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Chapter 5

Fisher’s statistics I (under Axiom 1)

As mentioned in Chapters 2 and 3, measurement theory is formulated as follows:

PMT = measurement

[Axiom 1 (2.37)]

+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra
. (5.1)

(=(1.4))

In this chapter we intend to understand Fisher’s statistics in Axiom 1. The reader will see that
Fisher’s maximum likelihood method is a direct consequence of Axiom 1.1 And further, we discuss
“inference interval” and “testing statistical hypothesis” in Axiom 1. By the results obtained in
this chapter (and in the next chapter), we conclude that Fisher’s statistics is theoretically true.
(Cf. “Declaration (1.11)” in §1.4.)2

5.1 Introduction

The first attempt of the measurement theoretical approach to statistics was proposed

in [44]. Although the argument in [44] is not deep, at least it convinces us of the good

possibility of the axiomatic formulation (i.e., the measurement theoretical formulation) of

statistics.

Most statisticians consider that statistics is closely related to “measurements”, or,

statistics is the study to analyze “measured data” for some purpose. Therefore, PMT

should be immediately examined in comparison with statistics. The purpose of this chap-

ter is to execute it, in other words, to propose a measurement theoretical formulation of

statistics. We think that statistics is mainly related to the following aspect of measure-

ment theory:

1Readers are not required to have much knowledge of statistics.
2We believe that the philosophy of statistics should be more discussed in statistics, (Cf. [61]). That is

because it is indispensable for the understanding of “statistics (= mathematics + something)”. It should
be noted that “to formulate statistics in the framework of MT” implies “to introduce the philosophy of
MT into statistics”.
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92 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

(]) how to derive some useful information from the measured data obtained by a mea-

surement.

Let MA

(
O ≡ (X,F, F ), S[ρp]

)
be a measurement formulated in a C∗-algebra A. Recall

the (III) in §2.5 [Remarks], that is, the measurement MA

(
O ≡ (X,F, F ), S[ρp]

)
always

determines the sample space
(
X,F,

A∗

〈
ρp, F ( · )

〉
A

)
. Here note that the mathemati-

cal structure of the sample space
{

A∗

〈
ρp, F (Ξ)

〉
A

}
ρp∈Sp(A∗),Ξ∈F

is the same as that of the

conventional formulation of statistics
(
i.e,

{
P (Ξ, θ)

}
θ∈Θ,Ξ∈F

, where, for each θ in a pa-

rameter space Θ, P (·, θ) is a probability measure on a measurable space (X,F), cf. [86]
)
.

Therefore, there is good hope that statistics can be described in terms of measurements.

Also, this is precisely our motivation in this chapter. Following the common knowledge

of quantum mechanics, we believe that any scientific statement including the term “prob-

ability” is not meaningful without the concept of “measurement”. (cf. §2.5. Remarks).

As mentioned in the above, the term “state” in measurement theory corresponds to the

term “parameter” in statistics. The reason that we use the term “state” is due to that

we want to stress that PMT is constructed modeled on mechanics.3

5.2 Fisher’s maximum likelihood method

The purpose of this section is to study and understand “Fisher’s maximum likelihood

method” completely under Axiom 1 (of measurement theory). The following Problem 5.1

is the most typical in all examples of “Fisher’s maximum likelihood method”.

5.2.1 Fisher’s maximum likelihood method

Problem 5.1. [The urn problem by Fisher’s maximum likelihood method]. There are

two urns U1 and U2. The urn U1 [resp. U2] contains 8 white and 2 black balls [resp. 4

white and 6 black balls].

3This means that we study statistics by an analogy of “mechanics”. Note the following correspondence:

system S[ρp] (in PMT)

[represented by pure state]

⇐⇒ population (in the conventional statistics)

[represented by parameter]
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U1 U2

Here consider the following procedures (P1) and (P2).

(P1) One of the two (i.e., U1 or U2) is chosen and is settled behind a curtain. Note, for

completeness, that you do not know whether it is U1 or U2.

(P2) Pick up a ball out of the urn chosen by the procedure (P1). And you find that the

ball is white.

- �[∗]

You do not know which the urn behind the curtain is, U1 or U2.

Assume that you pick up a white ball from the urn.

The urn is U1 or U2? Which do you think?

U1 U2

Now we have the following question:

(Q) Which is the chosen urn (behind the curtain), U1 or U2?

This is quite easy. That is, everyone will immediately infer “the urn behind the curtain =

U1”. However, it is just “Fisher’s maximum likelihood method”. Cf. Example 5.8.

�
We begin with the following definition.

Notation 5.2. [MA(O, S[∗])]. Consider a measurement MA(O ≡ (X,F, F ), S[ρp]) for-

mulated in a C∗-algebra A. In most measurements, it is usual to think that the state

ρp (∈ Sp(A∗)) is unknown. That is because the measurement MA(O, S[ρp]) may be taken
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in order to know the state ρp. Thus, when we want to stress that we do not know the

state ρp, the measurement MA(O, S[ρp]) is often denoted by MA(O, S[∗]).

�
By using this notation, we can state our present problem as follows:

(I) Infer the unknown state [∗] (∈ Sp(A∗)) from the measured data obtained by the

measurement MA(O ≡ (X,F, F ), S[∗]).

In order to answer this problem, in [44] we introduced Fisher’s method (precisely,

Fisher’s max mum likelihood method) as follows:
(
Strictly speaking, Theorem 5.3 should

not be called “theorem” but “assertion”, since it is not a purely mathematical result but

a consequence of Axiom 1.
)

Theorem 5.3. [Fisher’s maximum likelihood method in classical and quantum mea-

surements, cf. [44]]. Consider a measurement MA(O ≡ (X,F, F ), S[∗]) formulated in a

C∗-algebra A. When we know that the measured value obtained by the measurement

MA(O, S[∗]) belongs to Ξ (∈ F), there is a reason to infer that the state [∗] of the system

S is equal to ρp0 (∈ Sp(A∗)) such that:

A∗ 〈ρp0, F (Ξ)〉A = max
ρp∈Sp(A∗)

A∗ 〈ρp, F (Ξ)〉A . (5.2)

Here, note, for completeness, that the state [∗] (in MA(O, S[∗])) is the state before the

measurement MA(O, S[∗]).
(
Cf. Corollary 5.6 later.

)
Although the ρp0 in (5.2) is not

generally determined uniquely, in this book we usually assume the uniqueness.

Proof (or, Explanation). Let ρp1 and ρp2 be elements in Sp(A∗). Assume that “[ ∗ ] =
ρp1 ” or “[ ∗ ] = ρp2 ”. And assume that ρp1(F (Ξ)) < ρp2(F (Ξ)). Then, Axiom 1 says

that the fact that the measured value obtained by the MA(O, S[ρp1]
) belongs to Ξ happens

more rarely than the fact that the measured value obtained by the MA(O, S[ρp2]
) belongs

to Ξ happens. Thus, there is a reason to regard the unknown state [∗] as the state ρp2

and not as the state ρp1. Also, examining this proof, we can easily see that the state [∗]
(in MA(O, S[∗])) is the state before the measurement MA(O, S[∗]). This completes the

proof.

Remark 5.4. [Radon-Nikodým derivative]. Assume that there exists a measure ν on
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(X,F) (cf. (III) in §2.5) and f(·, ρp) ∈ L1(Ω, ν) (∀ρp ∈ Sp(A∗)) such that:

ρp(F (Ξ)) =

∫
Ξ

f(x, ρp)ν(dx) (∀Ξ ∈ F, ∀ρp ∈ Sp(A∗)). (5.3)

Then, even if Ξ = {x0} and ρp(F ({x0}) = 0 (∀ρp ∈ Sp(A∗) ) in Theorem 5.3, we may

calculate as follows:

ρp1(F ({x0}))
ρp2(F ({x0}))

= lim
Ξ→{x0}

ρp1(F (Ξ))

ρp2(F (Ξ))
=
f(x0, ρ

p
1)

f(x0, ρ
p
2)
. (5.4)

In this sense (or, in the sense of “Radon-Nikodým derivative”), we can compare ρp1(F ({x0}))
with ρp2(F ({x0})), even when ρp1(F ({x0})) = ρp2(F ({x0})) = 0. When we know that the

measured value x0 ( ∈ X) is obtained by the measurementMA(O, S[∗]), by the same reason

in Theorem 5.3, we can infer that the state [∗] of the system S is equal to ρp0 (∈ Sp(A∗))

such that:

f(x0, ρ
p
0) = max

ρp∈Sp(A∗)
f(x0, ρ

p).

Here, the map E : X → Sp(A∗), ( i.e., X 3 x0 7→ ρp0 ∈ Sp(A∗)), is called “Fisher’s

estimator”.

�
We begin with the following corollary, which is used in the proof of Corollary 5.6 and

our main assertion
(
i.e., Regression Analysis II (in Chapter 6)

)
.

Corollary 5.5. [The conditional probability representation of Fisher’s method, cf. [55]].

