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Chapter 12

Heisenberg’s uncertainty relation

Quantum mechanics is surely one of the most successful theories in all science. In fact, most of
the Nobel prizes of physics and chemistry are due to quantum mechanics. Also, as recent topics
(particularly, related to measurements), we see quantum computer [80], quantum cryptography
[91], quantum teleportation [10], etc. Although these are quite interesting and promising, in this
chapter, we devote ourselves to Heisenberg’s uncertainty relation, which is the most fundamental
in quantum mechanics.

Heisenberg’s uncertainty relation (c¢f. [31]).

(i) The particle position q and momentum p can be measured “simultaneously’] if the “errors”
A(q) and A(p) in determining the particle position and momentum are permitted to be
non-zero.

(ii) Moreover, for any € > 0 , we can take the above “approximate simultaneous” measurement
of the position q and momentum p such that A(q) < € (or A(p) < € ).

(iii) However, the following Heisenberg’s uncertainty relation holds:

A(q) - A(p) > 5, (12.1)

DO St

for all “approximate simultaneous” measurements of the particle position and momentum.

RIS

However, it should be noted that some ambiguous terms (i.e., “approximate simultaneous”, “error”)
are included in the above statement, Thus, we believe that it is not a scientific statement but a
“catch phrase” that was used to promote the paradigm shift from classical mechanics to quantum
mechanics. Thus, in this last chapter' we try to describe this uncertainty relation precisely in
terms of mathematics and further to derive it in the framework of the W*-algebraic formulation
of MT. For this, we first give the mathematical definitions of “A(q)” (or “A(p)”) and “approximate
simultaneous measurement”, etc. in terms of MT.

IEvery result mentioned in this chapter was published in [36], which was the oldest result in our study
of “measurement theory” That is, our research of “measurement theory” starts from the paper [36]. On
the other hand, the philosophical assertion mentioned in Chapter 1 is the latest result in our study. In
this sense, the progress of our research is symbolically summarized as

“quantum” (physics) —» “classical” (engineering) — “philosophical” (epistemology)
(in Chapter 12) (in Chapters 2~11) (in Chapter 1)

293



294 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

12.1 Introduction

Although the uncertainty relation (discovered by Heisenberg in 1927) has a long his-
tory, the various discussions about its interpretations are even now continued. Mainly
there are two interpretations of uncertainty relations. One is the statistical interpreta-
tion. By repeating the exact (i.e. the “error” A(q) = 0) measurements of the position ¢ of
particles with same states, we can obtain its average value ¢ and its variance var(q). Also,
by repeating the exact (i.e. the “error” A(p) = 0) measurements of the momentum p of
the same particles, we can similarly get its average value p and its variance var(p). From

the simple mathematical deduction, we can obtain the following uncertainty relation:

NI
N

[var(q)]? - [var(p)]> = 3, (12.2)

| St

where i =“Plank’s constant” /27. This is the statistical aspect of the uncertainty relation.
The mathematical derivation of the uncertainty relation (12.2) was proposed by Kennard
in 1927 (or more generally, Robertson 1n 1929). Cf. [54, 73]. Thus, this inequality (12.2)
is called Robertson’s uncertainty relation.

On the other hand, Heisenberg’s uncertainty relation is rather individualistic. Most
physicists will agree that the content of Heisenberg’s uncertainty relation is roughly as
stated in the following proposition (though it includes some ambiguous sentences as well

as some ambiguous words, i.e. “approximate simultaneous” and “error”).

Proposition 12.1. [Heisenberg’s uncertainty relation, cf. [31]]2

(i) The particle position q and momentum p can be measured “approximately” and
“simultaneously’] if the “errors” A(q) and A(p) in determining the particle position

and momentum are permitted to be non-zero.

(ii) Moreover, for any € > 0 , we can take the “approximate simultaneous” measurement

of the position q and momentum p such that A(q) < € (or A(p) < € ).

2It may be usually considered that the (12.2) is the mathematical representation of the (12.3). How-
ever, it is not true. In fact, in [84], J. von Neumann pointed out the difference between Robertson’s
uncertainty relation (= (12.2)) and Heisenberg’s uncertainty relation (= (12.3)).
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(iii) However, the following Heisenberg’s uncertainty relation holds:

N | >

Alg) - Alp) > 5, (12.3)

for all “approximate simultaneous” measurements of the particle position and mo-

mentum.

It should be noted that the above “proposition (= Heisenberg’s assertion)” is am-
biguous, that is, it is not a scientific statement but a “catch phrase” that was used to
promote the paradigm shift from classical mechanics to quantum mechanics. In fact, the
above “proposition” is powerless to solve the paradox (i.e., the paradox between EPR-

experiment and Heisenberg’s uncertainty relation), cf. §12.7.

Several authors have contributed to the problem to deduce Heisenberg’s uncertainty
relation. In [2] (Ali and Emach, 1974), [3] (Ali and Prugovecki, 1977), these were done by
means of the concept of (generalized) observable which has been developed by E.B. Davies
[17] (¢f. Definition 9.3 for B(V')). Hence, a certain part of this problem has been already
solved. In particular, the statements (i) and (ii) in the above Proposition 12.1 were de-
duced satisfactorily. However, concerning the statement (iii), there still seems to be some
questions. The mathematical formulation and derivation of the Heisenberg’s uncertainty
relation (iii) (in the above Proposition 12.1) was proposed by M. Ozawa [67], S. Ishikawa
[36] independently. We believe that this is the final version of Heisenberg’s uncertainty
relation concerning measurement errors. Thus, in this chapter we shall introduce this

formulation and derivation of the above Proposition 12.1.

Remark 12.2. [(i): A classical understanding of Heisenberg’s uncertainty relation].
Let us explain the classical understanding of Heisenberg’s uncertainty relation (which is
essentially equal to the thought experiment of 7-rays microscope (c¢f. [31])). In order
to know the position ¢(tp) and momentum p(¢y) of a particle A at time ¢y, it suffices to
measure the position ¢(tg) of a particle A at time ¢y (i.e., light L; is irradiated at the
particle at time t), and continuously (i.e., after § seconds), measure the position ¢(ty+0)

at time to + J. That is because (q(ty), p(to)(= “%(t))) is approximately calculated by
(q(to). m(q(to+§)—Q(to)) ).



