selection strategies to distribute large

files efficiently.

Many properties of BitTorrent such as upload, download performance, peer

arrival and departure have been studied but only few research projects have

assessed the topological properties of BitTorrent. The BitTorrent system is

different from other P2P systems. The BitTorrent protocol does not offer peer

traversal and the BitTorrent tracker also does not know about the relationship
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between peers since peers never send information to the tracker concerning

their connectivity with other peers. While a crawler can be used in other P2P

networks such as Gnutella, in BitTorrent we cannot easily use a crawler to

discover topology, making direct measurement of the topology very difficult

and challenging. BitTorrent swarm topologies reflect peer behavior. The peer

relationship behavior is very important as a basis for designing a controllable

P2P system to be used together with other systems for example, peer assisted

CDN or peer assisted cloud.

In the current modern content delivery, CDN providers tend to combine

P2P with CDN in order to help with the scaling the services, especially related

to traffic or bandwidth saving. It has been done by, for example, Akamai and

Pando networks. The bigger issue is not traffic or bandwidth that can be

relatively easily fulfilled by adding a network card into a router or adding

more servers, but instead is the energy consumption by CDN provider itself

inside the data center. Since the Internet traffic grows, demand for scaling is

also grow thus demand for energy is also grow. This growing is constrained

by energy supply in data center. The usage of peer assisted CDN can be seen

not only for helping scaling the services, but there is potential to reduce the

energy consumption furthermore this reduction can relax energy budget inside

data center.

1.4 Approach

The key factors in this research are: (1) characterization of peer dynamic

in P2P systems, (2) simulation of peer-assisted CDN, and (3) design of energy

consumption trade-off in the using of P2P to assist CDN server.

P2P Swarm Dynamics

Real-world BitTorrent swarms were measured using a rigorous and simple
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method in order to understand the BitTorrent topology. To our knowledge,

our approach is the first anyone has to performed such a study on real-world

BitTorrent network topologies. We used the BitTorrent peer exchange (PEX)

messages to infer the topology of BitTorrent swarms listed on a BitTorrent

tracker claiming the be the largest BitTorrent network on the Internet, in-

stead of building small BitTorrent networks on testbed such as PlanetLab or

OneLab as other researchers have done [14]. We also performed simulations

using the same approach to show the validity of the inferred topology resulted

from the PEX messages by comparing it with the topology of the simulated

network.

Peer-Assisted CDN

The goal of peer-assisted CDN is to improve the delivery of content by the

peer-to-peer network. In this work, we simulated how a peer-assisted CDN

can deliver the content that involved 100000 peers and with a catalog that

consists of 10000 videos. Our model is an improvement from previous re-

searcher [26]. We found that our peer-assisted CDN model can increase peer

contribution while maintaining optimal number of replicas. Increasing of peer

contributions will impact to the energy usage in CDN side. The CDN side can

reduce the workload because some workload of content delivery done by peers.

The conceptual application of peer-assisted CDN in SOI-Asia/AI3 network is

presented in chapter 4.

Energy Consumption of peer assisted CDN

As intermediate step in merging between P2P and CDN, this research intro-

duce energy consumption trade-off in peer-assisted CDN. We analyze the char-

acteristics and the requirements of peer-assisted CDN for live streaming and

peer-assisted CDN for online storage. Then we proposed an energy consump-

tion model for both peer-assisted CDN architectures. To be able to validate

the result, we use the models from two architectures that are currently running
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on the Internet, LiveSky [79] and FS2you [19].

1.5 Contribution

This dissertation contributes by enabling analysis into the integration of

P2P services and CDN services.

• For P2P, we propose new and effective methodology to infer BitTorrent

swarm topologies. We show that gathering BitTorrent swarm topologies

is important as a step to understand peer behavior.

• For Peer-assisted CDN, we show by a simulation that our model can

increase peer contribution while maintaining the optimum number of

replicas.

• For energy trade-off, we show that both peer-assisted CDN architecture

have differences energy characteristics that can be used by considering

the model in the service integration between P2P and CDN. This model

can be used by CDN providers as a basis for: capacity planning in data

center and incentive planning to customer who will run peer-assisted

mode in home gateway.



Chapter 2

P2P Content Delivery

2.1 Introduction

P2P applications such as Napster, Gnutella, FastTrack, BitTorrent, Skype

and PPLive have attracted the end users. In P2P paradigm, the P2P network

is formed by peers that equally share the computing resources in a cooperative

manner. Each peer contributes some of its resources such as network band-

width, storage, etc. As the number of nodes in the P2P network grows, the

capacity of the network grows. This enables a P2P application to be cheap

and it can be used for content delivery.

We noted that the popular P2P file sharing applications are Gnutella, eDon-

key, and BitTorrent, while other type of P2P applications are storage systems,

VoIP, and IPTV [9]. Gnutella is one of the earliest P2P file sharing applica-

tions in the Internet. Gnutella is a pure P2P application that does not use a

centralized server. A Gnutella peer joins the network via at least one known

peer. That known peer IP address is obtained via a list of pre-configured ad-

dresses. From this initial Gnutella peer, we can discover new Gnutella peers.

The Gnutella peer will send the search request of a file to all connected peers.

The recipient peer will answer the query if it knows anything. The recipient

20
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Figure 2.1: Building block of BitTorrent. L refers to Leecher and S refers
to Seeder. In a very popular torrent swarm, where there may be more than
40000 seeders and more than 50000 leechers. While ’get torrent’ and ’fetch
torrent file’ only happen in the beginning of process when a peer join a Bit-
Torrent swarm, the announce step will be repeated for every 30 minutes as the
BitTorrent specification.

peer can forward the request to other peers if it does not know the answer.

Thus, the query will propagate in a flood among the Gnutella network.

Another P2P application is eDonkey. This application is very popular in

Europe. The eDonkey network operates as a hybrid P2P and server. The

eDonkey network consists of number of clients and a number of servers. The

IP address of a server is usually pre-configured when the user installs the

application for the first time. If the user wants to change the server, he or she

can read on eDonkey web portal. The eDonkey server works as an index for

distributing IP addresses of other eDonkey peers to the eDonkey users.
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BitTorrent was created in 2002 by Bram Cohen. It runs on an open protocol

specification, thus there are many BitTorrent implementations. To share a file

or a set of files through BitTorrent, a torrent file must be created for the first

time. The torrent file contains the information of the content, which includes

the information of the tracker and the hashes of the file blocks to be distributed.

The torrent file is usually distributed via BitTorent web portals. The client

then contacts the trackers listed in the torrent file to obtain a list of peers that

are sharing the file at the same time. Important terms in BitTorrent are: a

seeder is a client who has complete chunks/blocks and a leecher is a client who

download the chunks/blocks. The announce step as shown in Fig.2.1 is also

a tool for a peer to get the current state of the tracker e.q list of seeders and

leechers. The BitTorrent specification defines the minimum announce interval

to be 30 minutes [59]. This process from initial phase to join BitTorrent

swarm is shown in Fig.2.1 BitTorrent has generated great enthusiasm for P2P

file sharing distribution due to simplicity. Many open source software projects

use BitTorrent to distribute their applications.

Besides P2P for filesharing, we noted that P2P for streaming is also on the

rise, especially in China. The target of P2P streaming is to build a scalable P2P

platform for TV/music delivery. More than a dozen companies are actively

working in this area; for example, UUSe, PPLive, and PPStream. Let us

take PPLive as an example since it is the most popular P2P streaming service.

According to [28] in 2007, the number of concurrent users for the most popular

PPLive session rose to 1.5 million and the aggregate bandwidth to 100Gb/s.

When the PPLive client is launched by users, it retrieves from a channel server

the metadata for all channels. After the user chooses the channel, the PPLive

client further talks to a tracker of that channel. Next the trackers will give a

list of peers that are watching the same channel. After getting a list of peers,

the PPLive client connects to a set of peers, and starts to exchange data. The
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Figure 2.2: P2P Technologies Building Block. This graph is adapted from [53].

challenge in P2P streaming is to provide a sustained streaming bit rate to

all peers joining the network. In P2P streaming available bandwidth is very

important. Insufficient bandwidth can cause poor video quality.

Figure 2.2 shows the presentation of P2P technologies building block. The

bottom level provides the basic networking abstractions, i.e., the P2P overlay

networks. The middle level provides additional P2P services for delivery and

management (including searching). Above them, we can see P2P applications

which work on top of the previous blocks. Additional overlay abstractions can

be exist in the middle to help the delivery process, for example, mesh structure

and gossip service. Finally, security, trust and cooperation are seen as cross-

layer issues including the mismatches between P2P application cooperation

and ISPs.

All P2P networks run on top of the Internet. We often consider the P2P

network as an overlay network on the top of Internet. We can classify overlays

into: structured, unstructured, and hierarchical. In structured overlays, the

network is formed in a particular structure. The function of a structured

overlay is for storing and locating objects based on a defined virtual address

space. The space is organized according to a given geometry which defines
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neighborhood relationship between peers. For example, Pastry [57], organized

peers in a logical ring and the Pastry’s address position in the ring.

In unstructured systems, the unstructured overlays do not form any fixed

structure in the network. Unstructured overlay networks are typically close

to random graphs. This is due to the nature of every P2P applications that

choose neighbors in random. In unstructured P2P networks, peers usually do

have not the same role as other peers and a peer can choose any other peers

as neighbors with some degree of freedom. In a hierarchical overlay network,

the network is built in an unstructured architecture with superpeers. The

superpeers form the top level and ordinary peers the bottom level. Peers are

organized in different groups and each group can runs its own overlay. A top-

level overlay can be formed by one representative per group. This architecture

will flexible than a conventional unstructured network. Superpeers as a group

can form a different overlay network, either structured or unstructured. Figure

2.3 shows the conceptual of a hierarchical P2P network.

Searching for content in overlay network is one of the key services in P2P.

Index is a keyword in searching inside P2P network. In P2P networks, indices

can be centralized, localized, or distributed. In structured overlay network

centralized indices typically rely on a unique entity. In unstructured over-

lay network localized indices is usually use for searching. Therefore, a query

looking for a particular content must be propagated among peers. However,

indexing does not solve the content poisoning problem in P2P.

In a structured overlay networks, due to the fixed structured form, can

provide the support for exact match queries. Let us take Distributed Hash

Table (DHT) as an example for a structured overlay network [5]. DHT provides

a lookup service similar to hash table; (key, value) pairs are stored in a DHT

and any peers can efficiently retrieve the value associate with a given key.

Therefore a search operation results is fast and efficient.
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Figure 2.3: Hierarchical P2P Network.

Replication is tied to P2P networks. Take the example of BitTorrent. If

a user downloads content in BitTorrent, it means that the user replicated the

content. The block of content already downloaded replicated is in his/her PC

and that block can be downloaded by other peers. Consistency is important in

BitTorrent, that’s why BitTorrent provides a hash for every block for checking

for the right block and rejecting bad blocks from fake content.

Gossiping is a simple and effective mechanism to spread the content. In

P2P overlay networks, each peer participating in a gossiping process contacts

other peers at random and exchanges the information between them. Gossiping

can be done in push or pull mode. Most P2P applications work in both modes.

In BitTorrent, gossiping is done in both push and pull mode and the set of

peers to contact is chosen at random.
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Another important aspect in security of P2P is trust, particularly estab-

lishment of reputation. Establishing the reputation of peers requires collect-

ing information about previous interactions. For example, each BitTorrent

tracker usually has a log to record the peers’ behavior. If a peer has a bad

upload/download ratio, a BitTorrent tracker can blacklist that peer to join

the BitTorrent swarm since the tit-for-tat policy of BitTorrent is the basis of

cooperation enforcement.

We highlight an important aspect related to the impact of P2P technolo-

gies on ISP policies (cross layer issues). P2P solutions are network agnostic,

in the sense that they do not take into consideration the layer 3 of the net-

work paths. Having agnostic P2P solutions can cause problems at different

levels for ISPs. It has been shown that blind selections of neighbors in P2P

networks may result in unnecessary traversal of multiple links inside an ISP.

Furthermore, it can significantly impact the shape and amount of traffic among

different ISPs, which may be quite different from what was foreseen in ISPs

peering agreements. Although, many solutions to this problem was exist, the

implementations are still not deployed widely.

While algorithms in P2P systems have been analyzed by many researchers,

measurement of P2P is also important. In the cross layer issue, P2P is of-

ten blind in selection of neighbors in P2P networks, affecting the underlying

ISP’s traffic engineering policies. This effect can only be seen if we have good

real measurement instead of simulation. In the BitTorrent economic model, re-

searchers want to understand the content publishing phenomena. The growing

popularity of BitTorrent is primarily due to the availability of valuable content

without any cost for users. However, publishing valuable content has legal im-

plications for the users who publish the content. This raise the question of

whether the content publisher is behaving in an altruistic manner for financial

incentives. This question can only be answered by doing measurement in real
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BitTorrent swarms [13].

Energy was another aspect that has been quite distant from current P2P

research but now has begun to rise in importance. While popularity of P2P

is declining because users now get content from the cloud, in some regions

P2P filesharing applications are still popular. Even now content providers,

CDN providers, and ISPs are actively exploring the use of peer-to-peer (P2P)

technologies to distribute content to homes as a means of reducing both file

download times and the energy consumption of data centers. This approach

pushes the energy use out of the data centers and into the homes of content

consumers, including P2P based applications that run on mobile devices. With

millions of houses connected to the Internet and millions of mobile devices also

connected to the Internet, it is very important to consider energy consumption

in P2P networks.