Let O ≡ (X,F, F ) and O′ ≡ (Y,G, G) be observables in A. Let Ô be a quasi-product

observable of O and O′, that is, Ô ≡ O
qp

×××××××××O′ = (X × Y,F
⊗

G, F
qp

×××××××××G). Assume that we

know that the measured value (x, y) (∈ X × Y ) obtained by a measurement MA(Ô, S[∗])

belongs to Ξ×Y (∈ F
⊗

G). Then, there is a reason to infer that the unknown measured

value y (∈ Y ) is distributed under the conditional probability PΞ(·), where

PΞ(Γ) =
A∗ 〈ρp0, F (Ξ)

qp

×××××××××G(Γ)〉
A

A∗ 〈ρp0, F (Ξ)〉A

=
ρp0(F (Ξ)

qp

×××××××××G(Γ))
ρp0(F (Ξ))

 (∀Γ ∈ G), (5.5)

where ρp0 (∈ Sp(A∗)) is defined by

A∗ 〈ρp0, F (Ξ)〉A = max
ρp∈Sp(A∗)

A∗ 〈ρp, F (Ξ)〉A . (5.6)

Proof. Since we know that the measured value (x, y) (∈ X × Y ) obtained by a

measurement MA(Ô, S[∗]) belongs to Ξ × Y (∈ F
⊗

G), we can infer, by Theorem 5.3
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(Fisher’s method) and the equality F (Ξ) = F (Ξ)
qp

×××××××××G(Y ), that the [∗ ] (in MA(Ô, S[∗])) is

equal to ρp0 (∈ Sp(A∗)). Thus, the conditional probability that PΞ( · ) under the condition
that we know that (x, y) ∈ Ξ× Y is given by

PΞ(Γ) =
ρp0(F (Ξ)

qp

×××××××××G(Γ))

ρp0(F (Ξ)
qp

×××××××××G(Y ))
=
ρp0(F (Ξ)

qp

×××××××××G(Γ))
ρp0(F (Ξ))

. (5.7)

This completes the proof.

The following corollary is the most essential in classical measurements. That is because

what we want to infer is usually the state after the measurement (cf. Theorem 5.3).

Corollary 5.6. [Fisher’s maximum likelihood method in classical measurements, cf.

[55]]. Let O ≡ (X,F, F ) be an observable in a commutative C∗-algebra C(Ω). Assume

that we know that the measured value obtained by a measurement MC(Ω)(O, S[∗]) belongs

to Ξ (∈ F). Then, we can assert the following (i) and (ii):

(i) there is a reason to infer that the state [∗] of the system S
(
i.e., “the state before

the measurement MC(Ω)(O, S[∗])” cf. Fisher’s method in classical and quantum

measurements)
)
is equal to δω0 (∈M

p
+1(Ω)), where

[F (Ξ)](ω0) = max
ω∈Ω

[F (Ξ)](ω), (5.8)

and,

(ii) there is a reason to infer that the state after the measurement MC(Ω)(O, S[∗]) is also

regarded as the same δω0 (∈M
p
+1(Ω)).

Summing up the above (i) and (ii), we see that

(iii) there is a reason to infer that

[ ∗ ] = “the state after the measurement MC(Ω)(O, S[∗])” = δω0 . (5.9)

0

1

Ω
ω0

[F (Ξ)](ω)
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Proof. The (i) is the special case of Fisher’s maximum likelihood method (cf. Theorem

5.3), i.e., A = C(Ω). Thus it suffices to prove (ii) as follows:
(
This (ii) will be, under

the definition of “S-state” (cf. Definition 6.7), proved in Remark 6.12 as a special case

of Lemma 6.11 later. In this sense, the proof mentioned here is temporary.
)

Let O′ ≡
(Y,G, G) be any observable in C(Ω). Let Ô be the product observable of O and O′,

that is, Ô ≡ O××××××××× O′ = (X × Y,F
⊗

G, F ××××××××× G). Consider a measurement MC(Ω)(Ô

≡ (X × Y,F
⊗

G, F ×××××××××G), S[∗]). And assume

(A) we know that the measured value (x, y) (∈ X × Y ) obtained by the measurement

MC(Ω)(Ô ≡ (X × Y,F
⊗

G, F ×××××××××G), S[∗]) belongs to Ξ× Y .

Corollary 5.5 says that there is a reason to infer that the unknown measured value y (∈ Y )

is distributed under the conditional probability PΞ(·), where

PΞ(Γ)[F (Ξ)](ω0) = [G(Γ)](ω0) (∀Γ ∈ G), (5.10)

where ω0 (∈ Ω) is defined in (5.8). Also note that the above (A) can be represented by

the following two steps (A1) and (A2)
(
i.e., (A) = (A1) + (A2)

)
:

(A1) we know that the measured value by a measurement MC(Ω)(O ≡ (X,F, F ), S[∗])

belongs to Ξ (∈ F).

and

(A2) And successively, we take a measurement of the observable O′ ≡ (Y,G, G), and get

a measured value y ( ∈ Y ).(
The above is somewhat metaphorical since “two measurements” seem to appear (cf.

§2.5[Remarks (II)]).
)

Comparing (A) and “(A1) + (A2)”, we see, by (5.10), that

“the probability that y belongs to Γ ( ∈ G) in (A2)” = [G(Γ)](ω0) (∀Γ ∈ G) (5.11)

That is, we get the sample space (Y,G, [G( · )](ω0)). Therefore, we say, from the arbitrari-

ness of O′ ≡ (Y,G, G), that

(A3) the state after the (A1) (i.e., the state after the measurement MC(Ω)(O, S[∗])) is

equal to δω0 .
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This completes the proof.
(
This corollary does not hold in quantum measurements, since

the product observable Ô ≡ O×××××××××O′ = (X×Y,F
⊗

G, F×××××××××G) does not always exist. That
is, the concept of “the state after a measurement” is not always meaningful in quantum

theory.
)

The “Bayes operator (in the following Remark 5.7)” is hidden in the above proof. This

will be more clarified in Remark 6.12 later.

Remark 5.7. [Bayes operator]. Let O ≡ (X,F, F ) be an observable in C(Ω). For each

Ξ ( ∈ F), define the continuous linear operator B
(0,0)
Ξ (or, BO

Ξ , B
O,(0,0)
Ξ ) : C(Ω) → C(Ω)

such that:

B
(0,0)
Ξ (g)

(
≡ BO

Ξ (g) ≡ B
O,(0,0)
Ξ (g)

)
= F (Ξ) · g (∀g ∈ C(Ω)), (5.12)

which is called the Bayes operator (or, the simplest Bayes operator). Note that it clearly

holds that

(i) for any observable O1 ≡ (Y,G, G), there exists an observable Ô ≡ (X × Y,F
⊗

G,

F̂ ) in C(Ω) such that:

F̂ (Ξ× Γ) = B
(0,0)
Ξ (G(Γ)) (Ξ ∈ F,Γ ∈ G).

That is because it suffices to define Ô by the product observable O×O1. Define the map

R
(0,0)
Ξ : Mm

+1(Ω)→Mm
+1(Ω) (called “normalized Bayes dual operator”) such that:

R
(0,0)
Ξ (ν) =

[B
(0,0)
Ξ ]∗(ν)

‖[B(0,0)
Ξ ]∗(ν)‖M(Ω)

(∀ν ∈Mm
+1(Ω),

where [B
(0,0)
Ξ ]∗ : M(Ω)→ M(Ω) is the dual operator of [B

(0,0)
Ξ ], that is,

[R
(0,0)
Ξ (ν)](D0) =

∫
D0
[F (Ξ)](ω)ν(dω)∫

Ω
[F (Ξ)](ω)ν(dω)

(∀D0 ∈ BΩ). (5.13)

Thus, we can describe the well known Bayes theorem (cf. [86]) such as

Mm
+1(Ω) 3 ν (= pretest state) 7→ (posttest state =)R

(0,0)
Ξ (ν) ∈Mm

+1(Ω)
4 (5.14)

Note that this says that (i)⇒(ii) in Corollary 5.6. That is because a simple calculation

shows that R
(0,0)
Ξ (δω0) = δω0 in the case of Corollary 5.6. In §6.2, the reader will again

4The pretest state [resp. posttest state] may be usually called “priori state” [resp. “posterior state”].
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study the Bayes operator in more general situations.

�

Example 5.8. [Continued from Problem 5.1 (Urn problem)5]. Recall Example 5.1. That

is, consider the following procedures (P1) and (P2).

(P1) One of the two (i.e., U1 or U2) is chosen and is settled behind a curtain. Note, for

completeness, that you do not know whether it is U1 or U2.
6

(P2) Pick up a ball out of the urn chosen by the procedure (P1). And you find that the

ball is white.

- �[∗]

You do not know which the urn behind the curtain is, U1 or U2.

Assume that you pick up a white ball from the urn.

The urn is U1 or U2? Which do you think?

U1 U2

Now we have the following question:

(Q) Which is the chosen urn (behind the curtain), U1 or U2?

[Answer]. Put Ω = {ω1, ω2}. Here,{
ω1 · · · · · · the state that the urn U1 is behind the curtain
ω2 · · · · · · the state that the urn U2 is behind the curtain.

