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Transcutaneous drug delivery by liposomes

using fractional laser technology

1.1 Abstract

Objective: Transdermal delivery of hydrophilic peptides remains a challenge
due to their poor cellular uptake and transdermal penetration. I hypothesize
that combination of a CO2 fractional laser to enhance percutaneous absorp-
tion and liposomes as transdermal carriers would improve skin penetration
of hydrophilic drugs.

Methods: Liposomes were prepared using membrane fusion lipid di-
oleoylphosphatidylethanolamine, and used to deliver 5-carboxyfluorescein
(CF) and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as
model hydrophilic peptide drugs. Liposome size was estimated by dynamic
light scattering. Liposome uptake into murine macrophage cells and pene-
tration or permeation into Yucatan micro-pig skin after irradiation by COsz
fractional laser at varying energy levels (laser power and exposure duration)
were investigated using Franz cell and fluorescence microscopy. Oxidative
damage to the irradiated mouse skin was assessed by electron spin reso-
nance.

Results: Size of CF and OVA-FITC encapsulated liposomes was 324+75 nm.
Cellular uptake of OVA-FITC delivered by liposomes was 10-fold higher

(1370 relative fluorescence units, RFU) than delivered in solution form (130



RFU). Fractional laser irradiation increased skin permeation rate of CF lip-
osomes (0-10%) and OVA-FITC liposomes (4-40%) in a dose-dependent
manner. While peeling off the stratum corneum facilitated CF liposome
penetration at low energy levels (2.69-3.29 J/cm?2; 10-20 W for 500 ps), drug
permeation was similar (7—8%) in peeled or untreated skin at higher laser
energy levels (6.06 J/cm2; 20 W for 1500 ps). FITC penetrated deeper in the
skin after laser irradiation. However, OH, O2—, and VC reactive oxygen spe-
cies were generated upon irradiation of the skin with a fractional COz laser.
Conclusions: Increasing laser power and irradiation time increased liposome
uptake by cells and penetration of peptide drugs across the skin in a
dose-dependent manner. High-energy CO2 fractional laser overcomes the
rate-limiting barrier function of the stratum corneum. Further investiga-
tions are required to establish the safety and efficacy of fractional la-
ser-irradiation assisted delivery of liposome-encapsulated drugs as a

transcutaneous drug delivery system.

Key words: Fractional laser assisted drug delivery, liposome, microthermal

zone, fractionated, fractional photo-thermolysis



1.2 INTRODUCTION

Transdermal drug delivery systems offer distinct advantages over the topical
application and oral administration of drugs for dermatological therapy.l3
Besides being non-invasive, transdermal systems allow self-controlled ap-
plication and dose adjustment by simply varying the patch area. The trans-
dermal dose required for the therapeutic effect of a drug is lower than the
oral dose because the transdermal administration avoids the first-pass me-
tabolism in the liver.4 The oral bioavailability of several drugs is low due to
the first-pass metabolism in the liver and breakdown of active substances in
the gastrointestinal tract.?

Interestingly, the cutaneous bioavailability of most topically applied drugs
1s relatively low, with only 1%—5% being absorbed into the skin.%7 Further-
more, most drugs and vaccines that are absorbed do not have sufficiently
deep penetration to reach the desired target in tissue.>89 Many molecules
are too large to penetrate the SC and require either injectable or systemic
delivery. Particularly, large molecules with molecular weight > 500-Dalton!©
cannot traverse the stratum corneum (SC), the rate-limiting outermost ke-
ratinized skin layer.”11 The clinical application of transdermal patches has
been limited to lipophilic drugs that can easily pass through the SC and
reach therapeutic levels in the blood following topical delivery.12 Different
technologies, including drug carriers; such as liposomes, nanoparticles, and

other complex systems; and physical and chemical enhancers; have been in-



vestigated to enhance the transdermal bioavailability of drugs.> Liposomes
(Fig. 1) are spherical vesicles made of an endogenous phospholipid bilayer
membrane that surrounds a hydrophilic core. Because liposomes are biolog-
ically inert, weakly immunogenic, and possess low intrinsic toxicity; they
have been used as carriers to improve the transdermal delivery of hydro-
philic peptides, nutrients, and pharmaceuticals that otherwise have poor
cellular uptake and transdermal penetration. For example, carboxyfluores-
cein (CF) liposome formulations showed a nearly 2.8 fold higher delivery of

CF through human skin compared to CF solutions.!3

Besides liposome-mediated delivery, various chemical enhancers and
physical methods have also been tested for their ability to increase the per-
meability across SC.1.10.14 For example, iontophoresis and electroporation use
electrical charge to force ionized drugs or vaccines across the SC layer.10.15.16
Ultrasound and shock waves temporarily reduce the barrier property of skin
by inducing cavitation or the production of pressure waves to increase the
penetration of molecules.!0.1417 Mechanical strategies such as microneedles
and tape stripping have been developed to facilitate transcutaneous drug
and vaccine delivery.!819 Recent studies have reported the use of fractional
laser for transdermal drug delivery to improve delivery of peptide molecules

by 8-15 fold.2022 A fractional laser irradiates cells with high precision by



controlling the area and degree of ablation through laser settings such as
power, pulse duration, percentage of skin coverage, and ablation pattern.

Lasers can also be used repeatedly without the risk of cross-contamination.

I hypothesized that a combination of CO2z fractional laser to enhance per-
cutaneous absorption and liposomes as transdermal carriers would improve
the skin penetration of drugs. In the present study, liposomes were prepared
using the membrane fusion lipid dioleoylphosphatidylethanolamine (DOPE)

and loaded with CF or OVA-FITC as model hydrophilic drugs. Their cellular

uptake and transdermal penetration was assessed.