2.2 P2P Measurement

BitTorrent is the most successful Peer-to-Peer (P2P) application and was

responsible for a major portion of Internet traffic in the past. This has at-

tracted researchers interested in evaluating the performance and the demo-

graphic aspects of BitTorrent. An example of current popular application that

uses a BitTorrent-like protocol is Spotify, which is a very popular streaming

music application in Europe and the US. BitTorrent has been largely studied

using simulations, models and real measurements. Although simulations and

modeling are easier to perform, they typically simplify the problems and they

are likely to miss some of the effects which occur in real BitTorrent swarms.

Since many popular applications work based on BitTorrent-like protocols, we

will focus on it.
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2.2.1 Measuring BitTorrent

In this subsection we describe the BitTorrent measurement techniques de-

fined in the literature so far. We classify them into two main categories,

macroscopic and microscopic, depending on the retrieved information. Table

2.1 shows the summary of different techniques.

Table 2.1: Comparison of Measurement Techniques in BitTorrent.

Property Portal crawling Tracker crawling Peers crawler
Scope macroscopic macroscopic microscopic

Information level torrents level demographics and peer level
general performance performance

Cost of crawler preparation low medium high
Obtained result details basic medium high
Peers population results - high very high

Macroscopic Technique

The goal of a macroscopic technique is to understand the demographics

of the BitTorrent ecosystem, for example the type of published content, the

popularity of the content, and the distribution of BitTorrent users per country.

The macroscopic measurement allows us to get the performance information

such as the ratio of seeder to leechers, the session time of the BitTorrent users,

the seedless state (period the torrent is without a seeder) duration, etc. We

can classify the macroscopic techniques into two categories: BitTorrent portals

crawling and BitTorrent trackers crawling.

• BitTorrent portals crawling: The (major) BitTorrent portals index mil-

lions of torrents in a structured way. They provide detailed information

about each indexed torrent on a specific torrent web page. Once we know

the how BitTorrent portals index the torrents, we can crawl the BitTor-

rent portals using that index. If we want to analyze the demographics of

BitTorrent, we need to crawl a large number of torrents. This takes time
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Figure 2.4: BitTorrent tracker crawling: The BitTorrent crawler fetches the
torrent file from BitTorrent portals. Using information from the torrent file,
the BitTorrent crawler contacts the BitTorrent tracker by sending an announce
message. The BitTorrent tracker will reply by with a list of seeders and leech-
ers. This process is repeated until all the peers in the swarm are obtained.

since millions of torrents exist in BitTorrent portals and every second a

new torrent can be published to BitTorrent portals (including fake tor-

rents). By processing the data from the BitTorrent crawling, we can get

the information related to BitTorrent demographics, for example content

popularity distribution, distribution of published content, and publish-

ing rate of new torrents. It unfortunately, some BitTorrent portals do

not give detail information about the torrent information.

• BitTorrent trackers crawling: While crawling BitTorrent portals can give

us information about the torrent type and torrent publisher and some

number of seeders and leechers, that technique is not sufficient for more

detailed information such as the distribution of users per country or
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performance- relevant information such as peer arrival rate and peer

session time. To get that information, we need to collect the IP ad-

dress of seeders and leechers in the BitTorrent swarms. This information

can only be gotten from BitTorrent tracker logs by asking BitTorrent

tracker owners or by crawling the BitTorrent tracker. Figure 2.4 shows

the schematic of BitTorrent tracker crawling. First, a BitTorrent crawler

needs to download a torrent file from a BitTorrent portal. Next, a Bit-

Torrent crawler send an announce message to a BitTorrent tracker and

the BitTorrent tracker will reply with a list of seeders’ IP addresses and

a list of leechers’ IP addresses. The BitTorrent crawler then sends an

announce message again to the BitTorrent tracker. Since the BitTorrent

tracker has recorded the IP address of the BitTorrent crawler, the Bit-

Torrent tracker will reply with a list of leechers’ IP addresses only. This

process is repeated as many times as possible to get a full list of leechers’s

IP addresses. If a BitTorrent crawler send too many announce messages,

the BitTorrent tracker will block the BitTorrent crawler. Hence, this

technique must be done in a friendly manner. Another challenge is that

BitTorrent peers do not have permanent peer-ids. Every time a Bit-

Torrent client is started a new random peer-id is generated thus it is

very difficult to follow a peer using its peer-id. Also since most of the

BitTorrent clients are home users with the IP addresses assigned dynam-

ically by their ISP, identifying peers by their IP address can introduce

inaccuracies.

Microscopic Technique

While in macroscopic techniques we can get the peers’ IP level information,

that information is not sufficient to infer more detailed performance metrics

at the peer level such as peers’ download and upload rates, and how peers
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Figure 2.5: Peer crawling: The initial process is the same as the BitTorrent
tracker crawling with additional steps for the BitTorrent crawler to contact all
the peers in the swarm by sending handshake requests. The contacted peers
will reply by sending BITFIELD messages and HAVE messages.

connect each other (the graph of the network). To get this information, we

need more sophisticated techniques that implement the wire level BitTorrent

protocol since the crawling techniques in this case require us to join a Bit-

Torrent swarm directly. Figure 2.5 shows the schematic functionality of peer

crawling. In this peer crawling technique, a BitTorrent crawler gets the IP

address of peers participating in a swarm. The initial process is the same as

tracker crawling. Afterwards, the BitTorrent crawler contact each peer and

performs the handshake procedure. The handshake message must be the first

message sent by a BitTorrent client to other peers. The contacted peers will

reply by sending BITFIELD and HAVE messages. From the handshake re-

sponse we can determine if the peer is using a public IP address or is behind



CHAPTER 2. P2P CONTENT DELIVERY 32

NAT. Basically if the contacted peer responds to the BitTorrent crawler, then

that peer is using a public IP address space and if that peer is silent, then it

is behind a NAT. From the BITFIELD message we can get information about

the peers’ type: seeder or leecher. By measuring the time between the recep-

tion of two consecutive HAVE messages from a peer, the BitTorrent crawler

can calculate the time needed to download a chunk. Chunk size information

itself is always available in torrent file. Thus, dividing the size of the chunk

by the time need to download two consecutive HAVE messages, we can infer

the instantaneous download rate of a peer. The BITFIELD message contains

information about chunks that already are held by peer in the swarm. Thus

by comparing BITFIELD message for every peer in the swarm, we can infer

the chunk distribution. Challenges in this technique, include the fact that the

BitTorrent crawler can be blocked by a peer because it sends too many hand-

shake messages and the possibility of receiving many BITFIELD and HAVE

messages from a peer but the BitTorrent crawler does not upload any infor-

mation about the peer.

2.3 Energy Aspect of P2P Network

The work of Gupta and Singh [27] on green networking has received a lot

of attention. In recent years, much effort has been expanded reducing energy

expenditure. Big companies and data center operators are trying new tech-

nologies to consume less energy. For example, Google is planning to operate

its data centers with a zero carbon footprint by using hydro-power, water-

based chillers, and external cold air for cooling its data center. While energy

is mostly a concern for companies that run hundreds of servers and hundred of

networking devices inside a data center, only a little attention has been paid

to home users. Recalling that P2P applications were the largest fraction of
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the Internet traffic in the past, we still have many popular P2P applications.

For example, Spotify is a fee based music streaming service for mobile and

desktop. It is very popular in Europe and USA. Spotify works like BitTorrent

though there are several differences. These figures show that making P2P ap-

plications more energy efficient is important. These days, ISPs have evolved

from providing basic Internet connectivity to offering higher valued services

such as Internet+TV+phone. In this value added service, the set top boxes

(STB) or home gateways play an increasingly important role. Modern STBs

are as powerful as desktop PCs while the form factor is quite small compared

to a desktop PC. However, this power translate to higher power consumption.

Since broadband home Internet users are increasing, consideration to reduce

energy consumption of STB is required.

Several approaches have been considered to reduce energy consumption.

For example: Dynamic Voltage Scaling (DVS) and Dynamic Frequency Scal-

ing (DFS) can be used. With DVS, the supply voltage is reduced when the

workload is low, hence DVS does not make the circuit slower unless the user

do other things at the same time. DFS can reduce the number of processor

instructions, thus reducing performance. Another approach is designing new

network architectures. For example, placing optical amplifiers at the most im-

portant locations and the task functions near renewable sources. Performing

resource consolidation, capitalizing on available energy is also considered as a

way to reduce energy consumption. This can be done via traffic engineering.

Another way is by migrating computation or delegate the workload, typically

using virtualization to move workloads transparently.

At the network level, migrating computation tasks is another way to reduce

energy consumption. For example in [20], Gianetti et al. propose the usage

of a BitTorrent proxy for delegating the BitTorrent client work. Delegating

some work to a BitTorrent proxy can save up to 25% of energy usage for PC
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Figure 2.6: Cascade effect: 1 watt energy saving in server component can
reduce 2.8 watt energy in total facility level. This figure adapted from [34]

desktop used for BitTorrent file sharing. Delegating or proxying workload is

not a new idea. An example of a more primitive form of proxying is Wake

on LAN technology, introduced almost two decades ago [33]. Wake on LAN

technology allows a computer to be awakened by a magic packet.

Since energy flow to consumers is based on supply and demand, saving of

small amount of energy in homes can affect the distribution side of energy.

This is known as the cascade effect. It not only happens in homes and their

distribution, but it also appears in data centers and their power distribution.
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2.4 Related Work

BitTorrent protocol performance has been explored extensively [25] [41] [54]

[67] [42] [80]. Although we know that the topology can have a large impact

on performance, to date only a few papers have addressed the issue. Urvoy et

al. [68] used a discrete event simulator to show that the time to distribute a file

in a BitTorrent swarm has a strong relation to the overlay topology. Al-Hamra

et al. [2], also using a discrete event simulator, showed that BitTorrent creates a

robust overlay topology and the overlay topology formed is not random. They

also showed that peer exchange (PEX) generates a chain-like overlay with a

large diameter. Dale et al. [14], in an experimental study on PlanetLab, showed

that in the initial stage of BitTorrent a peer will get a random peer list from

the tracker. They found that a network of peers that unchoked each other

(uploaded chunk to another peers) is scale-free and the node degree follows a

power-law distribution with exponent approximately 2. Dale et al. [14] also

showed that the path length formed in BitTorrent swarms averages four hops

and BitTorrent swarms have low average clustering coefficient. However, little

work has been done on confirming that such controlled experiments correspond

to the system in the real world.

We emphasize that compared to Hoßfeld et al. [29], our work provides a

completely different approach and goal. Hoßfeld et al. [29] discuss the AS (Au-

tonomous System) level topology of BitTorrent swarm for optimizing overlay

traffic across ASes, while our study focuses on microscopic dynamic aspects of

the BitTorrent swarms topology itself (at the peer level or IP address level).

The closest work to ours is Kryczka et al. [39] published shortly after our own

work [17]. While our method is somewhat similar to theirs, they focus on

clustering and locality while our focus is on node degree and clustering. They

use PEX to discover peer relationship, unfortunately they do not explain in

detail how to process the PEX data set. Because of differing PEX imple-
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mentations between BitTorrent clients, we need to be careful with it in data

processing. In our work, we describe PEX behavior and its limitation on two

popular BitTorrent clients: Vuze and uTorrent, and we also explain how to

treat PEX data from different BitTorrent clients. We also provide simulation

result to confirm that our methods for inferring peer relationship with PEX is

valid. They observed that BitTorrent swarms have slightly higher clustering

coefficient compared to random graphs of the same size but neither BitTorrent

swarm fulfills the properties of small world. The slight difference in clustering

comes from the difference of PEX data processing. They assume that PEX is

the same and complete for all BitTorrent clients.

Our results agree with previous research [14] in some areas and disagree

in others, perhaps for two reasons. First, power-law claims must be handled

carefully. Many steps are required to confirm the power-law behavior, including

alternative model checking, and we must be prepared for disappointment since

other models may give a better fit. Second, our methodology relies on real

work measurement combined with simulation for validation. This real-world

measurement will reflect different types of clients connected to our swarm,

and each client has a different behavior. We also face difficult-to-characterize

network realities such as NAT and firewalls. Our ability to reproduce key

aspects of the topology dynamics suggests that these factors have only limited

impact on the topology, somewhat to our surprise.

A Content delivery network (CDN) is a large distributed system of servers

deployed in multiple data center across the Internet [50]. The objective of

CDN is to serve content to end-users high availability and low latency man-

ner as CDNs are distributed geographically. A CDN is owned, deployed, and

maintained by a company that charges content providers or website owners

for its services. CDNs with peer assist have been successfully deployed on the

Internet, such as Akamai [32] and LiveSky [79]. The authors of [32] conclude
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from two real world traces that hybrid CDN-P2P can significantly reduce the

cost of content distribution and can scale to cope with the exponential growth

of Internet video content. Yin et al. [79] described LiveSkye as commercial

operation of a peer-assisted CDN in China. LiveSky solved several challenges

in the system design, such as dynamic resource scaling of P2P, low startup la-

tency, ease of P2P integration with the existing CDN infrastructure, and net-

work friendliness and upload fairness in the P2P operation. Measurement from

LiveSky showed that LiveSky can save around 40% of the bandwidth [79]. The

author in [31] and [30] proposed mechanisms to minimize CDN server band-

width to make the content distribution cheap. They designed different peer

prefetching policies of video on demand system in surplus mode while ensuring

user quality of experience. A similar analysis has been done in [77] for a video

streaming system where the authors proposed different limited peer contribu-

tion policies to reduce CDN bandwidth requirement and eventually off load

the distribution process from the CDN to the P2P system. An ISP friendly

rate allocation schemes for a hybrid CDN-P2P video on demand system was

proposed in [74]. These techniques try to minimize CDN server bandwidth

while reducing ISP unfriendly traffic and maximizing peer prefetching. Load

on the CDN servers has been shown to be reduced using this approach while

reducing cross ISP traffic. The above studies were performed for video on

demand or live video streaming. While video is the most popular content,

the systems can be also used for other type contents. Moreover, while con-

tent based services are growing, energy consumption of a content distribution

system has not been analyzed.

