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Chapter 7

Practical logic

It is certain that pure logic (cf. [89]) is merely a kind of rule in mathematics (or meta-mathematics).
However, if it is so, the logic is not guaranteed to be applicable to our world. For instance, (pure)
logic does not assure the following famous statement:

[]] Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.

That is, we think that the problem: “Is the []] true or not?” should be answered. Thus, the purpose
of this chapter is to prove the statement []], or more generally, to propose “practical logic”, i.e.,
“logic with an interpretation”, 1 which is formulated in the framework of the measurement theory:

PMT = measurement

[Axiom 1 (2.37)]

+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra
. (7.1)

(=(1.4))

Firstly, the symbol “A ⇒ B” (i.e., “implication” ) is defined in terms of measurements. And we
prove the standard syllogism for classical systems:

“A⇒ B, B ⇒ C” implies “A⇒ C” 2 (7.2)

(This is not trivial, because the (7.2) does not necessarily hold in quantum systems.) We can
assert, by “Declaration (1.11)” in §1.4, that this theorem (7.2) guarantees that the above (7.2) (or,
the statement []]) is “theoretical true”. Several variants may be interesting. For example, under
the condition that “A ⇒ B, B ⇒ C”, we can assert a kind of conclusion such as “C ⇒ A”. For
completeness, “pure logic” and “practical logic” must not be confused. The former is a basic rule
on which mathematics is founded. On the other hand, the latter is a collection of theorems (whose
forms are similar to that of “pure logic”) in MT. All results in this chapter are due to [41]. Also,
this chapter can be skipped if readers want to study statistics in the framework of SMT firstly (cf.
Chapters 8).

1We have no confidence for the naming “practical logic”. Wemay choose the other namings: “empirical
logic”, “applied logic”, “usual logic”. etc.

2It is said that the syllogism is said to be, for the first time, introduced by Aristotle (B.C.384-B.C.322)
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7.1 Measurement, inference, control and

practical logic

The PMT has various aspects. For example, we believe that three concepts:

“measurement”, “inference”, and “control” are different aspects of the same thing.

Let us explain it as follows: Let MA

(
O ≡ (X,F, F ), S[ρp]

)
be a measurement formulated

in a C∗-algebra A. Note that Axiom 1 can be regarded as the answer to the following

problem:

(M) What kind of measured value is obtained by a measurement MA

(
O, S[ρp]

)
?

As mentioned in Chapter 5, the measurement MA

(
O, S[ρp]

)
is often denoted by MA

(
O,

S[∗]
)
, if we want to stress that we do not know the state ρp. Using this notation, we can

respectively characterize “inference (I)” and “control (C)” as follows:

(I) Assume that we get a measured value x( ∈ X) by a measurement MA

(
O, S[∗]

)
.

Then, infer the state [ ∗ ],

and

(C) Assume that we want to get a measured value x( ∈ X) by a measurement MA

(
O,

S[∗]
)
. Then, settle the state [ ∗ ].

Of course, Fisher’s maximum likelihood method is one of the answers of the above prob-

lems (I) and (C).

Also, we think that

(L) “Practical logic” is characterized as “a qualitative theory concerning conditional

probability (cf. §2.5 (IV)) in PMT”.

Thus “practical logic” is also one of the aspects of Axiom 1. Also, since “(practical)

logic” is a qualitative aspect of “inference”, we can say that “(practical) logic” [resp.

“inference”] is used in rough [resp. precise] arguments. For completeness, “pure logic” and

“practical logic” must not be confused. The former is a basic rule on which mathematics is

built. And thus it is not related to our world. On the other hand, the latter is a collection

of theorems (whose forms are similar to that of “pure logic”) in PMT. Since practical logic
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is regarded as a theorem in PMT, it automatically possesses the measurement theoretical

interpretation. That is, we think that

“practical logic” = “theorems (whose forms are similar to (pure) logic) in MT”.

Recall, throughout this book, that the measured value set (or, label set) X is assumed

to be finite if we write (X, 2X , F ) (or, (X,P(X), F ) and not (X,F, F ). In this chapter we

always assume that X is finite.

7.2 Quasi-product observables with dependence

We begin with the following definition.

Definition 7.1. [Marginal observable, quasi-product observable, consistency. (cf. Defi-

nition 2.10.)]. Let A be a C∗-algebras. Let K = {1, 2, ..., |K|}.

(i). Consider an observable O ≡ (×k∈K Xk, 2
×k∈K Xk , F ) (with a label set ×k∈K Xk)

in A. Let D be D ⊆ K. An observable OD ≡ (×k∈DXk, 2
×k∈D Xk , FD) in A is called

a D-marginal observable of O if it satisfies that

FD( ×
k∈D

Ξk) = F
(
( ×
k∈D

Ξk)×( ×
k∈K\D

Xk)
)
,

for all Ξk ∈ 2Xk , k ∈ D. Also this OD is denoted by O
∣∣
D
. Here note that the marginal

observable O
∣∣
D

is equal to the image observable O[g
D
] where ×k∈K Xk 3 (xk)k∈K

g
D7−→

(xk)k∈D ∈×k∈DXk.

(ii). For each k ∈ K, consider an observable Ok ≡ (Xk, 2
Xk , Fk) in A. If there exists an

observable OK ≡ (×k∈K Xk, 2
×k∈K Xk , F ) in A such that OK

∣∣
{k} = Ok for all k ∈ K,

then [Ok : k ∈ K] is called consistent. Also, thisOK is called a quasi-product observable of

[Ok : k ∈ K], and is sometimes denoted by (×k∈K Xk, 2
×k∈K Xk ,×OK

k∈K Fk), or×OK

k∈K Ok(
or, (×k∈K Xk, 2

×k∈K Xk ,
qp

×××××××××k∈KFk), or
qp

×××××××××k∈KOk

)
.

�
Note that the consistency of observables [(Xk, 2

Xk , Fk) : k ∈ K] in A is not guaranteed

in general. If the commutativity condition:

Fk1(Ξk1)Fk2(Ξk2) = Fk2(Ξk2)Fk1(Ξk1) (∀Ξk1 ∈ 2Xk1 , ∀Ξk2 ∈ 2Xk2 , k1 6= k2)
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holds, then we can construct a quasi-product observable O ≡ (×k∈K Xk, 2
×k∈K Xk , F ≡

×O
k∈K Fk) such that:

F (Ξ1×Ξ2× · · ·×Ξ|K|) = F1(Ξ1)F2(Ξ2) · · ·F|K|(Ξ|K|).

It is, of course, the case that the uniqueness is not guaranteed even under the above

commutativity condition.

Remark 7.2. [Only one measurement is permitted (cf. §2.5. Remarks (II))]. If we want

the data concerning both O1 and O2 for the system S[ρp], we must take a simultaneous

measurement MA(O12 ≡ O1×O12 O2, S[ρp]). Therefore, if a quasi-product observable

O12 does not exist (i.e., [O1,O2] is not consistent), the concept of “the data concerning

O1 and O2 for the system S[ρp]” is nonsense, i.e., it has no reality. This is a prevalent

notion in quantum theory as in the case that the concept “the momentum and position

of a particle” or “the trajectory of a particle” is meaningless in quantum theory. (For the

recent results, see [37, 40].) It should be emphasized that the importance of this spirit

(i.e., “the consistency of [O1,O2]” ⇔ “the reality of data”) is essential.

