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者の助けを求めることができるのに対し、現在の Web という情報空間では他者とのインタラクシ

ョンが制限されており、他者の経験から学習する機会は少ない。本研究の目的は、Web 利用者の経
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Chapter 1

Introduction

1.1 Knowledge Transfer between People

The ability to learn from and utilize the experience of others is an important factor in the

advancement of knowledge and technology. The entire education system is built upon

this premise, and utilizes direct interactions between human beings to convey knowledge

based on teachers’ experience.

The Web was created for the purpose of spreading knowledge. In order to disseminate

information as efficiently as possible, its architecture was designed with scalability and

parallelism in mind. This design emphasizes independence, distributedness, and isola-

tionism. While achieving the goals of scalability and parallelism, the architecture of

the Web also effectively partitions people accessing it from each other, preventing our

intuitive human-to-human learning capabilities from being effective, as each person is

essentially browsing completely alone, in their own instance of the global World Wide

Web. While current methods of finding information on the Web focus on ways to link

keywords to explanation or discussion, it is still up to the user to find many potentially

disparate sources of information, understand how they fit together, draw conclusions

about the reliability and utility of various disparate information sources, and to do so

with the potential handicap of not knowing the most efficient or proper keywords or

wording for finding such sources.

This paper describes ways of utilizing the innate human ability to learn from others,

by creating new methods of interacting with other people, and their experience, and

by creating new visualizations to represent knowledge on the Web that has been hidden

until now. We have designed, modeled, and implemented algorithms and data structures

for mapping, storing, comparing, and visualizing human experience, relative experiences,

human contexts, human expertise, and knowledge-sources’ valuation.

1



Chapter 1. Introduction 2

A key technology we use to achieve our goals is Experience-Mapping. We have developed

the capability to map a person’s Experiential-Data from its original context, to the

context of another person. This allows for smooth experience transfer and the ability to

direct compare experience from multiple people, as the context is identical.

The majority of focus for knowledge-tools on the Web today focus on keywords, seman-

tics, textual content and manual annotation, and then aggregating such information into

single-dimensional ranking. This research focuses on an entirely different approach to

sharing knowledge, by automatically capturing and compiling individuals’ experience,

and then focusing on matching and comparing individuals’ experience with other indi-

viduals. By utilizing information on an individual-level, we allow more opportunity for

each person’s built-in human ability to understand, judge, and learn from others actions

and explanations to allow efficient knowledge-transfer.

1.2 Overview of Utilizing Peoples’ Experience

This section describes conceptually, several approaches to model, calculate, visualize,

and the benefits of doing so with regard to experience on the Web. Later sections

formally describe the underlying algorithms involved.

1.2.1 Modeling Web Experience

In our model, a person’s Web experience is defined as the content that they have seen

on the Web, and the methods of retrieving that content. Web Experience is a good

candidate for modeling, because the majority of what a person experiences on the Web

can be captured in that person’s Web browser. Also, the list of all possible experiences

dealing with Websites is limited to a few actions in the browser, such as loading a website,

switching tabs, moving the mouse, scrolling, or spending time reading Web content. By

understanding the context of a person through their experience, we can discover other

people who are appropriate knowledge-donors due to their relative high-experience, and

their similarity in the Experiential-Patterns described below.

In our research, we specifically utilize the number of times that a person has viewed a

website, the action that led to that view such as switching tabs or clicking a link, and

the time that the action occurred in order to describe a person’s Web Experience. We

store the ‘relationships’ between these sites, which are created by the aforementioned

actions that a person can take. For instance, switching tabs between Site A and Site B

would create a relationship between those sites in our model.
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These data-points allow for the differentiation of many types of users and Experiential-

Patterns, for example:

• Low Familiarity: A person just beginning to learn about a topic, characterized by

recently browsing websites with very few relationships to other previously browsed

websites.

• High Familiarity: A person browsing websites which are very familiar to them, and

highly related to what they normally browse, characterized by viewing websites

with many recent relationships with each-other.

• Recency: Outdated information, characterized by a cluster of websites with relatively-

older relationships.

• Expertise: An expert-user for a given topic, characterized by a person with at

least an order of magnitude more utilization of a cluster of websites versus another

person using a similar set of websites. The ‘expert’ moniker is completely context

dependent, and is only used when comparing two users for potential knowledge-

transfer, and never as a global condition. When comparing expertise, we also factor

in experience-decay, which is the phenomenon of older experience being worth less

than newer experience.

• Broad Topic: A set of websites characterized by a cluster of highly-related (in terms

of actions such as clicking on links or switching tabs) websites, with a medium

amount of shared-keywords.

• Focused Topic: A set of websites characterized by a cluster of highly-related web-

sites, each with similar important-keywords.

1.2.2 Calculating People’s Experience

By directly modeling people’s Web Experience, this research has the ability to perform

unique calculations which allows for comparisons between people in terms of their expe-

rience. Our data model is fine-grained, so that the calculations can be performed within

a very specific topical-context, and thus be sensitive to a person’s immediate context

including:

• Is this person just learning about a topic, or are they already familiar with it?

