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Chapter 4

Boltzmann’s equilibrium statistical
mechanics

As mentioned in Chapters 2 and 3, we see that (pure) measurement theory (= PMT) is formulated
as follows:

PMT = measurement

[Axiom 1 (2.37)]

+ the relation among systems

[Axiom 2 (3.26)]

in C∗-algebra
. (4.1)

(=(1.4))

The purpose of this chapter1 is to understand Boltzmann’s equilibrium statistical mechanics 2 (i.e.,
“the principle of equal a priori probability” and “the ergodic hypothesis”) as one of applications of
PMT. We believe that our approach completely justifies the the thermodynamical weight method
(i.e., the Gibbs method, cf. [26])3.

4.1 Introduction

In spite that equilibrium statistical mechanics is generally believed to be based on

Newtonian mechanics, the term “probability” frequently appears in equilibrium statistical

mechanics. Therefore, if we want to understand equilibrium statistical mechanics in the

framework of Newtonian mechanics, a certain rule concerning “probability” should be

added. That is, we hope to understand equilibrium statistical mechanics such as:

1It may be recommended that this chapter is skipped if readers want to study statistics in the frame-
work of PMT firstly (cf. Chapters 5 and 6).

2In this chapter readers are not required to have much knowledge of statistical mechanics.
3In this book, we think that statistical mechanics should be understood as one of applications of

measurement theory and not theoretical physics, (cf. Table (1.7)). Thus, it should be noted that no
serious test has been conducted in statistical mechanics. What we know is nothing but the fact that
statistical mechanics is quite useful (cf. Table (1.8)). Or, statistical mechanics is “almost empirically
true” to such a degree that statistical mechanics is assured to be useful in usual situations. Cf. the (I9)
in §1.2.

75



76 CHAPTER 4. BOLTZMANN’S EQUILIBRIUM STATISTICAL MECHANICS

“equilibrium statistical mechanics” = “Newton equation”

[Axiom 2 (3.26)]

+ “probabilistic rule”

[Axiom 1 (2.37)]

(4.2)
in PMT.

First we must answer the following question:

(Q1) What is the “probabilistic rule” in (4.2)?

Recall Example 2.16 (the urn problem), which is the most fundamental in the classical

measurement. Thus in order to understand “probabilistic rule (=Axiom 1) in (4.2)”, it

suffices to note the following simplest example:

(A1) “Consider a box containing 7× 1023 white balls and 3× 1023 black balls, and choose

a ball at random from the box. Then the probability that the ball is white is given as

0.7.”

Even without the knowledge of measurement theory (in Chapters 2 and 3), every reader

surely agrees that the probability appearing in urn (i.e., box) problems is most typical in

statistics.

Next we must refer to “Newtonian mechanics” in (4.2). Namely we must solve the

following question.

(Q2) What kinds of conditions are imposed on the Newton equation in (4.2)?

In equilibrium statistical mechanics, about 1024 (≈ 6.02 × 1023: “Avogadro constant”)

particles, of course, move hard in a box such as the following figure:
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However it seems to be natural to think as follows:

(A1
2) All particles are even, or on a level.

(A2
2) The motions of particles are (almost) independent of each other. In other words,

the information about a subsystem composed of some particles is invalid for the

inference of the state of another subsystem.

This is our answer to the question (Q2). In §4.2, the (A1
2) and (A2

2) will be represented in

terms of PMT. Also, the (A1) will be discussed in §4.3.
Summing up, we think that equilibrium statistical mechanics is formulated as follows:

“equilibrium statistical mechanics” = “probabilistic rule”
(the probability such as in (A1))

+ “Newton equation”
(the conditions (A1

2) and (A2
2))︸ ︷︷ ︸

(+ “staying time interpretation”)

(4.4)

in PMT. Or, equivalently,

• An equilibrium statistical system can be regarded as an urn containing about 1024

particles. Also, the motions of particles are dominated by the Newtonian equation

with the conditions (A1
2) and (A2

2). Also, the “staying time interpretation” implies

the common sense such as it is almost impossible to find a rare event.

And moreover, two conventional principles (i.e., “the principle of equal a priori probability”

and “the ergodic hypothesis”) will be completely clarified in our proposal (4.4).

The first attempt to understand equilibrium statistical mechanics in the framework of

PMT was executed in [45]. The content in [45] will be slightly modified and improved in

this chapter.