(5.15)

In this sense, we frequently use the following identification:

U1 ≈ ω1, U2 ≈ ω2. (5.16)

5As mentioned in Example 2.16, we believe that “urn problem” is the most fundamental in all examples
of statistics.

6Here we are not concerned with SMTPEP (i.e., the principle of equal probability, cf. §11.4)
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And define the observable O
(
≡ (X ≡ {w, b}, 2{w,b}, F )

)
in C(Ω) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

Since we do not know whether the state is ω1 or ω2, we have the measurementMC(Ω)(O, S[∗]).

Thus, out situation is

• a measured value “w” is obtained by the measurement MC(Ω)(O, S[∗]).

Then, we conclude, by Fisher’s maximum likelihood method, that

• the urn behind the curtain is U1.

That is because

[F ({w})](ω1) = 0.8 = max{[F ({w})](ω1), [F ({w})](ω2)}.

�
Example 5.9. [Urn problem]. Let Uj, j = 1, 2, 3, be urns that contain sufficiently many

colored balls as follows:

blue balls green balls red balls yellow balls

urn U1 60% 20% 10% 10%
urn U2 40% 20% 30% 10%
urn U3 20% 20% 40% 20%

(5.17)

Put U = {U1, U2, U3}. We consider the state space Ω
(
≡ {ω1, ω2, ω3}

)
with the

discrete topology, which is identified with U, that is, U 3 Uj ↔ ωj ∈ Ω ≈M
p
+1(Ω).

7

U1 ≈ ω1 U2 ≈ ω2 U3 ≈ ω3

B B B G R

B B B G Y

B B G R R

B B G R Y

B G R R Y

B G R R Y

7Strictly speaking, we must consider the identification as (5.15).
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Define the observable O ≡ (X = {b, g, r, y},P(X), F(·)) in C(Ω) by the usual way. That

is,

F{b}(ω1) = 6/10 F{g}(ω1) = 2/10 F{r}(ω1) = 1/10 F{y}(ω1) = 1/10

F{b}(ω2) = 4/10 F{g}(ω2) = 2/10 F{r}(ω2) = 3/10 F{y}(ω2) = 1/10

F{b}(ω3) = 2/10 F{g}(ω3) = 2/10 F{r}(ω3) = 4/10 F{y}(ω3) = 2/10. (5.18)

Then we have the measurement MC(Ω)(O, S[∗]).

[I] Now we consider the measurement MC(Ω)(O, S[∗]). And assume that we get the mea-

sured value ‘b’ by the measurement MC(Ω)(O, S[∗]). Then Fisher’s maximum likelihood

method (i.e., Corollary 5.6) says that there is a reason to infer that

[∗] = ω1

since

F{b}(ω1) = 0.6 = max
ω∈Ω

F{b}(ω) = max{0.6, 0.4, 0.2}.

That is, the unknown urn [∗] is U1.

[II] Also, consider the (iterated) measurement MC(Ω)(×2
k=1O ≡ (X2, P(X2),×2

k=1 F ),

S[∗]) where (×2
k=1 F )Ξ1×Ξ2

(ω) = FΞ1(ω) · FΞ2(ω). Also, assume that

• the measured value (b, r) is obtained by the iterated measurementMC(Ω)(×2
k=1O, S[∗]).

Applying Fisher’s method (= Corollary 5.6), we get the conclusion as follows: Put

E(ω) = F{b}(ω)F{r}(ω).

Clearly it holds that E(ω1) = 6 · 1/102 = 0.06, E(ω2) = 4 · 3/102 = 0.12 and E(ω3) =

2 · 4/102 = 0.08. Therefore, there is a very reason to think that [ ∗ ] = δω2 , that is, the

unknown urn [∗] is U2.

[III; Remark (moment method)]. Here, let us consider the above [II] by the moment

method (cf. Definition 2.27). Define the distance ∆ on Mm
+1(X) such that:

∆(ν1, ν2) =
∑

x∈X≡{b,g,r,y}

|ν1({x})− ν2({x})|

=|ν1({b})− ν2({b})|+ |ν1({g})− ν2({g})|+ |ν1({r})− ν2({r})|+ |ν1({y})− ν2({y})|.
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Note that M(Ω)

〈
δω1 , F{b}

〉
C(Ω)

= δω1(F{b}) = F{b}(ω1) = 6/10, and similarly (cf. (5.18)),

δω1(F{b}) = 6/10 δω1(F{g}) = 2/10 δω1(F{r}) = 1/10 δω1(F{y}) = 1/10

δω2(F{b}) = 4/10 δω2(F{g}) = 2/10 δω2(F{r}) = 3/10 δω2(F{y}) = 1/10

δω3(F{b}) = 2/10 δω3(F{g}) = 2/10 δω3(F{r}) = 4/10 δω3(F{y}) = 2/10.

Since the measured value (b, r) is obtained, we have the sample space (X, 2X , ν) such that

ν({b}) = 1/2, ν({g}) = 0, ν({r}) = 1/2, ν({y}) = 0.

Then, we see that

∆(δω1(F{·}), ν) = |6/10− 1/2|+ |2/10− 0|+ |1/10− 1/2|+ |1/10− 0| = 8/10

∆(δω2(F{·}), ν) = |4/10− 1/2|+ |2/10− 0|+ |3/10− 1/2|+ |1/10− 0| = 6/10

∆(δω3(F{·}), ν) = |2/10− 1/2|+ |2/10− 0|+ |4/10− 1/2|+ |2/10− 0| = 8/10.

Thus, the moment method says that the unknown urn [∗] is U2.

�
Example 5.10. [At a gun shop, [44]]. Let G ≡ {G1, ..., G50} be a set of guns in a gun

shop. Assume that

the percentage of “hits of a gun Gj” =


80% if 1 ≤ j ≤ 30,
70% if 31 ≤ j ≤ 40,
10% if 41 ≤ j ≤ 50.

(5.19)

MarkGun Gj0

Assume the following situation (i)+(ii):

(i) Some one picks up a certain gun Gj0 from G. He does not know the information

concerning the j0.

(ii) He shoots the gun Gj0 three times. First and second he hits the mark, and third he

misses the mark.
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Our present problem is to formulate the measurement (i)+(ii).

The above example is solved in what follows. Let Ω be a state space, which is identified

with the set G. That is, we have the identification: G 3 Gj ↔ ωj ∈ Ω. Define the

observable O ≡ (X = {0, 1},P(X), F(·)) in C(Ω) such that:

F{1}(ωj) =


0.8 if 1 ≤ j ≤ 30,
0.7 if 31 ≤ j ≤ 40,
0.1 if 41 ≤ j ≤ 50

(5.20)

and F{0}(ωj) = 1− F{1}(ωj). Of course we think that

(]) “hit the mark by a gun Gj0” ⇔ “get the measured value 1 by the measurement

MC(Ω)(O, S[δωj0
])”

Here, consider the (three times) iterated measurement MC(Ω)

(×3
k=1 O = (X3, P(X3),

×3
k=1 F ), S[δωj0

]

)
in C(Ω) such that:

(
3

×
k=1

F )
Ξ1×Ξ2×Ξ3

(ω) = FΞ1(ω)FΞ2(ω)FΞ3(ω) (∀Ξ1×Ξ2×Ξ3 ∈ P(X3),∀ω ∈ Ω).

(5.21)

Clearly, the above statement (ii) implies that the measured value (1, 1, 0) is obtained by

MC(Ω)

(×3
k=1O, S[∗]

)
.
(
The observer does not know that [∗] = δωj0 .

)
By a simple

calculation, we see

F{1}(ωj)F{1}(ωj)F{0}(ωj) =


0.128 if 1 ≤ j ≤ 30,
0.147 if 31 ≤ j ≤ 40,
0.009 if 41 ≤ j ≤ 50.

(5.22)

Therefore, by Fisher’s method (= Corollary 5.6), there is a very reason to consider that

31 ≤ j0 ≤ 40.

�
Example 5.11. [(i): Gaussian observable]. Consider a commutative C∗-algebra C0(R).

And define the Gaussian observable Oσ2 ≡ (R,Bbd
R , F

σ2

(·) ) in C0(R) such that:

F σ2

Ξ (µ) =
1√
2πσ

∫
Ξ

exp[− 1

2σ2
(x− µ)2]dx (∀Ξ ∈ Bbd

R , ∀µ ∈ R). (5.23)

Further, consider the product observable×××××××××3

k=1O (or in short, O3
σ2) ≡ (R3,Bbd

R3 , F
σ2,3
(·) ) in

C0(R) such that:
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F σ2,3
Ξ1×Ξ2×Ξ3

(µ) = F σ2

Ξ1
(µ) · F σ2

Ξ2
(µ) · F σ2

Ξ3
(µ)

=
1

(
√
2πσ)3

∫
Ξ1×Ξ2×Ξ3

exp[− (x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2

2σ2
]dx1dx2dx3

(∀Ξ = k ∈ Bbd
R , k = 1, 2, 3, ∀µ ∈ R). (5.24)

Here consider the measurement MC0(R)(O
3
σ2 , S[∗]). And assume that

• the measured value (x01, x
0
2, x

0
3) ( ∈ R3) is obtained by the MC0(R)(O

3
σ2 , S[∗]).