• Does a query about cameras refer to camera reviews, camera lenses, or sports

photography?
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• Is this person looking for general information, or specific and specialized knowl-

edge?

• Is this person’s knowledge about their query-subject out of date?

We can thus accept a query from a user in the form of a list of Websites, and extrapolate

from their Web Experience the contextually-appropriate meaning of the query. We

can utilize the same techniques to find other people with relatively more experience

for the same context, and then generate a visualization which teaches the user how a

relatively more experienced person values websites within the queried-context, and how

that experience compares to their own experience, and how the websites in question

relate to each other.

1.3 Practical Applications of this Research

Our research is about enabling people to interact with the Web in a more intuitive way

than current Web interfaces. The abstractions are at a higher-level, and are designed

to work with natural human instincts and built-in functions by projecting complex and

abstract concepts such as ’knowledge-sources’, ’experience’, ’behavior patterns’, and

’experience-decay’ into easy-to-understand everyday concepts such as size, shape, color,

and two-dimensional movement and euclidean distance.

Our research has created three concrete ways of utilizing experiential-functions to benefit

people who use the Web:

• As a way to visualize real-time behavior and movement of friends on the Web.

• As a mechanism to detect experience-imbalance between collaborating users in

real-time, and transfer the appropriate knowledge at the appropriate time.

• As a mechanism to enable Query-For-Expertise functionality, whereby a persons

experience is automatically and continuously calculated and utilized to get the con-

text of that person, and to find other users called ’experts’ who contain relatively-

more experience. Relevant experts’ experience is then visualized, and compared

to a visualized representation of the original queryee’s own relevant experience.
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1.3.1 Revealing the Hidden Dimensions of the Web

Each person browses the Web alone, without seeing any of the myriad activity that’s

bound to be occurring around them. Our research described in the paper listed in Ap-

pendix A.1.1 ”Creating a personal-context oriented real-time dynamic and collaborative

space” visualizes this hidden activity, bringing new concepts of distance between web-

sites, real-time popularity of URLs, the locations of friends in relation to oneself, and

the browsing patterns of those friends, and how they relate to one’s own browsing. By

visualizing such information, we allow the built-in human capabilities of learning from

one’s surroundings, and others’ actions to be mapped and utilized within the concept of

the Web.

1.3.2 Real-time Dynamic Updates

The Web is a dynamic and constantly evolving body of knowledge. New websites are

constantly being added, new information is constantly being added, and everyone has a

unique personality and experiential-background which has a correspondingly unique type

of desired information. Our research described in the paper listed in Appendix A.1.2

”Creating a personal-context oriented real-time dynamic and collaborative space” allows

a distributed network of collaborating users to automatically identify information which

other collaborating users would be interested in based on analysis of their Experiential-

Knowledge, and then notifies them of the discovery.

1.3.3 Directly Learning from Others

Learning a new topic on the Web is massively inefficient when looking at the big picture.

There is undoubtedly someone more qualified and more familiar with the topic than the

person researching it for the first time. Our research described in the paper listed

in Appendix A.1.3 ”Building a Collective-Experience Engine for Experience-Transfer

amongst Web Users” takes advantage of that fact by spreading experience amongst

people browsing the Web. Now, when faced with a number of potential websites and

no way of knowing which to trust, or how to valuate them, instead we can query the

collective experience of people browsing the Web. This research provides a unique query,

information gathering, and visualization technique for allowing intuitive manipulation

of the abstract concepts of experience and expertise.



Chapter 1. Introduction 6

1.4 Systems and Implementations Created for this Re-

search

In addition to the data models and algorithms created over the course of our research,

we have designed two system architectures, and implemented two prototypes based on

those designs. By providing such architectures, we hope to enable others to utilize the

technologies described in this research in a practical way. We used the implementations

in several ways:

• To be able to give practical advice regarding appropriate technologies to utilize.

• To ensure that the algorithms can be implemented in a manner efficient enough

to be of practical value to society.

• To reveal bottlenecks, and allow us to offer solutions in the form of optimizations

to overcome such bottlenecks.

• To allow us to discuss the practicality of such systems.



Appendix A

Paper List

A.1 Journal Submissions
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2. J. Hall and Y. Kiyoki, ”Creating a personal-context oriented real-time dynamic and

collaborative space,” Information Modeling and Knowledge Bases XXIV pp.76-88,

2013.

3. J. Hall and Y. Kiyoki, ”Identifying and Propagating Contextually Appropriate

Deep-Topics amongst Collaborating Web-Users,” Information Modeling and Knowl-

edge Bases XXV, pp. 82-101, 2013.

A.2 International Conference Papers

1. J., Hall, S., Kurabayashi, Y., Kiyoki. ”Multimedia Data Analysis on a Massively
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of IEEE Mining and Web, pp.615-620, Perth, Australia, April 20-23, 2010.
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