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Chapter 12

Heisenberg’s uncertainty relation

Quantum mechanics is surely one of the most successful theories in all science. In fact, most of
the Nobel prizes of physics and chemistry are due to quantum mechanics. Also, as recent topics
(particularly, related to measurements), we see quantum computer [80], quantum cryptography
[91], quantum teleportation [10], etc. Although these are quite interesting and promising, in this
chapter, we devote ourselves to Heisenberg’s uncertainty relation, which is the most fundamental
in quantum mechanics.

Heisenberg’s uncertainty relation (cf. [31]).

(i) The particle position q and momentum p can be measured “simultaneously”, if the “errors”
∆(q) and ∆(p) in determining the particle position and momentum are permitted to be
non-zero.

(ii) Moreover, for any ε > 0 , we can take the above “approximate simultaneous” measurement
of the position q and momentum p such that ∆(q) < ε (or ∆(p) < ε ).

(iii) However, the following Heisenberg’s uncertainty relation holds:

∆(q) ·∆(p) ≥ ~
2
, (12.1)

for all “approximate simultaneous” measurements of the particle position and momentum.

However, it should be noted that some ambiguous terms (i.e., “approximate simultaneous”, “error”)
are included in the above statement, Thus, we believe that it is not a scientific statement but a
“catch phrase” that was used to promote the paradigm shift from classical mechanics to quantum
mechanics. Thus, in this last chapter1 we try to describe this uncertainty relation precisely in
terms of mathematics and further to derive it in the framework of the W ∗-algebraic formulation
of MT. For this, we first give the mathematical definitions of “∆(q)” (or “∆(p)”) and “approximate
simultaneous measurement”, etc. in terms of MT.

1Every result mentioned in this chapter was published in [36], which was the oldest result in our study
of “measurement theory”. That is, our research of “measurement theory” starts from the paper [36]. On
the other hand, the philosophical assertion mentioned in Chapter 1 is the latest result in our study. In
this sense, the progress of our research is symbolically summarized as

“quantum” (physics)
(in Chapter 12)

−→ “classical” (engineering)
(in Chapters 2∼11)

−→ “philosophical” (epistemology)
(in Chapter 1)

.
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294 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

12.1 Introduction

Although the uncertainty relation (discovered by Heisenberg in 1927) has a long his-

tory, the various discussions about its interpretations are even now continued. Mainly

there are two interpretations of uncertainty relations. One is the statistical interpreta-

tion. By repeating the exact (i.e. the “error” ∆(q) = 0) measurements of the position q of

particles with same states, we can obtain its average value q̄ and its variance var(q). Also,

by repeating the exact (i.e. the “error” ∆(p) = 0) measurements of the momentum p of

the same particles, we can similarly get its average value p̄ and its variance var(p). From

the simple mathematical deduction, we can obtain the following uncertainty relation:

[var(q)]
1
2 · [var(p)]

1
2 ≥ ~

2
, (12.2)

where ~ =“Plank’s constant”/2π. This is the statistical aspect of the uncertainty relation.

The mathematical derivation of the uncertainty relation (12.2) was proposed by Kennard

in 1927 (or more generally, Robertson 1n 1929). Cf. [54, 73]. Thus, this inequality (12.2)

is called Robertson’s uncertainty relation.

On the other hand, Heisenberg’s uncertainty relation is rather individualistic. Most

physicists will agree that the content of Heisenberg’s uncertainty relation is roughly as

stated in the following proposition (though it includes some ambiguous sentences as well

as some ambiguous words, i.e. “approximate simultaneous” and “error”).

Proposition 12.1. [Heisenberg’s uncertainty relation, cf. [31]].2

(i) The particle position q and momentum p can be measured “approximately” and

“simultaneously”, if the “errors” ∆(q) and ∆(p) in determining the particle position

and momentum are permitted to be non-zero.

(ii) Moreover, for any ε > 0 , we can take the “approximate simultaneous” measurement

of the position q and momentum p such that ∆(q) < ε (or ∆(p) < ε ).

2It may be usually considered that the (12.2) is the mathematical representation of the (12.3). How-
ever, it is not true. In fact, in [84], J. von Neumann pointed out the difference between Robertson’s
uncertainty relation (= (12.2)) and Heisenberg’s uncertainty relation (= (12.3)).
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(iii) However, the following Heisenberg’s uncertainty relation holds:

∆(q) ·∆(p) ≥ ~
2
, (12.3)

for all “approximate simultaneous” measurements of the particle position and mo-

mentum.

�

It should be noted that the above “proposition (= Heisenberg’s assertion)” is am-

biguous, that is, it is not a scientific statement but a “catch phrase” that was used to

promote the paradigm shift from classical mechanics to quantum mechanics. In fact, the

above “proposition” is powerless to solve the paradox (i.e., the paradox between EPR-

experiment and Heisenberg’s uncertainty relation), cf. §12.7.

Several authors have contributed to the problem to deduce Heisenberg’s uncertainty

relation. In [2] (Ali and Emach, 1974), [3] (Ali and Prugovec̆ki, 1977), these were done by

means of the concept of (generalized) observable which has been developed by E.B. Davies

[17] (cf. Definition 9.3 for B(V )). Hence, a certain part of this problem has been already

solved. In particular, the statements (i) and (ii) in the above Proposition 12.1 were de-

duced satisfactorily. However, concerning the statement (iii), there still seems to be some

questions. The mathematical formulation and derivation of the Heisenberg’s uncertainty

relation (iii) (in the above Proposition 12.1) was proposed by M. Ozawa [67], S. Ishikawa

[36] independently. We believe that this is the final version of Heisenberg’s uncertainty

relation concerning measurement errors. Thus, in this chapter we shall introduce this

formulation and derivation of the above Proposition 12.1.

Remark 12.2. [(i): A classical understanding of Heisenberg’s uncertainty relation].

Let us explain the classical understanding of Heisenberg’s uncertainty relation (which is

essentially equal to the thought experiment of γ-rays microscope (cf. [31])). In order

to know the position q(t0) and momentum p(t0) of a particle A at time t0, it suffices to

measure the position q(t0) of a particle A at time t0 (i.e., light L1 is irradiated at the

particle at time t0), and continuously (i.e., after δ seconds), measure the position q(t0+δ)

at time t0 + δ. That is because (q(t0), p(t0)(≡ mdq
dt

(t0))) is approximately calculated by

(q(t0),
m(q(t0+δ)−q(t0))

δ
).
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-

q(t0)

q1(t0 + δ)

1

-
q(t0 + δ)

-

Light L1

[a]. However, if we want to know the exact position q(t0) (i.e., if we want ∆q ≈ 0), the

wavelength λ of the light L1 must be short (i.e., the energy (=
“Plank constant” ×“lightspeed”

λ
)

of the light L1 must be large), and therefore, the particle A is strongly perturbed. Thus,

the position of the particle A at time t0+ δ will be changed to q1(t0+ δ). Thus we observe

that the momentum of the particle A at time t0 is equal to
m(q1(t0+δ)−q(t0))

δ
, which is away

from p(t0)(≡ mdq
dt

(t0) ≈ m(q(t0+δ)−q(t0))
δ

) (i.e., ∆p is large).

[b]. Also, if we want to know the exact momentum p(t0) (i.e., if we want ∆p ≈ 0),

the wavelength λ of the light L1 must be long, and therefore, the particle A is weakly

perturbed. Although the position of the particle A at time t0 + δ will be changed to

q1(t0 + δ), it is almost the same as q(t0 + δ). Thus we observe that the momentum of

the particle A at time t0 is equal to m(q1(t0+δ)−q(t0))
δ

, which is near p(t0)(≡ mdq
dt

(t0) ≈
m(q(t0+δ)−q(t0))

δ
) (i.e., ∆p is small) if δ is large. However it should be noted that ∆q is large

since the wavelength λ of the light L1 is long.