Then, Fisher’s method (=Corollary 5.6) and Remark 5.4 say that there is a reason to

think that the unknown state [ ∗ ] = µ0, where

1

(
√
2πσ)3

exp[− (x01 − µ0)
2 + (x02 − µ0)

2 + (x03 − µ0)
2

2σ2
]

=max
µ∈R

[ 1

(
√
2πσ)3

exp[− (x01 − µ)2 + (x02 − µ)2 + (x03 − µ)2

2σ2
]
]
, (5.25)

which is equivalent to

(x01 − µ0)
2 + (x02 − µ0)

2 + (x03 − µ0)
2

=min
µ∈R

[(x01 − µ)2 + (x02 − µ)2 + (x03 − µ)2] (5.26)

and moreover, equivalently,

µ0 = (x01 + x02 + x03)/3. (5.27)

[(ii): Gaussian observable]. Consider a commutative C∗-algebra C([0, 100]), where [0, 100]

≡ {µ ∈ R | 0 ≤ µ ≤ 100}. And define the Gaussian observable Oσ2 ≡ (R,Bbd
R , F

σ2

(·) ) in

C([0, 100]) such that:

F σ2

Ξ (µ) =
1√
2πσ

∫
Ξ

exp[− 1

2σ2
(x− µ)2]dx (∀Ξ ∈ Bbd

R , ∀µ ∈ [0, 100]). (5.28)

Further, consider the product observable O3
σ2 ≡ (R3,Bbd

R3 , F
σ2,3
(·) ) in C0([0, 100]) such that:

F σ2,3
Ξ1×Ξ2×Ξ3

(µ)

=
1

(
√
2πσ)3

∫
Ξ1×Ξ2×Ξ3

exp[− (x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2

2σ2
]dx1dx2dx3

(∀Ξ = k ∈ Bbd
R , k = 1, 2, 3, ∀µ ∈ [0, 100]). (5.29)

Here consider the measurement MC([0,100])(O
3
σ2 , S[∗]). And assume that
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• the measured value (x01, x
0
2, x

0
3) ( ∈ R3) is obtained by the MC([0,100])(O

3
σ2 , S[∗])

Then, Fisher’s method and Remark 5.4 say that there is a reason to think that the

unknown state [ ∗ ] = µ0, where [ ∗ ] = µ0, where

1

(
√
2πσ)3

exp[− (x01 − µ0)
2 + (x02 − µ0)

2 + (x03 − µ0)
2

2σ2
]

= max
µ∈[0,100]

[ 1

(
√
2πσ)3

exp[− (x01 − µ)2 + (x02 − µ)2 + (x03 − µ)2

2σ2
]
]

(5.30)

which is equivalent to

(x01 − µ0)
2 + (x02 − µ0)

2 + (x03 − µ0)
2

= min
µ∈[0,100]

[(x01 − µ)2 + (x02 − µ)2 + (x03 − µ)2] (5.31)

and moreover, equivalently,

µ0 =


0 if x01 + x02 + x03 < 0

(x01 + x02 + x03)/3 if 0 ≤ x01 + x02 + x03 ≤ 100

100 if x01 + x02 + x03 > 100.

(5.32)

�

5.2.2 Monty Hall problem in PMT

Problem 5.12. [Monty Hall problem, cf.[33]].

The Monty Hall problem is as follows:

(P) Suppose you are on a game show, and you are given the choice of three doors (i.e.,

“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the

others, goats.

You pick a door, say number 1, and the host, who knows what’s behind the doors,

opens another door, say “number 3”, which has a goat. He says to you, “Do you

want to pick door number 2?” Is it to your advantage to switch your choice of doors?
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? ? ?

Door Door Door

Number 1 Number 2 Number 3

[Answer]. Put Ω = {ω1, ω2, ω3}, where

ω1 · · · · · · the state that the car is behind the door number 1

ω2 · · · · · · the state that the car is behind the door number 2

ω3 · · · · · · the state that the car is behind the door number 3.

Define the observable O ≡ ({1, 2, 3}, 2{1,2,3}, F ) in C(Ω) such that

[F ({1})](ω1) = 0.0, [F ({2})](ω1) = 0.5, [F ({3})](ω1) = 0.5, 8

[F ({1})](ω2) = 0.0, [F ({2})](ω2) = 0.0, [F ({3})](ω2) = 1.0,

[F ({1})](ω3) = 0.0, [F ({2})](ω3) = 1.0, [F ({3})](ω3) = 0.0.

Thus we have a measurement MC(Ω)(O, S[∗]). Here, note that

(1) :“measured value 1 is obtained” ⇐⇒ The host says “Door (number 1) has a goat”,

(2) :“measured value 2 is obtained” ⇐⇒ The host says “Door (number 2) has a goat”,

(3) :“measured value 3 is obtained” ⇐⇒ The host says “Door (number 3) has a goat”.

The host said “Door (number 3) has a goat”. This implies that you get the measured

value “3” by the measurement MC(Ω)(O, S[∗]). Therefore, Fisher’s maximum likelihood

method says that you should pick door number 2. That is because we see that

[F ({3})](ω2) = 1.0 = max{0.5, 1.0, 0.0}

= max{[F ({3})](ω1), [F ({3})](ω2), [F ({3})](ω3)},

and thus, [∗] = δω2 . However, this is not all of the Monty Hall problem. See Remark 5.13,

Problem 8.8 and Problem 11.13 later.

�
8Strictly speaking, F ({1})(ω1) = 0.5 and F ({2})(ω1) = 0.5 should be assumed in the problem (P).
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Remark 5.13. [Monty Hall problem by the moment method (cf. Definition 2.27)].

Here, consider Problem 5.12 by the moment method. Since you get measured value 3,

you get the sample space ({1, 2, 3}, 2{1,2,3}, νs) such that νs({1}) = 0, νs({2}) = 0 and

νs({3}) = 1. For example define the distance ∆ such that: for any ν1, ν2 ∈Mm
+1({1, 2, 3}),

∆(ν1, ν2) = |ν1({1})− ν2({1})|+ |ν1({2})− ν2({2})|+ |ν1({3})− ν2({3})|.

Then, we see

∆(νs, [F ( · )](ω1)) = |0− 0|+ |0− 0.5|+ |1− 0.5| = 1,

∆(νs, [F ( · )](ω2)) = |0− 0|+ |0− 0|+ |1− 1| = 0

and

∆(νs, [F ( · )](ω3)) = |0− 0|+ |0− 1|+ |1− 0| = 2.

Thus, we can, by the moment method, infer that ω2 is most possible, that is, the car is

behind the door number 2.

�

5.3 Inference interval

Let O( ≡ (X,F, F )) be an observable formulated in a C∗-algebra A. Assume that

X has a metric dX . And assume that the state space Sp(A∗) has the metric dS, which

induces the weak∗ topology σ(A∗,A). Let E : X → Sp(A∗) be a continuous map, which

is called “estimator”. Let γ be a real number such that 0� γ < 1, for example, γ = 0.95.

For any ρp( ∈ Sp(A∗)), define the positive number ηγρp ( > 0) such that:

ηγρp = inf{η > 0 :
A∗

〈
ρp, F (E−1(B(ρp; η))

〉
A
≥ γ} (5.33)

where B(ρp; η) = {ρp1( ∈ Sp(A∗)) : dS(ρ
p
1, ρ

p) ≤ η}. For any x ( ∈ X), put

Dγ
x = {ρp(∈ Sp(A∗)) : dS(E(x), ρ

p) ≤ ηγρp}. (5.34)

The Dγ
x is called the (γ)-inference interval of the measured value x.

Note that,
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(A) for any ρp0( ∈ Sp(A∗)), the probability, that the measured value x obtained by the

measurement MA

(
O ≡ (X,F, F ), S[ρp0]

)
satisfies the following condition ([), is larger

than γ (e.g., γ = 0.95).

([) E(x) ∈ B(ρp0; η
γ
ρp0
) or equivalently d(E(x), ρp0) ≤ ηγ

ρp0
.

Assume that

(B) we get a measured value x0 by the measurement MA

(
O ≡ (X,F, F ), S[ρp0]

)
.

Then, we see the following equivalences:

([) ⇐⇒ dS(E(x0), ρ
p
0) ≤ ηγ

ρp0
⇐⇒ Dγ

x0
3 ρp0.

x0

E(x0)

ρp
Dγ
x0

Sp(A∗)X

Summing the above argument, we have the following theorem.

Theorem 5.14. [Inference interval]. Let O ≡ (X,F, F ) be an observable in A. Let ρp0

be any fixed state, i.e., ρp0 ∈ Sp(A∗), Consider a measurement MA

(
O ≡ (X,F, F ), S[ρp0]

)
.

Let E : X → Sp(A∗) be an estimator. Let γ be such as 0 � γ < 1 (e.g., γ = 0.95). For

any x( ∈ X), define Dγ
x as in (5.34). Then, we see,

(]) the probability that the measured value x0( ∈ X) obtained by the measurement

MA

(
O ≡ (X,F, F ), S[ρp0]

)
satisfies the condition that

Dγ
x0
3 ρp0 , (5.35)

is larger than γ.