Lipid bilayer Liposome
Hydrophilic head

Hydrophobic tail

Hydrophilic pocket (drugs)

Figure 1. Liposomes as a carrier for drug delivery. A liposome is a spherical
vesicle with at least one lipid bilayer and a hydrophilic pocket that can be used
as a vehicle for administration of nutrients and pharmaceuticals. As drug car-
riers, liposomes have proved most effective for diseases affecting the reticulo-

endothelial system and blood cells in particular.



1.3 MATERIALS AND METHODS

1.3.1 FITC Labeling of OVA

OVA (10.06 mg, Sigma Aldrich, St. Louis, MO, USA) and FITC (11.78 mg,
Sigma Aldrich) were dissolved in 4 mL NaHCOs; (pH 9.0) solution and al-
lowed to react at room temperature for 3 days at 4 °C. Unreacted FITC was
removed and OVA-FITC was purified by dialysis using Slide-A-Lyzer dialysis
cassettes (molecular weight cutoff, 20 kDa, Thermo Fisher Scientific, Wal-

tham, MA, USA).

1.3.2 Liposome Preparation

CF-liposome and OVA-FITC liposomes were prepared using a previously
described method.2? Briefly, a solution of egg phosphatidylcholine and DOPE
(1:1, w/w) in chloroform was evaporated in a flask to form a lipid membrane
(Fig. 2). The membrane was dispersed with 1 mL OVA-FITC or 2 mM CF in
phosphate-buffered saline (PBS) and sonicated for 30 min to prepare
drug-loaded liposomes. The liposomes were extruded through a polycar-
bonate membrane (pore diameter, 400 nm). The free lipids, and CF or
OVA-FITC were removed by gel permeation chromatography on a Sephadex
G-25M column (Sigma-Aldrich Japan, Shinagawa, Tokyo) with PBS. The

liposome suspension was stored at 4 °C until measurement.

10
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s=c—Ovalbumin

I
) HN

MW: 376 MW: 45000

o
Ex: 492 nm O o0 Ex:492nm
Em: 518 nm

O Q Em: 518 nm
OH HO O OH

Method for 5-Carboxyfluorescein (CF) or Ovalbumin-FITC contained liposome preparation

Figure 2. Protocol for liposome preparation. Liposomes were prepared
by mixing the egg phosphatidylcholine and DOPE in chloroform, fol-

lowed by evaporation, hydration, sonication, sizing, gel-filtration, and

dialysis.
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1.3.3 Determination of Liposome Size

by Dynamic Light Scattering

The size of liposomes was measured by dynamic light scattering using pre-
viously described methods.24 Liposomal suspensions (n=5) were analyzed
using a Nano-ZS zetasizer (Malvern Instruments, Malvern, UK), and the

data was averaged for analysis.

1.3.4 Cell Culture

RAW264.7 cells (murine macrophage cell line; ATCC, Rockville, MD) were
cultured as sub-confluent monolayers in 75-cm? culture flasks with a vent
cap in minimal essential medium supplemented with 10% fetal bovine serum
(FBS), 50 U/mL penicillin, and 50 pg/mL streptomycin at 37 °C in a humidi-
fied 5% COs incubator. Cells were dissociated using a cell scraper, (Techno
Plastic Products, Trasadingen, Switzerland) and seeded in a flask for 2—3
days. Subsequently, cells were grown in 35-mm glass-bottomed dishes (for
microscopic assessment of OVA-FITC cellular uptake) and in 60-mm dishes

(for flow cytometric analysis).
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1.3.5 Microscopic Analysis of OVA-FITC Cellular Uptake

RAW264.7 cells were grown overnight in 35-mm glass-bottomed dishes at a
density of 2.0 X 105 cells/dish in 2 mL medium supplemented with 10% FBS.
Cells were then incubated for 30 min with 100 pL. OVA-FITC solution (con-
trol group) or OVA-liposome suspension at 37 °C, rinsed three times with
PBS, and incubated with paraformaldehyde for 20 min at 4 °C. Subsequently,
cells were rinsed three times with PBS, and visualized under an epifluores-
cence microscope (BZ-9000, Keyence, Osaka, Japan) to examine the cellular

uptake of OVA-FITC from solution and liposome suspension.

1.3.6 Flow Cytometric Analysis

of OVA-FITC Cellular Uptake

RAW264.7 cells were grown overnight in 60-mm dishes at a density of 5.0 X
105 cells per dish in 5 mL medium supplemented with 10% FBS. Cells were
then incubated for 30 min with 100 pL. OVA-FITC solution or liposome sus-
pension at 37 °C, rinsed twice with PBS, and harvested with tryp-
sin/ethylenediaminetetraacetic acid (EDTA). Subsequently, 1x104cells from
each group were re-suspended in PBS and their fluorescence intensity was
measured by flow cytometry (excitation wavelength: 492nm, emission
wavelength: 518nm) to quantify the cellular uptake of OVA-FITC solution

and liposomal suspension. Untreated cells were used as a negative control.
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1.3.7 Yucatan Micro-pig Skin Preparation

The skin from adult Yucatan micro-pigs (YMP) was used to study the
transdermal delivery of liposomes because its density, thickness, and physi-
cochemical properties are similar to human skin.2?5.26 Frozen YMP skin sam-
ples (from 5-month-old female pigs, average weight, 25 kg) were obtained
from Charles River Japan Inc. (Yokohama, Kanagawa, Japan). The subcu-
taneous fat was removed from the YMP skin sheets. Approximately 0.4 mm
thick skin samples were used in the permeation experiments. YMP skin was
used for studying the transdermal permeation profile using Franz cells and

histological analysis after laser irradiation.