296 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

q1(to +9)

q(to)
to +9)

I

la]. However, if we want to know the exact position ¢(ty) (i.e., if we want Ag = 0), the

“Plank constant” x “lightspeed” )

wavelength A of the light L; must be short (i.e., the energy (= 5

of the light L; must be large), and therefore, the particle A is strongly perturbed. Thus,

the position of the particle A at time ¢y + 0 will be changed to ¢;(to+9). Thus we observe

that the momentum of the particle A at time ¢y is equal to M

from p(to)(= 22 (ty) ~ M) (i.e., Ap is large).

, which is away

[b]. Also, if we want to know the exact momentum p(ty) (i.e., if we want Ap ~ 0),
the wavelength A of the light L; must be long, and therefore, the particle A is weakly
perturbed. Although the position of the particle A at time t; + 0 will be changed to
¢1(to + 6), it is almost the same as ¢(to + ). Thus we observe that the momentum of
the particle A at time ¢, is equal to w, which is near p(to)(= mdq (to) =~
w) (i.e., Ap is small) if ¢ is large. However it should be noted that Aq is large
since the wavelength A of the light L; is long.

[c]. Therefore, Ap ~ 0 and Ag ~ 0 are not compatible, that is, the inequality “Ap - Ag >
constant” always holds. Although this explanation is, of course, rough, there is something
thought-provoking in the above argument.

[(ii): EPR-experiment [22]]. Let A and B be particles with the same masses m. Consider

the situation described in the following figure:

A B
where “the velocity of A” = — “the velocity of B7 The position ¢4 of the particle A can be

measured, and moreover, the velocity of vg of the particle B can be measured. Thus, we
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can conclude that the position and momentum of the particle A are respectively equal to
ga and —muwp. Is this contradictory to Heisenberg’s uncertainty relation? This question
is significant though their (i.e. Einstein, Podolosky and Rosen ) interest is concentrated
on “the reality of physics”

[

12.2 Example due to Arthurs-Kelley

Here, we mainly consider the following identification:

L*Rydz)>u <« |u)(u| € Trh (L*(R, dz)).
(lell 2 gy =1, i) identification
We first introduce Robertson’s uncertainty relation, which generally seems to be under-
stood (or, misunderstood) as the mathematical representation of Heisenberg’s uncertainty
relation. By repeating the exact (i.e. the “error” A(g) = 0) measurements of the position
q of particles with same states, we can obtain its average value ¢ and its variance var(q).
Also, by repeating the exact (i.e. the “error” A(p) = 0) measurements of the momentum
p of the same particles, we can similarly get its average value p and its variance var(p).

A simple calculation shows:

q:/Rx‘u(x)rda: and p:/RM[%u(x)}dx <:/Rp’ﬂ(p)‘2dp> (12.4)

where @ is the Fourier transform of wu, (that is, a(p) = (/2= [ u(x)e_m”pdx). And

further, we see,

var(a) = [ o= affuto)] do = [ o futo)| do—
var(p) = [ o= sl fatp)| o = [ |5 u(oPds 57 (12:5)

Immediately after Heisenberg’s discovery (=“Proposition 12.17, 1927), Kennard, by a

simple calculation, showed the following uncertainty relation:

D=
D=

>

| St

. (12.6)
(=(12.2))

[var(q)]? - [var(p)]

(cf. Lemma 12.13 later). Of course, it is clear that there is a great gap between Heisen-

berg’s uncertainty relation (12.3) and Kennard’s uncertainty relation (12.6).
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Next we shall introduce the nice idea by Arthurs-Kelly [7], that is, a certain approx-
imate simultaneous measurement of the position ¢ and the momentum p of a particle A

in one dimensional real line R, which has a state function u(z) (€ L*(R), |lul|z2®) = 1).

:M)

Note that the position observable Q( = x) and the momentum observable P( = ;=

do not commute, that is,
QP — PQ = m( ”] o). (12.7)

Therefore, any simultaneous measurement of the position observable x and the momentum
observable % for a particle “A” can not be realized. However, Arthurs-Kelly’s idea is

excellent as follows: We first prepare another particle “B” with the state ug(y) such that:

/Ry‘uo(y)‘zdy = /RK(@/)[%U()(@/)] dy =0 (12.8)

for example, ug(y) = W exp( — %) Further we regard these two particles “A” and
“B” as a “particle C” in two dimensional Euclidean space R? with the state u(x)uq(y)
(€ L*(R?),||u - uollr2mzy = 1). Now consider the self-adjoint operators (z — y) and
104 19 4y [2(R?), which commute, that is, it holds that:

oz T oy
(e + e =) = @ =) + ) (129)
That is because we can easily calculate:
(G52 + 1) = D))
1 (o0) g fa) = g ) + i f(o0) = L) = g Fay
~[(e ~ 4} + 35w

Thus the simultaneous measurement of observables (z — ) and 22 +

b zay for a “particle

C” (= “A” + “B”) can be realized. Moreover, we can easily calculate these expectations

as follows:

[ 5@t - putentydsdy = [ efue @ a210)

//Rz x)up(y Z;i + Z?) (w)UO(y)}da:dy = /R@[%u(az)]d:ﬂ (12.11)

By the reason that the equalities (12.10)= g and (12.11)= p hold, we may say that

an
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(#) An “approximate simultaneous measurement” of the position observable Q( = x)

— hd

) can be realized.

and the momentum observable P( =

Here, the variances varqs,(q) and var,s,(p) in the approzimate simultaneous measure-
ment of the position ¢ and the momentum p of a particle “C” are given respectively

by:

@ = [ - st 4
:/R)a:u( x—)/

VT qom (D / ’Z o dx—) / dm +( / —uo (v)] dy.