Related to CDN and energy usage, in a seminal work [56], the authors

show that if costs are based on electricity usage and if the power prices vary

in real-time, global load balancing decision can be made such that users are

routed to locations with the cheapest power without significantly impacting
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user performance or bandwidth cost. In [52], the author proposed utilizing

batteries for CDN for reducing total supplied power and total power costs.

The authors in [52] also proposed battery provisioning algorithms based on

workload of CDN server. The result shows that batteries can provide up to

14% power savings.

The idea to utilize the ISP controlled home gateway to provide comput-

ing and storage services and adopt a managed peer-to-peer model is presented

in [71]. Valancius et al. [71] show that distributing computing platform in

NaDa (Nano Data Center) saves at least 20-30% of the energy compared to

traditional data centers. The saving in NaDa comes from taking advantage

of the underutilized home gateway, avoidance of cooling costs, and the re-

duction of network energy consumption as a result of demand and service

co-localization.

The comparison between CDN architecture and peer-to-peer architecture

is discussed in [6] and [18]. The authors of both papers agree that CDN archi-

tecture is more energy saving compare to peer-to-peer architecture. Another

interesting study of energy efficiency in content delivery architectures is pre-

sented by Guan et al. [23]. Guan et al. [23] compare energy efficient of CDN

architecture and CCN architecture. CCN is a new architecture to deliver the

contents in the Internet [36]. CCN uses a data storage cache at each level of

the network, e.g routers, to decrease the transmission traffic and also increase

the speed of response. The authors in [23] conclude that CCN is more energy

efficient in delivering popular content while the approach with optical bypass

is more energy efficient in delivering infrequently accessed content.

To the best of our knowledge, the only study of energy considering peer-to-

peer in CDN architecture is presented in [45]. Mandal et al. [45] mentioned that

hybrid CDN-P2P systems can reduce the energy in the optical core network by

around 20-40%. The authors only considered energy consumption of hardware
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especially optical devices and do not include overhead inside the data center,

CDN server energy consumption, and power consumed by peers. Our work is

quite different , We take a number of peers with static content and add the

overhead of the data center cause by temperature of hardware for different

purposes, for live streaming and video on demand [16].



Chapter 3

Characteristics of BitTorrent

Swarms

3.1 Introduction

BitTorrent is one of the most used application in the current Internet and

is responsible for an important portion of the upstream and downstream traffic

as revealed by recent reports. The significant footprint of BitTorrent in the

Internet has motivated researchers and practitioners to dedicate an important

amount of effort to understanding and improving BitTorrent. However, despite

this effort, we still have little knowledge regarding the connectivity properties

exhibited by real BitTorrent swarms at both swarm and peer level [17]. Due

to the difficulty in collecting the required information from real swarms, most

of the existing works that analyze connectivity properties are based on simula-

tions or experiments in controlled environments. As a result, they are likely to

miss some of the effects affecting BitTorrent swarms in the wild. The analysis

of the peer level connectivity in real BitTorrent swarms can reveal important

information such as: (1) efficiency of a swarm to disseminate the content; (2)

the resilience of the swarm, (3) checking the locality-bias. Urvoy Keller et

40
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al. [68] shows that number of connections from a peer maintains high entropy

of the BitTorrent system thus the BitTorrent works in optimal. Resilience of

the swarm is very important for content provider who use BitTorrent like pro-

tocol to disseminate their contents. The result of the information about how

peer connect each other can be used for doing network partition. For example,

we want to know what’s happened if high degree peers are remove randomly?;

what’s happened with peers are removed randomly? will the swarm collapse?

or will it decrease download performance? Some ISPs have started to intro-

duce a policy to minimize the impact of cross AS traffic caused by P2P. This

effect of locality will be much better observed if we have peer connectivity level

properties information by measuring real BitTorrent swarms topology.

In this Chapter, we first present a methodology to collect the connectivity

information at both the swarm and the peer level for the entire lifespan of

a real torrent. Specifically, we discover new torrents just after their birth by

using the RSS service of the most important BitTorrent portal, namely the

Pirate Bay. Afterwards, we exploit the Peer Exchange (PEX) extension of the

BitTorrent protocol to gather the set of neighbors for each peer. PEX is a

gossiping technique which main goal is to allow peers to exchange their list of

neighbors so that they can learn about other participants in the swarm without

contacting the tracker. Note, that PEX has been implemented by most of the

existing BitTorrent clients and in particular by the most popular ones such

as uTorrent or Vuze. The information collected from PEX (i.e., a peer’s

neighborhood) is the connectivity information at the peer level. Furthermore,

by aggregating the neighborhood information collected from every peer in a

swarm we are able to build the overlay topology of that swarm (i.e., swarm

level connectivity). We retrieve the information from each active peer every 3

minutes and then study the dynamic evolution of both: the overlay topology of

the swarm and the composition of each peer’s neighborhood. We have applied
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the described methodology to collect the connectivity information of 50 real

torrents, including more than 150 peers, since their birth during a period of

10 days.

3.2 Measurement Methodology

The difficulties in inferring topologies in BitTorrent swarms are caused by

the BitTorrent mechanism itself. First, although a BitTorrent peer may offer

some information about its peers, there is no mechanism for peer discovery.

Second, a peer never sends information about its connections with other peers

to the tracker, so we cannot infer overlay topologies by querying or hosting

a tracker. Our other options inferring topologies are simulation or deploying

BitTorrent nodes in a real network or in a laboratory, e.g., PlanetLab. De-

ploying hundreds to thousands of nodes in a real network or in the laboratory

in a manner that accurately reflects the real world is a very challenging task.

We used PEX to collect information about peer neighbors (see Fig.3.1),

and then we describe the network formed in terms of properties such as node

degree and average clustering. Besides collecting data from real BitTorrent

networks, we ran simulations similar to these of Al-Hamra et al. [3]. In these

simulations, we assumed that peer arrivals and departures (churn) follow an

exponential distribution as explained by Guo et al. [25]. For simplification,

we assumed that nodes are not behind a NAT. Since we are only interested

in the construction of the overlay topology, we argue that our simulations are

thorough enough to explain the overlay properties.

Temporal graphs have recently been proposed to study real dynamic graphs,

with the intuition that the behavior of dynamic networks can be more ac-

curately captured by a sequence of snapshots of the network topology as it

changes over time [22] [65]. In highly dynamic networks such as P2P, an in-
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Figure 3.1: Simplified view of our approach. Left: At time t = 1, the actor gets
a PEX message from peer A and learns that peer A is connected to peer B and
C. At t = 2, the actor gets PEX messages from peers C and A. The actor learns
that now peer A is connected to peer D. Thus the actor knows the properties
of peer A at t = 1 and t = 2.

stantaneous snapshot may capture only a few nodes and links. In this chapter,

we study the network dynamics by continuously taking network snapshots over

a short time interval ∆, and show them as a time series. A snapshot captures

all participating peers and their connections within a particular time interval,

from which a graph can be generated. The snapshot duration may have minor

effects on analyzing slowly changing networks. However, in a P2P network,

the characteristics of the network topology vary greatly with respect to the

time scale of the snapshot duration [62]. We consider ∆ = 3 minutes to be a

reasonable estimate of minimum session length in BitTorrent [60].

3.2.1 Graph Sampling

Due to the large and dynamic nature of BitTorrent networks, it is often

very difficult or impossible to capture global properties. Facing this difficulty,

sampling is a natural approach. However, collecting unbiased or representative
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sampling is also sometimes a challenging task.

Suppose that a BitTorrent overlay network is a graph G(V,E) with the

peers or nodes as vertices and connections between the peers as edges. If we

observe the graph in a time series, i.e., we take samples of the graph, the

time-indexed graph is Gt =G(Vt,Et). From this set of graphs, we can define a

measurement window [t0, t0+∆] and select peers uniformly at random from the

set: Vt0,t0+∆ =
∪t0+∆

t=t0 Vt. In that equation, we cannot distinguish properties of

the same peer at different times, thus it focuses on sampling peers instead of

peer properties. Stutzbach et al. [61] showed that equation is only appropriate

for exponentially distributed peer session lengths but we know from existing

measurement that BitTorrent networks peer session lengths have very high

variation [25].

For example: suppose we want to measure number of files shared by peers

in BitTorrent swarm. In this BitTorrent swarm, half of the peers are up all

the time and have many files, while other peers remain around for one minute

and are immediately replaced by new short-lived peers who have few files. The

common method is to observed the system for a long time and sample the peers

randomly. This method will incorrectly conclude that most of the peers in the

system have very few files. The problem with this method is that it focuses

on sampling the number of peers instead of peer properties. Our objective

should not be to select a vertex vi ∈
∪t0+∆

t=t0 Vt , but to sample the property of

a vertex vi at a particular instant time t. Therefore, we must distinguish the

occurrences of the same peer at different times: samples vi,t and vi,t′ gathered

at different times t , t′ are viewed as different, even from the same peer. The

key in this method is that we must be able to sample from the same peer

more than once at different points in time. Thus we can formalize this into

vi,t ∈ Vt, t ∈ [t0, t0 +∆] [61]. With that method, the sampling will not biased

because we track the peer’s properties overtime.
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The number of peers in a swarm that is observed by our client is our pop-

ulation. The sampled peers set is the number of peers that exchange PEX

messages with our client. Our sampled peers set through PEX messages ex-

change can observe about 70% of the peers in a population. This observation

is consistent with [76].

3.2.2 Experimental Methodology

We joined the top 50 TV series torrents from the piratebay, which claims

to be the biggest torrent tracker on the Internet. Almost all of these torrents

were in steady-state phase, which is more dominant than the bootstrapping and

decay phases of a torrent’s lifetime. We used a modified rasterbar libtorrent

[49] client that is connection greedy, where the client tries to connect to all

peers it knows without a limit on the number of connections, and the client logs

PEX messages received from other clients. PEX messages from old versions

of Vuze BitTorrent clients contain all of peers they connected to in the past,

hence these clients should be removed from the data. Removal of some peers in

data processing is valid in terms of sampling with dynamics, see Sect.(3.2.1).

In terms of connectivity, two popular BitTorrent clients (uTorrent and Vuze),

by default try to connect to peer candidates randomly without any preference,

thus we have random data sets. This implies that our data set is independent

of measurement location and the number of measurement locations.

3.2.3 Data Analysis Background

Many realistic networks exhibit the scale-free property [12], though we note

that scale-free is not a complete description of a network topology [15] [43].

It has been suggested that BitTorrent networks also might have scale-free

characteristics [14]. In this chapter, we test this hypothesis. Besides testing

this hypothesis, we also study the clustering property of BitTorrent swarms.
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In a scale-free network, the degree distribution follows a power-law distribu-

tion. A power-law distribution is quite a natural model and can be generated

from simple generative processes [46], and power-law models appear in many

areas of science [12] [46].

A power-law distribution can be described as:

Pr[X ≥ x] ∝ cx−α. (3.1)

where x is the quantity of distribution and α is commonly called the scaling

parameter. The scaling parameter usually lies in the range 1.8 < α < 3.5. In

discrete form, the above formula can be expressed as:

p(x) = Pr(X = x) =Cx−α. (3.2)

This distribution diverges on zero, therefore there must be a lower bound

of x, called xmin > 0, that holds for the sample to be fitted by a power-law. If

we want to estimate a good power-law scaling parameter then we must also

have a good xmin estimation.

Normalizing (3.2) we get

p(x) =
x−α

ζ(α, xmin)
. (3.3)

The most common way to fit empirical data to a power-law is to take the

logarithm of Eq.(3.1) and draw a straight line on a logarithmic plot [46]. We

use maximum likelihood to estimate the scaling parameter α of power-law [12].

This approach is accurate to estimate the scaling parameter in the limit of large

sample size. For the detailed calculations of both xmin and α, see Appendix B

in [12].
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Figure 3.2: CDF plot of number of peers for the 50 swarms during measure-
ment.

3.3 Experimental Results

Our time samples for the size of swarms are plotted as the CDF of the

number of peers for every swarm during measurement with 104 to 1400 time

samples for each torrent, as shown in Fig.3.2. It is clear that the number of

peers has high variability due to churn in BitTorrent networks.

3.3.1 Power-law Distribution of Node Degree

The degree of a node in a network is the number of edges connected to

that node. If we define pk as the fraction of nodes in the network that have

degree k, then pk is the probability that a node chosen uniformly at random

has degree k. We show node degree data in cumulative distribution function

(CDF) plot, which can be expressed as

Pk =

∞∑
k′=k

pk′ . (3.4)
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We want to know the power-law distribution of the measured BitTorrent

networks, and we do not know a priori if our data are power-law distributed.

