
Title Chapter 8 : Statistical measurements in C∗-algebraic formulation
Sub Title
Author 石川, 史郎(Ishikawa, Shiro)

Publisher Keio University Press Inc.
Publication year 2006

Jtitle Mathematical Foundations of Measurement Theory (測定理論の数学的基礎). (2006. ) ,p.175- 223 
JaLC DOI
Abstract
Notes
Genre Book
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO52003001-00000000-

0175

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Chapter 8

Statistical measurements in
C∗-algebraic formulation

As mentioned in the beginning of Chapter 2, measurement theory (MT) can be classified into two
subjects, i.e., “(pure) measurement theory (PMT)” and “statistical measurement theory (SMT)”.
That is,

MT (=“measurement theory”)

 PMT (=“(pure) measurement theory”) in Chapters 2 ∼ 7

SMT (=“statistical measurement theory”) in Chapters 8 ∼
(8.1)

PMT is essential, and it is formulated as follows:

PMT = measurement

[Axiom 1 (2.37)]

+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra
. (8.2)

(=(1.4))

Here it should be noted that the state ρp is always assumed to be pure, i.e., ρp ∈ Sp(A∗). In this
chapter we study the statistical measurement for a statistical state, i.e., the measurement in the
case that the state is distributed. The distribution (i.e., a statistical state) is represented by a
mixed state ρm ( ∈ Sm(A∗)). The Statistical MT (i.e., SMT) is formulated as follows:

SMT = statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra , (8.3)

where Proclaim 1 is characterized as follows:

“Proclaim 1” = “Axiom 1” + “statistical state”
(the probabilistic interpretation of mixed state)

(8.4)

Thus, the (8.3) is also rewritten such as

SMT = PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

in C∗-algebra . (8.5)

Therefore it should be noted that there is no SMT without PMT. Also, we add “belief measurement
theory” in §8.6 and “principal components analysis” in §8.7.
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176CHAPTER 8. STATISTICALMEASUREMENTS IN C∗-ALGEBRAIC FORMULATION

8.1 Statistical measurements (C∗-algebraic formula-

tion)

8.1.1 General theory of statistical measurements

Axiom 1 (proposed in §2.4) says that the measurement of an observableO
(
≡ (X,F, F )

)
for the system with the state ρp ( ∈ Sp(A∗)) induces the sample space (X,F, P ( · ) ≡
ρp(F ( · ))). That is, Axiom 1 says symbolically that:

“observable”
(X,F,F ) in A

and “state”
ρp∈Sp(A∗)

=⇒
measurement

“sample space”
(X,F,P (·)≡ρp(F (·))) .

Here it should be noted that the state must be always pure, i.e., ρp ∈ Sp(A∗) in Axiom

1. However we sometimes want to generalize the concept of “state”, i.e., to introduce

“statistical state”, which is represented by a mixed state ρm (∈ Sm(A∗)). That is, we

assert (in Proclaim 1 later) that

[]] “statistical state” = “mixed state”
(mathematics)

+ “probabilistic interpretation”.

Also, it should be noted that we have already studied “S-states” in Chapter 6, which

is one of the aspects of the statistical state. Although the statistical state has various

aspects, we begin with the following example, which will promote a better understanding

of the concept of “statistical state”.

Example 8.1. [Coin-tossing and urn problem]. There are two urns U1 and U2. The urn

U1 [resp. U2] contains 8 white and 2 black balls [resp. 4 white and 6 black balls]. Under

the following identification (cf. (5.16) in Example 5.8):

U1 ≈ ω1, U2 ≈ ω2,

we regard Ω
(
≡ {ω1, ω2}

)
as the state space. And consider the observable O

(
≡ (X ≡

{w, b}, 2{w,b}, F )
)
in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6. (8.6)

U1 ≈ ω1 U2 ≈ ω2
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Here consider the following procedures (P1) and (P2).

(P1) One of the two (i.e., ω1 or ω2) is chosen by an unfair tossed-coin (Cp,1−p), i.e.,

Head (100p%) → ω1, Tail (100(1− p)%) → ω2 (0 ≤ p ≤ 1). (8.7)

The chosen urn is denoted by [∗](∈ {ω1, ω2}). Here define the mixed state ν0(∈
Mm

+1(Ω)) such that ν0 = pδω1 + (1 − p)δω2 (i.e., ν0({ω1}) = p, ν0({ω2}) = 1 − p),
which is considered to be “the distribution of [∗]”. Thus we call the ν0 a statistical

state.

(P2) Take one ball, at random, out of the urn chosen by the procedure (P1). That is, we

take the measurement MC(Ω)(O, S[∗]).

Then we have the following question:

(Q) Calculate the probability that a measured value “w” [resp. “b”] is obtained by the

above measurement MC(Ω)(O, S[∗]).

[Answer]. The “measurement” defined in the above (P1) and (P2) is denoted by

MC(Ω)(O, S[∗]([δω1 ; p]⊕ [δω2 ; 1− p])). (8.8)

This may be called a “probabilistic measurement”, and the symbol [δω1 ; p]⊕ [δω2 ; 1− p]
may be called a “probabilistic state”. Note that:

(i) the probability that [ ∗ ] = δω1 [resp. [ ∗ ] = δω2 ] is given by p [resp. 1− p].

(ii) If [ ∗ ] = δω1 [resp. if [ ∗ ] = δω2 ], the probability that the measured value obtained

by MC(Ω)(O, S[∗]) is equal to x ( ∈ {w, b}) is, by Axiom 1, given by

M(Ω)

〈
δω1 , F ({x})

〉
C(Ω)

= 0.8 ( if x = w), = 0.2 ( if x = b),[
resp. M(Ω)

〈
δω2 , F ({x})

〉
C(Ω)

= 0.4 ( if x = w), = 0.6 ( if x = b)
]
.

Thus, under the condition (P1), the probability that the measured value obtained by the

measurement MC(Ω)(O, S[∗]) is equal to x ( ∈ {w, b}) is given by

P ({x}) =
∫
Ω

M(Ω)

〈
δω, F ({x})

〉
C(Ω)

ν0(dω) = M(Ω)

〈
ν0, F ({x})

〉
C(Ω)

=

{
0.8p+ 0.4(1− p) ( if x = w),
0.2p+ 0.6(1− p)) ( if x = b).

This is the answer to the above question (Q). Summing up, we see:
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(]) There is a reason that the “measurement” MC(Ω)(O, S[∗]([δω1 ; p]⊕ [δω2 ; 1−p])) is one
of interpretations of the “statistical measurement” MC(Ω)(O, S[∗](ν0)), (cf. Proclaim

1 (8.10) later). Here the mixed state ν0(∈ Mm
+1(Ω)) is called a “statistical state”,

which represents the distribution of [ ∗ ]. And, the probability that the measured

value x ( ∈ {w, b}) is obtained by the measurement MC(Ω)(O, S[∗](ν0)), is given by

C(Ω)∗

〈
ν0, F ({x})

〉
C(Ω)

(
≡
∫
Ω
C(Ω)∗

〈
δω, F ({x})

〉
C(Ω)

ν0(dω)
)
.

Thus we consider that

S[∗]([δω1 ; p]⊕ [δω2 ; 1− p]))
probabilistic form←−−−−−−−−−−−−−−−−−−−−−→
statistical form

S[∗](ν0) (8.9)

That is, the statistical state ν0 is the mixed state with probabilistic interpretation, or, the

mixed state generated by coin-tossing.

Thus, we see

The typical example of MC(Ω)(O, S[∗](ν0))

p
-

1-p
�[∗]

Pick up a ball from the urn behind the curtain

ω1 ω2

On the other hand, we recall that

The typical example of MC(Ω)(O, S[∗])

- �[∗]

Pick up a ball from the urn behind the curtain

ω1 ω2

�
Now, we introduce “statistical measurement MA(O, S[∗](ρ

m) )”. The mixed state

ρm (with the probabilistic interpretation) is called an statistical state. We propose the
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following “Proclaim 1”, which should be read by the hint of the statement (]) in Example

8.1.

PROCLAIM 1. [The probabilistic interpretation of mixed states, cf.
[44]]. Consider a statistical measurement MA

(
O ≡ (X,F, F ), S[∗](ρ

m)
)

formulated in a C∗-algebra A. Then, the probability that x ( ∈ X), the
measured value obtained by the statistical measurement MA(O, S[∗](ρ

m) ),
belongs to a set Ξ ( ∈ F) is given by

ρm(F (Ξ))
(
≡ A∗

〈
ρm, F (Ξ)

〉
A

)
.

The statistical measurement MA(O, S[∗](ρ
m) ) is sometimes denoted by

MA(O, S(ρ
m) ). (8.10)

That is, Proclaim 11 asserts that

[]] “statistical state” = “mixed state”
(mathematics)

+ “probabilistic interpretation”
(such as coin-tossing)

2 (8.11)

Note that the above “Proclaim 1” should be understood as

“Proclaim 1” = “Axiom 1” + “statistical state”
(the probabilistic interpretation of mixed state)

Therefore, the Statistical MT (i.e., SMT) is formulated as follows:

SMT =statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

= PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

in C∗-algebra.

Therefore, we stress:

• there is no SMT without PMT. (8.12)

Also, for the relation between PMT and SMT, see Remark 8.3 [hybrid measurement

theory] later.

The following definition is the same as Definition 3.1. Here, it should be noted that

“Markov relation among systems (i.e., {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
)” and “sequential

1Proclaim 1 is somewhat methodological. Thus, in [44], “Proclaim 1” was called “Method 1”.
2As seen later (i.e., §8.7), Bertrand’s paradox is due to the confusion between mixed states (mathemat-

ical concept) and statistical states (measurement theoretical concept). In order to avoid this confusion,
it may be recommended to remember that there is always “coin-tossing” behind “statistical state”.
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observable (i.e., [{O}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
])” are common to both PMT and

SMT. This implies that Axiom 2 is common to PMT and SMT.

Definition 8.2. [General systems in statistical measurements, cf. Definition 3.1]. The

pair S[∗](ρ
m
t0
) ≡ [S(ρmt0), {Φt1,t2 : At2 → At1}(t1,t2)∈T 2

≤
] is called a general system with an

initial state S(ρmt0) if it satisfies the following conditions (i)∼(iii).

(i) With each t (∈ T ), a C∗-algebra At is associated.

(ii) Let t0 (∈ T ) be the root of T . And, assume that a system S has the state ρmt0 (∈
Sm(A∗t0)) at t0, that is, the initial state is equal to ρpt0 .

(iii) For every (t1, t2) ∈ T 2
≤, Markov operator Φt1,t2 : At2 → At1 is defined such that

Φt1,t2Φt2,t3 = Φt1,t3 holds for all (t1, t2), (t2, t3) ∈ T 2
≤.

The family {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
is also called a “Markov relation among systems”.

Let an observable Ot ≡ (Xt,Ft, Ft) in a C∗-algebra At be given for each t ∈ T . The pair

[{O}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
≤
] is called a “sequential observable”.

�
Again note that Axiom 2 is common to PMT and SMT. Thus we see,

measurements relation among systems

PMT Axiom 1 (2.37) Axiom 2 (3.26)

SMT Proclaim 1 (8.10) Axiom 2 (3.26)

In what follows, we introduce some examples, which promote a better understanding

of Proclaim 1. That is, readers will see that statistical states are not only generated by

“coin-tossing” but also by several causes, for example, “Schrödinger picture”, “Bayes

theorem”, etc.

Remark 8.3. [(i) Axiom 1 and Proclaim 1, hybrid measurement theory (= “HMT” )].

For example, consider a pure state class Sp(C(Ω1)
∗)) ( ≡ M

p
+1(Ω1)) in Axiom 1 and a

mixed state class Sm(C(Ω2)
∗)) ( ≡Mm

+1(Ω2)) in Proclaim 1. Then we sometimes consider

the tensor state class Sp(C(Ω1)
∗)) ⊗ Sm(C(Ω2)

∗)), which is defined by{
δω1 ⊗ ρm1 ∈Mm

+1(Ω1 × Ω2)
∣∣∣ ω1 ∈ Ω1, ρ

m
2 ∈Mm

+1(Ω2)
}
.

This is called a “hybrid state class”. In applications, we often devote ourselves to the

hybrid measurement theory (= HMT).
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[(ii) Axiom 1 and Proclaim 1, hybrid measurement theory]. For each µ( ∈ R), consider a

mixed state ρmµ ( ∈Mm
+1(R)) such that

ρmµ (D) =
1√
2πσ2

∫
D

exp[−(ω − µ)2

2σ2
]dω (∀D ∈ BR, Borel field),

where σ is a fixed positive number. Let O ≡ (X,F, F ) be an observable in C0(R). Then,

we have the (statistical) measurement MC0(R)(O, S(ρ
m
µ )). On the other hand, define the

observable Ô = (X,F, F̂ ) in C0(R) such that:

[F̂ (Ξ)](µ) =
1√
2πσ2

∫
R

[F (Ξ)](ω) exp[−(ω − µ)2

2σ2
]dω (∀µ ∈ R,Ξ ∈ F).

Also note that

C0(R)∗

〈
ρmµ , F (Ξ)

〉
C0(R)

=
1√
2πσ2

∫
R

[F (Ξ)](ω) exp[−(ω − µ)2

2σ2
]dω

=
C0(R)∗

〈
δµ, F̂ (Ξ)

〉
C0(R)

,

which urges us to consider the following identification:

MC0(R)(O, S(ρ
m
µ ))

(statistical measurement)

←→ MC0(R)(Ô, S[δµ])
(pure measurement)

.