�

As the classical PMT is rather easy, people tend to overlook important facts in classical

systems. Since quantum theory is moderately difficult, it is rather handy compared to

classical theory.

Let X = {x1, x2, ...., xJ}. Let O ≡ (X, 2X , F ) be an observable in a commutative C∗-

algebra A (hence by Gelfand theorem, we can assume that A = C(Ω)). We can consider

the following identification:

(X, 2X , F )←→
[
[F ({xj})](ω) : j = 1, 2, ..., J

]
(where F ({xj}) ≡ [F ({xj})] ∈ C(Ω)), and therefore denote

Rep[O] = Rep[(X, 2X , F )] =
[
[F ({xj})](ω) : j = 1, 2, ..., J

]
.

It is clear that

0 ≤ [F ({xj})](ω) ≤ 1 and
J∑
j=1

[F ({xj})](ω) = 1 (∀ω ∈ Ω),

that is, Rep[(X, 2X , F )] is considered to be the resolution of the identity (cf. §2.3).
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Consider two observables O1 ≡ (X1, 2
X1 , F1) and O2 ≡ (X2, 2

X2 , F2) in C(Ω) such

that:

X1 = {x11, x21, ..., x
J1
1 } and X2 = {x12, x22, ..., x

J2
2 }.

Let O12 ≡ (X1×X2, 2
X1×X2 , F ≡ F1×O12 F2) be a quasi-product observable with the

marginal observables O1 and O2. (The existence of O12 is guaranteed by Theorem 2.11

since C(Ω) is commutative.) Put

Rep[O12] =


[F ({(x11, x12)})](ω) [F ({(x11, x22)})](ω) . . . [F ({(x11, x

J2
2 )})](ω)

[F ({(x21, x12)})](ω) [F ({(x21, x22)})](ω) . . . [F ({(x21, x
J2
2 )})](ω)

...
...

. . .
...

[F ({(xJ11 , x12)})](ω) [F ({(xJ11 , x22)})](ω) . . . [F ({(xJ11 , xJ22 )})](ω)

 .

Let X = {x1, x2, ...., xJ}. Let O ≡ (X, 2X , F ) be an observable in a C∗-algebra A. Put

X = Ξy
∪

Ξn (where Ξy
∩
Ξn = ∅). Define the map g : X → X(2) ≡ {y, n} such that

g(x) = y (if x ∈ Ξy), = n ( if x ∈ Ξn). Here we can define the two-valued observable

(X(2) ≡ {y, n}, 2X(2) , F(2)) in A as the image observable O[g]. This two-valued observable

is also called yes-no observable or 1− 0 observable. The following lemma says about the

conditions that a quasi-product observable of yes-no observables should satisfy.

Lemma 7.3. [The existence condition of yes-no quasi-product observable]. Consider yes-

no observables O1 ≡ (X1, 2
X1 , F1) and O2 ≡ (X2, 2

X2 , F2) in a commutative C∗-algebra

C(Ω) such that:

X1 = {y1, n1} and X2 = {y2, n2}.

Let O12 ≡ (X1×X2, 2
X1×X2 , F ≡ F1×O12 F2) be a quasi-product observable with the

marginal observables O1 and O2.

Put

Rep[O12] =

[
[F ({(y1, y2)})](ω) [F ({(y1, n2)})](ω)
[F ({(n1, y2)})](ω) [F ({(n1, n2)})](ω)

]
=

[
α(ω) [F1({y1})](ω)− α(ω)

[F2({y2})](ω)− α(ω) 1 + α(ω)− [F1({y1})](ω)− [F2({y2})](ω)

]
, (7.3)

where α ∈ C(Ω).
(
Note that [F ({(y1, y2)})](ω) + [F ({(y1, n2)})](ω) = [F1({y1})](ω) and

[F ({(y1, y2)})](ω) + [F ({(n1, y2)})](ω) = [F2({y2})](ω)
)
.

That is,
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[F2({y2})](ω) [F2({n2})](ω)
[F1({y1})](ω) α(ω) [F1({y1})](ω)− α(ω)
[F1({n1})](ω) [F2({y2})](ω)− α(ω) 1 + α(ω)− [F1({y1})](ω)− [F2({y2})](ω)

Then, it holds that

max{0, [F1({y1})](ω) + [F2({y2})](ω)− 1} ≤ α(ω) ≤ min{[F1({y1})](ω), [F2({y2})](ω)}

(∀ω ∈ Ω). (7.4)

Conversely, for any α ( ∈ C(Ω)) that satisfies (7.4), the observable O12 defined by (7.3)

is a quasi-product observable with the marginal observables O1 and O2. Also, note that

[F ({(y1, n2)})](ω) = 0 ⇔ α(ω) = [F1({y1})](ω) ⇒ [F1({y1})](ω) ≤ [F2({y2})](ω).
(7.5)

Proof. Though this lemma is easy, we add a brief proof for completeness. Since 0 ≤
[F ({(x11, x22)})] (ω) ≤ 1, (∀x1, x2 ∈ {y, n}), we see, by (7.3), that

0 ≤ α(ω) ≤ 1, 0 ≤ [F1({y1})](ω)− α(ω) ≤ 1, 0 ≤ [F2({y2})](ω)− α(ω) ≤ 1,

0 ≤ 1 + α(ω)− [F1({y1})](ω)− [F2({y2})](ω) ≤ 1, (7.6)

which clearly implies (7.4). Conversely. if α satisfies (7.4), then we easily see (7.6). Also,

(7.5) is obvious. This completes the proof.

Next we provide several examples, which will promote a understanding of our theory.

Example 7.4. [Tomatoes’ example]. Let Ω = {ω1, ω2, ...., ωN} be a set of tomatoes,

which is regarded as a compact Hausdorff space with the discrete topology. Consider

yes-no observables ORD ≡ (XRD, 2
XRD , FRD) and OSW ≡ (XSW, 2

XSW , FSW) in C(Ω) such

that:

XRD = {yRD, nRD} and XSW = {ySW, nSW},

where we consider that “yRD” and “nRD” respectively mean “RED” and “NOT RED”.

Similarly, “ySW” and “nSW” respectively mean “SWEET” and “NOT SWEET”.

For example, the ω1 is red and not sweet, the ω2 is red and sweet, etc. as follows.
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ω1

yRD

nSW

ω2

yRD

ySW

ω3

nRD

ySW

· · ·

· · ·
· · ·

ωN

nRD

nSW

We see that

(∗) the probability that xRD ( ∈ XRD ≡ {yRD, nRD}), the measured value by the mea-

surement MC(Ω)(ORD, S[δωn ]), belongs to ΞRD ( ⊆ XRD ≡ {yRD, nRD}) is given by

δωn(FRD(ΞRD)) (= [FRD(ΞRD)](ωn) ) .

That is, the probability that the tomato ωn is observed as “RED”
[
resp. “NOT RED”

]
is given by [FRD({yRD})] (ωn)

[
resp. [FRD({nRD})] (ωn)

]
. (Continued to Example 7.5).

�
Example 7.5. [Tomatoes’ example; continued from Example 7.4]. Consider the quasi-

product observable as follows:

O = (XRD×XSW, 2
XRD×XSW , F ≡ FRD

O

×FSW),

that is,

Rep[O] =

[
[F ({(yRD, ySW)})](ω) [F ({(yRD, nSW)})](ω)
[F ({(nRD, ySW)})](ω) [F ({(nRD, nSW)})](ω)

]
=

[
α(ω) [FRD({yRD})](ω)− α(ω)

[FSW({ySW})](ω)− α(ω) 1 + α(ω)− [FRD({yRD})](ω)− [FSW({ySW})](ω)

]
where α(ω) satisfies (7.4). Hence by Axiom 1, when we observe that the tomato ωn is

“RED”, we can see that the probability that the tomato ωn is “SWEET” is given by

[F ({(yRD, ySW)})](ωn)
[F ({(yRD, ySW)})](ωn) + [F ({(yRD, nSW)})](ωn)

. (7.7)

(
For the conditional probability, see §2.5(IV).

)
Here note that (7.7) implies ;

“[F ({(yRD, nSW)})](ωn) = 0” if and only if “RED” ⇒ “SWEET” , (7.8)
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which is also clearly equivalent to “NOT SWEET” ⇒ “NOT RED”.

�

Being motivated by the above (7.8), we introduce the following definition of “implica-

tion” as a general form which is applicable to classical and quantum systems.

Definition 7.6. [Implication]. Let O1 ≡ (X1, 2
X1 , F1) and O2 ≡ (X2, 2

X2 , F2) be observ-

ables (not necessarily two-valued observables ) in a C∗-algebra A. Let O12 = (X1 ×X2,

2X1×X2 , F1×O12 F2) be a quasi-product observable of O1 and O2. Let ρp ∈ Sp(A∗).

Let Ξ1 ∈ P(X1) and Ξ2 ∈ P(X2). Then, the condition

ρp
(
(F1

O12× F2)(Ξ1×(X2 \ Ξ2))
)
= 0 (7.9)

is denoted by

OΞ1
1 =⇒

MA(O12,S[ρp])
OΞ2

2 . (7.10)

�
Remark 7.7. [Contraposition]. Assume that we get a measured value (x1, x2) ( ∈
X1×X2) by the measurement MA(O12, S[ρp]). And assume the condition (7.10). If we

know that x1 ∈ Ξ1, then we can assure that x2 ∈ Ξ2. Also, (7.9) is of course also equal to

O
X1\Ξ1

1 ⇐=
MA(O12,S[ρp])

O
X2\Ξ2

2 since O12 = O{1,2} = O21 (i.e., K = {1, 2} is not regarded as

an ordered set). That is, “O
X1\Ξ1

1 ⇐=
MA(O12,S[ρp])

O
X2\Ξ2

2 ” is the contraposition of (7.10).

�

7.3 Consistency and syllogism

In this section we study the consistent condition for observables. We show several

theorems of practical syllogisms (i.e., theorems concerning “implication” in Definition

7.6).

7.3.1 Consistent condition

Though we are not concerned with quantum theory in this chapter, our investigations

for classical systems become clearer in comparison with quantum theory. Therefore, the
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following definitions (Definitions 7.8 and 7.9) are common in both classical and quantum

theory.

Definition 7.8. [Covering family]. Let A be a C∗-algebra. For each k ∈ K ≡
{1, 2, ..., |K|−1, |K|}, consider a label set Xk. ConsiderD (⊆ 2K) such that

∪
D∈DD = K.

Then, G ≡ [ OD ≡ (×k∈DXk, 2
×k∈D Xk , FD) : D ∈ D ] is called a covering family of

observables in A, if it satisfies the following condition:

OD1

∣∣
D1∩D2

= OD2

∣∣
D1∩D2

(∀D1, ∀D2 ∈ D such that D1 ∩D2 6= ∅).

Note that, if G is a covering family, it holds that OD1

∣∣
{k} = OD2

∣∣
{k} for any k ∈ K and any

D1, D2 ∈ D such that k ∈ D1

∩
D2. Thus, a covering family of observables G determines

a unique {k}-marginal observable Ok ≡ (Xk, 2
Xk , Fk) for each k ∈ K.

�
The following definition is a generalization of Definition 7.1 (i.e., the case that D =

{{1}, {2}, ..., {|K|}}).
Definition 7.9. [Consistent condition]. Let A be a C∗-algebra. A covering family of

observable G ≡ [ OD ≡ (×k∈DXk, 2
×k∈D Xk , FD) : D ∈ D ( ⊆ 2K) ] in A is called

consistent, if there exists an observable OK ≡ (×k∈K Xk, 2
×k∈K Xk , F ) in A such that:

OK

∣∣
D
= OD (∀D ∈ D). (7.11)

Also, the above relation (7.11) is denoted by

[OD : D ∈ D] < OK . (7.12)

�
Remark 7.10. [Consistent condition]. Under the condition (7.12), the data concerning

G ≡ [OD : D ∈ D] for the system S[ρp] is obtained by the simultaneous measurement

MA(OK , S[ρp]). Thus, a covering family G has no reality, if it is not consistent. Recall

the arguments in Remark 7.2, which correspond to the above definition for the case that

D = {{1}, {2}}.
�

Lemma 7.11. [Consistent condition]. Let A be a C∗-algebra. Let G1 ≡ [ O1
D1

: D1 ∈ D1

( ⊆ 2K) ] be a covering family of observables in A. And let G2 ≡ [ O2
D2

: D2 ∈ D2 ( ⊆ 2K)

] be a consistent covering family of observables in A. Assume that for any D1 ∈ D1 there
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exists an D2 ( ∈ D2) such that:

D1 ⊆ D2 and O1
D1

= O2
D2

∣∣
D1
. (7.13)

Then, G1 is consistent.

Proof. Since a covering family G2 is consistent, there exists an observable OK ≡
(×k∈K Xk, 2

×k∈K Xk , FK) in A such that O2
D2

= OK

∣∣
D2

(∀D2 ∈ D2). Let D1 be any

element in D1. Then, by choosing D2( ∈ D2) satisfying (7.13), we see that O1
D1

= O2
D2

∣∣
D1

= (OK

∣∣
D2
)
∣∣
D1

= OK

∣∣
D1
. This completes the proof.

Lemma 7.12. [Consistent condition and quasi-product observables]. Let A be a com-

mutative C∗-algebra (i.e., A = C(Ω)). Let D12 and D23 be subsets of K. Put D123 ≡
D12

∪
D23 ≡ (D12 \ D23)

∩
(D12 ∩ D23)

∩
(D23 \ D12) ≡ D1

∪
D2

∪
D3. Consider the

following observables in C(Ω) :

OD12 ≡ ( ×
k∈D12

Xk,P( ×
k∈D12

Xk), FD12) and OD23 ≡ ( ×
k∈D23

Xk,P( ×
k∈D23

Xk), FD23)

such that OD12

∣∣
D2
= OD23

∣∣
D2
. Then, there exists an observable OD123 ≡ (×k∈D123

Xk,

P(×k∈D123
Xk), FD123) such that OD123

∣∣
D12

= OD12 and OD123

∣∣
D23

= OD23 .

Proof. Assume that D12

∩
D23 6= ∅. (If D12

∩
D23 = ∅, this lemma is trivial. Put

Ym = ×k∈Dm Xk = {y1m, y2m, ..., yjmm , ..., yMm
m }, m = 1, 2, 3. (So, Mm =

∏
k∈Dm |Xk|.)

Thus, we can put, by Y1×Y2 =×k∈D12
Xk and Y2×Y3 =×k∈D23

Xk, that

OD12 = (Y1×Y2,P(Y1×Y2), F12 ≡ FD12)

and

OD23 = (Y2×Y3,P(Y2×Y3), F23 ≡ FD23).

Define the observable OD123 ≡ (×3
m=1 Ym,P(×3

m=1 Ym), F123) in C(Ω) such that:

[F123({(yj11 , y
j2
2 , y

j3
3 )})](ω)

=

{
[F12({(y

j1
1 ,y

j2
2 )})](ω)·[F23({(y

j2
2 ,y

j3
3 )})](ω)

[F2({y
j2
2 })](ω)

if [F2({yj22 })](ω) 6= 0

0 if [F2({yj22 })](ω) = 0

for 1 ≤ ∀j1 ≤ M1, 1 ≤ ∀j2 ≤ M2, 1 ≤ ∀j3 ≤ M3. Therefore, it is clear that this lemma

holds. For example, OD123

∣∣
D23

= OD23 is easily seen as follows:
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[F123(Y1×{(yj22 , yj33 )})](ω) =
∑
y
j1
1 ∈Y1

[F123({(yj11 , y
j2
2 , y

j3
3 )})](ω)

=
∑
y
j1
1 ∈Y1

[F12({(yj11 , y
j2
2 )})](ω) · [F23({(yj22 , y

j3
3 )})](ω)

[F2({yj22 })](ω)

=
[F12(Y1×{yj22 })](ω) · [F23({(yj22 , y

j3
3 )})](ω)

[F2({yj22 })](ω)
=

[F2({yj22 })](ω) · [F23({(yj22 , y
j3
3 )})](ω)

[F2({yj22 })](ω)

= [F23({(yj22 , y
j3
3 )})](ω) (∀ω ∈ Ω, 1 ≤ ∀j2 ≤M2, 1 ≤ ∀j3 ≤M3).

This completes the proof.

The following theorem is a kind of generalization of Theorem 2.11
(
which essentially

corresponds to the result for D = {{1}, {2}, ..., {|K|}} in the following theorem
)
. Here

note that a covering family [OD : D ∈ D] is equivalent to [OD′ : D′ ∈ {D′ : D′ ⊆ D for

some D ∈ D}] where OD′ = OD

∣∣
D′ for any D

′ such that D′ ⊆ D.

Theorem 7.13. [Consistent condition and quasi-product observables]. Let D = {{1, 2},
{2, 3}, ..., {|K|−1, |K|}} ( ⊆ 2K). Let G = [OD = (×k∈DXk, 2

×k∈D Xk , FD) : D ∈ D] be

a covering family of observables in a commutative C∗-algebra C(Ω).
(
Here we can put G

= [ Ok,k+1 ≡ (Xk×Xk+1, P(Xk×Xk+1), Fk,k+1 ≡ Fk×Ok,k+1 Fk+1) : k = 1, 2, ..., |K|−1
].
)

Then, G = [ Ok,k+1 : k = 1, 2, ..., |K| − 1 ] is consistent.

Proof. Put D12 = {1, 2} and D23 = {2, 3}. By Lemma 7.12, we get O123 ( = OD123)

such that G3 = [O123,O34,O45, ...,O|K|−1,|K|] is a covering family in C(Ω) where O12 =

O123

∣∣
{1,2} and O23 = O123

∣∣
{2,3}. Iteratively, we get G|K|−1 = [O123···|K|−1,O|K|−1,|K|] and

G|K| = [O123···|K|−1,|K|] ≡ [OK ], which is clearly consistent. So, by Lemma 7.11, we see

that G|K|−1 < OK . Therefore, we iteratively get G < OK . This completes the proof.

Remark 7.14. [Quantum PMT]. This theorem is due to the commutativity of a C∗-

algebra C(Ω). In general (particularly in quantum systems, i.e., A = C(V )), there exists

no O123 such that [O12,O23] < O123 (i.e., [O12,O23] is not consistent in general). Thus,

we have no simultaneous measurement MA(O123, S[ρp]). Therefore, in general, we can not

get information (i.e., data) concerning the covering family [O12,O23] for the quantum

system S[ρp]. That is, in general, the covering family [O12,O23] has no reality in quantum

mechanics.

�
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The following notation is the preparation for Theorems 7.19 and 7.23.

Notation 7.15. [Preparation for Theorems 7.19 and 7.23]. Let G= [O12,O23, ...O|K|−1,|K|]

≡ [ (Xk×Xk+1, P(Xk×Xk+1), Fk,k+1 ≡ Fk×Ok,k+1 Fk+1) : k = 1, 2, ..., |K| − 1 ] be a

covering family of observables in a commutative C∗-algebra C(Ω). (So, G is consistent as

in Theorem 7.13). Suppose that Xk = {yk, nk} for each k ∈ K. As in Definition 7.8, put

Rep[Ok] = Rep[(Xk, 2
Xk ,Fk)] =

[
[Fk({yk})](ω), [Fk({nk})](ω)]

]
≡
[
p1
k(ω), p

0
k(ω)

]
for all k = 1, 2, 3, ..., |K|. And put

Rep[Ok,k+1] = Rep[(Xk×Xk+1, 2
Xk×Xk+1 ,Fk,k+1)]

=

[
[Fk,k+1({yk}×{yk+1})](ω) [Fk,k+1({yk}×{nk+1})](ω)
[Fk,k+1({nk}×{yk+1})](ω) [Fk,k+1({nk}×{nk+1})](ω)

]
≡
[
p11k,k+1(ω) p10k,k+1(ω)
p01k,k+1(ω) p00k,k+1(ω)

]
≡
[

p11k,k+1(ω) p1k(ω)− p11k,k+1(ω)
p1k+1(ω)− p11k,k+1(ω) 1 + p11k,k+1(ω)− p1k(ω)− p1k+1(ω)

]
(7.14)

for all k = 1, 2, ..., |K| − 1, where p11k,k+1(ω) satisfies (7.4). Let OK ≡ (×k∈K Xk,

P(×k∈K Xk), FK) be any observable in C(Ω) such that:

[O12,O23, ...O|K|−1,|K|] < OK . (7.15)

(The existence of OK is guaranteed by Theorem 7.13.) Put

[
p
j1,j2,...,j|K|
1,2,...,|K| (ω) : j1, j2, ..., j|K| = 1, 0

]
≡

[
[FK(

|K|
×
k=1
{xjkk })](ω) : j1, j2, ..., j|K| = 1, 0

]
,

(7.16)

where xjkk = yk (if jk = 1 ) and xjkk = nk (if jk = 0 ). Define O1,|K| ≡ (X1×X|K|,

P(X1×X|K|), F1,|K|) such that O1,|K| = OK

∣∣
{1,|K|}. Put

Rep[O1,|K|] = Rep[(X1×X|K|, 2
X1×X|K| ,F1,|K|)]

=

[
[F1,|K|({y1}×{y|K|})](ω) [F1,|K|({y1}×{n|K|})](ω)
[F1,|K|({n1}×{y|K|})](ω) [F1,|K|({n1}×{n|K|})](ω)

]
≡
[
p111,|K|(ω) p101,|K|(ω)

p011,|K|(ω) p001,|K|(ω)

]
≡
[

p111,|K|(ω) p11(ω)− p111,|K|(ω)
p1|K|(ω)− p111,|K|(ω) 1 + p111,|K|(ω)− p11(ω)− p1|K|(ω)

]
.

(7.17)
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(Continued to Lemmas 7.16 and 7.17 and Theorem 7.19 for K = {1, 2, 3}, and to Theorem

7.23 for general case).

�
Lemma 7.16. [Continued from Notation 7.15]. Under Notation 7.15 for K = {1, 2, 3},
we see, (putting pj1j2j3123 = pj1j2j3123 (ω) in (7.16), p111123 = A and p101123 = B),

p111123 = A(ω), p011123 = p1123 − A(ω),

p110123 = p1112 − A(ω), p010123 = p12 − p1112 − p1123 + A(ω),

p101123 = B(ω), p001123 = p13 − p1123 −B(ω),

p100123 = p11 − p1112 −B(ω), p000123 = 1− p11 − p12 − p13 + p1112 + p1123 +B(ω), (7.18)

where

max{0,−p12(ω) + p1112(ω) + p1123(ω)} ≤ A(ω) ≤ min{p1112(ω), p1123(ω)} (7.19)

and

max{0, p11(ω) + p12(ω) + p13(ω)− p1112(ω)− p1123(ω)− 1}

≤ B(ω) ≤ min{p11(ω)− p1112(ω), p13(ω)− p1123(ω)}. (7.20)

Proof. From (7.16), (7.15) and (7.14) for K = {1, 2, 3}, we see

p111123 + p110123 = p1112, p101123 + p100123 = p1012 = p11 − p1112,

p011123 + p010123 = p0112 = p12 − p1112, p001123 + p000123 = p0012 = 1 + p1112 − p11 − p12,

p111123 + p011123 = p1123, p110123 + p010123 = p1023 = p12 − p1123,

p101123 + p001123 = p0123 = p13 − p1123, p100123 + p000123 = p0023 = 1− p1123 − p12 − p13.

After a small computation, we get (7.18). Since 0 ≤ pj1j2j3123 (ω) ≤ 1, we see, from (7.18),

that

0 ≤ A ≤ 1, p1123 − 1 ≤ A ≤ p1123, p1112 − 1 ≤ A ≤ p1112,

− p12 + p1112 + p1123 ≤ A ≤ 1− p12 + p1112 + p1123,

0 ≤ B ≤ 1, p13 − p1123 − 1 ≤ B ≤ p13 − p1123, p11 − p1112 − 1 ≤ B ≤ p11 − p1112,

p11 + p12 + p13 − p1112 − p1123 − 1 ≤ B ≤ p11 + p12 + p13 − p1112 − p1123.

This implies (7.19) and (7.20). This completes the proof.
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Lemma 7.17. [Continued from Notation 7.15]. Under Notation 7.15 for K = {1, 2, 3},
we see

max{0,−p12(ω) + p1112(ω) + p1123(ω)}

+max{0, p11(ω) + p12(ω) + p13(ω)− p1112(ω)− p1123(ω)− 1}

≤ p1113(ω) (7.21)

≤ min{p1112(ω), p1123(ω)}+min{p11(ω)− p1112(ω), p13(ω)− p1123(ω)}. (7.22)

Proof. Since p1113(ω) = p111123(ω)+ p101123(ω) = A(ω) +B(ω) in Lemma 7.16, by (7.19) and

(7.20) we can easily get (7.21) and (7.22). This completes the proof.

Remark 7.18. [Comparison]. Let us compare the result in Lemma 7.17 with the result

(7.4) in Lemma 7.3 (i.e., the result without consistent condition). Note that (7.4) implies

C1 ≡ max{0, p11(ω) + p13(ω)− 1} ≤ p1113(ω) ≤ min{p11(ω), p13(ω)} ≡ C2.

Here we can easily see that C1 ≤ (7.21) and (7.22) ≤ C2 from the following trivial

inequalities:

max{0, α1 + α2} ≤ max{0,max{0, α1}+max{0, α2}} = max{0, α1}+max{0, α2}

and

min{α1, α2}+min{α3, α4} = min{ α1 + α3, α1 + α4, α2 + α3, α2 + α4 }

≤ min{ α1 + α3, α2 + α4 } .

Therefore, we see in Lemma 7.17 that the value p1113(ω) is restricted under the consistent

condition of [O12,O23].

�

7.3.2 Practical syllogism

Now we show several theorems of practical syllogisms (i.e., theorems concerning “im-

plication” in Definition 7.6) as the consequences of our arguments.

Theorem 7.19. [Practical syllogism, [41]]. Assume Notation 7.15 for K = {1, 2, 3}.
That is, [O12,O23] is a covering family of observables in a commutative C∗-algebra C(Ω).
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Let δω0 ∈ M
p
+1(Ω) for any fixed ω0 ∈ Ω. Let O123 (= OK) be any observable such that

[O12,O23] < O123 and let O13 = O123

∣∣
{1,3}. (The existence of O123 is guaranteed by

Theorem 7.13.) Then we have the following statements [1] ∼ [3]:

[1]. Assume that

O
{y1}
1 =⇒

MC(Ω)(O12,S[δ[ω0]
])
O
{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δω0 ])
O
{y3}
3 . (7.23)

Then, we see that[
p1113(ω0) p1013(ω0)
p0113(ω0) p0013(ω0)

]
=

[
p11(ω0) 0

p13(ω0)− p11(ω0) 1− p13(ω0)

]
, (7.24)

hence, we see that

O
{y1}
1 =⇒

MC(Ω)(O13,S[δω0 ])
O
{y3}
3 . (7.25)

[2]. Assume that

O
{y1}
1 ⇐=

MC(Ω)(O12,S[δω0 ])
O
{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δω0 ])
O
{y3}
3 . (7.26)

Then, we see that[
p1113(ω0) p1013(ω0)
p0113(ω0) p0013(ω0)

]
=

[
α(ω0) p11(ω0)− α(ω0)

p13(ω0)− α(ω0) 1 + α(ω0)− p11(ω0)− p13(ω0)

]
where

max{p12(ω0), p
1
1(ω0) + p13(ω0)− 1} ≤ α(ω0) ≤ min{p11(ω0), p

1
3(ω0)}. (7.27)

Also (7.26) is equivalent to

O
{y2}
2 =⇒

MC(Ω)(O123,S[δω0 ])
O
{(y1,y3)}
13 . (7.28)

[3]. Assume that

O
{y1}
1 =⇒

MC(Ω)(O12,S[δω0 ])
O
{y2}
2 , O

{y2}
2 ⇐=

MC(Ω)(O23,S[δω0 ])
O
{y3}
3 . (7.29)

Then, we see that[
p1113(ω0) p1013(ω0)
p0113(ω0) p0013(ω0)

]
=

[
α(ω0) p11(ω0)− α(ω0)

p13(ω0)− α(ω0) 1 + α(ω0)− p11(ω0)− p13(ω0)

]
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where

max{0, p11(ω0) + p13(ω0)− p12(ω0)} ≤ α(ω0) ≤ min{p11(ω0), p
1
3(ω0)}. (7.30)

Also (7.29) is equivalent to

O
{(y1,y3),(y1,n3),(n1,y3)}
13 =⇒

MC(Ω)(O123,S[δω0 ])
O
{y2}
2 . (7.31)

Proof. [1]. By (7.23) and (7.5), we see that p1012 = p1023 = 0, so, p1112 = p11 ≤ p12 = p1123 ≤
p13. Therefore, we see that (7.21) = p1112 +max{0, p13 − 1} = p11. And (7.22) = p11 + 0 = p11.

This implies that p1113 = p11, i.e., (7.24). Also, (7.25) follows from p1013 = 0.

[2]. By (7.26) and (7.5), we see that p0112 = p1023 = 0, so, p1112 = p12 ≤ p11 and p1123 = p12 ≤ p13.

Therefore, we see that (7.21) = p1123+ max{0, p11−p12+p13−1} = max{p12, p11+p13−1}. And
(7.22) = min{p12, p12} + min{p11− p12, p13− p12} = min{p11, p13}. This implies (7.27). Also, we

see that (7.26) ⇔ p0112 = p1023 = 0 ⇔ p010123 = p011123 = p110123 = 0 ⇔ (7.28).

[3]. By (7.29) and (7.5), we see that p1012 = p0123 = 0, so, p1112 = p11 ≤ p12 and p1123 = p13 ≤ p12.

Therefore, we see that (7.21) = max{0, p11−p12+p13}+max{0, p12−1}=max{0, p11−p12+p13}.
And (7.22) = min{p11, p13}. This implies (7.30). Also, (7.29) ⇔ p1012 = p0123 = 0 ⇔ p101123 =

p100123 = p001123 = 0 ⇔ (7.31). This completes the proof.

Remark 7.20. [Practical logic and pure logic]. The reader must not confuse the result

(for example, (7.23)⇒(7.25)) in Theorem 7.19 with pure logic (i.e., mathematical logic).

Theorem 7.19 is a consequence of Axiom 1. Note that Theorem 7.19 is due to Theorem

7.13, i.e., the commutativity of C∗-algebra C(Ω). That means the results in Theorem 7.19

can not be expected in quantum systems. In comparison with quantum theory, Theorem

7.19 becomes clearer. For example, in general, the syllogism is meaningless in quantum

systems. This is easily shown as follows. Put V = C5, and A = B(C5). And

~e1 =


1
0
0
0
0

 , ~e2 =


0
1
0
0
0

 , ~e3 =


0
0
1
0
0

 , ~e4 =


0
0
0
1
0

 , ~e5 =


0
0
0
0
1

 ,
and put ~f4 = ~e4√

2
+ ~e5√

2
, ~f5 = ~e4√

2
− ~e5√

2
. Define the three observables O1 ≡ (X1 ≡

{a1, b1, c1}, 2X1 , F1), O2 ≡ (X2 ≡ {a2, b2, c2}, 2X2 , F2) andO3 ≡ (X3 ≡ {a3, b3, c3}, 2X3 , F3)

such that

F1({a1}) = |~e1〉〈~e1|, F1({b1}) = |~e2〉〈~e2|+ |~e3〉〈~e3|+ |~e4〉〈~e4|, F1({c1}) = |~e5〉〈~e5|,
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F2({a2}) = |~e1〉〈~e1|+ |~e2〉〈~e2|, F2({b2}) = |~e3〉〈~e3|, F2({c2}) = |~e4〉〈~e4|+ |~e5〉〈~e5|,

F3({a3}) = |~e1〉〈~e1|+ |~e2〉〈~e2|+ |~e3〉〈~e3|, F3({b3}) = |~f4〉〈~f4|, F3({c3}) = |~f5〉〈~f5|.

Note thatO1 andO2 [resp. O2 andO3] commute. LetO12 = (X1×X2, 2
X1×X2 , F1×F2)

be the product observable of O1 and O2. And let O23 = (X2×X3, 2
X2×X3 , F2×F3) be

the product observable of O2 and O3. Let ρ
p be any pure state ( i.e., ρp ∈ Sp(B(C5)∗)).

Then, we have

O
{a1}
1 =⇒

MA(O12,S[ρp])
O
{a2}
2 , O

{a2}
2 =⇒

MA(O23,S[ρp])
O
{a3}
3 .

since we see

ρp
(
(F1×F2)({a1}×({b2, c2}))

)
= 0, ρp

(
(F1×F2)({a2}×({b3, c3}))

)
= 0.

However, it should be noted that we have no product observable of O1, O2 and O3. Thus,

the implication:

O
{a1}
1 =⇒

MA(O13,S[ρp])
O
{a3}
3

is nonsense since O13 can not be defined.

�

Example 7.21. [Continued from Example 7.4, [41]]. Let Ω, C(Ω), O1 ≡ OSW ≡ (XSW,

2XSW , FSW) and O3 ≡ ORD ≡ (XRD, 2
XRD , FRD) be as in Example 7.4. Let O2 ≡ ORP ≡

(XRP, 2
XRP , FRP) be an observable in C(Ω) such that:

XRP = {yRP, nRP},

where “yRP” and “nRP” respectively mean “RIPE” and “NOT RIPE”. Put

Rep[O1] =
[
[FSW({ySW})](ω), [FSW({nSW})](ω)

]
,

Rep[O2] =
[
[FRP({yRP})](ω), [FRP({nRP})](ω)

]
,

Rep[O3] =
[
[FRD({yRD})](ω), [FRD({nRD})](ω)

]
.

For example,
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ω1

nSW

yRP

yRD

ω2

ySW

nRP

yRD

ω3

ySW

yRP

nRD

· · ·

· · ·
· · ·
· · ·

ωN

nSW

nRP

nRD

Consider the following quasi-product observables:

O12 = (XSW×XRP, 2
XSW×XRP , F12 ≡ FSW

O12× FRP)

and

O23 = (XRP×XRD, 2
XRP×XRD , F23 ≡ FRP

O23× FRD).

Let δωn ∈ M
p
+1(Ω) for any fixed ωn ∈ Ω. Assume that

O
{y1}
1 =⇒

MC(Ω)(O12,S[δω0 ])
O
{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δω0 ])
O
{y3}
3 . (7.32)

Then, we see, by Theorem 7.19 [1], that

Rep[O13] =

[
[F13({ySW}×{yRD})](ωn) [F13({ySW}×{nRD})](ωn)
[F13({nSW}×{yRD})](ωn) [F13({nSW}×{nRD})](ωn)

]
(7.33)

=

[
[FSW({ySW})](ωn) 0

[FRD({yRD})](ωn)− [FSW({ySW})](ωn) 1− [FRD({yRD})](ωn)

]
.

So, when we observe that the tomato ωn is “RED”, we can infer, by the fuzzy inference

MC(Ω)(O13, S[δωn ]) (equivalently, MC(Ω)(O31, S[δωn ])), the probability that the tomato ωn

is “SWEET” is given by

[F13({ySW}×{yRD})](ωn)
[F13({ySW}×{yRD})](ωn) + [F13({nSW}×{yRD})](ωn)

=
[FSW({ySW})](ωn)
[FRD({yRD})](ωn)

. (7.34)

Also, when we observe that the tomato ωn is “SWEET”, we can infer, by the fuzzy

inference MC(Ω)(O13, S[δωn ]), the probability that the tomato ωn is “RED” is given by

[F13({ySW}×{yRD})](ωn)
[F13({ySW}×{yRD})](ωn) + [F13({ySW}×{nRD})](ωn)

=
[FRD({yRD})](ωn)
[FRD({yRD})](ωn)

= 1. (7.35)

Note that (7.32) implies (and is implied by)

“SWEET” =⇒ “RIPE” and “RIPE” =⇒ “RED” . (7.36)
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(Recall (7.8)). So, it is “reasonable” to reach the conclusion:

“SWEET” =⇒ “RED” , (7.37)

which is implied by the above (7.35).
(
Here we are afraid that the most important fact

may be overlooked. For completeness, note that the conclusion “(7.36) ⇒ (7.37)” is a

consequence of Theorem 7.19 (and therefore, our axiom).
)

However, the result (7.34) is

due to the peculiarity of fuzzy inferences. That is, in spite of the fact (7.36), we get the

conclusion (7.34) that is somewhat like

“RED” =⇒ “SWEET” . (7.38)

Note that the conclusion (7.37) is not valuable in the market. What we want in the

market is the conclusion such as (7.38) (or (7.34)).

�
Example 7.22. [Continued from Example 7.21, [41]]. Instead of (7.32), assume that

O
{y1}
1 ⇐=

MC(Ω)(O12,S[δωn ])
O
{y2}
2 , O

{y2}
2 =⇒

MC(Ω)(O23,S[δωn ])
O
{y3}
3 . (7.39)

Assume the notation (7.33). When we observe that the tomato ωn is “RED”, we can

infer, by the fuzzy inference MC(Ω)(O13, S[δωn ]), the probability that the tomato ωn is

“SWEET” is given by

Q =
[F13({ySW}×{yRD})](ωn)

[F13({ySW}×{yRD})](ωn) + [F13({nSW}×{yRD})](ωn)
(7.40)

which is, by (7.27), estimated as follows:

max

{
[FRP({yRP})](ωn)
[FRD({yRD})](ωn)

,
[FSW({ySW})] + [FRD({yRD})]− 1

[FRD({yRD})](ωn)

}
≤ Q ≤ min{ [FSW({ySW})](ωn)

[FRD({yRD})](ωn)
, 1}. (7.41)

Note that (7.39) implies (and is implied by)

“RIPE” =⇒ “SWEET” and “RIPE” =⇒ “RED” . (7.42)

And note that the conclusion (7.41) is somewhat like

“RED” =⇒ “SWEET” . (7.43)
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Therefore, this conclusion is peculiar to “fuzziness”.

�
The following theorem is a generalization of the first part of Theorem 7.19.

Theorem 7.23. [Standard syllogism, cf. [41]]. Assume Notation 7.15. Let δω0 ∈M
p
+1(Ω).

Assume that

O
{yk}
k =⇒

MC(Ω)(Ok,k+1,S[δω0 ])
O
{yk+1}
k+1 (∀k = 1, 2, ...., |K| − 1), (7.44)

Let OK be any observable as in Notation 7.15, i.e., G = [O12,O23, O34, ..., O|K|−1,|K|] <

OK . Put O1,|K| = OK

∣∣
{1,|K|}. Then, we see that

Rep[O1,|K|]at ω0
=

[
p111,|K|(ω0) p101,|K|(ω0)

p011,|K|(ω0) p001,|K|(ω0)

]
=

[
p11(ω0) 0

p1|K|(ω0)− p11(ω0) 1− p1|K|(ω0)

]
, (7.45)

hence, we see that

O
{y1}
1 =⇒

MC(Ω)(O1,|K|,S[δω0 ])
O
{y|K|}
|K| . (7.46)

Proof. Let OK be any observable such that G = [O12,O23, O34, ...,O|K|−1,|K|] < OK .

Thus, we see that [OK

∣∣
{1,3}, O34, ...,O|K|−1,|K|] < OK

∣∣
K\{2}. Note that (OK

∣∣
{1,3})

∣∣
{m} =

Om, m = 1, 3. Also note, by (7.24), that

Rep[OK

∣∣
{1,3}]at ω0

=

[
p11(ω0) 0

p13(ω0)− p11(ω0) 1− p13(ω0)

]
,

and thereforeO
{y1}
1 =⇒

MC(Ω)(OK |{1,3},S[δω0 ])
O
{y3}
3 . Hence, by induction, we see that Rep[O1,|K|]

≡ Rep[OK

∣∣
{1,|K|}] = (7.45) at ω = ω0. This completes the proof.

7.4 Conclusion

It is certain that (pure) logic is merely a kind of rule in mathematics. However, if it

is so, the logic is not guaranteed to be applicable to our world. For instance, (pure) logic

does not assure the truth of the following famous statement:

[]] Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
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That is, we think that the problem: “Is this []] (theoretical) true or not?” is unsolved.

Thus, the purpose of this chapter was to prove the []], or more generally, to propose

“practical logic”, i.e., a collection of theorems (whose forms are similar to that of “pure

logic”) in PMT.

Firstly, the symbol “A⇒ B” (i.e., “implication”) is defined in terms of measurements

(cf. Definition 7.6). And we prove the standard syllogism for classical systems:

“A⇒ B, B ⇒ C” implies “A⇒ C”, (7.47)

which is the same as the above (]). (This (7.47) is not trivial since it does not necessarily

hold in quantum systems.) We can assert, by “Declaration (1.11)” in §1.4, that PMT

guarantees that the above statement []] is true.

Several variants may be interesting. For example, under the condition that “A⇒ B,

B ⇒ C”, we can assert a kind of conclusion such as “C ⇒ A”. That is,

“A⇒ B, B ⇒ C” implies “C ⇒ A” in some sense. (7.48)

For completeness, “pure logic” and “practical logic” must not be confused. The former is

a basic rule on which mathematics is founded. On the other hand, the latter is a collection

of theorems (whose forms are similar to that of “pure logic”) in PMT.