To test the applicability of a power-law distribution, we use the goodness-of-fit

test as described by Clauset et al. [12]. First, we fit data to the power-law model

and calculate the Kolmogorov-Smirnov (KS) statistic for this fit. Second,

we generate power-law synthetic data sets based on the scaling parameter α

estimation and the lower bound of xmin. We fit the synthetic data to a power-

law model and calculate the KS statistics, then count what fraction of the

resulting statistics is larger than the value for the measured data set. This

fraction is called the p value. If p ≥ 0.1 then a power-law model is a good

model for the data set, and if p < 0.1 then power-law is not a good model.

As mentioned before, a good estimation for xmin is important to get a overall

good fit. Too small an xmin will cause a fit only to the body of the distribution.

Too high an xmin will cause a fit only to the tail of the distribution. Figure 3.3

illustrates the fit for snapshots of torrent1 and torrent3. For torrent1, setting

xmin = 2 leads to α = 2.11, while xmin = 1 gives α = 2.9. For torrent1, xmin = 1

visually does not give a good fit, while for torrent3, setting xmin = 1 leads to a

visually good fit.

Figure 3.4 shows the CDF for p values for all data sets. This figure shows

that from the K-S statistics point of view, around 45% of the time a power-law

distribution is not a good fit for the data. The inset figure in Fig.3.4 shows

the CDF plot p value for each torrent. The dash line on p value = 0.1 is the

threshold.

However, these data sets must be interpreted with care. The usage of

the maximum likelihood estimators for parameter estimation in power-law is

guaranteed to be unbiased only in the asymptotic limit of large sample size, and

some of our data sets fall below the rule of thumb for sample size, n = 50 [12].

In the goodness-of-fit test, a large p value does not mean the power-law is the
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Figure 3.3: Node degree fit for snapshots of two torrents, with three fits shown
in log scale.

correct distribution for data sets, because there may be other distributions that

match the data sets and there is always a possibility that even with small value

of p the distribution will follow a power-law [12]. We address these concerns

next.

3.3.2 Alternative Distributions

Even if we have estimated the power-law parameter properly and the fit is

decent, it does not mean the power-law model is good. It is always possible that

non-power-law models are better than the power-law model. There are several

methods for direct comparison of two distributions such as likelihood ratio

test [73], Bayesian test, and Minimum description length. The likelihood ratio

test idea is to compute the likelihood of the data sets under two distributions.

The one with the higher likelihood is the better fit. We use the likelihood ratio

test to see whether other distributions can give better parameter estimation.
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Figure 3.4: CDF plot of p value of K-S statistics.

Nested Case

We now hypothesize that the smaller family of power-law distributions may

give a better fit to our data sets. We only consider a power-law model and a

power-law with exponential cut-off model as examples to show model selection.

Model selection for power-law model and power-law with exponential cut-off

is a kind of nested model selection problem. In a nested model selection,

there is always the possibility that a bigger family (power-law) can provide

as good a fit as the smaller family (power-law with exponential cut-off). In a

likelihood ratio test, we must provide the significance value (ρ value). Under

the likelihood ratio test, we compare the pure power-law model to power-law

with exponential cut-off, and the ρ value here helps us establish which of

three possibilities occurs: (i) ρ > 0.1 means there is no significant difference

between the likelihood of the data under the two hypotheses being compared

and thus neither is favored over the other; if we already rejected the pure

power-law model, then this does not necessarily tell us that we also can reject
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Figure 3.5: Scatter plot of p value vs ρ value. We divide this figure into three
areas where the borders are vertical line ρ = 0.1 and horizontal line p = 0.1.
p is goodness-fit of test for power-law model, if p ≥ 0.1 power-law model is
good model for data set. ρ is significance test for nested hypothesis. if ρ ≥ 0.1
then there is no significant difference between the likelihood of the data under
the two hypotheses being compared. if ρ ≤ 0.1 there is significant difference
between the likelihood of the data under the two hypotheses being compared.
52% of points lie in area 1, thus an alternative model may be plausible for
these points.

the alternative model; (ii) ρ < 0.1 and the sign of likelihood ratio (LR) =

negative means that there is a significant difference in the likelihoods and that

the alternative model is better; if we have already rejected the pure power-

law model, then this case simply tells us that the alternative model is better

than the bad model we rejected; (iii) if ρ < 0.1 and the sign of LR = positive

means that there is a significant difference and that the pure power-law model

is better than the alternative; if we have already rejected the pure power-law

model, then this case tells us the alternative is even worse than the bad model

we already rejected.

Figure 3.5 shows a p value vs ρ value scatter plot, divided into three areas.
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Figure 3.6: Scatter plot of p value vs log-likelihood ratio (LR) for ρ < 0.1. We
divide this figure into four areas where the borders are vertical line LR = 0 and
horizontal line p = 0.1. p is goodness-fit of test for power-law model, if p ≥ 0.1
power-law model is good model for data set. ρ is significance test for nested
hypothesis. LR is the sign of likelihood ratio value. if LR is negative, there is
a significant difference in the likelihoods and the alternative model is better.
58% of points lie in area 3 and 42% lie in area 4. Because area 3 and 4 are
negative value of LR, the alternative model is better.

Area 1: ρ < 0.1 and p > 0. Area 2: ρ > 0.1 and p < 0.1. Area 3: ρ > 0.1

and p > 0.1. This figure shows that 52% of the samples lie in area 1, thus an

alternative model may be plausible for these samples.

Now we plot p value vs LR as shown in Fig.3.6 for ρ < 0.1. We divide the

figure into four areas: area 1, area 2, area 3, and area 4 with green lines as

borders to see how sparse the points are in each area. Area 1: LR=positive sign

and p < 0.1. Area 2: LR=positive sign and p > 0.1. Area 3: LR=negative sign

and p < 0.1. Area 4: LR=negative sign and p > 0.1. In this figure, 58% of the

samples lie in area 3 and 42% lie in area 4, while there are no samples in areas

1 and 2, which means that the alternative model is better. Although in the

case p < 0.1 we reject power-law as the plausible model, the alternative model
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Figure 3.7: CDF plot of ρ value of log-likelihood ratio test for power-law v.s
log-normal. We divide the figure into two areas with vertical line ρ = 0.1 as
border. Under nested hypothesis, ρ value is significance value of observed sign
of likelihood ratio. if ρ ≤ 0.1 then the sign of log-likelihood ratio is a good
indicator of which model is the better fit to the data. In this figure, only 13%
of ρ values are less than 0.1. Since 87% of ρ values are more than 0.1, the sign
of log-likelihood ratio is not good indicator and the test does not favor either
model over the other.

is still better than the power-law model. We believe that these results are

caused by peers that are not willing to maintain large numbers of concurrent

connections (high node degree). These observations clearly demonstrate that

comparing models is a very complex task in highly dynamic networks.

Non-Nested Case

In the non-nested case, we compare power-law distribution with log-normal

distribution and exponential distribution. We calculate the ratio of two likeli-

hood distributions or the logarithm of the ratio, which is positive or negative

depending on which distribution is better. The positive or negative sign of

log-likelihood ratio does not definitively indicate which model is the better fit.
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Figure 3.8: Scatter plot p values v.s log-likelihood ratio (LR) for likelihood
test for power-law vs log-normal. In this figure, we show the log-likelihood
ratio (LR) values for ρ ≤ 0.1. Since the LR values are negative, the alternative
distribution (log-normal) is not better than power-law model.

Vuong’s [73] method gives a ρ value that can tell us whether the observed sign

of likelihood ratio is statistically significant. If this ρ value is small (ρ < 0.1)

then the sign of log-likelihood ratio is a reliable indicator of which model is

the better fit to the data. If the ρ value is large the sign of log-likelihood ratio

is not reliable and the test does not favor either model over the other.

Figure 3.7 and Fig.3.9 show the CDF of the ρ value for the log-likelihood

ratio between power-law and log-normal distributions and the log-likelihood

ratio between power-law and exponential distributions. Both alternative dis-

tributions only show very small number of data points that have ρ < 0.1, each

at around 13% and 5.5%. The log-likelihood ratio of these data points have

negative signs as shown in Fig.3.8 and Fig.3.10, therefore the alternative distri-

butions are not better than power-law. With the vast majority of the values for

ρ being larger than 0.1, the results of the log-likelihood ratio test are ambigu-
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Figure 3.9: CDF plot of ρ value of log-likelihood ratio test for power-law v.s
exponential. We divide the figure into two areas with vertical line ρ = 0.1 as
border. Under nested hypothesis, ρ value is significance value of observed sign
of likelihood ratio. if ρ ≤ 0.1 then the sign of log-likelihood ratio is a good
indicator of which model is the better fit to the data. In this figure, only 5.5%
of ρ values are less than 0.1. Since 94.5% of ρ values are more than 0.1, the
sign of log-likelihood ratio is not good indicator and the test does not favor
either model over the other.

ous. Therefore, it is important to look at theoretical factors or design factors

behind the systems to make a sensible judgment. For example: a leecher in a

BitTorrent swarm is design to prefer the fastest seeders or leechers instead of

high degree seeders or leechers. With this design factor information, we can

make a sensible judgment which distributional form is more reasonable.

3.3.3 Clustering Coefficient

Networks show a tendency for link formation between neighboring vertices

called clustering that reflects the topology robustness. The clustering around

a vertex i is quantified by the clustering coefficient Ci, defined as the number

of triangles in which vertex i participates normalized by the maximum possible
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Figure 3.10: Scatter plot p values v.s log-likelihood ratio (LR) for likelihood
test for power-law vs exponential. In this figure, we show the log-likelihood
ratio (LR) values for ρ ≤ 0.1. Since the LR values are negative, the alternative
distribution (exponential) is not better than power-law model.

number of such triangles,

ci =
2ti

ki(ki−1)
(3.5)

where ti denotes the number of triangles around i and ki denotes vertex degree.

For the whole graph, the clustering coefficient is

C =
1
n

∑
i∈G

ci. (3.6)

A larger clustering coefficient represents more clustering at nodes in the graph,

therefore the clustering coefficient expresses the local robustness of the net-

work. The distinction between a random and a non-random graph can be

measured by clustering-coefficient metrics [75]. A network that has a high

clustering coefficient and a small average path length is called a small-world
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Figure 3.11: CDF plot of the clustering coefficient for each torrent.

model [75]. In BitTorrent systems, a previous study [40] mentioned the pos-

sibility that BitTorrent’s efficiency partly comes from the clustering of peers.

Figure 3.11 shows the CDF clustering coefficient value of our data sets. Only

one torrent exhibits clustering coefficient less than 0.1 for about 40% of the

snapshots, while for the other torrents, more than 70% are less than 0.1. This

low clustering coefficient observation is the same as that observed by Dale et

al. [14]. Considering only the low clustering coefficient, the BitTorrent topolo-

gies seem to be close to random graphs.

3.4 Confirmation via Simulation

We use simulations to compare the overlay topology properties based on

our real-world experiments. We set the maximum peer set size to 80, the

minimum number of neighbors to 20, and the maximum number of outgoing

connections to 80. In our simulation, the results are quite easy to get since we
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Figure 3.12: α estimation and p value for global topology and topology inferred
from PEX where both done in our simulator.

are on a controlled system; we can directly read the global topology properties

from our results. We also have the simulated PEX messages. We compare the

global overlay topology properties as the final result from the simulator with

the overlay topology that we get from PEX on the same simulator. Figure

3.12 shows the α estimate Eq.(3.1) and p Eq.(3.1) value both for the global

result and the PEX result from our simulator. It clearly shows that both

the global result and the PEX result from the simulator produce very low p

values. We calculate the Spearman correlation for both α values from the

global result and the PEX result. The Spearman rank correlation coefficient

is a non-parametric correlation measure that assesses the relationship between

two variables without making any assumptions of a monotonic function. The

Spearman rank correlation test gives 0.38 ≤ ρ ≤ 0.5, which we consider to be

moderately well correlated. Therefore, the simulator confirms that the PEX

method can be used to estimate α.
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3.5 Summary

We have investigated the properties of BitTorrent overlay topologies from

the point of view of the peer exchange protocol using real swarms from an

operational BitTorrent tracker on the Internet.

We find that the node degree of the graph formed in a BitTorrent swarm

can be described by a power law with exponential cut-off and the observation

of a low clustering coefficient implies BitTorrent networks are close to random

networks. From the BitTorrent protocol point of view, the reason that a Bit-

Torrent swarm can be described by a power-law with exponential cut-off is:

leechers in a BitTorrent swarm prefer a few good seeders or neighbors that can

give high data rates to exchange the data and seeders have rich connections

to leechers as seeders have complete chunks or pieces. That behavior explains

why seeders have rich connections while leechers only have a few neighbors. We

argue that there are two reasons for the cut-off phenomenon. First, most Bit-

Torrent clients configure the maximum number of global connection between

200− 300, however the maximum connection per torrent (swarm) is set be-

tween 50−90 by default [58] [70]. Some BitTorrent forums suggest decreasing

the maximum connection for torrent (swarm) to between 30−40 [69]. Second,

most of the BitTorrent users are home users where their home gateway de-

vice cannot give high concurrent connections and BitTorrent is not the main

online activity. We argue that the BitTorrent swarm closes to random that

we infer from clustering coefficient is caused by BitTorrent mechanism itself

that always choose random peers from its neighbors in the choking-unchoking

algorithm, optimistic choking algorithm, and optimistic connect algorithm as

we explained previously. Our approach can infer BitTorrent swarms topology

and the result confirmed by simulation [17]



Chapter 4

Peer-Assisted Content Delivery

4.1 Introduction

Streaming content, especially video, represents a significant fraction of the

traffic volume on the Internet, and it has become a standard practice to deliver

this type of content using Content Delivery Networks (CDNs) such as Akamai

and Limelight for better scaling and quality of experience for the end users.