�
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Example 5.15. [The urn problem]. Put Ω = [0, 1], i.e., the closed interval in R. We

assume that each ω ( ∈ Ω ≡ [0, 1]) represents an urn that contains a lot of red balls and

white balls such that:

the number of white balls in the urn ω

the total number of red and white balls in the urn ω
≈ ω (∀ω ∈ [0, 1] ≡ Ω). (5.36)

Define the observable O = (X ≡ {r, w}, 2{r,w}, F ) in C(Ω) such that where

F (∅)(ω) = 0, F ({r})(ω) = ω, F ({w})(ω) = 1− ω, F ({r, w})(ω) = 1

(∀ω ∈ [0, 1] ≡ Ω). (5.37)

Here, consider the following measurement Mω:

Mω := “Pick out one ball from the urn ω, and recognize the color of the ball” (5.38)

That is, we consider

Mω = MC(Ω)(O, S[δω ]). (5.39)

Moreover we define the product observable ON ≡ (XN ,P(XN), FN), such that:

[FN(Ξ1×Ξ2× · · ·×ΞN−1×ΞN)](ω)

=[F (Ξ1)](ω) · [F (Ξ2)](ω) · · · [F (ΞN−1)](ω) · [F (ΞN)](ω)

(∀ω ∈ Ω ≡ [0, 1], ∀Ξ1,Ξ2, · · · ,ΞN ⊆ X ≡ {r, w}). (5.40)

As mentioned in Definition 2.27, we think that

“take a measurement Mω N times” ⇔ “take a measurement MC(Ω)(O
N , S[δω ])”

(5.41)

Define the estimator E : XN( ≡ {r, w}N)→ Ω( ≡ [0, 1])

E(x1, x2, · · · , xN−1, xN) =
][{n ∈ {1, 2, · · · , N} | xn = r}]

N
(∀x = (x1, x2, · · · , xN−1, xN) ∈ XN ≡ {r, w}N). (5.42)

For each ω( ∈ [0, 1] ≡ Ω), define the positive number ηγω such that:

ηγω

= inf
{
η > 0

∣∣∣ [FN({(x1, x2, · · · , xN) | ω − η ≤ E(x1, x2, · · · , xN) ≤ ω + η})](ω) > 0.95
}

= inf
[FN ({(x1,x2,··· ,xN )|ω−η≤E(x1,x2,··· ,xN )≤ω+η})](ω)>0.95

η. (5.43)
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Put

Dγ
x = {ω( ∈ Ω) : |E(x)− ω| ≤ ηγω}. (5.44)

For example, assume that N is sufficiently large and γ = 0.95. Then we see, by (2.58),

that

η0.95ω ≈ 1.96

√
ω(1− ω)

N

and

D0.95
x = [E(x)− η−, E(x) + η+] (5.45)

where

η− = η0.95E(x)−η− , η+ = η0.95E(x)+η+
. (5.46)

Under the assumption that N is sufficiently large, we can consider that

η− ≈ η+ ≈ η0.95E(x) ≈ 1.96

√
E(x)(1− E(x))

N
.

Then we can conclude that

• for any urn ω( ∈ Ω ≡ [0, 1])), the probability, that the measured value x = (x1, x2, · · · ,
xN) obtained by the measurement MA

(
ON , S[δω ]

)
satisfies the following condition

(]), is larger than γ (e.g., γ = 0.95).

(]) E(x)− 1.96
√

E(x)(1−E(x))
N

≤ ω ≤ E(x) + 1.96
√

E(x)(1−E(x))
N

.

where E is defined by (5.42).

�

5.4 Testing statistical hypothesis

Now we study “testing statistical hypothesis”, that is, answer the following question.
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Problem 5.16. [Testing statistical hypothesis]. Consider a measurement MC(Ω)(O ≡
(X,F, F ), S[∗]) formulated in C(Ω). Let E : X → Ω be Fisher’s estimator. Assume the
following hypothesis:

(H) the unknown state [∗] belongs to a closed set CH ( ⊆ Ω).

And further assume that we see the following fact:

(F) a measured value x0( ∈ X) is obtained by measurement MC(Ω)(O ≡ (X,F, F ), S[∗]).

Here, our present purpose is to propose an algorithm that decides whether the above hy-
pothesis (H) can be denied by the fact (F). This algorithm is called “the testing statistical
hypothesis”.

In the above problem, it is usually expected that the hypothesis (H) is not true. In

this sense, the above (H) is called the null hypothesis.

Now we provide two answers (i.e., Answer 1 and Answer 2). Answer 1 (likelihood ratio

test) is, of course, well-known and authorized. Also, in order to solve the question: “Is

there another answer?”, we add Answer 2 after Answer 1.

Answer 1. [Likelihood ratio test]. Consider a measurement MC(Ω)(O ≡ (X,F, F ), S[∗])

formulated in C(Ω). Let E : X → Ω be Fisher’s estimator, i.e., it is defined by

E(x) = lim
Ξn→{x}

ωn (∀x ∈ X),

where ωn ( ∈ Ω) is chosen such that it satisfies

[F (Ξn)](ωn)

maxω∈Ω[F (Ξn)](ω)
= 1.

(
For the exact argument, see Remark 5.4 (Radon-Nikodým derivative).

)
Assume

both (H) and (F) in Problem 5.16. Consider a real number α such that 0 < α � 1

(e.g. α = 0.05, which may be called a significance level. Let ω be in Ω. Then, by

Axiom 1, we have a sample probability measure Pω on X (of the measurement MC(Ω)(O

≡ (X,F, F ), S[δω ])) such that:

Pω(Ξ) = [F (Ξ)](ω) (∀Ξ ∈ F). (5.47)

Here define the function ΛCH : X → [0, 1] such that:

ΛCH (x) = lim
Ξ→{x}

supω∈CH Pω(Ξ)

supω∈Ω Pω(Ξ)
(∀x ∈ X). (5.48)
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Also, for any ε (0 < ε ≤ 1), define [D]εCH ( ∈ F) such that:

[D]εCH = {x ∈ X | ΛCH (x) < ε}. (5.49)

0

ε

1

X

[D]εCH

ΛCH (x)

Thus we can define ε0.05max such that:

ε0.05max = sup{ε | sup
ω0∈CH

Pω0([D]εCH ) ≤ 0.05}. (5.50)

Now we can conclude that

Answer 1
if x0 ∈ [D]

ε0.05max
CH

, then the hypothesis (H) can be denied

if x0 /∈ [D]
ε0.05max
CH

, then the hypothesis (H) can not be denied

(5.51)

Next we shall propose “Answer 2”. Before this, we must prepare the following well-

known lemma.

Lemma 5.17. [Neyman-Pearson theorem, α-influential domain of ν1 for ν2, cf. [59]]. Let

(X,F) be a measurable space. Let ν1 and ν2 be probability measures on X. Define the

Radon-Nikodým derivative dν1
dν2

: X → [0,∞) such that:

dν1
dν2

(x) = lim
Ξ→x

ν1(Ξ)

ν2(Ξ)
(x ∈ X). (5.52)

Put

[D](ε,
dν1
dν2

) = {x ∈ X | dν1
dν2

(x) < ε}, (0 ≤ ε ≤ ∞). (5.53)
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Thus we can define ε̆0.05max such that:

ε̆0.05max

(
≡ ε̆α=0.05

max

)
= sup{ε | ν1([D](ε,

dν1
dν2

)) ≤ 0.05}. (5.54)

Now we have the

[D](ε̆0.05max,
dν1
dν2

), (5.55)

which is called “the 0.05-influential domain of ν1 for ν2”.

�
Answer 2. [A test using Neyman-Pearson theorem]. Consider a measurement MC(Ω)(O

≡ (X,F, F ), S[∗]) formulated in C(Ω). Let E : X → Ω be Fisher’s estimator. Assume

both (H) and (F) in Problem 5.16. Consider a real number α such that 0 < α � 1

(e.g. α = 0.05 which may be also called a significance level. Let ω be in CH . Consider

a measurement MC(Ω)(O ≡ (X,F, F ), S[δω ]) . Let x be in X. Then, we have two sample

probability measures Pω and PE(x) on X such that:

νω(Ξ) = Pω(Ξ) = [F (Ξ)](ω) (∀Ξ ∈ F)

and

ν
E(x)

= PE(x)(Ξ) = [F (Ξ)](E(x)) (∀Ξ ∈ F). (5.56)

Thus, we have “the 0.05-influential domain of ν1 for ν2” such that:

[D](ε̆0.05max,
dνω
dν

E(x)

). (5.57)

Put

[D]
ε̆0.05max
CH ,x

= ∩ω∈CH [D](ε̆0.05max,
dνω
dν

E(x)

). (5.58)

Lastly, we put

[D]
ε̆0.05max
CH

= {x ∈ X | x ∈ [D]
ε̆0.05max
CH ,x
}. (5.59)

Now we can conclude that

Answer 2
if x0 ∈ [D]

ε̆0.05max
CH

, then the hypothesis (H) can be denied

if x0 /∈ [D]
ε̆0.05max
CH

, then the hypothesis (H) can not be denied

(5.60)
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Remark 5.18. [Answers 1 and 2]. We believe that the above two answers 1 and 2

are proper though the meanings of “significant level” is different in each answer (cf. [II;

CH = [0,∞)] in Examples 5.16 and 5.17). We do not know whether there is another

proper answer.