Note, for completeness, that our purpose is to understand equilibrium statistical me-

chanics as one of applications of PMT and not to derive equilibrium statistical mechanics

from Newtonian mechanics (cf. [75]). That is, we are in theoretical informatics and not

in theoretical physics.4

4We have no experimental evidence that the ergodic approach to statistical mechanics is proper.
However, in theoretical informatics, it suffices to find a reason that many people do not doubt.
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4.2 Dynamical aspects of equilibrium statistical me-

chanics

In this section we shall devote ourselves to the mathematical description of the answers

(A1
2) and (A2

2) mentioned in Section 4.1. Readers should note that all arguments in

this section are within Newtonian mechanics. Namely, it should be noted that it is

prohibited to use the term “probability” in this section. For example, Lemma 4.9 (“the

law of large numbers” in §4.5 Appendix) is not only most important in Kolmogorov’s

probability theory but also in this section (i.e., the derivation of the ergodic hypothesis

(= Theorem 4.6)). Therefore, readers will see that Lemma 4.9 is used independently of

the concept of “probability”. This is the reason that the term “normalized measure” (and

not “probability measure”) is used in Lemma 4.9.

Now let us begin with the well-known ergodic theorem (cf. [57, 83]). In Newtonian

mechanics, any state of a system composed of N( ≈ 1024) particles is represented by a

point (q, p)
(
≡ (q1n, q2n, q3n, p1n, p2n, p3n)

N
n=1

)
in a phase (or state) space R6N (cf. the

formula (2.8)). Let H : R6N → R be a Hamiltonian, i.e., a positive continuous function

on R6N . Define V (E), E ≥ 0, by “the volume of the set {(q, p) ∈ R6N | H(q, p) ≤ E}”,
and define the measure ν

E
on the energy surface S

E
(≡ {(q, p) ∈ R6N | H(q, p) = E})

such that

ν
E
(B) =

∫
B

|∇H(q, p)|−1dm6N−1 (∀B ∈ BS
E
, the Borel field of S

E
)5 (4.5)

where dm6N−1 is the usual surface measure on S
E
. Note that ν

E
(S

E
) = dV (E)

dE
holds. Let

{ψE
t }−∞<t<∞ be the flow on the energy surface S

E
induced by the Newton equation with

the Hamiltonian H. Liouville’s theorem (cf. [11]) says that the measure ν
E
is invariant

concerning the flow {ψE
t }−∞<t<∞. Defining the normalized measure ν

E
such that ν

E
=

ν
E

ν
E
(S
E
)
, we have the normalized measure space (S

E
,BS

E
, ν

E
).

In order that equilibrium statistical mechanics must hold, we first assume that the

Hamiltonian H satisfies the following ergodic hypothesis (EH):

(EH) The flow {ψE
t }−∞<t<∞ on the S

E
is ergodic. That is, there uniquely exists an

normalized invariant measure ν
E
on S

E
such that ν

E
(B) = ν

E
(ψt(B)) (−∞ < ∀t <

5Or usually, ν
E
(B) = 1

h3NN !

∫
B
|∇H(q, p)|−1dm6N−1, where h is the Plank constant. In this book, for

simplicity, the constant 1
h3NN !

will be omitted.
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∞, ∀B ∈ BS
E
).

The ergodic theorem (cf. [11, 57]) says that the normalized measure ν
E
represents the

normalized averaging staying time, i.e., it holds that

ν
E
(B) = lim

K→∞

][{k | ψεkω ∈ B, k = 1, 2, ..., K}]
K

(∀ω ∈ S
E
, ∀ε > 0).

or generally,∫
Ω

f(ω)ν
E
(dω)

(space average)

= lim
T→∞

1

T

∫ T

0

f(ψt(ω0))dt

(time average)

(∀f ∈ C(Ω), ∀ω0 ∈ Ω), (4.6)

which is equivalent to the (EH). Thus the normalized measure space (S
E
,BS

E
, ν

E
) is called

the normalized averaging staying time space (cf. Remark 4.1 later).

We assert that

(STI) [Staying time interpretation of statistical mechanics]. Let N ∈ BS
E
such that the

normalized averaging staying time ν
E
(N) is quite small (i.e., ν

E
(N) � 1). Then it

is almost impossible (or precisely, quite rare) to see that the state (q(t), p(t)) belongs

to the N.