[(iii): Axiom 1 and Proclaim 1, hybrid measurement theory]. Let Λ1 and Λ2 be com-

pact spaces (or compact index sets). For each λ1( ∈ Λ1), consider a (parameterized)

mixed state ρmλ1( ∈ Mm
+1(Ω)). And further, for each λ2( ∈ Λ2), consider a parameter-

ized observable Oλ2 ≡ (X,F, Fλ2) in C(Ω). Then, we have the (statistical) measurement

MC(Ω)(Oλ2 , S(ρ
m
λ1
)) in C(Ω). Define the observable Ô = (X,F, F̂ ) in C(Λ1 × Λ2) such

that:

[F̂ (Ξ)](λ1, λ2) = C(Ω)∗

〈
ρmλ1 , Fλ2(Ξ)

〉
C(Ω)

(∀(λ1, λ2) ∈ Λ1 × Λ2,Ξ ∈ F).

That is, we see

C(Ω)∗

〈
ρmλ1 , Fλ2(Ξ)

〉
C(Ω)

=
C(Λ1×Λ2)

∗

〈
δ(λ1,λ2), F̂ (Ξ)

〉
C(Λ1×Λ2)

,

which urges us to consider the following identification:

MC(Ω)(Oλ2 , S(ρ
m
λ1
))

(statistical measurement)

←→ MC(Λ1×Λ2)(Ô, S[δ(λ1,λ2)]
)

(pure measurement)

. (8.13)
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Such an identification is often used in measurement theory. In this sense, the classification

(8.1) should be considered to be flexible. �
Remark 8.4. [Natural mixed state3 and statistical state, Bertrand’s paradox]. For

example, consider the square [0, 1]× [0, 1] ( ⊂ R2). This square has a natural measure m

(which is usually called the Lebesgue measure) such that m([a, b]× [c.d]) = |b− a| · |d− c|
(0 ≤ a ≤ b ≤ 1 and 0 ≤ c ≤ d ≤ 1). Here, it should be noted that m is a mixed

state (i.e., m ∈ Mm
+1([0, 1] × [0, 1])), however, it is not a statistical state. That is, the

natural mixed state is not always a statistical state. We should recall that there is no

statistical state without the probabilistic interpretation (such as coin-tossing). This is

just what Bertrand’s paradox (cf. [35], also see §8.7 Appendix (Bertrand’d paradox))

teaches us. That is because Bertrand’s paradox says that, if “the natural mixed state” is

unreasonably regarded as “statistical state”, we encounter a serious paradox (since a

natural mixed state is not always unique). Also, recall Chapter 4 (Boltzmann’s statistical

mechanics), in which the normalized invariant measure is not regarded as “probability”4

but “normalized staying time”. (Continued to §8.7 Appendix (Bertrand’s paradox))

�

8.1.2 Examples of statistical measurements

In Example 8.1, we showed “MC(Ω)(O, S[∗]([δω1 ; p]⊕[δω2 ; 1−p]))” as the typical example

of statistical measurement MC(Ω)(O, S[∗](ν0)). In this section, we study the other typical

examples.

The following example (Schrödinger picture) was already studied more precisely in

Chapter 6.

Example 8.5. [(i): Schrödinger picture I]. Let Ψ0,1 : A1 → A0 be a Markov operator.

Let ρp0 ∈ Sp(A∗0). That is, we consider the following general system:

[A0]
(pure) stateρp0

Ψ0,1←− [A1]. (8.14)

Also, consider any observable O1 ≡ (X1,F1, F1) in a C∗-algebra A1. And put Õ0 =

3The “natural mixed state ρ” usually means the “invariant mixed state ρ” for some “natu-
ral“homomorphism Φ : A→ A. That is, it holds that Φ∗(ρ) = ρ.

4Such probability may be called “a priori probability”. Thus we consider that the concept of “a priori
probability” is nonsense.
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(X1,F1,Ψ0,1F1). Thus we have the measurement

MA0(Õ0, S[ρp0]
).

Axiom 1 says that the measurementMA0(Õ0, S[ρp0]
) generates the sample space (X1,F1, P )

such that:

P (Ξ1) = A∗
0

〈
ρp0,Ψ0,1F1(Ξ1)

〉
A0

(8.15)

=
A∗
1

〈
Ψ∗0,1ρ

p
0, F1(Ξ1)

〉
A1

(∀Ξ1 ∈ F). (8.16)

This implies that the measurement MA0(Õ0, S[ρp0]
) can be considered to be equal to the

statistical measurementMA1(O1, S(Ψ
∗
0,1ρ

p
0)). That is, MA0(Õ0, S[ρp0]

) is the representation

due to the Heisenberg picture, and MA1(O1, S[∗](Ψ
∗
0,1ρ

p
0)) is the representation due to the

Schrödinger picture. Summing up, we have the identification:

[the representation by Heisenberg picture]

MA0(Ψ0,1O1, S[ρp0]
)

(meaningful in the sense of Axiom 1)

identification←→
[the representation by Schödinger picture]

MA1(O1, S(Ψ
∗
0,1ρ

p
0))

(meaningful in the sense of Proclaim 1)

(8.17)

in which the left-hand side is understood in Axiom 1 and the right-hand side is understood

in Proclaim 1. For completeness, we explain the meaning of the identification (8.17) as

follows: The left-hand side of (8.17) means that

(•1) Taking a measurement MA0(Ψ0,1O1, S[ρp0]
) N-times

(
that is, taking a measurement

MA0(Ψ0,1O1, S[ρp0]
), and taking a measurement MA0(Ψ0,1O1, S[ρp0]

),..., and taking a

measurement MA0(Ψ0,1O1, S[ρp0]
)
)
, we obtain measured values x1, x2,...,xN . And

thus we have the sample space (X,F, ρp0(Ψ0,1F ( · ))) (= (8.15)).

The right-hand side of (8.17) means that

(•2) Taking a statistical measurement MA1(O1, S(Ψ
∗
0,1ρ

p
0)) N-times

(
that is, taking a

measurementMA1(O1, S[∗1](Ψ
∗
0,1ρ

p
0)), and taking a measurementMA1(O1, S[∗2](Ψ

∗
0,1ρ

p
0))

,..., and taking a measurement MA1(O1, S[∗N ](Ψ
∗
0,1ρ

p
0))
)
, we obtain measured values

x′1, x
′
2,...,x

′
N . And thus we have the sample space (X,F, (Ψ∗0,1ρ

p
0)(F ( · ))) (= (8.16)).

Since (8.15) = (8.16), we identify (•1) with (•2).5

[(ii): Schrödinger picture II]. Let Ψ1,2 : A2 → A1 be a Markov operator. Let ρm1 (∈
Sm(A∗1)) be a statistical state. That is, we consider the following general system:

5Strictly speaking. we must say “we regard (•2) as (•1)”. That is because Axiom 2 says that Heisenberg
picture representation is more fundamental than Schrödinger picture representation.
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[A1]
statistical stateρm1

Ψ0,1←− [A2]. (8.18)

Here, let O2 ≡ (X2,F2, F2) be an observable in a C∗-algebra A2. And put Õ1 =

(X2,F2,Ψ1,2F2). Since ρm1 (∈ Sm(A∗1)) is a statistical state (i.e., the probabilistic in-

terpretation is added), we have the statistical measurement

MA1(Õ1 ≡ (X2,F2,Ψ1,2F2), S(ρ
m
1 )), (8.19)

which generates the sample space (X2,F2, P ) such that:

P (Ξ2) = A∗
1

〈
ρp1,Ψ0,1F2(Ξ2)

〉
A1

. (8.20)

This is equal to

A∗
2

〈
Ψ∗0,1ρ

m
1 , F2(Ξ2)

〉
A2

, (8.21)

which implies that the statistical measurement MA1(Õ1, S(ρ
m
1 )) can be considered to be

equal to the statistical measurementMA2(O2, S(Ψ
∗
1,2ρ

m
1 )). That is, MA1(Õ1, S(ρ

m
1 )) is the

representation due to Heisenberg picture, and MA2(O2, S(Ψ
∗
1,2ρ

m
1 )) is the representation

due to Schrödinger picture. Summing up, we have the identification:6

[the representation by Heisenberg picture]

MA1(Ψ1,2O2, S(ρ
m
1 ))

(meaningful in the sense of Proclaim 1)

identification←→
[the representation by Schödinger picture]

MA2(O2, S(Ψ
∗
1,2ρ

m
1 ))

(meaningful in the sense of Proclaim 1)

(8.22)

in which the both sides are understood in Proclaim 1.

�
The statistical state also appears in Bayes theorem, which was already studied in

Chapter 6.

Example 8.6. [A statistical state in Bayes theorem]. (continued from Example 8.1)

Assume the situation (P1) ∼ (P2) in Example 8.1 (Coin-tossing). That is, consider the

following statistical measurement MC(Ω)(O, S[∗](ν0)):

6Recall Axiom 2, which says that MA1(Ψ1,2O2, S(ρ
m
1 )) is more fundamental than

MA2(O2, S(Ψ
∗
1,2ρ

m
1 )).
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The picture of MC(Ω)(O, S[∗](ν0))

p
-

1-p
�[∗]

Pick up a ball from the urn behind the curtain

ω1 ω2

Next, consider the following procedure.

(P3) We find that the ball sampled in (P2) is a white one. That is, by the statistical

measurement MC(Ω)(O, S(ν0)) in (P2), we obtain the measured value w(∈ {w, b}).

(P4) After the above (P3), we further take a “measurement” of an observable O1 ≡
(Y,G, G). And, we know that the measured value belongs to Γ (∈ G).

In what follows we study the above (P3) and (P4). The procedures (P1) ∼ (P4) can be

characterized as the statistical measurement MC(Ω)(O×O1, S(ν0)). The probability that

the measured value (w, y)(∈ {w, b} × Γ) obtained by MC(Ω)(O×O1, S(ν0)) belongs to Γ

is given by 〈
ν0, F ({w})×G(Γ)

〉
.

Then, under the condition that we know (P3), the probability that the measured value y

( ∈ Y ) is obtained in (P4) is given by the conditional probability

M(Ω)

〈
ν0, F ({w})×G(Γ)

〉
C(Ω)

M(Ω)

〈
ν0, F ({w})

〉
C(Ω)

(
=

M(Ω)

〈 F ({w})× ν0
M(Ω)

〈
ν0, F ({w})

〉
C(Ω)

, G(Γ)
〉
C(Ω)

)
. (8.23)

Since O1( ≡ (Y,G, G)) is arbitrary observable in C(Ω), this implies the following state-

reduction:

pretest state “ν0”
before “white” is obtained in (P2)

−→ posttest state “ν1”
after “white” is obtained in (P2)

(
=
F ({w})× ν0〈
ν0, F ({w})

〉). (8.24)

That is because the probability that the measured value obtained by MC(Ω)(O1, S(ν1))

belongs to Γ is given by

M(Ω)

〈
ν1, G(Γ)

〉
C(Ω)

(8.25)
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and it must hold that (8.23)=(8.25). Here, note that this new mixed state ν1(∈Mm
+1(Ω))

satisfies

ν1({ω}) =
ν0({ω})× [F ({w})](ω)

ν0(ω1)× [F ({w})](ω1) + ν0(ω2)× [F ({w})](ω2)
(∀ω ∈ Ω ≡ {ω1, ω2}).

(8.26)

Then, it holds that

ν1({ω1}) =
0.8p

0.8p+ 0.4(1− p)
=

2p

1 + p
,

ν1({ω2}) =
0.4(1− p)

0.8p+ 0.4(1− p)
=

1− p
1 + p

. (8.27)

Since

[ • ] the ν1 is the statistical state after the (P3),

the “measurement” in (P4) is represented by the statistical measurementMC(Ω)(O2, S(ν1)),

that is,

The picture of S([δω1 ;
2p
1+p

]⊕ [δω2 ;
1−p
1+p

]) (≈ S(ν1))

2p
1+p-

1−p
1+p�[ ∗]

ω1 ω2

�
Example 8.7. [(i): A statistical state in the repeated measurement]. Let ρm ∈ Sm(A∗).

By the Krein-Milman theorem (cf. [92]), we can choose a sequence {ρpk}Nk=1 in Sp(A∗)

such that:

1

N

N∑
k=1

ρpk ≈ ρm (in the sense of the weak∗-topology of Sm(A∗)). (8.28)

for a sufficiently large natural number N . Consider an observable O ≡ (X, F, F ) in

A. And consider the measurement M⊗A
(
⊗Nk=1 O ≡ (XN , FN ,

⊗N
k=1 F ), S[⊗Nk=1ρ

p
k]

)
formulated in the tensor C∗-algebra

⊗N
k=1A, where ( ⊗Nk=1 F )(X

m−1 × Ξm × XN−m) =

( ⊗m−1k=1 I) ⊗ F (Ξm) ⊗ ( ⊗Nk=m+1 I) (∀Ξm ∈ F, 1 ≤ ∀m ≤ N). For completeness, note
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the measurement M⊗A
(
⊗Nk=1 O, S[⊗Nk=1ρ

p
k]

)
is meaningful in the sense of Axiom 1. Let

(x1, x2, ..., xN) be a measured value obtained by the measurementM⊗A
(
⊗Nk=1O, S[⊗Nk=1ρ

p
k]

)
.