�
Example 5.19. [Likelihood ratio test for the Gaussian observable]. Put Ω = R, A =

C0(Ω), Oσ2 ≡ (R,Bbd
R , F

σ2

(·) ) in C0(Ω) such that:

F σ2

Ξ (ω) =
1√
2πσ

∫
Ξ

exp[− (x− ω)2

2σ2
]du (∀Ξ ∈ Bbd

R , ∀ω ∈ Ω = R). (5.61)

And thus. consider the product observable O2
σ ≡ (R2,Bbd

R2 , F σ2

(·) )×F σ2

(·) ) in C0(Ω). That

is,

(F σ2

Ξ1
×F σ2

Ξ2
)(ω) =

1

(
√
2πσ)2

∫∫
Ξ1×Ξ2

exp[− (x1 − ω)2 + (x2 − ω)2

2σ2
]dx1dx2

(∀Ξk ∈ Bbd
R (k = 1, 2), ∀ω ∈ Ω = R). (5.62)

[Case(I): Two sided test, i.e., CH = {ω0}]. Assume that CH = {ω0}, ω0 ∈ Ω = R. Then,

Λ{ω0}(x1, x2) = lim
Ξ1×Ξ2→{(x1,x2)}

supω∈{ω0} Pω(Ξ1 × Ξ2)

supω∈Ω Pω(Ξ1 × Ξ2)

=
exp[− (x1−ω0)2+(x2−ω0)2

2σ2
]

exp[− (x1−(x1+x2)/2)2+(x2−(x1+x2)/2)2
2σ2

]

= exp[− [(x1 + x2)− 2ω0]
2

4σ2
] = exp[− [(x1 + x2)/2− ω0]

2

2(σ/
√
2)2

]

(∀(x1, x2) ∈ R2). (5.63)

Also, for any ε( > 0), define [D]ε{ω0} ( ∈ F) such that:

[D]ε{ω0} = {(x1, x2) ∈ R2 | Λ{ω0}(x1, x2) < ε}. (5.64)

Thus we can define ε0.05max such that:

ε0.05max = sup{ε | sup
ω∈{ω0}

Pω([D]ε{ω0}) ≤ 0.05}. (5.65)

Now we can conclude that

[D]
ε0.05max

{ω0}

={(x1, x2) ∈ R2 | (x1 + x2)/2 ≤ ω0 − 1.96σ/
√
2}∪

{(x1, x2) ∈ R2 | (x1 + x2)/2 ≥ ω0 + 1.96σ/
√
2}

=“Slash part in the following figure”
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x1

x2

-

6

ω0

2(ω0 − 1.96σ/
√

2) 2(ω0 + 1.96σ/
√

2)

2(ω0 − 1.96σ/
√

2)

2(ω0 + 1.96σ/
√

2)

[Case(II): One sided test, i.e., CH = [ω0,∞)]. Assume that CH = [ω0,∞), ω0 ∈ Ω = R.

Then,

Λ[0,∞)(x1, x2) = lim
Ξ1×Ξ2→{(x1,x2)}

supω∈[ω0,∞) Pω(Ξ1 × Ξ2)

supω∈Ω Pω(Ξ1 × Ξ2)

=

{
exp[− [(x1+x2)−2ω0]2

4σ2 ] (x1+x2
2

< ω0)
1 ( otherwise )

(5.66)

Also, for any ε( > 0), define [D]ε[ω0,∞) ( ∈ F) such that:

[D]ε[0,∞) = {(x1, x2) ∈ R2 | Λ[0,∞)(x1, x2) ≤ ε}

= {(x1, x2) ∈ R2 | x1 + x2
2

− ω0 <
√
4σ2 log ε}. (5.67)

Thus we can define ε0.05max such that:

ε0.05max = sup{ε | sup
ω0∈[0,∞)

Pω0([D]ε[0,∞)) ≤ 0.05}. (5.68)

Therefore, we can conclude that

[D]
ε0.05max

[0,∞)

={(x1, x2) ∈ R2 | (x1 + x2)/2 ≤ ω0 − 1.65σ/
√
2}. (cf. (2.58)).

=“Slash part in the following figure”
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x1

x2

-

6

ω0

2(ω0 − 1.65σ/
√
2)

2(ω0 − 1.65σ/
√

2)

�
Example 5.20. [The test using Neyman-Pearson theorem for the Gaussian observable].

Put Ω = R, A = C0(Ω), Oσ2 ≡ (R,Bbd
R , F

σ2

(·) ) and O2
σ2 ≡ (R2,Bbd

R2 , F σ2

(·) ×F σ2

(·) ) in C0(Ω)

are as in the above.

[Case(I): Two sided test, i.e., CH = {ω0}]. Assume that CH = {ω0}, ω0 ∈ Ω = R. Then,

νω0
1 (Ξ1×Ξ2) = Pω0(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](ω0) (∀Ξ1×Ξ2 ∈ Bbd

R2)

and

ν
E(x0)
2 = PE(x0)(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](E(x0)) (∀Ξ1×Ξ2 ∈ Bbd

R2). (5.69)

Thus, we have “the 0.05-influential domain of ν1 for ν2” such that:

[D](ε̆0.05max, φνω01 /ν
E((x1,x2))
2

) =

{
{(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/

√
2} (E(x0) < ω0)

{(x1, x2) | (x1 + x2)/2 ≥ ω0 + 1.65σ/
√
2} (E(x0) > ω0).

Put

[D]
ε̆0.05max

{ω0},(x1,x2) = ∩ω0∈{ω0}[D](ε̆0.05max, φνω01 /ν
E((x1,x2))
2

) = [D](ε̆0.05max, φνω01 /ν
E((x1,x2))
2

) (∀(x1, x2) ∈ R2).

(5.70)
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Therefore, we can conclude that

[D]
ε̆0.05max

{ω0} ={(x1, x2) ∈ R2 | (x1, x2) ∈ [D]
ε̆0.05max

{ω0},(x1,x2)}

={(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/
√
2}∪

{(x1, x2) | (x1 + x2)/2 ≥ ω0 + 1.65σ/
√
2}.

[Case(II): One sided test, i.e., CH = [ω0,∞)]. Assume that CH = [ω0,∞), ω0 ∈ Ω = R.

Then,

νω0
1 (Ξ1×Ξ2) = Pω0(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](ω0) (∀Ξ1×Ξ2 ∈ Bbd

R2)

and

ν
E(x0)
2 (Ξ1×Ξ2) = PE(x0)(Ξ1×Ξ2) = [F (Ξ1×Ξ2)](E(x0)) (∀Ξ1×Ξ2 ∈ Bbd

R2).

(5.71)

Thus, we have “the 0.05-influential domain of ν1 for ν2” such that:

[D](ε̆0.05max, φνω01 /ν
E((x1,x2))
2

) =

{
{(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/

√
2} (E(x0) < ω0)

{(x1, x2) | (x1 + x2)/2 ≥ ω0 + 1.65σ/
√
2} (E(x0) > ω0).

Put

[D]
ε̆0.05max

[0,∞),(x1,x2)
= ∩ω0∈[0,∞)[D](ε̆0.05max, φνω01 /ν

E(x)
2

) (∀(x1, x2) ∈ R2). (5.72)

Therefore, we can conclude that

[D]
ε̆0.05max

[0,∞) ={(x1, x2) ∈ R2 | (x1, x2) ∈ [D]
ε̆0.05max

[0,∞),(x1,x2)
}

={(x1, x2) | (x1 + x2)/2 ≤ ω0 − 1.65σ/
√
2}.

�

5.5 Measurement error model in PMT

Although we have several kinds of measurement error models in statistics (cf. Fuller

[25], Cheng, etc. [16]), the following may be the simplest one (i.e., with normal distribu-

tions (= Gaussian distributions)):
ỹn = θ0 + θ1xn + en,
x̃n = xn + un
(en, un) ∼ NI[average(0, 0), variance(σ2

ee, σ
2
uu)],

9

(5.73)

(n = 1, 2, ..., N),



118 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

which, of course, corresponds to the conventional statistics (i.e., the measurement equa-

tion in the dynamical system theory (1.2)). The first equation is a classical regression

specification, but the true explanatory variable xn is not observed directly. The observed

measure of xn, denoted by x̃n, may be obtained by a certain measurement. Our present

concern is how to infer the unknown parameters θ0 and θ1 from the measured value

{(x̃n, ỹn)}Nn=1. Precisely speaking, the purpose of this section is to study this problem in

general situations (i.e., without the assumption of normal distributions).