We think that this (STI) is a common sense rather than a principle. The concept of “time”

(or precisely “non-relativistic time”) is within Newtonian mechanics, and therefore the

statement (STI) (or “staying time”) can be understood within Newtonian mechanics.

Remark 4.1. [The probabilistic interpretation of (S
E
,BS

E
, ν

E
)]. The probabilistic inter-

pretation is as follows:

(PI) [Probabilistic interpretation of statistical mechanics]. The normalized averaging

staying time space (S
E
, BS

E
, ν

E
) is regarded as Kolmogorov’s probability space.

That is, the probabilistic interpretation, which is usually called “the principle of equal

a priori probability”, means that the probability that the state of the system belongs to

Ξ( ∈ BSE) is given by ν
E
(Ξ). If the probabilistic interpretation (PI) is assumed, the (STI)

obviously holds. However, the concept of “normalized staying time” is clearly different

from that of “probability”. Note that:

• the former (i.e., “the staying time interpretation”) is within Newtonian mechanics,

but the latter (i.e., “the probabilistic interpretation”) is not so.
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Thus, in this chapter we choose a common sense (i.e., “the staying time interpretation”)

rather than a principle (i.e., “the probabilistic interpretation”).6 This is the reason that

the (S
E
,BS

E
, ν

E
) is not called the probability space in this chapter. Again note that all

arguments in this section are within Newtonian mechanics. In this chapter the (STI) will

be used instead of the (PI).

�
We introduce the following notation:

Notation 4.2. [In the sense of (STI)]. Let P(q, p) be a proposition concerning a state

(q, p) ( ∈ S
E
) such that P(q(t), p(t)) is true for every t ∈ S

E
\N ( ≡ {ω | ω ∈ S

E
, ω /∈ N}).

Assume that the normalized averaging staying time ν
E
(N) is quite small (i.e., ν

E
(N)

� 1). Then we write it as

P(q(t), p(t)) is true (almost every t in the sense of (STI)), (4.7)(
Or, P(q(t), p(t)) is almost always true

)
.

Also, when the probabilistic interpretation (cf. Remark 4.1) is added to the (S
E
,BS

E
, ν

E
),

we may write it as

P(q(t), p(t)) is true (almost every t in the sense of (PR)).7 (4.8)

�
As seen in Remark 4.1, it holds that (4.8)⇒(4.7). Throughout this chapter we, of

course, focus on the (4.7) and not (4.8).

Let ε > 0, f1, f2, ..., fK ∈ C0(R
6). Define the 0-neighborhood U in M(R6) (in the

sense of weak∗ topology of M(R6)) such that:

U( = U ε
f1,...fK

) = {ρ ∈M(R6)(= C0(R
6)∗) : |

M(R6)
〈ρ, fk〉C0(R

6)
| < ε, k = 1, 2, ..., K}.

(4.9)

6What is the most important is to recognize that statistical mechanics belongs to the category of
theoretical informatics and not that of theoretical physics. (cf. Table (1.7)). Thus, the present situation
is the same as the following situation. Two ready-made suits (A) and (B) are on sale. The (A) is
somewhat big, and the (B) is somewhat small. Which do you choose, (A) or (B)? Cf. (I15) in §1.3.
We must choose one from “the staying time interpretation” and “the probabilistic interpretation”. In
theoretical informatics, it can not be decided by experimental test. What we can say is we believe that
“the staying time interpretation” will win more popularity than “the probabilistic interpretation”.

7Note that this notation is different from that of Kolmogorov’s probability theory, in which we use
the phrase “almost every t in the sense of (PR)” when ν̄(N) = 0.
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Put DN = {1, 2, ..., N( ≈ 1024)}. For each k ( ∈ DN ≡ {1, 2, ..., N( ≈ 1024)}), define
the map Xk : SE( ⊂ R6N)→ R6 such that

Xk((q1n, q2n, q3n, p1n, p2n, p3n)
N
n=1) = (q1k, q2k, q3k, p1k, p2k, p3k) (4.10)

for all (q, p) = (q1n, q2n, q3n, p1n, p2n, p3n)
N
n=1 in S

E
( ⊂ R6N). For any subset D ( ⊆ DN ≡

{1, 2, ..., N( ≈ 1024)}), define the map R
(·)
D : S

E
( ⊂ R6N) → Mm

+1(R
6) ( ≡ {ρ ∈ M(R6) :

ρ ≥ 0, ρ(R6) = 1}) such that

R
(q,p)
D =

1

][D]

∑
k∈D

δXk(q,p) (∀(q, p) ∈ S
E
( ⊂ R6N)), (4.11)

where ][D] is the number of the elements of D and δx is a point measure at x ( ∈ R6).

