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Chapter 6

Fisher’s statistics II (related to
Axioms 1 and 2)

As mentioned in Chapters 2 and 3, measurement theory is formulated as follows:

PMT = measurement

[Axiom 1 (2.37)]

+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra
. (6.1)

(=(1.4))

In this chapter we study the relation between Fisher’s statistics (mentioned in the previous chapter)
and Axiom 2. Particularly we show that regression analysis can be completely understood within
the framework of Axioms 1 and 2. We expect that our result will make the readers notice that
regression analysis is more profound than they usually think. As mentioned in Chapter 1 (cf.
Declaration (1.11)), we assert that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics
is theoretically true (in PMT)”. 1

6.1 Regression analysis I

6.1.1 Introduction

The purpose of this chapter is to study and understand “regression analysis” com-

pletely under Axiom 1 and 2 (of measurement theory). The following Example 6.1 is the

most typical in all examples of “regression analysis”.

Example 6.1. [A typical example of regression analysis]. Let Ω ≡ {ω1, ω2, ..., ω100} be a
set of all students of a certain high school. Define h : Ω→ [0, 200] [resp. w : Ω→ [0, 200]]

1We believe that only “Fisher’s maximum likelihood method” and “regression analysis” are most
essential in statistics. Thus we believe that, in order to justify statistics, it suffices to show that the two
(i.e., “Fisher’s maximum likelihood method” and “regression analysis”) are formulated in PMT.

127



128 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)

such that:

h(ωn) = “the height of a student ωn” (n = 1, 2, ..., 100)[
resp. w(ωn) = “the weight of a student ωn” (n = 1, 2, ..., 100)

]

ω

h(ω)

w(ω)

Ω

0 100 200

0 100 200

(
Note that this is a special case of Fig. (3.20).

)
Assume that:

(1) The principal of this high school knows the both functions h and w. That is, he

knows the exact data of the height and weight concerning all students.

Also, assume that:

(2) Some day, a certain student helped a drowned girl. But, he left without reporting

the name. Thus, all information that the principal knows is as follows:

(i) he is a student of his high school.

(ii) his height [resp. weight] is about 170 cm [resp. about 80 kg].

Now we have the following question:

• Under the above assumption (1) and (2), how does the principal infer who is he?

This is just what regression analysis says. For the solution, see Regression Analysis I (6.7)

later.

�
In order to explain our main assertion, let us begin with the following Example 6.2 (the

conventional argument of regression analysis in Fisher’s maximum likelihood method),

which is easy and well-known.

Example 6.2. [The conventional argument of regression analysis in Fisher’s method].

We have a rectangular water tank filled with water. Assume that the height of water at
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time t is given by the following function h(t):

h(t) = α0 + β0t, (6.2)

where α0 and β0 are unknown fixed parameters such that α0 is the height of water filling

the tank at the beginning and β0 is the increasing height of water per unit time. The

measured height hm(t) of water at time t is assumed to be represented by

hm(t) = α0 + β0t+ e(t), (6.3)

where e(t) represents a noise (or more precisely, a measurement error) with some suitable

conditions. And assume that we obtained the measured data of the heights of water at

t = 1, 2, 3 as follows:

hm(1) = 1.9, hm(2) = 3.0, hm(3) = 4.7. (6.4)

h(t)

?

6

Under this setting, we consider the following problem:

(i) Infer the true value h(2) of the water height at t = 2 from the measured data (6.4).

This problem (i) is usually solved as follows: From the theoretical point of view, we can

infer, by Fisher’s maximum likelihood method and regression analysis, that

(α0, β0) = (0.4, 1.4). (6.5)(
For the derivation of (6.5) from (6.4), see Example 6.4 (6.16) later.

)
And next, we can

infer that

h(2) = 3.2, (6.6)
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by the calculation: h(2) = 0.4 + 1.4× 2 = 3.2. This is the answer to the problem (i).

�

The above argument in Example 6.2 is, of course, well known and adopted as the usual

regression analysis. Thus all statisticians may think that there is no serious problem in

regression analysis. However it is not true. For example, we have the basic problem in

the argument of Example 6.2 as follows:

(ii) What kinds of axioms are hidden behind the argument in Example 6.2? And more-

over, justify the argument in Example 6.2 under the axioms.

It is important. If we have no answer to the question: “What kinds of rules are permitted

to be used in statistics?”, we can not prove (or, justify) that the argument in Example 6.2

is true (or not). That is because there is no justification without an axiomatic formulation.

In this sense, we believe that the above question (ii) is the most important problem in

theoretical statistics. Also, if some know the great success of the axiomatic formulation

in physics (e.g., the three laws in Newtonian mechanics, or von Neumann’s formulation of

quantum mechanics, cf. [71], [84]), it is a matter of course that they want to understand

statistics axiomatically.

Trying to solve the problem (ii), some may consider as follows:

(iii) Firstly, Fisher’s maximum likelihood method should be declared as an axiom (cf.

Corollary 5.6). Also, the derivation of the (6.6) from the (6.5) should be justified

under some axioms. That is, it must not be accepted as a common sense.

This opinion (iii) may not be far from our assertion proposed in this chapter. However,

in order to describe the above (iii) precisely, we must make vast preparations.

Our standing point of this book is extremely theoretical (and not practical). However

we expect that many statisticians will be interested in our proposal. That is because we

believe that every statistician may want to know the justification of both the (6.5) and

the (6.6) in Example 6.2.

6.1.2 Regression analysis I in measurements

By the results in the previous chapters (i.e., Theorem 3.7 and Corollary 5.6), we can

easily propose:
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REGRESSION ANALYSIS I [The conventional regression analysis in PMT]. (6.7)

Let (T ≡ {0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0, and let S[∗] ≡ [S[∗]; {Φπ(t),t :

C(Ωt) → C(Ωπ(t))}t∈T\{0}] be a general system with the initial system S[∗]. And, let an

observable Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra C(Ωt) be given for each t ∈ T . Let Õ0

be the Heisenberg picture representation of the sequential observable [{Ot}t∈T , {Φt,π(t) :

C(Ωt)→ C(Ωπ(t))}t∈T\{0} ] in C(Ω0). Then, we have a measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt, 2
∏
t∈T Xt , F̃0), S[∗]). (cf. Theorem 3.7).

Assume that the measured value by the measurementMC(Ω0)(Õ0, S[∗]) belongs to
∏

t∈T Ξt (∈
2
∏
t∈T Xt). Then, there is a reason to infer that the state [∗] of the system S

(
i.e.,

the state before the measurement MC(Ω0)(Õ0, S[∗])
)
, the state after the measurement

MC(Ω0)(Õ0, S[∗]) and the δω0 (∈M
p
+1(Ω))

(
defined by (6.9)

)
are equal. That is, Corollary

5.6 says that there is a reason to infer that

[ ∗ ] = “the state after the measurement MC(Ω0)(Õ0, S[∗])” = δω0 . (6.8)

Here the δω0 (∈M
p
+1(Ω0)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.9)

�
Remark 6.3. [Regression analysis I]. The above regression analysis is quite applicable.