For example, YouTube uses Google cache and MTV uses Akamai in their

operations.

With the spread of broadband Internet access at a reasonable flat monthly

rate, users are connected to the Internet 24 hours a day and they can down-

load and share multimedia content. P2P (peer to peer) applications are also

widely deployed. In China, P2P is very popular; we see many P2P applications

from China such as PPLive, PPStream, UUSe, Xunlei, etc. [72]. Some news

broadcasters also rely on P2P technology to deliver popular live events. For

example, CNN uses the Octoshape [51] solution that enables their broadcast

to scale and offer good video quality as the number of users increases.

From the Internet provider point of view, the presence of so many always-on

users suggests that it is possible to delegate a portion of computing, storage

60
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and networking tasks to the users, thus creating P2P networks where users

can share files and multimedia content. Starting from file sharing protocols,

P2P architectures have evolved toward video on demand and support for live

events.

Alternatively, video contents can be efficiently distributed on services of-

fered by managed network architectures and CDN companies. The major

issues of CDN are high deployment cost and good but not unlimited scala-

bility in the long term. Given the complementary features of P2P and CDN,

in recent years some hybrid solutions have been proposed and applied to the

operational of CDN [32, 37, 78] to take the best of both approaches. In Peer

assisted CDN, users can download content from CDN nodes from or other

users or peers. A user may cache the content after download to serve requests

from other users. Due to the complexity of the behavior of peers, the process

should be done in the home gateway user where the ISP can control it.

In this work, we will revisit Guo et al.’s PROP, [26] as a basis to evaluate

peer-assisted CDN and propose an improvement to the model for the PROP

called CPPro (this system is called CPPro abbreviated from our technical term

”CDN-P2P Project”). In PROP’s utility function, the difference between very

popular videos and unpopular video is very difficult to differentiate. For an

unpopular video, f (p) will be very close to f (pmin) thus f (p)− f (pmin) will

be very close to 0 then the utility function becomes very small. For a very

popular video, f (p) will be very close to f (pmax), thus f (pmax)− f (p) will be

very close to 0 and the utility function becomes very small. We will take

Youtube as an example of an Internet VoD service model. In the Youtube

service model, we can get data such as (1) the time when a video is uploaded

and (2) the number of accesses or number of views. We can get such data using

Youtube’s API. Borghol et al., [8] used the above information to estimate when

a video will become very popular. They divided a video’s popularity into three
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phases: before-peak phase, at-peak phase, and after-peak phase. We will use

an estimate of a video’s popularity phases for helping PROP. We will explain

video popularity in Sec.4.2. Our contribution is as follows: (1) We use the idea

of VoD view popularity model to aid the PROP. To the best of our knowledge,

the combination of the PROP and the VoD view popularity model is new. (2)

From simulation-based experiments, we find that peer contributions in CPPro

are almost as good as PROP while the numbers of replicas are lower, achieving

the same performance with fewer resources.

4.2 Determining Internet VoD Popularity Phase

The objective of determining the Internet VoD popularity phase is to de-

termine whether a video is at before-peak, at-peak, or after-peak phase, to be

used by peers in their caching strategy. For this purpose we use the Youtube

content popularity dataset from Borghol et. al., [8] which contains data about

29791 videos, including the view count and upload time, during 36 weeks of

measurements. Figure 4.1 is the cumulative distribution function (CDF) of the

time-to-peak distribution from Borghol et. al., [8] which shows that around

three-quarters of the videos peak within the first six weeks after upload. The
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time-to-peak is exponentially distributed up to the sixth week, and it is uni-

form beyond the sixth week. Borghol et al., [8] define time-to-peak for a video

as its age (time since upload) at which its weekly viewing rate is the highest

during measurement (from the first week until end of measurement). Because

we know the peak time (at-peak phase) of every video, we can also find the

before-peak phase and after-phase of every video. Borghol et al., [8] men-

tioned that view count evolution follows beta distribution. For detail we refer

the readers to [8].

Our algorithm for determining a requested video is quite simple. As we

know the age of a requested video in week number and its view rate, the

algorithms looks for Borghol dataset with the same week, one week before,

and one week after for the same view rate. We are averaging the relative week

to at-peak values in the same week, one week before, and one week after.

Suppose a video v in the Borghol dataset has a viewing rate rv(t), 0<= t < t f ,

and rv(t) peaks at tvp. The data is transformed by including the relative time-
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to-peak, such that each data point is a 2-tuple: video rate and relative time

to peak:

rvp(t) = ⟨rv(t), tp(t)⟩ (4.1)

tp(t) = t− tvp. (4.2)

Figure 4.2 shows the Borghol’s dataset with time axis for each video is trans-

lated by tvp to the left, such that each video peaks at time 0.

In determining the phase of a requested video e with known age te and view

rate re at te, we find the three rv data points whose rates are closest to re at te,

(te−1), and (te+1) for all videos from Borghol dataset, and then average the tp

of the three data points. The phase of the requested video e is estimated to be

before-peak, at-peak, or after-peak based on whether the average is negative,

0, or positive. The view rate re of a video is calculated by subtracting the view

counts at the time of the current and the previous video requests. The pseudo

code for averaging the tp is shown in algorithm 1.

But when a video is being requested for the first time, the phase can only

be estimated using the age of the video. In this case, we draw 36 weighted

random integer numbers si, 0 <= i <= 35 where the weighted factor is from

time-to-peak phase CDF as shown in fig. 4.1 then calculate the count of each

integers between 0 and te from the drawn numbers then divide the result by

36, i.e., estphase =
∑te

0
count(i,s)

36 . The number 36 come from the duration of

measurement and each week has its own probability as we shown in fig. 4.1.

This result represents the estimated phase. From time to peak distribution,

50% of video reach peak within four weeks. At that level, we expect that

half of videos may reach at-peak and half of videos are not yet reach at-peak.

Therefore we put 0.5 as low threshold. Still from the same time to peak

distribution 75% of video reach peak within six weeks, and beyond six week
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Algorithm 1 Averaging relative weeks from the nearest neighbor points
Require: dataset that consist of week number, view rate, and relative week

to at peak.
1: t,rv, tp ← read Borghol’s dataset {where t is week number (1st column), rv

is view rate (2nd column), and tp is relative week to at-peak values (3rd
column).}

2: len ← 29791∗36 {we have 29791 videos * 36 weeks thus we have 1072476
rows and 3 columns of Borghol’s dataset.}

3: te ← timecur− timeupload {calculate week number of a requested video which
is current time a requested video subtract by upload time of a requested
video.}

4: re ← viewcountcur − viewcountlastweek {calculate view rate of a requested
video which is current view count of a requested video subtract by last
week view count of a requested video.}

5: tbe f ore
e ← (te−1) {at one week before.}

6: for i = 0 to len do
7: if t == te and rv == re then
8: tbe f ore

p ← tp {put tp value into tbe f ore
p list.}

9: end if
10: end for
11: tat

e ← (te) {at same week.}
12: for i = 0 to len do
13: if t == te and rv == re then
14: tat

p ← tp {put tp value into tat
p list.}

15: end if
16: end for
17: ta f ter

e ← (te+1) {at one week after.}
18: for i = 0 to len do
19: if t == te and rv == re then
20: ta f ter

p ← tp {put tp value into ta f ter
p list.}

21: end if
22: end for
23: t f inal

p ← average(tbe f ore
p , tat

p , t
a f ter
p )

24: if t f inal
p < 0 then {if relative week to at-peak value is less than 0, estimate

a requested video as before-peak.}
25: phase ← be f ore
26: else if t f inal

p == 0 then {if relative week to at-peak value is equal to 0,
estimate a requested video as at-peak.}

27: phase ← at {if relative week to at-peak value is more than 0, estimate
a requested video as after-peak.}

28: else
29: phase ← a f ter
30: end if
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Algorithm 2 Determine phase for the first time access of a requested video
Require: te and time-to-peak distribution

1: len ← 35
2: for i = 0 to len do
3: draw integer random number between 0 and 35 respect to time-to-peak

distribution: d ← draw_integer_random_number()
4: end for
5: total← 0
6: for i = 0 to te do
7: total ← total + count(d, i) {counting how many integer random number

and sum those number}
8: end for
9: estphase ← total/36

10: if estphase > 0.75 then
11: phase ← after-peak
12: else if estphase ≤ 0.75 and estphase > 0.5 then
13: phase ← at-peak
14: else
15: phase ← before-peak
16: end if

the distribution is considered, it means there are not much additional view

count. In other words, beyond six weeks we consider videos reach after-peak

phase. Therefore we put 0.75 as high threshold. The pseudo code for this

purpose is shown in algorithm 2.

4.3 System Description

4.3.1 System Overview

The main components of the system are: (1) a CDN and (2) a set of peers

which are self organized into a P2P overlay network. Each peer in the system

has two functions. First, a peer is a client that requests a video. Second,

a peer is a contributor that shares the cached video with other peers in the

system. Peers control the number and utilization of their connection based on

current resources availability. In fig.4.3, we describe the process of a peer that

requests a video which derived from PROP. When a video is requested for the
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Figure 4.3: Peer assisted CDN works as follows: when a peer requests a video,
it always goes to a CDN server (step 1). The CDN provides the videos to
the peer (step 2). If there is another peer request same video, that request
will go to CDN (step 3). A CDN will check its record to see if there is some
peers cache that requested video. If there is some peers cache that requested
video, a CDN will reply with redirect message that asking a peer to download
requested video from other peer (step 4). If there s no peers have requested
video, a CDN will serve the video. A peer then can request the video to other
peer and get the video (step 5 and step 6).

first time, the CDN is responsible for delivering the requested video. When

a CDN receives a query for the same video, a CDN will find suitable peers

that currently have a copy of the requested video. The CDN then returns

information about these peers to the querying peer.

4.3.2 Peer caching strategy

A peer stores the requested videos into its cache based on the value of a

utility function, i.e., in a peer with a full cache a newly requested video will

replace one or more videos in the cache whose utility values are smaller than

that of the new video. The utility function reflects the popularity of a video

in the system that considering number of copy of its video or replica. PROP’s
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u value itself lies in interval [0,2] Guo et al., [26]. Our utility function u is:

u =
( f (p)− f (pmin))( f (pmax)− f (p))

rα+β
+ z(t) (4.3)

where the first term is the utility function of PROP, and the second term,

z(t), is the phase factor that we introduced in CPPro, where z(t) is large if

the video phase is at-peak. p, pmin, and pmax are the popularity of the video,

the minimum popularity, and the maximum popularity in the system. We

follow [26] for f (p) = log(p). The popularity of a video is the determined by

the view rate of the video. r is the number of replicas. α and β are adjustment

factor [26].

Following [26], we can calculate p as follows:

p = min

 nr
i

tri − tia
,

1
tcur − tri

 (4.4)

Where nr
i is number of requested video, tri is last time the video is requested, tia

is the time when the video is accessed for the first time, and tcur is the current

time. To able to track the simulation, we use default value from PROP thus

we refer the readers to [26] for the details.

The z(t) values are set as follows:

z(t) =



0.15 if phase estimation is before-peak

0.47 if phase estimation is at-peak

0.38 if phase estimation is after-peak

(4.5)

where the numbers are based on the proportion of video counts in the

Youtube dataset before the peaks, around the peaks, and after the peaks. z(t)

for at-peak is determined by the total proportion of video counts from 1-week-
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before until 1-week-after the peak, which accounts to almost half of the total.

The value of z(t) is assigned after we finish to determine a video popularity

phase. For example: if we determine a video popularity phase is at-peak, then

we assign z(t) = 0.47.

4.4 Evaluation

We performed simulations to compare the performance of CPPro against

PROP in two main metrics: (1) peer contributions in video delivery, and (2)

number of video replicas in peers. The peer contribution is the number of

videos served by a peer instead of by the CDN server. The number of video

replicas shows how much storage is used in peers to contribute in video delivery.

The peer contribution metric is related to the byte-hit-ratio. The byte-hit-ratio

is defined as the total bytes of content served by peers normalized by the total

bytes of video all peers and the CDN consume. With more peer contributions,

we will have higher byte-hit-ratio because peer can get content from other

peers. However, because we only interested in peer performance, we compare

peer contribution between PROP and CPPro. Contribution ratio of peer to

total contribution (comparing to CDN contribution) becomes irrelevant in this

case.

4.4.1 Simulation Design

This peer-assisted CDN is simulated using an event driven simulation im-

plemented in Python. Peers request videos from a video catalog where the

peer request as well as the videos in the catalog are generated using certain

distributions.



CHAPTER 4. PEER-ASSISTED CONTENT DELIVERY 70

Video Catalog

Each video in the catalog has the following properties: video-id,size,upload

time, final view count, view count function parameters. View count parameters

are the distribution parameters. The final view count is the total number of

views of a video at the end of simulation and it is generated using uniform

distribution sampling from Borghol dataset ranging from 27 until 1069385.