7.5 Appendix (Zadeh’s fuzzy sets theory)

7.5.1 What is Zadeh’s fuzzy sets theory?

As mentioned in Chapter 1 (i.e., the footnote below Problem 1.2), one of motivations

of our research is motivated by Zadeh’s fuzzy sets theory. In 1965, L.A. Zadeh proposed

a certain system theory, in which a membership function f : Ω→ [0, 1], which is asserted

to represent “fuzziness”, plays an important role. The membership function is considered

as a kind of generalization of a characteristic function. Here, the characteristic function

χ
D
of D ( ⊆ Ω) is defined by χ

D
: Ω→ {0, 1} such that:

χ
D
(ω) =

{
1 (ω ∈ D)
0 (ω /∈ D).
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Consider the identification:

“characteristic function χ
D
” ←→ “set D”,

which gives us the question “What is the following []]?”

“membership function f” ←→ []].

0

1

Ω

f(ω)

[]] ?D

χ
D
(ω)

The []] is called a fuzzy set by Zadeh. Thus we think that Zadeh’s fuzzy sets theory has

two aspects [A1] and [A2] as follows:

Zadeh’s fuzzy sets theory


[A1] : membership functions (analytic aspect),

[A2] : fuzzy sets (logical aspect).
(7.49)

Zadeh’s fuzzy sets theory acquired a lot of believers. In fact, his paper [93] is one of

the most cited papers in all fields of 20th century science. However, his theory seems

“fuzzy” rather than “difficult”. Thus, it is natural that the following problem arises:

[]1] Is Zadeh’s fuzzy sets theory true or not?

When we examine the problem, we are immediately confronted with the following problem:

[]2] What is “true or not”? Or, if we want to assert “Zadeh’s fuzzy sets theory is true

[or not]”, what do we say?

And when we study the problems []1] and []2], we immediately notice the fact that we

have not yet the clear answer to even the question: “Is Fisher’s statistics true or not?”. 3

As mentioned in Chapter 1, our research starts from the above questions []1] and []2].

And we conclude “Declaration (1.11)” in §1.4 as follows:

• MT is entitled to check all theories in theoretical informatics. In other words, we

can, by using MT, introduce the criterion:“true or not” into theoretical informatics.

That is, MT can be regarded as “the Construction of theoretical informatics”.

3In Chapters 5 and 6, it is proved that Fisher’s statistics is theoretically true.
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Now, consider an observable (X, 2X , F ) in C(Ω). Note that, for any Ξ ( ⊆ X), F (Ξ) is a

membership function on Ω. Since F (Ξ) ∈ C(Ω), the F (Ξ), of course, has various analytic
aspects. Also, in this chapter we see that the membership function F (Ξ) has various

logical aspects. Thus, someone may conclude that Zadeh’s fuzzy sets theory (i.e., the

analytic aspect [A1] and the logical aspect [A2] in (7.49)) is understood in the framework of

measurement theory, that is, Zadeh’s fuzzy sets theory is true (cf. “Declaration (1.11)” in

§1.4). We may agree with this opinion. In fact, these kinds of aspects [A1] and [A2] can

not be found in the conventional formulation of system theory (cf. (1.2)) such as

“dyn. syst. theor.” =


dx(t)
dt = f(x(t), u1(t), t), x(0) = x0 · · · (state equation),

y(t) = g(x(t), u2(t), t) ( measurement equation).

(7.50)
(=(1.2))

That is because the conventional formulation (7.50) does not possess the concept of

“observable in the sense of Definition 2.7”.

The believers of Zadeh’s fuzzy sets theory say too much (cf. [64]). And thus, we have

no firm answer to the question: “What is the essence of Zadeh’s theory?”. If we can

assume that:

(]) Zadeh wanted to assert that DST (7.50) and “logic” are closely connected
(
or pre-

cisely, “logic” is one of the aspects of DST (7.50)
)
though the two are, in appearance,

independent,

then we can understand his assertion. That is because in this section we study “logic” in

measurement theory, which is a kind of generalization of the system theory (7.50). This is

our opinion for Zadeh’s theory. Of course, there may be another opinion, that is, someone

may assert that Zadeh said something much more than the (]). If it is so, we may not

understand his theory in the framework of measurement theory.

Recall the arguments in Chapter 1 (particularly, “Declaration (1.11)” in §1.4, tables
(1.7) and (1.8)). Now, we have only two options, i.e.,

(i) Zadeh’s fuzzy sets theory is characterized as the theory concerning membership

functions in measurement theory.

(ii) Zadeh’s fuzzy sets theory is not characterized in measurement theory. Thus another

fundamental theory (cf. The third mathematical scientific theory in (1.7)) should

be proposed.
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Although there is a possibility that (ii) is reasonable, that is, Zadeh’s fuzzy sets theory may

be understood in another fundamental theory (cf. The third mathematical scientific theory

in (1.7)), we should note that the proposal of another fundamental theory is much more

remarkable than the justification of Zadeh’s fuzzy sets theory. Thus we choose the (i) even

if the essential part of Zadeh’s assertion (e.g., the scientific part asserted in [64]) can not

be characterized in MT. Thus we conclude that Zadeh’s assertion can not be completely

understood in measurement theory, i.e.,

• Zadeh’s assertion is not completely “theoretical true” (cf. Declaration 1.11), though

practical logic somewhat has the property like “fuzzy set”.

This is our present opinion.

7.5.2 Why is Zadeh’s paper cited frequently?

Although we believe that the above argument in §7.5.1 is proper, it does not explain

the reason why Zadeh’s paper is cited frequently. As mentioned before, Zadeh’s paper [93]

is one of the most cited papers of all scientific papers. This is an established fact. This

fact may imply that there is something interesting behind Zadeh’s assertion. Thus, we

think that the question “Why is Zadeh’s paper cited frequently?” is more important than

the question “What is Zadeh’s fuzzy sets theory?”. Thus we shall consider the question:

• Why does the term “fuzzy” look attractive?

We think that the reason is that Zadeh’s spirit is regarded as the antithesis of the myth:

“Science must be exact, clear, strict, etc”. This myth seems to be due to Newtonian

mechanics (and moreover, theoretical physics), which has been located in the center of all

science. That is, we think that

• many people want another science, which is fuzzy, rough, vague, etc.

If it is so, we should recall Table 1.8 (in Chapter 1), which asserts mathematical science

is classified as follows:
theoretical physics (‘TOE’) ..... exact mathematical science

theoretical informatics (measurement theory) ..... fuzzy mathematical science.

(7.51)
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If it is true, we can understand the reason why the term “fuzzy” was accepted widely.

Thus we do not deny the following opinion:

(]) “measurement theory” = “fuzzy theory”. (Cf. [42].) Or, the attractive parts of

Zadeh’s assertions are mostly included in measurement theory.

That is because we believe that

([) Measurement theory is the very theory that represents the anti-spirit against the

myth: “Science must be exact, clear, strict, etc”.

In fact, the terms

• fuzzy statement (cf. the footnote below Example 2.16), ready-made, useful or not,

subjective, popularity, likes or dislikes, (in “Theoretical informatics of Table (1.8)”)

seem to belong to the category of “fuzziness”. On the other hand, the terms

• precise statement (cf. the footnote below Example 2.16), made to order, empirical

true or not, objective, truth, (in “Theoretical informatics of Table (1.8)”)

obviously belong to the category of “exactness”.