For example, note that the “Φπ(t),t : C(Ωt) → C(Ωπ(t))” is generally assumed to be

Markov operators (and not homomorphisms). In this sense, Regression analysis I may

not be “conventional”.

�
Now we shall review Example 6.2 in the light of Regression Analysis I.

Example 6.4. [Continued from Example 6.2, the conventional argument of regression

analysis in Fisher’s method]. Put Ω0 = [0.0, 1.0] × [0.0, 2.0], and put Ω1 = Ω2 = Ω3 =

[0.0, 10.0]. For each t (∈ {1, 2, 3}), define a continuous map φ0,t : Ω0 → Ωt such that:

Ω0( ≡ [0.0, 1.0]× [0.0, 2.0]) 3 ω ≡ (α, β) 7→
φ0,t

α + βt ∈ Ωt( ≡ [0.0, 10.0]). (6.10)

Thus, for each t (∈ {1, 2, 3}), we have a homomorphism Φ0,t : C(Ωt)→ C(Ω0) such that:

[Φ0,tft](ω) = ft(φ0,t(ω)) (∀ω ∈ Ω0, ∀ft ∈ C(Ωt)). (6.11)
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It is usual to assume that regression analysis is applied to the system with a parallel

structure such as in the figure (6.12).
(
From the peculiarity of this problem, we can also

assume that this system has a series structure. However, we are not concerned with it.
)

C(Ω2)

C(Ω1)

C(Ω0)

C(Ω3)

�
+

k
Φ0,2

Φ0,1

Φ0,3

(6.12)

For each t ∈ {1, 2, 3}, consider the discrete Gaussian observable Oσ2,N ≡ (XN , 2
XN , Fσ,N)

in C(Ωt), (cf.(2.60) in Example 2.18). That is,

Ωt = [0.0, 10.0], XN = { k
N
| k = 0,±1,±2, ...,±N2},

and

[Fσ,N({k/N})](ω)

=


1√
2πσ2

∫∞
N− 1

2N
exp[− (x−ω)2

2σ2 ]dx (k = N2,∀ω ∈ [a, b]),

1√
2πσ2

∫ k
N
+ 1

2N
k
N
− 1

2N

exp[− (x−ω)2
2σ2 ]dx (∀k = 0,±1,±2, ...,±(N2 − 1), ∀ω ∈ [a, b]),

1√
2πσ2

∫ −N+ 1
2N

−∞ exp[− (x−ω)2
2σ2 ]dx (k = −N2,∀ω ∈ [a, b]).

(cf. (2.aa60) in Example 2.18)

Here, we define the observable Õ0 ≡ (X3
N , 2

X3
N , F̃0) in C(Ω0) such that:

[F̃0(Ξ1 × Ξ2 × Ξ3)](ω) = [Φ0,1Fσ2,N ](ω) · [Φ0,2Fσ2,N ](ω) · [Φ0,3Fσ2,N ](ω)

=[Fσ2,N(Ξ1)](φ0,1(ω)) · [Fσ2,N(Ξ2)](φ0,2(ω)) · [Fσ2,N(Ξ3)](φ0,3(ω))

(∀Ξ1,Ξ2,Ξ3 ∈ 2XN , ∀ω = (α, β) ∈ Ω0 = [0.0, 1.0]× [0.0, 2.0]). (6.13)

Then, we have the measurement MC(Ω0)( Õ0, S[∗]). The (6.4) says that the measured value

obtained by the measurement MC(Ω0)(Õ0, S[∗]) is equal to

(1.9, 3.0, 4.7) (∈ X3
N). (6.14)

Here, Fisher’s method (Corollary 5.6) says that it suffices to solve the problem

“Find (α0, β0) such as max(α,β)∈Ω0 [F̃0({1.9} × {3.0} × {4.7}(α, β)”. (6.15)
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Putting

Ξ1 = [1.9− 1

2N
, 1.9 +

1

2N
],Ξ2 = [3.0− 1

2N
, 3.0 +

1

2N
],Ξ3 = [4.7− 1

2N
, 4.7 +

1

2N
],

we see, under the assumption that N is sufficiently large, that

(6.15)⇒ max
(α,β)∈Ω0

1
√
2πσ2

3

∫ ∫ ∫
Ξ1×Ξ2×Ξ3

e[−
(x1−(α+β))2+(x2−(α+2β))2+(x3−(α+3β))2

2σ2
]dx1dx2dx3

⇒ max
(α,β)∈Ω0

exp
(
− [(1.9− (α+ β))2 + (3.0− (α+ 2β))2 + (4.7− (α + 3β))2]/(2σ2)

)
⇒ min

(α,β)∈Ω0

[(1.9− (α+ β))2 + (3.0− (α+ 2β))2 + (4.7− (α + 3β))2]

(by the least squares method)

⇒
{

(1.9− (α + β)) + (3.0− (α + 2β)) + (4.7− (α + 3β)) = 0
(1.9− (α + β)) + 2(3.0− (α + 2β)) + 3(4.7− (α + 3β)) = 0

⇒ (α0, β0) = (0.4, 1.4). (6.16)

This is the conclusion of Regression Analysis I (6.7). Also, using the notations in Regres-

sion Analysis I, we remark that:

(R) the measurement MC(Ω0)(Õ0 ≡ (
∏

t∈T Xt, 2
∏
t∈T Xt , F̃0), S[∗]) is hidden behind the

inference (6.16)
(
= (6.5) in Example 6.2

)
.

This fact will be important in §6.3.
�

The above may be the standard argument of the conventional regression analysis in

measurement theory. However, our problem (i) in Example 6.2 is not to infer the (α0, β0)

but h(2). In this sense the above regression analysis I is not sufficient. As the answer

of the problem (i) in Example 6.2, we usually consider that it suffices to calculate h(2)(
≡ φ0,2(0.4, 1.4)

)
in the following:

h(2) = 0.4 + 1.4× 2 = 3.2. (6.17)

However, this is doubtful.
(
In fact, this (6.17) is not always true in general situations.

(cf. Regression analysis II (6.51) later).
)
We should not rely on “a common sense” but

Axioms 1 and 2. That is, we must solve the problem:

• How can the above (6.17)
(
= (6.6) in Example 6.2

)
be deduced from Axioms 1

and 2?

In order to do this, we will make some preparations in the next section.
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6.2 Bayes operator, Schrödinger picture, and S-states

In order to improve Regression Analysis I (introduced in the previous section), in this

section we make some preparations (i.e., Bayes operator, Schrödinger picture, S-state,

etc.). Our main assertion (Regression Analysis II) will be mentioned in §6.3. We begin

with the following definition, which is a general form of “Bayes operator” in Remark 5.7.