Thus, by Axiom 1, we can “almost surely” expect that

ρm(F (Ξ)) ≈ ][{k : xk ∈ Ξ}]
N

(∀Ξ ∈ F) (8.29)

holds for a sufficiently large N , where ][B] is the number of the elements of a set B. That

is because the probability that a measured value obtained by MA

(
O, S[ρpk]

)
belongs to Ξ

( ∈ F) is given by ρp(F (Ξ)). In the above sense (8.29), the mathematical symbol MA

(
O,

S(ρm)
)
(or, MA

(
O, S( 1

N

∑N
k=1 ρ

p
k)
)
) can be considered as the statistical measurement,

which may be called a “repeated measurement”.

[(ii)]. Let Ω be a finite set, i.e., Ω ≡ {ω1, ω2, ..., ωM}. Let O ≡ (X,F, F ) be an observ-

able in C(Ω). Consider the repeated measurement M⊗NMn=1C(Ω)( ⊗NMn=1 O, S[⊗NMn=1δωmodM [n]
])

(which may be called a cyclic measurement), where modM [n] is the integer such that

n = Mj̇ + modM [n] and 0 ≤ modM [n] ≤ M − 1. Let (x1, x2, ..., xNM) be a mea-

sured value obtained by the cyclic measurement M⊗NMn=1C(Ω)(⊗NMn=1 O, S[⊗NMn=1δωmodM [n]
])
(
=

⊗NMn=1MC(Ω)(O, S[δωmodM [n]
])
)
. Thus, by Axiom 1, we can “almost surely” expect that

C(Ω)∗

〈δω1 + δω2 + · · ·+ δωM
M

,F (Ξ)
〉
C(Ω)
≈ ][{k : xk ∈ Ξ}]

NM
(∀Ξ ∈ F) (8.30)

holds for a sufficiently large N . In this sense,

• we often use the repeated statistical measurement ⊗Nn=1MC(Ω)(O, S(
δω1+δω2+···+δωM

M
))(

or more precisely, the repeated probabilistic measurement⊗Nn=1MC(Ω) (O, S[∗](⊕Mm=1

[δωm ; 1/M ])), cf. (8.8)
)
as a substitute for M⊗NMn=1C(Ω)(⊗NMn=1 O, S[⊗NMn=1δωmodM [n]

]).

That is, in the following table (in the case that Ω = {ω1, ω2}), the measured data

(x1, x2, ..., x2N) and the measured data (y1, y2, ..., y2N) have the same statistical properties

(e.g., average, variance, etc.).
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measurement · · · · · ·measured

value
| measurement · · · · · ·measured

value

MC(Ω)(O, S[δω1 ]
) · · · · · · x1 | MC(Ω)(O, S(

δω1 + δω2

2
)) · · · · · · y1

MC(Ω)(O, S[δω2 ]
) · · · · · · x2 | MC(Ω)(O, S(

δω1 + δω2

2
)) · · · · · · y2

MC(Ω)(O, S[δω1 ]
) · · · · · · x3 | MC(Ω)(O, S(

δω1 + δω2

2
)) · · · · · · y3

MC(Ω)(O, S[δω2 ]
) · · · · · · x4 | MC(Ω)(O, S(

δω1 + δω2

2
)) · · · · · · y4

· · · · · · · · · | · · · · · · · · ·

MC(Ω)(O, S[δω1 ]
) · · · · · · x2N−1 | MC(Ω)(O, S(

δω1 + δω2

2
)) · · · · · · y2N−1

MC(Ω)(O, S[δω1 ]
) · · · · · · x2N | MC(Ω)(O, S(

δω1 + δω2

2
)) · · · · · · y2N

�

8.1.3 Problems (statistical measurements)

Problem 8.8. [Monty Hall problem, cf.[33]]. The Monty Hall problem is as follows (cf.

Problem 5.12, Remark 5.13 and Problem 11.13) :

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,

“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the

others, goats.

(C) You know that the probability that behind the k-th door (i.e., “number k”) is

a car is given by pk (k = 1, 2, 3).
(
For example, consider the two cases that

p1 = p2 = p3 = 1/3, and p1 = 3/7, p2 = 1/7, p3 = 3/7.
)

You pick a door, say number 1, and the host, who knows what’s behind the doors,

opens another door, say “number 3”, which has a goat. He says to you, “Do you

want to pick door number 2?” Is it to your advantage to switch your choice of doors?

? ? ?

Door Door Door

Number 1 Number 2 Number 3



8.1. STATISTICAL MEASUREMENTS (C∗-ALGEBRAIC FORMULATION) 189

[Answer]. Put Ω = {ω1, ω2, ω3}, where

ω1 · · · · · · the state that the car is behind the door number 1

ω2 · · · · · · the state that the car is behind the door number 2

ω3 · · · · · · the state that the car is behind the door number 3.

Define the observable O ≡ ({1, 2, 3}, 2{1,2,3}, F ) in C(Ω) such that

[F ({1})](ω1) = 0.0, [F ({2})](ω1) = 0.5, [F ({3})](ω1) = 0.5, 7

[F ({1})](ω2) = 0.0, [F ({2})](ω2) = 0.0, [F ({3})](ω2) = 1.0,

[F ({1})](ω3) = 0.0, [F ({2})](ω3) = 1.0, [F ({3})](ω3) = 0.0. (8.31)

Define the statistical state ν0 ( ∈Mm
+1(Ω)) such that:

ν0({ω1}) = p1, ν0({ω2}) = p2, ν0({ω3}) = p3 (8.32)

where p1 + p2 + p3 = 1, 0 ≤ p1, p2, p3 ≤ 1. Thus we have a statistical measurement

MC(Ω)(O, S[∗](ν0)). Note that

(1) : “measured value 1 is obtained” ⇐⇒ the host says “Door (number 1) has a goat”

(probability←→ 0)

(2) : “measured value 2 is obtained” ⇐⇒ the host says “Door (number 2) has a goat”

(probability←→ 0.5p1 + 1.0p3)

(3) : “measured value 3 is obtained” ⇐⇒ the host says “Door (number 3) has a goat”

(probability←→ 0.5p1 + 1.0p2)

Here, assume that

• By the statistical measurement MC(Ω)(O, S[∗](ν0)), you obtain a measured value 3.

which corresponds to the fact that the host said “Door (number 3) has a goat”. Then,

the posttest state νpost ( ∈Mm
+1(Ω)) is given by

νpost =
F ({3})× ν0〈
ν0, F ({3})

〉 . (8.33)

That is,

νpost({ω1}) =
p1
2

p1
2
+ p2

, νpost({ω2}) =
p2

p1
2
+ p2

, νpost({ω3}) = 0. (8.34)

Thus,

7Strictly speaking, F ({1})(ω1) = 0.5 and F ({2})(ω1) = 0.5 should be assumed in the problem (P).
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• if p1 = p2 = p3 = 1/3, then it holds that νpost({ω1}) = 1/3, νpost({ω2}) = 2/3,

νpost({ω3}) = 0, and thus, you should pick Door (number 2).

• if p1 = 3/7, p2 = 1/7 and p3 = 3/7, then it holds that νpost({ω1}) = 3/5, νpost({ω2}) =
2/5, νpost({ω3}) = 0, and thus, you should not pick Door (number 2).

Also, more generally, we can say that
if νpost({ω1}) ≤ νpost({ω2})(i.e.,p1 ≤ 2p2), then, you should pick Door (number 2)

if νpost({ω1}) ≥ νpost({ω2})(i.e.,p1 ≥ 2p2), then, you should not pick Door (number 2).

�

Remark 8.9. [P. Erdös]. I learnt the Monty Hall problem in the book [33] (“The Man

Who Loved Only Numbers, The story of Paul Erdös and the search for mathematical

truth”). This problem is famous as the problem in which even P. Erdös made a mistake.

I think that this problem is too profound to understand without measurement theory. In

fact, everyone may confuse the above Problem (P) for p1 = p2 = p3 = 1/3 with Problem

5.12 (i.e., the above problem (P) without the condition (C) ). In fact, in [33] (page 234),

it is written as follows:

(Q) You’re on a game show and you’re given the choice of three doors. Behind one door

is a car, and behind the other two are goats. You choose, say, door 1, and the host,

who knows where the car is, opens another door, behind which is a goat. He now

gives you the choice of sticking with door 1 or switching to the other door? What

should you do?

If you read this description of the Monty Hall problem (in [33]), you may think that the

correct answer should be due to Fisher’s likelihood method, i.e, the answer presented in

Problem 5.12. However, Problem 5.12, Remark 5.13 and Problem 8.8 are not all of the

Monty Hall problem. See Problem 11.13 later (which may be my final answer to the

Monty Hall problem).

�
Problem 8.10. [The problem of three prisoners].

Consider the following problem:

(P) Three men, A, B, and C were in jail. A knew that one of them was to be set free

and the other two were to be executed. But he did not know who was the one to be
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spared.
(
He knew that the probability that A [resp. B, C] will be set free is equal

to 1/3 [resp. 1/3, 1/3], or more generally, pfa [resp. pfb , p
f
c ].
)
To the jailer who did

know, A said, “Since two out of the three will be executed, it is certain that either

B or C will be, at least. You will give me no information about my own chances if

you give me the name of one man, B or C, who is going to be executed.” Accepting

this argument after some thinking, the jailer said, “C will be executed.” Thereupon

A felt happier because now either he or C would go free, so his chance had increased

from 1/3 to 1/2. This prisoner’s happiness may or may not be reasonable. What

do you think?

J A B C- -
“C will be executed”

[Answer]. Put Ω = {ωa, ωb, ωc}, where

ωa · · · · · · the state that A will be set free

ωb · · · · · · the state that B will be set free

ωc · · · · · · the state that B will be set free .

Define the observable O ≡ ({xA, xB, xC}, 2{xA,xB ,xC}, F ) in C(Ω) such that

[F ({xA})](ωa) = 0.0, [F ({xB})](ωa) = 0.5, [F ({xC})](ωa) = 0.5, 8

[F ({xA})](ωb) = 0.0, [F ({xB})](ωb) = 0.0, [F ({xC})](ωb) = 1.0,

[F ({xA})](ωc) = 0.0, [F ({xB})](ωc) = 1.0, [F ({xC})](ωc) = 0.0. (8.35)

Define the statistical state ν0 ( ∈Mm
+1(Ω)) such that:

ν0({ωa}) = pfa, ν0({ωb}) = pfb , ν0({ωc}) = pfc (8.36)

where pfa + pfb + pfc = 1, 0 ≤ pfa, p
f
b , p

f
c ≤ 1, though it may suffice to assume that pfa =

pfb = pfc = 1/3. Here, note that the following (i) and (ii) are equivalent:

8Strictly speaking, [F ({xB})](ωa) = 0.5 and [F ({xC})](ωa) = 0.5 should be assumed in the problem
(P)
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(i) The jailer said to A “C will be executed”.

(ii) By the statistical measurement MC(Ω)(O, S[∗](ν0)), A obtains a measured value xC

Thus, the posttest state νpost ( ∈Mm
+1(Ω)) is given by

νpost =
F ({xC})× ν0〈
ν0, F ({xC})

〉 . (8.37)

That is,

νpost({ωa}) =
pfa
2

pfa
2
+ pfb

, νpost({ωb}) =
pfb

pfa
2
+ pfb

, νpost({ωc}) = 0. (8.38)

Thus,

• if pfa = pfb = pfc = 1/3, it holds that νpost({ωa}) = 1/3, νpost({ωb}) = 2/3,

νpost({ωc}) = 0, and thus, the prisoner’s happiness is not reasonable. That is be-

cause pfa = 1/3 = νpost({ωa}).

• if pfa = 3/7, pfb = 1/7, pfc = 3/7, it holds that νpost({ωa}) = 3/5, νpost({ωb}) = 2/5,

νpost({ωc}) = 0, and thus, the prisoner’s happiness is reasonable. That is because

pfa = 3/7 < 3/5 = νpost({ωa}).

• if pfa = 1/4, pfb = 1/2, pfc = 1/4, it holds that νpost({ωa}) = 1/5, νpost({ωb}) = 4/5,

νpost({ωc}) = 0, and thus, the prisoner’s unhappiness is reasonable. That is because

pfa = 1/3 > 1/5 = νpost({ωa}).

Also, more generally, we can say that
if pfa ≤ νpost({ωa})(i.e.,pfa + 2pfb ≥ 1), the prisoner’s happiness is reasonable

if pfa ≥ νpost({ωa})(i.e.,pfa + 2pfb ≤ 1), the prisoner’s unhappiness is reasonable.

�
Remark 8.11. [(i).The problem of three prisoners in PMT]. Recall that the Monty Hall

problem is also studied in PMT, that is, Problem 5.12 (Fisher’s method) and Remark

5.13 (The moment method). On the other hand, it should be noted that the problem of

three prisoners can not be solved in PMT.

[(ii): The relation between the Monty Hall problem and the problem of three prisoners].

Since the Monty Hall problem and the problem of three prisoners are similar, we add

something concerning the relation between the two. Consider the (P) (in Problem 8.8)

and the (Q) mentioned below.
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(Q) (Continued from the (P) in Problem 8.10). There is a woman, who was proposed

to by the three prisoners A, B and C. She listened to the conversation between A

and the jailer. Thus, assume that she has the same information as A has. Then, we

have the following problem:

(]) Whose proposal should she accept?

[Answer]. For simplicity, consider the case that pfa = pfb = pfc = 1/3. Then we see that

νpost({ωa}) = 1/3, νpost({ωb}) = 2/3, νpost({ωc}) = 0. (8.39)

Thus, she should choose the prisoner B. Here it should be noted that the problem (]) is

the same as the Monty Hall problem. That is, the problem:

“(P) in Problem 8.10” + “(Q) in the above”

includes both the Monty Hall problem and the problem of three prisoners.

