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Chapter 11

Measurement error

Let Q ≡ (R,B, G) and O ≡ (R,B, F ) be respectively a crisp W ∗-observable (i.e., quantity) and a
W ∗-observable in a W ∗-algebra N such that Q and O commute. Under the assumption that O is

regarded as the approximation of Q, we define the measurement error ∆
(
MN (Q×O, S(ρ))

)
by

∆
(
MN(Q×O, S(ρ))

)
=
[∫∫

R2

|λ1 − λ2|2ρ
(
(G× F )(dλ1dλ2)

)]1/2
. (11.1)

This is also called the distance between Q and O concerning ρ. The purpose of this chapter is to

investigate the measurement error. Readers will see that the ∆
(
MN (Q ×O, S(ρ))

)
is superior

to the “conventional definition” such as |“true value” −“measured value” |.

11.1 Approximate measurements for quantities

Let N be a W ∗-algebra. Let Q ≡ (R,B, G) be a crisp W ∗-observable (i.e., quantity)

in N. Let O ≡ (R,B, F ) be aW ∗-observable in N such that Q and O commute. Let Q ×
O ≡ (R2,B2, G× F ) be the product observable of Q and O. Consider the simultaneous

measurementMN (Q×O, S(ρ)). According to ProclaimW ∗
1 (9.9), the probability that the

measured value (λ1, λ2) ( ∈ R2) belong to Ξ1×Ξ2 ( ∈ B2) is given by ρ((G×F )(Ξ1×Ξ2)).

Thus, the variance of |λ1 − λ2| is given by∫∫
R2

|λ1 − λ2|2ρ
(
(G× F )(dλ1dλ2)

)
(11.2)

Here we have the following definition.

Definition 11.1. [Error (or precisely, Measurement error), cf. [44]]. Assume the above

notations. And assume the situation that we hope to approximate Q ( ≡ (R,B, G)) by
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276 CHAPTER 11. MEASUREMENT ERROR

O (≡ (R,B, F )), that is, O is the approximation of Q. Then the measurement error,

∆
(
MN(Q×O, S(ρ))

)
, is defined by

∆
(
MN(Q×O, S(ρ))

)
=
[∫∫

R2

|λ1 − λ2|2ρ
(
(G× F )(dλ1dλ2)

)]1/2
. (11.3)

This is also called the distance between Q and O concerning ρ (or, the error of O for Q

concerning ρ).

�
It should be noted that every measurement is exact. Thus the above definition is based

on the following assumption:

(]) We want to take a measurement MN(Q, S(ρ)). But it is impossible for some reason.

Thus, instead of the MN(Q, S(ρ)), we take a measurement MN(O, S(ρ)). In this

sense, we regard MN(O, S(ρ)) as the approximation of MN(Q, S(ρ)).

The following examples will promote the understanding of Definition 11.1.

Example 11.2. [(i): Gaussian observables]. Consider the exact observable OEXA ≡
(R,BR, χ(·)) and Gaussian observable OG ≡ (R,BR, G

σ) in N ≡ L∞(R, dµ) such that:

[Gσ(Ξ)](µ) =
1√
2πσ2

∫
Ξ

e−
(x−µ)2

2σ2 dx (∀µ ∈ R ∀Ξ ∈ BR), (11.4)

(where σ2 is a variance). Then we see, for each density function ρ ( ∈ L1
+1(R, dµ)),

∆
(
MN(OEXA ×OG, S(ρ))

)
=
[∫∫

R2

|λ1 − λ2|2ρ
(
(G×Gσ)(dλ1dλ2)

)]1/2
=
[∫

R2

|λ1 − λ2|2
(∫

R

χ
dλ1

(µ)
1√
2πσ2

∫
dλ2

e−
(x−µ)2

2σ2 dx× ρ(µ)dµ
)]1/2

=σ, (11.5)

which is independent of ρ.

[(ii): Triangle observable, cf. Example 2.19]. Let ε be any positive number. Define the

membership function (i.e., triangle function) Zε : R→ R such that:

Zε(ω) =


1− ω

ε
0 ≤ ω ≤ ε

ω
ε
+ 1 −ε ≤ ω ≤ 0

0 otherwise .
(11.6)

Put Zε ≡
{
εk : k ∈ Z ≡ {0,±1,±2, ...}

}
. Define the W ∗-observable OT ≡ (R,BR, T

ε

(·))

in the commutative W ∗-algebra L∞(R, dω) such that T
ε

Ξ(ω) =
∑

x∈Ξ∩Zε Zε(ω −x) (∀Ξ ∈
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BR, ∀ω ∈ R). This W ∗-observable OT is called a triangle observable in L∞(R, dω).