Definition 6.5. [Bayes operator (or precisely, Bayes-Kalman operator)]. Let (T ≡
{0, 1, ..., N}, π : T \ {0} → T ) be a tree with root 0 and let S[∗] ≡ [S[∗]; {C(Ωt)

Φπ(t),t→
C(Ωπ(t))}t∈T\{0}] be a general system with the initial system S[∗]. And, let an observable

Ot ≡ (Xt,Ft, Ft) in C(Ωt) be given for each t ∈ T . Let Õ0 ≡ (
∏

t∈T Xt,
⊗

t∈T Ft, F̃0) be

as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). That is, Õ0 is the Heisenberg picture

representation of the sequential observable [{Ot}t∈T ; {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈T\{0}]. Let

τ be any element in T . If a positive bounded linear operator B
(0,τ)
Πt∈TΞt

: C(Ωτ ) → C(Ω0)

satisfies the following condition (BO), we call {B(0,τ)
Πt∈TΞt

| Ξt ∈ Ft (∀t ∈ T )} [resp. B(0,τ)
Πt∈TΞt

]

a family of Bayes operators [resp. a Bayes operator]:

(BO) for any observable O′τ ≡ (Yτ ,Gτ , Gτ ) in C(Ωτ ), there exists an observable Ô0 ≡(
(
∏

t∈T Xt)× Yτ , (
⊗

t∈T Ft)
⊗

Gτ ), F̂0

)
in C(Ω0) such that

(i) Ô0 is the Heisenberg picture representation of [{Ot}t∈T ; {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}

t∈T\{0}], where Ot = Ot (if t 6= τ), = Oτ ×××××××××O′τ (if t = τ),

(ii) F̂0((
∏

t∈T Ξt)× Γτ ) = B
(0,τ)
Πt∈TΞt

(Gτ (Γτ )) (∀Ξt ∈ Ft (∀t ∈ T ),∀Γτ ∈ Gτ ),

(iii) F̂0((
∏

t∈T Ξt)× Yτ ) = F̃0(
∏

t∈T Ξt)
(
≡ B

(0,τ)
Πt∈TΞt

(1τ )
)
, (∀Ξt ∈ Ft (∀t ∈ T )), where 1τ

is the identity in C(Ωτ ).

Also, define the map R
(0,τ)
Πt∈TΞt

: Mm
+1(Ω0)→Mm

+1(Ωτ ) such that:

R
(0,τ)
Πt∈TΞt

(ν) =
(B

(0,τ)
Πt∈TΞt

)∗(ν)

‖(B(0,τ)
Πt∈TΞt

)∗(ν)‖M(Ωτ )

(∀ν ∈Mm
+1(Ω0)), (6.18)

where (B
(0,τ)
Πt∈TΞt

)∗ : C(Ω0)
∗ → C(Ωτ )

∗ is the adjoint operator of B
(0,τ)
Πt∈TΞt

: C(Ωτ )→ C(Ω0).

The map R
(0,τ)
Πt∈TΞt

is called a “normalized dual Bayes operator”. Bayes operator is also

called “Bayes-Kalman operator”.

�
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We see

B
(0,τ)
Πt∈TΞt

(gτ ) ≤ Φ0,τgτ (∀gτ ∈ C(Ωτ ) such that gτ ≥ 0), (6.19)

because it holds, for any observable O′τ ≡ (Yτ ,Gτ , Gτ ) in C(Ωτ ),

B
(0,τ)
Πt∈TΞt

(Gτ (Γτ )) = F̂0((
∏
t∈T

Ξt)× Γτ ) ≤ F̂0((
∏
t∈T

Xt)× Γτ )

= Φ0,τGτ (Γτ )
(
= B

(0,τ)
Πt∈TXt

(Gτ (Γτ ))
)

(∀Γτ ∈ Fτ ). (6.20)

The following theorem is essential to Regression Analysis II later.

Theorem 6.6. [The existence theorem of the Bayes operator (cf. [46, 55])]. Let Õ0 ≡
(
∏

t∈T Xt, 2
∏
t∈T Xt , F̃0) be as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). And,

for any s (∈ T ), put Ts ≡ {t ∈ T | s ≤ t}. Assume that, for each s (∈ T ), there exists

an observable Õs ≡ (
∏

t∈Ts Xt, 2
∏
t∈Ts Xt , F̃s) in C(Ωs) such that Φπ(s),sF̃s(

∏
t∈Ts Ξt) =

F̃π(s)

(
(
∏

t∈Tπ(s)\Ts Xt) × (
∏

t∈Ts Ξt)
)

(∀Ξt ∈ 2Xt (∀t ∈ T )), (cf. Theorem 3.7). Let τ be

any element in T . Then, there exists a family of Bayes operators {B(0,τ)
Πt∈TΞt

| Ξt ∈ 2Xt (∀t ∈
T )}.

Proof. See [46]. The proof in [46] is essentially true, but it is not complete. That is

because the definition of “Bayes operator” (i.e., Definition 6.5) was not mentioned in [46].

Thus, we add the complete proof in what follows. It will be proved by induction. Let O′τ

= (Yτ , 2
Yτ , Gτ ) be any observable in C(Ωτ ).

[Step 1] First, define the positive bounded linear operator B̂
(τ,τ)
Πt∈TτΞt

: C(Ωτ )→ C(Ωτ ) such

that:

B̂
(τ,τ)
Πt∈TτΞt

(gτ ) = F̃τ (Πt∈TτΞt)× gτ (∀gτ ∈ C(Ωτ )), (6.21)

and define the observable Ôτ ≡ ((Πt∈TτXt)× Yτ , 2Xτ×Yτ , F̂τ ) in C(Ωτ ) such that:

F̂τ (Πt∈TτΞt × Γτ ) = B̂
(τ,τ)
Πt∈TτΞt

(Gτ (Γτ )) (∀Γτ ∈ 2Yτ ), (6.22)

which is clearly the Heisenberg picture representation of the sequential observable [{Ot}t∈Tτ ,
{C(Ωt)

Φπ(t),t→ C(Ωπ(t))}t∈Tτ\{τ}], where Ot = Ot (if t 6= τ), = Oτ ×O′τ (if t = τ). Thus,

the operator B̂
(τ,τ)
Πt∈TτΞt

: C(Ωτ ) → C(Ωτ ) is the Bayes operator induced from the Õτ

(
=

(Πt∈TτXt, 2
Πt∈TτXt , F̃τ )

)
, which is uniquely determined.
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[Step 2] Let s be any element in T \ {0} such that s ≤ τ . Here, assume that B̂
(s,τ)
Πt∈TsΞt

:

C(Ωτ )→ C(Ωs) is the Bayes operator induced from the Õs

(
= (Πt∈TsXt, 2

Πt∈T′s
Xt , F̃s)

)
.

That is, there exists an observable Ôs ≡ ((
∏

t∈Ts Xt) × Yτ , 2
(
∏
t∈Ts Xt)×Yτ , F̂s) in C(Ωs)

such that

(i) Ôs is the Heisenberg picture representation (cf. Theorem 3.7) of the sequential

observable [{Ôt}t∈Ts , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))}t∈Ts\{s}], where Ot = Ot (if t 6= τ),

= Oτ ×O′τ (if t = τ),

(ii) F̂s((Πt∈TsΞt)× Γτ ) = B̂
(s,τ)
Πt∈TsΞt

(Gτ (Γτ )) (Ξt ∈ 2Xt (∀t ∈ Ts), ∀Γτ ∈ 2Yτ ),

(iii) F̂s((Πt∈TsΞt)× Yτ ) = F̃s(
∏

t∈Ts Ξt) (Ξt ∈ 2Xt (∀t ∈ Ts)).