The upload time interval is a Poisson process with λ = 1. The video size is

generated using a uniform distribution. Because of the very weak relationship

between video size and popularity [1] and because our work focuses on the

impact of the popularity aspect on the utility function rather than storage

optimization we believe that the choice to assign a random uniform video size

from the Youtube dataset does not effect our results. The view rate progression

from the upload time until the end of simulation time is modeled using a Beta

distribution [8]. As Borghol et al., [8] showed that view rate of a video can be

modeled using beta distribution we can calculate α and β parameters. We can

use beta distribution mode formula m = α−1
α+β−2 to calculate α or β. In this case,

we choose α random uniform between 1 and 3 and m is view rate at-peak, thus

we can get β = α−1
m −α−2.

Peer Request Generator

Peers request videos from the catalog using a Poisson process with λ= 1 [81]

for the inter-arrival time. For the requested videos there are three scenarios

A,B,and C. In Scenario A, the video popularity in the peer-assisted CDN

system follows the global popularity of the video. In Scenario B, the video

popularity in the peer-assisted CDN system lags four weeks behind the global

popularity of the video. We choose four weeks lags based on the probability

from time-to-peak distribution that half of videos are already reach peak within

four weeks. In Scenario C, the video popularity in the peer-assisted CDN
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Figure 4.4: Videos rank distribution delivered by peer compared between CP-
Pro and PROP for scenario A (y-axis in log-scale).

system does not follow the global popularity of the video. We use a Zipf

distribution with rate= 0.9 for this purpose [24].

Simulation Parameters

The simulation parameters are follows:

• Length: 360 days.

• Video size: uniform random between 1MB and 200MB.

• Peer storage capacity: 500MB.

• CDN storage capacity: 10000MB.

• Number of peers: 10000.

• Number of videos: 10000.

• Peer’s caching strategy: CPPro, PROP.

Finally, we compare our results to PROP [26].
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Figure 4.5: Videos rank distribution delivered by peer compared between CP-
Pro and PROP scenario B (y-axis in log-scale).
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Figure 4.6: Videos rank distribution delivered by peer compared between CP-
Pro and PROP scenario C (y-axis in log-scale).

4.4.2 Result and Discussion

Figure 4.4, 4.5, and 4.6 shows number of requested satisfied by peer. They

exhibit a similar pattern and only differ in the tails for all scenarios, where

CPPro gives higher, albeit insignificant, results. The difference between CPPro

and PROP in scenario A is 1.1%, 1.7% in scenario B, and 2% for scenario

C. These results show that the introduction of z(t) component to the utility

function does not affect the performance in terms of peer contributions. The



CHAPTER 4. PEER-ASSISTED CONTENT DELIVERY 73

Figure 4.7: Comparison of available replicas between CPPro and PROP when
a peer requests a video for scenario A (x axis in log-scale).

Figure 4.8: Comparison of available replicas between CPPro and PROP when
a peer requests a video for scenario B (x axis in log-scale).
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Figure 4.9: Comparison of available replicas between CPPro and PROP when
a peer requests a video for scenario C (y axis in log-scale).

Figure 4.10: Comparison of available replicas between CPPro and PROP when
a peer requests a video for scenario A with 100000 peers (x axis in log-scale).
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Figure 4.11: Comparison of available replicas between CPPro and PROP when
a peer requests a video for scenario B with 100000 peers (x axis in log-scale).

Figure 4.12: Cache duration of a video in peers for scenario A.

advantage of CPPro to PROP is evident in fig. 4.7, 4.8, and 4.9, which show

the number of replicas of the requested videos at each request event.



CHAPTER 4. PEER-ASSISTED CONTENT DELIVERY 76

Figure 4.13: Cache duration of a video in peers for scenario B.

Figure 4.14: Cache duration of a video in peers for scenario C.

When a peer requests a video from another peer, a peer has to decide

whether a peer wants to cache the video or not to cache the video based on the

calculated utility function value. If a peer decided to cache a video, we called it
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cached event. If a peer did not decide to cache a video, we called it not-cached

event. We breakdown how many cache events occur in our simulation as shown

in table.4.1. Furthermore, we breakdown again by video popularity phase for

CPROP’s cached and not-cached events as shown in table. 4.2. From table.4.1,

we can see that CPPro cached less videos compared to PROP for all scenarios.

CPPro cached events are fewer than PROP because in CPPro the probability

of cached events are fewer than not-cached events. We want to know what

makes cached events in CPPro are fewer than PROP. Assume a peer requests

a video with utility function ur and the minimum utility function inside the

peer’s cache is uc-min.Intuitively, when a requested video is in the after-peak

phase and other videos in peer’s storage are in the at-peak phase, then in

the CPPro case there is a high probability that a requested video will not be

cached. In the PROP case, since PROP does not use the video popularity

phase, the probability of a requested video will not be cached is lower than

CPPro. We can take the same intuition for before-peak and at-peak phase.

The cached events happen more frequently in scenario A comparing to

scenario B, because in scenario B when we shift requests four weeks later,

estimated of requested videos will probably fall at-peak phase or after-peak

phase and the videos in peer’s cache are also probably estimated at-peak phase

or after-peak thus probability of not-cached events are higher in scenario B

than scenario A. In table.4.2, the at-peak phase has low proportion comparing

to before-peak and after-peak phase because when we estimate popularity

phase of a requested video, the estimate of video to be at-peak phase occurs

when average of relative week is exactly 0. In table.4.2, the after-peak phase

has high proportion comparing to before-peak and after peak phase in scenario

A and B because video popularity evolution model that we use to estimate a

new requested video assume that after four weeks most of video will enter

after peak phase. In scenario B, its higher than scenario A since we shifted
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four weeks. In scenario C, while after-peak phase has higher proportion than

before-peak and at-peak phase, its proportion is lower than scenario A an B

because different popularity video choice. In table.4.2, the before-peak phase in

scenario A has higher proportion comparing to scenario B because in scenario

B we shift the video request time four weeks thus the probability of a requested

video to be before-peak is lower than scenario A. In scenario C, the proportion

before-peak phase is higher than scenario A and B. This probably due to

different popularity of video choice that a requested video is estimated to be

before-peak phase but the video inside peer’s cache are having lower utility

function.

In fig. 4.7, 4.8 , and 4.9 show number of replicas available for each scenario

when a peer request a video. Maximum replica for PROP is around three

times from CPPro in scenario A and B, while in scenario C the maximum

value for PROP is around two times from CPPro. Numbers of replicas for each

scenario are different between CPPro and PROP in the head of distribution

and similar in the body and the tail of distribution. Although, we can see

two and three times fold difference in the head of distribution, in fact total

difference is only 1% for scenario A and B and 5% for scenario C. This is small

difference because of small number of peers in the simulation, which is same

with number of available video. The probability of different peers chooses a

same video is high here. We also performed simulation with 100000 peers and

number of available replicas for scenario A and B are shown in fig. 4.10 and

4.10. In 1000000 peers case all videos are uploaded (in Poisson process) in

the beginning of simulation. In case of 100000 peers, we can see the difference

between CPPro and PROP in number of available replicas. In this case, the

probability of different peers chooses a same video is low here. We calculate

the Kolmogorov-Smirnov statistic on two samples and we find that for scenario

A and scenario B the p-values are less than 0.1 thus we consider the result are
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Table 4.1: Percentage of Cached events and Not-Cached events in CPPro and
PROP.

Scenario Type Cached (times) Not-Cached (times)
A CPPro 32% 68%

PROP 71% 29%
B CPPro 30% 70%

PROP 72% 28%
C CPPro 48% 52%

PROP 70% 30%

Table 4.2: Percentage cached and not-cached events for each video popularity
phase in CPPro.

Scenario Type/Events Before-Peak At-Peak After-Peak
A CPPro Cached 2.1% 0.5% 29.5%

CPPro Not-Cached 2.8% 0.7% 64.4%
B CPPro Cached 1.6% 0.5% 27.8%

CPPro Not-Cached 2.2% 0.8% 67.1%
C CPPro Cached 13.7% 1.7% 33.8%

CPPro Not-Cached 8.2% 1.2% 41.4%

significant.

Figure 4.12, 4.13, 4.14 show cache duration from all scenarios. In scenario

A and B, cache duration between PROP and CPPro are similar except in tail

of distribution. In scenario C, CPPRO has longer cache duration compared

to PROP in the body of distribution and lower cache duration in the tail of

distribution. Long cache duration means video stay longer than another video

inside peer’s cache. If some videos has long cache duration in peer’s cache,

then big probability that peer’s do not cache a requested video because the

videos inside the peer’s cache have higher utility function. The implication is

the peer has low cached events. That’s what wee see in table 4.1.

4.5 Application

Conceptual application of peer-assisted CDN in AI3 network is shown in

fig 4.15. AI3 network [55] is a satellite based testbed network that operating

mainly in south east Asia. As shown in fig 4.15, the satellite feeder is located
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Figure 4.15: Conceptual Application of Peer-Assisted CDN in AI3 network.

in Keio university Shonan Fujisawa Campus (SFC), Japan. The receivers

are mainly located in several South-East Asia countries such as Indonesia,

Malaysia, and Myanmar.

The main CDN (tier-1 CDN) is located in SFC and tier-2 CDNs are located

in receiver sites. Every receiver sites have several peers. Every time a peer

ask a content, it will goes to the tier-2 CDN. If the content is not available,

the tier-2 CDN will forward the request to the main CDN, the main CDN will

delivery the content to the tier-2 CDN, and the tier-2 CDN will delivery the

content to a peer. When another peer ask the same content it will goes to the

tier-2 CDN. If other peer inside the same site has the content, the tier-2 CDN

will redirect the request to other peer. If there are no peers have the content,

the tier-2 CDN will deliver the content.
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4.6 Summary

This chapter presented a scheme for a peer-to-peer network that can help

a CDN to deliver the content over the Internet. We show that by introducing

the z factor to the cache utility function CPPro can maintain the same peer

contribution while reducing number of replicas. We found that there is no

much difference for all scenarios in terms of peer contribution to deliver a video.

However, we found that in all the scenarios, CPPro gives lower replicas than

PROP. This is because in CPPro, we found intuitively that probability that

not-cached events occur is higher than cached events. Furthermore compared

to PROP, the probability that a peer does not cache a requested video is higher

in CPPro compared to PROP. Therefore, in CPPro the numbers of available

replicas are lower than PROP. We also did the significance test to the number

of replicas using the Kolmogorov-Smirnov statistic on two samples and we

find that for all scenarios the p-values are less than 1% thus the results are

significant.

Some areas of improvement that we have identified for future work are:

(1) since we know CPPro offers a little bit of peer contribution with fewer

replicas, we are interested in knowing the energy trade-off of this peer-assisted

CDN architecture in order to know how much energy saving by ISP and how

much increase of energy at users home gateway side in this architecture since

we have higher peer contribution. (2) Involving the different popularity model

from different geographically VoD service. This is very important to see the

system behavior when receiving requests from different locations with different

popularity while still in the same global CDN service. Furthermore, we can

exploit this behavior for commercial ads in VoD service.



Chapter 5

Energy Savings in Peer-Assisted

CDN

5.1 Motivation

We discussed peer-assisted CDN in previous chapter. One of the implica-

tions is the possibility to delegate workload from CDN servers to peers. As we

mentioned earlier, CDN servers are placed in data centers globally in order to

serve clients as fast as possible and as low latency as possible. On the other

hand, the data center where the CDN server is placed faces costs for pow-

ering the data center. The Uptime Institute, a global data center authority,

surveyed 1100 data center owners and operators in 2012 and reported that

55% of organizations will increase their financial budget 10% over 2011 [35].

30% of organizations were expected run out of data center capacity (power,

cooling, space, and network) by the end of 2012 [35]. More than 50% of the

organizations surveyed reported that saving energy 1 is a major priority. Even

in the data centers using the state of art cooling technologies heat dissipation

accounts for at least 20% and as much as 50% of the total power consump-
1As we are discussing steady-state operation, energy and power are in direct correspon-

dence so we use the terms interchangeably.

82
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tion [21]. The increases in energy cost and the demand due to growth of traffic

urges the data center operators and owners to look for ways to reduce energy

usage in the years to come. Although reducing energy consumption can effec-

tively reduce overall cost, this will limit the capacity for growth and scalability

of the service provisioning. For example: routers and servers spend most of

their energy on the baseline activities such as running the fans, spinning disk,

powering the backplane, and powering the memory. Even in an idle state,

modern systems can be consuming anything from 50% to 80% of the power

consumed under maximum load [7, 10].

Alternatively, the data center can be revamped by relocating some services

to end-host computers or peers. Peers contribute their communication, stor-

age, and computation resources to exchange data and provide services while

the data center performs central administration and authentication as well

as backend processing. A P2P network formed by peers offers flexibility and

scalability in service delivery.

We study the energy consumption of hybrid CDN-P2P in two use cases:

live streaming and online storage services. It has been shown that CDN en-

ergy consumption is better than P2P architecture [6, 18]. The questions are:

with the opportunity to offload the CDN’s workload to the peers, how much

energy saving can the CDN server get and how large is the difference com-

pared to a pure CDN architecture. If we can estimate the difference between a

CDN architecture and a peer-assisted CDN combined with an estimate of peer

power consumption, we can use this difference as a basis calculation for giving

an incentive to users since peer assisted relies heavily on the user’s uptime

and upload rate. Furthermore, since the power consumption is reduced, the

power requirement inside the data center can be reduced thus relaxing capacity

planning.
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Figure 5.1: Example model of peer-assisted online storage architecture.