Let U be a 0-neighborhood in M(R6) such as defined in (4.9). For any (p, q) ( ∈ SE),

put

HU(p, q) = kB log
[
νE({(p′, q′) ∈ SE | R(p,q)

DN
−R(p′,q′)

DN
∈ U})

]
, (4.12)

(kB is the Boltzmann constant, i.e., kB = 1.381×10−23J/K), which is called the U-entropy

of a state (p, q).

Let D0 ⊆ DN . Define ν
E
◦ ((Xk)k∈D0)

−1 ( ∈ Mm
+1(R

6×][D0])) by the image measure

concerning the map (Xk)k∈D0 : R6N → R6×][D0], that is,

ν
E
◦ ((Xk)k∈D0)

−1( ×
k∈D0

Ak) = ν
E
({(p, q) ∈ SE | Xk(p, q) ∈ Ak (k ∈ D0)}) (4.13)

for any open set Ak ( ⊆ R6) (k ∈ D0).

In what follows we shall represent the conditions (A1
2) and (A2

2) (mentioned in §4.1)
in terms of mathematics. Cf. [45].

Definition 4.3. [Thermodynamical condition, equilibrium state].8 Let DN be a set

{1, 2, ..., N(≈ 1024)}. And let H, E, νE, νE, Xk : SE → R6 be as in the above. A

Hamiltonian H on R6N (N ≈ 1024) is said to be thermodynamical (concerning energy E)

if the following condition (T ) is satisfied:

(T ) {Xk : SE → R6}Nk=1 is an almost independent sequence with the identical distribution.

8Although this condition may be superficial and not fundamental, we believe, from the measurement
theoretical point of view, that equilibrium statistical mechanics should start from this condition. Again
note that our purpose is to understand equilibrium statistical mechanics as one of applications of PMT
and not to derive equilibrium statistical mechanics from Newtonian mechanics.
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In other words, there exists a normalized measure ρ
E
on R6 (i.e., ρ

E
∈ Mm

+1(R
6)) such

that:

(T 1)
[
identical distribution, cf. (A1

2) in §4.1
]
it holds that

ρ
E
≈ ν

E
◦X−1k (∀k = 1, 2, ...., N( ≈ 1024)), (4.14)

(T 2)
[
independence, cf. (A2

2) in §4.1
]
it holds that⊗

k∈DN

ρ
E
(: product measure) ≈ ν

E
◦ ((Xk)k∈DN )

−1, (4.15)

though the condition (T 2) is too strong to assume it literally, (see Remark 4.4).

Here, a state (q, p) (∈ SE) is called an equilibrium state if R
(q,p)
DN
≈ ρE.

9

�
Let T be a sufficiently large number. Assume that the closed interval [0, T ] has

the measure: dt/T (thus, the total measure of [0, T ] is equal to 1). For each k ( ∈
DN ≡ {1, 2, ..., N( ≈ 1024)}), define the map wk : [0, T ] → R6 such that wk(t) =

(q1k(t), q2k(t), q3k(t), p1k(t), p2k(t), p3k(t)) for all t ( ∈ [0, T ]). Assume that

(]) {wk | k ∈ DN} is a set composed of almost independent functions with the identical

distribution.

This assumption (]) is essentially the same as (T ) in Definition 4.3.

6
R6

-

T

w1
w2

wN

almost independent
identically distributed

9In our formulation, we do not assume that the “equilibrium state” is defined by ν
E
since ν

E
is not

assumed to have the probabilistic interpretation (cf. Remark 4.1).
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Remark 4.4. As mentioned in Definition 4.3, the condition (T 2) is too strong. Thus,

it should be understood symbolically and not literally. Therefore, we actually assume

some hypotheses, which are weaker than the (T2). For example we assume the following

conditions (T 2)′ and (T 2)′′:

(T 2)′
[
independence

]
it holds that⊗

k∈D0

ρ
E
≈ ν

E
◦ ((Xk)k∈D0)

−1, (4.16)

(∀D0 ⊂ {1, 2, ..., N( ≈ 1024)} such that 1� ][D0]� N).