Let (xt)t∈Tπ(s) be any element in Πt∈Tπ(s)Xt. Note that {(xt)t∈Tπ(s)} = Πt∈Tπ(s){xt}. Define
the positive bounded linear operator B̂

(π(s),τ)
Πt∈Tπ(s){xt}

: C(Ωτ )→ C(Ωπ(s)) by

[B̂
(π(s),τ)
Πt∈Tπ(s){xt}

(gτ )](ωπ(s)) =
[F̃π(s)(

∏
t∈Tπ(s){xt})](ωπ(s))× [Φπ(s),sB̂

(s,τ)
Πt∈Ts{xt}

(gτ )](ωπ(s))

[F̃π(s)((Πt∈Tπ(s)\TsXt)×
∏

t∈Ts{xt})](ωπ(s))
(∀gτ ∈ C(Ωτ ), ∀ωπ(s) (∈ Ωπ(s))). (6.23)

Here, the above is assumed to be equal to 0 if the denominator of (6.23) is equal to

0
(
i.e., [F̃π(s)((Πt∈Tπ(s)\TsXt)×

∏
t∈Ts{xt})](ωπ(s)) = 0

)
. And thus, we can define the

positive bounded linear operator B̂
(π(s),τ)
Πt∈Tπ(s)Ξt

: C(Ωτ )→ C(Ωπ(s)) by

B̂
(π(s),τ)
Πt∈Tπ(s)Ξt

=
∑

(xt)t∈Tπ(s)∈Πt∈Tπ(s)Ξt

B̂
(π(s),τ)
{(xt)t∈Tπ(s)}

.

Define the observable Ôπ(s) ≡ ((
∏

t∈Tπ(s) Xt)× Yτ , 2
(
∏
t∈Tπ(s)

Xt)×Yτ
, F̂π(s)) in C(Ωπ(s)) such

that:

F̂π(s)((Πt∈Tπ(s)Ξt)× Γτ ) = B̂
(π(s),τ)
Πt∈Tπ(s)Ξt

(Gτ (Γτ )) (Ξt ∈ 2Xt (∀t ∈ Tπ(s)), ∀Γτ ∈ 2Yτ ),

which is clearly the Heisenberg picture representation of [{Ot}t∈Tπ(s) , {C(Ωt)
Φπ(t),t→ C(Ωπ(t))

}t∈Tπ(s)\{π(s)}], where Ot = Ot (if t 6= τ), = Oτ ×O′τ (if t = τ). Also, it holds that

F̂π(s)((Πt∈Tπ(s)Ξt)× Yτ ) = F̃π(s)(
∏

t∈Tπ(s)

Ξt) (Ξt ∈ 2Xt (∀t ∈ Tπ(s))).
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That is because we see

F̂π(s)((Πt∈Tπ(s)Ξt)× Yτ ) = B̂
(π(s),τ)
Πt∈Tπ(s)Ξt

(1τ ) =
∑

(xt)t∈Tπ(s)∈Πt∈Tπ(s)Ξt

B̂
(π(s),τ)
Πt∈Tπ(s){xt}

(1τ )

=
∑

(xt)t∈Tπ(s)∈Πt∈Tπ(s)Ξt

F̃π(s)(
∏

t∈Tπ(s){xt})× Φπ(s),sB̂
(s,τ)
Πt∈Ts{xt}

(1τ )

F̃π(s)((Πt∈Tπ(s)\TsXt)×
∏

t∈Ts{xt})

=
∑

(xt)t∈Tπ(s)∈Πt∈Tπ(s)Ξt

F̃π(s)(
∏

t∈Tπ(s) {xt})× F̃π(s)((Πt∈Tπ(s)\TsXt)×
∏

t∈Ts{xt})

F̃π(s)((Πt∈Tπ(s)\TsXt)×
∏

t∈Ts{xt})

=
∑

(xt)t∈Tπ(s)∈Πt∈Tπ(s)Ξt

F̃π(s)(
∏

t∈Tπ(s)

{xt}) = F̃π(s)(
∏

t∈Tπ(s)

Ξt). (6.24)

Therefore, we see that B̂
(π(s),τ)
Πt∈Tπ(s)Ξt

: C(Ωτ )→ C(Ωπ(s)) is the Bayes operator induced from

the Õπ(s)

(
= (Πt∈Tπ(s)Xt, 2

Πt∈Tπ(s)Xt , F̃π(s))
)
. Thus, we can, by induction, finish the proof

since it suffices to put B
(0,τ)
Πt∈TΞt

= B̂
(0,τ)
Πt∈T0Ξt

.

Let Õ0 ≡ (
∏

t∈T Xt, 2
∏
t∈T Xt , F̃0), O

′
τ ≡ (Yτ , 2

Yτ , Gτ ), {B(0,τ)
Πt∈TΞt

| Ξt ∈ 2Xt (∀t ∈ T )},
Ô0 ≡ ((

∏
t∈T Xt) × Yτ , 2

(
∏
t∈T Xt)×Yτ , F̂0) and {R(0,τ)

Πt∈TΞt
| Ξt ∈ 2Xt (∀t ∈ T )} be as in

Definition 6.5. Assume that

(C1) we know that the measured value (xt)t∈T (∈ (
∏

t∈T Xt)) obtained byMC(Ω0)(Õ0, S[δω0 ]
)

belongs to
∏

t∈T Ξt.

Note that this (C1) is the same as the following (C2).

(C2) we know that the measured value ((xt)t∈T , y) (∈ (
∏

t∈T Xt)×Yτ ) obtained byMC(Ω0)

(Ô0, S[δω0 ]
) belongs to (

∏
t∈T Ξt)× Yτ .

Thus we see that

(C3) the probability distribution of unknown y
(
under the assumption (C2)

(
=(C1)

))
,

i.e., the probability that y (∈ Yτ ) belongs to Γτ , is represented by

C(Ω0)
∗ 〈δω0 , F̂0((

∏
t∈T Ξt)× Γτ )〉C(Ω0)

C(Ω0)
∗ 〈δω0 , F̂0((

∏
t∈T Ξt)× Yτ )〉C(Ω0)

(
≡ C(Ω0)

∗ 〈δω0 , B
(0,τ)
Πt∈TΞt

(Gτ (Γτ ))〉C(Ω0)

C(Ω0)
∗ 〈δω0 , B

(0,τ)
Πt∈TΞt

(1τ )〉C(Ω0)

)
. (6.25)

A simple calculation shows:

(6.25) =
C(Ωτ )

∗ 〈
(B

(0,τ)
Πt∈TΞt

)∗(δω0)

‖(B(0,τ)
Πt∈TΞt

)∗(δω0)‖M(Ω)

, Gτ (Γτ )〉C(Ωτ )
=

C(Ωτ )
∗ 〈R(0,τ)

Πt∈TΞt
(δω0), Gτ (Γτ )〉C(Ωτ )

.