[c]. Therefore, ∆p ≈ 0 and ∆q ≈ 0 are not compatible, that is, the inequality “∆p · ∆q >
constant” always holds. Although this explanation is, of course, rough, there is something

thought-provoking in the above argument.

[(ii): EPR-experiment [22]]. Let A and B be particles with the same masses m. Consider

the situation described in the following figure:

�

A

-

B

where “the velocity of A” = −“the velocity of B”. The position qA of the particle A can be

measured, and moreover, the velocity of vB of the particle B can be measured. Thus, we
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can conclude that the position and momentum of the particle A are respectively equal to

qA and −mvB. Is this contradictory to Heisenberg’s uncertainty relation? This question

is significant though their (i.e. Einstein, Podolosky and Rosen ) interest is concentrated

on “the reality of physics”.

�

12.2 Example due to Arthurs-Kelley

Here, we mainly consider the following identification:

L2(R, dx) 3 u
(‖u‖L2(R,dx)=1, u≈eiθu)

←→
identification

|u〉〈u| ∈ Trp+1(L
2(R, dx)).

We first introduce Robertson’s uncertainty relation, which generally seems to be under-

stood (or, misunderstood) as the mathematical representation of Heisenberg’s uncertainty

relation. By repeating the exact (i.e. the “error” ∆(q) = 0) measurements of the position

q of particles with same states, we can obtain its average value q̄ and its variance var(q).

Also, by repeating the exact (i.e. the “error” ∆(p) = 0) measurements of the momentum

p of the same particles, we can similarly get its average value p̄ and its variance var(p).

A simple calculation shows:

q̄ =

∫
R

x
∣∣∣u(x)∣∣∣2dx and p̄ =

∫
R

u(x)
[ ~d
idx

u(x)
]
dx

(
=

∫
R

p
∣∣∣ũ(p)∣∣∣2dp) (12.4)

where ũ is the Fourier transform of u,
(
that is, ũ(p) =

√
~
2π

∫
R
u(x)e−i~xpdx

)
. And

further, we see,

var(q) =

∫
R

|x− q̄|2
∣∣∣u(x)∣∣∣2dx =

∫
R

|x|2
∣∣∣u(x)∣∣∣2dx− q̄2,

var(p) =

∫
R

|p− p̄|2
∣∣∣ũ(p)∣∣∣2dp = ∫

R

| ~d
idx

u(x)|2dx− p̄2. (12.5)

Immediately after Heisenberg’s discovery (=“Proposition 12.1”, 1927), Kennard, by a

simple calculation, showed the following uncertainty relation:

[var(q)]
1
2 · [var(p)]

1
2 ≥ ~

2
. (12.6)

(=(12.2))

(cf. Lemma 12.13 later). Of course, it is clear that there is a great gap between Heisen-

berg’s uncertainty relation (12.3) and Kennard’s uncertainty relation (12.6).
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Next we shall introduce the nice idea by Arthurs-Kelly [7], that is, a certain approx-

imate simultaneous measurement of the position q and the momentum p of a particle A

in one dimensional real line R, which has a state function u(x) ( ∈ L2(R), ‖u‖L2(R) = 1).

Note that the position observable Q( ≡ x) and the momentum observable P ( ≡ ~d
idx

)

do not commute, that is,

QP − PQ = i~
(
6= 0
)
. (12.7)

Therefore, any simultaneous measurement of the position observable x and the momentum

observable ~d
idx

for a particle “A” can not be realized. However, Arthurs-Kelly’s idea is

excellent as follows: We first prepare another particle “B” with the state u0(y) such that:∫
R

y
∣∣∣u0(y)∣∣∣2dy =

∫
R

u0(y)
[ ~d
idy

u0(y)
]
dy = 0 (12.8)

for example, u0(y) = 1
(π~)1/4 exp( −

y2

2~). Further we regard these two particles “A” and

“B” as a “particle C” in two dimensional Euclidean space R2 with the state u(x)u0(y)

( ∈ L2(R2), ‖u · u0‖L2(R2) = 1). Now consider the self-adjoint operators (x − y) and

~∂
i∂x

+ ~∂
i∂y

in L2(R2), which commute, that is, it holds that:

(
~∂
i∂x

+
~∂
i∂y

)(x− y) = (x− y)( ~∂
i∂x

+
~∂
i∂y

) (12.9)

That is because we can easily calculate:

[(
~∂
i∂x

+
~∂
i∂y

)(x− y)]f(x, y)

=
~
i
f(x, y) + x

~∂
i∂x

f(x, y)− y ~∂
i∂x

f(x, y) + x
~∂
i∂y

f(x, y)− ~
i
f(x, y)− y ~∂

i∂y
f(x, y)

=[(x− y)( ~∂
i∂x

+
~∂
i∂y

)]f(x, y).

Thus the simultaneous measurement of observables (x − y) and ~∂
i∂x

+ ~∂
i∂y

for a “particle

C” (= “A” + “B”) can be realized. Moreover, we can easily calculate these expectations

as follows: ∫∫
R2

u(x)u0(y)
[
(x− y)u(x)u0(y)

]
dxdy =

∫
R

x
∣∣∣u(x)∣∣∣2dx (12.10)

and ∫∫
R2

u(x)u0(y)
[
(
~∂
i∂x

+
~∂
i∂y

)u(x)u0(y)
]
dxdy =

∫
R

u(x)
[ ~d
idx

u(x)
]
dx. (12.11)

By the reason that the equalities (12.10)= q̄ and (12.11)= p̄ hold, we may say that
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(]) An “approximate simultaneous measurement” of the position observable Q( ≡ x)

and the momentum observable P ( ≡ ~d
idx

) can be realized.

Here, the variances varasm(q) and varasm(p) in the approximate simultaneous measure-

ment of the position q and the momentum p of a particle “C” are given respectively

by:

varasm(q) =

∫∫
R2

[(x− y)u(x)u0(y)
]2
dxdy −

∣∣∣ ∫∫
R2

u(x)u0(y)
[
(x− y)u(x)u0(y)

]
dxdy

∣∣∣2
=

∫
R

∣∣∣xu(x)∣∣∣2dx− ∣∣∣ ∫
R

x
∣∣∣u(x)∣∣∣2dx∣∣∣2 + ∣∣∣ ∫

R

∣∣∣yu0(y)∣∣∣2dy∣∣∣2 (12.12)

and

varasm(p) =

∫
R

∣∣∣ ~d
idx

u(x)
∣∣∣2dx− ∣∣∣ ∫

R

u(x)
[ ~d
idx

u(x)
]
dx
∣∣∣2 + ∣∣∣ ∫

R

u(y)
[ ~d
idy

u0(y)
]
dy.

(12.13)

Hence, we can get, by the arithmetic-geometric inequality and the well-known uncer-

tainty relation (Robertson uncertainty relation, cf. Lemma 12.13 later), the following

simultaneous uncertainty relation;

[varasm(q)]
1/2 · [varasm(p)]1/2

=2

[∫
R

∣∣∣xu(x)∣∣∣2dx− ∣∣∣ ∫
R

x
∣∣∣u(x)∣∣∣2dx∣∣∣2]1/4 × [∣∣∣ ∫

R

∣∣∣yu0(y)∣∣∣2dy∣∣∣]1/4

×

[∫
R

∣∣∣ ~d
idx

u(x)
∣∣∣2dx− ∣∣∣ ∫

R

u(x)
[ ~d
idx

u(x)
]
dx
∣∣∣2]1/4 × [∣∣∣ ∫

R

u0(y)
[ ~d
idy

u0(y)
]
dy
∣∣∣2]1/4

≥~. (12.14)

This is Arthurs-Kelly’s idea. We believe that Arthurs-Kelly’s discovery (12.14) is the first

great step to the understanding of Heisenberg’s uncertainty relation.

12.3 Approximate simultaneous measurement

Since our main purpose in this chapter is to describe Proposition 12.1 in terms of

mathematics and further to prove it, we must clarify the ambiguous words (i.e., “approxi-

mate simultaneous”, “error”) in Proposition 12.1. For this, we prepare several definitions

in this section.
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According to the well-known spectral representation theorem (cf. [92]), there is a

bijective correspondence of a crisp observable (Rn,BRn , E) in B(H) to an n-tuple (A1,

..., An) of commutative (unbounded) self-adjoint operators on H such that Ai =
∫
Rn λi

E(dλ1...dλn). That is,

(A1, A2, ..., An)
(commutative self-adjoint operators on H)

←→
Ai=

∫
Rn λiE(dλ1...dλn)

(Rn,BRn , E)
(crisp observable in B(V ))

(12.15)

In particular, we frequently identify a crisp observable (R,BR, E) in B(H) with a (un-

bounded) self-adjoint operator A
(
=
∫
R
λ E(dλ)

)
on H.

Note that ProclaimW ∗
1 (9.9)

(
or, AxiomW ∗

1 (9.11)
)
says as follows:

[]] Let O ≡ (Rn,BRn , F ) be an observable in B(H). And consider a measurement

MB(H)(O ≡ (Rn,BRn , F ), S[ρu]), where ρu = |u〉〈u|. When we take a measurement

MB(H)(O ≡ (Rn,BRn , F ), S[ρu]), the probability that the measured value λ( ∈ Rn)

belongs to a set Ξ ( ∈ BRn) is given by

〈u, F (Ξ)u〉H
(
= tr[ρuF (Ξ)]

)
. (12.16)

Therefore, the expectation E
[
MB(H)(O, S[ρu])

] (
≡
(
E(i)
[
MB(H)(O, S[ρu])

])n
i=1

)
of the

measured value obtained by the measurement MB(H)(O ≡ (Rn,BRn , F ), S[ρu]) is given

by

E(i)
[
MB(H)(O, S[ρu])

]
=

∫
Rn

λi〈u, F (dλ1 · · · dλn)u〉H i = 1, 2, ..., n, (12.17)

where ρu = |u〉〈u|. Further, its variance var
[
MB(H)(O, S[ρu])

] (
≡
(
var(i)

[
MB(H)(O,

S[ρu])
])n

i=1

)
is given by

var(i)
[
MB(H)(O, S[ρu])

]
=

∫
Rn

∣∣∣λi − E(i)
[
MB(H)(O, S[ρu])

]∣∣∣2〈u, F (dλ1 · · · dλn)u〉H (12.18)

=

∫
Rn

|λi|2〈u, F (dλ1 · · · dλn)u〉H −
∣∣∣ ∫

Rn

λi〈u, F (dλ1 · · · dλn)u〉H
∣∣∣2 (12.19)
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(i = 1, 2, ..., n).

We begin with the following definition.

Definition 12.3. Let H be a Hilbert space with the inner product 〈·, ·〉H .
(1). A triplet Ôtnsr

H⊗K = (K, s, (X,F, F̂ )) is called a “tensor observable” (or precisely,

“tensor represented observable”) in B(H ⊗K), if it satisfies the following conditions (i)

and (ii):

(i) K is a Hilbert space and s is an element in K such that ‖s‖ = 1,

(ii) (X,F, F̂ ) is a crisp observable in B(H ⊗K), where H ⊗K is a tensor Hilbert space

with the inner product 〈·, ·〉H⊗K .

(2). Let (X,F, F ) be any observable in B(H). A tensor observable Ôtnsr
H⊗K = (K, s, (X,F,

F̂ )) is called a realization of the observable (X,F, F ) in tensor Hilbert space H ⊗K, if it

holds that

〈u⊗ s, F̂ (Ξ)(u⊗ s)〉H⊗K = 〈u, F (Ξ)u〉H (∀u ∈ H, ∀Ξ ∈ F). (12.20)

�
The following proposition is essential to our argument.

Proposition 12.4. [Holevo [34]]. Let (X,F, F ) be an observable in B(H). Then, there

exists a tensor observable Ôtnsr
H⊗K = (K, s, (X,F, F̂ )) that is the realization of (X,F, F ),

that is, it holds that

〈u⊗ s, F̂ (Ξ)(u⊗ s)〉H⊗K = 〈u, F (Ξ)u〉H (u ∈ H,Ξ ∈ F). (12.21)

Conversely any crisp observable (X,F, F̂ ) in B(H ⊗K) and any s( ∈ K, ‖s‖K = 1) give

rise to the unique observable (X,F, F ) in B(H) satisfying (12.21).

�
We shall use the following notations.

Notation 12.5. [Domain]. Let A
(
=
∫
R
λ EA(dλ), the spectral representation of A

)
be a (unbounded) self-adjoint operator on H. Then, we define the Dom(A), the domain

of A, by

Dom(A) := {u ∈ H :

∫
R

|λ|2〈u,EA(dλ)u〉 <∞}.
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Let O ≡ (Rn,BRn , F ) and Ôtnsr
H⊗K = (K, s, (Rn,BRn , F̂ )) be an observable and a tensor

observable in B(H) and in B(H ⊗K) respectively. Then, we define that

[O]mar(k) := (R,BR, [F ]
mar
(k) ) (it will be called the kth marginal observable of O) ,

where

[F ]mar(k) (Ξ) := F (R× · · · ×R︸ ︷︷ ︸
k − 1 times

×Ξ×R× · · · ×R︸ ︷︷ ︸
n− k times

) (∀Ξ ∈ BR)

Further, define that

Dom([O]mar(k) )
(
≡ Dom([F ]mar(k) )

)
:= {u ∈ H :

∫
Rn

|λk|2〈u, F (dλ1...dλn)u〉 <∞},

Dom([Ô]mar(k) )
(
≡ Dom([F̂ ]mar(k) )

)
:= {v̂ ∈ H ⊗K :

∫
Rn

|λk|2〈v̂, F̂ (dλ1...dλn)v̂〉H⊗K <∞},

Dom⊗s([Ô
tnsr
H⊗K ]

mar
(k) )

(
≡ Dom⊗s([F̂ ]

mar
(k) )

)
:= {u ∈ H :

∫
Rn

|λk|2〈u⊗ s, F̂ (dλ1...dλn)(u⊗ s)〉H⊗K <∞}, (12.22)

where Dom([O]mar(k) ) (or Dom([Ô]mar(k) )) is called the k-th domain of O (or Ô).

�
Now we have the following main definition.

Definition 12.6. [Approximate simultaneous observable]. Let A1, ..., An be (unbounded)

self-adjoint operators in H. An observable O
ASO

[Al]
n
l=1
≡ (Rn,BRn , F ) in B(H) is called the

approximate simultaneous observable of A1, ..., An, if it satisfies the following conditions

(i) (domain condition) for each i (= 1, 2, ..., n), Dom([O
ASO

[Al]
n
l=1

]mar(i) ) ∩ Dom(Ai) is dense

in H

(ii) (unbias condition) for each i (= 1, 2, ..., n),

〈u,Aiu〉 =
∫
R

λ〈u, [F ]mar(i) (dλ)u〉, (u ∈ Dom([O
ASO

[Al]
n
l=1

]mar(i) ) ∩Dom(Ai)). (12.23)

�
Remark 12.7. [1]. As seen later (cf. Lemma 12.14(iii)), it holds that Dom([O

ASO

[Al]
n
l=1

]mar(i) )

⊆ Dom(Ai) holds. Thus, Dom([O
ASO

[Al]
n
l=1

]mar(i) ) ∩ Dom(Ai) = Dom([O
ASO

[Al]
n
l=1

]mar(i) )
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[2]. There is a very reason to assume the following condition (iii) or (iv) instead of the

above (i).
(
(iii) and (iv) are stronger than (i), more precisely, (iv) =⇒ (iii) =⇒ (i).

)
(iii) (self-adjointness) for each i (= 1, 2, ..., n), Ai is essentially self-adjoint on

Dom([O
ASO

[Al]
n
l=1

]mar(i) ) ∩ Dom(Ai),

or

(iv) (commutative condition) for each i (= 1, 2, ..., n), Ai

(
=
∫
R
λ Ei(dλ)

)
and [O

ASO

[Al]
n
l=1

]mar(i)

commute.

Although each of (i), (iii) and (iv) has merit and demerit respectively, the physical meaning

of the (iv) is the clearest. (Continued on Remark 12.12.)

[3]. Also, see the condition (i) in Example 11.5. This condition is equivalent to

• the formula (12.23) holds on a dense set ∩ni=1

(
Dom([O

ASO

[Al]
n
l=1

]mar(i) ∩ Dom(Ai)
)
.

�
Definition 12.8. [Approximate simultaneous tensor observable]. Let A1, ..., An be (un-

bounded) self-adjoint operators in H. A tensor observable ÔASTO
[Al]

n
l=1

= (K, s, (Rn,BRn , F̂ ))

is called an approximate simultaneous tensor observable of A1, ..., An, if Ô
ASTO
[Al]

n
l=1

= (K, s,

(Rn,BRn , F̂ )) satisfies the following conditions:

(i) (domain condition) for each i (= 1, 2, ..., n), Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar(i) ) ∩ Dom(Ai) is

dense in H

(ii) (unbias condition) for each i (= 1, 2, ..., n),

〈u,Aiu〉 =
∫
Rn

λi〈u⊗ s, F̂ (dλ1 · · · dλn)(u⊗ s)〉 (12.24)

(u ∈ Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar(i) ) ∩Dom(Ai), ).

�
The relation between O

ASO

[Al]
n
l=1

and ÔASTO
[Al]

n
l=1

is characterized by the following proposition.

Proposition 12.9. Let A1, ..., An be (unbounded) self-adjoint operators in H.
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(i) Let ÔASTO
[Al]

n
l=1
≡ (K, s, (Rn,BRn , F̂ ) be an approximate simultaneous tensor observable

of A1, ..., An in H. Then, there exists an approximate simultaneous observable

O
ASO

[Al]
n
l=1
≡ (Rn,BRn , F ) such as ÔASTO

[Al]
n
l=1

is a realization of O
ASO

[Al]
n
l=1

.

(ii) LetO
ASO

[Al]
n
l=1
≡ (Rn,BRn , F ) be an approximate simultaneous observable of A1, ..., An

in H. Then, there exists a approximate simultaneous tensor observable ÔASTO
[Al]

n
l=1

≡ (K, s, (Rn,BRn , F̂ ) such as it is a realization of O
ASO

[Al]
n
l=1

.

(iii) LetO
ASO

[Al]
n
l=1
≡ (Rn,BRn , F ) be an approximate simultaneous observable of A1, ..., An

in H. Let ÔASTO
[Al]

n
l=1
≡ (K, s, (Rn,BRn , F̂ ) be an approximate simultaneous tensor

observable of A1, ..., An in H. And assume that ÔASTO
[Al]

n
l=1

is a realization of O
ASO

[Al]
n
l=1

.

Then, for each i ( = 1, 2, ..., n),

Dom([O
ASO

[Al]
n
l=1

]mar(i) ) = Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar(i) ) ⊆ Dom(Ai). (12.25)

Proof. The statement (i) is trivial. Also the statement (ii) and the equality “=” in

(12.25) immediately follow from Proposition 12.4. Also, the inclusion “⊆” in (12.25) is

proved in Lemma 12.14(iii) later.

Definition 12.10. [Uncertainty] Let A1, ..., An be (unbounded) self-adjoint operators on

a Hilbert space H.

[I]. LetO
ASO

[Al]
n
l=1

= (Rn,BRn , F ) ) be an approximate simultaneous observable ofA1, . . . , An.

(i). Then, the uncertainty

(
∆

O
ASO
[Al]

n
l=1

(Ai, u)

)n
i=1

of O
ASO

[Al]
n
l=1

for a state u (‖u‖H = 1) is

defined by

∆
O
ASO
[Al]

n
l=1

(Ai, u) =

∫
Rn

λ2i 〈u, F (dλ1 · · · dλn)u〉 −
∫
R

λ2〈u,Ai(dλ)u〉 (12.26)

(u ∈ H such that ‖u‖ = 1 ),

where (12.26) should be interpreted that ∆
O
ASO
[Al]

n
l=1

(Ai, u) = ∞ for u /∈ Dom([F ]mar(i) ) (cf.

Dom([F ]mar(i) ) ⊆ Dom(Ai) in (12.25)).
(
“∆

O
ASO
[Al]

n
l=1

(Ai, u) ≥ 0” will be shown in Theorem

12.15 later.
)

(ii). Also the i-th variance var(i)[O
ASO

[Al]
n
l=1
, u] is defined by

var(i)[O
ASO

[Al]
n
l=1
, u] =

∫
Rn

|λi − 〈u,Aiu〉|2〈u, F (dλ1 · · · dλn)u〉H (12.27)
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(i = 1, 2, ..., n),

[II] Let ÔASTO
[Al]

n
l=1

= (K, s, (Rn,BRn , F̂ ) ) be an approximate simultaneous tensor observable

of A1, . . . , An.

(i). Then, the uncertainty

(
∆ÔASTO

[Al]
n
l=1

(Ai, u)

)n
i=1

of ÔASTO
[Al]

n
l=1

for a state u (‖u‖H = 1) is

defined by

∆ÔASTO
[Al]

n
l=1

(Ai, u) =

∫
Rn

λ2i 〈u⊗ s, F̂ (dλ1 · · · dλn)(u⊗ s)〉 −
∫
R

λ2〈u,Ai(dλ)u〉 (12.28)

(u ∈ H such that ‖u‖ = 1 ),

where (12.28) should be interpreted that ∆ÔASTO
[Al]

n
l=1

(Ai, u) = ∞ for u /∈ Dom⊗s([F̂ ]
mar
(i) )

(cf. Dom⊗s([F̂ ]
mar
(i) ) ⊆ Dom(Ai) in (12.25)).

(
“∆ÔASTO

[Al]
n
l=1

(Ai, u) ≥ 0” will be shown in

Theorem 12.15 later.
)

(ii). Also the i-th variance var(i)[Ô
ASTO
[Al]

n
l=1
, u] is defined by

var(i)[Ô
ASTO
[Al]

n
l=1
, u] =

∫
Rn

|λi − 〈u,Aiu〉|2〈u⊗ s, F̂ (dλ1 · · · dλn)(u⊗ s)〉H⊗K (12.29)

(i = 1, 2, ..., n).

�
Proposition 12.11. Let A1, ..., An be (unbounded) self-adjoint operators on a Hilbert

space H. Assume that ÔASTO
[Ai]ni=1

= (K, s, (Rn,BRn , F̂ )) is a realization of O
ASO

[Ai]ni=1
=

(Rn,BRn , F ). Let u ∈ H (‖u‖H = 1). Then it holds that

∆
O
ASO
[Al]

n
l=1

(Ai, u) = ∆ÔASTO
[Al]

n
l=1

(Ai, u) (12.30)

and

var(i)[O
ASO

[Al]
n
l=1
, u] = var(i)[Ô

ASTO
[Al]

n
l=1
, u]. (12.31)

Proof. This immediately follows from Definition 12.10.

Remark 12.12. [Continued from Remark 12.7]. Again note that, if the commuta-

tive condition (iv) in Remark 12.7 is assumed in the Definition 12.10, we can define

∆
(
MB(H)(Ai × [O

ASO

[Al]
n
l=1

]mar(i) , S(ρu))
)
, the distance between Ai and [O

ASO

[Al]
n
l=1

]mar(i) , cf. Defi-

nition 11.1. And further we see that

∆
(
MB(H)(Ai × [O

ASO

[Al]
n
l=1

]mar(i) , S(ρu))
)

(“error” defined in Definition 11.1)

= ∆
O
ASO
[Al]

n
l=1

(Ai, u)

(“uncertainty” defined in Definition 12.10)

(12.32)
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Thus, in this case, the physical meaning of “uncertainty” is clear.

�

12.4 Lemmas

In this section, we shall prepare some Lemmas.

Lemma 12.13. [Robertson’s uncertainty relation]. Let A1 and A2 be any symmetric

operators on a Hilbert space H. Then, it holds that[
‖A1u‖2 − |〈u,A1u〉|2

]1/2
·
[
‖A2u‖2 − |〈u,A2u〉|2

]1/2
≥ 1

2
|
〈
A1u,A2u

〉
−
〈
A2u,A1u

〉
|

(12.33)

for all u ∈ Dom(A1) ∩Dom(A2) .

Proof. Using Schwartz inequality, we see

|〈A1u,A2u〉 − 〈A2u,A1u〉|

=|
〈
A1u− 〈u,A1u〉u,A2u− 〈u,A2u〉u

〉
−
〈
A2u− 〈u,A2u〉u,A1u− 〈u,A1u〉u

〉
|

≤2
[
‖A1u‖2 − |〈u,A1u〉|2

]1/2
·
[
‖A2u‖2 − |〈u,A2u〉|2

]1/2
. (12.34)

Lemma 12.14. Let A1, · · · , An be any (unbounded) self-adjoint operators in a Hilbert

space H. Let (K, s, (Rn,BRn , F̂ ) be an approximate simultaneous tensor observable

for A1, · · · , An. Put Âk =
∫
Rn λkF̂ (dλ1dλ2 · · · dλn)

(
≡
∫
R
λ[F̂ ] = (i)mar(dλ)

)
(k =

1, 2, ..., n). Then, the following equalities (i) ∼ (iii) hold

(i)

〈v,Aku〉 = 〈v ⊗ s, Âi(u⊗ s)〉 =
∫
R2

λk〈v ⊗ s, F̂ (dλ1dλ2 · · · dλn)(u⊗ s)〉 (12.35)

for all u ∈ Dom⊗s(Âk) and all v ∈ H (k = 1, 2, ..., n),

(ii) ∫
Rn

λiλj〈u⊗ s, F̂ (dλ1dλ2 · · · dλn)(u⊗ s)〉

= 〈Âi(u⊗ s), Âj(u⊗ s)〉
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= 〈Aiu,Aju〉+ 〈(Âi − Ai ⊗ I)(u⊗ s), (Âj − Aj ⊗ I)(u⊗ s)〉 (12.36)

for all i 6= j and all u ∈ Dom⊗s(Âi) ∩Dom⊗s(Âj),

(iii)

∫
R2

|λk|2〈u⊗ s, F̂ (dλ1dλ2 · · · dλn)(u⊗ s)〉

= ‖Âk(u⊗ s)‖2 = ‖Aku‖2 + ‖(Âk − Ak ⊗ I)(u⊗ s)‖2 ≥ ‖Aku‖2 (12.37)

for all u ∈ Doms(Âk) (k = 1, 2, ..., n). Thus, it holds that, for each i ( = 1, 2, ..., n),

Dom([O
ASO

[Al]
n
l=1

]mar(i) ) = Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar(i) ) ⊆ Dom(Ai). (12.38)

Proof. First we prove (i). Fix k ∈ {1, 2}. We can see that, for any v, u ∈ Dom⊗s(Âk).

〈v, Aku〉

=
1

4
{〈(v + u), Ak(v + u)〉 − 〈(v − u), Ak(v − u)〉

− i〈(v + iu), Ak(v + iu)〉+ i〈(v − iu), Ak(v − iu)〉}

=
1

4
{〈(v + u)⊗ s, Âk((v + u)⊗ s)〉 − 〈(v − u)⊗ s, Âk((v − u)⊗ s)〉

− i〈(v + iu)⊗ s, Âk((v + iu)⊗ s)〉+ i〈(v − iu)⊗ s, Âk((v − iu)⊗ s)〉}

= 〈v ⊗ s, Âk(u⊗ s)〉

= 〈v ⊗ s,
∫
Rn

λkF̂k(dλ1dλ2 · · · dλn)(u⊗ s)〉 =
∫
Rn

λk〈v ⊗ s, F̂k(dλ1dλ2 · · · dλn)(u⊗ s)〉.

(12.39)

Since Dom⊗s(Âk) is dense in H, we see that

〈v,Aku〉 = 〈v ⊗ s, Âk(u⊗ s)〉 =
∫
Rn

λk〈v ⊗ s, Âk(dλ1dλ2 · · · dλn)(u⊗ s)〉 (12.40)

for all u ∈ Dom⊗s(Âk) and all v ∈ H. This completes the proof of (i).

Next, we prove (ii). Without loss of generality, we put i = 1 and j = 2. Let u be any

element in Dom⊗s(Â1) ∩Dom⊗s(Â2). Then, we see, by the above (i), that∫
Rn

λ1λ2〈u⊗ s, F̂ (dλ1dλ2 · · · dλn)(u⊗ s)〉

= 〈
∫
Rn

λ1F̂ (dλ1dλ2 · · · dλn)(u⊗ s),
∫
Rn

λ2F̂ (dλ1dλ2 · · · dλn)(u⊗ s)〉
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= 〈Â1(u⊗ s), Â2(u⊗ s)〉

= 〈(Â1 − A1 ⊗ I)(u⊗ s) + (A1u⊗ s), (Â2 − A2 ⊗ I)(u⊗ s) + (A2u⊗ s)〉

= 〈(Â1 − A1 ⊗ I)(u⊗ s), (Â2 − A2 ⊗ I)(u⊗ s)〉

+ 〈(Â1 − A1 ⊗ I)(u⊗ s), A2u⊗ s〉

+ 〈A1u⊗ s, (Â2 − A2 ⊗ I)(u⊗ s)〉+ 〈A1u⊗ s, A2u⊗ s〉

= 〈(Â1 − A1 ⊗ I)(u⊗ s), (Â2 − A2 ⊗ I)(u⊗ s)〉

+ 〈Â1(u⊗ s), A2u⊗ s〉 − 〈A1u,A2u〉

+ 〈A1u⊗ s, Â2(u⊗ s)〉 − 〈A1u,A2u〉+ 〈A1u,Au〉

= 〈(Â1 − A1 ⊗ I)(u⊗ s), (Â2 − A2 ⊗ I)(u⊗ s)〉 − 〈A1u,A2u〉

+

∫
Rn

λ2〈A1u⊗ s, F̂ (dλ1dλ2)(u⊗ s)〉+
∫
Rn

λ1〈F̂ (dλ1dλ2)(u⊗ s), A2u⊗ s〉

= 〈A1u,A2u〉+ 〈(Â1 − A1 ⊗ I)(u⊗ s), (Â2 − A2 ⊗ I)(u⊗ s)〉. (12.41)

Hence, the proof of (ii) is completed. Also, the proof of (12.37) is carried out just in

a similar way. Lastly, we can easily see that (12.37) implies (12.38) since we see that

Dom([O
ASO

[Al]
n
l=1

]mar(i) ) = Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar(i) ) in (12.25).

Now we have the following theorem, which is one of our main results.

Theorem 12.15. Let ÔASTO
[Al]

n
l=1

= (K, s, (Rn,BRn , F̂ ) ) be a realization of an approxi-

mate simultaneous tensor observable O
ASO

[Al]
n
l=1

= (Rn,BRn , F̂ ) of A1, . . . , An. Put Âi =∫
R
λ[F̂ ]mar(i) (dλ). Then, we see that

∆ÔASTO
[Al]

n
l=1

(Ai, u) =∆
O
ASO
[Al]

n
l=1

(Ai, u) =

∫
R

λ2〈u, [F ]mar(i) (dλ)u〉 −
∫
R

λ2〈u,Ai(dλ)u〉

=‖Âi(u⊗ s)‖2 − ‖Aiu‖2 (12.42)

=‖(Âi − Ai ⊗ I)(u⊗ s)‖2 (∀u ∈ H such that ‖u‖ = 1 (12.43)

Proof. It immediately follows from Lemma 12.14.

12.5 Existence theorem

Now we shall mention the following theorem, which assures the existence of an ap-

proximate simultaneous tensor observable of arbitrary observables A1, ..., An. For two

observables A1 and A2, the similar theorem was proved by P. Busch, et al. [15, 14].
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Theorem 12.16. [Cf.[36]] Let A1, ..., An be (unbounded) self-adjoint operators on a

Hilbert space H. Let a1, ..., an be any positive numbers such that
∑n

i=1(1 + ai
2)−1 = 1.

Then, we see,

(i) there exists an approximate simultaneous tensor observable ÔASTO
[Al]

n
l=1
≡ (K, s, (Rn,BRn ,

F̂ )) of A1, ..., An such that:

∆ÔASTO
[Al]

n
l=1

(Ai, u) = ai‖Aiu‖ (u ∈ Dom⊗s([Ô
ASTO
[Al]

n
l=1

]mar(i) ) i = 1, 2, ..., n). (12.44)

and equivalently,

(ii) there exists an approximate simultaneous observable O
ASO

[Al]
n
l=1
≡ (Rn,BRn , F ) of

A1, ..., An such that:

∆
O
ASO
[Al]

n
l=1

(Ai, u) = ai‖Aiu‖ (u ∈ Dom([O
ASO

[Al]
n
l=1

]mar(i) ) i = 1, 2, ..., n). (12.45)

Proof. By Proposition 12.11, it suffices to prove (i). Put K = Cn = {z = (z1, ..., zn) :

zi ∈ C (i = 1, 2, ..., n)}, i.e., the n-dimensional Hilbert space with the norm ‖z‖n =

[Σn
i=1|zi|2]1/2. Put e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0) , ...., en = (0, 0, ..., 1) ∈ Cn. Put

s = e1. And put Pi : C
n → Cn, (i = 1, 2, ..., n), a projection such that Piei = ei, Piek =

0(k 6= i), that is, Pi = |ei〉〈ei|. Put bi = (1 + ai
2)1/2 and Bi = bi

2Ai (i = 1, 2, ..., n).

Consider the spectral representations

Ai =

∫
R

λEAi(dλ), Bi =

∫
R

λEBi(dλ), 0 =

∫
R

λE0(dλ) in H

and

Pi =

∫
R

λECn

Pi
(dλ), I =

∫
R

λECn

I (dλ) in Cn.

Note that EAi(d(λ/bi
2)) = EBi(dλ). Define the unitary operator Û : H ⊗Cn → H ⊗Cn

by Û = I ⊗ U where a unitary operator U on Cn satisfies that Ue1 = Σn
i=1ei/bi. And

define the crisp observable (R,BR, ÊÂi) in B(H ⊗Cn) by

ÊÂi(dξ) = Û∗[EBi(dξ)⊗ Pi + E0(dξ)⊗ (I − Pi)]Û (i = 1, 2, ..., n). (12.46)

Since ÊÂ1
, ..., ÊÂn commute, we can define a crisp observable (Rn,BRn , ÊÂ) in B(H⊗Cn)

such that:

ÊÂ(dξ1dξ2...dξn) =
n∏
i=1

ÊÂi(dξi). (12.47)
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Now, we shall show that the tensor observable Ôtnsr
H⊗K = (Cn, e1, (R

n, Bn, ÊÂ)) is an ap-

proximate simultaneous tensor observable of A1, ..., An. Put Âi =
∫
Rn ξi ÊÂ (dξ1dξ2...dξn)

(i = 1, ..., n). Then we see that,∫
Rn

|ξi|2〈u⊗ e1, ÊÂ(dξ1dξ2...dξn)(u⊗ e1)〉

=

∫
R

|ξi|2〈u⊗ e1, ÊÂi(dξi)(u⊗ e1)〉

=

∫
R

|ξi|2〈u⊗ e1, [(I ⊗ U∗)
(
EBi(dξi)⊗ Pi + E0(dξi)⊗ (I − Pi)

)
(I ⊗ U)](u⊗ e1)〉

=

∫
R

|ξ|2〈u,EBi(dξ)u〉 · 〈e1, U∗PiUe1〉

=

∫
R

|ξ|2〈u,EBi(dξ)u〉 · 〈Σn
j=1

ej
bj
, PiΣ

n
k=1

ek
bk
, 〉

= |bi|−2
∫
R

|λ|2〈u,EBi((dλ)u〉 = |bi|2
∫
R

|λ|2〈u,EAi(dλ)u〉. (12.48)

Hence, Dom⊗s(Âi) = Dom(Ai) (where s = e1 ). Similarly we see∫
Rn

ξi〈u⊗ e1, ÊÂ(dξ1dξ2...dξn)(u⊗ e1)〉

= |bi|−2
∫
R

λ〈u,EBi((dλ)u〉 =
∫
R

λ〈u,EAi(dλ)u〉. (12.49)

Thus, ÔASTO
[Al]

n
l=1

satisfies the condition (ii) in Definition 12.6. Also, noting that I(dλ) =

I(1 ∈ dλ), = 0(1 /∈ dλ), we also see that, for each i (i = 1, 2, ..., n) and Ξk ∈ B,

ÊÂi(Ξ1) · (EAi(Ξ2)⊗ I)

= (I ⊗ U∗)
(
EBi(Ξ1)⊗ Pi + E0(Ξ1)⊗ (I − Pi)

)
(I ⊗ U)(EAi(Ξ2)⊗ I)

= (EAi(Ξ2)⊗ I)(I ⊗ U∗)
(
EBi(Ξ1)⊗ Pi + E0(Ξ1)⊗ (I − Pi)

)
(I ⊗ U)

= (EAi(Ξ2)⊗ I) · ÊÂi(Ξ1). (12.50)

So, Âi and Ai ⊗ I commute since Âi =
∫
R
ξ EÂi(dξ) and Ai ⊗ I =

∫
R
ξ (EAi(dξ) ⊗ I).

Hence, Âi − Ai ⊗ I on Dom(Âi) ∩ Dom(Ai ⊗ I) has the unique self-adjoint extension

[Âi − Ai ⊗ I], which has the spectral representation

[Âi − Ai ⊗ I] =
∫
R2

(ξ1 − ξ2)ÊÂi(dξ1)(EAi(dξ2)⊗ I). (12.51)

Then, we see that

‖[Âi − Ai ⊗ I](u⊗ e1)‖2 (12.52)
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=

∫
R2

|ξ1 − ξ2|2〈u⊗ e1, EÂi(dξ1)(EAi(dξ2)⊗ I)(u⊗ e1)〉

=

∫
R

|ξ|2〈u⊗ e1, EÂi(dξ1)(u⊗ e1)〉

− 2

∫
R2

ξ1ξ2〈u⊗ e1, EÂi(dξ1)(EAi(dξ2)⊗ I)(u⊗ e1)〉

+

∫
R

|ξ2|2〈u⊗ e1, (EAi(dξ2)⊗ I)(u⊗ e1)〉

= (|bi|2 − 2 + 1)

∫
R

|ξ|2〈u,EAi(dξ)u〉

= |ai|2‖Aiu‖2, (12.53)

which implies that Dom⊗s([Âi−Ai⊗ I]) = Dom(Ai) (where s = e1 ) and ∆ÔASTO
[Al]

n
l=1

(Ai, u)

= ai‖Aiu‖. Therefore, the proof of theorem is completed.

Remark 12.17. In the above proof, the following statements were also proved:

(i) Âi and Ai ⊗ I commute, so Âi − Ai ⊗ I on Dom(Âi) ∩ Dom(Ai ⊗ I) has a unique

self-adjoint extension [Âi − Ai ⊗ I] (i = 1, 2),

(ii) Dom⊗s(Âi) = Dom⊗s([Âi − Ai ⊗ I]) = Dom(Ai) (i = 1, 2).

Thus the commutative condition (iv) in Remark 12.7 is satisfied.

�

12.6 Uncertainty relations

Now we propose the following theorem, which is our main result in this chapter.

We believe that this theorem is the final version of Heisenberg’s uncertainty relation

concerning measurement errors.

Theorem 12.18. [Heisenberg’s uncertainty relation, cf. [36, 67]]. Let A1 and A2 be any

(unbounded) self-adjoint operators on a Hilbert space H. Then, we see,

(i) for any approximate simultaneous tensor observable ÔASTO
[Al]

2
l=1
≡ (K, s, (R2,BR2 , F̂ ))

of A1 and A2, the following inequality holds:

∆ÔASTO
[Al]

2
l=1

(A1, u) ·∆ÔASTO
[Al]

2
l=1

(A2, u) ≥
1

2
|〈A1u,A2u〉 − 〈A2u,A1u〉| (12.54)



312 CHAPTER 12. HEISENBERG’S UNCERTAINTY RELATION

for all u ∈ H such that ‖u‖ = 1, where the left hand side of (12.54) is defined by

∞ if ∆ÔASTO
[Al]

2
l=1

(Ai, u) = ∞ for some i,

and equivalently,

(ii) for any approximate simultaneous observable O
ASO

[Al]
2
l=1
≡ (R2,BR2 , F ) of A1 and A2,

the following inequality holds:

∆
O
ASO
[Al]

2
l=1

(A1, u) ·∆O
ASO
[Al]

2
l=1

(A2, u) ≥
1

2
|〈A1u,A2u〉 − 〈A2u,A1u〉| (12.55)

for all u ∈ H such that ‖u‖ = 1, where the left hand side of (12.55) is defined by

∞ if ∆
O
ASO
[Al]

2
l=1

(Ai, u) = ∞ for some i.

Proof. By Proposition 12.11, it suffices to prove (i). Put Âi =
∫
R2 λiF̃ (dλ1dλ2)

(i = 1, 2). Let u ∈ D(A1) ∩ D(A2). If u /∈ Dom⊗s(Âi) for some i, we see, by the

definition of the uncertainty, that ∆ÔASTO
[Al]

2
l=1

(Ai, u) = ∞, so (12.55) clearly holds. Hence,

it is sufficient to prove (12.55) for u ∈ Dom⊗s(Â1)∩Dom⊗s(Â2). Let u be any element in

u ∈ Dom⊗s(Â1) ∩Dom⊗s(Â2). We see, by the part (ii) of Lemma 12.14, that

〈A1u,A2u〉+ 〈(Â1 − A1 ⊗ I)(u⊗ s), (Â2 − A2 ⊗ I)(u⊗ s)〉

=

∫
R2

λ1λ2〈u⊗ s, F̃ (dλ1dλ2)(u⊗ s)〉

= 〈A2u,A1u〉+ 〈(Â2 − A2 ⊗ I)(u⊗ s), (Â1 − A1 ⊗ I)(u⊗ s)〉 (12.56)

from which, we get, by Schwarz inequality, that

1

2
|〈A1u,A2u〉 − 〈A2u,A1u〉|

=
1

2
|〈(Â1 − A1 ⊗ I)(u⊗ s), (Â2 − A2 ⊗ I)(u⊗ s)〉

− 〈(Â2 − A2 ⊗ I)(u⊗ s), (Â1 − A1 ⊗ I)(u⊗ s)〉|

≤ ‖(Â1 − A1 ⊗ I)(u⊗ s)‖ · ‖(Â2 − A2 ⊗ I)(u⊗ s)‖. (12.57)

Hence (by Theorem 12.15), the proof is completed.

The following theorem was first discovered by Arthurs and Goodman [6]. However we

did not know their discovery in the preparation of [36].

Theorem 12.19. [Approximate simultaneous uncertainty relation, cf [6]]. Let A1 and

A2 be any (unbounded) self-adjoint operators on a Hilbert space H. Then, we see,
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(i) for any approximate simultaneous tensor observable ÔASTO
[Al]

2
l=1

= (K, s, (R2,BR2 , F̂ ),

) of (A1, A2), the following inequality holds:

(var[ÔASTO
[Al]

2
l=1
, u]1)

1/2 · (var[ÔASTO
[Al]

2
l=1
, u]2)

1/2 ≥ |〈A1u,A2u〉 − 〈A2u,A1u〉| (12.58)

for all u ∈ H such that ‖u‖ = 1, where the left hand side of (12.58) is defined by∞
if var[ÔASTO

[Al]
2
l=1
, u]mar(i) = ∞ for some i, also the right hand side of (12.58) is defined

by ∞ if u /∈ Dom(A1) ∩Dom(A2),

and equivalently

(ii) for any approximate simultaneous observable O
ASO

[Al]
2
l=1

= (R2,BR2 , F̂ ) of (A1, A2),

the following inequality holds:

(var[O
ASO

[Al]
2
l=1
, u]1)

1/2 · (var[OASO

[Al]
2
l=1
, u]2)

1/2 ≥ |〈A1u,A2u〉 − 〈A2u,A1u〉| (12.59)

for all u ∈ H such that ‖u‖ = 1, where the left hand side of (12.59) is defined by∞
if var[ÔASTO

[Al]
2
l=1
, u]mar(i) = ∞ for some i, also the right hand side of (12.59) is defined

by ∞ if u /∈ Dom(A1) ∩Dom(A2).

Proof. By Proposition 12.11, it suffices to prove (i). Put Âi =
∫
R2 λiF̂ (dλ1dλ2)

(i = 1, 2). If u /∈ Dom⊗s(Âi) for some i, we see, by the definition of the variance, that

var[ÔASTO
[Al]

2
l=1
, u]mar(i) = ∞, so, (12.58) clearly holds. Hence, it is sufficient to prove (12.58)

in the case that u ∈ Dom⊗s(Â1) ∩ Dom⊗s(Â2). Let u be any element in Dom⊗s(Â1) ∩
Dom⊗s(Â2). Then, we see, by (iii) in Lemma 12.14, that

var[ÔASTO
[Al]

2
l=1
, u]mar(i) = ‖Âi(u⊗ s)‖2 − |〈u⊗ s, Âi(u⊗ s)〉|2 (12.60)

=‖Aiu‖2 + ‖(Âi − Ai ⊗ I)(u⊗ s)‖2 − |〈u,Aiu〉|2

≤2(‖Aiu‖2 − |〈u,Aiu〉|2)1/2 · ‖(Âi − Ai ⊗ I)(u⊗ s)‖ (i = 1, 2), (12.61)

therefore, by Lemma 12.13 and Theorem 12.18 we get,

var[ÔASTO
[Al]

2
l=1
, u]1 · var[ÔASTO

[Al]
2
l=1
, u]2

≥ 4(‖A1u‖2 − |〈u,A1u〉|2)1/2 · (‖A2u‖2 − |〈u,A2u〉|2)1/2

· ‖(Â1 − A1 ⊗ I)(u⊗ s)‖ · ‖(Â2 − A2 ⊗ I)(u⊗ s)‖

≥ |〈A1u,A2u〉 − 〈A2u,A1u〉|2. (12.62)
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Hence, the proof is completed.

Now we have the following corollary.3

Corollary 12.20. [Uncertainty relations concerning a pair of conjugate observables]. Let

A1 and A2 be a pair of conjugate observables in a Hilbert space H.

(i: cf. [7]) There exists an approximate simultaneous observable O
ASO

[Al]
2
l=1

= (R2,BR2 .F

) of A1 and A2. Thus, we can take an approximate simultaneous measurement

MB(H)(O
ASO

[Al]
2
l=1
, S[|u〉〈u|]).

(ii: cf. [36]) For any positive number ε and any k(= 1, 2), there exists an approximate

simultaneous observable O
ASO

[Al]
2
l=1

= (R2,BR2 .F ) of A1 and A2 such that:

∆
O
ASO
[Al]

2
l=1

(Ak, u) ≤ ε‖Aku‖H (∀u ∈ H such that ‖u‖ = 1),

(iii: cf. [36, 67]) (Heisenberg’s uncertainty relation) However the following inequality

holds

∆
O
ASO
[Al]

2
l=1

(A1, u) ·∆O
ASO
[Al]

2
l=1

(A2, u) ≥ ~/2 (12.63)

for all u ∈ H (‖u‖H = 1),

(iv: cf. [6]) The following inequalities hold: (approximate simultaneous uncertainty

relation)

(var[O
ASO

[Al]
2
l=1
, u]1)

1/2 · (var[OASO

[Al]
2
l=1
, u]2)

1/2 ≥ ~ (12.64)

for all u ∈ H (‖u‖H = 1).

Proof. Note that 〈A1u,A2u〉 − 〈A2u,A1u〉 = i~ (u ∈ Dom(A1) ∩ Dom(A2), ‖u‖H
= 1). Then, the above assertions (i) and (ii) are consequences of Theorem 12.16. Also,

the above assertions (iii) and (iv) are respectively consequences of Theorem 12.18 and

Theorem 12.19.

3There are other uncertainty relations, For the recent variants, see [68].
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12.7 EPR-experiment and Heisenberg’s uncertainty

relation

Now we have the complete form of Heisenberg’s uncertainty relation as Corollary 12.20.

To be compared with Corollary 12.20, we should note that the conventional Heisenberg’s

uncertainty relation (= Proposition 12.1) is ambiguous. Wrong conclusions are sometimes

derived from the ambiguous statement (= Proposition 12.1). For example, in some books

of physics, it is concluded that EPR-experiment (Einstein, Podolosky and Rosen [22])

contradicts with Heisenberg’s uncertainty relation. That is,

(I) Heisenberg’s uncertainty relation says that the position and the momentum of a

particle can not be measured simultaneously and exactly.

On the other hand,

(II) EPR-experiment says that the position and the momentum of a certain “particle” can

be measured simultaneously and exactly.

Thus someone may conclude that the above (i) and (ii) includes a paradox, and therefore,

EPR-experiment contradicts with Heisenberg’s uncertainty relation. Of course, this is a

misunderstanding. This “paradox” was solved in [36]. Now we shall explain the solution

of the paradox.

[Concerning the above (I)] Put H = L2(Rq). Consider two-particles system in

H ⊗ H = L2(R2
(q1,q2)

). In the EPR problem, we, for example, consider the state us

( ∈ H ⊗H = L2(R2
(q1,q2)

))
(
or precisely, |us〉〈us|

)
such that:

us(q1, q2) =

√
1

2πεσ
e−

1
8σ2

(q1−q2−a)2− 1
8ε2

(q1+q2−b)2 · eiφ(q1,q2) (12.65)

where ε is assumed to be a sufficiently small positive number and φ(q1, q2) is a real-valued

function. This is the quantum form of EPR-experiment in Remark 12.2(ii). Let A1 :

L2(R2
(q1,q2)

) → L2(R2
(q1,q2)

) and A2 : L
2(R2

(q1,q2)
) → L2(R2

(q1,q2)
) be self-adjoint operators

such that

A1 = q1, A2 =
~∂
i∂q1

. (12.66)

Then, Corollary 12.20 (i) says that there exists an approximate simultaneous observable

O
ASO

[Al]
2
l=1

= (R2,BR2 .F ) of A1 and A2. Thus we can take an approximate simultaneous
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measurement MB(H)(O
ASO

[Al]
2
l=1
, S[|us〉〈us|]). And thus, the following Heisenberg’s uncertainty

relation (= Corollary 12.20 (iii)) holds,

∆
O
ASO
[Al]

2
l=1

(A1, us) ·∆O
ASO
[Al]

2
l=1

(A2, us) ≥ ~/2 (12.67)

[Concerning the above (II)] However, it should be noted that, in the above situation

we assume that the state us is known before the measurement. In such a case, we may

take another measurement as follows: Define the self-adjoint operators Â1 : L
2(R2

(q1,q2)
)→

L2(R2
(q1,q2)

) and Â2 : L
2(R2

(q1,q2)
)→ L2(R2

(q1,q2)
) such that

Â1 = b− q2, Â2 = A2 =
~∂
i∂q1

(12.68)

Note that these operators commute. Therefore,

(]) we can take an exact simultaneous measurement of Â1 and Â2 (for the state us).

And moreover, we can easily calculate as follows (cf. Definition 11.1 and Remark 12.12).

∆
(
MB(H)(A1 × Â1, S(ρus))

)
= ‖Â1us − A1us‖

=
[ ∫∫

R2

∣∣∣((b− q2)− q1)√ 1

2πεσ
e−

1
8σ2

(q1−q2−a)2− 1
8ε2

(q1+q2−b)2 · eiφ(q1,q2)
∣∣∣2dq1dq2]1/2

=
[ ∫∫

R2

∣∣∣((b− q2)− q1)√ 1

2πεσ
e−

1
8σ2

(q1−q2−a)2− 1
8ε2

(q1+q2−b)2
∣∣∣2dq1dq2]1/2

=
√
2ε, (12.69)

and

∆
(
MB(H)(A2 × Â2, S(ρus))

)
= ‖Â2us − A2us‖ = 0. (12.70)

Thus we see

∆
(
MB(H)(A1 × Â1, S(ρus))

)
·∆
(
MB(H)(A2 × Â2, S(ρus))

)
= 0. (12.71)

Since ε ( > 0) can be taken sufficiently small, the above measurement (]) is superior to

the approximate simultaneous measurement MB(H)(O
ASO

[Al]
2
l=1
, S[|us〉〈us|]).

(
Here, S[|us〉〈us|]

is identified with S(|us〉〈us|) since |us〉〈us| is a pure state.
)
However it should be again

noted that, the measurement (]) is made from the knowledge of the state us.
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[(I) and (II) are consistent, cf. [36] ] The above conclusion (12.71) does not contra-

dicts with Heisenberg’s uncertainty relation (12.67), since the measurement (]) is not an

approximate simultaneous measurement of A1 and A2.

�
In the above arguments, note that Theorem 12.19 (approximate simultaneous un-

certainty relation) is powerless to solve the paradox (i.e., the paradox between EPR-

experiment and Heisenberg’s uncertainty relation). That is because the concept “error” (or

“uncertainty”) is not explicit in Theorem 12.19.
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