This is needed for the derivation of the ergodic hypothesis (cf. Theorem 4.6 later). Also,

we assume that

(T 2)′′
[
independence

]
it holds that(

ν
E
◦ ((Xk)k∈D1)

−1
)⊗(

ν
E
◦ ((Xk)k∈D2)

−1
)
≈ ν

E
◦ ((Xk)k∈D1∪D2)

−1, (4.17)

for any D1, D2 (⊂ D) such that D1 ∩D2 = ∅ and 1� ][D1], ][D2] ≤ N .

That is because, in equilibrium statistical mechanics, we usually assume that the inter-

action between the subsystem composed of the particles D1 and that of the particles D2

can be neglected.

�
Remark 4.5. (i) If N0 is arbitrarily large (and thus N = ∞) and if the approximation

symbol “≈” is interpreted by the equality “=”, then (4.4) and (4.16) imply that the

sequence {Xk}∞k=1 on the normalized averaging staying time space (S
E
,BS

E
, ν

E
) is an

independent sequence with the identical distribution ρ
E
. Thus, Lemma 4.9 (i.e., the law

of large numbers) says that

lim
N0(=][D])→∞

R
(q,p)
D = ρ

E
( in the sense of the weak∗ topology of M(R6)) (4.18)

holds for almost every (q, p) in (S
E
,B(S

E
), ν

E
). Note that Kolmogorov’s probability the-

ory [56] is mathematics, and therefore, it is valid even if the probabilistic interpretation

(cf. Remark 4.1) is not added to the normalized averaging staying time measure space

(S
E
,BS

E
, ν

E
). For completeness, again note that the terms: “identical distribution” in

(T 1) and “independence” in (T 2) are not related to the concept of “probability” (but that

of “staying time”).
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(ii) The reader may doubt if the concepts of “identical distribution” and “independence”

are meaningful without the probabilistic interpretation. However, the following example

shows that these concepts are not only meaningful on a measure space but also on a

topological space. Let f : Ω → R be a continuous function on a topological space Ω.

For each n(= 1, 2, ..., N), define the function fn : ΩN(= product topological space) → R

such that ΩN 3 (ω1, ω2, ..., ωn, ..., ωN) 7→ f(ωn) ∈ R. Then we may say that {fn}Nn=1

is “an independent sequence with the identical distribution”. In fact we often say “The

motions of two particles are independent” in Newtonian mechanics (and not in statistical

mechanics).

�

By an analogy of the arguments (i.e., the derivation of (4.18)) in the above Remark

4.5(i), we can assert that (4.14) and (4.16) imply that, if 1� N0( ≈ ][D0])� N( ≈ 1024),

R
(q(t),p(t))
D0

≈ ν
E
◦X−1k ( ≈ ρ

E
) ( almost every time t in the sense of (STI) ) (4.19)

holds for any k ( = 1, 2, ..., N( ≈ 1024)). Here consider the decomposition {D(1), D(2), ...,

D(L)} of DN ( ≡ {1, 2, ..., N( ≈ 1024)}) such that ][D(l)] ≈ N0 (l = 1, 2, ..., L). Then we

see, by (4.19), that

R
(q(t),p(t))
DN

=

∑L
l=1[][D(l)]×R(q(t),p(t))

D(l)
]

N
≈
∑L

l=1[][D(l)]× ρE ]
N

= ν
E
◦X−1k ( ≈ ρ

E
)

( almost every time t in the sense of (STI) )

holds for any k ( = 1, 2, ..., N( ≈ 1024)).

Summing up, we have the following theorem.

Theorem 4.6. (Ergodic hypothesis). Assume the thermodynamical condition (i.e., (T1)

in Definition 4.3 and (T 2)′ in Remark 4.4). Then it holds that

R
(q(t),p(t))
DN

≈ ν
E
◦X−1k ( ≈ ρ

E
) (k = 1, 2, ..., N( ≈ 1024)) (4.20)

( almost every time t in the sense of (STI) )

Thus, the state of the system is almost always equal to the equilibrium state (cf. Definition

4.3). That is, we see:



4.2. DYNAMICAL ASPECTS OF EQUILIBRIUM STATISTICAL MECHANICS 85

• R(q(t1),p(t1))
DN

≈ R
(q(t2),p(t2))
DN

( almost every time t1 and t2 in the sense of (STI)).

(4.21)

�
This says that

“the distribution of N( ≈ 1024) particles at almost every time t” (in the sense of (STI))

=“normalized averaging staying time of the k-th particle (∀k = 1, 2, ..., N ≈ 1024)”
(4.22)

We believe that this is just what should be represented by the “ergodic hypothesis” :10

“population average of many particles” = “time average of one particle”, (4.23)

that is, we see that (4.20)=(4.22)=(4.23).

Remark 4.7. [Another formulation of equilibrium statistical mechanics]. For complete-

ness, note that the condition (T 2)′ in (4.16) is assumed in order that (4.21) holds. Thus

some may assert that it suffices to start from the SE (with the measure νE which induces

(STI)) and the (4.21). This formulation may be called the formulation without the ergodic

hypothesis. Also, see the formula (4.29) later.

�
Remark 4.8. (i). If the probabilistic interpretation (i.e., the principle of equal a priori

probability) is assumed, in (4.20) we can replace “almost every time t in the sense of

(STI)” to “almost every time t in the sense of (PR)”. However, if the (STI) is accepted as

a common sense, we can do well without this replacement, that is, the replacement does

not bring us any merit. Thus we think that the probabilistic interpretation is not needed.

Cf. Remark 4.5

(ii). We may still have a question:

• Why is the thermodynamical condition (i.e., (T 1) and (T 2)) always satisfied in the

usual circumstance of equilibrium statistical mechanics?

Though we do not know the firm answer,11 we can easily show, by (4.20), that the thermo-

dynamical condition ((T 1) and (T 2)) explains the following law (i.e.,“the law of increasing

10In this book, the term “ergodic hypothesis” has two meanings. One is used in the sense of the formula
(4.6). And the other is used in the sense of the formula (4.23) (or, Theorem 4.6).

11If we think that statistical mechanics belongs to informatics and not physics (cf. in this book we
consider so), the firm answer may not be needed. If the thermodynamical condition is useful, it is enough.
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entropy” ).12

(IE) the U -entropy HU(q(t), p(t)), (cf. (4.12)), is increasing concerning t, that is

HU(q(t), p(t)) ↑ log[ν(SE)] ( if t ↑ ∞) in the sense of (STI) (4.24)

for a suitable small 0-neighborhood U in M(R6).

That is because HU(q(t), p(t)) ≈ log[ν(SE)] holds for almost every time t in the sense of

(STI) if the neighborhood U is chosen suitably. (How to choose the U suitably is our

future problem.) Therefore we consider that the law of increasing entropy is hidden

behind the thermodynamical condition ((T 1) and (T 2)).

�

4.3 Probabilistic aspects of equilibrium statistical me-

chanics

In this section we shall study the probabilistic aspects of equilibrium statistical me-

chanics. Note that the (4.20) implies that the equilibrium statistical mechanical system

at almost every time t (in the sense of the (STI)) can be regarded as:

(U) an urn including about 1024 particles such as the number of the particles whose

states belong to Ξ ( ∈ BR6) is given by ρE(Ξ)× 1024.

Recall the (A1) in §4.1, that is, the probability appearing in classical systems (or particu-

larly, in the probabilistic rule in (4.2)) is essentially the same as the probability appearing

in urn problems. Therefore, we see, by the above (U),

(A′1) if we choose a particle at random from the urn (=“box in Figure (4.3)”) at time t,

then the probability that the state of the particle belongs to Ξ ( ∈ BR6) is given by

ρE(Ξ).

12If my memory serves me right, in some book A. Einstein says: There is a possibility that someone
will find his relativity theory is not true, but there is no possibility that someone will find that the law
of increasing entropy is not true. We can understand what he wants to say, if we think that statistical
mechanics should be understood as an application of measurement theory, on the other hand, his relativity
theory belongs to theoretical physics. That is, we think that the law of increasing entropy is as “true” as
the statement “A cat is stronger than a mouse”. (Cf. footnote[9] in Chapter 2.) It should be noted that
the statement “A cat is stronger than a mouse” is ambiguous, fuzzy, vague, etc, though it is “almost
experimentally true” (cf. (I14) in §1.3).
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In what follows, we shall represent this (A′1) in terms of measurements. Define the ob-

servable O = (R6,BR6 , F ) in C(SE) such that, (cf. (4.11)),

[F (Ξ)](q, p) = [R
(q,p)
DN

](Ξ)
(
≡ ][{k | Xk(q, p) ∈ Ξ}]

][DN ]

)
(∀Ξ ∈ BR6 , ∀(q, p) ∈ S

E
( ⊂ R6N)).

(4.25)

Thus, we have the measurement MC(SE)(O ≡ (R6,BR6 , F ), S[δψt(q0,p0)]
). Then we see that

(B′1) the probability that the measured value obtained by the measurement MC(SE)(O ≡
(R6,BR6 , F ), S[δψt(q0,p0)]

) belongs to Ξ(∈ BR6) is given by ρE(Ξ). That is because

Theorem 4.6 says that

[F (Ξ)](ψt(q0, p0)) = ρE(Ξ) (almost every time t in the sense of (STI)) (4.26)

which is just the measurement theoretical representation of the (A′1).

Also, we see that

(A′′1) if we choose N ′ particles at random from the urn (=“box in Figure (4.3)”), then

statistics say that the distribution of the states of these particles is almost surely

expected to be approximately equal to ρE, where 1� N ′ ≤ N( ≈ 1024).

Here, consider the product observable ON ′
= (R6N ′

,BR6N′ , FN ′
) in C(SE). For each k

( ∈ KN ′ ≡ {1, 2, ..., N ′), define the map Xk : R
6N ′ → R6 such that

Xk((x1n, x2n, x3n, x4n, x5n, x6n)
N ′

n=1) = (x1k, x2k, x3k, x4k, x5k, x6k)

for all x= (x1n, x2n, x3n, x4n, x5n, x6n)
N ′
n=1 inR6N ′

). Define the mapGN ′ : R6N ′ →Mm
+1(R

6)

( ≡ {ρ ∈M(R6) : ρ ≥ 0, ρ(R6) = 1}) such that

GN ′(x) =
1

N ′

N ′∑
n=1

δXn(x) (∀x ∈ R6N ′
). (4.27)

Then we have the image observable GN ′(ON ′
) ≡ (Mm

+1(R
6),BMm

+1(R
6), GN ′(FN ′

)). And

we see, by Theorem 4.6, that

(B′′1 ) the measured value obtained by the measurement MC(SE)(GN ′(ON ′
), S[δψt(q0,p0)]

) is

approximately equal to ρE.

which is just the measurement theoretical representation of the (A′′1).
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4.4 Conclusions

In this chapter we assert that equilibrium statistical mechanics is formulated as fol-

lows:13

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))

+ “Newton equation”
((T 1) and (T 2)) under (EH))︸ ︷︷ ︸

(+ STI)

(4.28)
(=(4.4))

in the framework of PMT.

It may be generally believed that the principle of equal a priori probability and the

ergodic hypothesis are two basic principles of statistical mechanics. However, our for-

mulation (4.28) says that the principle of equal a priori probability is not needed (cf.

Remark 4.5 and Remark 4.8(i)), and moreover, the ergodic hypothesis is a consequence

of the thermodynamical condition (i.e., (T 1) and (T 2) under the (EH)), cf. the formulas

(4.20)∼(4.23).
However we may assert that the following formulation is also possible:

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))

+ “Newton equation”
((T 1) and (T 2)) under (EH))︸ ︷︷ ︸

(+ PI)

(4.30)

which is, strictly speaking, related to SMT (cf. Chapter 8, Statistical measurement the-

ory).

Thus we have the question:

• Which should be chosen, (4.28) or (4.30)?14

13Or simply (cf. Remark 4.7), we may consider that

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))
+ “Newton equation”

νE (in (4.5)) and (4.21)︸ ︷︷ ︸
(+ STI)

(4.29)

We believe that the term “economical” is one of the most important key-words of theoretical informatics
(cf. Table (1.8b)). In this sense, the (4.29) should be also admitted though we did not focus on the (4.29)
in this chapter.

14This situation is the same as the following situation. Two ready-made suits “the staying time
interpretation” and “the probabilistic interpretation” are on sale. The former is too weak, and so some-
what ambiguous. The latter may be too strong. However, we must choose one from “the staying time
interpretation” and “the probabilistic interpretation”. In theoretical informatics, we believe that it can
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The reason that we choose (4.28) is as follows: Recall quantum mechanics, in which

it is often emphasized that the concept of “probability” is not related to “Schrödinger

equation” but “Born’s quantum measurements”. Comparing quantum mechanics (1.3) and

the above (4.28), we have the reason to emphasize that the concept of “probability” is

not related to the thermodynamical condition but “probabilistic rule in (4.28)”. That

is because we want to believe in the spirit that the term of “probability” should be used

commonly in both classical and quantum systems, or, that there is no probability without

measurements. After all, we say that

• Our proposal (4.28) and quantum mechanics (1.3) are compatible.

On the other hand, the part “Newton equation ((T 1) and (T 2)) under (EH))” in (4.30) is

related to the concept of “probability” under the assumption “probabilistic interpretation

of νE”. Thus, we think that

• The (4.30) and quantum mechanics (1.3) are not compatible.

Thus, we do not choose the (4.30). However, we may choose the following (4.18):

“equilibrium statistical mechanics” = “probabilistic rule”
((B′′

1 )(= Axiom 1))︸ ︷︷ ︸
(+PI)

+ “Newton equation”
((T 1) and (T 2)) under (EH))︸ ︷︷ ︸

(+STI)

(4.31)

This (4.31)15 and quantum mechanics (1.3) are compatible. Thus, the following question

is meaningful in measurement theory.

• Which should be chosen, (4.28) or (4.31)?

This may be a matter of opinion (though it is not serious as statistical mechanics is

assumed to belong to theoretical informatics in this chapter). If we are required to say

something, we guess that the (4.28) will win more popularity than the (4.31). In fact,

not be decided by an experimental test. Or at least, we are convinced that it is not worthwhile deciding
it by an experimental test. That is because we believe that nobody wants to challenge the following
problem:

• Decide (4.28) or (4.30) (or (4.31)) by an experimental test!

Thus, “(4.28) or (4.30)” should be chosen from the philosophical point of view, if we are urged to choose
one. Cf. (I15) in §1.3.

15The part “probabilistic rule”
((B′′

1 )(= Axiom 1))︸ ︷︷ ︸
(PI)

in (4.31) is characterized as “Proclaim 1” in Chapter 8.
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• we prefer (4.28) to (4.31),

since we do not want use the (PI) if possible.16 This is our opinion, though, in theoretical

informatics, we must admit the case that opinion is divided.

We hope that our proposal (4.28) (or, (4.29), (4.31)) will be accepted as the standard

formulation of equilibrium statistical mechanics.

4.5 Appendix (The law of large numbers)

As a preparation of our main assertion (i.e., the derivation of the ergodic hypothesis

(4.20)), we add the following well-known Lemma 4.9.

Lemma 4.9. [The strong law of large numbers, cf. [56]]. Let (S,BS, ν) be a measure space

such that ν(S) <∞. Let {Xn}∞n=1 be a sequence of bounded measurable (or generally, L1)

maps Xn : S→ R6 such that there exists a normalized measure ρ on R6 (i.e., ρ(R6) = 1,

ρ(Γ) ≥ 0 (∀Γ ∈ BR6)) such that:

• (identical distribution)

ν({x ∈ S | Xn(x) ∈ Γ})
ν(S)

= ρ(Γ) (∀n = 1, 2, ..., ∀Γ ∈ BR6),

• (independence) for any positive integer N , it holds that

ν({x ∈ S | Xn(x) ∈ Γn (∀n = 1, 2, ..., N)})
ν(S)

=
N

×
n=1

ρ(Γn) (∀Γn ∈ BR6).

Then, there exists a measurable set N( ∈ BS) such that ν(N) = 0 and

lim
N→∞

1

N

N∑
n=1

δXn(x) = ρ in the sense of weak∗ topology of M(R6),

for all x ∈ S \ N (≡ {x | x ∈ S, x /∈ N}). Here δw( ∈ Mm
+1(R

6)) is a point measure at

w( ∈ R6), i.e., δw(Γ) = 1 (if w ∈ Γ ∈ BR6), = 0 (if w /∈ Γ ∈ BR6).

�
In the formula (4.18), readers should see that Lemma 4.9 is used in the part “Newton

equation” (and not “probability rule”) in our proposal (4.28), that is, Lemma 4.9 (the law

of large numbers) is used independently of the concept of “probability”.

16Also, recall “Occam’s razor”, that is, “Given two equally predictive theories, choose the simplest”.