(12.13)

w(z)uo(y) x - y)u(x)uo(y)] dxdy‘2

R2

(12.12)

and

Hence, we can get, by the arithmetic-geometric inequality and the well-known uncer-

tainty relation (Robertson uncertainty relation, c¢f. Lemma 12.13 later), the following
simultaneous uncertainty relation;
[Uartzswz(qﬂl/2 : [U(M’asm(p)]l/z

:2[/Rlzcu(:z)2 i x2]1/4>< [‘/ ’yuo(y)2 ]1/4
[/»m Pao | [ Bioa | x| [ ] ]|

(12.14)

This is Arthurs-Kelly’s idea. We believe that Arthurs-Kelly’s discovery (12.14) is the first

great step to the understanding of Heisenberg’s uncertainty relation.

12.3 Approximate simultaneous measurement

Since our main purpose in this chapter is to describe Proposition 12.1 in terms of
mathematics and further to prove it, we must clarify the ambiguous words (i.e., “approxi-
mate simultaneous”, “error”) in Proposition 12.1. For this, we prepare several definitions

in this section.
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According to the well-known spectral representation theorem (c¢f. [92]), there is a
bijective correspondence of a crisp observable (R", Br», E) in B(H) to an n-tuple (Aj,
..., A,) of commutative (unbounded) self-adjoint operators on H such that A; = [p, A
E(dAy...d)\,,). That is,

(Al,AQ,...,An) — (Rn,BRn,E) (1215)

(commutative self-adjoint operators on H) Ai=[gn MiE(dA1..dAn) (crisp observable in B(V))

In particular, we frequently identify a crisp observable (R, Bgr, F) in B(H) with a (un-
bounded) self-adjoint operator A ( = fR A E(d)\)> on H.
Note that Proclaim""1 (9.9) (or, Axiom""1 (9.11)) says as follows:

[#] Let O = (R", Brn, F) be an observable in B(H). And consider a measurement
Mgy (O = (R, Bre, F), S|p,)), where p, = |u){u|. When we take a measurement
Mgy (O = (R, Brn, F), S|,)), the probability that the measured value A( € R™)

belongs to a set = ( € Brn) is given by

(w, FEu)n (= trlpF(3)]). (12.16)

n

Therefore, the expectation E|Mgpg (O, S|, = (EY |Mpun(0, Sp,.) of the
1

measured value obtained by the measurement Mp)(O = (R™, Brn, F), S|p,]) is given

by
E® [MB(H) (O, g[pu])]

:/ N(u, F(dAy - d\)uyy  i=1,2,..n, (12.17)

where p, = |u)(u|. Further, its variance var [MB(H) (O, g[pu])} ( = (var(i) [MB(H)(G,

g[pu])Dn 1) is given by

var® [MB(H) (6> g[pu])]

_/n

- / N2, F(dDy - - dA)u) i — ’/nMu,F(dAl---dAn)mH ’ (12.19)

2

(u, F(dX\y - - dX\y)u) g (12.18)

A — EY Mp (O, gw)]
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We begin with the following definition.
Definition 12.3. Let H be a Hilbert space with the inner product (-, ).
(1). A triplet (A)'}TIL%’"K = (K,s,(X,F,F)) is called a “tensor observable” (or precisely,
“tensor represented observable”) in B(H ® K), if it satisfies the following conditions (i)

and (ii):
(i) K is a Hilbert space and s is an element in K such that ||s|| = 1,

(ii) (X,F, F) is a crisp observable in B(H ® K), where H ® K is a tensor Hilbert space
with the inner product (-, ) pgK-
(2). Let (X,J, F) be any observable in B(H). A tensor observable GZ%TK = (K,s, (X, 7,

F)) is called a realization of the observable (X,J, F') in tensor Hilbert space H @ K, if it
holds that

(w®@s, F(E) (u®s)) ek = (u, FEWy (Yu e HVE € 7). (12.20)
[
The following proposition is essential to our argument.
Proposition 12.4. [Holevo [34]]. Let (X,J, F') be an observable in B(H). Then, there
exists a tensor observable (A)?I%’”K = (K,s, (X, ¥, F)) that is the realization of (X, ¥, F),
that is, it holds that

(w® s, F(E)(u®s)) ek = (u, FEWy (ue H Z€F). (12.21)

Conversely any crisp observable (X,F,F) in B(H ® K) and any s( € K, ||s||x = 1) give
rise to the unique observable (X, F, F') in B(H) satisfying (12.21).
[
We shall use the following notations.
Notation 12.5. [Domain|. Let A ( = Jg A Ea(d)), the spectral representation of A>
be a (unbounded) self-adjoint operator on H. Then, we define the Dom(A), the domain
of A, by

Dom(A):={ue H: /R IN?(u, Eq(d)\)u) < oo}
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Let O = (R", Bgn, F) and (A)tgg]{ = (K, s, (R", Brn, ]3)) be an observable and a tensor
observable in B(H) and in B(H ® K) respectively. Then, we define that
[6]’(7,2‘)" = (R, Br, [F|})") (it will be called the kth marginal observable of O)

where

FII5(Z) = F = =eB
[Fli" (2) (Rx---xRxExRx---xR) (V= € Br)

k — 1 times n — k times
Further, define that
Dom([ﬁ]?;gr)( — Dom([F]’{,iB”)) ={uc H: | Pu, F(dA...d\)u) < oo,
Rn
Dom([é]?g,;g”)( —~ Dom([ﬁmgT)) =0 e HOK: [ [MJ2(0, F(d...d)\)0) i < 00},
Rn

~

Do, (042711157 ( = Domas ((F]557))

=fuecH: [ |MN*u®s, F(dA\..d\)(u® s))pex < 0o}, (12.22)
R’I’L

where Dom([O]{") (or Dom([(A)]’(%”)) is called the k-th domain of O (or 6)
|

Now we have the following main definition.
Definition 12.6. [Approximate simultaneous observable]. Let Ay, ..., A, be (unbounded)
self-adjoint operators in H. An observable 6{}5}?:1 = (R", Bgrn, F) in B(H) is called the

approzimate simultaneous observable of Ay, ..., A, if it satisfies the following conditions