Consider the exact observable OEXA ≡ (R,BR, χ(·)) and the triangle observable OT ≡
(R,BR, T

ε

(·)) in N ≡ L∞(R, dω). Then we see, for each density function ρ ( ∈ L1
+1(R, dω)),

∆
(
MN(OEXA ×OT , S(ρ))

)
= ε
[∫

R

(ω − [ω]
G
)(1− [ω]

G
+ ω)ρ(ω)dω

]1/2
≤ ε

2

where [ω]
G
is the integer such that [ω]

G
≤ ω < [ω]

G
+ 1. �

Example 11.3. [Self-adjoint operators]. Let A1 and A2 be commutative self-adjoint

operators on a Hilbert space H. For each i ( = 1, 2), consider the crisp observable Oi ≡
(R,BR, EAi) in B(H) which is the spectral measure of Ai, i.e., Ai =

∫
R
λEAi(dλ). Then,

we see that

∆
(
MB(H)(O1 ×O2, S(|u〉〈u|))

)
=
[∫

R2

|λ1 − λ2|2
〈
u,EA1(dλ1)EA2(dλ2)u

〉]1/2
= ‖(A1 − A2)u‖2. (11.7)

�

11.2 The estimation under loss function in statistics

Let Q ≡ (R,B, G) and O ≡ (X,F, F ) be a quantity (i.e., a crisp observable on R)

and a W ∗-observable in a W ∗-algebra N respectively. Consider the measurable map

h : X → R, and the image observable O[h] ≡ (R,B, F (h−1( · )) ) in N. This measurable

map h : X → R is called a statistic. Also assume that Q and O[h] commute. Thus, the

distance between Q and Oh (concerning ρ ∈ Sn(N∗)) is defined by ∆(MN(Q×Oh, S(ρ)) )

as in the above definition.

Now we have the following problem:

Problem 11.4. [The estimation under loss function in statistics]. Assume the above
notations. Then our present problem is as follows:

(]) how to choose a proper image observable O[h] (i.e., O (≡ (X,F, F )) and h : X → R)
as the approximation of a quantity Q (≡ (R,B, G)).

Our interest is concentrated on the problem (]), which is regarded as a kind of “inference”.

Note that this (]) is entirely different from Fisher’s spirit in Chapter 5, that is, how to

infer the unknown state from the measured data obtained by a measurement.
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Of course, it is desirable that O and h in the above (]) satisfy the following (A1) and

(A2).

(A1) (unbias condition). There exists a dense set D ( ∈ Sn(N∗)) such that:∫
R

λ
N∗
〈ρ,G(dλ)〉

N
=

∫
R

λ
N∗
〈ρ, F (h−1(dλ))〉

N
(∀ρ ∈ D)

(A2) ∆(MN(Q×O[h], S(ρ)) ) is small (where Q and O[h] commute ).

In what follows, we shall study Problem 11.4 in Example 11.5 and Problem 11.6.

Example 11.5. [Heisenberg’s uncertainty relation, cf. [31], [36], Chapter 12]. Let A1

and A2 be a position quantity and a momentum quantity respectively (i.e. A1 and A2

are self-adjoint operators on a Hilbert space H satisfying that A1A2 − A2A1 = i~, ~ is

“Plank constant” /(2π)). As mentioned before, we identify Ai with the spectral measure

Ai ≡ (R,B, Gi) in B(H), i.e., Ai =
∫
R
λGi(dλ). Since A1 and A2 do not commute, the

product observable does not exist. Therefore, consider an observable O ≡ (X,F, F ) in

B(H) and measurable maps hi : X → R, (i = 1, 2), and define the image observables

O[hi] ≡ (R,B, F (h−1i ( · )) ≡ Fi( · )) in B(H). And furthermore, assume the conditions:

(i) There exists a set D ( ⊂ H) such that D (≡“closure on D)= {u ∈ H | ‖u‖ = 1}
and it holds that 〈u,Aiu〉H =

∫
R
λ〈u, Fi(dλ))u〉H (∀u ∈ D, i = 1, 2

(ii) Qi and O[hi] commute (i = 1, 2).

Then we get the following inequality:

∆
(
MB(H)(Q1 ×O[h1], S(ρ))

)
·∆
(
MB(H)(Q2 ×O[h2], S(ρ))

)
≥ ~/2 for all ρ ∈ Tr+1(H).

(11.8)

This is just Heisenberg’s uncertainty relation, of which non-mathematical representation

was proposed by W. Heisenberg in the famous thought experiment of γ-rays microscope

(cf. [31]). This will be discussed in Chapter 12.

�

The following problem is a main part of this section. The reader should find “estima-

tion under loss function in statistics” in the following problem.

Problem 11.6. [= Example 5.9 (Urn problem)]. Let Uj, j = 1, 2, 3, be urns that contain

sufficiently many colored balls as follows:
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blue balls green balls red balls yellow balls

urn U1 60% 20% 10% 10%
urn U2 40% 20% 30% 10%
urn U3 20% 20% 40% 20%

Put U = {U1, U2, U3}. By the same argument in Example 5.9, we consider the state space

Ω
(
≡ {ω1, ω2, ω3}

)
with the discrete topology, which is identified with U, that is, U 3 Uj

↔ ωj ∈ Ω ≈M
p
+1(Ω).

