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Chapter 6

Fisher’s statistics II (related to
Axioms 1 and 2)

As mentioned in Chapters 2 and 3, measurement theory is formulated as follows:

PMT = measurement + the relation among systems in C*-algebra (6.1)
[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

In this chapter we study the relation between Fisher’s statistics (mentioned in the previous chapter)
and Axiom 2. Particularly we show that regression analysis can be completely understood within
the framework of Axioms 1 and 2. We expect that our result will make the readers notice that
regression analysis is more profound than they usually think. As mentioned in Chapter 1 (cf.
Declaration (1.11)), we assert that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics
is theoretically true (in PMT)” !

6.1 Regression analysis I

6.1.1 Introduction

The purpose of this chapter is to study and understand “regression analysis” com-
pletely under Axiom 1 and 2 (of measurement theory). The following Example 6.1 is the
most typical in all examples of “regression analysis”.

Example 6.1. [A typical example of regression analysis]. Let Q = {w;, ws, ...,wi00} be a

set of all students of a certain high school. Define h :  — [0,200] [resp. w :  — [0, 200]]

'We believe that only “Fisher’s maximum likelihood method” and “regression analysis” are most
essential in statistics. Thus we believe that, in order to justify statistics, it suffices to show that the two
(i.e., “Fisher’s maximum likelihood method” and “regression analysis”) are formulated in PMT.
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128 CHAPTER 6. FISHER’S STATISTICS II (RELATED TO AXIOMS 1 AND 2)
such that:

h(w,) = “the height of a student w,” (n =1,2,...,100)

[ resp. w(wy,) = “the weight of a student w,,” (n =1,2,...,100)

. J 0 100 200

(Note that this is a special case of Fig. (3.20).) Assume that:

(1) The principal of this high school knows the both functions h and w. That is, he

knows the exact data of the height and weight concerning all students.
Also, assume that:

(2) Some day, a certain student helped a drowned girl. But, he left without reporting

the name. Thus, all information that the principal knows is as follows:

(i) he is a student of his high school.

(i) his height [resp. weight] is about 170 cm [resp. about 80 kg].
Now we have the following question:
e Under the above assumption (1) and (2), how does the principal infer who is he?

This is just what regression analysis says. For the solution, see Regression Analysis I (6.7)
later.
|
In order to explain our main assertion, let us begin with the following Example 6.2 (the
conventional argument of regression analysis in Fisher’s maximum likelihood method),
which is easy and well-known.
Example 6.2. [The conventional argument of regression analysis in Fisher’s method].

We have a rectangular water tank filled with water. Assume that the height of water at
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time ¢ is given by the following function h(¢):
h(t) = ao + Bot, (6.2)

where g and 3y are unknown fixed parameters such that «q is the height of water filling
the tank at the beginning and (; is the increasing height of water per unit time. The

measured height h,,(t) of water at time ¢ is assumed to be represented by
hm(t) =g+ ﬁot + €(t), (63)

where e(t) represents a noise (or more precisely, a measurement error) with some suitable
conditions. And assume that we obtained the measured data of the heights of water at

t=1,2,3 as follows:

hn(1) = 1.9, hp(2) = 3.0,  hp(3) = 4.7. (6.4)

Under this setting, we consider the following problem:
(i) Infer the true value h(2) of the water height at ¢t = 2 from the measured data (6.4).

This problem (i) is usually solved as follows: From the theoretical point of view, we can

infer, by Fisher’s maximum likelihood method and regression analysis, that

(For the derivation of (6.5) from (6.4), see Example 6.4 (6.16) later.> And next, we can
infer that

h(2) = 3.2, (6.6)
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by the calculation: h(2) = 0.4 + 1.4 x 2 = 3.2. This is the answer to the problem (i).
|

The above argument in Example 6.2 is, of course, well known and adopted as the usual
regression analysis. Thus all statisticians may think that there is no serious problem in
regression analysis. However it is not true. For example, we have the basic problem in

the argument of Example 6.2 as follows:

(ii) What kinds of axioms are hidden behind the argument in Example 6.27 And more-

over, justify the argument in Example 6.2 under the axioms.

It is important. If we have no answer to the question: “What kinds of rules are permitted
to be used in statistics?”, we can not prove (or, justify) that the argument in Example 6.2
is true (or not). That is because there is no justification without an axiomatic formulation.
In this sense, we believe that the above question (ii) is the most important problem in
theoretical statistics. Also, if some know the great success of the axiomatic formulation
in physics (e.g., the three laws in Newtonian mechanics, or von Neumann’s formulation of
quantum mechanics, cf. [71], [84]), it is a matter of course that they want to understand
statistics axiomatically.

Trying to solve the problem (ii), some may consider as follows:

(iii) Firstly, Fisher’s maximum likelihood method should be declared as an axiom (cf.
Corollary 5.6). Also, the derivation of the (6.6) from the (6.5) should be justified

under some axioms. That is, it must not be accepted as a common sense.

This opinion (iii) may not be far from our assertion proposed in this chapter. However,
in order to describe the above (iii) precisely, we must make vast preparations.

Our standing point of this book is extremely theoretical (and not practical). However
we expect that many statisticians will be interested in our proposal. That is because we
believe that every statistician may want to know the justification of both the (6.5) and

the (6.6) in Example 6.2.

6.1.2 Regression analysis I in measurements

By the results in the previous chapters (i.e., Theorem 3.7 and Corollary 5.6), we can

easily propose:



6.1. REGRESSION ANALYSIS 1 131

REGRESSION ANALYSIS I [The conventional regression analysis in PMT].  (6.7)
Let (T'={0,1,...,N}, 7 :T\{0} = T) be a tree with root 0, and let Sp,) = [Spy; {Prr),
C(%) = C(Qrw)) heer\f0y] be a general system with the initial system Spj. And, let an
observable O; = (X;,2%t, F}) in a C*-algebra C(§);) be given for each t € T. Let 60
be the Heisenberg picture representation of the sequential observable [{O;}ier, { Pt r() :
C() = C(Qrwy) brergoy | in C(Qo). Then, we have a measurement

MC(QO)<6O = (H X,, 2ller Xe 1y SH)- (cf. Theorem 3.7).

teT

Assume that the measured value by the measurement Mg q,) (60, Si) belongs to[],.,Z¢ (€

2llicr X¢) " Then, there is a reason to infer that the state [x] of the system S (i.e.,

the state before the measurement MC(QO)(607 S[*])), the state after the measurement

MC(QO)<6O, Si) and the 0., (€ M,(9)) (deﬁned by (6.9)) are equal. That is, Corollary

5.6 says that there is a reason to infer that
[%] = “the state after the measurement MC(QO)(ao, Si)” = Ou- (6.8)

Here the 0, (€ MY (€)) is defined by

[Fo([T =0 (wo) = max[Fo([ [ =0)](w). (6.9)

w€eNo
teT teT

|
Remark 6.3. [Regression analysis I]. The above regression analysis is quite applicable.
For example, note that the “®.4, @ C(Q) — C(Qrq))” is generally assumed to be
Markov operators (and not homomorphisms). In this sense, Regression analysis I may
not be “conventional”

|

Now we shall review Example 6.2 in the light of Regression Analysis 1.

Example 6.4. [Continued from Example 6.2, the conventional argument of regression
analysis in Fisher’s method]. Put Qy = [0.0, 1.0] x [0.0, 2.0], and put Q; = Qy = Q3 =
(0.0, 10.0]. For each t (€ {1,2,3}), define a continuous map ¢g+ : 2o — € such that:

Q( =10.0, 1.0] x [0.0, 2.0])) D w = (a,ﬁ)(v;) a+ pt e Q(=10.0, 10.0)). (6.10)
0,t
Thus, for each ¢ (€ {1,2,3}), we have a homomorphism @, : C(€;) — C(£p) such that:

(o fi](w) = fi(@or(w)) (Vw € Qo,Vf; € C(S%)). (6.11)
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It is usual to assume that regression analysis is applied to the system with a parallel

structure such as in the figure (6.12). <From the peculiarity of this problem, we can also

assume that this system has a series structure. However, we are not concerned with it.)

®o1 _~ C(h)
/

C(%) g, ¢ %)

o

C(S2s)
(6.12)

For each t € {1,2,3}, consider the discrete Gaussian observable O,z y = (Xy,2*V, F, y)
in C(€), (c¢f.(2.60) in Example 2.18). That is,

k
Q, = [0.0, 10.0], Xy = {N | k=0,%1,£2,...,£N?},
and

[Fon({R/ND)](w)
mfzv o exp| - - ‘“)Q]dx (k = N2,Yw € [a, b)),
fN*'ﬁv expl— E2)dy  (Vh=0,41,42, £(N?—1), Vw € [a,b]),
\/W f_oo+2N exp[ - %]dl‘ (k? = —NQ,\V/w S [a,b]).
(cf. (2.2a60) in Example 2.18)

vV 271'0'2

Here, we define the observable Oy = (X%, 2%%, Fp) in C(€) such that:

[Fo(Z1 X By X Z3)](w) = [Bo.1 Foo n](w) - [®0.2F2 y](w) - [®03F,2 ] (w)
=[Foe n(Z20)[(d0,1(W)) - [Fo2 v (Z2)](d0,2(w)) - [Foz N (Z3)](P0,3(w))
(V21,292,235 € 2V, Yw = (o, B) € Q = [0.0, 1.0] x [0.0, 2.0]). (6.13)

Then, we have the measurement M (o) ( O, Sp). The (6.4) says that the measured value
obtained by the measurement MC(QO)(é(}, Sp) is equal to

(1.9, 3.0, 4.7) (€ X3). (6.14)
Here, Fisher’s method (Corollary 5.6) says that it suffices to solve the problem

“Find (av, Bo) such as max, gyeq, [Fo({1.9} x {3.0} x {4.7}(ev, B)". (6.15)
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Putting
_ 1 1. 1 1. 1 1
= =[19- IN 1.9 + ﬁ],_g =[3.0-— W,?).O + ﬁ],_g = [4.7 — ﬁ,él.?—l— ﬁ]’

we see, under the assumption that N is sufficiently large, that

1 (@1 (a+8) 2+ (2 —(a+28)) %+ (23— (a+38))?
(6.15) = max el 202 Jday deyda,

= max exp ( 19— (@t B) + (3.0 — (a+28))% + (47— (a + 3@)2}/(202))

= win (19~ (o + B2+ (3.0 — (o + 2B))2 + (4.7 — (o + 35))2]

(by the least squares method)

{ (19— (a+6) + (3.0 = (a +28)) + (4.7 — (a+38)) =0
(19— (a+ ) +2(3.0— («+28)) +3(4.7— (a+38)) =0

= (o, fo) = (0.4,1.4). (6.16)

This is the conclusion of Regression Analysis I (6.7). Also, using the notations in Regres-

sion Analysis I, we remark that:

(R) the measurement MC(QO)(60 = ([Ler Xi, 2Meer Xt ﬁg),S[*]) is hidden behind the
inference (6.16) <: (6.5) in Example 6.2).

This fact will be important in §6.3.
|
The above may be the standard argument of the conventional regression analysis in
measurement theory. However, our problem (i) in Example 6.2 is not to infer the («y, o)
but ~(2). In this sense the above regression analysis I is not sufficient. As the answer

of the problem (i) in Example 6.2, we usually consider that it suffices to calculate h(2)

< = ¢p2(0.4, 1.4)) in the following:
h(2) =04+ 14x2=32. (6.17)

However, this is doubtful. (In fact, this (6.17) is not always true in general situations.
(cf. Regression analysis 11 (6.51) later).> We should not rely on “a common sense” but

Axioms 1 and 2. That is, we must solve the problem:

e How can the above (6.17) (: (6.6) in Example 6.2) be deduced from Axioms 1

and 27

In order to do this, we will make some preparations in the next section.
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6.2 Bayes operator, Schrodinger picture, and S-states

In order to improve Regression Analysis I (introduced in the previous section), in this
section we make some preparations (i.e., Bayes operator, Schrodinger picture, S-state,
etc.). Our main assertion (Regression Analysis IT) will be mentioned in §6.3. We begin
with the following definition, which is a general form of “Bayes operator” in Remark 5.7.
Definition 6.5. [Bayes operator (or precisely, Bayes-Kalman operator)]. Let (T =
{0,1,..,N}, 7 : T\ {0} = T) be a tree with root 0 and let Sj = [S; {C(€%) Frg
C(Qr)) bter\foy] be a general system with the initial system Sp,j. And, let an observable
O, = (X, 7, F,) in C(Q) be given for each t € T. Let Oy = (ILer Xi: Qyer Tt Ey) be
as in Theorem 3.7 in the case A, = C(Qy) (Vt € T'). That is, O, is the Heisenberg picture
representation of the sequential observable [{O}ier; {C(S) Py C(Qrt)) brerqoy]- Let
T be any element in T. If a positive bounded linear operator Bl('?,;g;Ei : C(Q) = C(Q)
satisfies the following condition (BO), we call {BY™) - | 2, € F, (Vt € T)} [resp. BY™) |

teT=t HierE:

a family of Bayes operators [resp. a Bayes operator]:

(BO) for any observable O). = (Y;,5,,G,) in C(S),), there exists an observable Oy =
((Ter X0 % Y. (Ryer F) @ Gr). Fo) in C(2) such tha

~ = AT
(i) Oy is the Heisenberg picture representation of [{O}wer; {C(Q4) =% C(Qrw)}

serv(oy], where O, = O, (ift # 1), = O, x O (ift = 7),

(i) Fo((ILerZ) x Tr) = BYT L (GA(T,))  (VE, € F, (Vt € T), VI, € G,),

— FllterE:

(iil) Fo((TT,ep o) % ¥2) = Fo(TT,ey Et)< — Bgfga(m), (VE, € F, (vt € T)), where 1,
is the identity in C(2;).

Also, define the map Rl(%? s M7 (Q0) — M (€2;) such that:

Tt

(077—) *
(0,7) ( )_ (BHteTE,) (V)
WerZ\"/ 0,7) 1\«
I(BED =) ()l

(Y € M, (), (6.18)

where (Bg)tga)* : C(Q9)" — C(Q,)* is the adjoint operator ofBﬂOt’T) :C(92;) = C(Q).

eTEt

The map Rl('?t;)T =, Is called a “normalized dual Bayes operator”. Bayes operator is also

called “Bayes-Kalman operator”
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We see

B2, (97) < Borgr (Vgr € C(Q;) such that g, > 0), (6.19)

MierE:

because it holds, for any observable O! = (Y, G, G,) in C(,),

BYT 2 (GH(T) = Fo((J[2) x Tr) < Fo((J ] X0) x T)

teT teT

- @O,TGT(FT)( - Blgﬂ’g;xt(c;f(rf))) (YL, € ). (6.20)

The following theorem is essential to Regression Analysis II later.

Theorem 6.6. [The existence theorem of the Bayes operator (cf. [46, 55])]. Let O =
(TTier Xe, 2Meer X, Fy) be as in Theorem 3.7 in the case A, = C(€) (Vt € T). And,
for any s (€ T), put Ty = {t € T | s < t}. Assume that, for each s (€ T), there exists
an observable 63 = ([Len, X, 2llien, Xf,ﬁs) in C(Q) such that q)w(s),sﬁs(nteTs =) =
ﬁw(s)<(nt€Tﬁ(s)\Ts X)) % (e, Et)> (VZ, € 25 (Vt € T)), (cf. Theorem 3.7). Let T be
any element in T. Then, there exists a family of Bayes operators {Bl('lot ’2& Zy € 2% (Vt e
T)}.

Proof. See [46]. The proof in [46] is essentially true, but it is not complete. That is
because the definition of “Bayes operator” (i.e., Definition 6.5) was not mentioned in [46].
Thus, we add the complete proof in what follows. It will be proved by induction. Let O
= (Y;,2¥",G;) be any observable in C(£2,).

[Step 1] First, define the positive bounded linear operator BT _ ¢ (©,) = C(£;) such

Mier, Bt
that:

BT _(9:) = F(Iler, ) x g, (Yg, € C(,)), (6.21)

HteT-r By

and define the observable O, = ((ILier, X;) X Yy, 257%Y7 F) in C(€,) such that:

Fo(Ier 2, x ) = BY™ _(G(T,) (V. € 2%7), (6.22)

Mier, Et

which is clearly the Heisenberg picture representation of the sequential observable [{O; }ier. ,
{C() Prg C(Qr(r) b\ 73], where Oy = Oy (if t # 7), = O, x O (if t = 7). Thus,
the operator El({t QTEt . C(Q,) — C(9,) is the Bayes operator induced from the O, < =
(Wser, X, 2Meerr Xt i)), which is uniquely determined.
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[Step 2] Let s be any element in 7"\ {0} such that s < 7. Here, assume that Bl(-ff;s

C(€,) — C(,) is the Bayes operator induced from the O, < = (Iyer, X, 2Mrems Xt Fs)>
That is, there exists an observable O, = ((TTier, Xt) x Y7, 2lier, X0X¥= [y in C/(Q,)
such that

(i) O, is the Heisenberg picture representation (c¢f. Theorem 3.7) of the sequential
i (I)ﬂ t),t ~ .
observable [{O}er,, {C(Q) =% C(Qw) brer\(sy], where O, = Oy (if t # 7),
=0, x O (ift=r1),

~

(il) Fy((en,Z) x T) = BET _ (GH(T,)) (2, € 2% (Vt € T,), VI, € 2¥7),

MieryEt
(i) F((Mer,E) x Yy) = F([Len, E) (5 € 2% (Vt e TL)).

Let (z4)ier,,, be any element in Iler, X Note that {(z;)er,,} = er,, {7:}. Define

the positive bounded linear operator BI(IW(S; ™) (zy - C(€r) = C(Qr(s)) by
(s)
[E(W(S)J) (9] )= [ 7( S)(HteT {xt})](wﬂ (5)) X [(I)W(S),SBS;ZS{%}(QT)](WW(S))
I, 2} \97) [\ Wn(s)) =
ot oMy X0 T o))
(VgT € C(QT), VWW(S) (G QW(S))). (6.23)

Here, the above is assumed to be equal to 0 if the denominator of (6.23) is equal to

0 (i.e., [Fr(s) (Meer, )\ X2) X [Lier {ze)](wn(s)) = O). And thus, we can define the
positive bounded linear operator B _ : C(Q,) — C(Qr(s)) by

Heer, ) Et

n(m(s),7) _ n(m(s),7)
BHtETw(S)Et - Z B{(xt)teT >}

(s
(It)teTﬂ,(s) theTﬂ,(s)

(Ilier

XY
(s) )

Define the observable CA)W(S) = (I Ler “ Xy) xY,, 2 ,ﬁr(s ) in C(Qr(s)) such

that:

~

Fro((Mer,  Z0) x T,) = BT _(GA(T,) (B € 2% (VE € Ty(y)), VI € 277),

e, =

which is clearly the Heisenberg picture representation of [{Gt}teTﬁ(s), {cQ,) %'c (Qre)
}teTﬁ(S)\{ﬂ(S)}], where O, = O, (if t # 7), = O, x O (if t = 7). Also, it holds that

Fro((Mer, ,Z0) x Vo) = Fry( [ E0) (B¢ € 2% (Vt € Trs))).

€T (o)
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That is because we see

~

Fro((er,, 20 x Y) = BIG7 ()= 37 Bl (1)

(mt)teTﬂ,(s) theTﬂ(s)Et

I (s,
_ Z FW(S)(HtGTW(S){xt}) X (I)Tr(s),anteTs{xt}(lr)

(xt)tETw(s> EHteTW(S) Et Fﬂ(s) ((HteTﬂ(s)\Tth) X HtETS {xt})

FW(S)(HteTW(S) {z:}) ¥ Fﬂ(S)((HtETW(S)\Tth) X HteTs {x:})

— > <

(@t)ter, ) et ) =t F”(S)((HteTﬂ(S)\TgXt> X HtETs {mt})
= > Fuo( I {=}) = Feo( T 20 (6.24)
(il‘t)teTﬂ_(S) EHtETﬂ.(S) Et tETﬂ.(S) teTﬂ.(s)
Therefore, we see that El({ig’:)@ : C(Qr) = C(Qr(s)) is the Bayes operator induced from
the 6ﬂ(5) ( = (Ter, ,, Xt 9MteTn () Xt ﬁr(s))). Thus, we can, by induction, finish the proof
since it suffices to put Bl(-ﬁ 23 = Eﬁ)t ’;—T)“OEt. O

Let Op = ([Tyer Xo, 2Mer X1 Fy), OL = (Y;,2Y7,G,), {BY7)z, | 20 € 2% (vt € T)},
O = ((TTyer Xe) x Yy, 2Mher X% L) and {RY7) - | Z, € 25 (vt € T)} be as in
Definition 6.5. Assume that
(C1) we know that the measured value (2;)ier (€ ([ [;c7 X¢)) obtained by MC(QO)(60, Siso])

belongs to [],.r Z:.
Note that this (Cy) is the same as the following (Cs).
(Cz) we know that the measured value ((@;)ier,y) (€ (I[,er X¢) xY7) obtained by Mc(q)
(60,5[5%]) belongs to ([[,cr Z¢) x Y-
Thus we see that
(C3) the probability distribution of unknown y (under the assumption (C,) (:(Cl))>,
i.e., the probability that y (€ Y;) belongs to I';, is represented by
ey Oons Fo((TLier Z0) X T))oiay, (_ crnge G Bitgz, (G () oy
s G Fol(Tuer 2) X Yooy~ o (o Bit gz, (1) iy
A simple calculation shows:

(BY7) 2)* (6u)

0,7 %
BT 2 ) (6un) ey

Therefore, we say that

(6.25)

(6.25) = LG (T oy = oy (BYD =, (800), G (D)) e

C(Qr)* < || (
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(C4) the probability distribution of unknown y <under (Cy) (:(C1))) is represented by
C(Qr)* <Rﬁ)t’;3“5t (6‘*’0)7 GT<F7)>0(QT) . (626)

Let this (C4) be, as an abbreviation, denoted (or, called) by

(Cs) the S-state (after the measurement MC(QO)(()O,S[%]D at 7 (in 7)) is equal to
R 2 (8uy)-

MierEe

For completeness, again note that (C4) = (Cs), i.e., (C;) is an abbreviation for (C4). Note
that the concept of “S-state” and that of “state” are completely different. In measurement
theory, as seen in Axiom 1, the state always appears as the p? in M4(O, S|,r)). That is,
the state pP is always fixed and never moves. In this sense, the p” may be called a “real
state”. On the other hand, the “S-state” is used in the abbreviation (Cs) of (Cy).

Summing up the above argument, we have the following definition.
Definition 6.7. [S-state (= Schrddinger picture)]. Assume the above situation. If
the above statement (Cy) holds, then we say “(Cs) holds” 1i.e., “the S-state (after the
measurement Me (o) (O, Sis.,))) at T (€ T) is equal to Rl(qot’?TEt(c;wo)”. The representation
using “S-state” is called the Schrodinger picture representation. The S-state is also called
a Schrodinger state or imaginary state.

[

As seen in the above argument, we must note that the Bayes operator is always hidden
behind the Scrodinger picture representation.

We sum up the above argument (i.e., (C1)=(Cs)) as the following lemma.
Lemma 6.8. [S-state]. Let Og = ([,op X, 2leer X 1), {BY7 L | By € 2% (vt € T)}

Mier=r

and {R(O’T) Z;, € 2% (Vt € T)} be as in Definition 6.5. Assume that

ierEe

e we know that the measured value (z;)ier (€ [[,cp X¢) obtained by Me(qy) (O, Si5u,1)
belongs to [[,cr Zt.

Then, we can say

(f) the S-state (after the measurement MC(QO)(60,S[5WO])> at 7 (in T) is equal to
R 2 (80)-

MieTEt

The following lemma will be used as Theorem 6.13.
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Lemma 6.9. [Inference and S-state]. Let Oy = (ILer X, 2Ler X F) (B BY |

MierE:
2, € 2% (vt € T)} and {R"7 _ | 5, € 2% (vt € T)} be as in Definition 6.5. Assume
that

HteT»—wt

(®) we know that the measured value (z;)ier (€ [[,cr X¢) obtained by MC(QO)(éo, Si)
belongs to [ [,cr Zs.

Then, there is a reason to infer that
(#) the S-state <after the measurement Mc () (O, S )) at T (inT) is equal to R ET =, (0up)-

Here the 0, (€ M%(Qy)) is defined by

Fo(T ] 20 (wo) = max{Fo([ ] 20)(w). (6.27)

Proof. The proof is similar to that of Corollary 5.6. Let (Y;,2Y, G) be any observable
in C(2,). Note that the above (o) is the same as the following:

(8)” we know the measured value ((z¢)ier,y) (€ (] [;er X¢) xY7) obtained by M) (O, Sis)
belongs to ([],cr Z¢) x Y, (where Oy is as in Definition 6.5).

Thus we can infer, by Theorem 5.3 (Fisher’s method) and the equality ﬁO(HteT =) =
F\O((HteT =) xY;), that the unknown state [*] (in Me (o) (6, S[*])) is equal to 4, (deﬁned
by (6.27)). Thus the conditional probability Pp,_,=,(-) under the condition that we know
that ((z¢)ier,y) € ([[,er X¢) X Y7 is given by

—_ (0,7)

C(Q9)* < wo» ((HteT = ) )>C(QO) _c@p* <5w07 BHieT =t (GT(FT))>0(QO)
= - (0,7)

C(Qg)* < wo ((HteT = ) )>c<no) C(Qp)* <5w07 BHtGT_t (1T)>C(QO)

= o BT 2 (000). Gr(T)) o, (WD, € 277),

PHteTEt (FT) =

From the equivalence of (Cy) and (Cjs), we can conclude the (f). O
Now we consider the simplest case that T = {0,7} and Sp,, ) = [Sj5,,1; C(€2r) g

C()]. For each k = 0,7, consider the null observable O™ = ({0,1},2008, F™V) in
C(%) (¢f. Example 2.21). Then, we have the measurement

MC(QO) <60 = ({0’ 1}27 2{0,1}27 Fénl) > ®O7TF7EHI))’ S[5w0}> . (628)

Note that:
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i) the probability that the measured value (by M¢gq 60, S's is equal to (1,1) is
(Q0) [0 ]

given by 1. That is, the measured value is always (or surely) equal to (1, 1).
Thus,

(ii) the measured value obtained by MC(QO)(60, Sis,,)) has always the form ((1,1),y) (€
{0,112 x Y;). Here Oy is defined by

({0,1}? x Y;, 200127 gD o g FOD 5 @ G, ) (6.29)
for any any observable (Y,,2'" G,) in C(Q,).

Note that MC(QO)(GO, Sis.,)) and Moy ((Yz, 2'7, 0-G7), Sps,,]) are essentially the same.

“o

That is because “to take MC’(QO)(éo, S[(;wo})” is essentially the same as “to take no mea-

surement” (cf. Example 2.21). Thus, the above (ii) implies that

(iii) the probability distribution of unknown y (under (ii) (: (1))), i.e., the probability
that y € I';, is represented by

C(Qr)* <(I)Ek),7' (5w0)7 GT<FT)>C(QT)
for any (Y,,2'",G,) in C(Q,) and any T, (€ 2¥7).
That is because it holds that

C(Q)

ey (O (F§™ X Do FMY X @, GL)({(1,1)} x T,))
crnys (s (F™ % @Y x @G ({(1, 1)} x V7))
:C(QT)* <(I)8,T(5w0)7 GT(F7)>C(QT) .

C(Q0)

Thus,we get the following (iv), which is short for (iii).
(iv) the S-state at 7 (€ T'= {0, 7}) is equal to @ (du,)-

Thus we conclude that (i) = (iv). However, note that (i) always holds. Therefore, we
think that (iv) always holds.

From the above argument, we have the following lemma. This will be used in the
statement (6.33).
Lemma 6.10. [The Schrédinger picture representation]. Put T' = {0,7}. Let S5, ) =
(St 1C(27) og C(S2)}] be a general system with an initial state Sis, ). Then we see
that
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(#) the S-state at 7 (€ T ={0,7} ) is ®f, (duy)-

Here it should be noted that the measurement Mcq,)((Y, 27 ®y .G, 5[5%]) (or, Me )
(O, Si50y]) ) is hidden behind the assertion ().

|

Also, the following lemma is the formal representation of Corollary 5.6 (ii). (Cf. Re-

mark 6.12.>

Lemma 6.11. [Inference and the Schrédinger picture representation]. Put 7' = {0, 7}.
Let Spy = [S1; {®o,r : C(2;) = C()}] be a general system with an initial state Sp,. Let
Oy = (Xo,2%0, Fy) be an observable in C(Q). And, let O™ = ({0,1}, 2001} F™) be
the null observab]e in C(Q,) (¢f. Example 2.21). Consider a measurement MC(Q0)<6O<E
Oo % 9,0 . Sp), which is essentially the same as M¢(q,)(Oo, Sy). Assume that

e we know that the measured value obtained by Mg QO)<OU = Oy x QOTO(HI), Si)
belongs to =g x {1} (€ 2X0x{01}),

Then we see that

(§) there is a reason to infer that the S-state (after the measurement MC(QO)(GO, Si1))
at 7 (€T ={0,7}) is Of . (uy),

where 6., (€ M",(€0)) is defined by

[Fo(Z0)](wo) = max[Fo(Zo)](w). (6.30)

wEN

Proof. Let BT, + C(Q) — C(Q) and RE™ + M7 (Q0) — MT4(Q.) be as in

Definition 6.5. Here, note that, from the property of null observable, it holds that Fy(Zg) x
Oy, " ({1}) = Fy(So). Thus we see that Bg;;){u(%) = Fy(Zo) X @g g, for any g, (€
C(€2,)). By Lemma 6.9, it suffices to prove RSO’T)((SNO) = ®f . (0u,). This is shown as

follows:

(BE 1)) (0us)
0,7 Eox{1}
C(2r)* <R(on){1}(5w0>797>0<97> — o@) { ’gT>cmT>
I(BET )7 (0 ey
1 0,7) [F0(Z0)](wo) X [Po,rg-](wo)

= e 0 BET 130 ey = i

I(BE T 1y)* () ey ™ e [Fo(Z0)] (wo)
=cion (20r0u0), 97) 00,y (Vgr € C (). (6.31)

Then, we see that R(O ;){1}(5 o) = ®5 - (du). This completes the proof. O
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The following remark shows that Corollary 5.6 (ii) is a direct consequence of Lemma
6.11.
Remark 6.12. [Continued from Corollary 5.6 (Fisher’s maximum likelihood method in
classical measurements)]. As mentioned before, the proof of Corollary 5.6 is temporary.
Corollary 5.6 should be understood as a corollary of Lemma 6.11 as follows: In Lemma
6.11, put Qy = Q, = Q4. And let Oy, : C(Q249) — C(p) be the identity map. Since
“the S-state (after the measurement Me(qy)(Oo, Siy)) at 7(= +0)” = Pg - (0w,) = 0wy, We
easily see that Corollary 5.6 is a consequence of Lemma 6.11. This should be regarded as
the formal proof of Corollary 5.6.
[

6.3 Regression analysis Il in measurements

Now let us explain the reason why we consider:

(#) it is worthwhile doubting the derivation of (6.6) (= (6.17)) from (6.5) (= (6.16)),
i.e., the formula h(2) =04+ 1.4 x 2 = 3.2,

Using the notations in Regression Analysis I (6.7), we recall the statement (R) of Example

6.4 as follows:

(R) the measurement MC(QO)(60 = ([Lep Xi, 2Mer Xe, ﬁo),S[*]) is hidden behind the
inference (6.5) (=(6.16)).

And we conclude, by Corollary 5.6 (or Remark 6.12), that

[%] = “the S-state after the measurement MC(QO)(éo, Sp)”

= b (6.32)

Here the 4, (€ M%,(€)) is defined by [ﬁo(HteT =) (wo) = maxgeq, [ﬁO(HteT =) (w).
On the other hand,

e the map “6u, — @f (du,)” <i.e., the derivation of (6.6) (= (6.17)) from (6.5)

(: (6.16))) is due to the Schrodinger picture, behind which the measurement
Mc (o) (P00, = (Y7, 27,00 .G.), Sis.,)) is hidden. Cf. Lemma 6.10. (6.33)
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Thus, in order to conclude the assertion (6.6) (= (6.17)), we need the above “two
measurements’, that is,

“MC(QO)(éo = (HtET Xt? QHtETXtvﬁO)v S[*]) 7 and ¢ MC(QU)((I)O,TO; = (va 2YT) (I)O,TGT); S[ﬁwo])”'
(6.34)

However, note that it is forbidden to conduct “two measurements” (c¢f. §2.5(II)). This
is the reason that we think that it is worthwhile doubting (6.6) (= (6.17)). In order to

avoid this confusion, it suffices to consider the “simultaneous” measurement:

MC(QO)(GO = ((H X,) x Yy, 2Uler X3z oy S), (where Oy is as in Definition 6.5),
teT

(6.35)

instead of (6.34).
Then, we rewrite Lemma 6.9 as an main theorem as follows:

Theorem 6.13. [= Lemma 6.9, Inference in Markov relation]. Let Oy = (IT,eq X, 2Heer X,
Fy) be as in Theorem 3.7 in the case A, = C(Q,) (Vt € T). And consider a measure-
ment MC(QO)(éo,S[*}). Let 7 be any element in T'. Let {RI(TO;?TEt | 2 € 2% (Vt € T)}

be as in Definition 6.5. Assume that we know that the measured value (obtained by

MC(QO)(60, Si)) belongs to [[,c Z¢. Then, there is a reason to infer that

(#)  “the S-state at 7 (€ T') after MC(QO)(éo, Sw)” = RO _ (8.,). (6.36)

MierEr

Here 0,,, (€ M%,(R2)) is defined by

[Fo(J[E0)(wo) = max[Fy ([ Z0)](w). (6.37)

weNo
teT teT

|
Lastly, we prove the following lemma, which justifies the inference (6.6).
Lemma 6.14. [Some property of homomorphic relation]. Let O = (TTer X, 2Meer Xe,
Fy) be as in Theorem 3.7 in the case A, = C(S) (V¢ € T). Consider the family of Bayes
operators {Bl(%gat | =, € 2% (t € ")} such as in Definition 6.5. Let T be any element in
T. Assume that @), : C() = C(Qr)) (Vt € T such that 0 <t < 7) is homomorphic.
Then, it holds that:

BT (GH(T) = Fo(J [ 20) x @G- (T;)  (VE, € 2% (¥t € T), VT, €2"7),  (6.38)

Mier=t
teT
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for any observable (Y;,2Y G,) in C(Q,). That is, we see that the Bayes operator BI(TO’T) =
teT=t
C(Q2;) = C(Qy) is determined uniquely under the homomorphic condition.
Proof. The proof is shown in the following three steps.
[Step 1]. Let wp be any element in €. And let g, and h, be in C(Q2,) such that:

0< gr < 1a gT(¢O,T(w0)) = 07 0< hT < 17 and hT(gbOJ(WO)) =1 (639)

where ¢g , : Qo — §2; is defined by (3.14). Then we see, by (6.19), that

0 < [BI7) 2, (90))(w) < (@or9,) () = g-(dor(w)) (Ve € Q). (6.40)
Putting w = wp in (6.40), we get, by (6.39), that
[BYD 2, (9:))(wo) = 0. (6.41)

Also, from the linearity of Bayes operator and the condition (iii) of Definition 6.5, we get

BT - (1, — ho)l(w) = [BYT) 2, (1))(w) — [BY) 2, (he)](w)

= [Fo(J]20lw) = B2, (h)lw) (Ywe Q). (6.42)

Thus, putting w = wy in (6.42), we get, by (6.39), that

0 < [BYT) <, (1, — hy)(wo)

Mier=e

< [((I)O,T(IT - hT))](WO) = 1T(¢0,T(w0)) - h7'<¢0,7'(w0)) =1-1=0. (643)

Then, we obtain

[BET) 2, (ho))(wo) = [Fo(] ] Ze)] (wo)- (6.44)

teT

[Step 2]. Let wy be any fixed element in . Fix any f (€ C(€2;)) such that 0 < f < 1.
Define g,, h, (€ C(£2;)) such that:

gr(wr) = max{0, f(wr) = f¢or(wo))}  (Vwr € Qr),

= min flwr) w
hr(w‘r) - { ((bOT( )) 1} (V r € QT) (645)

The g, and the h, clearly satisfy (6.39). And moreover, we see, for any w, € 2., that

gr(wr) + f (o (wo)) o (wr)

= max{0, f(wr) = f(dor(wo))} + min{f(wr), f(¢or(w0))}
— { (f(wr) = f(¢or(wo)) + f(¢or(wo)), if flwr) = f(¢or(wo))
0+ flewr), if f(wr) < f(do.r(wo))

= f(wr)- (6.46)
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[Step 3]. Let wy be any element in €. Let I'; be any element in 2¥7. From the [step
2], we see that there exist g, (€ C(Q2,)) and hy (e C(Q,)) such that G.(I';) = g,+
(G- ()] (b0.+(wo))hr, Gr(dor(wo)) = 0, he(¢or(wp)) = 1. Then we see

BOT = (G D] (@) = | BEDz, (5 + (G- () (G0 (wo))Br ) | (@)

=[Bii )=, @))) + [Gr (L)) (o (w0)) x [B Tz, (h)lw)  (Vw € Qo). (647)
Putting w = wo, we see, by (6.41) and (6.44), that [BY") - (3,)](wo) = 0 and [BY7) -, ()] (wo)
= [Fo(TT,er Z0)](wo). And, we see, by (6.47), that

(B =, (G (T (wo) = [Gr (D)) (bor (wo) [ﬁog Z0)) (o)
= [©o,G+(T'7)](wo) X [fo(E:Et)](wo)-
Since wy (€ Q) is arbitrary, we obtain (6.38). This completes the proof. O

Now we can propose our main assertion as follows:
REGRESSION ANALYSIS II [The new proposal of regression analysis, cf.[55]].
(6.48)
Let (T'={0,1,...,N}, 7 : T\{0} — T') be a tree with root 0, and let Sp,; = [Sp.; {C(€) @W—(?’t
C (1)) }rer(oy] be a general system with the initial system Sp,j. And, let an observable
O; = (X;,2%, F}) in a C*-algebra C(§;) be given for each t € T. Then, we have a

measurement

Mo, (00 = (][ Xi, 2Mler X ), Sy)  (cf. Theorem 3.7). (6.49)

teT
Assume that the measured value by the measurement M (q) (O, Si) belongs to [ [, Z: (€
2llier Xt) - Also define 6, (€ M, (S)) such that:

[Fo(J [ E0)(wo) = max[Fy (][ Z0)](w). (6.50)

wEN
tel teT

Let 7 be any element in T. Let {R\Y7_ | Z, € 25t (Vt € T)} be as in Definition 6.5.
teT—t
(The existence of {RY7) _ | 2, € 2% (Vt € T} is assumed by Theorem 6.6.) Then, we

lierTEr

see:
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(). [The S-state at T (€ T)]. There is a reason to infer that

(#)  “The S-state at 7 (€ T') after MC(QO)(éo, Sw)” = RY™) (Ougg)- (6.51)

— TerE:

Also
(ii). [The S-state at T (€ T') for homomorphism @ ;|. Assume that @, : C(Q,) — C ()
is homomorphic <i.e., Qe 0 C() = C(Qrwy) (Vt € T suchthat0 < t < 7) is

homomorphic). Then there is a reason to infer that
“the S-state at 7 (€ T') after MC(QO)<6O, S)” = D51 (6ug)- (6.52)

Here note that ®f (d.,) = 0y, (wy) Where ¢o - : Qo — Q, is defined by (3.14).
Proof. (i). See Theorem 6.13 (= Lemma 6.9).
(ii). We see, by Lemma 6.14, that

(077) *
< (0,7) ( ) > _ <<BHt€TEt) ((SWO) >
c@n* Lers, Qo) 9rlciary = cin\T 500 s 5 191l o
( HtETEt) ( WO)
1 (0,7)

0,7 %
(BT =) (80 i)

1 ~
== - Auos Fo(| | Z¢) X @0 79-) (by Lemma 6.14)
[Fo(TTier E0)(wo) “ ™" tell o

o) <¢S,T(5WO)7gT>C(QT) (VQT € O(QT))'

C(20)* <5w0 VP lerEy <g7>>c(ﬂo)

Then, we see that RV7) _ (8,,) = D - (0ug)-

Mier=e

]

Remark 6.15. [(i) Continued from Example 6.2]. Note that our problem (i) in Example
6.2 was to infer the h(2) and not (ap, fy). Regression analysis II (6.52) is applicable to
our problem, that is, the above (6.52) says that there is a reason to calculate h(2) in the

following;:
h(2) = ¢p2(0.4,1.4) =04+ 14 x 2 =3.2. (6.53)

[(ii) Interesting logic]. It should be noted that, when 7 = 0, the Regression Analysis II
is the same as the Regression Analysis I. Thus, we also conclude (6.5), i.e., (ag,By) =

(0.4,1.4). After all, the Regression Analysis IT says that

(M;) as the result in the case that 7 = 0, the conclusion (6.5) in Example 6.2 is reasonable,
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or

(My) as the result in the case that 7 # 0, the conclusion (6.6) in Example 6.2 is reasonable.
However, it should be noted that the Regression Analysis II does not guarantee that
(M3) both (6.5) and (6.6) in Example 6.2 are (simultaneously) reasonable.

That is because two measurements (i.e., the measurement M; behind (M;) and the mea-
surement M, behind (Ms)) are included in (M;) and (M,). If we want to conclude
this (M3), we must consider the simultaneous measurement of “measurement M;” and

“measurement M,”, that is, we must generalize Definition 6.5 (Bayes operator) such as
B(Ov(ovT))

Mepz, @ C (Qo) x C(Q,) = C(Qp) satisfying similar conditions since only one measure-

ment is permitted (cf. §2.5(I1)). This is, of course, interesting, though it is not discussed
in this book.
[ |

6.4 Conclusions

In this chapter we show that regression analysis can be completely understood in PMT

as follows (cf. [55]):

measurement theory

( { Corollary 5.5 (conditional probability)

Axiom 1 = (Fgglﬁg?};eglleiﬁod) Corollary 5.6 (classical Fisher’s method)

Theorem 3.7 (measurability)
Axiom 2 = ¢ Theorem 6.6 (the existence of Bayes operator)
L Lemma 6.14 (some property of homomorphic relation).

4

And, using these results, we derive “regression analysis” as follows:

(i) :  “Corollary 5.6” + “Theorem 3.7” = “Regression Analysis I 7,

Theorem 3.7

(ii) - “Corollary 5.5” + “Theorem 6.6” = “Theorem 6.13”

(Markov inference) = “Regression Analysis I1”.

“Lemma 6.14” )
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We believe that Regression Analysis II is the best (i.e., precise, wide, deep etc.) in all
conventional proposals of regression analysis (though it should be generalized as mentioned
in Remark 6.15.). It is surprising that both statistics and quantum mechanics can be
understood in the same theory, i.e., measurement theory (6.1) (=(1.4)).

We believe that every statistician may want to know the justification of (6.5) and
(6.6) in Example 6.2. Thus we expect that many statisticians will be interested in our
axiomatic approach. That is because there is no justification without axioms.

We think that the results in Chapters 5 and 6 guarantee that “Fisher’s statistics is
theoretically true”, (cf. Declaration (1.11)).