5.2 System Description

5.2.1 Live Streaming

Figure 5.1 shows an example model of a peer-assisted CDN for live stream-

ing adapted from [79]. CDN servers deliver video contents from the content

provider to end-users. The CDN usually is organized into several tiers usually

to cope with the scale demand. Edge CDN servers are directly responsible for

serving end users. The goal of the server side peer is for efficient data distri-

bution with some measures to guard against some node failures and network

delay.

The CDN overlay is largely tree-based. To provide greater reliability, a

CDN node may allow retrieving the content either from other nodes. Edge
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CDN servers are responsible for serving end users

For this system, we introduce the concepts of seeder and leecher. A peer

that is served by an edge CDN server is called a seeder while a peer that is

served by seeders is called a leecher.

A peer obtains the URL from a content source. The global server load

balancer finds a suitable edge CDN node for this peer. The peer is then

redirected to the nearest edge CDN. The edge CDNs has decision logic that

decides if a new peer should be served directly by the edge CDN or if it should

be redirected to the P2P overlay.

In the P2P overlay, the stream is separated into several substreams accord-

ing the stream id and peers are organized in a tree-based overlay. A working

peer-assisted CDN live streaming system is defined by parameters such as:

(1) video bitrate, (2) the total number of peers, (3) the edge CDN servers

bandwidth, and (4) peer upload bandwidth capacity and churn rates.

The maximum number of seeders is bounded by the CDN’s capacity, while

the maximum number of leechers is bounded by the number of seeders with a

certain upload rate. Let us denote the number of the seeders by ns, the number

of leechers by nl, the maximum bitrate supplied by seeders to leechers by ρ,

and the video bitrate by r. The number of leechers that can be supported by

seeders is:

⌊nl⌋ = ns.ρ (5.1)

The number of seeders that support or upload content to leechers is:

nu
s = nl.

r
ρ

(5.2)
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Figure 5.2: Example model of peer-assisted online storage architecture.

In peer-assisted live streaming, we introduce the utilization policy where

the CDN server admits peers as seeders as long as the CDN utilization does not

exceed 50%, which we defined as 50% of the capacity of a Gigabit Ethernet.

When the utilization hits 50%, incoming peers are admitted as leechers, hence

they receive the contents from seeders. When more peers join the system and

the upload capacity of the seeders is exceeded, the policy raises the utilization

cap and the server admits the newly joined peers as seeders. We consider this

policy to be better than adding a new server from the point of view of energy

consumption.

5.2.2 Peer-Assisted Online Storage

Figure 5.2 illustrates the architecture of peer-assisted online storage for a

file hosting system (one-click hosting service with peer-assistance) and inter-
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actions among the main components [64]. In this system, each file provided

by users is treated as a swarm. Each end user is treated as a peer.

In Fig.5.2, arrows 1, 2, and 3 denote the interaction between a partici-

pating peer and tracking server and replication servers for uploading a new

file. Arrows 4, 5, and 6 denote the interaction between peers and the tracking

server to maintain the peer topology. Arrow 7 denotes the sharing of the file

and exchange of availability data among peers. Arrows 8 and 9 represent peer

requests and server response.

The tracking server’s function is to maintain swarm information and boot-

straps peers. Replication servers working as dedicated content servers have a

function for maintaining the availability of swarms when peers do not actively

serve them alone.

We choose this peer-assisted online storage model because this model has

been implemented widely in China, e.g. FS2You [19], and because one-click file

hosting services are very popular right now [44]. Such services rely heavily on

server farms inside the data center, thus energy cost becomes important [4]. In

this model, since the server holds an important role in this system, we present

a simple mathematical model of server bandwidth allocation strategies as a

basis for energy calculations [63, 66], as follows:

• Type-1 represents less popular files and type-2 represents popular files.

• S t1 represents server bandwidth allocated to a type-1 file and S t2 repre-

sents server bandwidth allocated to a type-2 file.

• S is the total server bandwidth.

• S max1 is the maximum amount of server bandwidth that can be assigned

to a file of type-1 and S max2 is the maximum amount of server bandwidth

that can be assigned to a file of type-2.
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• Mt1 is the number of type-1 files and Mt2 is the number of type-2 files.

• µ is upload rate of a peer.

• αt1 is the arrival rate of new peers in type-1 file and αt2 is the arrival

rate of new peers in type-2 file.

• α = Mt1αt1+Mt2αt2

• M = Mt1+Mt2

• ηt1 is the file sharing effectiveness. It is the fraction of the upload capacity

of peers that is being utilized for type-1 file.

• ηt2 is the file sharing effectiveness. It is the fraction of the upload capacity

of peers that is being utilized for type-2 file.

• Td is the average downloading time.

• xi is the average number of peers.

There are three server bandwidth allocation strategies: (1) lower bound of

the average downloading time; (2) request driven strategy; (3) water leveling

strategy. In the lower bound strategy, the server uses the bandwidth for type-1

files until S t1 reaches its maximum value, then the residual server bandwidth

can be assigned to type-2 files. In the request driven strategy, the server serves

every request from peers. The server bandwidth is equally divided among all

the peers. Let’s assume that the number of requests for a file to the server is

proportional to the peer arrival rate of the file. Let’s also assume that when

the amount of server bandwidth assigned to one of the two types of files has

reached its maximum value, the residual server bandwidth will be assigned to

the other type of file. In the water leveling strategy, the server bandwidth is

equalized across all the files by taking file popularity into consideration. The

server serves the requests from peers according to a certain probability, which
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is inversely proportional to the peer arrival rate of the file. Let’s assume that

the number of requests for a file to the server is proportional to the peer arrival

rate of the file, the server will serve the same number of requests for different

files and therefore the server bandwidth is equally allocated across all the files.

In order to be able to calculate our power consumption, we need to get the

number of peers in the system that can be expressed as [63]:

∑
xi = Td.

∑
λi (5.3)

Furthermore, we can calculate Td:

Td =
1

Mt1.λt1+Mt2.λt2

(
Mt1. ft1.λt1.ηt2+Mt2. ft2.λt2.ηt1

µ.ηt1.ηt2
− S t1(Mt1.ηt2−Mt2.ηt1)+S .Mt2.ηt1

µ.ηt1.ηt2

)
(5.4)

5.2.3 Energy Model

Our goal is to provide a general view and fair comparison of the energy

consumed by a pure CDN and a hybrid CDN-P2P architecture. To do so, we

designed a series of models and performed an analysis. Our energy model is

similar to the models used in [48]. The differences with [48] are, firstly, our

baseline energy is not a function of bitrate flow. Our baseline energy is based on

the minimum energy required to turn on the device without any traffic flowing

through the device. Secondly, our overhead ratio is based on the Coefficient of

Performance (COP) of the cooling cycle in data center, which we will explain

at the end of this section.

Let Es, Er, and Ep denote the energy consumption of a single request at

each a CDN server, router, and peer respectively. Next, we define baseline
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energy consumption as the energy consumed to keep the device on, even when

there is no traffic. Let Es−base, Er−base, and Ep−base denote the baseline en-

ergy consumption for CDN server, router, and peer respectively; and Es−max,

Er−max, Ep−max denote the power consumption of server, router, and peer when

operating at the maximum capacity.

Next, we introduce work-induced energy as the energy consume per bit

transferred. Let δs,δr, and δp denote the work-induced energy consumed per

additional bit transferred by each CDN server, router, and peer,

δs =
(Es−max−Es−base)

Ms
(5.5)

δr =
(Er−max−Er−base)

Mr
(5.6)

δp =
(Ep−max−Ep−base)

Mp
(5.7)

Furthermore, we can get:

Es = δsB+Es−base (5.8)

Er = dδrB+Er−base (5.9)
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Figure 5.3: COP curve for the chilled water cooling units from HP Lab utility
data center. As the target temperature of the air the cooling unit pumps into
the floor plenum increases, the COP increases.

Ep = δpB+Ep−base (5.10)

where d is the number of hops and B is the size of file to be transferred in

bits.

We now introduce the overhead for the server and routers. The only over-

head that we will consider here is cooling power. Since servers and routers are

placed in the data center, the data center needs to be provisioned with ade-

quate cooling. This cooling overhead in the data center is quantified by the

coefficient of performance (COP). The COP value itself has been empirically

determined to be [47]:

COP(T ) = 0.0068.T 2+0.0008.T +0.458 (5.11)

Where T is the temperature supplied by the cooling unit in Celsius. Figure
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5.3 shows the COP(T ) value for every T . Finally, the cooling cost can be

calculated as [47]:

C =
Q

COP(T )
(5.12)

Where Q is the amount of power consumed by the servers and hardware.

We assume a uniform T at each cooling unit. Taking into account the cooling

energy overhead, the total energy consumption is as follows:

Et = Es

(
1+

1
COP(T )

)
+Er

(
1+

1
COP(T )

)
(5.13)

We do not include the cooling overhead in the peer energy consumption

because most of the peers in homes do not need a separate cooling supply.

5.3 Result and Analysis

5.3.1 Numerical Parameters

The parameters used in this analysis were adapted from [6,48,63,71]. The

parameters values are shown in Table 5.1. We choose the numerical parame-

ters from [6,48,63,71] because these parameters were gathered from empirical

measurements.

5.3.2 Live Streaming Service

In the live streaming case, each video stream flows from the CDN node to

the network, in this case a router, and then arrives at the seeders. If seeders

need to upload data to leechers it will flow through the router then arrive at
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Table 5.1: Numerical Simulation Parameters.

Symbol Description Values
δs Work induced at server per bit transferred 5.2.10−8 (J/b)
δr Work induced at router per bit transferred 8.0.10−9 (J/b)
δp Work induced at peer per bit transferred 16.10−9 (J.b)
Er−base Router baseline power consumption 750 watt
Es−base Server baseline power consumption 290 watt
Ep−base Peer baseline power consumption 13.5 watt
r Video bitrate in live streaming 1Mbps
d Number of hops 1
Nu

s Upload rate of peers in live streaming [0.25,0.5,0.75,1] Mbps
N Number of peers in live streaming [100, ..,1000]
δt1 Type-1 peer arrival rate to less popular files in online 0.1

storage (Poisson process)
δt2 Type-2 peer arrival rate to less popular files in online 1

storage (Poisson process)
ηt1 File type-1 sharing effectiveness. The fraction of the 0.5

upload capacity of peers that is being utilized in
online storage

ηt2 File type-2 sharing effectiveness. The fraction of the 1
upload capacity of peers that is being utilized in
online storage

Mt1 Number of files in type-1 files or less popular files 10
Mt2 Number of files in type-2 files or less popular files 1
ft1 = ft2 File size in online storage 100 MB
µ Upload rate of peers in online storage 0.5Mbps
c Downloading rate of peers in online storage 1Mbps
T Air temperature supplied form cooling unit [20,25] correspond to COP

in data center value [3.194,4.728]

the leechers. We show the logical network architecture of peer-assisted CDN

for live streaming in Fig.5.1. Fig.5.4 shows a simplified physical representation

of the network. While in a logical network the peer can communicate directly

with another peer, in a real physical world the communication between peers

always passes through a router inside the data center.

Figure 5.5 shows energy usage for CDN server, router, and the total energy

consumption for the CDN scenario (without peer assist). We plot the energy

consumption for CDN server, router, clients, and total energy for two COP

coefficient values (T ). All energy consumption components increase in value
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Server

Router

Seeder Seeder Seeder Seeder

leecher

Figure 5.4: Simplified physical representation flow of data.

as the number of peers increases; and peers consume most of the energy. The

effect of variations in T on total energy is small

Figure 5.6 shows the energy consumption of all components for the CDN-

P2P scenario. We use the peer upload rate Nu
s = 0.75 in Fig.5.6. We observe

that there is almost no change in peers’power consumption compared to

the pure CDN. The router consumes more power with a higher rate of increase

because in CDN-P2P peers the traffic originated from the seeders passes trough

the router twice. The CDN server power consumption has small increases

between N = 100 and N = 500, while there are sections with no power increase
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Figure 5.5: Power consumption for the server, router, peer, and total system
for CDN architecture. Note that the server and router energy are plotted using
the right hand scale, and the peer and total energy are plotted using the left
hand scale.

at N > 500, which is where the seeders are uploading contents to the leechers.

The server power consumption remains flat as long as the upload rate does not

exceed the defined peer upload rate.

Figure 5.7 shows the energy savings of CDN-P2P compared to CDN archi-

tecture for CDN server with the utilization policy as explained in Sec.5.2 for

Nu
s = [0.25,0.5,0.75,1].

Let’s take Nu
s = 0.75 as an example. The first 500 nodes are served directly

by the CDN server since the utilization of the CDN server is 50% or less. We

consider 500 nodes to be 50% utilization because a video-rate of 1 Mbps will

result in total network traffic of 0.5 Gbps, which is half of a Gigabit Ethernet

interface. When more peers join the system, these peers will be treated as

leechers as long as the upload ratio condition is fulfilled. The number of

leechers that can be supported by seeders is 375. Therefore from N = 500 to

N = 875, the CDN server does not need to increase utilization because the
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peer-assisted CDN with Nu

s = 0.75. Note that the server and router energy are
plotted using the right hand scale, and the peer and total energy are plotted
using the left hand scale.

leechers can be supported by seeders, thus we see that the CDN server saves

energy. In this phase, compared to CDN architecture, CDN-P2P energy saving

is around 7.8%. Next, we have 875 total peers in the system, is apportioned

into 500 peers as seeders and 375 as leechers. Since more peers joining the

system, the CDN increases the utilization from 50% to 87.5% so all current

875 peers become seeders. In this phase, 875 seeders can support an additional

656 leechers. Therefore, from N = 875 to N = 1531 the CDN utilization is flat

at 87.5% because 875 seeders can support 656 leechers thus we have energy

savings around 11% compared to CDN architecture. Other values of Nu
s have

same pattern as shown in Fig.5.7.