Put A0 ≡ C(Ω0) and A1 ≡ C(Ω1). Let Θ be a compact space, which may be called

an index state space (or parameter space). Consider a parameterized continuous map ψθ :

Ω0 → Ω1, θ ∈ Θ, which induces the parameterized homomorphism Ψθ : C(Ω1) → C(Ω0)

such that (cf. (3.14))

(Ψθf1)(ω) = f1(ψ
θ(ω)) (∀f1 ∈ C(Ω1),∀ω ∈ Ω0).

Consider observables O0 ≡ (X,F, F ) in C(Ω0) and O1 ≡ (Y,G, G) in C(Ω1). And recall

that ΨθO1 can be identified with the observable in C(Ω0) (cf. Remark 3.6 (i)). Thus, we

can consider the product observable Õθ = (X×Y,F×G, F×××××××××ΨθG) in C(Ω0). Thus, we get

the measurement MC(Ω0)(Õ
θ, S[δω ]), (ω ∈ Ω0). Consider the N times repeated measure-

ment of MC(Ω0)(Õ
θ, S[δω ]), which is represented by MC(ΩN0 )(

⊗N
n=1 Õ

θ, S[⊗Nn=1δωn ]
). Here,

⊗Nn=1δωn = δ(ω1,ω2,...,ωN ) (∈ M
p
+1(Ω

N
0 )) and

⊗N
n=1 Õ

θ = (XN × Y N ,FN × GN ,
⊗N

n=1(F ×××××××××
ΨθG)) in

⊗N
n=1C(Ω0) ≡ C(ΩN

0 ), that is,

[(
N⊗
n=1

(F ×××××××××ΨθG))(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN)

=[F ×××××××××ΨθG(Ξ1 × Γ1)](ω1) · [F ×××××××××ΨθG(Ξ2 × Γ2)](ω2) · · · [F ×××××××××ΨθG(ΞN × ΓN)](ωN)

(∀Ξn ∈ F, ∀Γn ∈ G,∀(ω1, ..., ωN) ∈ ΩN
0 ). (5.74)

Our present problem is as follows:

(]) Consider the measurement MC(ΩN0 )(
⊗N

n=1 Õ
θ̄, S[⊗Nn=1δω̄n ]

) where it is assumed that

ω̄1, ω̄2, ..., ω̄N and θ̄ (∈ Θ) are unknown. Assume that we know that the mea-

sured value (x̃1, ..., x̃N , ỹ1, ..., ỹN) (∈ XN × Y N) obtained by the measurement

MC(ΩN0 ) (
⊗N

n=1 Õ
θ̄, S[⊗Nn=1δω̄n ]

) belongs to
∏N

n=1(Ξn×Γn). Then, infer the unknown

ω̄1, ω̄2, ..., ω̄N and θ̄ (particularly, θ̄).

9Independent random variables with normal distributions
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That is, for simplicity under the assumption that Ω0 = X, Ω1 = Y , we can illustrate this

problem (]) as follows:

Ω1

Ω0

ω1 = ψθ1(ω0)

ω1 = ψθ3(ω0)

ω1 = ψθ2(ω0)

Question
From the measured data

(x̃1, ..., x̃5, ỹ1, ..., ỹ5) (∈ Ω5
0 × Ω5

1) ,

infer the reasonable θ.
Answer
“Probably θ3 !”

• (x̃1, ỹ1)
• (x̃2, ỹ2)

• (x̃3, ỹ3) • (x̃4, ỹ4)

• (x̃5, ỹ5)

This problem is solved as follows: Define the observable Ô ≡ (XN × Y N ,FN × GN , Ĥ) in

C(ΩN
0 × Θ) such that [Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ) = (5.74). Note

that we have the following identification:

MC(ΩN0 ×Θ)(Ô, S[(⊗Nn=1δωn )⊗δθ]) = MC(ΩN0 )(
N⊗
n=1

Õθ, S[⊗Nn=1δωn ]
).

Consider the measurement MC(ΩN0 ×Θ)(Ô, S[(⊗Nn=1δω̄n )⊗δθ̄]) where it is assumed that we

do not know ω̄1, ω̄2, ..., ω̄N , θ̄. Then, we can, by Fisher’s maximum likelihood method (cf.

Corollary 5.6), infer the unknown state (⊗Nn=1δω̄n)⊗ δθ̄ such that:

[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω̄1, ..., ω̄N , θ̄)

= max
(ω1,...,ωN ,θ)∈ΩN0 ×Θ

[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ). (5.75)

This is the answer to the above problem (]). It should be noted that the problem (]) is

stated under the very general situations (i.e., Ω0, Ω1, X and Y are not necessarily the

real lines R).

In the following example, we apply our result (5.75) to the simple measurement error

model (5.73) with normal distributions.

Example 5.21. [The simple example of measurement error model (the case that θ0, θ1,

ω1 , ..., ωN are unknown)]. Let L be a sufficiently large number. Put Ω0 = [ − L,L],

Ω1 = [−L2 −L,L2 +L], Θ = [−L,L]2 , and define the map ψ(θ0,θ1) : Ω0 → Ω1 such that:

ψ(θ1,θ2)(ω) = θ1ω + θ0 (∀ω ∈ Ω0,∀(θ0, θ1) ∈ Θ.
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Also, put (X,F, F ) = (R,BR, G
σ1) in C(Ω0) and (Y,G, G) = (R,BR, G

σ2) in C(Ω1)

(cf. Example 2.17). Thus, we define the product observable Õ(θ0,θ1) = (X×Y,F×G, Hθ),

where Hθ ≡ F ×××××××××ΨθG, in C(Ω0) such that:

[Hθ(Ξ× Γ)](ω) = (
1√

2πσ1σ2
)2
∫∫

Ξ×Γ
exp[− (x− ω)2

2σ2
1

− (y − (θ1ω + θ0))
2

2σ2
2

]dxdy

(∀Ξ ∈ BR, ∀Γ ∈ BR,∀ω ∈ Ω0).

Thus, we have the observable Ô = (R2N ,BR2N , Ĥ) in C(ΩN
0 ×Θ) such that:

[Ĥ(Ξ1 × · · · × ΞN × Γ1 × · · · × ΓN)](ω1, ..., ωN , θ0, θ1)

=(
1√

2πσ1σ2
)2N
∫
· · ·
∫
ΠNn=1(Ξn×Γn)

e
−

∑N
n=1(xn−ωn)2

2σ21
−

∑N
n=1(yn−(θ1ωn+θ0))

2

2σ22 dx1dy1 · · · dxNdyN .

(5.76)

Assume the conditions in the problem (]), and further add that

Ξεn = [x̃n − ε, x̃n + ε], Γεn = [ỹn − ε, ỹn + ε] (for sufficiently small positive ε).

Then, our main result (5.75) says that

max
(ω1,...,ωN ,θ0,θ1)∈ΩN0 ×Θ

[Ĥ(Ξε1 × · · · × ΞεN × Γε1 × · · · × ΓεN)](ω1, ..., ωN , θ)

⇐⇒ min
(ω1,...,ωN ,θ0,θ1)∈ΩN0 ×Θ

[ N∑
n=1

(
x̃n
σ1
− ωn
σ1

)2 +
N∑
n=1

(
ỹn
σ2
− (

θ1σ1
σ2

ωn
σ1

+
θ0
σ2

))2
]

(since ε is small)

(
Here, note that the distance between a point ( x̃n

σ1
, ỹn
σ2
) and a line y = θ1σ1

σ2
x+ θ0

σ2
is equal

to |ỹn−θ1x̃n−θ0|√
σ22+σ

2
1θ

2
1

. Then, we see
)

⇐⇒ min
(θ0,θ1)∈Θ

∑N
n=1(ỹn − θ1x̃n − θ0)2

σ2
2 + σ2

1θ
2
1

(5.77)

⇐⇒

{ ∑N
n=1(ỹn − θ̄1x̃n − θ̄0) = 0 (← ∂

∂θ0
(5.77) = 0),∑N

n=1(θ̄1ỹnσ
2
1 + x̃nσ

2
2 − θ̄0θ̄1σ2

1)(ỹn − θ̄1x̃n − θ̄0) = 0 (← ∂
∂θ1

(5.77) = 0).

(5.78)

Thus, the unknown parameters θ̄1 and θ̄2 are inferred by the solution of this equation

(5.78). Note that this is a direct consequence of our main result (5.75).

�
Example 5.22. [The case that θ0, θ1, σ

2
1, σ

2
2, ω1 , ..., ωN are unknown]. Assume that θ0,

θ1, σ
2
1, σ

2
2, ω1 , ..., ωN are unknown. The log-likelihood is

L(θ0, θ1, σ
2
1 , σ

2
2 , ω1, ..., ωN ) = log[(5.76)]

=− N log σ2
1

2
− N log σ2

2

2
−
∑N
n=1(xn − ωn)2

2σ2
1

−
∑N
n=1(yn − θ0 − θ1ωn)2

2σ2
2

.
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Taking partial derivatives with respect to θ0, θ1, σ
2
1, σ

2
2 and ω1, ..., ωN , and equating the

results to zero, gives the likelihood equations,

N∑
n=1

(yn − θ0 − θ1ωn) = 0,
N∑
n=1

(yn − θ0 − θ1ωn)ωn = 0,∑N
n=1(xnωn)

2

N
= σ2

1,

∑N
n=1(yn − θ0 − θ1ωn)2

N
= σ2

2,

(xnωn)
2

2σ2
1

− (yn − θ0 − θ1ωn)2

2σ2
2

= 0, (n = 1, 2, ..., N).