�

8.2 General statistical system (Example)

As mentioned in the previous section, the Statistical MT (i.e., SMT) is formulated as

follows:

PMT =measurement

[Axiom 1 (2.37)]

+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra
,

and

SMT = statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra ,

where it should be noted that

“Proclaim 1” = “Axiom 1” + “statistical state”
(the probabilistic interpretation of mixed state)

. (8.40)

Thus we see

SMT =statistical measurement
[Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

= PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

in C∗-algebra .
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That is, Axiom 2 is common to PMT and SMT. This will be explicitly seen in the following

example (= Example 8.12), which should be compared with Example 3.4. Also recalling

Remark 8.3 [hybrid measurement theory (= HMT)], we say that

HMT = hybrid measurement
[Axiom 1 (2.37) and Proclaim 1 (8.10)]

+ the relation among systems
[Axiom 2 (3.26)]

in C∗-algebra .

(8.41)

Here note that PMT and SMT are respectively regarded as one of the aspects of HMT.

Since Axiom 2 is common to PMT and SMT, it is a matter of course that Example

3.4 (in PMT) and Example 8.12 (in SMT) are almost similar.

Example 8.12. [(Continued from Example 3.4) A simple general statistical system,

Heisenberg picture]. Suppose that a tree (T ≡ {0, 1, ..., 6, 7}, π) has an ordered structure

such that π(1) = π(6) = π(7) = 0, π(2) = π(5) = 1, π(3) = π(4) = 2.
(
See the figure

(8.42).
)

Consider a general system S(ρm0 ) ≡ [S(ρm0 ), {At

Φπ(t),t→ Aπ(t)}t∈T\{0}] with the

initial system S(ρm0 ).

A0

A1

A2

A3

A4

A5A6

A7

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

(8.42)

Also, for each t ∈ {0, 1, ..., 6, 7}, consider an observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra

At. Thus, we have a sequential observable [{Ot}t∈T , {Φt,π(t) : At → Aπ(t)}t∈T\{0} ]. Now

we want to consider the following “measurement”,

(]) for a statistical system S(ρm0 ), take a measurement of “a sequential observable

[{Ot}t∈T , {At

Φπ(t),t→ Aπ(t)}t∈T\{0}]”, i.e., take a measurement of an observable O0 at

0( ∈ T ), and next, take a measurement of an observable O1 at 1( ∈ T ), · · · · · · , and
finally take a measurement of an observable O7 at 7( ∈ T ),

which is symbolized by M({Ot}t∈T , S(ρm0 )). Note that the M({Ot}t∈T , S(ρm0 )) is merely

a symbol since only one measurement is permitted (cf. §2.5 Remark(II)). In what follows
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let us describe the above (]) (= M({Ot}t∈T , S(ρm0 ))) precisely. Put

Õt = Ot and thus F̃t = Ft (t = 3, 4, 5, 6, 7).

First we construct the quasi-product observable Õ2 in A2 such as

Õ2 = (X2 ×X3 ×X4, 2
X2×X3×X4 , F̃2) where F̃2 = F2

qp

××××××××× (
qp

×××××××××t=3,4 Φ2,tF̃t),

if it exists. Iteratively, we construct the following:

A0
Φ0,1←−−− A1

Φ1,2←−−− A2

F0

qp

××××××××× Φ0,6F̃6

qp

××××××××× Φ0,7F̃7 F1

qp

××××××××× Φ1,5F̃5y y
F̃0

(F0

qp
×××××××××Φ0,6F̃6

qp
×××××××××Φ0,7F̃7

qp
×××××××××Φ0,1F̃1)

Φ0,1←−−− F̃1

(F1

qp
×××××××××Φ1,5F̃5

qp
×××××××××Φ1,2F̃2)

Φ1,2←−−− F̃2

(F2

qp
×××××××××Φ2,3F̃3

qp
×××××××××Φ2,4F̃4)

.

That is, we get the quasi-product observable Õ1 ≡ (
∏5

t=1Xt, 2
∏5
t=1Xt , F̃1) of O1, Φ1,2Õ2

and Φ1,5Õ5, and finally, the quasi-product observable Õ0 ≡ (
∏7

t=0Xt, 2
∏7
t=0Xt , F̃0) of O0,

Φ0,1Õ1, Φ0,6Õ6 and Φ0,7Õ7, if it exists. Here, Õ0 is called the realization (or, the Heisen-

berg picture representation) of a sequential observable [{Ot}t∈T , {At

Φπ(t),t→ Aπ(t)}t∈T\{0}].
Then, we have the measurement

MA0(Õ0 ≡ (
∏
t∈T

Xt, 2
∏
t∈T Xt , F̃0), S(ρ

m
0 )),

which is called the realization (or, the Heisenberg picture representation) of the symbol

M({Ot}t∈T , S(ρm0 )).
�

8.3 Bayes theorem in statistical MT

Now let us review “Bayes operator” (Definition 6.5 in §6.2), which plays an important

role in SMT as well as PMT. Or, we may say that Bayes operator is more natural in STM

than in PMT.

Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0 and let S[∗] ≡
[S[∗], C(Ωt)

Φπ(t),t→ C(Ωπ(t)) (t ∈ T \ {0})] be a general system with the initial system

S[∗]. And, let an observable Ot ≡ (Xt,Ft, Ft) in a commutative C∗-algebra C(Ωt) be
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given for each t ∈ T . Let Õ0 ≡ (
∏

t∈T Xt,
⊗

t∈T Ft, F̃0) be as in Theorem 3.7 in the

case At = C(Ωt) (∀t ∈ T ). That is, Õ0 is the Heisenberg picture representation of the

sequential observable [{Ot}t∈T , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}]. Let τ be any element in

T . If a positive bounded linear operator B
(0,τ)
Πt∈TΞt

: C(Ωτ )→ C(Ω0) satisfies the following

condition (BO), we call {B(0,τ)
Πt∈TΞt

: Ξt ∈ Xt (∀t ∈ T )} [ resp. B(0,τ)
Πt∈TΞt

] a family of Bayes

operators [ resp. a Bayes operator ]:

(BO) for any observable O′τ ≡ (Yτ ,Gτ , Gτ ) in C(Ωτ ), there exists an observable Ô0 ≡
((
∏

t∈T Xt)× Y, (
⊗

t∈T Ft)
⊗

Gτ , F̂0) in C(Ω0) such that

(i) Ô0 is the Heisenberg picture representation (cf. Theorem 3.7) of [{Ot}t∈T ;C(Ωt)
Φπ(t),t→

C(Ωπ(t)) (t ∈ T \ {0})], where Ot = Ot (if t 6= τ), = Oτ ×O′τ (if t = τ),

(ii) F̂0((Πt∈TΞt)× Γτ ) = B
(0,τ)
Πt∈TΞt

(Gτ (Γτ )) (Ξt ∈ Ft (∀t ∈ T ),∀Γτ ∈ Gτ ),

(iii) F̂0((Πt∈TΞt)×Yτ ) = F̃0(
∏

t∈T Ξt) = B
(0,τ)
Πt∈TΞt

(1τ ), (Ξt ∈ Ft (∀t ∈ T )), where 1τ is the
identity in C(Ωτ ).

Also, define R
(0,τ)
Πt∈TΞt

: Mm
+1(Ω0)→Mm

+1(Ωτ ) such that:

R
(0,τ)
Πt∈TΞt

(ν) =
[B

(0,τ)
Πt∈TΞt

]∗(ν)

‖[B(0,τ)
Πt∈TΞt

]∗(ν)‖M(Ω0)

(∀ν ∈Mm
+1(Ω0)),

which is called “a normalized dual Bayes operator”.

�
It is quite important to see that the Bayes operator B

(0,τ)
Πt∈TΞt

: C(Ωτ ) → C(Ω0)

is described in terms of the Heisenberg picture. This implies that the Bayes opera-

tor B
(0,τ)
Πt∈TΞt

: C(Ωτ ) → C(Ω0) is common to PMT and SMT. That is, the dual form

R
(0,τ)
Πt∈TΞt

: Mm
+1(Ω0) → Mm

+1(Ωτ ) can be applicable to both PMT and SMT and PMTPEW

(i.e., subjective Bayesian PMT) mentioned later (in §6.4).

The following theorem is an analogy of Theorem 6.13. This theorem (= Theorem 8.13,

Remark 8.14) is also called “Bayes’ method”.

Theorem 8.13. [Generalized Bayes theorem, Bayes’ method, cf. [46]]. Let (T ≡ {0, 1, ...,
N}, π : T \ {0} → T ) be a tree with the root 0 and let S(ν0) ≡ [S(ν0), C(Ωt)

Φπ(t),t→
C(Ωπ(t)) (t ∈ T \ {0})] be a general system with the initial system S(ν0). And, let an
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observable Ot ≡ (Xt,Ft, Ft) in a C∗-algebra C(Ωt) be given for each t ∈ T . Then, we

have a statistical measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt,
⊗
t∈T

Ft, F̃0), S(ν0)). (cf. Theorem 3.7).

Assume that the measured value by the statistical measurementMC(Ω)(Õ0, S(ν0)) belongs

to
∏

t∈T Ξt (∈
⊗

t∈T Ft). Let τ be any element in T . Then, we see

(a) “the (statistical) S-state at τ( ∈ T ) after MC(Ω0)(Õ0, S(ν0))” = R
(0,τ)
Πt∈TΞt

(ν0).

(8.43)

Proof. Since the sequential observable [{Ot}t∈T , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}] is com-

mon to PMT and SMT, Theorem 3.7 is applicable. Also, by the same argument in

Theorem 6.13, the (8.43) immediately follows.

Remark 8.14. [(i): Bayes operator in Remark 5.7, Bayes’ method]. Let O ≡ (X,F, F )

be an observable in C(Ω). For each Ξ ( ∈ F), define the continuous linear operator B
(0,0)
Ξ

(or, BO
Ξ , B

O,(0,0)
Ξ ) : C(Ω)→ C(Ω) such that:

B
(0,0)
Ξ (g) = F (Ξ) · g (∀g ∈ C(Ω)),

which is called the Bayes operator (or, simplest Bayes operator). Define the map R
(0,0)
Ξ :

Mm
+1(Ω)→Mm

+1(Ω) (called “normalized Bayes dual operator”) such that:

(B1) R
(0,0)
Ξ (ν) =

[B
(0,0)
Ξ ]∗(ν)

‖[B(0,0)
Ξ ]∗(ν)‖M(Ω)

(∀ν ∈Mm
+1(Ω)),

that is,

[R
(0,0)
Ξ (ν)](D0) =

∫
D0
[F (Ξ)](ω)ν(dω)∫

Ω
[F (Ξ)](ω)ν(dω)

(∀D0 ∈ BΩ).

Thus, we can describe the well known Bayes theorem (cf. [86]) such as

Mm
+1(Ω) 3 ν (= pretest state) 7→ (posttest state =)R

(0,0)
Ξ (ν) ∈Mm

+1(Ω). (8.44)

As a particular case of the above, assume that ν = δω0 ( ∈M
p
+1(Ω)). Then we see that

M
p
+1(Ω) 3 δω0 (= pretest state) 7→ (posttest state =)R

(0,0)
Ξ (δω0) = δω0 ∈M

p
+1(Ω).

That is, a pure state δω0 is invariant.

[(ii): The conventional Bayes theorem in mathematics]. The above theorem should be

compared with the following conventional Bayes theorem (B2).
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(B2) Let (S,BS, P ) be a probability space. Let {E1, E2, ..., En} be a (measurable) de-

composition of S,
(
i.e., Ek ∈ BS,∪nk=1Ek = S, Ei ∩ Ek = ∅(if i 6= k)

)
. Let E ∈ BS.

Then

PE(Ek) =
P (Ek)PEk(E)

P (E1)PE1(E) + ...+ P (En)PEn(E)
,

where PE(Ek) =
P (E∩Ek)
P (E)

, PEk(E) =
P (E∩Ek)
P (Ek)

.

The (B2) is, of course, a mathematical theorem. Thus, when we use the (B2), we must

add a certain interpretation to the (B2). In measurement theory, this is automatically

done as follows:

(B1) = (B2) + “measurement theoretical interpretation”.

[(iii): The collapse (reduction) of wave packet in quantum mechanics]. The reduction such

as (8.44) may happen even in quantum mechanics. In fact, it is called “the collapse (re-

duction) of wave packet in quantum mechanics”. Assume that a measured value obtained

by a measurement MC(V )((X,F, F ), S(ρ)) belongs to Ξ ( ∈ F). Then, we may see the

following reduction (i.e., the collapse of wave packet):

Trm+1(V ) 3 ρ (= pretest state) 7→ (posttest state =)
F (Ξ)ρF (Ξ)

‖F (Ξ)ρF (Ξ)‖Tr(V )

∈ Trm+1(V ).

Note that, even in the case that ρ = |u〉〈u| ∈ Trp+1(V ), the above reduction happens

(i.e., not invariant). However, I believe that the collapse of wave packet is due to a non-

standard argument in quantum mechanics, though the collapse may be indispensable for

the intuitive understanding of “quantum Zeno effect (cf. [65])”, etc. That is, I have

an opinion that from the pure theoretical point of view quantum mechanics says nothing

after a measurement. That is because, from the theoretical point of view, we always

devote ourselves to the Heisenberg picture representation and not the Schrödinger picture

representation. And further, it should be noted that the collapse of wave packet in

quantum mechanics is not a direct consequence of MT (i.e., Axioms 1 and 2, Proclaim

1)
(
though the (8.44) (i.e., the classical reduction) is a consequence of Theorem 8.13

in MT
)
. Thus, in this book we are not concerned with the collapse of wave packet in

quantum mechanics.

�
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8.4 Kalman filter in noise

As a consequence of Theorem 8.13 (and Theorem 6.13), in this section we reconsider

Kalman filter [51], and formulate “Kalman filter” in SMT, which is proposed in [55].

Consider the conventional Kalman filter in the following system:

+ z−1I C(n) +

ψn,n+1

θ1(n+ 1) s(n+ 1) s(n) x(n)

θ2(n)

- - - - -

6

�

6

(Figure (8.45))

where s(n): L-dimensional state vector at time n(= 0, 1, ..., N), x(n): M -dimensional

measured data vector, (ω ∈ Ω). In the framework of dynamical system theory (2.1), s(n)

and x(n) are described by the following equations: for each ω ∈ Ω where (Ω,BΩ, P ) is a

probability space, s(n+ 1, ω) = ψn,n+1(s(n, ω)) + θ1(n+ 1, ω) : stochastic difference state equation
(n = 0, 1, ..., N − 1).

x(n, ω) = C(n)s(n, ω) + θ2(n, ω) : measurement equation

(8.46)

Here, it is assumed that ψn,n+1, C(n), θ1(n, ·) (and its initial distribution) and θ2(n, ·) are
known where ψn,n+1: K×K-dimensional transition matrix, θ1(n, ·): L-dimensional input

vector which represents a white noise, C(n): L × K-dimensional measurement matrix,

θ2(n, ·): L-dimensional vector which represents a measurement error. Here, our problem

is as follows:

(]) Let τ be any integer such that 0 ≤ τ ≤ N . Let Ξk ∈ BR (k = 0, 1, 2, ..., N). Then

infer the state vector s(τ, ω) at time τ from the fact that

(x(0, ω),x(1, ω),x(2, ω), ...,x(N,ω)) ∈ Ξ0 × Ξ1 × Ξ2 × · · · × ΞN .

Also, note the original equation of the stochastic difference equation (8.46) is the following

equation:

s̄(n+ 1) = ψn,n+1(s̄(n)) (n = 0, 1, ..., N − 1). (8.47)

The problem (]) was firstly answered in the framework of dynamical system theory (8.46).

Now, we consider the (]) in the framework of SMT (8.3).
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8.4.1 The measurement theoretical formulation of Figure (8.45)

Firstly, we formulate the (8.45) in SMT, (or HMT in Remark 8.3). Assume, for

simplicity, that T (≡ {0, 1, ..., N}) is a tree with a series structure (though this assumption

is not needed). For each t (∈ T ), consider compact Hausdorff spaces St and Θt. Although

it is natural to assume that S0 = S1 = · · · = SN and Θ0 = Θ1 = · · · = ΘN , we can do

well without this assumption. Now, consider the following two Markov relations among

systems: [{Ψt1,t2 : C(St2) → C(St1)}(t1,t2)∈T 2
≤
] and [{Υt1,t2 : C(Θt2) → C(Θt1)}(t1,t2)∈T 2

≤
]

such as

[C(S0)]
Ψ0,1←−−− [C(S1)]

Ψ1,2←−−− · · ·
ΨN−2,N−1←−−−−−− [C(SN−1)]

ΨN−1,N←−−−−− [C(SN)]
(8.48)

where the initial state δs0 (∈M
p
+1(S0)) is assumed to be unknown, and

[C(Θ0)]
Υ0,1←−−− [C(Θ1)]

Υ1,2←−−− · · ·
ΥN−2,N−1←−−−−−− [C(ΘN−1)]

ΥN−1,N←−−−−− [C(ΘN)](
with the known initial state νΘ0 (∈Mm

+1(Θ0))
)
. (8.49)

Here, it should be noted that the above (8.48) [resp. (8.49)] is the measurement theoretical

formulation of (8.47) [resp. the θ1 in (8.45)]. Also, note that the (8.48) is equivalent to

[Mm
+1(S0)]

Ψ∗
0,1−−−→ [Mm

+1(S1)]
Ψ∗

1,2−−−→ · · ·
Ψ∗
N−2,N−1−−−−−−→ [Mm

+1(SN−1)]
Ψ∗
N−1,N−−−−−→ [Mm

+1(SN)]

where Ψ∗n,n+1 : M
m
+1(Sn)→Mm

+1(Sn+1)] is the dual operator of Ψn,n+1 : C(Sn+1)→ C(Sn).

Since the (8.48) corresponds to the conventional (8.47), it is natural to assume that the

(8.48) is deterministic, i.e., Ψn,n+1 is homomorphic. Thus, for each n = 0, 1, ..., N − 1,

there exists a continuous map ψn,n+1 : Sn → Sn+1, i.e.,

[S0]
ψ0,1−−−→ [S1]

ψ1,2−−−→ · · ·
ψN−2,N−1−−−−−−→ [SN−1]

ψN−1,N−−−−→ [SN ]

where

fn+1(ψn,n+1(sn)) = (Ψn,n+1(fn+1))(sn) (∀fn+1 ∈ C(Sn+1), ∀sn ∈ Sn).

Next, consider a continuous map λn : Sn ×Θn → Sn, that is,

Sn ×Θn 3 (sn, θn) 7→ λn(sn, θn) ∈ Sn (n = 0, 1, ..., N) (8.50)

which should be regarded as the corresponding thing of the left ⊕ in (8.45). The contin-

uous map λn : Sn×Θn → Sn induces the continuous map Λn : Mm
+1(Sn×Θn)→Mm

+1(Sn)
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such that:

(Λn(ν
S
n ⊗ νΘn ))(Bn) = (νSn ⊗ νΘn )(λ−1n (Bn))

(∀(νSn ⊗ νΘn ) ∈Mm
+1(Sn ×Θn), ∀Bn ⊆ Sn : open). (8.51)

Further, define the continuous map Φ̂∗n,n+1 : M
m
+1(Sn×Θn)→Mm

+1(Sn+1×Θn+1), such
that

Mm
+1(Sn ×Θn) 3 νSn ⊗ νΘn 7→Φ̂∗n,n+1(ν

S
n ⊗ νΘn )

≡[Λn+1(Ψ
∗
n,n+1ν

S
n ⊗Υ∗n,n+1ν

Θ
n )]⊗Υ∗n,n+1ν

Θ
n ∈Mm

+1(Sn+1 ×Θn+1)

where Υ∗n,n+1 : M
m
+1(Θn)→Mm

+1(Θn+1) is a dual operator of Υn,n+1 : C(Θn+1)→ C(Θn).

That is,

νSn+1 ⊗ νΘn+1

(
≡ Φ̂∗n,n+1(ν

S
n ⊗ νΘn )

)
=[Λn+1(Ψ

∗
n,n+1ν

S
n ⊗Υ∗n,n+1ν

Θ
n )]⊗Υ∗n,n+1ν

Θ
n (n = 0, 1, ..., N − 1) (8.52)

which (or, the following (8.53)) corresponds to the state equation (8.46). Thus, we have

the Markov relation [{Φ̂n,n+1 : C(Sn+1 ×Θn+1)→ C(Sn ×Θn)}N−1n=0 ]:

[C(S0 ×Θ0)]
Φ̂0,1←−−−−− [C(S1 ×Θ1)]

Φ̂1,2←−−−−− · · ·
Φ̂N−2,N−1←−−−−−−−− [C(SN−1 ×ΘN−1)]

Φ̂N−1,N←−−−−−− [C(SN ×ΘN )] (8.53)

where Φ̂n,n+1 is the pre-dual operator of Φ̂∗n,n+1 (i.e., (Φ̂n,n+1)
∗ = Φ̂∗n,n+1). That is, the

(8.53) is equivalent to

[Mm
+1(S0 ×Θ0)]

Φ̂∗
0,1−−−−→ [Mm

+1(S1 ×Θ1)]
Φ̂∗

1,2−−−−→ · · · [Mm
+1(SN−1 ×ΘN−1)]

Φ̂∗
N−1,N−−−−−→ [Mm

+1(SN ×Θ
N
)]

(8.53)′

Next, we consider the measurement theoretical characterization of the measurement

equation (8.46). That is, consider the following Markov relation:

[C(Θ′0)]
Υ′

0,1←−−− [C(Θ′1)]
Υ′

1,2←−−− · · ·
Υ′
N−2,N−1←−−−−−− [C(Θ′N−1)]

Υ′
N−1,N←−−−−− [C(Θ′N)]

(with the initial state νΘ
′

0 (∈Mm
+1(Θ

′
0))),

which corresponds to the θ2 in (8.46). Also, for each n (∈ T ), consider an observable

On = (Xn, 2
Xn , Fn) in C(Sn×Θ′n), which corresponds to the measurement equation (8.46).

Note that the observable On = (Xn, 2
Xn , Fn) in C(Sn × Θ′n) can be also regarded as an

observable in C(Sn×Θn×Θ′n). Thus, we see that the (8.46) corresponds to the following:

[C(S0 ×Θ0 ×Θ′
0)]

̂̂
Φ0,1←−−−− [C(S1 ×Θ1 ×Θ′

1)]
̂̂
Φ1,2←−−−− · · ·

̂̂
ΦN−1,N←−−−−− [C(SN ×ΘN ×Θ′

N )]

(X0, 2
X0 , F0) (X1, 2

X1 , F1) · · · (XN , 2
XN , FN )

(8.54)
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with the initial state δs0 ⊗ νΘ0 ⊗ νΘ
′

0 where
̂̂
Φn,n+1 ≡ Φ̂n,n+1 ⊗ Υ′n,n+1). Here, note that

νΘ0 (∈ Mm
+1(Θ0)) and νΘ

′
0 (∈ Mm

+1(Θ
′
0)) are known, but δs0 (∈ M

p
+1(S0)) is unknown.

Therefore, we have the correspondence:

(8.46) in DST ↔ (8.54) in SMT (or precisely, HMT, cf. Remark 8.3).

Thus, we can skip to the next section §8.4.2. However, in what follows we add the

concrete form of the family {On = (Xn, 2
Xn , Fn)}Nn=0 (in (8.54)), which corresponds to

the measurement equation (8.46) in detail.

Let S′n and S′′n be compact spaces. Let C : Sn → S′′n be a continuous map, which

induces the continuous map ΛCn : Mm
+1(Sn)→Mm

+1(S
′′
n) such that:

(ΛCn (ν
S
n))(A

′
n) = νSn((λ

C
n )
−1(A′n)) (∀νSn ∈Mm

+1(Sn),∀A′n ⊆ S′′n : open).

And consider a continuous map λ′n : S′′n × Θ′n → S′n, which induces the continuous map

Λ′n : Mm
+1(S

′′
n ×Θ′n)→Mm

+1(S
′
n) such that:

(Λ′n(ν
S′′

n ⊗ νΘ
′

n ))(B′n) = (νS
′′

n ⊗ νΘ
′

n )((λ′n)
−1(B′n))

(∀(νS′′n ⊗ νΘ
′

n ) ∈Mm
+1(S

′′
n ×Θ′n), ∀B′n ⊆ S′n : open).

For each n (= 0, 1, ..., N), consider an observable O′n = (Xn, 2
Xn , F ′n) in C(S′n), which

may be an (approximate) exact observable (cf. Example 2.20). Thus, for each n (∈ T ),
we can define the observable On = (Xn, 2

Xn , Fn) (in (8.54)) in C(Sn ×Θ′n) such that:

C(Sn×Θ′
n)∗
〈νSn ⊗ νΘ

′

n , Fn(Ξn)〉C(Sn×Θ′
n)

=
C(S′n)∗

〈Λ′n(ΛCn (νSn)⊗ νΘ
′

n ), F ′n(Ξn)〉C(S′n)

(∀(νSn ⊗ νΘ
′

n ) ∈Mm
+1(Sn ×Θ′n)).

8.4.2 Kalman filter in Noise

For simplicity, put Θ̂n = Θn × Θ′n and νΘ̂0 = νΘ0 ⊗ νΘ
′

0 . And, we rewrite the (8.54) as

follows:

[C(S0 × Θ̂0)]
̂̂
Φ0,1←−−−−− [C(S1 × Θ̂1)]

̂̂
Φ1,2←−−−−− · · ·

̂̂
ΦN−2,N−1←−−−−−−−− [C(SN−1 × Θ̂N−1)]

̂̂
ΦN−1,N←−−−−−− [C(SN × Θ̂N )]

(X0, 2X0 , F0) (X1, 2X1 , F1) · · · (XN−1, 2
XN−1 , FN−1) (XN , 2

XN , FN )

with the initial state δs0 ⊗ νΘ̂0 , where νΘ̂0 (∈Mm
+1(Θ̂0)) is known

(
that is, νΘ0 (∈Mm

+1(Θ0))

and νΘ
′

0 (∈Mm
+1(Θ

′
0)) are known

)
, but δs0 (∈M

p
+1(S0)) is unknown.
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Now, we get the sequential observable [OT ] ≡ [{Ot}t∈T ; {
̂̂
Φt1,t2 : C(St2 × Θ̂t2) →

C(St1×Θ̂t1)}(t1,t2)∈T 2
≤
]. Then, we can construct the observable Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈TXt , F̃0)

in C(S0 × Θ̂0), which is the realization of the sequential observable [OT ], such as

[C(S0 × Θ̂0)]
̂̂
Φ0,1←−−−−− [C(S1 × Θ̂1)]

̂̂
Φ1,2←−−−−− · · ·

̂̂
ΦN−2,N−1←−−−−−−−− [C(SN−1 × Θ̂N−1)]

̂̂
ΦN−1,N←−−−−−− [C(SN × Θ̂N )]

F0 F1 · · · FN−1 FNy y y y
(F0

qp
××××××××× ̂̂

ΦF̃1)

=F̃0

̂̂
Φ0,1←−−−−− (F1

qp
××××××××× ̂̂

ΦF̃2)

=F̃1

Φ̂1,2←−−−−− · · ·
̂̂
ΦN−2,N−1←−−−−−−−− (FN−1

qp
××××××××× ̂̂

ΦF̃N )

=F̃N−1

̂̂
ΦN−1,N←−−−−−− (FN )

=F̃N

(8.55)

(
The existence of the Õ0 ≡ (

∏
t∈T Xt, 2

Πt∈TXt , F̃0) is assured by Theorem 3.7.
)
Thus, we

can represent the “measurement” M({Ot}t∈T ,S(δs0 ⊗ νΘ̂0 )) such as

M({Ot}t∈T ,S(δs0 ⊗ νΘ̂0 )) = MC(S0×Θ̂0)
(Õ0, S(δs0 ⊗ νΘ̂0 )).

Here, assume that

(]) we know that the measured value (xt)t∈T (∈
∏

t∈T Xt), obtained by the measurement

MC(S0×Θ̂0)
(Õ0, S(δs0 ⊗ νΘ̂0 )), belongs to

∏
t∈T Ξt.

Fisher’s maximum likelihood method (cf. Theorem 5.3, Corollary 5.6) says that there is

a reason to infer that the unknown s0 (∈ S0) is determined by

C(S0×Θ̂0)
∗ 〈δs0 ⊗ νΘ̂0 , F̃0(

∏
t∈T

Ξt)〉
C(S0×Θ̂0)

= max
s∈S0 C(S0×Θ̂0)

∗ 〈δs ⊗ νΘ̂0 , F̃0(
∏
t∈T

Ξt)〉
C(S0×Θ̂0)

.

Let τ ∈ T , and let {B(0,τ)
Πt∈TΞt

|
∏

t∈T Ξt ∈ 2Πt∈TXt} be a family of Bayes operators.(
The existence is assured by Theorem 6.6.

)
Then, we see, by Lemma 8.9, that the new

S-state νS×Θ̂ττ,new (∈Mm
+1(Sτ × Θ̂τ )) is defined by

νS×Θ̂ττ,new = R
(0,τ)
Πt∈TΞt

(δs0 ⊗ νΘ̂0 )

where R
(0,τ)
Πt∈TΞt

: Mm
+1(S0× Θ̂0)→Mm

+1(Sτ × Θ̂τ ) is a normalized dual Bayes operator, i.e.,

R
(0,τ)
Πt∈TΞt

(ν) =
(B

(0,τ)
Πt∈T Ξt

)∗(ν)

‖(B(0,τ)
Πt∈T Ξt

)∗(ν)‖
(∀ν ∈ Mm

+1(S0 × Θ̂0)). Thus there is a reason to think that

the new S-state (in Mm
+1(Sτ )) is equal to ν

S
τ,new such that:

νSττ,new(Dτ ) ≡ νSτ×Θ̂ττ,new (Dτ × Θ̂τ ) (∀Dτ (⊆ Sτ ) : open set).

Remark 8.15. [Stochastic differential equation] It is important to generalize the stochas-

tic difference state equation in (8.46) to the stochastic differential equation (1.2a). In order

to do it in SMT, we must prepare the W ∗-algebraic formulation of SMT (in Chapter 9).

Thus we do not touch this problem in this book.
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8.5 Information and entropy

As one of applications (of Bayes theorem), we now study the “entropy” of the mea-

surement. Here we have the following definition.

Definition 8.16. [Information quantity, the entropy of measurement (= fuzzy entropy),

cf. [42]]. Consider a statistical measurement MC(Ω)

(
O ≡ (X, 2X , F ), S(ρ0)

)
in a com-

mutative C∗-algebra C(Ω), where the label set X is assumed to be at most countable,

i.e., X = {x1, x2, ..., xn, ...}. Then, the H(M), the (fuzzy) entropy of MC(Ω)(O, S(ρ0)), is

defined by

H
(
MC(Ω)(O, S(ρ0))

)
=
∞∑
n=1

(∫
Ω

[F ({xn})](ω)ρ0(dω)
∫
Ω

[F ({xn})](ω)∫
Ω
[F ({xn})](ω)ρ0(dω)

log
[F ({xn})](ω)∫

Ω
[F ({xn})](ω)ρ0(dω)

ρ0(dω)
)

(8.56)

=
∞∑
n=1

·I({xn})

where, P ({xn}) =
∫
Ω

[F ({xn})](ω)ρ0(dω)(
= the probability that a measured value xn is obtained

)

I({xn}) =
∫
Ω

[F ({xn})](ω)∫
Ω
[F ({xn})](ω)ρ0(dω)

log
[F ({xn})](ω)∫

Ω
[F ({xn})](ω)ρ0(dω)

ρ0(dω)

=
1

P ({xn})

∫
Ω

[F ({xn})](ω) log[F ({xn})](ω)ρ0(dω)− logP ({xn})(
= the information quantity when a measured value xn is obtained

)
(8.57)

MC(Ω)

(
O, S(ρ0)

)
is the normalized W ∗-algebraic representation of a C∗-measurement

MC0(Ω)

(
O ≡ (X,P0(X), F ), S(ρ0)

)
, the entropy H

(
MC0(Ω)(O, S(ρ0))

)
is also defined

by H
(
MC(Ω)

(
O, S(ρ0)

))
.

�
The definition is derived from the following consideration. Assume that we get the

measured value x ( ∈ X) by the statistical measurement MC(Ω)(O, S(ρ0)). Note that its
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probability P ({x}) is given by P ({x}) = C(Ω)∗

〈
ρ0, F ({x})

〉
C(Ω) =

∫
Ω
[F ({x})](ω) ρ0(dω).

Also, we consider, by (8.44) (or, (5.13)), that the new statistical state ρx ( ∈Mm
+1(Ω)) is

given by

ρx(D) =

∫
D
[F ({x})](ω)ρ0(dω)∫

Ω
[F ({x})](ω)ρ0(dω)

(∀D ∈ BΩ),

whose information quantity I(x) is of course determined by I({x}) =
∫
Ω
dρx
dρ0

(ω) log dρx
dρ0
ρ0(dω),

where the Radon-Nikodým derivative dρx
dρ0

(ω) is defined by [F ({x})](ω)∫
Ω[F ({x})](ω)ρ0(dω) . Thus, the av-

erage information quantity, i.e., entropy, is given by

H
(
MC(Ω)(O, S(ρ0))

)
=
∞∑
n=1

P ({xn}) · I({xn}),

which is equal to (8.56). Also it should be noted that the formula (8.56) can easily

calculated as follows:

H(M) =
∞∑
n=1

∫
Ω

[F ({xn})](ω) log[F ({xn})](ω)ρ0(dω)−
∞∑
n=1

P ({xn}) logP ({xn}). (8.58)

Also, if O is crisp, we see that H(M) = −
∑∞

n=1 P ({xn}) logP ({xn}).
Example 8.17. [Urn problem (in Example 8.1)]. There are two urns ω1 and ω2. The

urn ω1 [resp. ω2] contains 8N white and 2N black balls [resp. 4N white and 6N black

balls], where N is a sufficiently large number. We regard Ω
(
≡ {ω1, ω2}

)
as the state

space. And consider the observable O
(
≡ (X ≡ {w, b}, 2{w,b}, F )

)
in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

Here define the statistical state ν0(∈Mm
+1(Ω)) such that ν0({ω1}) = p, ν0({ω2}) = 1− p.

And consider a statistical measurement MC(Ω)(O, S[∗](ν0)).

The illustration of MC(Ω)(O, S[∗](ν0))

p
-

1-p
�[∗]

Pick up a ball from the urn behind the curtain

ω1 ω2
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Put

P ({x}) : the probability that a measured value x ( ∈ {w, b}) is obtained

I({x}) : the information quantity that is acquired when we know that

a measured value x ( ∈ {w, b}) is obtained

νx1 : the posttest state after a measured value x ( ∈ {w, b}) is obtained

Then,

P ({w}) = 0.8p+ 0.4(1− p), P ({b}) = 0.2p+ 0.6(1− p),

I({w}) = 0.8p log 0.8 + 0.4(1− p) log 0.4
0.8p+ 0.4(1− p)

− log(0.8p+ 0.4(1− p)),

I({b}) = 0.2p log 0.2 + 0.6(1− p) log 0.6
0.2p+ 0.6(1− p)

− log(0.2p+ 0.6(1− p)),

νw1 ({ω1}) =
0.8p

0.8p+ 0.4(1− p)
, νw1 ({ω2}) =

0.4(1− p)
0.8p+ 0.4(1− p)

,

νb1({ω1}) =
0.2p

0.2p+ 0.6(1− p)
, νb1({ω2}) =

0.6(1− p)
0.2p+ 0.6(1− p)

.

Then, we see, by (8.58), that

H(MC(Ω)(O, S[∗](ν0)))

=[F ({w})](ω1) log[F ({w})](ω1)p+ [F ({w})](ω2) log[F ({w})](ω2)(1− p)

+ [F ({b})](ω1) log[F ({b})](ω1)p+ [F ({b})](ω2) log[F ({b})](ω2)(1− p)

− P ({w}) logP ({w})− P ({b}) logP ({b})

=0.8(log 0.8)p+ 0.4(log 0.4)(1− p) + 0.2(log 0.2)p+ 0.6(log 0.6)(1− p)

− (0.8p+ 0.4(1− p)) log(0.8p+ 0.4(1− p))− (0.2p+ 0.6(1− p)) log(0.2p+ 0.6(1− p)).

Assume that p = 1/2. Then, we see that

H(MC(Ω)(O, S[∗](ν0))) = 0.6− 0.3 log2 3 = 0.123 · · · (bit).

�
Example 8.18. [Fuzzy information (fast or not fast), cf. [42]]. Let Ω ≡ {ω1, ω2, ..., ω100}
be a set of pupils in some school. Let Ob ≡ (X = {yb, nb}, 2X , b(·)) be the crisp C∗-

observable in the commutative C∗-algebra C(Ω) such that b{yb}(ωn) = 0 (n is odd), = 1
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(n is even), and b{nb}(ωn) = 1 − b{yb}(ωn). Also, let Of ≡ (Y = {yf , nf}, 2Y , f(·)) be

the C∗-observable in C∗-algebra C(Ω) such that f{yf}(ωn) = (n − 1)/99 (∀ωn ∈ Ω) and

f{nf}(ωn) = 1 − f{yf}(ωn). Let ρ0 ∈ Mm
+1(Ω), for example, assume that ρ0 = νu, i.e., the

equal weight on Ω, namely, νu({ωn}) = 1/100 (∀n). Thus we have two measurements

MC(Ω)(Ob, S(νu)) and MC(Ω)(Of , S(νu)).

0

1

Ω
100

f{yf}
f{nf}

Then, we see, by (8.58), that

H
(
MC(Ω)(Ob, S(νu))

)
= −‖b{yb}‖L1(Ω,νu) log ‖b{yb}‖L1(Ω,νu) − ‖b{nb}‖L1(Ω,νu) log ‖b{nb}‖L1(Ω,νu)

= −1

2
log

1

2
− 1

2
log

1

2
= log2 2 = 1 (bit), (8.59)

and

H
(
MC(Ω)(Of , S(νu))

)
=

∫
Ω

f{yf}(ω) log f{yf}(ω)νu(dω) +

∫
Ω

f{nf}(ω) log f{nf}(ω)νu(dω)

− ‖f{yf}‖L1(Ω,νu) log ‖f{yf}‖L1(Ω,νu) − ‖f{nf}‖L1(Ω,νu) log ‖f{nf}‖L1(Ω,νu) (8.60)

≈ 2

∫ 1

0

λ log2 λdλ+ 1 = − 1

2 loge 2
+ 1 = 0.278 · · · (bit). (8.61)

For example, assume that the symbol “yb” [resp. “nb”] in X is interpreted by “boy”

[resp. “girl”]. And “yf” [resp. “nf”] in Y is interpreted by “fast runner” [resp. “not

fast runner”]. When we guess the pure state (∗) of the system S ( = S(∗)(νu)) in the

above situation, the (8.60) and (8.61) say that the crisp information “boy or girl” is more

efficient than the fuzzy information “fast or not fast”.

�

Remark 8.19. [Fuzzy information theory]. “Shannon’s entropy” is usually defined

as follows (cf. [79]). Let (Ω,B, P ) be a probability space. Let D = {D1, D2, ...} be
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the countable decomposition of Ω. Then, the entropy H(D) of D is defined by H(D) =

−
∑∞

n=1 P (Dn) logP (Dn). Note that Definition 8.16 is the natural extension of Shannon’s

entropy if we regard the observable O as a “fuzzy decomposition”(cf. the formula (2.30)).

�

8.6 Belief measurement theory (=BMT)

In this section we study “belief measurement theory (=BMT)”, which is considered

to be closely related to “subjective Bayesian statistics”.9

Firstly let us consider the following problem:

(P ) For example, consider a measurement MC(Ω)(O ≡ (X, 2X , F ), S[∗]) formulated in

C(Ω), where Ω = {ω1, ω2}, and further, assume that we have no information about

the [∗]. How do we represent “having no information about the [∗]” mathematically?

Or, how do we infer the statistical state?

We prepare three answers to the problem (P ) in this book. That is, we consider three

kinds of “having no information about the [∗]” (or, “having no belief whether [∗] = ω1 or

[∗] = ω2 ) as follows:

(A1) Iterative likelihood function method in PMT. See MC(Ω)(O, S[∗]((kI))lq) in §5.5.

(A2) The principle of equal probability (= “PEP”). As seen later (i.e., Theorem 11.12),

this is essentially equivalent to the hypothesis that the [ ∗ ] is chosen by a fair

coin-tossing (e.g., p = 0.5 in (8.7)). That is, it suffices to consider the statistical

measurement MC(Ω)(O, S[∗](νu)), where νu({ω1}) = νu({ω2}) = 1/2.

(A3) The principle of equal weight(=“PEW” =Bayes’ postulate). See §8.6.2 later. This

method will be called “belief measurement theory” (or, “BMT”).

9This is not sure since my understanding of the subjective Bayesian statistics (cf. [21]) is not sufficient.
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Thus we may have the following classification (and correspondence):

MT



PMT=measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

←→ (A1)

SMT = PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

←→ (A2)

BMT = PMT
(Axioms 1 and 2)

+ “belief weight”
(the principle of equal weight)

←→ (A3)

(8.62)

8.6.1 The general argument about BMT

In §8.1∼§8.5, we studied SMT (i.e., Proclaim 1 (= the probabilistic interpretation of

“mixed state”) + Axiom 2), in which “mixed state” has the probabilistic interpretation.

In this section, we propose another interpretation of “mixed state”, which may be called

“belief interpretation”. That is, we want to assert:

ρm ∈ Sm(A∗)
(mixed state)

· · ·


“probabilistic interpretation”

[Proclaim 1 (8.10)]

→ “SMT”
in §8.1∼8.5

“belief interpretation”
[the principle of equal weight (8.72)]

→ “BMT”
in this §8.6

(8.63)

The purpose of this section is, of course, to propose “belief measurement theory” (or,

“BMT”).

We begin with a simplest example as follows. Consider the statistical measurement

MC(Ω)(O ≡ ({w, b}, 2{w,b}, F ), S[∗](ν0)). Here

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2, [F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6,

and, ν0({ω1}) = 1/4 and ν0({ω1}) = 3/4. Recall that this measurement is symbolically

described as follows.

1/4
-

3/4
�[∗]

Pick up a ball from the urn behind the curtain

U1(≈ ω1) U2(≈ ω2)

Figure(8.64)
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By a hint of the Figure (8.64), we can introduce “BMT” as follows. Assume that there

are 100 people. And moreover assume that10{
25 people (in 100 people) believe that [∗] = U1

75 people (in 100 people) believe that [∗] = U2

That is, we have the following picture (instead of Figure (8.64)):

25 people believe that [∗] = U1. 75 people believe that [∗] = U2.

- �[∗]

Pick up a ball from the urn behind the curtain

U1(≈ ω1) U2(≈ ω2)

Figure(8.65)

This is just the “belief measurement”, which is denoted by MC(Ω)(O, S[∗]((ν0))bw). Also,

the ν0 is called a belief weight (or, approval rate, conviction degree ).11

We add the following remark:

(R1) Note that the [∗] (in MC(Ω)(O, S[∗]((ν0))bw) ) is assumed to be unknown. Thus,

the triplet
(
X, 2X ,M(Ω)

〈
ν, F (·)

〉
C(Ω)

)
is a merely mathematical symbol and not

a sample space. In other words, it is nonsense to consider the probability that

the measured value obtained by MC(Ω)(O ≡ (X, 2X , F ), S[∗]((ν))bw) belongs to Ξ(∈
2X). That is, Proclaim 1(8.10) does not hold for a belief measurement MC(Ω)(O ≡
(X, 2X , F ), S[∗]((ν))bw), or equivalently, a belief measurement has no sample space.

This (R1) is clear. That is because the argument mentioned in Example 8.1 is invalid

for a belief measurement, since ν ( in MC(Ω)(O, S[∗]((ν))bw) ) is a belief weight and not a

statistical state.

However (i.e., in spite of the fact that Proclaim 1(8.10) is invalid), we have the following

theorem:

Theorem 8.20. (Bayes theorem for belief measurements). Assume that we know that

a measured value obtained by a belief measurement MC(Ω)(O ≡ (X,F, F ), S[∗]((ν))bw)

10Recall “parimutuel betting” , which is very applicable. For example, we may consider the
“probability” that life exists on Mars.

11Thus, outsiders may think that MC(Ω)(O, S[∗]((ν0))bw) and MC(Ω)(O, S[∗]) are the same. That is
because the number of the believers is not related to the measurement itself.
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belongs to Ξ (∈ F). Then, we have the “Bayes theorem” such that

Mm
+1(Ω) 3 ν(= priori belief weight) 7→ (posterior belief weight =)R

(0,0)
Ξ (ν) ∈Mm

+1(Ω). (8.66)

where

[R
(0,0)
Ξ (ν)](D0) =

∫
D0
[F (Ξ)](ω)ν(dω)∫

Ω
[F (Ξ)](ω)ν(dω)

(∀D0 ⊆ Ω; Borel set ). (8.67)

Proof. It suffices to prove a simple case since the proof of the general case is similar.

For example, consider the following figure, which is essentially the same as Figure (8.65).

25 % people believe that [∗] = U1.
20 % people guess that a white ball will be picked.

5 % people guess that a black ball will be picked.

75 % people believe that [∗] = U2.
30 % people guess that a white ball will be picked.

45 % people guess that a black ball will be picked.

- �[∗]

Pick up a ball from the urn behind the curtain

U1(≈ ω1) U2(≈ ω2)

Assume that a “white ball ” is picked in the above picture. Then, we see:

25 % people believe that [∗] = U1.
20 % people guess that a white ball will be picked.

5 % people guess that a black ball will be picked.

75 % people believe that [∗] = U2.
30 % people guess that a white ball will be picked.

45 % people guess that a black ball will be picked.

- �[∗]

U1(≈ ω1) U2(≈ ω2)

which is equivalent to the following figure:
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40 % people believe that [∗] = U1. 60 % people believe that [∗] = U2.

- �[∗]

U1(≈ ω1) U2(≈ ω2)

Thus we see that Bayes theorem holds for belief measurements. That is because Theorem

8.20 (Bayes theorem for belief measurements) says:

Mm
+1(Ω) 3 ν0(= priori belief weight) 7→ (posterior belief weight =)R

(0,0)
Ξ (ν0) ∈Mm

+1(Ω). (8.68)

where

[R
(0,0)
{w} (ν0)]({ω}) =

∫
{ω}[F ({w})](ω)ν0(dω)∫
Ω
[F ({w})](ω)ν0(dω)

=


8
10
× 1

4
8
10
× 1

4
+ 4

10
× 3

4

= 40
100

(if ω = ω1)

4
10
× 3

4
8
10
× 1

4
+ 4

10
× 3

4

= 60
100

(if ω = ω2)

(8.69)

Although this proof is easy, it should be noted that this is different from the proof of

Bayes theorem for a statistical measurement. That is because Proclaim 1 (8.20) can not

be used in the proof of Theorem 8.26.

Remark 8.21. (Extensive interpretation in theoretical informatics). Seeing Figure

(8.65), some may think that the belief weight ν (in MC(Ω)(O ≡ (X,F, F ), S[∗]((ν))bw)

represents the only “public opinion”. However, this is wrong. Recall the spirit of the-

oretical informatics (in the footnote below the statement (1.12) in Chapter 1), i.e.,

“extensive interpretation”. Thus, we consider that the belief weight ν (in MC(Ω)(O ≡
(X,F, F ), S[∗]((ν))bw) often represents “personal belief”.

�

8.6.2 The principle of equal weight

As mentioned in the previous section (i.e., §8.6.1) we have the following notation:
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Notation 8.22. [MC(Ω)

(
O, S[∗]((ν))bw

)
]. The symbol MC(Ω)

(
O, S[∗]((ν))bw

)
, (ν ∈

Mm
+1(Ω)), is assumed to represent the measurement MC(Ω)

(
O ≡ (X,F, F ), S[∗]

)
un-

der the hypothesis that the belief weight of the system S[∗] is ν. And it is called a belief

measurement.

�
Now let us explain “Bayes postulate” (= “the principle of equal weight”). Assume

that Ω is finite (i.e., Ω = {ω1, ω2, ..., ωN}). Then, there is a reason to think that the mixed

state νu ( ∈Mm
+1(Ω)) defined by

νu(D) =
][D]

N
(∀D ⊆ Ω) (8.70)

represents “the loosest belief” or “knowing nothing about S[∗]”. (The νu is called the

“equal weight”. Cf. Remark 8.23 later). If Ω is infinite, we have no firm opinion.12 Thus

in this section we always assume that Ω is finite.

We add the following remark.

Remark 8.23. [Mathematical properties of equal weight νu, [42]]. Let Ω≡ {ω1, ω2, ..., ωN}
be a finite set with the discrete topology. Let ρm0 be arbitrary belief weight (i.e., ρm0

∈Mm
+1(Ω)). Then, define the entropy H(ρm0 ) of the ρ

m
0 by

H
(
ρm0

)
= −

N∑
n=1

ρm0 ({ωn}) log ρm0 ({ωn}).

Here, it is well known that

(i) sup
{
H
(
ρm0

)
: ρm0 ∈Mm

+1(Ω)
}
= logN , (8.71)

(ii) “ρm0 ({ωn}) = 1/N(∀n)” ⇐⇒ “H(ρm0 ) = logN”.

(iii) Let Tav : C(Ω) → C be the average functional on C(Ω), i.e., a linear positive

functional such that:

(a) Tav(1) = 1

(b) Tav(f) = Tav(f ◦ φ) (∀f ∈ C(Ω),∀ bijection φ : Ω→ Ω)

where (f ◦ φ)(ω) = f(φ(ω)).

12For example, we may consider as follows: Let Ω be not finite. Let SΩ be a subset of {Φ | Φ : C(Ω)→
C(Ω) is a Markov operator }. Assume that the SΩ has the unique invariant state νu ( ∈ Mm

+1(Ω)), that
is, Φ∗νu = νu (∀Φ ∈ SΩ). And further assume that νu(U) > 0 (∀U( ⊆ Ω, open ). Then, we may say that
the νu represents “no belief weight (concerning SΩ)” or “completely shuffled weight”. Also, see [47].
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(iv) Tav is uniquely determined such as Tav(f) =
∫
Ω
f(ω)νu(dω)

(
≡

∑N
n=1 f(ωn)

N

)
(∀f ∈

C(Ω)).

�

Therefore, we can assert:

The principle of equal weight (= “PEW” = Bayes’ postulate).
[The belief interpretation of mixed states]. Consider a system S[∗] for-
mulated in C(Ω) where the state space Ω (≡ {ω1, ω2, ..., ωN}) is a finite
set. The belief weight is represented by a mixed state ν (∈ Mm

+1(Ω)). In

particular, the equal weight νu (≡ 1
N

∑N
n=1 δωn ∈ Mm

+1(Ω)) represents “the
loosest belief”. (8.72)

Thus BMT is summarized as follows.

[BMT1 ] the equal weight νu ( ∈Mm
+1(Ω)) represents “the most loosest belief”.

[BMT2 ] After we get the measured value x by a belief measurementMC(Ω) (O ≡ (X, 2X , F ),

S[∗]((ρ
m
0 ))bw), the new belief weight of the system S[∗] is changed to ρmnew ( ∈Mm

+1(Ω))

such that ρmnew (B) =
∫
B [F ({x})](ω)ρm0 (dω)∫
Ω[F ({x})](ω)ρm0 (dω)

(∀B ∈ BΩ, Borel field).

Define the map [R
(0,0)
{x} ] : M

m
+1(Ω)→Mm

+1(Ω) such that:

[R
(0,0)
{x} ](ρ

m) =

∫
D0
[F ({x})](ω)ν(dω)∫

Ω
[F ({x})](ω)ν(dω)

(∀D0 ⊆ Ω; Borel set ). (8.73)

Then, we can symbolically describe it as follows:

[BMT] =


[BMT1] the loosest belief weight ←→ νu( ∈Mm

+1(Ω))

[BMT2] S[∗]((ρ))bw
MC(Ω)

(
O, S[∗]((ρ))bw

)
−−−−−−−−−−−→

x is obtained
S[∗](([R

(0,0)
{x} ](ρ)))bw,

(8.74)

which should be compared with the characterization (5.80) of “Iterative likelihood function

method”.

Example 8.24. [= Example 5.24 (the urn problem)]. There are two urns ω1 and ω2.

The urn ω1 [resp. ω2] contains 8 white and 2 black balls [resp. 4 white and 6 black balls].
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50% people believe that [∗] = U1. 50% people believe that [∗] = U2.

- �[∗]

U1(≈ ω1) U2(≈ ω2)

Figure(8.75)

Assume that they can not be distinguished in appearance.

• Choose one urn from the two. (8.76)

Now you sample, randomly, with replacement after each ball.

(i). First, you get “white ball”.

(Q1) Do you believe which the chosen urn is, ω1 or ω2?

(ii). Further, assume that you continuously get “black”.

(Q2) How about the case? Do you believe which the chosen urn is, ω1 or ω2?

And further,

(Q3) Also, study the case that the urn is chosen by a fair coin-tossing in (8.76).

[Answers]. In what follows this problem is studied in BMT. Put Ω = {ω1, ω2}. O =

({w, b}, 2{w,b}, F ) where [F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2, [F ({w})](ω2) = 0.4,

[F ({b})](ω2) = 0.6. The PEW (8.72) says that the loosest belief is represented by νu

(i.e., νu({ω1}) = νu({ω2}) = 1/2)]. Thus we have the belief measurement MC(Ω)(O,

S[∗]((νu))bw).

(A1). Thus, consider MC(Ω)(O, S[∗]((νu))bw). Since the measured value “w” was obtained,

the new belief weight ρmnew

ρmnew({ω1})
(
=

∫
{ω1}[F ({w})](ω)νu(dω)∫
Ω
[F ({w})](ω)νu(dω)

)
=

0.8× 1
2

0.8× 1
2
+ 0.4× 1

2

=
2

3
, ρmnew({ω2}) =

1

3
.
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(A2). Next, consider the measurement MC(Ω)(O, S[∗] (( ρ
m
new ))

bw
). Since the measured

value “b” was obtained, the new belief weight ρmnew2 is represented by

ρmnew2({ω1})
(
=

∫
{ω1}[F ({b})](ω)ρ

m
new(dω)∫

Ω
[F ({b})](ω)ρmnew(dω)

)
=

0.2× 2
3

0.2× 2
3
+ 0.6× 1

3

=
2

5
,

ρmnew({ω2})
(
=

∫
{ω2}[F ({b})](ω)ρ

m
new(dω)∫

Ω
[F ({b})](ω)ρmnew(dω)

)
=

0.6× 1
3

0.2× 2
3
+ 0.6× 1

3

=
3

5
.

(A3) Also, when the urn is chosen by a fair coin-tossing, the above ρmnew and ρmnew2 acquire

the probabilistic interpretation. That is, ρmnew and ρmnew2 are regarded as statistical

states.

[Remark]. In order to make a belief measurement MC(Ω)(O, S[∗]((νu))bw) change a statisti-

cal measurement MC(Ω)(O, S[∗]( νu )), we have two methods. One is the fair coin-tossing

method as mentioned in the above (A3) ( and (Q3)). Another will be proposed as SMTPEP

in §11.4, i.e., “the principle of equal probability”. Also, note that Theorem 11.12 says that

the two methods are equivalent.

�

8.6.3 Is BMT necessary?

Now we have the following classification:

MT



PMT=measurement
[Axiom 1 (2.37)]

+ the relation among systems
[Axiom 2 (3.26)]

SMT = PMT
(Axioms 1 and 2)

+ “statistical state”
(the probabilistic interpretation of mixed state)

BMT = PMT
(Axioms 1 and 2)

+ “belief weight”
(the principle of equal weight)

(8.77)

However, we must consider and answer the following question:

(Q) Is BMT necessary?

In fact, some may think that

(A) BMT is not necessary. It suffices to substitute SMT for BMT carefully. In theoretical

informatics, the “economical” should come before the “exact”.
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I may agree with them. However, it should be remarked that

(R) It is clear that we can not use SMT carefully without the understanding of the

relation between SMT and BMT (i.e., without the understanding of the contents in

§8.1 ∼ 8.6.2). Especially, note that Proclaim 1 (8.10) is not valid in BMT.

If this (R) is admitted, I agree to the above opinion (A). Thus, I recommend readers to

use BMT at least until becoming accustomed to BMT. Also, it should be noted that there

is a great confusion in the conventional statistics.

Remark 8.25. [The term: “subjectivity”]. Since the term “subjectivity” is frequently

used in statistics, we must be careful for the usage of “subjectivity”. For example, consider

the following phrase:

• the probability that tomorrow is fine. (8.78)

The above term:“probability” is usually called a “subjective probability”. However, the

“probability” in (8.78) is the same as the “probability” in the following problem (which

is due to Newtonian mechanics, and thus, deterministic). In spite of the deterministic

system, we have the following question:

x

-~v

“Calculate the probability that the ball surmounts the mountain M.” (8.79)

That is, the case (a) or (b)?

Ball
(b)(a) M

bumpy

where the initial condition x(position) and ~v(velocity) are values with errors, and also,

the differential equation is not completely known. However, it should be noted that this

problem is usual in engineering. Thus, if this is subjective (or, if a dearth of information

implies “subjective”), we consider that almost every problem in engineering is subjective.13

13Recall the argument in Chapter 1. That is, in theoretical physics we must be in the objective standing
point. On the other hand, in theoretical informatics (and its applications) we are, more or less, in the
subjective standing point. Recall the engineer’s spirit “Use everything available”. Thus we may ask the
excellent bookmaker about the problem (8.79). However, it should be noted that the bookmaker may
calculate the “subjective probability in the sense of BMT (or, parimutuel betting among general people)”.
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There is a reason to consider that the probaility in the problem (8.79) can be regarded

as the “subjective probability in the sense of parimutuel betting among a certain set

of specialists”. However, it is so, every probability may be regarded as the subjective

probability. Thus, in this book, the term: “subjective probability” is used in the case

that it is regarded as the probability in the sense of parimutuel betting.

�

Remark 8.26. [Differential geometry and operator algebra, cf. Table (1.8a)(4)]. In

mathematics, differential geometry is flexible, but the theory of operator algebras (i.e,

C∗-algebra and W ∗-algebra) somewhat lacks adaptability. Thus, in MT14, we can not

prepare so many ready-made theories. For example, we have two ready-made theories

(i.e., BMT and SMTPEP (cf. §11.4)). This fact (i.e., few ready-made theories can be

proposed) is just what we want. That is because to choose one from too many ready-

made theories is essentially the same as to create a made-to-order theory. On the other

hand, in order to create a made-to-order theory in theoretical physics, the flexibility of

differential geometry is essential.

�

8.7 Appendix (Bertrand’s paradox)

As mentioned in Remark 8.4, a natural mixed state is not always a ststistical state.

In fact we see, in §8.6, that the no informational weight νu (∈Mm
+1(Ω), where Ω is finite)

defnied by (8.70) can not be unconditionally regarded as the statistical state.15 (As seen

later (in §11.4), the term “unconditionally” is important.) In this section, we study

Bertrand’s paradox, which promote our understanding of the relation between a natural

mixed state and a ststistical state.

8.7.1 Review (Bertrand’s paradox)

Here, let us review the usual argument about Bertrand’s paradox (cf. [35]). Consider

14Although Fisher information is closely related to Riemann manifold (in differential geometry, cf [5],
[24]), it is not the axiom of MT but a kind of method.

15The νu is invariant concerning any bijection φ on Ω, i.e., φ(νu) = νu. In this sense, it is natural.
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the following problem:

(P1) Given a circle with the radius 1. Suppose a chord of the circle is chosen at random.

What is the probability that the chord is longer than
√
3 (i.e., the side of an inscribed

equilateral triangle)?

The problem has apparently several solutions as follows:

A

(Fig.1) (Fig.2)

[First Solution (Fig.1)]. The “random endpoints” method: Choose a point A on the

circumference and rotate the triangle so that the point is at one vertex. Choose another

point on the circle and draw the chord joining it to the first point. For points on the

arc between the endpoints of the side opposite the first point, the chord is longer than a

side of the triangle. The length of the arc is one third of the circumference of the circle,

therefore the probability a random chord is longer than a side of the inscribed triangle is

one third.

[Second Solution (Fig.2)]. The “random radius” method: Choose a radius of the circle and

rotate the triangle so a side is perpendicular to the radius. Choose a point on the radius

and construct the chord whose midpoint is the chosen point. The chord is longer than

a side of the triangle if the chosen point is nearer the center of the circle than the point

where the side of the triangle intersects the radius. Since the side of the triangle bisects

the radius, it is equally probable that the chosen point is nearer or farther. Therefore the

probability a random chord is longer than a side of the inscribed triangle is one half.

8.7.2 Bertrand’s paradox in measurement theory

We assert that
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(]) If Bertrand’s paradox is a paradox (i.e., if the argument in §8.7.1 is considered to

be strange), it is due to the confusion between statistical states and mixed states

(cf. (8.11)).

In what follows, we shall explain it. Consider the following problem:

(P2) Given a circle with the radius 1. Define the state space Ω by the set composed of

all chords of this circle. Then, find a natural mixed state ρ ( ∈Mm
+1(Ω)).

The reader will find that the (P2) is essentially the same as the problem (P1) in §8.7.1.
Thus, the above problem has also apparently several solutions as follows:

(Fig.0)

Represent a chord l
by a natural coordinate!

l

α θ

r
β

(Fig.2′)(Fig.1′)

l(α,β) l(r,θ)

[First Solution (Fig.1′)]. See Fig.0 (Represent a chord by a natural coordinate!). In

Fig.1′, we see that the chord l is represented by a point (α, β) in the rectangle R1 ≡
{(α, β) | 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2(radian)}. That is, we have the following identification:

Ω 3 l(α,β) ←→ (α, β) ∈ R1.

Under the identification, we get the natural mixed state ρ1 ( ∈Mm
+1(Ω) ≈Mm

+1(R1)) such
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that ρ1(A) = Area[A]
Area[R1]

= Area[A]
π2 (∀A ∈ BR1), where “Area” = “Lebesgue measure”.

Therefore, we see

ρ1({l(α,β) ∈ Ω | ”the length of l(α,β)” ≥
√
3})

=
Area[{(α, β) | 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/6}]
Area[{(α, β) | 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2}]

=
2π × (π/6)

2π × (π/2)
=

1

3
. (8.80)

[Second Solution (Fig.2′)]. See Fig.0 (Represent a chord by a natural coordinates). In

Fig.2′, we see that the chord l is represented by a point (r, θ) in the rectangle R2 ≡
{(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. That is, we have the following identification:

Ω 3 l(r,θ) ←→ (r, θ) ∈ R2.

Under the identification, we get the natural mixed state ρ2 ( ∈Mm
+1(Ω) ≈Mm

+1(R2)) such

that ρ2(A) =
Area[A]
Area[R2]

= Area[A]
2π

(∀A ∈ BR2). Therefore, we see

ρ2({l(α,β) ∈ Ω | ”the length of l(r,θ)” ≥
√
3})

=
Area[{(r, θ) | 0 ≤ r ≤ 1/2, 0 ≤ θ ≤ 2π}]
Area[{(r, θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}]

=
1

2
. (8.81)

Since the above argument is related to “mixed state” and not “statistical state”, we

have no paradox in the above arguments. That is, if Bertrand’s paradox is a paradox

(in §8.7.1), it is due to the confusion between mixed states (mathematical concept) and

statistical states (measurement theoretical concept).

Some may assert that:

• it suffices to test (8.80) or (8.81) experimentally.

However, it is not true. For completeness, we add the following remark.

Remark 8.27. [Mixed state and statistical state]. In the above arguments, note that ρ1

( ∈Mm
+1(Ω)) and ρ2 ( ∈Mm

+1(Ω)) are mixed states and not statistical states. In order to

regard a mixed state ρ1 ( ∈Mm
+1(Ω)) as a statistical state, we must add the probabilistic

interpretation to the mixed state ρ1. This is, for example, done as follows:

(R1) Prepare two urns A and B, which respectively contain 100 balls (i.e., “ball 1”, “ball

2”, ...,“ball 100” ). Pick out one ball from the urn A. Assume that the ball is “ball
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m”. Next, pick out one ball from the urn B. Assume that the ball is “ball n”.

Define (α, β) in the rectangle R1 such that:

α =
2πm

100
, β =

πn

200
.

Then, if (α, β) is chosen according to the above rule (R1), the mixed state ρ1 ( ∈Mm
+1(Ω))

acquires the probabilistic interpretation. And thus, it can be regarded as a statistical state.

In fact, if we take an exact measurement, we see that the probability that the length of

the chord is longer than
√
3 is given by 1/3. Of course, by a similar way, we can add

the probabilistic interpretation to the ρ2 (in the second solution). That is, it suffices to

choose a chord as follows.

(R2) Prepare two urns A and B, which respectively contain 100 balls (i.e., “ball 1”, “ball

2”, ...,“ball 100” ). Pick out one ball from the urn A. Assume that the ball is “ball

m”. Next, pick out one ball from the urn B. Assume that the ball is “ball n”.

Define (r, θ) in the rectangle R1 such that:

r =
m

100
, θ =

2πn

200
.

�
Summing up, we conclude as follows. Consider the following problem:

(P1)
′ Given a circle with the radius 1. And choose a chord. Find the probability that the

chord chosen is longer than
√
3 (i.e., the side of an inscribed equilateral triangle).

Then, we see:

(A1) If we know that the chord was chosen by the rule (R1) in Remark 8.27, we can

conclude that the probability that the chord chosen be longer than
√
3 is 1/3.

(A2) If we know that the chord was chosen by the rule (R2) in Remark 8.27, we can

conclude that the probability that the chord chosen be longer than
√
3 is 1/2.

(A3) If we know that the chord was chosen by the physical experiment (conducted in

[49]), we may conclude that the probability that the chord chosen be longer than
√
3 is about 1/2 (cf. [49]).

(A4) etc.
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We consider that something like a (physical) coin-tossing (such as Brownian motion,

radioactive atom, etc.) is hidden behind the physical experiment (in (A3)). Thus, we

again stress that

• A “coin-tossing” is always hidden behind a statistical state. Or there is no statistical

state without a “coin-tossing” (or, “dice-throwing”, “urn problem”).

Also, it should be noted that we are in theoretical informatics and not in theoretical

physics.