Therefore, we say that
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(C4) the probability distribution of unknown y
(
under (C2)

(
=(C1)

))
is represented by

C(Ωτ )
∗ 〈R(0,τ)

Πt∈TΞt
(δω0), Gτ (Γτ )〉C(Ωτ )

. (6.26)

Let this (C4) be, as an abbreviation, denoted (or, called) by

(C5) the S-state
(
after the measurement MC(Ω0)(Õ0, S[δω0 ]

)
)

at τ (in T ) is equal to

R
(0,τ)
Πt∈TΞt

(δω0).

For completeness, again note that (C4) = (C5), i.e., (C5) is an abbreviation for (C4). Note

that the concept of “S-state” and that of “state” are completely different. In measurement

theory, as seen in Axiom 1, the state always appears as the ρp in MA(O, S[ρp]). That is,

the state ρp is always fixed and never moves. In this sense, the ρp may be called a “real

state”. On the other hand, the “S-state” is used in the abbreviation (C5) of (C4).

Summing up the above argument, we have the following definition.

Definition 6.7. [S-state (= Schrödinger picture)]. Assume the above situation. If

the above statement (C4) holds, then we say “(C5) holds”, i.e., “the S-state (after the

measurement MC(Ω0) (Ô0, S[δω0 ]
)) at τ (∈ T ) is equal to R(0,τ)

Πt∈TΞt
(δω0)”. The representation

using “S-state” is called the Schrödinger picture representation. The S-state is also called

a Schrödinger state or imaginary state.

�
As seen in the above argument, we must note that the Bayes operator is always hidden

behind the Scrödinger picture representation.

We sum up the above argument
(
i.e., (C1)⇒(C5)

)
as the following lemma.

Lemma 6.8. [S-state]. Let Õ0 ≡ (
∏

t∈T Xt, 2
∏
t∈T Xt , F̃0), {B(0,τ)

Πt∈TΞt
| Ξt ∈ 2Xt (∀t ∈ T )}

and {R(0,τ)
Πt∈TΞt

| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 6.5. Assume that

• we know that the measured value (xt)t∈T (∈
∏

t∈T Xt) obtained byMC(Ω0)(Õ0, S[δω0 ]
)

belongs to
∏

t∈T Ξt.

Then, we can say

(]) the S-state
(
after the measurement MC(Ω0)(Õ0, S[δω0 ]

)
)

at τ (in T ) is equal to

R
(0,τ)
Πt∈TΞt

(δω0).

�
The following lemma will be used as Theorem 6.13.
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Lemma 6.9. [Inference and S-state]. Let Õ0 ≡ (
∏

t∈T Xt, 2
∏
t∈T Xt , F̃0), {B(0,τ)

Πt∈TΞt
|

Ξt ∈ 2Xt (∀t ∈ T )} and {R(0,τ)
Πt∈TΞt

| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 6.5. Assume

that

( • ) we know that the measured value (xt)t∈T (∈
∏

t∈T Xt) obtained by MC(Ω0)(Õ0, S[∗])

belongs to
∏

t∈T Ξt.

Then, there is a reason to infer that

(]) the S-state
(
after the measurementMC(Ω0)(Õ0, S[∗])

)
at τ (in T ) is equal toR

(0,τ)
Πt∈TΞt

(δω0).

Here the δω0 (∈M
p
+1(Ω0)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.27)

Proof. The proof is similar to that of Corollary 5.6. Let (Yτ , 2
Yτ , Gτ ) be any observable

in C(Ωτ ). Note that the above (•) is the same as the following:

(•)’ we know the measured value ((xt)t∈T , y) (∈ (
∏

t∈T Xt)×Yτ ) obtained byMC(Ω0)(Ô, S[∗])

belongs to (
∏

t∈T Ξt)× Yτ (where Ô0 is as in Definition 6.5).

Thus we can infer, by Theorem 5.3 (Fisher’s method) and the equality F̃0(
∏

t∈T Ξt) =

F̂0((
∏

t∈T Ξt)×Yτ ), that the unknown state [∗]
(
inMC(Ω0)(Ô, S[∗])

)
is equal to δω0

(
defined

by (6.27)
)
. Thus the conditional probability PΠt∈TΞt(·) under the condition that we know

that ((xt)t∈T , y) ∈ (
∏

t∈T Xt)× Yτ is given by

PΠt∈TΞt(Γτ ) =
C(Ω0)

∗ 〈δω0 , F̂0((
∏

t∈T Ξt)× Γτ )〉C(Ω0)

C(Ω0)
∗ 〈δω0 , F̂0((

∏
t∈T Ξt)× Yτ )〉C(Ω0)

=
C(Ω0)

∗ 〈δω0 , B
(0,τ)
Πt∈TΞt

(Gτ (Γτ ))〉C(Ω0)

C(Ω0)
∗ 〈δω0 , B

(0,τ)
Πt∈TΞt

(1τ )〉C(Ω0)

=
C(Ωτ )

∗ 〈R(0,τ)
Πt∈TΞt

(δω0), Gτ (Γτ )〉C(Ωτ )
(∀Γτ ∈ 2Yτ ).

From the equivalence of (C4) and (C5), we can conclude the (]).

Now we consider the simplest case that T ≡ {0, τ} and S[δω0 ]
≡ [S[δω0 ]

;C(Ωτ )
Φ0,τ→

C(Ω0)]. For each k = 0, τ , consider the null observable O
(nl)
k ≡ ({0, 1}, 2{0,1}, F (nl)

k ) in

C(Ωk) (cf. Example 2.21). Then, we have the measurement

MC(Ω0)

(
Õ0 ≡ ({0, 1}2, 2{0,1}2 , F (nl)

0 × Φ0,τF
(nl)
τ ), S[δω0 ]

)
. (6.28)

Note that:
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(i) the probability that the measured value (by MC(Ω0)(Õ0, S[δω0 ]
)) is equal to (1, 1) is

given by 1. That is, the measured value is always (or surely) equal to (1, 1).

Thus,

(ii) the measured value obtained by MC(Ω0)(Ô0, S[δω0 ]
) has always the form ((1, 1), y) (∈

{0, 1}2 × Yτ ). Here Ô0 is defined by

({0, 1}2 × Yτ , 2{0,1}
2×Yτ , F

(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ ) (6.29)

for any any observable (Yτ , 2
Yτ , Gτ ) in C(Ωτ ).

Note that MC(Ω0)(Ô0, S[δω0 ]
) and MC(Ω0)((Yτ , 2

Yτ ,Φ0,τGτ ), S[δω0 ]
) are essentially the same.

That is because “to take MC(Ω0)(Õ0, S[δω0])” is essentially the same as “to take no mea-

surement” (cf. Example 2.21). Thus, the above (ii) implies that

(iii) the probability distribution of unknown y
(
under (ii)

(
= (i)

))
, i.e., the probability

that y ∈ Γτ , is represented by

C(Ωτ )
∗ 〈Φ∗0,τ (δω0), Gτ (Γτ )〉C(Ωτ )

for any (Yτ , 2
Yτ , Gτ ) in C(Ωτ ) and any Γτ (∈ 2Yτ ).

That is because it holds that

C(Ω0)
∗ 〈δω0 , (F

(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ )({(1, 1)} × Γτ )〉C(Ω0)

C(Ω0)
∗ 〈δω0 , (F

(nl)
0 × Φ0,τF

(nl)
τ × Φ0,τGτ )({(1, 1)} × Yτ )〉C(Ω0)

=
C(Ωτ )

∗ 〈Φ∗0,τ (δω0), Gτ (Γτ )〉C(Ωτ )
.

Thus,we get the following (iv), which is short for (iii).

(iv) the S-state at τ (∈ T ≡ {0, τ}) is equal to Φ∗0,τ (δω0).

Thus we conclude that (i) ⇒ (iv). However, note that (i) always holds. Therefore, we

think that (iv) always holds.

From the above argument, we have the following lemma. This will be used in the

statement (6.33).

Lemma 6.10. [The Schrödinger picture representation]. Put T = {0, τ}. Let S[δω0 ]
≡

[S[δω0 ]
; {C(Ωτ )

Φ0,τ→ C(Ω0)}] be a general system with an initial state S[δω0 ]
. Then we see

that
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(]) the S-state at τ (∈ T ≡ {0, τ} ) is Φ∗0,τ (δω0).

Here it should be noted that the measurementMC(Ω0)((Yτ , 2
Yτ ,Φ0,τGτ ), S[δω0 ]

)
(
or,MC(Ω0)

(Ô0, S[δω0 ]
),
)
is hidden behind the assertion (]).

�
Also, the following lemma is the formal representation of Corollary 5.6 (ii).

(
Cf. Re-

mark 6.12.
)

Lemma 6.11. [Inference and the Schrödinger picture representation]. Put T = {0, τ}.
Let S[∗] ≡ [S[∗]; {Φ0,τ : C(Ωτ )→ C(Ω0)}] be a general system with an initial state S[∗]. Let

O0 = (X0, 2
X0 , F0) be an observable in C(Ω0). And, let O

(nl)
τ = ({0, 1}, 2{0,1}, F (nl)

τ ) be

the null observable in C(Ωτ ) (cf. Example 2.21). Consider a measurement MC(Ω0)(Õ0(≡
O0××××××××× Φ0,τO

(nl)
τ ), S[∗]), which is essentially the same as MC(Ω0)(O0, S[∗]). Assume that

• we know that the measured value obtained by MC(Ω0)(Õ0 ≡ O0××××××××× Φ0,τO
(nl)
τ , S[∗])

belongs to Ξ0 × {1} (∈ 2X0×{0,1}).

Then we see that

(]) there is a reason to infer that the S-state (after the measurement MC(Ω0)(Õ0, S[∗]))

at τ (∈ T ≡ {0, τ}) is Φ∗0,τ (δω0),

where δω0 (∈M
p
+1(Ω0)) is defined by

[F0(Ξ0)](ω0) = max
ω∈Ω0

[F0(Ξ0)](ω). (6.30)

Proof. Let B
(0,τ)
Ξ0×{1} : C(Ωτ ) → C(Ω0) and R

(0,τ)
Ξ0

: Mm
+1(Ω0) → Mm

+1(Ωτ ) be as in

Definition 6.5. Here, note that, from the property of null observable, it holds that F0(Ξ0)×
Φ0,τF

(nl)
τ ({1}) = F0(Ξ0). Thus we see that B

(0,τ)
Ξ0×{1}(gτ ) = F0(Ξ0) × Φ0,τgτ for any gτ (∈

C(Ωτ )). By Lemma 6.9, it suffices to prove R
(0,τ)
Ξ0

(δω0) = Φ∗0,τ (δω0). This is shown as

follows:

C(Ωτ )∗
〈R(0,τ)

Ξ0×{1}(δω0), gτ 〉C(Ωτ )
=

C(Ωτ )∗
〈

(B
(0,τ)
Ξ0×{1})

∗(δω0)

‖(B(0,τ)
Ξ0×{1})

∗(δω0)‖M(Ωτ )

, gτ 〉C(Ωτ )

=
1

‖(B(0,τ)
Ξ0×{1})

∗(δω0)‖M(Ωτ )
C(Ω0)

∗ 〈δω0 , B
(0,τ)
Ξ0×{1}(gτ )〉C(Ω0)

=
[F0(Ξ0)](ω0)× [Φ0,τgτ ](ω0)

[F0(Ξ0)](ω0)

=
C(Ωτ )∗

〈Φ∗0,τ (δω0), gτ 〉C(Ωτ )
(∀gτ ∈ C(Ωτ )). (6.31)

Then, we see that R
(0,τ)
Ξ0×{1}(δω0) = Φ∗0,τ (δω0). This completes the proof.
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The following remark shows that Corollary 5.6 (ii) is a direct consequence of Lemma

6.11.

Remark 6.12. [Continued from Corollary 5.6 (Fisher’s maximum likelihood method in

classical measurements)]. As mentioned before, the proof of Corollary 5.6 is temporary.

Corollary 5.6 should be understood as a corollary of Lemma 6.11 as follows: In Lemma

6.11, put Ω0 = Ωτ = Ω+0. And let Φ0,τ : C(Ω+0) → C(Ω0) be the identity map. Since

“the S-state (after the measurement MC(Ω0)(O0, S[∗])) at τ(= +0)” = Φ0,τ (δω0) = δω0 , we

easily see that Corollary 5.6 is a consequence of Lemma 6.11. This should be regarded as

the formal proof of Corollary 5.6.

�

6.3 Regression analysis II in measurements

Now let us explain the reason why we consider:

(]) it is worthwhile doubting the derivation of (6.6)
(
= (6.17)

)
from (6.5)

(
= (6.16)

)
,

i.e., the formula h(2) = 0.4 + 1.4× 2 = 3.2.

Using the notations in Regression Analysis I (6.7), we recall the statement (R) of Example

6.4 as follows:

(R) the measurement MC(Ω0)(Õ0 ≡ (
∏

t∈T Xt, 2
∏
t∈T Xt , F̃0), S[∗]) is hidden behind the

inference (6.5)
(
=(6.16)

)
.

And we conclude, by Corollary 5.6 (or Remark 6.12), that

[ ∗ ] = “the S-state after the measurement MC(Ω0)(Õ0, S[∗])”

= δω0 . (6.32)

Here the δω0 (∈ M
p
+1(Ω0)) is defined by [F̃0(

∏
t∈T Ξt)](ω0) = maxω∈Ω0 [F̃0(

∏
t∈T Ξt)](ω).

On the other hand,

• the map “δω0 7→ Φ∗0,τ (δω0)”
(
i.e., the derivation of (6.6)

(
= (6.17)

)
from (6.5)(

= (6.16)
))

is due to the Schrödinger picture, behind which the measurement

MC(Ω0)(Φ0,τO
′
τ ≡ (Yτ , 2

Yτ ,Φ0,τGτ ), S[δω0 ]
) is hidden. Cf. Lemma 6.10. (6.33)
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Thus, in order to conclude the assertion (6.6)
(
= (6.17)

)
, we need the above “two

measurements”, that is,

“MC(Ω0)(Õ0 ≡ (
∏
t∈T Xt, 2

∏
t∈T Xt , F̃0), S[∗]) ” and “ MC(Ω0)(Φ0,τO

′
τ ≡ (Yτ , 2

Yτ ,Φ0,τGτ ), S[δω0 ]
)”.

(6.34)

However, note that it is forbidden to conduct “two measurements” (cf. §2.5(II)). This
is the reason that we think that it is worthwhile doubting (6.6)

(
= (6.17)

)
. In order to

avoid this confusion, it suffices to consider the “simultaneous” measurement:

MC(Ω0)(Ô0 ≡ ((
∏
t∈T

Xt)× Yτ , 2(
∏
t∈T Xt)×Yτ , F̂0), S[∗]), (where Ô0 is as in Definition 6.5),

(6.35)

instead of (6.34).

Then, we rewrite Lemma 6.9 as an main theorem as follows:

Theorem 6.13. [= Lemma 6.9, Inference in Markov relation]. Let Õ0 ≡ (
∏

t∈T Xt, 2
∏
t∈T Xt ,

F̃0) be as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). And consider a measure-

ment MC(Ω0)(Õ0, S[∗]). Let τ be any element in T . Let {R(0,τ)
Πt∈TΞt

| Ξt ∈ 2Xt (∀t ∈ T )}
be as in Definition 6.5. Assume that we know that the measured value (obtained by

MC(Ω0)(Õ0, S[∗])) belongs to
∏

t∈T Ξt. Then, there is a reason to infer that

(]) “the S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = R
(0,τ)
Πt∈TΞt

(δω0). (6.36)

Here δω0 (∈M
p
+1(Ω)) is defined by

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.37)

�
Lastly, we prove the following lemma, which justifies the inference (6.6).

Lemma 6.14. [Some property of homomorphic relation]. Let Õ0 ≡ (
∏

t∈T Xt, 2
∏
t∈T Xt ,

F̃0) be as in Theorem 3.7 in the case At = C(Ωt) (∀t ∈ T ). Consider the family of Bayes

operators {B(0,τ)
Πt∈TΞt

| Ξt ∈ 2Xt (t ∈ T )} such as in Definition 6.5. Let τ be any element in

T . Assume that Φπ(t),t : C(Ωt)→ C(Ωπ(t)) (∀t ∈ T such that 0 < t ≤ τ) is homomorphic.

Then, it holds that:

B
(0,τ)
Πt∈TΞt

(Gτ (Γτ )) = F̃0(
∏
t∈T

Ξt)× Φ0,τGτ (Γτ ) (∀Ξt ∈ 2Xt (∀t ∈ T ),∀Γτ ∈ 2Yτ ), (6.38)
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for any observable (Yτ , 2
Yτ , Gτ ) in C(Ωτ ). That is, we see that the Bayes operator B

(0,τ)
Πt∈TΞt

:

C(Ωτ )→ C(Ω0) is determined uniquely under the homomorphic condition.

Proof. The proof is shown in the following three steps.

[Step 1]. Let ω0 be any element in Ω0. And let gτ and hτ be in C(Ωτ ) such that:

0 ≤ gτ ≤ 1, gτ (φ0,τ (ω0)) = 0, 0 ≤ hτ ≤ 1, and hτ (φ0,τ (ω0)) = 1. (6.39)

where φ0,τ : Ω0 → Ωτ is defined by (3.14). Then we see, by (6.19), that

0 ≤ [B
(0,τ)
Πt∈TΞt

(gτ )](ω) ≤ (Φ0,τgτ )(ω) = gτ (φ0,τ (ω)) (∀ω ∈ Ω0). (6.40)

Putting ω = ω0 in (6.40), we get, by (6.39), that

[B
(0,τ)
Πt∈TΞt

(gτ )](ω0) = 0. (6.41)

Also, from the linearity of Bayes operator and the condition (iii) of Definition 6.5, we get

[B
(0,τ)
Πt∈TΞt

(1τ − hτ )](ω) = [B
(0,τ)
Πt∈TΞt

(1τ )](ω)− [B
(0,τ)
Πt∈TΞt

(hτ )](ω)

= [F̃0(
∏
t∈T

Ξt)](ω)− [B
(0,τ)
Πt∈TΞt

(hτ )](ω) (∀ω ∈ Ω0). (6.42)

Thus, putting ω = ω0 in (6.42), we get, by (6.39), that

0 ≤ [B
(0,τ)
Πt∈TΞt

(1τ − hτ )](ω0)

≤ [(Φ0,τ (1τ − hτ ))](ω0) = 1τ (φ0,τ (ω0))− hτ (φ0,τ (ω0)) = 1− 1 = 0. (6.43)

Then, we obtain

[B
(0,τ)
Πt∈TΞt

(hτ )](ω0) = [F̃0(
∏
t∈T

Ξt)](ω0). (6.44)

[Step 2]. Let ω0 be any fixed element in Ω0. Fix any f (∈ C(Ωτ )) such that 0 ≤ f ≤ 1.

Define gτ , hτ (∈ C(Ωτ )) such that:

gτ (ωτ ) = max{0, f(ωτ )− f(φ0,τ (ω0))} (∀ωτ ∈ Ωτ ),

hτ (ωτ ) = min{ f(ωτ )

f(φ0,τ (ω0))
, 1} (∀ωτ ∈ Ωτ ). (6.45)

The gτ and the hτ clearly satisfy (6.39). And moreover, we see, for any ωτ ∈ Ωτ , that

gτ (ωτ ) + f(φ0,τ (ω0))hτ (ωτ )

= max{0, f(ωτ )− f(φ0,τ (ω0))}+min{f(ωτ ), f(φ0,τ (ω0))}

=

{
(f(ωτ )− f(φ0,τ (ω0)) + f(φ0,τ (ω0)), if f(ωτ ) ≥ f(φ0,τ (ω0))
0 + f(ωτ ), if f(ωτ ) ≤ f(φ0,τ (ω0))

= f(ωτ ). (6.46)
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[Step 3]. Let ω0 be any element in Ω0. Let Γτ be any element in 2Yτ . From the [step

2], we see that there exist ĝτ (∈ C(Ωτ )) and ĥτ (∈ C(Ωτ )) such that Gτ (Γτ ) = ĝτ+

[Gτ (Γτ )](φ0,τ (ω0))ĥτ , ĝτ (φ0,τ (ω0)) = 0, ĥτ (φ0,τ (ω0)) = 1. Then we see

[B
(0,τ)
Πt∈TΞt

(Gτ (Γτ ))](ω) =
[
B

(0,τ)
Πt∈TΞt

(
ĝτ + [Gτ (Γτ )](φ0,τ (ω0))ĥτ

)]
(ω)

=[B
(0,τ)
Πt∈TΞt

(ĝτ )](ω) + [Gτ (Γτ )](φ0,τ (ω0))× [B
(0,τ)
Πt∈TΞt

(ĥτ )](ω) (∀ω ∈ Ω0). (6.47)

Putting ω = ω0, we see, by (6.41) and (6.44), that [B
(0,τ)
Πt∈TΞt

(ĝτ )](ω0) = 0 and [B
(0,τ)
Πt∈TΞt

(ĥτ )](ω0)

= [F̃0(
∏

t∈T Ξt)](ω0). And, we see, by (6.47), that

[B
(0,τ)
Πt∈TΞt

(Gτ (Γτ ))](ω0) = [Gτ (Γτ )](φ0,τ (ω0))× [F̃0(
∏
t∈T

Ξt)](ω0)

= [Φ0,τGτ (Γτ )](ω0)× [F̃0(
∏
t∈T

Ξt)](ω0).