Thus we can easily solve it as follows:

θ21 =
σ2
2

σ2
1

=
Syy
Sxx

, 2σ2
1 = Sxx −

Sxy
θ1
, 2σ2

2 = Syy − Sxyθ1,

θ0 = ȳ − θ1x̄, 2ωn = xn +
yn − θ0
θ1

= xn + x̄+
yn − ȳn
θ1

,

where

x̄ =
x1 + · · ·+ xN

N
, ȳ =

y1 + · · ·+ yN
N

,

Sxx =
(x1 − x̄)2 + · · ·+ (xN − x̄)2

N
, Syy =

(y1 − ȳ)2 + · · ·+ (yN − ȳ)2

N
,

Sxy =
(x1 − x̄)(y1 − ȳ) + · · ·+ (xN − x̄)(yN − ȳ)

N
.

(Cf. Cheng, etc. [16]).

�

5.6 Appendix (Iterative likelihood function method)

In this section we study the “Iterative likelihood function method (cf. [47])”, which

will be related to subjective Bayesian statistics (see §8.6 later).

Consider the “measurement” described in the following “step [1]” and “step [2]”,

[1] First we take a measurement MC(Ω)(O1 ≡ (X, 2X , F ), S[∗]), and we know that the

measured value is equal to x ( ∈ X).

[2] And successively, we take a measurementMC(Ω)(O2 ≡ (Y, 2Y , G), S[∗]), and we know

that the measured value is equal to y ( ∈ Y ).



122 CHAPTER 5. FISHER’S STATISTICS I (UNDER AXIOM 1)

Note that “[1]+[2]” ie equal to the following [3]10 :

[3] We take a measurement MC(Ω)(O1 × O2 ≡ ≡ (X × Y,F × G, H ≡ F × G) S[∗]),

and we know that the measured value obtained by MC(Ω)(O1×O2, S[∗]) is equal to

(x, y) ( ∈ X × Y ).(
A non-negative (real-valued) continuous function F (Ξ) in an observable (X,F, F ) is

called a likelihood function, or, a likelihood quantity.
)
Then we can say:

[[] By Step [1], we get the likelihood function F ({x}). And further by step [2] (i.e.,

by “[1]+[2]” (=[3])), we get the new likelihood function F ({x})G({y}) ( ≡ [F ×
G]({x} × {y})).

Using the Bayes operator (cf. the formula (5.12)), this statement [[] can be rewritten as

follows:

I
Step (1)−−−−→
B

O1
{x}

F ({x}) Step (2)−−−−→
B

O2
{y}

F ({x})G({y}) in C(Ω), (5.79)

where I( ∈ C(Ω)) is the identity element, i.e., the constant function such that I(ω) =

1(∀ω ∈ Ω).

Step (1)-

BO1

{x}

Step (2)-

BO2

{y}

Ω

1

0

I

Ω

1

0

[F ({x})](ω)

Ω

[F ({x})G({y})](ω)

1

0

It should be noted that:

(F1) the constant likelihood function “I” (or “k × I” where k > 0) is the likelihood

function that represents the fact “we have no information about the system S[∗]”.

Now we introduce the following notation. Cf. [47].

Notation 5.23. [S[∗]((G))lq]. The system S[∗] (formulated in C(Ω)) such that we know it

has the likelihood quantity G (G ∈ C(Ω), 0 ≤ G(ω) (∀ω ∈ Ω)) is denoted by S[∗]((G))lq.

10Recall §2.5 (Remarks(II)), that is, “Only one measurement is permitted to be conducted”. Thus,
“[1]+[2]” is a methodological explanation.
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Thus, the symbol MC(Ω)

(
O, S[∗]((kG))lq

)
means “the measurement MC(Ω)

(
O, S[∗]

)
under

the condition that we know the likelihood quantity of the system S[∗] is equal to kG,

where G ∈ C(Ω), 0 ≤ G(ω) (∀ω ∈ Ω)”.

�
Under this notation, the conventional Fisher’s maximum likelihood method (i.e., Corol-

lary 5.6) says that:

(F ′1) Assume that we first have no information about the system S[∗]. And we take a

measurement MC(Ω)

(
O, S[∗]

)
, i.e., MC(Ω)

(
O, S[∗]((kI))lq

)
. Then, from the fact that

the measured value x ( ∈ X) is obtained by the MC(Ω)

(
O, S[∗]((kI))lq

)
, we know

that the likelihood quantity of the system S[∗] is equal to k[F ({x})](ω).
(
Thus,

there is a reason to regard the unknown state [ ∗ ] as the state ω0( ∈ Ω) such that

k[F ({x})](ω0) = maxω∈Ω k[F ({x})](ω).
)

However, it is usual to assume that we have a little bit of information before a measure-

ment. Thus, let us start from the measurement MC(Ω)

(
O ≡ (X, 2X , F ), S[∗]((G0))lq

)
. Here

we have the following problem:

(PG) How to infer the new likelihood quantity of the system S[∗] from the fact that the

measured value x ( ∈ X) is obtained by the MC(Ω)

(
O, S[∗]((G0))lq

)
.

This is equivalent to the following problem:

(P′G) How to infer the likelihood quantity of the system S[∗] from the fact that the mea-

sured value (y0, x) ( ∈ {y0, y1} × X) is obtained by the iterated measurement

MC(Ω)

(
O0 × O, S[∗]((kI))lq

)
, where O0 = ({y0, y1}, 2{y0,y1}, G) and G({y0}) = G0,

G({y1}) = I −G0.

Thus, from (F ′1) and “(PG)↔(P′G)”, the problem (PG) is solved as follows:

(F2) (The answer of the (PG)): We know that the new likelihood quantity Gnew of the

system S[∗] is equal to BO
{x}(G0). Here, Bayes operator BO

{x} : C(Ω) → C(Ω) is

defined by BO
{x} (G) = F ({x})G (∀G ∈ C(Ω)).

Thus we see:

S[∗]((I))lq
MC(Ω)

(
O1, S[∗]((I))lq

)
−−−−−−−−−−−→

x is obtained
S[∗]((F ({x})))lq

MC(Ω)

(
O2, S[∗]((F ({x})))lq

)
−−−−−−−−−−−−−−→

y is obtained
S[∗]((F ({x})G({y})))lq
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where O1 = (X, 2X , F ) and O2 = (Y, 2Y , G).

Summing up, we can symbolically describe it as follows:
[F1] No information quantity ←→ kI( ∈ C(Ω)

[F2] S[∗]((G))lq
MC(Ω)

(
O, S[∗]((G))lq

)
−−−−−−−−−−−→

x is obtained
S[∗]((B

O
{x}G))lq

(
= S[∗]((F ({x})G))lq

)
,

(5.80)

where O = (X, 2X , F ).

The following example will promote the understanding of “iterative likelihood function

method”.

Example 5.24. [The urn problem]. There are two urns ω1 and ω2. The urn ω1 [resp.

ω2] contains 8 white and 2 black balls [resp. 4 white and 6 black balls]. Assume that they

can not be distinguished in appearance.

• Choose one urn from the two.

Now you sample, randomly, with replacement after each ball.

(i). First, you get “white ball”.

(Q1) Which is the chosen urn, ω1 or ω2?

(ii). Further, assume that you continuously get “black”.

(Q2) How about the case? Which is the chosen urn, ω1 or ω2?

The illustration of MC(Ω)(O, S[∗]) (or, MC(Ω)(O, S[∗]((kI))lq) )

- �[∗]

ω1 ω2

[Answers]. In what follows this problem is studied in the iterative likelihood function

method. Put Ω = {ω1, ω2}. O = ({w, b}, 2{w,b}, F ) where

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2, [F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.
(5.81)
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The situation of no information in Fisher’s method is represented by kI (k > 0). Thus,

it suffices to consider the measurement MC(Ω)(O, S[∗]((kI))lq). Since the measured value

“w” was obtained, the new likelihood quantity Gnew is given as follows:

Gnew(ω1)
(
= kI · [F ({w})](ω1)

)
= 0.8k,

Gnew(ω2)
(
= kI · [F ({w})](ω2)

)
= 0.4k. (5.82)

Thus, by Fisher’s maximum likelihood method, we see that

(A1) there is a reason to infer that [ ∗ ] = ω1.

For the further case, it suffices to consider the measurement MC(Ω)(O, S[∗]((Gnew))lq).

Thus we similarly calculate that

Gnew2(ω1)
(
= [Gnew](ω1) · [F ({b})](ω1)

)
= 0.16k,

Gnew2(ω2)
(
= [Gnew](ω2) · [F ({b})](ω2)

)
= 0.24k. (5.83)

Thus we, by Fisher’s maximum likelihood method, see that

(A2) there is a reason to infer that [ ∗ ] = ω2.

�


