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【緒言】近年、薬物の本来持ち得る薬理効果の発現や副作用の抑制など、薬物投与の

適化という考え方が強く認識されるようになり、ドラッグデリバリーシステム(Drug 
delivery system, DDS)の開発が注目され、新しい薬剤投与経路として経皮治療システ

ムの研究が進められている。この利点 は、 1)高齢者や乳児などの経口投与の困難な患

者においても投与可能である、2)肝臓での初回通過効果を回避できる、3)薬物濃度を長

時間必要レベルに維持しやすい、4)容易に薬物の投与を中断できる、5)針を使用しない、

6）組織内圧の高い部位に投与可能である、などがあげられる。しかし皮膚には強固な

バリアとして 外層に角質層が存在しており、多くの薬剤の皮膚透過性は低い。経皮吸

収の促進と制御方法には、 化学的手法(基剤や吸収促進剤等の利用：リポソーム、高分

子ミセル、ナノエマルジョン等)と物理的手法(電場や超音波等の利用：イオントフォレ

ーシス、エレクトロポレーション、超音波、テープストリッピング、マイクロニードル

等)に大別され、それぞれの特徴を活かした吸収促進法が試みられてきた。それらを基

に多角的なアプローチから開発が行われ、それぞれの特徴を活かした DDS について精

力的に研究されている。なかでもレーザー（Light amplification by stimulated 
emission of radiation, LASER：輻射の誘導放出による光増幅）の機械的作用を利用し

た DDS が評価されつつある。レーザー光は指向性や収束性に優れており、また、発生

する電磁波の波長を一定に保つ性質をもつ。レーザーの基礎的理論は、1917 年 Albert 
Einstein が論文 Zur Quantentheorie der Strahlung（放射の量子論について）にて、

電磁放射の吸収、自然放出、誘導放出についての確率係数（Einstein 係数）に基づき、

マックス・プランクの輻射公式から新たな公式を導き出したことに端を発する。一方で

工学的な技術の完成には 1960 年 Theodore Maiman の 初のレーザー発生装置の開発

まで 50 年を待たねばならなかった。レーザーの医学分野への応用は、大きく二つの分

野に分けて考えることができる。一方はレーザー光の特徴である単位周期性の波長をセ

ンサープローブとして用いる、がんの診断や細胞分析への情報応用、すなわち、光の「時

間的」コヒーレンス(Longitudinal Coherence)の応用である。他方はレーザー光の集光

性を利用し、微小な局所に集中できるエネルギー源としてメスのように用いる応用、つ

まり、光の「空間的」コヒーレンス（Transverse Coherence）の応用である。現在レ



ーザーは、医療現場において主に形成外科、眼科、歯科口腔外科、外科、泌尿器科の 5
分野で日常的に使用されており、特

に皮膚形成外科領域での利用は群を

抜いている。レーザーの皮膚形成外

科的利用は、1970 年代に皮膚の蒸散

への応用から始まった。CO2 レーザ

ーをはじめとした蒸散系レーザーを

皮膚や臓器に焦点を合わせて照射す

ると、レーザー光は細胞や細胞外構

成物質の水分に吸収され、熱エネルギーに変換される（Fig.1）。単位体積あたりのレ

ーザーエネルギー密度が材料の蒸散閾値を越えると、蒸散飛散物による反力が発生する。

さらにレーザー光強度が高くなり約1012 W/cm2を越えると、光学的絶縁破壊が起きる。

発生した高温・高圧のプラズマは、初期に極超音速(hypersonic)で膨張し、その膨張波

が減速するときに衝撃波が発生する。またレーザーと媒質との 2 次的相互作用としてキ

ャビテーションが発生し、その圧壊による音響波の発生も存在する。高出力のレーザー

を生体に吸収させ生体自体に高温部を形成し切除を行なうため、吸収・切除に適切なレ

ーザー光源を選択すると装置は大型となり、Nd:YAG (neodymium-doped yttrium 
aluminum garnet: 1064nm)、Er:YAG  (erbium: 2940nm) などの波長をもつ巨大なレ

ーザーが用いられて

きた。近年の半導体レ

ーザーなどの工学的

進化により機器も小

型化し、ドット状に照

射したレーザー光を

先端の微小領域で吸

収させ、熱エネルギー

に変換することで皮

膚真皮まで入れ替え

るフラクショナルレ

ーザー照射技術が発

達した。フラクショナ

ルレーザーを「物理的」

経皮吸収デバイスと考えれば、画期的な経皮 DDS の増強ツールとなりうる。これに加

Fig.１ 組織の温度とレーザーパワーの相関 

 
Fig.2 A リポソームの作成 B CF OVA-FITC 化学式 
Fig4 



え「化学的」経皮吸収キャリアとして膜融合性リポソームを併用することでフラクショ

ナルレーザーの経皮 DDS 増強効果を評価すべく、本研究を行った。 
【実験方法】疎水性の増大による皮膚透過性の向上、細胞取り込みの向上を目的とし、

ペプチド内封リポソームを作製した。リポソームの内封物として、CF（カルボキシフ

ルオレセイン）、OVA-FITC を用いた。CF の分子量は 376.32 であり低分子のモデルと

して、OVA-FITC は分子量が約 45,000 で、ワクチンのモデルタンパクとして使用した

（Fig.2）。DDS には epidermal junction が大きくかかわっているために、まずユカタ

ンピッグの皮膚を用い、角質の有無による CF 内封リポソームの皮膚透過率の比較検討

を行いた。その後 OVA-FITC 内封リポソームを利用して、レーザー波長を 10,600 nm
に固定したのち、パワー（Ｗ）、照射時間（µ秒）、照射密度（％）をそれぞれ変化させ

た場合の皮膚透過率及び透過速度の比較を、フランツセルを用いて行った。施術時の皮

下の活性酸素の発生状況をヘアレスマウスの皮膚スライスサンプルにて ESR(electric 
spin echo)法を用いて調べ、生成されたフリーラジカルの量を測定した。3 次元人工培

養皮膚（LabCyte EPI-MODEL：J-TEC）を用い、フラクショナルレーザーとリポソ

ーム併用時の 48 時間毒性試験を行った。 
【結果】レーザー波長を 10,600 nm、

パルス幅を500 µ秒に固定した場合は、

0 W、10 W、20 W とそれぞれパワー

依存性に透過率が上昇した。20 W 
1,500 µ秒以上の長さで照射した場合

は角質を除去した皮膚と、未処理の皮

膚の透過率がほぼ同一になった。Fig.3
に示したように照射パワーが大きいほ

ど穴の深さが深くなり、透過率、透過

速度ともに上昇した。同様に照射時間

が長いほど直径の大きな穴が生じるた

め、みかけの透過率、透過速度が増大

した。照射密度が高いほど穴の個数が

増加するため、透過率が増大した。ESR 法では皮下で発生した酸素ラジカル、ヒドロ

キシラジカル、アスコルビン酸ラジカルの発生比率が有意に変化することがわかり、近

赤外線のフラクショナルレーザー波長で、皮下に反応を生じることがわかった。三次元

培養皮膚による試験では、CO2フラクショナルレーザーとリポソーム併用による毒性は

認められないと考えられた。 

 
Fig.3 ユカタンピッグの皮膚に対するレー

ザーパワー依存性の OVA-FITC リポソーム 
通過率の違い 



【考察】皮膚形成外科においてレーザー技術を大きく変えたのは、1983 年に Anderson 
および Parrish らが発表した、選択的光熱融解論（Selective Photothermolysis）であ

る。選択的光熱融解論は、レーザー光の波長（nm）、照射持続時間（Pulse duration：
µ 秒）、そして単位面積当たりのパワー（W）（またはエネルギー量（Fluence：J/cm2）

の 3 つのパラメータを調節して照射することにより特定の標的（メラニン色素、ヘモグ

ロビン色素、水分子）、

細胞内構築物を選択

して融解するという

理論である。

Anderson らは、紫外

線～赤外線領域の波

長の光を皮膚に照射

した際に、光をよく

吸収する物質

（Chromophore）と

波長における吸光度

を調べ詳細な吸収特性曲線を作成した (Fig.4)。この技術は、皮下の色素斑や刺青、レ

ーザー脱毛などの治療技術に応用されており、工学的に多くの波長が作られてきたが、

本研究では水の高吸収帯であり生体内の水に吸収され、皮膚のみを蒸散させる（穴をあ

ける）性質をもつ CO2 レーザー（波長 10,600 nm）を利用した。通常、薬物の皮膚透

過は受動拡散によって起こ

り、薬剤の濃度勾配が移動

の駆動力となる。薬物の輸

送経路は、角質層を通るル

ートと汗腺や毛穴のような

皮膚付属器を経由するルー

トに大別される。付属器の

有効表面積は皮膚全体の

0.1%程度であるので、高分

子など特殊な薬物を除いて、

角質層を通るルートの方が

重要であると考えられている。角質層を経由するルートはさらに角質細胞の実質を経由

するルートと細胞間隙の脂質を経由するルートに分けられるが、これら 2 つのルートの

 

Fig.5 フラクショナルレーザー後の創傷治癒 

 

Fig.4 レーザー波長による組織吸収性  HW Lim, NA 
Soter, editors, Clinical Photomedicine, New York, 1993 



寄与を組織学的に区別するのは困難である。レーザー照射方法で大きな革命を遂げたの

は、2004 年に登場したフラクショナルレーザーである。この機器はレーザー光線を分

離し、皮膚表面に 1 cm2あたり約 2000 個の、直径数 10 µm 単位のレーザー光をドット

状に照射してすることで、表皮から真皮にかけて極小の凝固柱を作り、古い角質を除去

（punch out）すると同時に、孔のすぐ周囲の正常な表皮基底細胞により創傷治癒効率

を上げる効果を持つ。フラクショナルレーザー技術により、レーザー治療において新た

な第四のパラメータとして照射密度（spots/cm2）が登場した。創傷が非常に小さい

ため角質バリア機能は早期に復活し、炎症が少なく治癒が早い(Fig.5)。この手法を DDS
に併用すると、従来の物理的手法と比較し、1）時間的・空間的制御性（照射密度依存

性）に優れ、2）創面を湿潤もしくは乾燥にコントロール（波長依存性）ができ、3）穴

の深さ（パワー依存性）および 4）大きさ（照射時間依存性）をコントロールできる点

で、経皮ドラックデリバリーシステムの飛躍的な効率改善につながることが期待される。

先行研究では、フラクショナルレーザーにより皮下への局所麻酔薬、NSAIDS、オピオ

イド、癌化学療法薬、コルチコステロイド、ワクチン、ビタミン C、ボツリヌストキシ

ンを導入した報告があるが、本研究のようにフラクショナルレーザー機器を用いて自由

な深さ及び大きさの穴を皮膚に開け、リポソームなどの化学的キャリアを併用すれば、

多くのペプチドやメラノサイトなどの細胞を皮下にデリバリーすることが可能となる。

本研究では、CO2レーザーの波長で 20 W 1500 µ秒以上照射するとレーザーによる皮

膚の蒸散が真皮まで到達し、角質を取り除いた皮膚と全く同じ経皮透過率を示した。さ

らに実際の皮膚の凍結切片を用いて、皮下への薬剤透過率の上昇を確認した。ESR 法

を用いて、実際にこの近赤外線波長が生体に影響があることを突き止めたが、これは筆

者の先行研究にて抗酸化剤フラーレンを使用して除去できることを報告している。3 次

元培養皮膚の照射実験では毒性は認められず、本手法は人体に影響なく施術が可能であ

ると考える。 
【結語】本研究は、近赤外線フラクショナルレーザーがリポソーム併用による経皮ドラ

ッグデリバリーの効率を上げることを確認した。物理的デバイスと化学的キャリアによ

る薬学ドラッグデリバリーの融合した研究分野においては、フラクショナル CO2レー

ザーとリポソームを用いた報告はなく、透過率上昇率も他の機器と比較して、効率が極

めて高い。今後レーザーは美容目的だけではなく、インシュリンやワクチン投与の内科

的疾患や、ケロイドなどの内圧の高い組織に対しての注入薬の改善などに利用が期待で

きる。フラクショナル・レーザーアシストによる経皮ドラッグデリバリーの改善は、生

体情報の取得への応用、そして生体切除および改質への応用に次ぐ、レーザーの第三の

医学的応用になりうると考える。
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Transcutaneous drug delivery by liposomes 

using fractional laser technology 

 

1.1 Abstract 

 

Objective: Transdermal delivery of hydrophilic peptides remains a challenge 

due to their poor cellular uptake and transdermal penetration. I hypothesize 

that combination of a CO2 fractional laser to enhance percutaneous absorp-

tion and liposomes as transdermal carriers would improve skin penetration 

of hydrophilic drugs.  

Methods: Liposomes were prepared using membrane fusion lipid di-

oleoylphosphatidylethanolamine, and used to deliver 5-carboxyfluorescein 

(CF) and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as 

model hydrophilic peptide drugs. Liposome size was estimated by dynamic 

light scattering. Liposome uptake into murine macrophage cells and pene-

tration or permeation into Yucatan micro-pig skin after irradiation by CO2 

fractional laser at varying energy levels (laser power and exposure duration) 

were investigated using Franz cell and fluorescence microscopy. Oxidative 

damage to the irradiated mouse skin was assessed by electron spin reso-

nance. 

Results: Size of CF and OVA-FITC encapsulated liposomes was 324±75 nm. 

Cellular uptake of OVA-FITC delivered by liposomes was 10-fold higher 

(1370 relative fluorescence units, RFU) than delivered in solution form (130 
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RFU). Fractional laser irradiation increased skin permeation rate of CF lip-

osomes (0–10%) and OVA-FITC liposomes (4–40%) in a dose-dependent 

manner. While peeling off the stratum corneum facilitated CF liposome 

penetration at low energy levels (2.69–3.29 J/cm2; 10-20 W for 500 µs), drug 

permeation was similar (7–8%) in peeled or untreated skin at higher laser 

energy levels (6.06 J/cm2; 20 W for 1500 µs). FITC penetrated deeper in the 

skin after laser irradiation. However, OH, O2−, and VC reactive oxygen spe-

cies were generated upon irradiation of the skin with a fractional CO2 laser. 

Conclusions: Increasing laser power and irradiation time increased liposome 

uptake by cells and penetration of peptide drugs across the skin in a 

dose-dependent manner. High-energy CO2 fractional laser overcomes the 

rate-limiting barrier function of the stratum corneum. Further investiga-

tions are required to establish the safety and efficacy of fractional la-

ser-irradiation assisted delivery of liposome-encapsulated drugs as a 

transcutaneous drug delivery system. 

 

Key words: Fractional laser assisted drug delivery, liposome, microthermal 

zone, fractionated, fractional photo-thermolysis 
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1.2 INTRODUCTION 

 

Transdermal drug delivery systems offer distinct advantages over the topical 

application and oral administration of drugs for dermatological therapy.1-3 

Besides being non-invasive, transdermal systems allow self-controlled ap-

plication and dose adjustment by simply varying the patch area. The trans-

dermal dose required for the therapeutic effect of a drug is lower than the 

oral dose because the transdermal administration avoids the first-pass me-

tabolism in the liver.4 The oral bioavailability of several drugs is low due to 

the first-pass metabolism in the liver and breakdown of active substances in 

the gastrointestinal tract.5 

Interestingly, the cutaneous bioavailability of most topically applied drugs 

is relatively low, with only 1%–5% being absorbed into the skin.6,7 Further-

more, most drugs and vaccines that are absorbed do not have sufficiently 

deep penetration to reach the desired target in tissue.5,8,9 Many molecules 

are too large to penetrate the SC and require either injectable or systemic 

delivery. Particularly, large molecules with molecular weight > 500-Dalton10 

cannot traverse the stratum corneum (SC), the rate-limiting outermost ke-

ratinized skin layer.7,11 The clinical application of transdermal patches has 

been limited to lipophilic drugs that can easily pass through the SC and 

reach therapeutic levels in the blood following topical delivery.12 Different 

technologies, including drug carriers; such as liposomes, nanoparticles, and 

other complex systems; and physical and chemical enhancers; have been in-
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vestigated to enhance the transdermal bioavailability of drugs.5 Liposomes 

(Fig. 1) are spherical vesicles made of an endogenous phospholipid bilayer 

membrane that surrounds a hydrophilic core. Because liposomes are biolog-

ically inert, weakly immunogenic, and possess low intrinsic toxicity; they 

have been used as carriers to improve the transdermal delivery of hydro-

philic peptides, nutrients, and pharmaceuticals that otherwise have poor 

cellular uptake and transdermal penetration. For example, carboxyfluores-

cein (CF) liposome formulations showed a nearly 2.8 fold higher delivery of 

CF through human skin compared to CF solutions.13 

Besides liposome-mediated delivery, various chemical enhancers and	

physical methods have also been tested for their ability to increase the per-

meability across SC.1,10,14 For example, iontophoresis and electroporation use 

electrical charge to force ionized drugs or vaccines across the SC layer.10,15,16 

Ultrasound and shock waves temporarily reduce the barrier property of skin 

by inducing cavitation or the production of pressure waves to increase the 

penetration of molecules.10,14,17 Mechanical strategies such as microneedles 

and tape stripping have been developed to facilitate transcutaneous drug 

and vaccine delivery.18,19 Recent studies have reported the use of fractional 

laser for transdermal drug delivery to improve delivery of peptide molecules 

by 8–15 fold.20-22 A fractional laser irradiates cells with high precision by 
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controlling the area and degree of ablation through laser settings such as 

power, pulse duration, percentage of skin coverage, and ablation pattern. 

Lasers can also be used repeatedly without the risk of cross-contamination. 

 I hypothesized that a combination of CO2 fractional laser to enhance per-

cutaneous absorption and liposomes as transdermal carriers would improve 

the skin penetration of drugs. In the present study, liposomes were prepared 

using the membrane fusion lipid dioleoylphosphatidylethanolamine (DOPE) 

and loaded with CF or OVA-FITC as model hydrophilic drugs. Their cellular 

uptake and transdermal penetration was assessed. 
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Figure 1.  Liposomes as a carrier for drug delivery. A liposome is a spherical 

vesicle with at least one lipid bilayer and a hydrophilic pocket that can be used 

as a vehicle for administration of nutrients and pharmaceuticals. As drug car-

riers, liposomes have proved most effective for diseases affecting the reticulo-

endothelial system and blood cells in particular. 
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1.3	 MATERIALS AND METHODS 

1.3.1 FITC Labeling of OVA 

 

OVA (10.06 mg, Sigma Aldrich, St. Louis, MO, USA) and FITC (11.78 mg, 

Sigma Aldrich) were dissolved in 4 mL NaHCO3 (pH 9.0) solution and al-

lowed to react at room temperature for 3 days at 4 °C. Unreacted FITC was 

removed and OVA-FITC was purified by dialysis using Slide-A-Lyzer dialysis 

cassettes (molecular weight cutoff, 20 kDa, Thermo Fisher Scientific, Wal-

tham, MA, USA). 

 

1.3.2 Liposome Preparation 

 

CF-liposome and OVA-FITC liposomes were prepared using a previously 

described method.23 Briefly, a solution of egg phosphatidylcholine and DOPE 

(1:1, w/w) in chloroform was evaporated in a flask to form a lipid membrane 

(Fig. 2). The membrane was dispersed with 1 mL OVA-FITC or 2 mM CF in 

phosphate-buffered saline (PBS) and sonicated for 30 min to prepare 

drug-loaded liposomes. The liposomes were extruded through a polycar-

bonate membrane (pore diameter, 400 nm). The free lipids, and CF or 

OVA-FITC were removed by gel permeation chromatography on a Sephadex 

G-25M column (Sigma-Aldrich Japan, Shinagawa, Tokyo) with PBS. The 

liposome suspension was stored at 4 °C until measurement. 
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Figure 2. Protocol for liposome preparation. Liposomes were prepared 

by mixing the egg phosphatidylcholine and DOPE in chloroform, fol-

lowed by evaporation, hydration, sonication, sizing, gel-filtration, and 

dialysis. 
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1.3.3 Determination of Liposome Size 

by Dynamic Light Scattering 

 

The size of liposomes was measured by dynamic light scattering using pre-

viously described methods.24 Liposomal suspensions (n=5) were analyzed 

using a Nano-ZS zetasizer (Malvern Instruments, Malvern, UK), and the 

data was averaged for analysis. 

 

1.3.4 Cell Culture 

 

RAW264.7 cells (murine macrophage cell line; ATCC, Rockville, MD) were 

cultured as sub-confluent monolayers in 75-cm2 culture flasks with a vent 

cap in minimal essential medium supplemented with 10% fetal bovine serum 

(FBS), 50 U/mL penicillin, and 50 µg/mL streptomycin at 37 °C in a humidi-

fied 5% CO2 incubator. Cells were dissociated using a cell scraper, (Techno 

Plastic Products, Trasadingen, Switzerland) and seeded in a flask for 2–3 

days. Subsequently, cells were grown in 35-mm glass-bottomed dishes (for 

microscopic assessment of OVA-FITC cellular uptake) and in 60-mm dishes 

(for flow cytometric analysis). 
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1.3.5 Microscopic Analysis of OVA-FITC Cellular Uptake 
 

RAW264.7 cells were grown overnight in 35-mm glass-bottomed dishes at a 

density of 2.0 × 105 cells/dish in 2 mL medium supplemented with 10% FBS. 

Cells were then incubated for 30 min with 100 µL OVA-FITC solution (con-

trol group) or OVA-liposome suspension at 37 °C, rinsed three times with 

PBS, and incubated with paraformaldehyde for 20 min at 4 °C. Subsequently, 

cells were rinsed three times with PBS, and visualized under an epifluores-

cence microscope (BZ-9000, Keyence, Osaka, Japan) to examine the cellular 

uptake of OVA-FITC from solution and liposome suspension. 

 

1.3.6 Flow Cytometric Analysis  

of OVA-FITC Cellular Uptake 

 

RAW264.7 cells were grown overnight in 60-mm dishes at a density of 5.0 × 

105 cells per dish in 5 mL medium supplemented with 10% FBS. Cells were 

then incubated for 30 min with 100 µL OVA-FITC solution or liposome sus-

pension at 37 °C, rinsed twice with PBS, and harvested with tryp-

sin/ethylenediaminetetraacetic acid (EDTA). Subsequently, 1×104 cells from 

each group were re-suspended in PBS and their fluorescence intensity was 

measured by flow cytometry (excitation wavelength: 492nm, emission 

wavelength: 518nm) to quantify the cellular uptake of OVA-FITC solution 

and liposomal suspension. Untreated cells were used as a negative control. 
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1.3.7 Yucatan Micro-pig Skin Preparation 

 

The skin from adult Yucatan micro-pigs (YMP) was used to study the 

transdermal delivery of liposomes because its density, thickness, and physi-

cochemical properties are similar to human skin.25,26 Frozen YMP skin sam-

ples (from 5-month-old female pigs, average weight, 25 kg) were obtained 

from Charles River Japan Inc. (Yokohama, Kanagawa, Japan). The subcu-

taneous fat was removed from the YMP skin sheets. Approximately 0.4 mm 

thick skin samples were used in the permeation experiments. YMP skin was 

used for studying the transdermal permeation profile using Franz cells and 

histological analysis after laser irradiation. 

 

1.3.8 Transdermal Permeation of CF 

or OVA-FITC through YMP Skin 

 

YMP skin samples maintained at 37 °C were mounted in vertical Franz cells 

(effective area and volume: 0.64 cm2 and 5 mL, respectively; Perme Gear, 

Hellertown, PA, USA) (Fig. 3). The permeation of CF liposomes was assessed 

through a skin sample, in which the SC was peeled while keratin was left 

intact. The temperature of the solution was maintained at 37 °C in a circu-

lating water bath. Liposome suspension (1 mL) was added to the donor 

chamber, and the transdermal permeation profile was obtained by measur-

ing the fluorescence intensity as skin transmittance for 2 days using the 



 15 

following formula (Fig. 3): 

 

 

 

where Fr is the fluorescence of sample from the receptor chamber and Fd is 

the fluorescence of sample from the donor chamber. 

 The steady-state flux and permeability coefficients of OVA-FITC liposomes 

were also calculated at 0, 6, 8, and 10 W and a 500-µs duration using the 

following formula: 

 

𝑃 =
𝐽!!

𝐶!" + 𝐶!" /2
 

 

where P is the permeability coefficient (mm/h), JSS is the steady-state flux 

(µg/cm2/h), CDO is the initial donor concentration (µg/mL), and CDE is the fi-

nal donor concentration (µg/mL). 
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Figure 3. Mechanism of Franz cells. Franz cells are individually hand blown dif-

fusion cells comprising two borosilicate glass components. The upper portion is 

referred to as the cell cap, cell top, donor chamber, or donor compartment. The 

lower portion is generally referred to as the body of the cell or sometimes the re-

ceptor chamber; however, in case of jacketed cells, this designation is misleading, 

since the receptor chamber is the innermost portion of the cell. 
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1.3.9 Laser Irradiation and Histological Analysis of YMP Skin 

 

Intact YMP skin (SC not peeled) was irradiated with laser beams at a 

wavelength of 10.6 µm using a fractional CO2 laser (SmartXide DOT (DEKA: 

Florence, Italy) for experiments involving CF liposomes; and eCO2 (Lutronic: 

Seoul, Korea) for experiments involving OVA-FITC liposomes) with a move-

able articulated arm.27,28 Laser power was set at 0, 10, 20, or 30 W and pulse 

duration was 500 or 1500 µs. Irradiation was performed using a spot size of 

10 µm and a spot density of 225 spots/cm2, covering approximately 12% of 

the skin surface. 

 Full-thickness skin was sectioned (5 µm) at indicated times (0, 6, and 24 h) 

after laser irradiation (0, 15 W). The prepared sections were evaluated by 

fluorescence microscopy to visualize the penetration of FITC.  

 

1.3.10 Electron Spin Resonance Analysis Using Mouse Skin 

 

We have previously demonstrated that laser irradiation induces the produc-

tion of reactive oxygen species in the skin.29 Therefore, the present study 

aimed to investigate whether free radicals are generated by combined ap-

plication of liposomes and fractional laser irradiation. Four-week-old male 

hairless mice (Nippon SLC, Shizuoka, Japan) were used for the electron spin 

resonance (ESR) experiments. The animals were housed individually in 

stainless steel cages at a temperature of 19.0 °C–25.0 °C and a mean relative 



 18 

humidity of 35.0%–75.0% on a 12:12-h light:dark cycle (lights on at 7:00 AM), 

with free access to food and water. All procedures were carried out in ac-

cordance with the guidelines for the care and use of laboratory animals of the 

Japanese Pharmacological Society. 

 Using ESR, reactive oxygen species were detected 3 min after irradiation. 

The spin trapping agent 5-(diphenylphosphinoyl) 

5-methyl-4,5-dihydro-3H-pyrrole-N-oxide (DPPMPO) was used at 50–500 

mM in 10% w/w dimethyl sulfoxide. DPPMPO (100 mg/cm2) was applied to 

the target area prior to irradiation. The irradiated skin sample was imme-

diately removed and placed on an ice-cold plate after rinsing with ice-cold 

PBS (pH 7.2). Samples were cut into pieces measuring 3–5 mm × 10–20 mm, 

and weighed to normalize the ESR signal of each radical. Spin trap agent 

(10–50 µL) was added to the tissue samples (10–50 mg) immediately after 

weighing.  

 After precisely 5 min, ESR measurements were conducted as previously 

described.30 ESR spectrometer was used in TE11 mode universal cavity 

(ES-UCX2; JEOL) with X-band microwave units (8.750–9.650 GHz); an ESR 

standard marker with MnO powder (DATUM MO7-FB-4; JEOL); and an 

aqueous sample cell (ES-LC12; JEOL) was used. Samples (20–100 µL) were 

analyzed in a tissue-type quartz cell (Labotec, Tokyo, Japan) with a home-

made cover glass (40 × 5 × 0.5 mm). Multiple standard free radicals were 

generated and identified based on the g value and hyperfine splitting (hfcc) 

of each spin adduct. Peaks were identified by analyzing the signal used to 
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determine the g value and hfcc from the distance between peaks. The g value 

and distance between peaks for hfcc were measured using A-System v.l.40 

ISAJ FA-manager v.l.20 software (JES, Tokyo, Japan) supplied with the 

ESR spectrometer (JES-FA200; JEOL, Tokyo, Japan). The signal for each 

sample was compared to that of manganese oxide (MnO), an internal 

standard, to obtain signal ratio, and the relative intensities of radicals were 

calculated by comparison with the third MnO signal intensity. 
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1.4 RESULTS 

1.4.1 Cellular Uptake of OVA-FITC 

 

The uptake of OVA-FITC liposomes by RAW264.7 cells was visualized by 

fluorescence microscopy. FITC fluorescence was not observed in cells of the 

control group (OVA-FITC solution); however, it was observed in cells treated 

with OVA-FITC liposomes (Fig. 4A). The efficiency of OVA-FITC uptake by 

RAW264.7 cells was confirmed by flow cytometry analysis. The FITC fluo-

rescence intensity of the OVA-FITC liposomes-treated cells was 10-fold 

higher than the OVA-FITC solution-treated cells as shown by flow cytometric 

spectral analysis (Fluorescence intensity in Relative Fluorescence Units 

(RFU): 1370 RFU in the OVA-FITC liposome group compared to 130 RFU in 

the control group; Fig. 4B). 

 Dynamic light scattering analysis showed that the mean diameter of 

OVA-FITC liposomes was 324±75 nm (Fig. 4C). 
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Figure 4. (A) The uptake of OVA-FITC with/without liposomes by 

RAW264.7 cells was visualized by fluorescence microscopy. FITC fluores-

cence was detected in the cells (A). The efficiency of OVA-FITC uptake by 

RAW264.7 cells was confirmed by flow cytometry. Encapsulation of 

OVA-FITC in the liposomes increased its uptake by 10 fold (1370 RFU in 

the OVA-FITC liposome group compared to 130 RFU in the OVA-FITC 

solution group); (B). Mean diameter of the OVA-FITC liposomes was 324 

nm (C). 



 22 

1.4.2 Transdermal Permeation 

of CF Liposomes through YMP Skin 

 

Without fractional laser irradiation, CF liposomes did not permeate through 

the skin in either the presence or absence of the SC (Fig. 5). It is similar to 

the inability of exogenous molecules to penetrate the basement membrane 

and tight junctions in the skin. However, laser irradiation increased the 

transdermal permeation of CF liposomes from 0–10% in an energy de-

pendent manner; power (0, 10, and 20 W; DEKA SmartXide DOT fractional 

CO2 laser), pulse duration (500 and 1500 µs), and time (1, 2, 4, 6, 20, 24, and 

48 h). At high energy levels (6.06 J/cm2; 20 W for 1500 µs), CF liposomes 

permeated through the skin to a similar extent (7–8%) in the presence or 

absence of keratin in epidermis/SC. This suggests that the high-energy frac-

tional laser irradiation increases the permeability of the intact skin to CF 

liposomes, overcoming the inhibition by rate-limiting keratin/SC layer. 
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Figure 5. Transdermal permeation of CF liposomes through Yucatan micropig 

skin. Laser irradiation (DEKA SmartXide DOT fractional CO2 laser) increased 

the permeation of CF liposomes through both untreated and SC-peeled skin in 

a manner that was dependent on the energy level; however, at high laser power 

and duration (20 W for 1500 µs), permeation rates were similar in the two 

groups indicating that peeling of the epidermis was not required at high energy 

levels. Values represent mean ± SD of 6 independent experiments. 
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1.4.3 Transdermal Permeation of OVA-FITC 

Liposomes through YMP Skin 

 

The transdermal permeation of OVA-FITC-loaded liposomes through the intact 

YMP skin increased from 4–40% in a dose-dependent manner depending on laser 

power (0, 5, 10, and 15 W; Lutronic eCO2 laser) and time (0-48 h) (Fig. 6). It in-

dicates that a fractional laser can improve the delivery of small molecules such as 

CF as well as relatively large protein conjugates.  

 The steady-state flux and permeability coefficients of OVA-FITC liposomes in-

creased in a dose-dependent manner at laser power of 0, 6, and 8 W. At laser 

power of 0, 6, 8, and 10 W, steady-state flux was 0.03, 2.00, 2.86, and 1.32, and 

the permeability coefficients were 0.003, 1.149, 0.192, and 0.080, respectively. 
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Figure 6. Transdermal permeation of OVA-FITC liposomes through intact 

Yucatan micropig skin increased in a laser power-dependent manner with 

500 µs exposure at 0, 5, 10, and 15 W (Lutronic eCO2 laser) between 0-48 h. 

Values represent mean ± SD of 6 independent experiments. 
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1.4.4 Laser Irradiation and Histological 

Analysis of Yucatan Micro-pig Skin 

 

Fluorescence microscopic analysis of the frozen biopsy specimens revealed that 

FITC fluorescence was detected in the skin only upon laser irradiation (Fig. 7). 

Compared to the non-irradiated skin, FITC fluorescence penetrated deeper into 

the irradiated skin. Furthermore, the depth of penetration was higher in the skin 

irradiated for longer durations. 

 

 

 

Figure 7. FITC fluorescence in Yucatan micropig skin with or without frac-

tional laser irradiation. Arrows indicate the superficial surface of the skin. 

Compared to their penetration in the non-irradiated skin, fluorescent mole-

cules penetrated deeper into the skin with laser irradiation. 
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1.4.5 Electron Spin Resonance Analysis Using Mouse Skin 

 

ESR spectra of the living skin were obtained after CO2 fractional laser irra-

diation using DPPMPO. They revealed waveforms corresponding to hydroxyl 

radical (OH), superoxide anion (O2−), OH+O2− (overlap between OH and O2−), 

and ascorbyl (VC) (Fig. 8) that were not observed in the spectra of 

non-irradiated samples. The relative amounts of OH−, O2−, and VC were 

significantly higher in the irradiated skin than in the non-irradiated skin (P 

< 0.05). 
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Figure 8 DPPMPO ESR spectra of fractional laser-irradiated skin. OH, O2−, 

OH+O2−, and VC were not observed in the non-irradiated skin (A) but were 

detected following irradiation with a CO2 laser (B). 
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1.5 DISCUSSION 

 

Human skin resists against the penetration by many molecules. Particularly, 

the 500-Dalton rule10 stipulates that large molecular weight compounds do 

not traverse the corneal layer. Since peptides are hydrophilic, they cannot 

readily penetrate the hydrophobic skin surface. 

 In this study, I developed a method for improving the stability and cellular 

uptake of peptides by encapsulating them in liposomes, and using fractional 

laser to increase their dermal penetration. I demonstrated that CF and 

OVA-FITC could be encapsulated in nanoscale liposomes. Incorporation of 

the model-drug molecules in liposomes improved their cellular uptake as 

compared to delivery in the solution form. However, application of liposomal 

preparations alone did not result in the skin penetration of molecules. In-

terestingly, concurrent irradiation using fractional laser increased the skin 

permeation of liposome-encapsulated molecules in a dose-dependent manner. 

Peeling off the rate-limiting stratum corneum facilitated the skin permea-

tion at low laser energy levels; however, drug penetration was similar in the 

peeled or untreated skin at higher laser energy levels. These results are 

particularly significant because they show that the high-energy CO2 frac-

tional laser overcomes the rate-limiting barrier function of the stratum 

corneum. Furthermore, they demonstrate the utility of combining CO2 frac-

tional laser (as a percutaneous absorption enhancer) and liposomes (as 

transdermal carriers) as an approach to improve the skin penetration of hy-
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drophilic peptide drugs. 

 Such laser-assisted drug delivery could enable the topical medications to 

penetrate deeper, even for the systemic drug administration via a 

transcutaneous route. This method has advantage that unlike micro-needles, 

no biohazardous materials are produced.31 Before the development of frac-

tional laser treatment, laser beams were evenly delivered to a large area of 

the skin to disrupt the entire SC layer. However, this could potentially delay 

the skin recovery similar to full-surface laser skin rejuvenation.22 In contrast, 

fractional photo-thermolysis, which was developed nearly a decade ago to 

replace the full-surface skin resurfacing, illuminates the skin with multiple 

distinct micro-laser beams that create micro-channels in the skin.32 In this 

study, a spot size of 10 µm and a spot density of 225 spots/cm2 was used, ir-

radiating only approximately 12% of the skin surface. Ablative fractional 

lasers have been evaluated for their potential to enhance the transcutaneous 

delivery of hydrophilic drugs (e.g., methyl 5-aminolevulinate, 

5-aminolevulinic acid, and imiquimod), polypeptides, and dextrans 27,33,34; 

however, the previous studies used dissected skin as test samples. In this 

study, both cadaveric micropig skin and live mouse skin were used to study 

the transdermal permeation and oxidative effects of laser radiation on the 

skin. 

 In a previous study, I demonstrated that fractional CO2 laser irradiation 

induces the production of reactive oxygen species in the skin.29 The present 

study corroborated our previous results and ESR analysis showed that the 
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reactive oxygen species (OH, O2−, and VC) were generated upon irradiation 

of the skin with a fractional CO2 laser. A previous study reported that free 

radicals are also produced by irradiation with a high-energy, 

short-wavelength photon such as ultraviolet B radiation.28 This indicates 

that the reactive oxygen species can be generated even by the exposure to 

low-energy waves if the conditions are identical. The generation of excessive 

reactive oxygen species has secondary effects on the skin pigmentation. 

However, they have certain beneficial effects. For example, OH and O2− are 

known to induce apoptosis and necrosis in the skin cells, thereby promoting 

the skin rejuvenation and contributing to the cosmetic effects of the laser. 

The concurrent use of liposomes, which have been verified to have no toxicity, 

offers a potential strategy to mitigate any laser-induced oxidative damage. 

For example, delivery of antioxidants loaded in the liposomes concurrently 

with fractional CO2 laser irradiation may potentially mitigate the damage to 

the skin. I have previously reported that antioxidants such as fullerenes or 

ascorbyl derivatives inhibit the oxidative damage induced by laser irradia-

tion.29 Furthermore, albumin used in the liposomes in this study is an 

abundant and important circulating antioxidant,35 and may also potentially 

mitigate the oxidative damage to the skin from the fractional laser treatment. 

The safety of fractional laser therapy and the possibility of using antioxi-

dants to mitigate the oxidative damage to the skin warrant further investi-

gation in preclinical and clinical studies using the human skin, with the 

eventual goal of achieving therapeutic gains without causing any toxicity. 
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  In summary, an increase in the laser power and irradiation time increased 

the cellular uptake of liposomes and penetration of peptide drugs across the 

skin in a dose-dependent manner. High-energy CO2 fractional laser over-

came the rate-limiting barrier function of the stratum corneum. However, 

further investigations are required to establish the safety and efficacy of 

fractional laser irradiation-assisted delivery of liposome-encapsulated drugs 

as a transcutaneous drug delivery system. 
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Fractional laser-assisted percutaneous drug delivery 

via temperature-responsive liposomes 

 

2.1 Abstract 

Liposomes are used for transdermal delivery of drugs and vaccines. Our objective 

was to develop temperature-responsive (TR) liposomes to achieve tempera-

ture-dependent, controlled release of an encapsulated drug, and use fractional 

laser irradiation to enhance transdermal permeability of these liposomes. 

TR-liposomes prepared using a thermosensitive polymer derived from 

poly-N-isopropylacrylamide, N,N-dimethylacrylamide, egg phosphatidylcholine, 

and dioleoylphosphatidylethanolamine, delivered fluorescein isothiocya-

nate-conjugated ovalbumin (OVA-FITC) as a model drug. Effect of temperature 

on liposome size and drug release rate was estimated at two temperatures. 

Transdermal permeation through hairless mouse skin, with and without CO2 

fractional laser irradiation, and penetration into Yucatan micro-pig skin were 

investigated using Franz cell and fluorescence microscopy. Dynamic light scat-

tering showed that mean liposome diameter nearly doubled from 190 to 325 nm 

between 37 and 50 °C. The rate and amount of OVA-FITC released from 

TR-liposomes were higher at 45 °C that those at 37 °C. Transdermal permeation 
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of OVA-FITC across non-irradiated skin from both TR- and unmodified liposomes 

was minimal at 37 °C, but increased at 45 °C. Laser irradiation significantly in-

creased transdermal permeation of both liposome groups at both temperatures. 

Fluorescence microscopy of frozen biopsy specimens showed deeper penetration of 

FITC from unmodified liposomes compared to that from polymer-modified lipo-

somes. Rhodamine accumulation was not observed with polymer-modified lipo-

somes at either temperature. Temperature-dependent controlled release of an 

encapsulated drug was achieved using the TR-liposomes. However, TR-liposomes 

showed lower skin permeability despite higher hydrophobicity. Fractional laser 

irradiation significantly increased the transdermal permeation. Additional stud-

ies are required to control liposome size and optimize transdermal permeation 

properties. 

Keywords: Assisted drug delivery, controlled drug release, fractional laser, lipo-

some, temperature-responsive polymer, thermosensitive polymer 
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2.2  INTRODUCTION 

Transdermal delivery of drugs and vaccines offers significant advantages over 

traditional methods such as needle injection. Besides being painless, transdermal 

delivery systems eliminate biohazard risks associated with needles and can be 

self-administered. Several drugs such as nicotine, hormonal contraceptives, local 

anesthetics, and analgesics have been commonly used as transdermal patches. 

However, such use has largely been limited to lipophilic drugs that can penetrate 

and permeate through the stratum corneum of the skin. Several mechanical 1, 

chemical 2–4, and energy-based 5–7 strategies have been adopted to enhance 

transdermal penetration of hydrophilic drugs and peptides. 

One of the chemical-based strategies commonly used to deliver hydrophilic drugs 

are closed bilayer phospholipid systems called liposomes. Liposomes comprise a 

lipid shell and a hydrophilic core that can be loaded with hydrophilic drugs in-

cluding peptides and vaccines. The lipid shell facilitates cellular uptake and 

transdermal penetration, after which the drugs are released from the core into 

the cell or across the skin. Several natural and biocompatible materials such as 

egg phosphatidylcholine (egg PC) and dioleoylphosphatidylethanolamine (DOPE) 

have been used to create the lipid bilayer of liposomes. 
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To further improve the efficiency of transdermal drug delivery and expand the 

variety of drugs that can be delivered via liposomes, additional strategies such as 

the use of iontophoresis, electroporation, ultrasound, microneedles, and fractional 

laser have been employed to increase transdermal permeability 1,8–13. In particu-

lar, fractional laser-based strategies appear promising as they precisely control 

the permeability by controlling the area and degree of irradiation through laser 

settings such as power and pulse duration 14–16. Another innovative development 

in the field of liposomes is temperature-responsive (TR) liposomes. By incorpo-

rating a thermosensitive polymer into the liposome membrane, liposomes can be 

designed to trigger drug release only at a specified temperature 17–19. For example, 

liposomes containing the thermosensitive polymer poly-N-isopropylacrylamide 

(PNIPAAm) that has a lower critical solution temperature (LCST) of 37.8 °C, 

would lose the hydration layer, become unstable, disintegrate, and release the 

encapsulated drug only at physiologic body temperature, but not during storage 

at lower temperatures. This is particularly attractive as the liposomes could be 

tailored to allow enhanced and targeted release of an encapsulated drug by con-

trolling the environmental temperature. 

The objectives of this study were to (1) develop a TR liposome by incorporating a 

thermosensitive polymer into the liposomal membrane as a strategy for temper-
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ature-dependent controlled release of an encapsulated drug, and (2) investigate 

the enhancement in transdermal permeability of TR-liposomes by concurrent use 

of fractional laser irradiation. 

 

2.3  MATERIALS AND METHODS 

2.3.1 Fluorescein isothiocyanate labeling of ovalbumin 

Ovalbumin (OVA; 10.06 mg, Sigma Aldrich, St. Louis, MO, USA) and fluorescein 

isothiocyanate (FITC; 11.78 mg, Sigma Aldrich) were dissolved in 4 mL NaHCO3 

(pH 9.0) solution and allowed to react at for 3 days at 4 °C. Unreacted FITC was 

removed and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) was 

purified by dialysis using Slide-A-Lyzer dialysis cassettes (molecular weight cut-

off 20 kDa; Thermo Fisher Scientific, Waltham, MA, USA). 

 

2.3.2 Liposome preparation 

OVA-FITC TR-liposomes were prepared using a previously described method with 

slight modifications (Figure 1) 20. Briefly, 10% of a thermosensitive polymer 

(P[N-isopropylacrylamide-co-N,N-dimethylacrylamide 30%]-DOPE; MW 10000, 

Lower Critical Solution Temperature, LCST: 37.8 °C), where 30% 

N,N-dimethylacrylamide (DMAAm) was incorporated with PNIPAAm, was mixed 



 45 

with a solution of egg PC and DOPE in chloroform at concentrations listed in 

Table 1. The solution was evaporated in a recovery flask to form a lipid mem-

brane. The membrane was dispersed with 1 mL OVA-FITC solution and sonicated 

for 30 min to prepare liposomes. The liposomes were extruded through a 400 nm 

pore-sized membrane filter (Extruder®, 2 PVP membrane filters, 700 Industrial 

Park Dr, Alabaster, AL 35007). The free and decomposed lipids and OVA-FITC in 

the filtrate were removed by gel filtration using a PD-10 column (Sigma-Aldrich 

Japan, Shinagawa, Tokyo) with 1x phosphate-buffered saline (PBS). Liposomes 

containing a 1:1 ratio of egg PC and DOPE, but without the thermosensitive 

polymer, were also prepared to serve as controls. The liposome suspensions were 

stored at 4 °C until measurement. 
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Figure 1. Steps involved in liposome preparation. 
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 Mole rate Weight (mg) 

P(N-isopropylacrylamide-co-DMAAm30%)-DOPE 10 28.9 

Egg PC 50 10.0 

DOPE 40 8.0 

Table 1. Liposome composition. 

 

2.3.3 Effect of temperature on liposome size 

Liposome size was measured by dynamic light scattering using previously de-

scribed methods 21. The temperature of the liposome suspension (n = 6) was in-

creased from 35 to 50 °C and the liposome diameter was measured using a 

Nano-ZS Zetasizer (Malvern Instruments, Malvern, UK). 

 

2.3.4 Effect of temperature on temporal release rate of drug from 

liposome 

Ten microliters of the liposome suspension obtained by gel filtration was diluted 

10x in an extraction buffer (1x PBS with 10% TritonX) and incubated at 37 °C or 

45 °C (n = 3/group). After specific times (1, 5, 10, 20, 30, and 60 min), 10 µl of the 

buffer was sampled to measure its fluorescence intensity (Infinite® M1000 
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TECAN; Tecan, Männedorf, Switzerland). The release rate was calculated using 

the formula: 

  

 

where Ft is the intermediary fluorescence at a given time point, Fi is the initial 

fluorescence, and Ff is the final fluorescence of the sample at 60 min. 

 

2.3.5 Transdermal permeation of liposomes through hairless mouse 

skin 

Hairless mouse skin (Laboskin®, Hos: HR-1 Male, 7 weeks old; Hoshino Labora-

tory Animals Inc., Ibaraki, Japan) was defrosted and cut into 15-mm-diameter 

specimens. Half of the skin specimens were irradiated with CO2 fractional laser 

to investigate the effect of laser irradiation on transdermal permeation of 

OVA-FITC from TR-liposomes. Irradiation was performed with laser beams at a 

wavelength of 10.6 µm using a fractional CO2 laser (Lutronic: Seoul, Korea) for 

experiments involving OVA-FITC liposomes) with a moveable articulated arm 

14,22 at 15 W power, 12 mJ pulse energy, and a spot density of 200/cm2. The skin 

specimens were mounted in vertical Franz cells (effective area and volume: 0.64 

cm2 and 5 mL, respectively; Perme Gear, Hellertown, PA, USA) (Figure 2). The 
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temperature of the PBS solution in the Franz cell was maintained at 37 °C or 

45 °C using a circulating water bath. The transdermal permeation of OVA-FITC 

from TR- and control liposomes across non-irradiated and laser-irradiated skin 

was assessed at 35 and 45 °C (n = 2/group/condition). Liposome suspension (1 mL) 

was added to the donor chamber, and the transdermal permeation profile was 

obtained by measuring the fluorescence intensity (Infinite® M1000 TECAN; 

Tecan) as skin transmittance for 2 days using the following formula: 

 

 

 

where Fr is the fluorescence of sample from the receptor chamber and Fd is the 

fluorescence of sample from the donor chamber. 
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Figure 2. Franz cell setup used to measure transdermal permeation of liposomes 

through hairless mouse skin. 

2.3.6 Transdermal penetration of liposomes through Yucatan mi-

cro-pig skin 

The skin from adult Yucatan micro-pigs (YMP) was used to study the trans-

dermal penetration of TR- and control liposomes at 35 and 45 °C. YMP skin was 

chosen because its density, thickness, and physicochemical properties are similar 

to those of human skin 23,24. Frozen YMP skin samples (derived from 5-month-old 

female Yucatan micro-pigs, average weight, 25 kg) were obtained from Charles 

River Japan Inc. (Yokohama, Kanagawa, Japan). The subcutaneous fat was re-

moved from the YMP skin sheets and approximately 0.4-mm-thick skin samples 
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were used in the permeation experiments using Franz cells at 35 and 45 °C as 

described above. After 48 h, the YMP skin sample was retrieved from the Franz 

cell, fixed with paraformaldehyde and processed for cryosectioning. Frozen sec-

tions (20-µm thick) were evaluated using bright-field and fluorescence microscopy 

to visualize the penetration of the liposomes and the distribution of FITC and 

rhodamine. 

 

 

 

 

 

2.4  Results and discussion 

2.4.1 Effect of temperature on liposome diameter 

Dynamic light scattering analysis showed that the mean diameter of OVA-FITC 

liposomes increased steadily and nearly doubled as the temperature increased 

from 37 °C (close to LCST of the component thermosensitive polymer; liposome 

diameter, 190 ± 5 nm) to 50 °C (liposome diameter, 325 ± 7 nm; Figure 3). I posit 

that the increase in liposome size occurred because the thermosensitive polymer 

in the liposome membrane changes in shape and elongates inducing the liposome 
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surface to change from hydrophilic to hydrophobic at temperatures above LCST, 

causing the liposomes to aggregate together and making the apparent particle 

size larger 25–27. These observations also confirmed the temperature-dependent 

properties of the tested TR-liposomes. 

 

Figure 3. Changes in liposome particle size with temperature. 

 

2.4.2 Effect of temperature on drug release from liposome 

The rate and cumulative amount of OVA-FITC released from the TR-liposomes 

over 60 min of incubation were higher at 45 °C compared to those at 37 °C (Figure 

4). The total amount of drug released over 60 min nearly doubled from 32% at 
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37 °C to 70% at 45 °C. These observations further confirmed the tempera-

ture-dependent properties of the TR-liposomes. 

 

 

Figure 4. Effect of temperature on temporal release rate of drug from liposome. 

 

2.4.3 Effect of fractional laser irradiation and temperature on 

transdermal permeation of liposome 

Transdermal permeation of OVA-FITC across non-irradiated skin from both TR- 

and control liposomes was minimal at 37 °C, but increased at 45 °C (8% for 

TR-liposomes, and 30% for control liposomes after 48 h; Figure 5). The increase in 

transdermal permeation could be explained by (1) a softening of the liposomal 
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lipid membrane, and (2) an increase in hydrophobicity of the polymer (in the 

TR-liposomes) at a higher temperature, facilitating liposome absorption into the 

skin. The lower permeation of OVA-FITC from TR-liposomes could be explained 

by (1) their larger size, and (2) the development of a hydration layer by the 

polymer that stabilizes the liposome and impedes absorption of the liposome into 

the skin [28–30]. 

 

 

Figure 5. Transdermal permeation of (A) polymer-modified and (B) control lipo-

somes at 37 and 45 °C. 

 

Fractional laser irradiation of skin significantly increased the transdermal per-

meation for both liposome groups under both temperature conditions. The in-

crease in transdermal permeation by laser irradiation could be explained by cre-

ation of microscopic holes in the skin. Furthermore, compared to control lipo-
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somes, TR-liposomes continued to show lower permeation, suggesting that the 

larger size and the stabilizing effect of the polymer-derived hydration layer con-

tinued to impede absorption across irradiated skin. 

2.4.4 Transdermal penetration of liposomes through Yucatan mi-

cro-pig skin 

Fluorescence microscopy of the frozen biopsy specimens (Figure 6) showed deeper 

penetration of FITC fluorescence from unmodified liposomes compared to that 

from polymer-modified liposomes. Rhodamine fluorescence distribution and in-

tensity showed interesting differences between the two groups. Rhodamine ac-

cumulation was not observed with TR-liposomes at either 37 °C or 45 °C. How-

ever, rhodamine was observed close to the epidermal surface with only an in-

crease in intensity at 45 °C, whereas FITC penetrated deeper into the dermis at 

the higher temperature (Figure 7). These results suggest that permeation oc-

curred after release of the encapsulated material from the TR-liposomes into the 

medium, whereas control liposomes adsorbed and fused with the skin surface 

prior to release of the encapsulated material into the skin. 
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Figure 6. Fluorescence imaging of dermal cross-sections showing transdermal 

penetration of TR- and control liposomes. Light field images were superimposed 

with green (FITC) and red (rhodamine) fluorescence images for analysis. 
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Figure 7. Fluorescence imaging of dermal cross-sections showing surface accu-

mulation and transdermal penetration of TR- and control liposomes (green fluo-

rescence: FITC and red fluorescence: rhodamine). 

 

The accumulation of liposomes on the epidermal surface has been reported pre-

viously. It has been suggested that the liposome itself does not permeate into the 

skin, but rather forms a stacking structure on the surface of the stratum corneum 

to act as a local depot of the drug that is subsequently absorbed into the skin 31. 

The phospholipids in the liposomal membrane interact with intercellular lipids in 

the stratum corneum and change its permeability to the drug, which then per-

meates the skin following the thermodynamic activity gradient between the 

stratum corneum and the skin 32,33. Our results suggest that the presence of the 
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thermosensitive polymer hinders this step of liposome fusion with the stratum 

corneum, thereby reducing the permeability of the TR-liposomes. 

 

In this study, I successfully developed a method for formulating TR-liposomes 

that increased drug delivery in response to an increase in temperature. The 

thermosensitive polymer used to prepare the liposomes was chosen such that 

their LCST was close to the physiologic body temperature (37 °C). This would 

ensure that drug release from the liposome would be triggered only after appli-

cation on the skin surface – a feature that is important to improve the shelf life of 

the liposome preparation and allow controlled drug release. However, the drug 

release was somewhat lower in comparison to control liposomes without the 

thermosensitive polymer, likely due to the larger size of the TS-liposomes 29,30 and 

possible hindrance from the polymer-derived stabilizing hydration layer on the 

liposome surface. Interestingly, the mechanism of release also appeared to be 

different for the TS-liposomes. Unlike the control liposomes, which appeared to 

stack and fuse on the epidermal surface before releasing their encapsulated ma-

terial into the skin, the TS-liposomes did not fuse but released their encapsulated 

material into the medium from where it was subsequently absorbed into the skin. 
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Drug permeation and penetration were therefore lower with TS-liposomes com-

pared to non-modified liposomes. 

 

Notably, CO2 fractional laser irradiation of the skin increased dermal penetra-

tion of drug from both types of liposomes with drug permeation from 

TS-liposomes reaching modest levels at 45 °C. These results show that the frac-

tional laser largely overcomes the inhibitory effect of the large size and/or the 

stabilizing hydration layer on the TS-liposomes. Fractional lasers have been pre-

viously evaluated for their potential to enhance the transcutaneous delivery of 

hydrophilic drugs, polypeptides, and dextrans 14,15,34. Our results demonstrate the 

utility of combining CO2 fractional laser and liposomes as an approach to en-

hance skin penetration of hydrophilic peptide drugs. The increased dermal per-

meability to drugs is likely achieved by creation of micro-channels within the area 

of skin illuminated with the multiple, distinct micro-laser beams of the fractional 

laser 35. 

This study has several limitations. First, the size of liposomes prepared in this 

study was not uniform. Though I used a 400 nm filter for sizing, liposome diam-

eter ranged from 190 to 325 nm. As smaller liposomes have higher dermal per-

meability 28–30, it is important that uniformly sized liposomes are synthesized and 
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evaluated to increase the consistency and reproducibility of results. Further 

studies are also required to optimize the liposome composition to improve drug 

permeation and penetration into skin, to permit effective application even in the 

absence of fractional laser treatment. Second, I did not investigate the safety and 

biocompatibility aspects of the liposome systems or their combination with der-

mal irradiation using fractional laser. However, PNIPAAm, egg PC, and DOPE 

used in the TR-liposomes have been extensively used in liposome and other 

therapeutic preparations, and their safety and biocompatibility are well docu-

mented. Fractional laser irradiation of skin is also commonly used clinically and 

is known to be mostly safe. There have been some concerns of oxidative damage 

by reactive oxygen species induced by laser irradiation of skin 36. Concurrent de-

livery of antioxidants such as fullerenes and vitamin C derivatives via liposomes 

has been suggested as a strategy to mitigate any laser-induced oxidative damage. 

Further preclinical and clinical studies are required to optimize and establish 

therapeutic efficacy and address any safety concerns of these novel strategies. 

In conclusion, I developed TR-liposomes by incorporating a thermosensitive 

polymer into the liposomal membrane, and achieved temperature-dependent 

controlled release of an encapsulated drug. I also demonstrated the possibility of 

concurrently using fractional laser irradiation as a strategy to increase the 
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transdermal delivery of drugs from the TR-liposomes. Additional studies are re-

quired to control liposome size and optimize their transdermal permeation prop-

erties. 
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