Since ω0 (∈ Ω0) is arbitrary, we obtain (6.38). This completes the proof.

Now we can propose our main assertion as follows:

REGRESSION ANALYSIS II [The new proposal of regression analysis, cf.[55]].

(6.48)

Let (T ≡ {0, 1, ..., N}, π : T\{0} → T ) be a tree with root 0, and let S[∗] ≡ [S[∗]; {C(Ωt)
Φπ(t),t→

C(Ωπ(t))}t∈T\{0}] be a general system with the initial system S[∗]. And, let an observable

Ot ≡ (Xt, 2
Xt , Ft) in a C∗-algebra C(Ωt) be given for each t ∈ T . Then, we have a

measurement

MC(Ω0)(Õ0 ≡ (
∏
t∈T

Xt, 2
∏
t∈T Xt , F̃0), S[∗]) (cf. Theorem 3.7). (6.49)

Assume that the measured value by the measurementMC(Ω)(Õ0, S[∗]) belongs to
∏

t∈T Ξt (∈
2
∏
t∈T Xt). Also define δω0 (∈M

p
+1(Ω0)) such that:

[F̃0(
∏
t∈T

Ξt)](ω0) = max
ω∈Ω0

[F̃0(
∏
t∈T

Ξt)](ω). (6.50)

Let τ be any element in T . Let {R(0,τ)
Πt∈TΞt

| Ξt ∈ 2Xt (∀t ∈ T )} be as in Definition 6.5.(
The existence of {R(0,τ)

Πt∈TΞt
| Ξt ∈ 2Xt (∀t ∈ T )} is assumed by Theorem 6.6.

)
Then, we

see:
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(i). [The S-state at τ (∈ T )]. There is a reason to infer that

(]) “The S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = R
(0,τ)
Πt∈TΞt

(δω0). (6.51)

Also

(ii). [The S-state at τ (∈ T ) for homomorphism Φ0,τ ]. Assume that Φ0,τ : C(Ωτ )→ C(Ω0)

is homomorphic
(
i.e., Φπ(t),t : C(Ωt) → C(Ωπ(t)) (∀t ∈ T such that 0 < t ≤ τ) is

homomorphic
)
. Then there is a reason to infer that

“the S-state at τ (∈ T ) after MC(Ω0)(Õ0, S[∗])” = Φ∗0,τ (δω0). (6.52)

Here note that Φ∗0,τ (δω0) = δφ0,τ (ω0) where φ0,τ : Ω0 → Ωτ is defined by (3.14).

Proof. (i). See Theorem 6.13 (= Lemma 6.9).

(ii). We see, by Lemma 6.14, that

C(Ωτ )∗
〈R(0,τ)

Πt∈TΞt
(δω0), gτ 〉C(Ωτ )

=
C(Ωτ )∗

〈
(B

(0,τ)
Πt∈TΞt

)∗(δω0)

(B
(0,τ)
Πt∈TΞt

)∗(δω0)
, gτ 〉C(Ωτ )

=
1

‖(B(0,τ)
Πt∈TΞt

)∗(δω0)‖M(Ωτ )
C(Ω0)

∗ 〈δω0 , B
(0,τ)
Πt∈TΞt

(gτ )〉C(Ω0)

=
1

[F̃0(
∏

t∈T Ξt)](ω0)
C(Ω0)

∗ 〈δω0 , F̃0(
∏
t∈T

Ξt)× Φ0,τgτ 〉C(Ω0)
(by Lemma 6.14)

=
C(Ωτ )∗

〈Φ∗0,τ (δω0), gτ 〉C(Ωτ )
(∀gτ ∈ C(Ωτ )).

Then, we see that R
(0,τ)
Πt∈TΞt

(δω0) = Φ∗0,τ (δω0).

Remark 6.15. [(i) Continued from Example 6.2]. Note that our problem (i) in Example

6.2 was to infer the h(2) and not (α0, β0). Regression analysis II (6.52) is applicable to

our problem, that is, the above (6.52) says that there is a reason to calculate h(2) in the

following:

h(2) = φ0,2(0.4, 1.4) = 0.4 + 1.4× 2 = 3.2. (6.53)

[(ii) Interesting logic]. It should be noted that, when τ = 0, the Regression Analysis II

is the same as the Regression Analysis I. Thus, we also conclude (6.5), i.e., (α0, β0) =

(0.4, 1.4). After all, the Regression Analysis II says that

(M1) as the result in the case that τ = 0, the conclusion (6.5) in Example 6.2 is reasonable,
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or

(M2) as the result in the case that τ 6= 0, the conclusion (6.6) in Example 6.2 is reasonable.

However, it should be noted that the Regression Analysis II does not guarantee that

(M3) both (6.5) and (6.6) in Example 6.2 are (simultaneously) reasonable.

That is because two measurements
(
i.e., the measurement M1 behind (M1) and the mea-

surement M2 behind (M2)
)
are included in (M1) and (M2). If we want to conclude

this (M3), we must consider the simultaneous measurement of “measurement M1” and

“measurement M2”, that is, we must generalize Definition 6.5 (Bayes operator) such as

B
(0,(0,τ))
Πt∈TΞt

: C(Ω0)× C(Ωτ ) → C(Ω0) satisfying similar conditions since only one measure-

ment is permitted (cf. §2.5(II)). This is, of course, interesting, though it is not discussed

in this book.

�

6.4 Conclusions

In this chapter we show that regression analysis can be completely understood in PMT

as follows (cf. [55]):

measurement theory

=⇒



Axiom 1⇒ Theorem 5.3
(Fisher’s method)

⇒
{

Corollary 5.5 (conditional probability)
Corollary 5.6 (classical Fisher’s method)

Axiom 2⇒


Theorem 3.7 (measurability)
Theorem 6.6 (the existence of Bayes operator)
Lemma 6.14 (some property of homomorphic relation).

And, using these results, we derive “regression analysis” as follows:

(i) : “Corollary 5.6” + “Theorem 3.7” ⇒ “Regression Analysis I ”,

(ii) :

Theorem 3.7

“Corollary 5.5” + “Theorem 6.6” ⇒ “Theorem 6.13”
(Markov inference)

“Lemma 6.14”


⇒ “Regression Analysis II”.
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We believe that Regression Analysis II is the best (i.e., precise, wide, deep etc.) in all

conventional proposals of regression analysis (though it should be generalized as mentioned

in Remark 6.15.). It is surprising that both statistics and quantum mechanics can be

understood in the same theory, i.e., measurement theory (6.1) (=(1.4)).

We believe that every statistician may want to know the justification of (6.5) and

(6.6) in Example 6.2. Thus we expect that many statisticians will be interested in our

axiomatic approach. That is because there is no justification without axioms.

We think that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics is

theoretically true”, (cf. Declaration (1.11)).