U1 ≈ ω1 U2 ≈ ω2 U3 ≈ ω3

B B B G R

B B B G Y

B B G R R

B B G R Y

B G R R Y

B G R R Y

Let Q be a quantity in C(Ω), i.e., Q : Ω (≈ M
p
+1(Ω)) → R is a real valued continuous

function on Ω. For example we may consider in what follows. Assume that the weight of a

blue ball is given by 10 (gram), and green 20, red 30 and yellow 10.
(
Thus, we can define

the map W : X → R such that W (b) = 10, W (g) = 20, W (r) = 30 and W (y) = 10.
)

Therefore, we can define the quantityQ : Ω→ [0, 50] such that the average weightQ(ω1) of

the balls in the urn U1 is given by 14 (= (10·60+20·20+30·10+10·10)/100), and similarly,

Q(ω2) = 18 and Q(ω3) = 20. Define the observable O ≡ (X = {b, g, r, y, }, 2X , F(·)) in

C(Ω) by the usual way. That is,

F{b}(ω1) = 6/10 F{g}(ω1) = 2/10 F{r}(ω1) = 1/10 F{y}(ω1) = 1/10

F{b}(ω2) = 4/10 F{g}(ω2) = 2/10 F{r}(ω2) = 3/10 F{y}(ω2) = 1/10

F{b}(ω3) = 2/10 F{g}(ω3) = 2/10 F{r}(ω3) = 4/10 F{y}(ω3) = 2/10.

Now consider the iterated measurement MC(Ω)(×2
k=1 O ≡ (X2, 2X

2
, ×2

k=1F ), S[∗]) where

(×2
k=1 F )Ξ1×Ξ2(ω) = FΞ1(ω) · FΞ2(ω). Also, assume that

• the measured value (b, r) is obtained by the simultaneous measurement MC(Ω)(×2
k=1

O, S[∗]).

Now we have the following problem.
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(]) How do we infer Q(∗) from the measured value (b, r) obtained by the simultaneous

measurement MC(Ω)(×2
k=1 O, S[∗]) ?

�
In what follows, we provide four answers to the above problem.

Answer 1. [Fisher’s method, cf. [44]]. Recall “[II]” in Example 5.8, in which we infer,

by Fisher’s method, that the unknown urn is U2. That is, applying Fisher’s method (cf.

Corollary 5.6), we get the conclusion as follows: Put E(ω) = F{b}(ω)F{r}(ω). Clearly it

holds that E(ω1) = 6·1/102 = 0.06, E(ω2) = 4·3/102 = 0.12 and E(ω3) = 4·2/102 = 0.08.

Therefore, there is a very reason to think that [ ∗ ] = δω2 , that is, the unknown urn is

U2. Since we inferred that [ ∗ ] = δω2 ( ↔ ω2) in Example 5.8(II), we can immediately

conclude that (or more precisely, Regression analysis II (6.48))

Q( ∗ ) = Q(ω2) = 18.

Answer 2. [Moment method] Recall “Remark” in Example 5.8, in which we infer, by the

moment method, that the unknown urn is U2. Thus, we conclude thatQ(∗) = Q(U2) = 18.

Answer 3. [Bayes’ method in SMTPEP]. Next study the above problem (]) in SMTPEP-

method (cf. §8.6.2, and Theorem 11.12 later). Thus, we assume that the [ ∗ ] is chosen

by a fair rule (e.g., a fair coin-tossing, a fair dice-throwing, etc.). Consider a statistical

measurement MC(Ω)( ×2
k=1 O, S[∗](ρ

m
0 ) ), where we assume that ρm0 = ρmuni, i.e., ρ

m
uni =

1
3

∑3
j=1 δωj on Ω. When we get the measured value (b, r) by the measurement MC(Ω)(×2

k=1

O, S[∗](ρ
m
0 ) ), we infer, by Bayes’ method (for example, (B1) in Remark 8.14, or more

precisely, Theorem 8.13), that the new state ρmnew is

ρmnew =
1

0.06 + 0.12 + 0.08
(0.06 · δω1 + 0.12 · δω2 + 0.08 · δω3)

=
1

6 + 12 + 8
(6 · δω1 + 12 · δω2 + 8 · δω3).

Thus there is a very reason to consider that

Q( ∗ ) is approximated by
∫
Ω
Q(ω)ρmnew(dω) =

14·6+18·12+20·8
6+12+8

= 17.69 · · · .

Also, the variance σ2 is given by

σ =
[(14− 17.69)2 · 6 + (18− 17.69)2 · 12 + (20− 17.69)2 · 8

6 + 12 + 8

]1/2
= 2.19...
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Answer 4. [The estimation under loss function in statistics, cf. [44]]. Let MC(Ω)

(×2
k=1 O, S[∗](ρ

m
0 )) and Q : Ω→ [0, 50] be as in Problem 11.6. Put O = (X = {b, g, r, y},

2X , F(·)) in C(Ω) ( ≡ C({ω1, ω2, ω3})) and ρm0 is any mixed state ∈ Mm
+1(Ω). Consider

a measure ν on Ω, for example, ν({ωj}) = 1 (j = 1, 2, 3). Define the W ∗-observable O

in L∞(Ω, ν) such that O = O, and define the normal state ρ ( ∈ L1
+1(Ω, ν)) such that

ρm0 (B) =
∫
B
ρ(ω)ν(dω) for all B ( ⊆ Ω). Then, we can identify MC(Ω)(×2

k=1 O, S[∗](ρ
m
0 ))

with ML∞(Ω,ν)( ×2
k=1 O, S(ρ)). Note that Q is equivalent to the crisp observable Q ≡

(R,B, GQ) in L∞(Ω, ν) such that GQ
Ξ (ω) = χ

{ω′∈Ω:Q(ω′)∈Ξ}
(ω) for all Ξ ∈ B and all ω ∈ Ω.

Define the map h : X2 → R such that:

h(x1, x2) =
1

2

(
W (x1) +W (x2)

)
(∀(x1, x2) ∈ X2 ≡ {b, g, r, y}2) (11.9)

whereW (b) = 10, W (g) = 20, W (r) = 30 andW (y) = 10. Consider the image observable

(×2
k=1O)h ≡ (R,B, F̂ = (×2

k=1F )h−1(·)). Then, ∆
(
ML∞(Ω,ν)(Q × (×2

k=1O)h, S(ρ))
)
, the

distance between Q and (×2
k=1O)h concerning ρ, is calculated as

∆
(
ML∞(Ω,ν)(Q× (×2

k=1O)h, S(ρ))
)
=
[∫∫

R2

|λ1 − λ2|2ρ((GQ × F̂ )(dλ1dλ2))
]1/2

=
[ 3∑
j=1

∑
(x1,x2)∈X2

ρ(ωj)|Q(ωj)− h(x1, x2)|2F{x1}(ωj)F{x2}(ωj)
]1/2

=
[
22ρ(ω1) + 38ρ(ω2) + 38ρ(ω3)

]1/2
. (11.10)

Therefore, we see that (11.10) ≤
√
38 ≈ 6.17 for all ρ ∈ L1

+1(Ω, ν). Now we can also

answer the problem (]) in Problem 11.6. That is, we see,

Q( ∗ ) = 1
2
(W (r) +W (b)) = (30 + 10)/2 = 20,

though it of course includes the error 6.17.

�

The map h : Xn → R, (n = 2), in (11.9) may be chosen by the hint of “the law of large

numbers”. That is, if n is sufficiently large, the map h : Xn → R (defined by h(x1, ..., xn)

= 1
n

∑n
k=1W (xk)) has a proper property, i.e., limn→∞ ∆

(
ML∞(Ω,ν)(Q×(×nk=1O)h, S(ρ))

)
= 0 for all ρ ∈ L1

+1(Ω, ν). However, there are several ideas for the choice of h.

Definition 11.7. [Admissible]. Let Q ≡ (R,B, G) and O ≡ (X,F, F ) be a quantity and

W ∗-observable in a W ∗-algebra N respectively. For each i = 1, 2, consider a measurable
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map hi : X → R, and the image observable Ohi ≡ (R,B, F (h−1i ( · )) ) in N. Also assume

that Q and Ohi commute.

(i) When it holds that

∆(MN(Q×Oh1 , S(ρ)) ) ≤ ∆(MN(Q×Oh2 , S(ρ)) ) ∀ρ ∈ Sn(N∗), (11.11)

we say that Oh1 is better than Oh2 as the approximation of Q.

(ii) Also, Oh2 is called admissible as the approximation of Q, if there exists no h1 that

satisfies (11.11) and the following condition:

∆(MN(Q×Oh1 , S(ρ0)) ) < ∆(MN(Q×Oh2 , S(ρ0)) ) for some ρ0 ∈ Sn(N∗).
(11.12)

�
As a well known result concerning “admissibility”, we mention the following example.

Example 11.8. [Gaussian observable and admissibility]. Let O ≡ (R,BR, G
σ) be the

Gaussian observable in N ≡ L∞(R, dµ), that is,

Gσ
Ξ(µ) =

1√
2πσ2

∫
Ξ

e−
(u−µ)2

2σ2 du (∀µ,∈ R, ∀Ξ ∈ BR). (11.13)

Consider the quantity Q : R→ R such that Q(µ) = µ (∀µ ∈ R), which is identified with

the observable Q ≡ (R,BR, F
Q
(·)) where F

Q
Ξ (µ) = χ

Ξ
(µ). Consider the product observable

×nk=1O ≡ (Rn,BRn ,×nk=1G
σ) in L∞(R, dµ). Define the map h : Rn → R such that

Rn 3 (λ1, ..., λn)
h7→ λ1+···+λn

n
∈ R. Then, it is well known (cf. [86]) that ( ×nk=1 O)h is

admissible as the approximation of Q.

�

11.3 Random observable

Recall the probabilistic measurement MC(Ω)(O, S[∗]([δω1 ; p]⊕ [δω2 ; 1− p])) in Example

8.1 (8.8). Here, the symbol [δω1 ; p] ⊕ [δω2 ; 1 − p] is called a “probabilistic state”. The

concept of “probabilistic state” urges us to propose the “random observable” as follows:

For simplicity, in this section we devote ourselves to the classical case (i.e., C(Ω) and

L∞(Ω, µ)).

Let O1 ≡ (X,F, F1), O2 ≡ (X,F, F2), · · · , ON ≡ (X,F, FN) be observables in C(Ω).

In a similar way in the procedures (P1) and (P2) of Example 8.1, define the “random
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observable” ⊕Nn=1[On; pn], where
∑N

n=1 pn = 1 (0 ≤ pn ≤ 1 (n = 1, 2, ..., N)). That is, we

assume that:

• To take a measurement MC(Ω)(⊕Nn=1[On; pn], S[δω ]).
(
This measurement is called a

“random measurement”.
)

⇐⇒

• To take one of {MC(Ω)(On, S[δω ]) | n = 1, 2, ..., N} according to the probabilistic rule
(p1, p2, ..., pN). That is, to take the measurement MC(Ω)(On, S[δω ]) with probability

pn.

Here, it should be noted that

• the statistical property of MC(Ω)(⊕Nn=1[On; pn], S[δω ]) is equal to that of MC(Ω)(Ô,

S[δω ]), where Ô ≡ (X.F, F̂ ) is defined by F̂ (Ξ) =
∑N

n=1 pnFn(Ξ). That is, for each

Ξ( ∈ F) and ω ( ∈ Ω),

“the probability that a measured value obtained by MC(Ω)(⊕Nn=1[On; pn], S[δω ])

belongs to Ξ”

=
N∑
n=1

pn[F (Ξ)](ω) (11.14)

= “the probability that a measured value obtained by MC(Ω)(Ô, S[δω ]) belongs

to Ξ ”,

which is easily seen by a similar argument such as stated in Example 8.1.

Again note that

(1) to take a random measurement MC(Ω)(⊕Nn=1[On; pn], S[δω ]) (11.15)

⇐⇒

to take a measurement MC(Ω)(On, S[δω ]) with probability pn (n = 1, 2, ..., N).

(2) to take a probabilistic measurement MC(Ω)(O, S[∗](⊕Nn=1 [δωn ; pn])) (11.16)

⇐⇒

to take a measurement MC(Ω)(O, S[δωn ]) with probability pn (n = 1, 2, ..., N).
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In the case that N =∞. it suffices to prepare a probability space (Λ,F(Λ), ν). And,

for each λ( ∈ Λ), consider an observable Oλ ( ≡ (X,F, Fλ)) in C(Ω). Then, the random

observable ⊕Nn=1[On; pn] is generalized as
∮
Λ
Oλν(dλ)

(
≡ (X,F,

∮
Λ
Fλν(dλ))

)
.

The following example is typical (though the description is due to the W ∗-algebraic

formulation).

Example 11.9. [Gaussian observable as a random observable]. For each λ( ∈ R( ≡ Λ)),

consider an observable Oλ ( ≡ (R( ≡ X),BR, Eλ)) in L
∞(R( ≡ Ω), dω) such that

[Fλ(Ξ)](ω) = χ
Ξ
(ω − λ) (∀Ξ ∈ BR( ⊆ 2X), ∀ω ∈ R( ≡ Ω),∀λ ∈ R( ≡ Λ)).

Define the probability space (R( ≡ Λ),BR, ν) such that:

ν(S) =
1√
2πσ2

∫
S

e−
λ2

2σ2 dλ (∀S ∈ BR). (11.17)

Thus, we have the random observable:∮
Λ

Oλν(dλ)
(
≡ (R( ≡ X),BR( ≡ F),

∮
Λ

Fλν(dλ))
)

(11.18)

which the probabilistic form of the Gaussian observable (R( ≡ X),BR( ≡ F), Gσ) in

L∞(R( ≡ Ω), dω) such that:

[Gσ(Ξ)](ω) =

∫
Λ

[Fλ(Ξ)](ω)ν(dλ) =

∫
Λ

χ
Ξ
(ω − λ) 1√

2πσ2
e−

λ2

2σ2 dλ

=
1√
2πσ2

∫
Ξ

e−
(x−ω)2

2σ2 dx (∀ω ∈ R( ≡ Ω) ∀Ξ ∈ BR( ⊆ 2X)), (11.19)

(Cf. Example 11.8.)

�
Although the following problem is easy, its measurement theoretical answer is quite

important.

Problem 11.10. [Which hand is the coin under?]. The following problems (P1) and (P2)

are essentially the same.

(P1) A coin is, intentionally or unintentionally, put under my right hand or my left hand.

Suppose that you do not know which hand the coin is under, and you choose one

of my hands which you guess that the coin is under. Is it reasonable to believe that

the probability that the ball is under the hand you choose is equal to 1/2. How do

you think about it?
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my right hand my left hand

Coin

9 z? ?

Table

(P2) There are three boxes (i.e., Box 1, Box 2 and Box 3) and a ball. A ball is, intention-

ally or unintentionally, put in one box (i.e., Box 1 or Box 2 or Box 3). Suppose that

you do not know which box contains the ball, and you choose one of three boxes

which you guess the ball is in. In this case, it is often believed that the probability

that the ball is in Box 1 [resp. in Box 2; in Box 3] is 1/3 [resp. 1/3; 1/3]. How do

you think about it?

Ball

? ? ?

Box 1 Box 2 Box 3

•[The experimental answer to Problem (P1)]. We can easily say “Yes”, that is,

(A1) the probability that the ball is under the hand you choose is equal to 1/2.

In fact, it can be easily tested experimentally. For example, it suffices to ask to 1000

persons “Which hand is the coin under?”. About 500 persons will say “Right hand”,

and the other persons will say “Left hand”. In either case, about 500 persons’ guess is

hit. Thus the above (A1) is true. Although this (P1) is the easiest problem throughout

this book, what I want to say is the measurement theoretical answer mentioned in what

follows.

•[The measurement theoretical answer to Problem (P2)]. Since the two (P1) and (P2) are

essentially the same, it suffices to answer Problem (P2) from the measurement theoretical

point of view. When the conclusion is said first, we can say that:

(A2) the probability that the ball is in your chosen box is equal to 1/3.
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In what follows we shall explain it. Put Ω = {ω1, ω2, ω3}, where ω1 [resp. ω2, ω3] means

the state that the ball is in Box 1 [resp. Box 2; Box 3]. First we consider the case ω1,

that is, the ball is in Box 1.

[(i): The case ω1, that is, the ball is in Box 1]. Define three observables Oe
1 ( =

({0, 1}, 2{0,1}, F e
1 )), O

e
2 ( = ({0, 1}, 2{0,1}, F e

2 )), O
e
2 ( = ({0, 1}, 2{0,1}, F e

3 )) such that:

[F e
1 ({0})](ω1) = 0, [F e

1 ({0})](ω2) = 1, [F e
1 ({0})](ω3) = 1,

[F e
1 ({1})](ω1) = 1, [F e

1 ({1})](ω2) = 0, [F e
1 ({1})](ω3) = 0, (11.20)

[F e
2 ({0})](ω1) = 1, [F e

2 ({0})](ω2) = 0, [F e
2 ({0})](ω3) = 1,

[F e
2 ({1})](ω1) = 0, [F e

2 ({1})](ω2) = 1, [F e
2 ({1})](ω3) = 0, (11.21)

[F e
3 ({0})](ω1) = 1, [F e

3 ({0})](ω2) = 1, [F e
3 ({0})](ω3) = 0,

[F e
3 ({1})](ω1) = 0, [F e

3 ({1})](ω2) = 0, [F e
3 ({1})](ω3) = 1. (11.22)

Note that we identify the following (S1
1) and (S1

2):

(S1
1) We take a measurement MC(Ω)(O

e
1, S[δω1 ]

). And we obtain a measured value 1. (Or,

we obtain a measured value 0.) (11.23)

(S1
2) We open Box 1. And we find the ball. (Or, we do not find the ball.) (11.24)

Similarly, we see the following identification:

(S23
1 ) We take a measurement MC(Ω)(O

e
2, S[δω1 ]

) [resp. MC(Ω)(O
e
3, S[δω1 ]

)]. And we obtain

a measured value 1. (Or, we obtain a measured value 0.)

(S23
2 ) We open Box 2. [resp. Box 3.]. And we find the ball. (Or, we do not find the ball.)

Since “the state ω1” = “the case that the ball is in Box 1”, we can assume that

• the measured value obtained byMC(Ω)(O
e
1, S[δω1 ]

) [resp. MC(Ω)(O
e
2, S[δω1 ]

); MC(Ω)(O
e
3,

S[δω1 ]
)] is 1 [resp. 0; 0].

Since you have no information about the [∗], your choice is the same as the choice by a

fair coin-tossing. That is, we assume that

“decision without having information” ⇐⇒ “decision by a fair coin-tossing”, (11.25)
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which is the fundamental spirit of “the principle of equal probability” in the following

section. Thus, it is reasonable to consider that

the probability that Box 1 is opened = the probability that Box 2 is opened

=the probability that Box 3 is opened = 1/3. (11.26)

Therefore, we see that

(a) the probability that the measured value obtained by MC(Ω)( ⊕3
k=1 [O

e
k; 1/3], S[δω1 ]

)

is 1 [resp. 0] is given by 1/3 [resp. 2/3].

[(ii): The case ω2, that is, the ball is in Box 2]. Similarly we see that

(b) the probability that the measured value obtained by the “measurement”

MC(Ω)(⊕3
k=1 [O

e
k; 1/3], S[δω2 ]

) is 1 [resp. 0] is given by 1/3. [resp. 2/3].

[(iii): The case ω3, that is, the ball is in Box 3]. Similarly we see that

(c) the probability that the measured value obtained by the “measurement”

MC(Ω)(⊕3
k=1 [O

e
k; 1/3], S[δω3 ]

) is 1 [resp. 0] is given by 1/3. [resp. 2/3].

[(iv): The case that we do not know which box contains the ball]. By the above (a), (b)

and (c), we see that

• the probability that the measured value obtained by the “measurement”

MC(Ω)(⊕3
k=1 [O

e
k; 1/3], S[∗]) is 1 [resp. 0] is given by 1/3 [resp. 2/3].

Note that “measured value 1 is obtained”⇔ “open the box that contains the ball”. Thus,

we can believe that the probability that the ball is in Box 1 [resp. in Box 2; in Box 3] is

1/3 [resp. 1/3 ; 1/3].