(i) (domain condition) for eachi (=1,2,...,n), Dom([ﬁfﬁ}%l]m”) N Dom(4;) is dense

(@)
in H
(ii) (unbias condition) for each i (=1,2,...,n),

(u, Aju) = /R Mu, [FIf"(d\)u),  (u € Dom([Ofyp J7) 1 Dom(A;)). (12.23)

|
Remark 12.7. [1]. As seen later (¢f. Lemma 12.14(iii)), it holds that Dom([ﬁéf]?:l]m“)

(@)
—ASO ~ASO
C Dom(A;) holds. Thus, Dom([Opy,- 7)) N Dom(A;) = Dom([Opy,e J75")
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[2]. There is a very reason to assume the following condition (iii) or (iv) instead of the

above (i). <(iii) and (iv) are stronger than (i), more precisely, (iv) = (iii) = (1))

(iii) (self-adjointness) for each i (=1,2,...,n), A; is essentially self-adjoint on

—ASO .
Dom([O4,jx Ji3™) N Dom(4;),
or
(iv) (commutative condition) for eachi (= 1,2,...,n), A; ( =[x A Ei(d)\)) and [635]?:1]%”
commute.

Although each of (i), (iii) and (iv) has merit and demerit respectively, the physical meaning
of the (iv) is the clearest. (Continued on Remark 12.12.)

[3]. Also, see the condition (i) in Example 11.5. This condition is equivalent to

e the formula (12.23) holds on a dense set NI, <Dom([6€5]?:l]z?)” N Dom(AZ-)>.

Definition 12.8. [Approximate simultaneous tensor observable]. Let Ay, ..., A, be (un-

~

bounded) self-adjoint operators in H. A tensor observable (A)ﬁi]?g = (K, s, (R",Bgrn, F))
is called an approximate simultaneous tensor observable of Ay, ..., A,, if (A)ﬁ?]?_ol = (K, s,

(R™, Bgrn, F )) satisfies the following conditions:

(i) (domain condition) for each i (= 1,2,...,n), Dom®s([6f£§g]?})‘l’") N Dom(4;) is

dense in H

(ii) (unbias condition) for each i (= 1,2,...,n),

(u, Au) :/n)\i<u®s,ﬁ(d)\1---d)\n)(u®s)) (12.24)

(u € Domg, ([0 T7™) N Dom(A;), ).

|
. —ASO ~ . . : "
The relation between Oy, e and Oﬁfﬁo is characterized by the following proposition.
= =1

Proposition 12.9. Let Ay, ..., A, be (unbounded) self-adjoint operators in H.
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(i) Let (A)fg]?g = (K, s, (R", Br», F) be an approximate simultaneous tensor observable

of Ay,...,A, in H. Then, there exists an approximate simultaneous observable

Oaf]on = (R", Brn, F') such as O[f‘f]:ﬁo is a realization of 6(115]?:1.

(ii) Let OASO = (R", Bgr», F') be an approximate simultaneous observable of Ay, ..., A,
in H. Then there exists a approximate simultaneous tensor observable Oﬁ‘f{ 01
= (K, s, (R", Brs, F) such as it is a realization of O[Asﬁ .

A . .

(iii) Let Op4 SO = (R", Bgrn, F') be an approximate simultaneous observable of Ay, ..., A,

in H. Let 0@5117%,01 = (K,s, (R",Br», F) be an approximate simultaneous tensor

observable of Ay, ..., A, in H. And assume that (A)ﬁs]?g is a realization of O[ ASO

Then, for each i (=1,2,...,n),

—ASO

Dom([O[Al Jo) = D0n1®5([O[AS]Tl’OJE”)”)CDom(Ai). (12.25)

LC 2

Proof. The statement (i) is trivial. Also the statement (ii) and the equality in
(12.25) immediately follow from Proposition 12.4. Also, the inclusion “C” in (12.25) is
proved in Lemma 12.14(iii) later. O

Definition 12.10. [Uncertainty| Let Ay, ..., A, be (unbounded) self-adjoint operators on

a Hilbert space H.

[1]. Let Offl]on = (R", Bgrn, F) ) be an approximate simultaneous observable of Ay, ..., A,,.

(i). Then, the uncertainty (A oo, (Ai,u)> of ﬁﬁf]?:l for a state u (||u|lg = 1) is
=1
defined by

i=1

Agiso (Aiu) = / N, FdA - dAu) /R X2, As(d\)u) (12.26)

[Al]l 1

(u € H such that ||u|| =1 ),

where (12.26) should be interpreted that Aﬁ[As]on (A, u) = oo for u & Dom([F]§") (cf.
=1

Dom([F]{i") € Dom(4;) in (12.25)). ( Aoas]o (A;,u) > 0” will be shown in Theorem
1

12.15 Iater.>

(ii). Also the i-th variance var [6&?1221,10] is defined by

vare (00 u] = / s — (, A2, F(dDy -+ d)ud i (12.27)
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[11] Let 6&5&2 = (K,s, (R", Bgrn, F ) ) be an approximate simultaneous tensor observable
of Ay,... A,. .

(). Then, the uncertainty (Aoquziol (Al,u))i:1 of (A)ffl]?zol for a state u (||ul|z = 1) is
defined by

AO&S]TO (Aj,u) = / A (u® s, F(dAr -+ dA)(u® s)) — / M (u, Ai(dN)u)  (12.28)
=1 n R

(u € H such that ||ul| =1 ),

where (12.28) should be interpreted that Agasro (A;,u) = oo for u ¢ Dom®5([ﬁ]?;)ar)

[ iy
(cf. Dom®s([Fm)m") C Dom(4;) in (12.25)). (“AO[AS]TO (A;,u) > 07 will be shown in
Al
Theorem 12.15 Iater.)