1.3.8 Transdermal Permeation of CF

or OVA-FITC through YMP Skin

YMP skin samples maintained at 37 °C were mounted in vertical Franz cells
(effective area and volume: 0.64 cm? and 5 mL, respectively; Perme Gear,
Hellertown, PA, USA) (Fig. 3). The permeation of CF liposomes was assessed
through a skin sample, in which the SC was peeled while keratin was left
intact. The temperature of the solution was maintained at 37 °C in a circu-
lating water bath. Liposome suspension (1 mL) was added to the donor
chamber, and the transdermal permeation profile was obtained by measur-

ing the fluorescence intensity as skin transmittance for 2 days using the
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following formula (Fig. 3):

i

Permeation rete (%) = x 100

Fd

where Fris the fluorescence of sample from the receptor chamber and Fd is
the fluorescence of sample from the donor chamber.

The steady-state flux and permeability coefficients of OVA-FITC liposomes
were also calculated at 0, 6, 8, and 10 W and a 500-us duration using the

following formula:

_ Iss
(Cpo + Cpp)/2

P

where P is the permeability coefficient (mm/h), Jss is the steady-state flux
(ug/cm2/h), Cpo is the initial donor concentration (ug/mL), and Cpg is the fi-

nal donor concentration (ug/mL).
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Figure 3. Mechanism of Franz cells. Franz cells are individually hand blown dif-
fusion cells comprising two borosilicate glass components. The upper portion is
referred to as the cell cap, cell top, donor chamber, or donor compartment. The
lower portion is generally referred to as the body of the cell or sometimes the re-
ceptor chamber; however, in case of jacketed cells, this designation is misleading,

since the receptor chamber is the innermost portion of the cell.
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1.3.9 Laser Irradiation and Histological Analysis of YMP Skin

Intact YMP skin (SC not peeled) was irradiated with laser beams at a
wavelength of 10.6 pm using a fractional COz laser (SmartXide DOT (DEKA:
Florence, Italy) for experiments involving CF liposomes; and eCOs (Lutronic:
Seoul, Korea) for experiments involving OVA-FITC liposomes) with a move-
able articulated arm.27.28 Laser power was set at 0, 10, 20, or 30 W and pulse
duration was 500 or 1500 ps. Irradiation was performed using a spot size of
10 um and a spot density of 225 spots/cm?, covering approximately 12% of
the skin surface.

Full-thickness skin was sectioned (5 nm) at indicated times (0, 6, and 24 h)
after laser irradiation (0, 15 W). The prepared sections were evaluated by

fluorescence microscopy to visualize the penetration of FITC.

1.3.10 Electron Spin Resonance Analysis Using Mouse Skin

We have previously demonstrated that laser irradiation induces the produc-
tion of reactive oxygen species in the skin.29 Therefore, the present study
aimed to investigate whether free radicals are generated by combined ap-
plication of liposomes and fractional laser irradiation. Four-week-old male
hairless mice (Nippon SLC, Shizuoka, Japan) were used for the electron spin
resonance (ESR) experiments. The animals were housed individually in

stainless steel cages at a temperature of 19.0 °C—25.0 °C and a mean relative

17



humidity of 35.0%—75.0% on a 12:12-h light:dark cycle (lights on at 7:00 AM),
with free access to food and water. All procedures were carried out in ac-
cordance with the guidelines for the care and use of laboratory animals of the
Japanese Pharmacological Society.

Using ESR, reactive oxygen species were detected 3 min after irradiation.
The spin trapping agent 5-(diphenylphosphinoyl)
5-methyl-4,5-dihydro-3H-pyrrole-N-oxide (DPPMPO) was used at 50-500
mM in 10% w/w dimethyl sulfoxide. DPPMPO (100 mg/cm?2) was applied to
the target area prior to irradiation. The irradiated skin sample was imme-
diately removed and placed on an ice-cold plate after rinsing with ice-cold
PBS (pH 7.2). Samples were cut into pieces measuring 3—5 mm X 10—20 mm,
and weighed to normalize the ESR signal of each radical. Spin trap agent
(10-50 pL) was added to the tissue samples (10-50 mg) immediately after
weighing.

After precisely 5 min, ESR measurements were conducted as previously
described.? ESR spectrometer was used in TE1l mode universal cavity
(ES-UCX2; JEOL) with X-band microwave units (8.750-9.650 GHz); an ESR
standard marker with MnO powder (DATUM MO7-FB-4; JEOL); and an
aqueous sample cell (ES-LC12; JEOL) was used. Samples (20-100 pL) were
analyzed in a tissue-type quartz cell (Labotec, Tokyo, Japan) with a home-
made cover glass (40 x 5 x 0.5 mm). Multiple standard free radicals were
generated and identified based on the g value and hyperfine splitting (hfcc)

of each spin adduct. Peaks were identified by analyzing the signal used to
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determine the g value and hfcc from the distance between peaks. The g value
and distance between peaks for hfcc were measured using A-System v.1.40
ISAJ FA-manager v.1.20 software (JES, Tokyo, Japan) supplied with the
ESR spectrometer (JES-FA200; JEOL, Tokyo, Japan). The signal for each
sample was compared to that of manganese oxide (MnO), an internal
standard, to obtain signal ratio, and the relative intensities of radicals were

calculated by comparison with the third MnO signal intensity.
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1.4 RESULTS

1.4.1 Cellular Uptake of OVA-FITC

The uptake of OVA-FITC liposomes by RAW264.7 cells was visualized by
fluorescence microscopy. FITC fluorescence was not observed in cells of the
control group (OVA-FITC solution); however, it was observed in cells treated
with OVA-FITC liposomes (Fig. 4A). The efficiency of OVA-FITC uptake by
RAW264.7 cells was confirmed by flow cytometry analysis. The FITC fluo-
rescence intensity of the OVA-FITC liposomes-treated cells was 10-fold
higher than the OVA-FITC solution-treated cells as shown by flow cytometric
spectral analysis (Fluorescence intensity in Relative Fluorescence Units
(RFU): 1370 RFU in the OVA-FITC liposome group compared to 130 RFU in
the control group; Fig. 4B).

Dynamic light scattering analysis showed that the mean diameter of

OVA-FITC liposomes was 324+75 nm (Fig. 4C).
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Figure 4. (A) The uptake of OVA-FITC with/without liposomes by
RAW264.7 cells was visualized by fluorescence microscopy. FITC fluores-
cence was detected in the cells (A). The efficiency of OVA-FITC uptake by
RAW264.7 cells was confirmed by flow cytometry. Encapsulation of
OVA-FITC in the liposomes increased its uptake by 10 fold (1370 RFU in
the OVA-FITC liposome group compared to 130 RFU in the OVA-FITC
solution group); (B). Mean diameter of the OVA-FITC liposomes was 324

nm (C).
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1.4.2 Transdermal Permeation

of CF Liposomes through YMP Skin

Without fractional laser irradiation, CF liposomes did not permeate through
the skin in either the presence or absence of the SC (Fig. 5). It is similar to
the inability of exogenous molecules to penetrate the basement membrane
and tight junctions in the skin. However, laser irradiation increased the
transdermal permeation of CF liposomes from 0-10% in an energy de-
pendent manner; power (0, 10, and 20 W; DEKA SmartXide DOT fractional
CO: laser), pulse duration (500 and 1500 ps), and time (1, 2, 4, 6, 20, 24, and
48 h). At high energy levels (6.06 J/cm?; 20 W for 1500 ps), CF liposomes
permeated through the skin to a similar extent (7-8%) in the presence or
absence of keratin in epidermis/SC. This suggests that the high-energy frac-
tional laser irradiation increases the permeability of the intact skin to CF

liposomes, overcoming the inhibition by rate-limiting keratin/SC layer.
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Figure 5. Transdermal permeation of CF liposomes through Yucatan micropig
skin. Laser irradiation (DEKA SmartXide DOT fractional COs laser) increased
the permeation of CF liposomes through both untreated and SC-peeled skin in
a manner that was dependent on the energy level; however, at high laser power
and duration (20 W for 1500 ps), permeation rates were similar in the two
groups indicating that peeling of the epidermis was not required at high energy

levels. Values represent mean + SD of 6 independent experiments.
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1.4.3 Transdermal Permeation of OVA-FITC

Liposomes through YMP Skin

The transdermal permeation of OVA-FITC-loaded liposomes through the intact
YMP skin increased from 4—40% in a dose-dependent manner depending on laser
power (0, 5, 10, and 15 W; Lutronic eCOz laser) and time (0-48 h) (Fig. 6). It in-
dicates that a fractional laser can improve the delivery of small molecules such as
CF as well as relatively large protein conjugates.

The steady-state flux and permeability coefficients of OVA-FITC liposomes in-
creased 1n a dose-dependent manner at laser power of 0, 6, and 8 W. At laser
power of 0, 6, 8, and 10 W, steady-state flux was 0.03, 2.00, 2.86, and 1.32, and

the permeability coefficients were 0.003, 1.149, 0.192, and 0.080, respectively.
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Figure 6. Transdermal permeation of OVA-FITC liposomes through intact
Yucatan micropig skin increased in a laser power-dependent manner with
500 ps exposure at 0, 5, 10, and 15 W (Lutronic eCOs laser) between 0-48 h.

Values represent mean + SD of 6 independent experiments.
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1.4.4 Laser Irradiation and Histological

Analysis of Yucatan Micro-pig Skin

Fluorescence microscopic analysis of the frozen biopsy specimens revealed that
FITC fluorescence was detected in the skin only upon laser irradiation (Fig. 7).
Compared to the non-irradiated skin, FITC fluorescence penetrated deeper into
the irradiated skin. Furthermore, the depth of penetration was higher in the skin

irradiated for longer durations.

Laser irradiation Franz cell 4% paraformaldehyde Frozen section Observation by microscope
(0,15 W) —> (0,6,24hr) —> fixed issue — (20 um) e (FITC)
liposome

OW /24 h 15W/0 h 15W /6 h

©

15W /24 h

o

Figure 7. FITC fluorescence in Yucatan micropig skin with or without frac-
tional laser irradiation. Arrows indicate the superficial surface of the skin.
Compared to their penetration in the non-irradiated skin, fluorescent mole-

cules penetrated deeper into the skin with laser irradiation.
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1.4.5 Electron Spin Resonance Analysis Using Mouse Skin

ESR spectra of the living skin were obtained after CO2 fractional laser irra-
diation using DPPMPO. They revealed waveforms corresponding to hydroxyl
radical (OH), superoxide anion (O27), OH+Os~ (overlap between OH and Oz),
and ascorbyl (VC) (Fig. 8 that were not observed in the spectra of
non-irradiated samples. The relative amounts of OH—, O2~, and VC were
significantly higher in the irradiated skin than in the non-irradiated skin (P

< 0.05).
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Figure 8 DPPMPO ESR spectra of fractional laser-irradiated skin. OH, Os-,
OH+03~, and VC were not observed in the non-irradiated skin (A) but were

detected following irradiation with a CO2 laser (B).
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1.5 DISCUSSION

Human skin resists against the penetration by many molecules. Particularly,
the 500-Dalton rule!? stipulates that large molecular weight compounds do
not traverse the corneal layer. Since peptides are hydrophilic, they cannot
readily penetrate the hydrophobic skin surface.

In this study, I developed a method for improving the stability and cellular
uptake of peptides by encapsulating them in liposomes, and using fractional
laser to increase their dermal penetration. I demonstrated that CF and
OVA-FITC could be encapsulated in nanoscale liposomes. Incorporation of
the model-drug molecules in liposomes improved their cellular uptake as
compared to delivery in the solution form. However, application of liposomal
preparations alone did not result in the skin penetration of molecules. In-
terestingly, concurrent irradiation using fractional laser increased the skin
permeation of liposome-encapsulated molecules in a dose-dependent manner.
Peeling off the rate-limiting stratum corneum facilitated the skin permea-
tion at low laser energy levels; however, drug penetration was similar in the
peeled or untreated skin at higher laser energy levels. These results are
particularly significant because they show that the high-energy CO: frac-
tional laser overcomes the rate-limiting barrier function of the stratum
corneum. Furthermore, they demonstrate the utility of combining COq frac-
tional laser (as a percutaneous absorption enhancer) and liposomes (as

transdermal carriers) as an approach to improve the skin penetration of hy-
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drophilic peptide drugs.

Such laser-assisted drug delivery could enable the topical medications to
penetrate deeper, even for the systemic drug administration via a
transcutaneous route. This method has advantage that unlike micro-needles,
no biohazardous materials are produced.3! Before the development of frac-
tional laser treatment, laser beams were evenly delivered to a large area of
the skin to disrupt the entire SC layer. However, this could potentially delay
the skin recovery similar to full-surface laser skin rejuvenation.22 In contrast,
fractional photo-thermolysis, which was developed nearly a decade ago to
replace the full-surface skin resurfacing, illuminates the skin with multiple
distinct micro-laser beams that create micro-channels in the skin.32 In this
study, a spot size of 10 um and a spot density of 225 spots/cm?2was used, ir-
radiating only approximately 12% of the skin surface. Ablative fractional
lasers have been evaluated for their potential to enhance the transcutaneous
delivery of hydrophilic drugs (e.g., methyl 5-aminolevulinate,
5-aminolevulinic acid, and imiquimod), polypeptides, and dextrans 27.33:34;
however, the previous studies used dissected skin as test samples. In this
study, both cadaveric micropig skin and live mouse skin were used to study
the transdermal permeation and oxidative effects of laser radiation on the
skin.

In a previous study, I demonstrated that fractional COz laser irradiation
induces the production of reactive oxygen species in the skin.2% The present

study corroborated our previous results and ESR analysis showed that the
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reactive oxygen species (OH, Os—, and VC) were generated upon irradiation
of the skin with a fractional COz laser. A previous study reported that free
radicals are also produced by irradiation with a high-energy,
short-wavelength photon such as ultraviolet B radiation.28 This indicates
that the reactive oxygen species can be generated even by the exposure to
low-energy waves if the conditions are identical. The generation of excessive
reactive oxygen species has secondary effects on the skin pigmentation.
However, they have certain beneficial effects. For example, OH and Oz~ are
known to induce apoptosis and necrosis in the skin cells, thereby promoting
the skin rejuvenation and contributing to the cosmetic effects of the laser.
The concurrent use of liposomes, which have been verified to have no toxicity,
offers a potential strategy to mitigate any laser-induced oxidative damage.
For example, delivery of antioxidants loaded in the liposomes concurrently
with fractional COg laser irradiation may potentially mitigate the damage to
the skin. I have previously reported that antioxidants such as fullerenes or
ascorbyl derivatives inhibit the oxidative damage induced by laser irradia-
tion.29 Furthermore, albumin used in the liposomes in this study is an
abundant and important circulating antioxidant,3> and may also potentially
mitigate the oxidative damage to the skin from the fractional laser treatment.
The safety of fractional laser therapy and the possibility of using antioxi-
dants to mitigate the oxidative damage to the skin warrant further investi-
gation in preclinical and clinical studies using the human skin, with the

eventual goal of achieving therapeutic gains without causing any toxicity.
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In summary, an increase in the laser power and irradiation time increased
the cellular uptake of liposomes and penetration of peptide drugs across the
skin in a dose-dependent manner. High-energy CO2 fractional laser over-
came the rate-limiting barrier function of the stratum corneum. However,
further investigations are required to establish the safety and efficacy of
fractional laser irradiation-assisted delivery of liposome-encapsulated drugs

as a transcutaneous drug delivery system.
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Fractional laser-assisted percutaneous drug delivery

via temperature-responsive liposomes

2.1 Abstract

Liposomes are used for transdermal delivery of drugs and vaccines. Our objective
was to develop temperature-responsive (TR) liposomes to achieve tempera-
ture-dependent, controlled release of an encapsulated drug, and use fractional
laser irradiation to enhance transdermal permeability of these liposomes.
TR-liposomes prepared using a thermosensitive polymer derived from
poly-N-isopropylacrylamide, N,N-dimethylacrylamide, egg phosphatidylcholine,
and dioleoylphosphatidylethanolamine, delivered fluorescein isothiocya-
nate-conjugated ovalbumin (OVA-FITC) as a model drug. Effect of temperature
on liposome size and drug release rate was estimated at two temperatures.
Transdermal permeation through hairless mouse skin, with and without CO2
fractional laser irradiation, and penetration into Yucatan micro-pig skin were
investigated using Franz cell and fluorescence microscopy. Dynamic light scat-
tering showed that mean liposome diameter nearly doubled from 190 to 325 nm
between 37 and 50 °C. The rate and amount of OVA-FITC released from

TR-liposomes were higher at 45 °C that those at 37 °C. Transdermal permeation

40



of OVA-FITC across non-irradiated skin from both TR- and unmodified liposomes

was minimal at 37 °C, but increased at 45 °C. Laser irradiation significantly in-

creased transdermal permeation of both liposome groups at both temperatures.

Fluorescence microscopy of frozen biopsy specimens showed deeper penetration of

FITC from unmodified liposomes compared to that from polymer-modified lipo-

somes. Rhodamine accumulation was not observed with polymer-modified lipo-

somes at either temperature. Temperature-dependent controlled release of an

encapsulated drug was achieved using the TR-liposomes. However, TR-liposomes

showed lower skin permeability despite higher hydrophobicity. Fractional laser

irradiation significantly increased the transdermal permeation. Additional stud-

1es are required to control liposome size and optimize transdermal permeation

properties.

Keywords: Assisted drug delivery, controlled drug release, fractional laser, lipo-

some, temperature-responsive polymer, thermosensitive polymer
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2.2 INTRODUCTION

Transdermal delivery of drugs and vaccines offers significant advantages over
traditional methods such as needle injection. Besides being painless, transdermal
delivery systems eliminate biohazard risks associated with needles and can be
self-administered. Several drugs such as nicotine, hormonal contraceptives, local
anesthetics, and analgesics have been commonly used as transdermal patches.
However, such use has largely been limited to lipophilic drugs that can penetrate
and permeate through the stratum corneum of the skin. Several mechanical 1!,
chemical #4, and energy-based 57 strategies have been adopted to enhance
transdermal penetration of hydrophilic drugs and peptides.

One of the chemical-based strategies commonly used to deliver hydrophilic drugs
are closed bilayer phospholipid systems called liposomes. Liposomes comprise a
lipid shell and a hydrophilic core that can be loaded with hydrophilic drugs in-
cluding peptides and vaccines. The lipid shell facilitates cellular uptake and
transdermal penetration, after which the drugs are released from the core into
the cell or across the skin. Several natural and biocompatible materials such as
egg phosphatidylcholine (egg PC) and dioleoylphosphatidylethanolamine (DOPE)

have been used to create the lipid bilayer of liposomes.
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To further improve the efficiency of transdermal drug delivery and expand the
variety of drugs that can be delivered via liposomes, additional strategies such as
the use of iontophoresis, electroporation, ultrasound, microneedles, and fractional
laser have been employed to increase transdermal permeability 1.8-13, In particu-
lar, fractional laser-based strategies appear promising as they precisely control
the permeability by controlling the area and degree of irradiation through laser
settings such as power and pulse duration 1416, Another innovative development
in the field of liposomes is temperature-responsive (TR) liposomes. By incorpo-
rating a thermosensitive polymer into the liposome membrane, liposomes can be
designed to trigger drug release only at a specified temperature 17-19. For example,
liposomes containing the thermosensitive polymer poly-N-isopropylacrylamide
(PNIPAAm) that has a lower critical solution temperature (LCST) of 37.8 °C,
would lose the hydration layer, become unstable, disintegrate, and release the
encapsulated drug only at physiologic body temperature, but not during storage
at lower temperatures. This is particularly attractive as the liposomes could be
tailored to allow enhanced and targeted release of an encapsulated drug by con-
trolling the environmental temperature.

The objectives of this study were to (1) develop a TR liposome by incorporating a

thermosensitive polymer into the liposomal membrane as a strategy for temper-
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ature-dependent controlled release of an encapsulated drug, and (2) investigate
the enhancement in transdermal permeability of TR-liposomes by concurrent use

of fractional laser irradiation.

2.3 MATERIALS AND METHODS

2.3.1 Fluorescein isothiocyanate labeling of ovalbumin

Ovalbumin (OVA; 10.06 mg, Sigma Aldrich, St. Louis, MO, USA) and fluorescein
isothiocyanate (FITC; 11.78 mg, Sigma Aldrich) were dissolved in 4 mL NaHCO3
(pH 9.0) solution and allowed to react at for 3 days at 4 °C. Unreacted FITC was
removed and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) was

purified by dialysis using Slide-A-Lyzer dialysis cassettes (molecular weight cut-

off 20 kDa; Thermo Fisher Scientific, Waltham, MA, USA).

2.3.2 Liposome preparation

OVA-FITC TR-liposomes were prepared using a previously described method with
slight modifications (Figure 1) 20. Briefly, 10% of a thermosensitive polymer
(P[N-isopropylacrylamide-co-N,N-dimethylacrylamide 30%]-DOPE; MW 10000,
Lower Critical Solution Temperature, LCST: 37.8 °C), where 30%

N,N-dimethylacrylamide (DMAAm) was incorporated with PNIPAAm, was mixed
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with a solution of egg PC and DOPE in chloroform at concentrations listed in
Table 1. The solution was evaporated in a recovery flask to form a lipid mem-
brane. The membrane was dispersed with 1 mL OVA-FITC solution and sonicated
for 30 min to prepare liposomes. The liposomes were extruded through a 400 nm
pore-sized membrane filter (Extruder®, 2 PVP membrane filters, 700 Industrial
Park Dr, Alabaster, AL 35007). The free and decomposed lipids and OVA-FITC in
the filtrate were removed by gel filtration using a PD-10 column (Sigma-Aldrich
Japan, Shinagawa, Tokyo) with 1x phosphate-buffered saline (PBS). Liposomes
containing a 1:1 ratio of egg PC and DOPE, but without the thermosensitive
polymer, were also prepared to serve as controls. The liposome suspensions were

stored at 4 °C until measurement.
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Figure 1. Steps involved in liposome preparation.
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Mole rate Weight (mg)

P(N-isopropylacrylamide-co-DMAAmM30%)-DOPE | 10 28.9
Egg PC 50 10.0
DOPE 40 8.0

Table 1. Liposome composition.

2.3.3 Effect of temperature on liposome size

Liposome size was measured by dynamic light scattering using previously de-
scribed methods 2!. The temperature of the liposome suspension (n = 6) was in-
creased from 35 to 50 °C and the liposome diameter was measured using a

Nano-ZS Zetasizer (Malvern Instruments, Malvern, UK).

2.3.4 Effect of temperature on temporal release rate of drug from
liposome

Ten microliters of the liposome suspension obtained by gel filtration was diluted
10x in an extraction buffer (1x PBS with 10% TritonX) and incubated at 37 °C or
45 °C (n = 3/group). After specific times (1, 5, 10, 20, 30, and 60 min), 10 pl of the

buffer was sampled to measure its fluorescence intensity (Infinite® M1000
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TECAN; Tecan, Ménnedorf, Switzerland). The release rate was calculated using
the formula:

F'*—F*
Drug release rate (%) = T x 100

Ff

where Ft is the intermediary fluorescence at a given time point, Fi is the initial

fluorescence, and Ff is the final fluorescence of the sample at 60 min.

2.3.5 Transdermal permeation of liposomes through hairless mouse
skin

Hairless mouse skin (Laboskin®, Hos: HR-1 Male, 7 weeks old; Hoshino Labora-
tory Animals Inc., Ibaraki, Japan) was defrosted and cut into 15-mm-diameter
specimens. Half of the skin specimens were irradiated with CO2 fractional laser
to investigate the effect of laser irradiation on transdermal permeation of
OVA-FITC from TR-liposomes. Irradiation was performed with laser beams at a
wavelength of 10.6 pm using a fractional CO2 laser (Lutronic: Seoul, Korea) for
experiments involving OVA-FITC liposomes) with a moveable articulated arm
14,22 at 15 W power, 12 mdJ pulse energy, and a spot density of 200/cm2. The skin
specimens were mounted in vertical Franz cells (effective area and volume: 0.64

cm2 and 5 mL, respectively; Perme Gear, Hellertown, PA, USA) (Figure 2). The
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temperature of the PBS solution in the Franz cell was maintained at 37 °C or
45 °C using a circulating water bath. The transdermal permeation of OVA-FITC
from TR- and control liposomes across non-irradiated and laser-irradiated skin
was assessed at 35 and 45 °C (n = 2/group/condition). Liposome suspension (1 mL)
was added to the donor chamber, and the transdermal permeation profile was
obtained by measuring the fluorescence intensity (Infinite® M1000 TECAN;

Tecan) as skin transmittance for 2 days using the following formula:

'r

Permeation rate (%) = x 100

Fd

where Fr is the fluorescence of sample from the receptor chamber and Fd is the

fluorescence of sample from the donor chamber.
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Figure 2. Franz cell setup used to measure transdermal permeation of liposomes
through hairless mouse skin.

2.3.6 Transdermal penetration of liposomes through Yucatan mi-
cro-pig skin

The skin from adult Yucatan micro-pigs (YMP) was used to study the trans-
dermal penetration of TR- and control liposomes at 35 and 45 °C. YMP skin was
chosen because its density, thickness, and physicochemical properties are similar
to those of human skin 2324, Frozen YMP skin samples (derived from 5-month-old
female Yucatan micro-pigs, average weight, 25 kg) were obtained from Charles
River Japan Inc. (Yokohama, Kanagawa, Japan). The subcutaneous fat was re-

moved from the YMP skin sheets and approximately 0.4-mm-thick skin samples
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were used in the permeation experiments using Franz cells at 35 and 45 °C as
described above. After 48 h, the YMP skin sample was retrieved from the Franz
cell, fixed with paraformaldehyde and processed for cryosectioning. Frozen sec-
tions (20-pm thick) were evaluated using bright-field and fluorescence microscopy
to visualize the penetration of the liposomes and the distribution of FITC and

rhodamine.

2.4 Results and discussion

2.4.1 Effect of temperature on liposome diameter

Dynamic light scattering analysis showed that the mean diameter of OVA-FITC
liposomes increased steadily and nearly doubled as the temperature increased
from 37 °C (close to LCST of the component thermosensitive polymer; liposome
diameter, 190 + 5 nm) to 50 °C (liposome diameter, 325 + 7 nm; Figure 3). I posit
that the increase in liposome size occurred because the thermosensitive polymer

in the liposome membrane changes in shape and elongates inducing the liposome
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surface to change from hydrophilic to hydrophobic at temperatures above LCST,
causing the liposomes to aggregate together and making the apparent particle
size larger 25-27, These observations also confirmed the temperature-dependent

properties of the tested TR-liposomes.
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Figure 3. Changes in liposome particle size with temperature.

2.4.2 Effect of temperature on drug release from liposome
The rate and cumulative amount of OVA-FITC released from the TR-liposomes
over 60 min of incubation were higher at 45 °C compared to those at 37 °C (Figure

4). The total amount of drug released over 60 min nearly doubled from 32% at
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37 °C to 70% at 45 °C. These observations further confirmed the tempera-

ture-dependent properties of the TR-liposomes.
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Figure 4. Effect of temperature on temporal release rate of drug from liposome.

2.4.3 Effect of fractional laser irradiation and temperature on
transdermal permeation of liposome

Transdermal permeation of OVA-FITC across non-irradiated skin from both TR-
and control liposomes was minimal at 37 °C, but increased at 45 °C (8% for
TR-liposomes, and 30% for control liposomes after 48 h; Figure 5). The increase in

transdermal permeation could be explained by (1) a softening of the liposomal
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lipid membrane, and (2) an increase in hydrophobicity of the polymer (in the
TR-liposomes) at a higher temperature, facilitating liposome absorption into the
skin. The lower permeation of OVA-FITC from TR-liposomes could be explained
by (1) their larger size, and (2) the development of a hydration layer by the
polymer that stabilizes the liposome and impedes absorption of the liposome into

the skin [28-30].
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Figure 5. Transdermal permeation of (A) polymer-modified and (B) control lipo-

somes at 37 and 45 °C.

Fractional laser irradiation of skin significantly increased the transdermal per-
meation for both liposome groups under both temperature conditions. The in-
crease in transdermal permeation by laser irradiation could be explained by cre-

ation of microscopic holes in the skin. Furthermore, compared to control lipo-
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somes, TR-liposomes continued to show lower permeation, suggesting that the
larger size and the stabilizing effect of the polymer-derived hydration layer con-
tinued to impede absorption across irradiated skin.

2.4.4 Transdermal penetration of liposomes through Yucatan mi-
cro-pig skin

Fluorescence microscopy of the frozen biopsy specimens (Figure 6) showed deeper
penetration of FITC fluorescence from unmodified liposomes compared to that
from polymer-modified liposomes. Rhodamine fluorescence distribution and in-
tensity showed interesting differences between the two groups. Rhodamine ac-
cumulation was not observed with TR-liposomes at either 37 °C or 45 °C. How-
ever, rhodamine was observed close to the epidermal surface with only an in-
crease in intensity at 45 °C, whereas FITC penetrated deeper into the dermis at
the higher temperature (Figure 7). These results suggest that permeation oc-
curred after release of the encapsulated material from the TR-liposomes into the
medium, whereas control liposomes adsorbed and fused with the skin surface

prior to release of the encapsulated material into the skin.
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Figure 6. Fluorescence imaging of dermal cross-sections showing transdermal
penetration of TR- and control liposomes. Light field images were superimposed

with green (FITC) and red (rhodamine) fluorescence images for analysis.
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Figure 7. Fluorescence imaging of dermal cross-sections showing surface accu-

mulation and transdermal penetration of TR- and control liposomes (green fluo-

rescence: FITC and red fluorescence: rhodamine).

The accumulation of liposomes on the epidermal surface has been reported pre-
viously. It has been suggested that the liposome itself does not permeate into the
skin, but rather forms a stacking structure on the surface of the stratum corneum
to act as a local depot of the drug that is subsequently absorbed into the skin 31.
The phospholipids in the liposomal membrane interact with intercellular lipids in
the stratum corneum and change its permeability to the drug, which then per-
meates the skin following the thermodynamic activity gradient between the

stratum corneum and the skin 3233, Our results suggest that the presence of the
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thermosensitive polymer hinders this step of liposome fusion with the stratum

corneum, thereby reducing the permeability of the TR-liposomes.

In this study, I successfully developed a method for formulating TR-liposomes
that increased drug delivery in response to an increase in temperature. The
thermosensitive polymer used to prepare the liposomes was chosen such that
their LCST was close to the physiologic body temperature (37 °C). This would
ensure that drug release from the liposome would be triggered only after appli-
cation on the skin surface — a feature that is important to improve the shelf life of
the liposome preparation and allow controlled drug release. However, the drug
release was somewhat lower in comparison to control liposomes without the
thermosensitive polymer, likely due to the larger size of the TS-liposomes 29:30 and
possible hindrance from the polymer-derived stabilizing hydration layer on the
liposome surface. Interestingly, the mechanism of release also appeared to be
different for the TS-liposomes. Unlike the control liposomes, which appeared to
stack and fuse on the epidermal surface before releasing their encapsulated ma-
terial into the skin, the TS-liposomes did not fuse but released their encapsulated

material into the medium from where it was subsequently absorbed into the skin.
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Drug permeation and penetration were therefore lower with TS-liposomes com-

pared to non-modified liposomes.

Notably, CO2 fractional laser irradiation of the skin increased dermal penetra-

tion of drug from both types of liposomes with drug permeation from

TS-liposomes reaching modest levels at 45 °C. These results show that the frac-

tional laser largely overcomes the inhibitory effect of the large size and/or the

stabilizing hydration layer on the TS-liposomes. Fractional lasers have been pre-

viously evaluated for their potential to enhance the transcutaneous delivery of

hydrophilic drugs, polypeptides, and dextrans 141534, Qur results demonstrate the

utility of combining CO2 fractional laser and liposomes as an approach to en-

hance skin penetration of hydrophilic peptide drugs. The increased dermal per-

meability to drugs is likely achieved by creation of micro-channels within the area

of skin illuminated with the multiple, distinct micro-laser beams of the fractional

laser 35.

This study has several limitations. First, the size of liposomes prepared in this

study was not uniform. Though I used a 400 nm filter for sizing, liposome diam-

eter ranged from 190 to 325 nm. As smaller liposomes have higher dermal per-

meability 28-30 it is important that uniformly sized liposomes are synthesized and
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evaluated to increase the consistency and reproducibility of results. Further

studies are also required to optimize the liposome composition to improve drug

permeation and penetration into skin, to permit effective application even in the

absence of fractional laser treatment. Second, I did not investigate the safety and

biocompatibility aspects of the liposome systems or their combination with der-

mal irradiation using fractional laser. However, PNIPAAm, egg PC, and DOPE

used in the TR-liposomes have been extensively used in liposome and other

therapeutic preparations, and their safety and biocompatibility are well docu-

mented. Fractional laser irradiation of skin is also commonly used clinically and

is known to be mostly safe. There have been some concerns of oxidative damage

by reactive oxygen species induced by laser irradiation of skin 36. Concurrent de-

livery of antioxidants such as fullerenes and vitamin C derivatives via liposomes

has been suggested as a strategy to mitigate any laser-induced oxidative damage.

Further preclinical and clinical studies are required to optimize and establish

therapeutic efficacy and address any safety concerns of these novel strategies.

In conclusion, I developed TR-liposomes by incorporating a thermosensitive

polymer into the liposomal membrane, and achieved temperature-dependent

controlled release of an encapsulated drug. I also demonstrated the possibility of

concurrently using fractional laser irradiation as a strategy to increase the
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transdermal delivery of drugs from the TR-liposomes. Additional studies are re-

quired to control liposome size and optimize their transdermal permeation prop-

erties.
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