[Remark]. Recall BMT (in §8.6). Then, the system in Problem (P2) is clearly represented

by S[∗]((νu))bw, cf. §8.6.1. Here, νu({ωk}) = 1/3 (k = 1, 2, 3). However, in the above

argument, we conclude that the “probability” that the ball is in Box 1 [resp. in Box 2; in

Box 3] is 1/3 [resp. 1/3; 1/3]. Therefore, we have the following question:

• Is the system represented by S[∗](νu) (as well as S[∗]((νu))bw)?

This will be discussed in the following section. �
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11.4 The principle of equal probability

Consider a measurement MC(Ω)(O ≡ (X,F, F ), S[∗]), where Ω is finite, i.e., Ω ≡
{ω1, ω2, ..., ωN}. There may be several definitions of “Having no information about the

[∗]”. As mentioned in §8.6, in this book we introduce three definitions of “Having no

information about the [∗]” such as:
(a). iterative likelihood function method in §5.6,
(b). SMTPEP in SMT in this section and §11.4,
(c). BMT in §8.6.

We want to change S[∗]((νu))bw (belief weight) to S[∗](νu) (statistical state). This will be

done according to the spirit (11.25), that is,

“decision without having information” ⇐⇒ “decision by a fair coin-tossing”,

which assures that the principle of equal probability holds. This is the purpose of this

section.

Let Ω be a finite set, i.e., Ω = {ω1, ω2, ..., ωN}. A map φ : Ω→ Ω is said to be ergodic,

if it is a bijection and if it holds that Ω = {φn(ω) | n = 0, 1, ..., N − 1} for any ω ( ∈ Ω).

Also, a homomorphism Φ : C(Ω)→ C(Ω) is said to be ergodic, if there exists an ergodic

bijection φ : Ω→ Ω such that

(Φf)(ω) = f(φ(ω)) (∀f ∈ C(Ω), ∀ω ∈ Ω). (11.27)

Theorem 11.12. [The principle of equal probability (=“PEP”), SMTPEP method].

Consider a measurementMC(Ω)(O ≡ (X,F, F ), S[∗]), where Ω is finite, i.e., Ω ≡ {ω1, ω2, ...,ωN}.
And consider the measurement MC(Ω)(⊕N−1n=0 [ΦnO; 1/N ], S[∗]) (where Φ : C(Ω)→ C(Ω)

is ergodic), which is called an unintentional random measurement.1 Then we see

MC(Ω)(⊕N−1n=0 [ΦnO; 1/N ], S[∗]) ⇐==⇒
identification

MC(Ω)(O, S[∗](⊕Nn=1 [δωn ; 1/N ])) (11.28)

and

MC(Ω)(O, S[∗](⊕Nn=1 [δωn ; 1/N ]))
probabilistic form←−−−−−−−−−−−−−−−−−−−−−→
statistical form

MC(Ω)(O, S[∗](νu)) (11.29)
(=(8.9))

1Also, it is called a “completely random measurement”, “coin-tossing measurement”, “no information
measurement”.
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where νu =
1
N

∑N
n=1 δωn . That is, we can assert that:

MC(Ω)(⊕N−1n=0 [ΦnO; 1/N ], S[∗]) ⇐==⇒
identification

MC(Ω)(O, S[∗](νu)). (11.30)

Proof. Let ω ∈ Ω. Then we see that:

to take an unintentional random measurement MC(Ω)(⊕N−1n=0 [ΦnO; 1/N ], S[δω ])

⇐⇒

to take a measurement MC(Ω)(Φ
nO, S[δω ])

with probability 1/N , (n = 1, 2, ..., N)

⇐⇒

to take a measurement MC(Ω)(O, S[δφn(ω)]) with probability 1/N

(n = 0, 1, 2, ..., N − 1)

⇐⇒ (Note that Ω = {φn(ω) | n = 0, 1, ..., N − 1}.)

to take a measurement MC(Ω)(O, S[δωn ]) with probability 1/N , (n = 1, 2, ..., N)

⇐⇒

to take a probabilistic measurement MC(Ω)(O, S[∗](⊕N−1n=0 [δωn ; 1/N ]))

⇐⇒

to take a measurement MC(Ω)(O, S[∗](νu)).

Thus we see that:

MC(Ω)(⊕N−1n=0 [ΦnO; 1/N ], S[∗]) ⇐==⇒
identification

MC(Ω)(O, S[∗](νu)). (11.31)

Problem 11.13. [Monty Hall problem, cf.[33]].

The Monty Hall problem is as follows (cf. Problem 5.12, Remark 5.13, Problem 8.8) :

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,

“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the

others, goats.

(C) The host knows the fact that the probability that the car was set behind the

k-th door (i.e., “number k”) is given by pk (k = 1, 2, 3), for example, p1 = 3/7,

p2 = 1/7, p3 = 3/7. But you do not know this fact.
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You pick a door (strictly speaking, you pick a door at random), say number 1, and

the host, who knows what’s behind the doors, opens another door, say “number 3”,

which has a goat. He says to you, “Do you want to pick door number 2?” Is it to

your advantage to switch your choice of doors?