(ii). Also the i-th variance vari; [OAS]T,LO, u] is defined by

var [O"fﬁo, u] = /n A — (u, A) 2w @ s, F(dA -+ dA) (u @ s o (12.29)
(i=1,2,...,n).

[ |

Proposition 12.11. Let Ay, ..., A, be (unbounded) self-adjoint operators on a Hilbert

space H. Assume that (A)ﬁ\fﬁg = (K,s, (R",Brs, F)) is a realization of 0[‘;15}0 —

(R",Bgn, F). Let u € H (||ul]|g = 1). Then it holds that

and
—~AS0 ~
var(p) (O ul = varg [Offl]?zol,u]. (12.31)
Proof. This immediately follows from Definition 12.10. O

Remark 12.12. [Continued from Remark 12.7]. Again note that, if the commuta-
tive condition (iv) in Remark 12.7 is assumed in the Definition 12.10, we can define

A(MB(H)(Ai X [Gﬁfﬁzl]gg)ar,§(pu))), the distance between A; and [6?5]2 ™ ¢of. Defi-

nition 11.1. And further we see that
~— —ASO pmar &
A (M (A; x gy i Spu))) = Agaso (Au) (1232)
(“error” defined in Definition 11.1) (“uncertainty” deﬁned in Definition 12.10)
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Thus, in this case, the physical meaning of “uncertainty” is clear.

12.4 Lemmas

In this section, we shall prepare some Lemmas.
Lemma 12.13. [Robertson’s uncertainty relation]. Let A; and Ay be any symmetric

operators on a Hilbert space H. Then, it holds that

[ Avul? = 1o, Ay P] v 1Azl — |(u, Agu) ] R %\<A1u,A2u> — ( Ay, A
(12.33)

for all uw € Dom(A;) N Dom(As,) .

Proof. Using Schwartz inequality, we see

|[(Avu, Agu) — (Agu, Ayu)
:|<A1u — (u, Ayu)u, Asu — (u, A2u>u> - <A2u — (u, Asu)u, Ayu — (u, A1u>u>|

1/2

<2l Al =, Ay)?] " [HAsul? — 1w, 4] (1230

]

Lemma 12.14. Let Ay,---, A, be any (unbounded) self-adjoint operators in a Hilbert

space H. Let (K,s,(R", Bgrn, F') be an approximate simultaneous tensor observable
for Ay, A, Put Ay = [0 MF(dAdAg - dA,) ( = [ AF] :(z')m‘"(d)\)) (k =
1,2,...,n). Then, the following equalities (i) ~ (iii) hold

(i)
, Ay = (0® 5, Ai(u ® 5)) = / Melv @ 5, Fldhdhg -+ d\)(u @ s))  (12.35)

for all u € Dom®s(ﬁk) and allve H (k=1,2,...,n),
(i)
/ Adi(u @ s, F(dhd)g - - dhy) (u @ s))
Rn

~ ~

= (Ai(u @ s), 4;(u® s))
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— (A, Aju) + (A — 4,0 D(u®s), (A — A, @ Du®s)) (12.36)
for all i # j and all u € D0m®s(;1i) N D0m®s<A\j)’
(i)

/ el (u @ s, F(dAidy - dA,) (u® )

= [ Ak(u® $)|I* = | Agul* + | (A = Ay © D(w® s)|* = || Axul? (12.37)

for all u € Doms(gk) (k=1,2,...,n). Thus, it holds that, for each i ( = 1,2,...,n),

ASO mar)

Dom([ﬁml]?:l](i) Dom®s([0f4€€o]’(7)“’") C Dom(4;). (12.38)

Proof. First we prove (i). Fix k € {1,2}. We can sce that, for any v,u € Domg,(Ay).

(v, Ayu)
= {0+ ), Ao+ ) — (0 — u), Ao — )
) +i((v — i), Ap(v — iu))}
= i{((v Fu)® s, A((v+u) @) — (V—1u) @ s, Ap((v —u) ®s))
—i{(v+iu) @ 5, A((v + i) ® 8)) + i{(v—iu) © s, A((v — iu) ® 5))}
= (W@ s, Alu®s))

=(v® s,/ AeFi(d\d)g - - dN) (0 @ s)) :/ Ae(v @ s, Fp(dhdAs - - - dAy) (u ® s)).
(12.39)

—i{(v +iu), Ak (v + tu)

Since Domg,(Ay) is dense in H, we see that
(v, Ag)) = (v ® 5, Ap(u ® 5)) = / Ae(v ® s, Ag(dhdAs -+ dA)(u®s))  (12.40)

for all u € Dom®s(ﬁ ) and all v € H. This completes the proof of (i).
Next, we prove (ii). Without loss of generality, we put i = 1 and j = 2. Let u be any
A

element in Domg,(A;) N Domg,(A;). Then, we see, by the above (i), that

/ MAa(u @ s, F(dAdAs - - - dhp)(u ® s))

= </n/\lﬁ(d/\ld)\g--d)\n)(u@s),/ Ao F(dAd)g - dN) (u ® s))

n
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= (gl(u ® 8), 121\2(’& ®S))
(A=A @Du®s)+ (Au®s), (Ay— A @ N(u® s) + (Ayu @ s))
— (A —A0Du®s), (A — A Du®s))
+ (A - A @DU®S), Au® s)
F{Au®s, (A — A @ Du®s)) + (Aju® s, Ayu ® s)
(A =A@ Du®s), (A — A © D(u®s))
+ (A1 (u® s), Ayu ® ) — (Ayu, Agu)
+ (A ® s, Ay(u® s)) — (Ayu, Ayu) + (Ayu, A,)
= (A -4 D) (u®s),(Ay— A @ Du®s)) — (Au, Au)
+ / n)\Q(Alu®s,ﬁ(d)\1d)\2)(u®s)>+ / AL (F(dM\d)o)(u® s), Ayu ® s)

n

= (Ayu, Agu) 4+ (A, — A, @ D)(u®s), (A — Ay @ I)(u ® s)). (12.41)

Hence, the proof of (ii) is completed. Also, the proof of (12.37) is carried out just in
a similar way. Lastly, we can easily see that (12.37) implies (12.38) since we see that
—ASO

Dom([Op,n Jii") :Dom®s([o@f}T0]7)‘”) in (12.25). O

Now we have the following theorem, which is one of our main results.
Theorem 12.15. Let 6&5:20 = (K,s,(R",Bp», F) ) be a realization of an approxi-
mate s1mu]taneous tensor observable OE:S]OR = (R", Bgrn, F ) of Ai,...,A,. Put EZ =
Jr ALF]G " (dA). Then, we see that

Agusro (Asyu) =Asso (Ar 1) = / N2 o, [FJ" (dA)us) — / X2, As(d\)u)

=1 R R

[A]l 1

= Ai(u @ 5)|* = || Al (12.42)
(A, — A @ D(u®s)|?  (Yue H such that ul =1  (12.43)

Proof. It immediately follows from Lemma 12.14. [

12.5 Existence theorem

Now we shall mention the following theorem, which assures the existence of an ap-
proximate simultaneous tensor observable of arbitrary observables Ay, ..., A,. For two

observables A; and A,, the similar theorem was proved by P. Busch, et al. [15, 14].
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Theorem 12.16. [Cf.[36]] Let A, ..., A, be (unbounded) self-adjoint operators on a
Hilbert space H. Let ai, ...,a, be any positive numbers such that y . (1 +a;?)"! = 1.

Then, we see,

(i) there exists an approximate simultaneous tensor observable Oﬁsﬁo = (K, s, (R", Bgn,

ﬁ)) of Ay, ..., A, such that:

AOASTO (Aj,u) = a;f|Au||  (u € Dom®s([O[Asl?Ol]’(7})”) i=1,2,...,n). (12.44)

[l]ll

and equivalently,

(ii) there exists an approximate simultaneous observable Off]On = (R",Bgrn, F) of

Ay, ..., A, such that:

Agaso (Aiu) = ai Al (u € Dom([Ofy)

[Al]"

Tmm i=1,2,..,n).  (1245)

Proof. By Proposition 12.11, it suffices to prove (i). Put K = C" = {z = (21, ..., 2) :
zi € C (i = 1,2,...,n)}, ie., the n-dimensional Hilbert space with the norm |z|,, =
(20 |22 Y2. Put e; = (1,0,...,0), e5 = (0,1,0,...,0) ,...., e, = (0,0,...,1) € C". Put
s =e;. And put P, : C" — C", (i = 1,2,...,n), a projection such that Pe; = e;, Piey =
0(k # i), that is, P; = |e;){e;]. Put b; = (1 + a2)*/? and B; = b*A; (i = 1,2,...,n).

Consider the spectral representations

R R R

and

— / AES (dN), = / AEC"(d\) in C™
R R

Note that E4, (d(A\/b;?)) = Ep,(d\). Define the unitary operator U : H ® C" — H @ C"
by U =1®U where a unitary operator U on C" satisfies that Ue; = X' je;/b;. And
define the crisp observable (R, Bg, E 1,) in B(H ® C") by

E; (d€) = U[Ep,(d€) ® P+ Ey(d€) @ (I - P)JU (i =1,2,...,n). (12.46)

Since E Ay B 1. commute, we can define a crisp observable (R", B, £ ) in B(H®C")
such that:

n

E1(d dg,...dE,) = H (dgy). (12.47)
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Now, we shall show that the tensor observable (A)tff}gK = (C",e1, (R", By, E 1)) is an ap-
proximate simultaneous tensor observable of Ay, ..., A,,. Put fAlZ = fR” & E 1 (d&dEs...d¢y,)
(1=1,...,n). Then we see that,

/Rn 162 (u ® ey, E4(d€ydEs...d&,) (u® 1))
- [ 16 ws e By ) ue en)
= /R &P u e [(T® U*)(Esxd&) ® P+ Eo(d&) @ (I — a)) (I U)|(u®er))
= [ I€Ftu B (@) - 1.V R
= [ 16 B (e - (23,52 P TR
= 007 [ R B ((a0) = B [ A B (@), (12.48)

Hence, Domg,(A;) = Dom(A;) (where s = ¢; ). Similarly we see
. E(u @ ey, E4(d€ydg,...dE,) (u © ey))
— b2 /R M, g, ((dM\)u) = /R A, B, (dA)u). (12.49)

Thus, 6{2@01 satisfies the condition (ii) in Definition 12.6. Also, noting that I(d\) =
I(1 € dX\), = 0(1 ¢ d)\), we also see that, for each i (i =1,2,...,n) and = € B,

E;(5)- (Ba(Z2) 1)
=(1®U*)(E (21) ® P+ Eo(21) ® )1®U =) @ 1)
— (Ea(Z2) ® (1 © U")(Ep,(21) ® P+ Eo(21) @ (I - P))(I@U)
= (Ba(2) & 1) B (5. (12.50)

So, A; and A; ® I commute since A; = = g€ E;(dS) and A; @ I = [R € (Ea,(dS) ® I).
Hence, A; — 4; ® I on Dom(A) N Dom(A4; ® ]) has the unique self-adjoint extension
[A; — A; ® I], which has the spectral representation

(A —A@1) = /Rz(& — &) B (d€1)(Ba,(dSs) ® 1). (12.51)

Then, we see that

I[A; — A @ I(u®er)|? (12.52)
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= [ - &P e, By 46 (Balde) © Dws )
- [ kPuea By ) uea)
R
—2 - §162(u ® e1, B (d§1)(Ea,(d€) @ I)(u®ey))
+ [ el e (Eals) o Do)
R

= (0 =2+ 1) [ e, Ea (d)u)
R
= laPll sl (1253

which implies that Domg,([A; — A; ® I]) = Dom(4;) (where s = ¢; ) and Agasro (A;,u)

[Al]’lnzl

= a;||A;ul|. Therefore, the proof of theorem is completed.

Remark 12.17. In the above proof, the following statements were also proved:

(i) A; and A; ® I commute, so A; — A; ® I on Dom(A;) N Dom(A; ® I) has a unique
self-adjoint extension [4; — 4; ® I] (i = 1,2),

(i) Domg,(A;) = Domg,([A; — 4; ® I]) = Dom(4;) (i = 1,2).

Thus the commutative condition (iv) in Remark 12.7 is satisfied.

12.6 Uncertainty relations

Now we propose the following theorem, which is our main result in this chapter.
We believe that this theorem is the final version of Heisenberg’s uncertainty relation
concerning measurement errors.

Theorem 12.18. [Heisenberg’s uncertainty relation, cf. [36, 67]]. Let A; and Ay be any

(unbounded) self-adjoint operators on a Hilbert space H. Then, we see,

(i) for any approximate simultaneous tensor observable 6{1‘45;]712;01 = (K, s, (R2, Bg2, F))

of Ay and A,, the following inequality holds:

A(’jASTo (Al, u) . A(A)ASTO (AQ,U) > |<A1U, A2U> — <A2u, A1u>| (1254)

1
[z, [z, ~ 2
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for all w € H such that ||u|| = 1, where the left hand side of (12.54) is defined by

oo if Agasro (Ai,u) = oo for some 1,
[Al]lQ:1

and equivalently,

(ii) for any approximate simultaneous observable 6&?]?_1 = (R?,Bgz, F) of Ay and A,

the following inequality holds:

Agisg (A1,u) Agise (Ag,u)2%|<A1U,A2u>—<A2u,A1u>| (12.55)
Hi=1

for all w € H such that ||u|| = 1, where the left hand side of (12.55) is defined by

00 if Agasg (Aj,u) = oo for some 1.
[Ali=y

Proof. By Proposition 12.11, it suffices to prove (i). Put 121\1 = fR2 /\iﬁ(d)\ld)\g)

(i = 1,2). Let u € D(A;) N D(Ay). If u ¢ Domg,(A;) for some i, we see, by the

definition of the uncertainty, that Agasro (A;,u) = 00, so (12.55) clearly holds. Hence,
A2

111:1

it is sufficient to prove (12.55) for u € Domg,(A;) NDomeg,(As). Let u be any element in
u € Dom®s(ﬁ1) N Dom®s(121\2). We see, by the part (ii) of Lemma 12.14, that

(Ayu, Agu) + (A — A, @ D (u® s), (Ay — Ay @ N(u®@ s))
- / Mo(u @ s, F(dhdho) (u® s)
R2
= (Ayu, Ayu) 4 (Ay — A, @ D) (u®s), (A — A @ D(u® s)) (12.56)
from which, we get, by Schwarz inequality, that
1
§’<A1U7 A2U> - <A2U, Al“)’
1~ -
=5l =A@ D(w@s), (A2 = A @ D(u®s))
(A~ A0 Du®s), (A - A @D(u®s))
< (A - A @ D s)|| - (A2 — A @ D) (u @ s)]]. (12.57)

Hence (by Theorem 12.15), the proof is completed. O

The following theorem was first discovered by Arthurs and Goodman [6]. However we
did not know their discovery in the preparation of [36].
Theorem 12.19. [Approximate simultaneous uncertainty relation, cf [6]]. Let A; and

Ay be any (unbounded) self-adjoint operators on a Hilbert space H. Then, we see,
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(i) for any approximate simultaneous tensor observable OAS]TO = (K, s, (R? Bge, 13),

) of (Ay, As), the following inequality holds:
(var[a’fﬁ?,u]l)l/z : (var[@ffl}?j,u]g)lﬂ > [(Ayu, Apu) — (Agu, Ajuy|  (12.58)

for all w € H such that ||u|| = 1, where the left hand side of (12.58) is defined by co

if Uar[OﬁS]TQO , u]M" = oo for some i, also the right hand side of (12.58) is defined

(@)
by oo if u ¢ Dom(A;) N Dom(A,),

and equivalently

(ii) for any approximate simultaneous observable O[ffo = (R? Bge, F ) of (A, As),

the following inequality holds:

—ASO —ASO
(var[O[Al]lg:I,u]l)l/ (var[Oy,2 l,u]g)l/z > [(Ayu, Agu) — (Asu, Aju)|  (12.59)
for all w € H such that ||u|| = 1, where the left hand side of (12.59) is defined by oo
if var[O‘i‘qS]EO, ]?Z)””" = oo for some i, also the right hand side of (12.59) is defined

by oo if u ¢ Dom(A;) N Dom(As).

Proof. By Proposition 12.11, it suffices to prove (i). Put A, = Jre Aiﬁ(d)\ld/\g)
(i = 1,2). If u ¢ Domg,(A;) for some i, we see, by the definition of the variance, that
var[OﬁS]:QO, ulfi" = 00, so, (12.58) clearly holds. Hence, it is sufficient to prove (12.58)
in the case that u € Domgs(A;) N Domgs(As). Let u be any element in Domgg(A;) N

Domg,(Ay). Then, we see, by (iii) in Lemma 12.14, that

var[OSEC Wi = [Ai(u® s)|” = [{u® 5, Ai(u ® 9)) (12.60)
=[|Aul]? + (A — A @ D) (u@ )| = |[(u, An)?
<2(|| Al = [(u, Aw) )2 - |[(A; — Ai@ D(u )| (i =1,2), (12.61)

therefore, by Lemma 12.13 and Theorem 12.18 we get,

OASTO
i

> A([[Avull® = [{u, Ava) )72 (| Azul® = [(u, Agu)[?)"/
(A - A @ Dues)| - [(A - A @ Duss)|
Z |<A1u, A2U> — <A2U,A1U>|2. (1262)

var[@ﬁsﬂl g ,uly - var| ,Uo
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Hence, the proof is completed. O

Now we have the following corollary?
Corollary 12.20. [Uncertainty relations concerning a pair of conjugate observables]. Let

Ay and Ay be a pair of conjugate observables in a Hilbert space H.

(i: ¢f. [7]) There exists an approximate simultaneous observable 6[:51}?:1 = (R? Bg:.F

) of Ay and Ay. Thus, we can take an approximate simultaneous measurement

— —ASO
M) (04,2 5 Stupul)-

(ii: ¢f. [36]) For any positive number € and any k(= 1,2), there exists an approximate

simultaneous observable 6[?5]?:1 = (R?,Bgr:.F ) of Ay and A, such that:

Agasg  (Ag,u) < €|l Axullm (Vu € H such that |ju|| = 1),
[Al]lz:l
(iii: ¢f. [36, 67]) (Heisenberg’s uncertainty relation) However the following inequality
holds
A~ aso (Al,u) . AaASO (AQ, u) > h/? (12.63)

Opa2_ (A2,

forallue H (|lullg =1),

(iv: ¢f. [6]) The following inequalities hold: (approximate simultaneous uncertainty

relation)

—ASO

—ASO
Julp)!/? - (UCLT[O[AZ]?:la ul2)'? > h (12.64)

(var[O[Al]z

=1

forallue H (||lu]lg =1).

Proof. Note that (Aju, Asu) — (Asu, Ayu) = ih (u € Dom(A;) N Dom(Ay), ||ul|x
= 1). Then, the above assertions (i) and (ii) are consequences of Theorem 12.16. Also,
the above assertions (iii) and (iv) are respectively consequences of Theorem 12.18 and

Theorem 12.19. O

3There are other uncertainty relations, For the recent variants, see [68].
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12.7 EPR-experiment and Heisenberg’s uncertainty
relation

Now we have the complete form of Heisenberg’s uncertainty relation as Corollary 12.20.
To be compared with Corollary 12.20, we should note that the conventional Heisenberg’s
uncertainty relation (= Proposition 12.1) is ambiguous. Wrong conclusions are sometimes
derived from the ambiguous statement (= Proposition 12.1). For example, in some books
of physics, it is concluded that EPR-experiment (Einstein, Podolosky and Rosen [22])

contradicts with Heisenberg’s uncertainty relation. That is,

(I) Heisenberg’s uncertainty relation says that the position and the momentum of a

particle can not be measured simultaneously and exactly.
On the other hand,

IT) EPR-experiment says that the position and the momentum of a certain “particle” can
Y

be measured simultaneously and exactly.

Thus someone may conclude that the above (i) and (ii) includes a paradox, and therefore,
EPR-experiment contradicts with Heisenberg’s uncertainty relation. Of course, this is a
misunderstanding. This “paradox” was solved in [36]. Now we shall explain the solution
of the paradox.

[Concerning the above (I)] Put H = L*(R,). Consider two-particles system in
H® H = LQ(R%QMD)). In the EPR problem, we, for example, consider the state u,

(e H® H = L2(R?q1m))) <or precisely, |us)<us|> such that:

1

5 o 5oz (@—2—a)’— g5 (atae—b)* | ip(q1,q2) (12.65)
TEo

us(Qlu Q2) =

where € is assumed to be a sufficiently small positive number and ¢(q1, ¢2) is a real-valued
function. This is the quantum form of EPR-experiment in Remark 12.2(ii). Let A; :
LX(R7, ) — L*(R7, ) and Ay: L2(R7, ) — L*(RY, ) be self-adjoint operators

such that

ho
A = Ay = —. 12.66
1 qi, 2 101 ( )

Then, Corollary 12.20 (i) says that there exists an approximate simultaneous observable

—ASO : .
O[Az}?,l = (R* Bgr:.F ) of A; and Ay. Thus we can take an approximate simultaneous
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—ASO

measurement M B() (O A2 §[|u5>(usu)- And thus, the following Heisenberg’s uncertainty

1

relation (= Corollary 12.20 (iii)) holds,

A 0459 (Ay,us) - A 5459 (Ag,us) > h/2 (12.67)

[Al]l 1 [Al]l 1

[Concerning the above (II)] However, it should be noted that, in the above situation

we assume that the state ug is known before the measurement. In such a case, we may

take another measurement as follows: Define the self-adjoint operators Al L2(R%q1 qg)) —
L2(R%q1 ) and A, : LQ(R%q ») LQ(R%qth)) such that
~ ho
A =b— Ay=Ay= — 12.68
1 42, 2 = A2 = 0 ( )

Note that these operators commute. Therefore,
(#) we can take an exact simultaneous measurement of A, and A, (for the state uy).

And moreover, we can easily calculate as follows (¢f. Definition 11.1 and Remark 12.12).

A (M (A % A1,5(p)) = I, — Ave|

; 2 1/2
:[// (b=g) —a) 273606_8;2(ql_q2_a)2_&12(q1+q2_b)2 . i%lar.a2) dQ1dq2] /
R2
// b_QQ _(h) 21 e 80 57 (n—z—a)’— (fI1+tI2 b)? d ]1/2
R2 TET

—/2€, (12.69)
and
A(MB(H)(A2 X 22,3(,%))) = || Ayuy — Asus| = 0. (12.70)
Thus we see
A (M (A1 x A1,5(p..)) - A (Mg (A2 A2, S(p..))) = 0. (1271)

Since € ( > 0) can be taken sufficiently small, the above measurement () is superior to

the approximate simultaneous measurement MB( (Oéf]? K §[|u5 (usl])- (Here, g[\usﬂusl]

is identified with S(|u,)(us|) since |us){us| is a pure state.) However it should be again

noted that, the measurement (f) is made from the knowledge of the state us.
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[(I) and (II) are consistent, cf. [36] ] The above conclusion (12.71) does not contra-
dicts with Heisenberg’s uncertainty relation (12.67), since the measurement (f) is not an

approximate simultaneous measurement of A; and A,.
[ |

In the above arguments, note that Theorem 12.19 (approximate simultaneous un-
certainty relation) is powerless to solve the paradox (i.e., the paradox between EPR-
experiment and Heisenberg’s uncertainty relation). That is because the concept “error” (or

“uncertainty” ) is not explicit in Theorem 12.19.
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