Figure 5.8 shows the total energy savings of CDN-P2P compared to CDN

architecture for Nu
s = [0.25,0.5,0.75,1]. As the savings only occurs in the CDN

server, we see the same patterns as in Fig 5.7 but with a much lower percentage

of energy savings, which is 1%.
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5.3.3 Online Storage

To calculate the energy consumption in peer-assisted online storage, we

must be able to determine the number of peers in the system. We get average

downloading time (Td) values by varying server bandwidth values (S ) from 0

to 150 MBps using Eq 5.4. After getting the average downloading time, we

can get the average number of peers using Eq 5.3. We found that the number

of peers is inversely related to the server bandwidth. The number of peers is

the horizontal axis in Fig 5.9 and Fig 5.10. The figures cover more number of

peers compared to the live streaming service and we can look at the comparable

number of peers in both cases when we want to do comparisons.

Figure 5.9 shows the power consumption for the lower-bound strategy for

the server, router, peers, and the total system. We found that increasing

the number of peers decreases CDN server power consumption because the

bandwidth usage of the CDN server decreases. The router power consumption
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is flat at around 1000J/s because the server bandwidth reduction is offset by

the increasing number of peers. We also found that the other strategies, request

driven and water leveling, have the same pattern as the power consumption of

the lower-bound strategy.

Figure 5.10 shows a comparison of the energy consumption between the

request driven and the lower bound strategy, and between the water-leveling

strategy and the lower bound strategy for different numbers of peers. Com-

pared to the water-leveling strategy, the request driven strategy required more

energy because the request driven strategy equalizes the server bandwidth

across all the peers. The water-leveling strategy equalizes server bandwidth

across all the files by taking file popularity into consideration, thus minimizing

downloading time. We mentioned before that the number of peers is inversely

related to the server bandwidth, therefore for the same server bandwidth, we

get different numbers of peers for each strategy. This implies that for the

same number of peers, we get different server bandwidth. That is the reason
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Figure 5.9: Power consumption for lower bound strategy. Note that the server
and router energy are plotted using the right hand scale, and the peer and
total energy are plotted using the left hand scale.

for 1000 < N < 2500 the power consumption diverges. In very limited server

bandwidth (less than 45MBps) and sufficient server bandwidth (more than

120MBps) each strategy has the same downloading performance. That is the

reason for N < 1000 and N > 2500 we have the same the number of peers for

same bandwidth. As shown in Fig 5.10, for N < 1000 and N > 2500 the savings

for each strategy is relatively the same.

File popularity has a strong correlation with downloading performance.

We examine popularity by varying the peer arrival rate of less popular files

while the server has fixed bandwidth. Specifically, we increase the type-1 files

popularity from 0.1 to 1 and we choose a fixed server bandwidth S = 50 MBps

which is similar to FS2You. Figure 5.11 shows the difference in total power

consumption (left axis) and router power consumption (right axis) of that case.

Since the server bandwidth is fixed, we only show the power consumption

changes in the routers and the total. When the arrival rate is less than 0.5,
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the request driven strategy has worse downloading performance compared to

the water leveling strategy. This implies more peers exist in the request driven

strategy than the water leveling strategy. Therefore, the energy consumption of

the request driven strategy is higher than the water leveling strategy. Generally

for each strategy, increasing the peer arrival rates to less popular file makes

the total energy consumption and router energy consumption increase because

more peers are present in the system. Increasing the peer arrival rates to the

less popular file makes both the request driven and the water leveling strategy

energy consumption converge to a lower bound. This is because more peers

in the system improve P2P content availability, thus improving downloading

performance that converges to the lower bound strategy.
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5.4 Summary

We compared the energy consumption between peer-assisted CDN and pure

CDN for live streaming and online storage services both at the data center

as well as in total. Employing peer-to-peer capability to assist a CDN is

thought to lower the energy requirements at data centers, and we found that

the maximum savings at the data centers are 11% and 21%, respectively for

the live streaming and online storage services. These savings may change

depending on the COP values used and should be better if a new generation of

power proportional server were used. One thing to note is that as the number

of peers increases, the server’s energy consumption increases for the live

streaming and decreases for the online storage service due to the differences in

the ways both services handle peers. However, the server’s energy consumption

is swamped by the peers’energy consumption. Despite this difference in

behavior in the two cases, when comparing Peer Assisted CDN to pure CDN,
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we found the total energy savings of less than 1%. Nevertheless, the total

energy consumption is large, so that even a small percentage improvement

results in valuable net reduction. Several areas that we identified as the future

work are: 1. The effect of peer’s uptime variations; 2. More realistic file

popularity models for the online storage service; and 3. How CDN providers

or ISPs give incentives to the peers based on the understanding of the energy

consumptions.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have investigated the properties of BitTorrent overlay topologies from

the point of view of the peer exchange protocol using real swarms from an

operational BitTorrent tracker on the Internet.

Our results agree in some particulars and disagree in others with prior

published work on isolated testbed experiments, suggesting that more work is

required to fully model the behavior of real-world BitTorrent networks.

We find that the node degree of the graph formed in a BitTorrent swarm

can be described by a power law with exponential cut-off and the observation

of a low clustering coefficient implies BitTorrent networks are close to random

networks. From the BitTorrent protocol point of view, the reason that a Bit-

Torrent swarm can be described by a power-law with exponential cut-off is:

leechers in a BitTorrent swarm prefer a few good seeders or neighbors that can

give high data rates to exchange the data and seeders have rich connections

to leechers as seeders have complete chunks or pieces. That behavior explains

why seeders have rich connections while leechers only have a few neighbors. We

argue that there are two reasons for the cut-off phenomenon. First, most Bit-
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Torrent clients configure the maximum number of global connection between

200−300, however the maximum number of connections per torrent (swarm)

is set between 50−90 by default [58] [70]. Some BitTorrent forums suggest de-

creasing the maximum connection for torrent (swarm) to between 30−40 [69].

Second, most of the BitTorrent users are home users where their home gateway

device cannot support a high number of concurrent connections and BitTor-

rent is not the main online activity. We argue that the BitTorrent swarm

closes to random graph that we infer from clustering coefficient is caused by

BitTorrent mechanism itself that always choose random peers from its neigh-

bors in the choking-unchoking algorithm, optimistic choking algorithm, and

optimistic connect algorithm as we explained previously.

In peer-assisted CDN, we show that by introducing the z factor, which

represents the activity phase into utility function of the PROP algorithm, we

can increase the peer contribution to deliver the content while decreasing the

required number of replicas. Implication of higher peer contribution means

CDN can reduce workload because some workload is delegated to the peer-to-

peer network.

Integrating peer-to-peer capability to assist the existing CDN has the po-

tential to save energy. In this study, we show that event without explic-

itly considering energy consumption while assigning content, the peer assisted

CDN can save energy. Although the energy savings depend on the number

of request (number of clients), number of routers and their configuration, for

total system energy saving is around 0.5% to 1.2%. If we break it down per

component, the CDN server is the part that can be pushed to save energy, up

to 11% and could save if the new generation of power proportional server is

used [38]. We agree with Chabarek et al., [10], router component in the other

side is quite difficult for energy saving, because different chassis size, different

network interface type slot, and different configuration has different energy
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consumption. Several areas that we have been identified for future work are:

more correlation analysis of time period to peer energy usage pattern in live

streaming, continued characterization of different peer energy usage based on

flash memory storage, and comparing energy model with different file popu-

larity models.

6.2 Future Work

Some areas of improvement that we have identified for future work are:

more correlation analysis of the number of peers with α and p value, contin-

ued characterization with NATed peers, wider likelihood ratio test with other

models and comparing the results with simulation for global graph properties

such as distance distribution. We hope to incorporate these properties into a

complete dK series for the evolution of a real-world BitTorrent overlay as it

evolves over time [43]. We conclude that further work throughout the com-

munity is necessary to continue to improve the agreement of simulation and

controlled experiment with the real world, and that such work will impact our

understanding of BitTorrent performance and its effects on the Internet. Sev-

eral areas that we have been identified for future work in energy consumption

of peer-assisted CDN: more correlation analysis of time period to peer energy

usage pattern in live streaming, continued characterization of different peer

energy usage based on flash memory storage, and comparing energy model

with different file popularity models.
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Appendix A

Some Detail on BitTorrent

Terminology

In this appendix, we will give more detail explanation some BitTorrent

terminology based on BitTorrent specification.

A.1 Torrent File

Torrent file or metainfo file has always ending in ”.torrent”. This file is a

bencoded dictionary, containing structure as follows:

• info: a dictionary described the file of the torrent.

• announce: the announce URL of the tracker.

• creation date: the creation time of the torrent in standard UNIX epoch

format.

• comment: free text contain comments from the author.

• created by: name and version of the application used to create this tor-

rent file or metainfo file.
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• encoding: the string encoding format used to generate the pieces/chunks/blocks

of the info dictionary in torrent file.

info itself has structure as follows:

• piece length: the length of a piece/chunk/block in bytes. it is usually in

power of 2. Common size for piece length is 256KB.

• pieces: concatenation of all 20 byte SHA1 hash value each pieces/chunks/blocks.

• private: this optional to denote private torrent.

A.2 Handshake

Handshake is the first message that must sent by BitTorrent client when

contacting other peers. Handshake message format as follows:

handshake: <pstrlen><pstr><reserved><info_hash><peer_id>

The details as follows:

• pstrlen is string length of <pstr>.

• pstr is string identifier of the protocol.

• reserved is reverse bit for changing the behavior of protocol.

• info_hash is 20 byte SHA1 hash of the info key in torrent file.

• peer_id is 20 byte string used as a unique ID for the client.

• name: the file name of content.

• length: length of the file in bytes.

• md5sum: hexadecimal string corresponding to the MD5 sum of the file.
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A.3 HAVE

HAVE message is the message that sent by a peer to other peers. The

purpose of this message to let other peers know the pieces/chunks that has

just downloaded. The format of HAVE message as follows:

have: <len=0005><id=4><piece index>

piece index is the index of a piece that has just successfully downloaded and

verified by the hash.

A.4 BITFIELD

BITFIELD message is the message that sent by peer to other peers. The

purpose of this message to let other peers know total pieces/chunks that a peer

have. The format of BITFIELD message as follows:

bitfield: <len=0001+X><id=5><bitfield>

The BITFIELD message has variable length because its depend on number of

information of pieces/chunks that have been downloaded.

A.5 PEX

There are two PEX implementation which are Azareus and Libtorrent

(UT_PEX). We will use the UT_PEX as reference. Since PEX is exten-

sion, to be able to use that extension, the reserved field in handshake message

must be filled. In this case, the 5th bit of the 6th byte of the reserved. Next,

the handshake message informs other peers which extended messages are sup-

ported and what’s the extended id will be used.

The payload of a peer exchange message is a bencoded dictionary with the

following keys:
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• added: contains list of peers in the compact tracker format since the last

peer exchange message.

• added.f: one byte of flags for each peer in the above added string. This

contains information about other supported things for UT_PEX. for

example in UT_PEX, byte 1 is for encryption thus the peer support

encryption.

• dropped: contains list of peers that dropped since the last peer exchange

message.
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Likelihood Ratio Test

Assume we have two different distributions with PDFs p1(x) and p2(s). The

likelihood of a given data set within two distributions are

L1 =

n∏
i=1

p1(xi) L2 =

n∏
i=1

p2(xi) (B.1)

and the likelihood is:

R =
L1
L2
=

n∏
i=1

p1(xi)
p2(xi)

(B.2)

taking log, the log likelihood ratio is:

R =
n∑

i=1

[ln p1(xi)− ln p2(xi)] =
n∑

i=1

[ℓ(1)
i − ℓ

(2)
i ] (B.3)

where ℓ( j)
i is the log-likelihood in distribution j. As we assume that xi are

independent, thus ℓ(1)
i − ℓ

(2)
i is also independent. By the central limit theorem,

their sum R will be in normal distribution as n grows. Expected variance can

be estimate as:
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σ2 =
1
n

n∑
i=1

[(ℓ(1)
i − ℓ

(2)
i )− (ℓ̄(1)

i − ℓ̄
(2)
i )]2 (B.4)

where

ℓ̄1 =
1
n

n∑
i=1

ℓ(1)
i ℓ̄2 =

1
n

n∑
i=1

ℓ(2)
i (B.5)

The probability that the measured of log-likelihood ratio has magnitude as

large as or larger than observed value |R| is:

p = er f c(
|R|
√

2nσ
) (B.6)

and

er f c(z) = 1− er f (z) (B.7)

is the complementary Gaussian error function which is available widely in

scientific computing library. This p value is also call significance value for

log-likelihood test. In nested hypothesis where we compare two distributions

under same family, if p-value is small, the smaller family is better than larger

family. if not then we can not say no evidence that larger family is needed,

while the smaller family gives better fit.
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