? ? ?

Door Door Door

Number 1 Number 2 Number 3

[Answer]. Put Ω = {ω1, ω2, ω3}, where ω1 [resp. ω2, ω3] means the state that the car

is behind the door number 1 [resp. the door number 2, the door number 3]. Define the

observable O ≡ ({1, 2, 3}, 2{1,2,3}, F ) in C(Ω) such that

[F ({1})](ω1) = 0.0, [F ({2})](ω1) = 0.5, [F ({3})](ω1) = 0.5, 2

[F ({1})](ω2) = 0.0, [F ({2})](ω2) = 0.0, [F ({3})](ω2) = 1.0,

[F ({1})](ω3) = 0.0, [F ({2})](ω3) = 1.0, [F ({3})](ω3) = 0.0, (11.32)

Thus, we have the unintentional randommeasurementMC(Ω)(⊕2
n=0[Φ

nO; 1/3], S[∗]) (where

Φ : C(Ω)→ C(Ω) is ergodic). Theorem 11.12 says that

MC(Ω)(⊕2
n=0 [Φ

nO; 1/3], S[∗])⇐⇒MC(Ω)(O, S[∗](νu)) (11.33)

where νu({ω1}) = νu({ω2}) = νu({ω3}) = 1/3. Thus, it suffices to consider the statistical

measurement MC(Ω)(O, S(νu)). Here, note that

• By the statistical measurement MC(Ω)(O, S[∗](νu)), you obtain a measured value 3,

which corresponds to the fact that the host said “Door (number 3) has a goat”. Then,

the posttest state νpost ( ∈Mm
+1(Ω)) is given by

νpost =
F ({3})× νu〈
νu, F ({3})

〉 . (11.34)

2Strictly speaking, F ({1})(ω1) = 0.5 and F ({2})(ω1) = 0.5 should be assumed in the problem (P)
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That is,

νpost({ω1}) = 1/3, νpost({ω2}) = 2/3, νpost({ω3}) = 0, (11.35)

and thus, you should pick door number 2.

�
Remark 11.14. [ Four answers to Monty Hall problem]. In this book four answers to the

Monty Hall problem are presented in Problem 5.12, Remark 5.13, Problem 8.8, Problem

11.13. However, I believe that the Monty Hall problem in Problem 11.13 is the most

natural.

�
Problem 11.15. [The problem of three prisoners, cf. Problem 8.10 and Remark 8.11].

Consider the following problem:

(P) Three men, A, B, and C were in jail. A knew that one of them was to be set free

and the other two were to be executed. But he did not know who was the one to

be spared. To the jailer who did know, A said, “Since two out of the three will

bee executed, it is certain that either B or C will be, at least. You will give me

no information about my own chances if you give me the name of one man, B or

C, who is going to be executed.” Accepting this argument after some thinking, the

jailer said, “C will be executed.” Thereupon A felt happier because now either he

or C would go free, so his chance had increased from 1/3 to 1/2. This prisoner’s

happiness may or may not be reasonable. What do you think?

W J A B C- -
“C will be executed”

(Q) (Continued from the above (P)). There is a woman, who was proposed to by the

three prisoners A, B and C. She listened to the conversation between A and the

jailer. Thus, assume that she has the same information as A has. Then, we have

the following problem:
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(]) Whose proposal should she accept?

[Answer to (P)]. Let Ω (≡ {ωa, ωb, ωc}) and O ≡ (X ≡ {xA, xB, xC}, 2{xA,xB ,xC}, F ) be

as in Problem 8.10. Since A has no information, the unintentional random measure-

ment MC(Ω)(⊕2
k=0[Φ

kO; 1/3], S[∗](ν0)) (where Φ : C(Ω)→ C(Ω) is ergodic) is considered.

Theorem 11.12 asserts the following identification:

MC(Ω)(⊕2
k=0[Φ

kO; 1/3], S[∗]) ⇐==⇒
identification

MC(Ω)(O, S[∗](ν0)) (11.36)

where ν0 ( ∈Mm
+1(Ω)) is defined by

ν0({ωa}) = 1/3, ν0({ωb}) = 1/3, ν0({ωc}) = 1/3. (11.37)

Thus, we can assume that the (P) in the above is the same as the (P) in Problem 8.10.

Therefore, we get that

νpost({ωa}) =
ν0({ωa})

2
ν0({ωa})

2
+ ν0({ωb})

= 1/3, νpost({ωb}) =
ν0({ωb})

ν0({ωa})
2

+ ν0({ωb})
= 2/3,

νpost({ωc}) = 0. (11.38)

Therefore, we conclude that

• the prisoner’s happiness is not reasonable. That is because ν0({ωa}) = 1/3 =

νpost({ωa}).

[Answer to (Q)]. In the above (11.38), we see that

νpost({ωa}) = 1/3, νpost({ωb}) = 2/3, νpost({ωc}) = 0. (11.39)

Thus, we conclude that

• she should choose the prisoner B. That is because

νpost({ωc}) = 0 < νpost({ωa}) = 1/3 < νpost({ωb}) = 2/3. (11.40)

�


