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Chapter 3

The relation among systems (Axiom
2)

As mentioned in Chapter 1, (pure) measurement theory (PMT) is formulated as follows:

PMT = measurement + the relation among systems in C*-algebra (3.1)
[Axiom 1 (2.37)] [Axiom 2 (3.26)] ' (=(1.4))

In Chapter 2 we studied “measurement (= Axiom 1)? In this chapter we intend to explain “the

relation among systems (= Axiom 2)7

3.1 Newton Equation and Schrodinger equation

In this section, we review the Newton equation and Schrédinger equation.
[I: Newtonian Mechanics]

Put A = Cy(R; xR;) and A* = M(R; xR;), where Ry xR, = {(¢,p) = (¢1,¢2, " , ¢,
p1,D2, - ,Ps) | 4,0 €R,G=1,2,--- s} and (R; x R;) is the 2s-dimensional space (cf.
Example 2.2). It is well known that the Newton equation is mathematically equivalent

to the following Hamilton equation:

G = S @OPO0. T = T @000, =125 (32)

(¢(0),p(0)) € R} x R;,. (3.3)

where H : Ry x R) X R — R is a Hamiltonian. Using the solution of Newton equation

(i-e., Hamilton equation (3.2)), we define the continuous map v, 4, : Ry x R, — Ry xR,

25



56 CHAPTER 3. THE RELATION AMONG SYSTEMS (AXIOM 2)
Vt; < Vi, such that:

¢t1,t2 (Q(tl)’p(tl)) = (q<t2)7p(t2)) (V<Q(t1)7p(t1)) € RZ X R;))’ (34)

which is equivalent to (3.2).
Put @ = RS x RS, Also, put Q, = Q (vt € R), and wy = (¢(0),p(0)) ( € Q). Thus,
the pair [wl, {t, 1, : Ly — Q, hy<t,] can be considered to be equivalent to “(3.3)+(3.2)”
Using the continuous map vy, 4, : Qi — Q, (Vi1 < Vito), we define the continuous
linear operator @y, 1, : Cp(§2t,) — Co(£2,) such that:

[(I)thb (ft2>](wt1) = ft2 ((btl,tz (wtl)) (vftQ € OO(Qt2>7th1 S Qtl)‘

And therefore, we can consider the following identifications:

“(3'3)_’_(3‘2)” A [w87 {¢t1,t2 : Qtl - Qt2}t1St2] A [5w87 {®t11t2 : CO(Qt2) — 00<Qt1)}t1§t2]

where 4, is the point measure at wy. The pair [0, {®s, 1, : Co(Qs,) = Co(Qy) <) Will
be called “general system” (c¢f. Definition 3.1), and will play an important role in our
theory, that is, it is a special case of “the relation among systems” in (3.1).
[I1:Quantum Mechanics in C(L*(R,,dq))]

We begin with the classical mechanics. For simplicity, consider the one dimensional
case, i.e., R, = {¢ | ¢ € R}. Thus ¢(t), —0o < t < 0o, means the particle’s position at
time ¢, and thus, p(t) ( = mdz—(f)) means the particle’s momentum at time ¢. Let RZ
(={(q,p) | q,p € R} be a phase space. Define a Hamiltonian H : R?Lp — R such that:

2
H(q,p) = 2p—m(:kinetic energy= %m(d’é—(p)Q) + Vi) (zpotential energy). (3.5)

Thus we see

o =oen=- L 1 ve (3.6)

(total energy) (kineti%ﬂ;nergy) (potential energy)

Put H = L*(R,,dq), that is, the Hilbert space composed of all complex valued L*-
functions f on Ry, i.e., ||fllrzm,d0 = [ [ o |f(q)Pdg]'/?* < co. And put A = €(H) =
C(L*(R,,dq)), (i.e., the algebra composed of all compact operators on H, ¢f. Example
2.3). Applying the quantumization:

E— ih%, P —ihag, g+ q (wherei=+/—1, h = “Plank constant” /2m) (3.7)
q



3.1. NEWTON EQUATION AND SCHRODINGER EQUATION o7

to the (3.6), we obtain the Schrédinger equation:

0 0 h2o?
or precisely
0 h20*
the¥(g,t) = —2maq2¢(q7 t) + V(g)¥(g,t). (3.9)

This solution is, formally, written by

Wl t) = e #@TIEL g 0).

Put U(t) = eiég{(q’%hf’%)t, and (-, t) = 1;. Then, we see,

e =U)ho  ([[¢ollr =1).

Thus, the time-evolution of the state |1) (1| ( = (‘P?)*(Woﬂ?ﬁo\)) is represented by

g il = (W) (100} (ol ) = U @) (U@l (€ Tra(m)).

Let U9 : C(H) — C(H) be the pre-adjoint operator of (¥9)*. Let Oy = (X, F, Fy) be
a C*-observable in C(H). Then, the time-evolution of the observable O; = (X, T, F}) is
represented by

(X, T, F) = (X, 5, U RU®)) = (X,F,VF).

PUtting (Pm,tz = \I}E‘,)Q—t17 we get the pair [|¢0><¢0|a{¢)t1,t2 : G(H) - G(H)}tlﬁtz]' AISO,
it should be note that the above F} is the solution of the following Heisenberg kinetic

equation:

dF,
zhd—tt = F,H — HF, in C(H) , (3.10)
which is equivalent to the Schrodinger equation (3.9). (Cf. [84].) The pair ||to) (%],
{®4, 4, : C(L*(Ry,dq)) — C(L*(Ry, dq)) }i,<t, | Will be called “general system” (c¢f. Defini-

tion 3.1), and will play an important role in our theory, that is, it is also a special case of

“the relation among systems” in (3.1).
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3.2 The relation among systems (Definition)

By the hint of the arguments in the previous section, we shall devote ourselves to “the
relation among systems (i.e., Axiom 2)” in PMT (3.1) (=(1.4)).
Let A; and Ay be C*-algebras. A continuous linear operator ¥, o : Ay — A; is called

a Markov operator, if it satisfies that
(i) Wy2(F2) > 0 for any positive element F in Ao,
(ii) Wy9(l2) = I, where I is the identity in Ay (k = 1,2).

Here note that, for any observable (X, F, F) in A,, the (X, F, ¥y 2F) is an observable in
Ay, which is denoted by W,5,0,. For example, it is easy to see that

[\I/LQFQ](E U E/) == \Ijl’z(FQ(E U E/)> - \Ill’Q(FQ(E) + FQ(E/>)
=[U1o(F)]|(E) + [T12(R)](E)  (for all ,Z'(€ F) such that ENE =0).  (3.11)

Also, a Markov operator W5 : Ay — A, is called a homomorphism (or precisely, C*-

homomorphism), if it satisfies that
(1) \11172(F2)\I/1,2<G2) = \11172(F2G2) fOI' any FQ and G2 in .AQ,
(11) (\11172(F2))* = \11172(F2*) for any F2 in AQ.

Let Wi, : A} — Aj be the dual operator! of a Markov operator Wy 5 : Ay — Ay, that is,
it holds that

p <p1, xyl,zF2>Al = . <x1f;2p1, F2>A2 (Vp1 € AL VEF, € Ay). (3.12)
Then the following mathematical results are well known (cf. [50, 76, 82]).
(a) Wio(6™(A])) € 6™(A3), (3.13)
(b) Wi,(6P(A})) C &P(A3) if Wy 0 Ay — A,y is homomorphic.

Suppose that A; and A, are commutative unital C*-algebras, i.e., A; = C(€) and A,
= C(€). Then, under the identification that GP(A}) = M, (1) = @ and &™(AS) =
M (Q2) (cf. §2.1), the above (a) implies that the dual operator W7 , of a Markov operator

!The symbol x* is used in the three following ways (i) ~ (iii) in this book. (i) involution operator (e.g.,
F*), (ii) dual operator (e.g., ¥*), (iii) dual space (e.g., A*).
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U1, can be identified with a transition probability rule M(wq, Bs), (w1 € 1, By € Bg,),
such that M(wi, By) = (V] 5(dw,))(B2). Also, under the identification that M, (€2;) = @,
and M | (22) = s, the above (b) implies that the dual operator W7 , of a homomorphism

U, 5 can be identified with a continuous map 9 from ; into {2, such that:

(U12f2)(w1) = fo(thr2(wr)) (Vw1 € D,V fo € C(()). (3.14)
h w1 Y1 .2(wr) {2,

Let (T, <) be a tree-like partial ordered set, i.e., a partial ordered set such that “t; < t3
and ¢, < t3” implies “t; <ty or tp < " Put T2 = {(t1,t2) € T? : {1 < t5}. An element
to € T is called a root if tg < t (Yt € T) holds. Since we usually consider the subtree
Ti, ( € T) with the root ¢y, we assume that the tree-like ordered set has a root. In
this chapter, assume, for simplicity, that T is finite (though it is sometimes infinite in

applications).

Definition 3.1. [Markov relation among systems, General systems, Sequential observ-
able].  The pair Sir ) = [S[pgo}, { Py, 4, + At, — ‘Atl}(h,tz)GTi] is called a general system

with an initial state py, if it satisfies the following conditions (i)~ (iii).
(i) With eacht (¢ T), a C*-algebra A, is associated.

(ii) Let ty (€ T) be the root of T. And, assume that a system S has the state p} (€
GP(A;))) at to, that is, the initial state is equal to pj,.

(iii) For every (ti,t2) € T2, a Markov operator ®y, 4, : Ay, — Ay, is defined such that
étl,t2®t2,t3 = étl,tB hO]dS fOf aH (tl, t2>, (tQ,tg) I~ Té

The family {®y, 1, : Ar, — Ah}(tl,tg)eTE is also called a “Markov relation among systems”.
Let an observable O; = (X, 2%, F}) in a C*-algebra A; be given for eacht € T. The pair

[{Ohter { iy, + Aty = Aty by an)erz | is called a “sequential observable”, which is
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denoted by [OT], 7;.6., [OT] = [{Ot}tET7 {q)tth : .At2 — ‘Atl}(t1,t2)€Té ]

3.3 Examples (Several tree structures)

Before we propose Axiom 2 (3.26), we prepare some notations and examples. For
simplicity, assume that 7' is finite, or a finite subtree of a whole tree. Let T ( =
{0,1,...,N}) be a tree with the root 0. Define the parent map = : T \ {0} — T such
that 7(t) = max{s € T : s < t}. It is clear that the tree (T" = {0,1,...,N},< )
can be identified with the pair (T = {0,1,...,N},7 : T\ {0} — T). Also, note that,
for any t € T\ {0}, there uniquely exists a natural number h(t) (called the height of
t ) such that 7"®(#) = 0. Here, 7%(t) = =n(n(t)), 7°(t) = 7w(7%(t)), etc. Also, put
{0,1,...,N}2 = {(m,n) | 0 < m < n < N}. Thus, the general system S = [Sfpg],
{ @i+ Ae = Aty im)eqo, N}2<] is sometimes represented by [S[Opg], AP0 A (
t€{0,1,..., N}\{0})]. Let O, = (X3, F, F}) be an observable in A; (Vt € T'). The “mea-

surement” of {O; : t € T} for the S[pfo} is symbolically described by 9({O}ier, S[pfo]).

O
The Markov relation {®y, 1, : Ay, = A, }r, 15)er2 18 also denoted by {Ay T Az brer\(oy

The following Examples 3.2, 3.3 and 3.4 will promote the understanding of Axiom 2
later.
Example 3.2. [Series structures?]. Suppose that a tree (T = {0,1,..., N}, 7) has a
“series” structure, ie., m(t) =t —1 (vt € T\ {0}). Consider a general system S, =
[S[(;;g]’ AP0t Ay (€ T\ {0})] with the initial system Sﬁ)g], that is,

.A()&‘Al&fb& ......... —= -AN—I (I)&N-AN' (315)

For each ¢t € T, consider an observable O, = (X;, F, F}) in a C*-algebra A;. Thus,
we have a sequential observable [{O;}ier, {®ir@) @ Ar = Ar@ bier\ioy |- Put Oy (=
(Xn,Fn, Fy)) = On (= (Xn, Fn, Fy)). According to the Heisenberg picture (cf. §3.5),

the observable Oy in Ay can be identified with the observable CI)N_LN(N)N in Ay_1. Thus,

~ ap
we can consider the quasi-product observable Oy_; = On_1X®n_1 yOn = (Xn_1 X

2Most problems in dynamical system theory are formulated as the general systems with series trees
(i.e., T=“time”) Cf. Kalman filter in §8.4.
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XN, ?N—l X 3.?‘7“ ﬁN—l) in ‘AN—ly that iS,

~ — — qp _ _

FN—l(:*N—l X :*N) = (FN_lx (q)N—l,NFN))(*:N—l X .:N), (316)

(though the existence and the uniqueness are not guaranteed in general). By a similar way,
~ qp ~
we can define the quasi-product observable Oy_s = On_oXPy_o y_10n_1 = (Xy_2 X

Xno1 X Xy, Fyoa X Fyo1 X T, Fy_o) in An_s, that is,
~ — — — qp ~ — — _
Fn_2(En—a X En_1 X En) = (Fn_aX(Pn_on—1FN-1))(En—2 X En-1 X Ey).  (3.17)

Iteratively we get as follows:

o
(Aol «——  [A4] AN-—2] — Mrn-a]l —— [AN]
Fo P Fn_2 Fn-1 Fy
ap ap aqp - ap -
(FoX ®F1) o (F1X $F2) o o (FN—2X®FN_1) @ (FN-1 X ®FN) & (Fn)
=Fo =F: =Fn_2 =Fn_1 =Fn

~ qp ~
And finally, we get the quasi-product observable Oy = O¢xXP®;0; = (X i\;o X, X i\io I,
ﬁo) in .Ao, that iS,

~ qp ~
FO(EO X El X EQ X oo X EN) = (Fox((I)O’lFl))(EO X E’l X EQ X X EN) (318)

Here Oy is a realization of the sequential observable [{Oy}ier, {Prr@) : Ar = An(e) brer\{0}

]. Then, we have the “measurement” M ({O;}er, Sip)) such as

M({O:}er, Spr)) = My (00 = (X Xy, X Ty, Fy), S ). (3.19)

P
teT teT Ld

Also, note that the above arguments can be executed under the hypothesis that quasi-
product observables (i.e., 6n, n=0,1.,,,.N) exist. In other words, the existence of the
“measurement” IMM({O}er, Sypr)) is equivalent to that of the observable O,.

[
Example 3.3. [Parallel structures®]. Suppose that a tree (T = {0,1,..., N}, 7) has a
“parallel” structure, i.e., w(t) = 0 (vt € T\ {0}). Consider a general system Sj,r; = [S&g},
AP0t Ay (¢ € T\ {0})] with the initial system SEO’S]’ that is,

3Most problems in statistics are formulated as the general systems with parallel trees. Cf. Figure
(6.12) in regression analysis.
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Vcb\AN (3.20)

For each ¢t € T, consider an observable O; = (X, F, F}) in a C*-algebra A;. Thus, we
have a sequential observable [{O:}ier, {®i @) © Ar = Ar@ teer\foy |- Then, we get the
quasi-product observable O = (Xi\io X, Xiio F,, Fy) in Ag such that:

~ ap
F()(EO X El X EQ X oo X EN) = (té(T(I)O’tFt)>(EO X El X EQ X X EN) (321)

Here Oy is a realization of the sequential observable [{Oy}ver, {Pr ) : At = Ar) brer\ {0}
J. Then, we have the “measurement” M({O¢}ier, Spp)) such as
M({Os}er, ) = M, (Op = (éxt,tz Fi, Fo), Siy))- (3.22)
Also, note that the above arguments can be executed under the hypothesis that quasi-
product observables exist. In other words, the existence of the “measurement” M ({O }ser,
S[pg]) is equivalent to that of the observable 60.
|
Example 3.4. [A simple general system, Heisenberg picture]. Suppose that a tree
(T" = {0,1,...,6,7},m) has an ordered structure such that (1) = n(6) = 7(7) = 0,
7(2) =n(5) =1, 7(3) = 7(4) = 2. <See the figure (3.23).) Consider a general system

. Dor(e),e ‘th the initial
Sipr = [S[pg}, {A: =" Az ber\joy) with the initial system Sipn)-

<I>23
AQ/
24‘A4

)
Lo
<I>7 o g
1,5
AO\ \
(I)06

e

Az (3.23)
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Also, for each t € {0,1,...,6,7}, consider an observable O, = (X, 2%¢, F}) in a C*-algebra
A;. Thus, we have a sequential observable [{Oy}ier, {®ire) : At = Az brerqoy |- Now

we want to consider the following “measurement”,

¢7r
(#) for asystem Sp,p), take a measurement of “a sequential observable [{Oy}ier, {A4 T
Az her\foy] 7 ie., take a measurement of an observable Og at 0( € T'), and next,
take a measurement of an observable O; at 1( € T), ------ , and finally take a

measurement of an observable O at 7( € T),

which is symbolized by D({O;}ier, Sipr)). Note that the M({O}ier, Sppr)) is merely a
symbol since only one measurement is permitted (c¢f. §2.5 Remark(II)). In what follows

let us describe the above (#) (= 9MM({O¢}ier, Sipr))) precisely. Put
0,=0; andthus F,=F (t=3,4,56,7).

First we construct the quasi-product observable O, in A, such as
ap  ap

62 = (Xy x X3 % X4,2X2XX3XX47E) where ﬁ2 = Fy X (X¢=34 @2,tﬁ;t)7

if it exists. Iteratively, we construct the following:

P01 [T

Ao —— Ay —— Ao
qp ~ qp ~ qp ~
Fy x CI)O,GF(; X @077F7 Fi x @175F5

l l (3.24)
~ Po,1 ~ P10 ~
Fo F — Fy
qp ~ qp ~ qp ~ qp ~ qp ~ ap ~ qp ~
(FOX®O76F6x©0’7F7x¢0’1F1) (F1X(1>175F5X(I>172F2) (F2X¢2’3F3X<I>2,4F4)

That is, we get the quasi-product observable 61 = (H?:l X, 2H5?:1Xt7 E) of Oy, @17262
and @17565, and finally, the quasi-product observable 60 = (H;O Xy, olli—o Xt }70) of Oy,
@07161, @0,666 and (1307767, if it exists. Here, (N)o is called the realization (or, the Heisenberg
picture representation) of a sequential observable [{Oy}ier, { Ay q>7T—(t>>’t A her\joy)- Then,

we have the measurement

MA0(60 = (H Xt7 QHtGT Xta ﬁO)a S[pg])7

teT
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which is called the realization (or, the Heisenberg picture representation) of the symbol
MOt }rer, Sper p)-

|
Remark 3.5. Let (T" = {0,1,....N},m : T\ {0} — T) be any tree with the root 0.
Let 7 be any element of 7. Consider a series structure 7, such that T, = {*(7) | k =
0,1,2,....,h(7)} ( € T), where h(7) is the height of 7, i.e., 7"(7)(7) = 0. Note that Example
3.4 (i.e, diagram (3.24)) means that any general system (with a tree structure 7') can be
regarded as a general system with a series structure i.

3.4 The relation among systems (Axiom 2)

Examining Example 3.4, we see as follows: Let (T'={0,1,...,N},w: T\ {0} = T) be
a tree with root 0 and let Spp = [S)p), Ay e Az (t € T\ {0})] be a general system
with the initial system S[pg]. And, let an observable O, = (X, ¥, F;) in a C*-algebra A,
be given for each t € T'. Thus, we have a sequential observable [{O¢}ier, { Pt rr) : Ar —
Az ber\ioy |- For each s (€ T'), define the observable 0, = (ILer, Xo, Tier, T, F,) in

A, such that:

O, = ap ap (3.25)

_ 0, (if s € T\ 7(T))
O.X ( Xier1((s)) Pr(1y.0r) (if s € 7(T))

if possible. Then, if an observable 60 (i.e., the Heisenberg picture representation of the
sequential observable [{O;}ier, {Prre) @ Ar = Ar@ bterqoy ]) in A exists (such as in

Example 3.4), we have the measurement

MAO(CN)O = (H Xt7 H Stb ﬁb)) S[pg])a
teT el
which is called the Heisenberg picture representation of the symbol M({Oy }ier, S[pfo}).

Summing up the essential part of the above argument, we can propose the following
axiom, which corresponds to “the rule of the relation among systems” in PMT (1.4). Cf.

[43, 44, 46).
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AXIOM 2. [The Markov relation among systems, the Heisenberg picture]
The relation among systems is represented by a Markov relation {®y, , :
A, = Ai Yy yerz - Let Oy (= (X4, Ty, Fy)) be an observable in A, for each
t (€ T). If the procedure (3.25) is possible, a sequential observable [Or]
= [{Os}ters { Pty 4, + At, = At f (4,102 | can be realized as the observable

00 = (ILer Xo [Lier F1, Fo) in Ao. (3.26)

It is quite important to note that Axiom 2 is stated in terms of A (and not in terms of

A*)* Also, we must add the following statement:

o Let Sipy = [S[pfo},{d%l@ D A, = AnFamerz] be a general system with an
initial state pf (€ G&P(A;f)). Then, a measurement represented by the symbol
Qﬁ({Ot}teT,S[ﬁo]) can be realized by MAO((N)O = ([Ler Xe. [ Ler Stt,ﬁo),S[pg]), if

Oy exists.

which explains the relation between Axiom 1 and Axiom 2.

Now we get the PMT (1.4). We have the following classification in PMT:

deterministic PMT = “measurement” + “the deterministic relation among systems”.
[Axiom 1 (2.37)] [ each ®¢, ¢, is homomorphic in Axiom 2 (3.26)]

stochastic PMT = “measurement” + “the Markov relation among systems”.
[Axiom 1 (2.37)] [Axiom 2 (3.26)]

(3.27)
Remark 3.6. (i). Roughly speaking, Axiom 2 asserts ®,0; is more fundamental than

O; in the following identification
@0,101 (Hl .Ao) +— Oy (m .Al)

where O, is an observable in A; and ®¢; : Ay — Ap is a Markov operator.

(ii). Also, it should be noted that Axiom 2 says that the time evolution of a system
satisfies the Markov property. Thus, automata theory and circuit theory are characterized
as special cases of measurement theory (especially, Axiom 2).

(iii). Axiom 2 has a great descriptive power. Note that “hysteresis” and “multiple Markov

properties” can be described in the framework of Axiom 2.
|

4This fact makes us apply Axiom 2 to “statistical measurement theory” (in Chapter 8) as well as
“PMT” (in this chapter).
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3.5 Heisenberg picture and Schrodinger picture

Now let us mention something about the relation between Heisenberg picture and
Schrodinger picture.

Suppose that a simplest tree (T" = {0,1},7) has a “series” structure, i.e., m(1) = 0.

Consider a general system S = [S[pg}, .Alq)j;l Ap| with the initial system Sipr that is,
Ay 22 A, (3.28)

Let O; = (X3, 51, F1) be an observable in A;. Now we consider

(M) the measurement of the observable Oy = (X1, 51, F1) for the general system Sy =
[ S A1 Ao

Under the following identification:

@0’101 in AO — (329)

we think that
(M) =My, (90101, S[pg]). (3.30)

This viewpoint is standard, and it is called the Heisenberg picture representation of (M).

Axiom 1 says that

e the probability that the measured value of the measurement (M) (i.e.,My, (P 101, Sfpp]))
0
belongs to Z; ( € F) is given by

(@01 F(E0) (= 4 (6 01 F(E1)).,,)- (3:31)

On the other hand, under the following identification:

pbin 6(A;) | [ @510f in S(A]) |

we also consider that
(M) = My, (01, Siag 1)) (3.32)

<though ® 105 is not in GP(A*) but in & (A*) if &g, is not homomorphic. Cf. Chapter
8 (statistical measurement theory),) This viewpoint is called the Schrodinger picture

representation of (M). We of course think that
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e the probability that the measured value of the measurement (M) (i.e.,My, (O1, Sigs 7))

0

belongs to =; is given by
(@01 F(ED) (= . (Biurh, FE1))., ). (3.33)

It should be noted that (3.31) = (3.33) holds. Thus it is usually and roughly said that

e Heisenberg picture (i.e., observable moves) and Schrédinger picture (i.e., state moves)

are equivalent,

though the Heisenberg picture is fundamental (and the Schrédinger picture representation

should be regarded as a kind of prescription). For the further arguments, see §6.2.

3.6 Measurability theorem

The following theorem is the most fundamental in classical PMT.
Theorem 3.7. [The measurability theorem of a general system, cf. [43]]. Let (T
{0,1,..., N}, T\ {0} — T) be a tree with root 0 and let S =[S, Ay g
Axr (t € T\{0})] be a general system with the initial system Sj,p). And, let an observable
O, = (X}, 5, Fy) in a C*-algebra A; be given for each t € T. For each s ( € T), define

the observable O, = (ILer, Xo, Tier, Tt ﬁs) in A, such that:

- { 0, (ifs €T\ n(T))

o

O; = ap qp ~ ,

OSX( Xien—1({s}) (Dﬂ-(t)’tot) (lfS € W(T))

if possible. Then, if an observable CN)O (i.e., the Heisenberg picture representation of the
sequential observable [{O;}ier, {Pirw) : At = Az ber\qoy ) in A exists, we have the

measurement

MA0(60 = (H X, H Ft, ﬁo% S[pg]), (3.34)

teT  teT
( &, It is sometimes denoted by [[,cr I+, ¢f. Definition 2.10), which is called the
Heisenberg picture representation of the symbol M({ Oy }rer, S[pgo}). If the system is classi-
cal, i.e., Ay = C() (Yt € T'), then the measurement always exists, while the uniqueness

is not always guaranteed. Also, it should be noted that, for each s( € T), it holds that
CI)W(S)ﬁFS(HteTS Zi) = FW(S)((HteT,r(S)\TSXt) X (HteTs =) (V2 eF (VvteT)).
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Proof. Tt suffices to prove it in classical measurements. However it is clear since, in
classical measurements, the product observable of any observables always exists. There-

fore the construction mentioned in Example 3.4 is always possible in classical systems.
O

Example 3.8. [Random walk]. Suppose that a tree ("= {0, 1, ..., N}, ) has a “series”
structure, ie., 7(t) =t —1 (Vt € T\ {0}). Consider a general system S5, = [S[s),
Ay @Wg)vtﬂﬂ(t) (teT\{0})] with the initial system S, that is,

oo, @, @y, Dy _o N Oy 1N
AQ(L.Al gﬂgﬁ """"" <2— 1.AN_1 <—1 .AN. (335)

Let Z be the set of all integers, i.e., Z = {0,4+1,£2,...}. Consider a commutative C*-
algebra Cy(Z). Here, put

A =Co(Z) (Vte{0,1,..,N})

and define a Markov operator ®;_1,( = ®) : A;( = Co(Z)) — Ai—1( = Cy(Z)) such that:

(@ F)(n) = (@ 1, f)(n) = LY -; fln—1)

Also, foreacht = 0,1,2, ..., N, consider the exact observable O, = (X, Ry, E) = (Z,Po(Z), E)
in A;( = Cy(Z)) such that, (¢f. Example 2.20),

1 neZ(ePy(Z))
[E(E)](n) = (3.36)
0 n¢g=Z(€Po(2)).

Vf e Al(=Co(Z)),¥n € 7).

Thus, we get the product observable Op = (X, Xy, X1y Fy, Fo) = (ZN+1, Po(ZN+),
Fy) in Ay (= Cy(Z)), that is,

ﬁo(Eo X El X EQ X X EN) = E(Eo) X (I)(E(El) X Q)( """ q)(E(EN—l) X (DE(EN)) s ))
Then, we have the “measurement” M ({O;}er, Si5)) such as
m({ot}tETa 8[50]) = MC(Z)<6O = (ZN+17 TO(ZN+1)7 ﬁO)J 5[50])

where dy is the point measure at 0 ( € Z). The sample space <ZN+1, Po(ZNTY), [ﬁo()](O))
is usually called a random walk.
|

For the further arguments, see §10.4 (Brown motion).
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3.7 Appendix (Bell’s inequality)

(Continued from §2.9 (Bell’s Thought Experiment))?

3.7.1 Deterministic evolution or Stochastic evolution?

Recall the following classification (3.27) in PMT:

deterministic PMT = “measurement” + “the deterministic relation among systems”.
[Axiom 1 (2.37)] [ each ®¢, ¢, is homomorphic in Axiom 2 (3.26)]

stochastic PMT = “measurement” + “the Markov relation among systems”.
[Axiom 1 (2.37)] [Axiom 2 (3.26)]

However, we know that in classical (or quantum) mechanics, the general system Sy
= [Sppr), A "0t Ary (t € T\ {0})] is always deterministic, that is, W), is always
homomorphic. (¢f. “Newtonian mechanics and quantum mechanics” in §3.1.)

Recall (2.76), i.e., the de Broglie paradox (cf. [20]. Also see §9.3.3). That is,

e if we admit quantum mechanics (: “Axiom 1 + Axiom 2 (homomorphic time

evolution)”), we must admit the fact that there is something faster

than light. (cf. [18, 78]). (3.37)
(=(2.76))

Of course we admit quantum mechanics, and therefore, we believe that there is something
faster than light. However, most people may hope that quantum mechanics is not true

rather than admit the fact that there is something faster than light. That is,

(#) Using the Schrodinger picture representation, they may assert that the singlet state
ps 1s not fixed, but the Markov time evolution (i.e., “the Markov relation

among systems (Axiom 2)” and not “the homomorphic relation among systems
Axiom 2)”):

PPy (3.38)

should be considered.

5 Although Bell’s inequality is generally said to be one of the most profound discoveries in 20-th century
science, I could not understand the arguments (in [9, 18, 78, 8]), particularly, I had the question: “In
what framework is Bell’s inequality discussed (in [9, 18, 78])?? I wonder if these arguments are confusing
physics with mathematics. Thus, I add this section, in which all arguments are discussed in the framework
of PMT (Axioms 1 and 2).
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The purpose of the following section (i.e., §3.7.2) is to show that we must admit that
there is something faster than light, even under the above assumption (). That is, if

we assert that PMT (: “Axiom 1 4+ Axiom 2 (Markov time evolution)”, i.e., quantum

mechanics with Markov (and not homomorphic) time evolution> is true, we must admit
the fact that there is something faster than light.
3.7.2 Generalized Bell’s inequality in mathematics

First we prepare some mathematical inequalities. Of course, what is most important
is how to interpret these theorems in physics. This will be discussed in the next section.
In order to avoid to confuse physical results and mathematical ones, in this §3.7.2, we
devote ourselves to mathematical arguments.

Theorem 3.9. [Bell’s inequality, cf. [9, 78]]. Let (Y, G, m) be a probability space. Let g},
g7, g5, g5 be {—1,1}-valued measurable functions on Y. Define the correlation function

P'(g!, g}) such that:
Pgio) = | si)gilo) midy) (339
Y
Then, it holds that

1P (g1, 93) — P'(g1,93)| + | P (g3, 93) + P'(g3,93)| < 2. (3.40)

Proof. For completeness, we add the proof in what follows.
[P (g1,92) — P'(g1,92)| + | P' (g7, 92) + P'(g1, 92)]
S/X4 9 ()] - |92(y) —gi(y)lm(dy)+L\gf(y)l 192(y) + g5 (y) Im(dy)
< [ | 1936) = 3] + lob(0) + ) im(ay) =2
This completes the proof. O
Corollary 3.10. [Bell’s inequality]. Let (Y,G,m) be a probability space. Let git, gi2,

g, 22, git, gi% 2! and ¢g3* be {—1,1}-valued measurable functions on Y. Define the

correlation function P(g”,gY) such that

P(g/.¢7) = /Y 97 ()95 (y) m(dy). (3.41)
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Further, assume that

n'=9 g=0" 9% =0 ®'=g" (aem (342)
ie,m({yeY : gi'(y) = gi*(y)})=1, etc. Then, it holds that

[P, 92") = P(gr* 927)| + | P(g7", 95") + Plgi” 97)| < 2. (3.43)

Proof. It immediately follows from Theorem 3.9. [

Next we present the following theorem, which can be regarded as a generalization of
the above corollary (cf. Remark 3.12 later).
Theorem 3.11. [Generalized Bell’s inequality|. Let (Y,G,m) be a probability space.

Let git, gi2, g2, g%, 92 , 92 , 92 and 952 be {—1, 1}-valued measurable functions on Y.
Assume that these satisfy

ml(g7,95) " (B1 X By)] = Z&é 15 o(B1) 13,(Bs)  (VB1, By € {—1,1}, Vi, j =1,2)
el
(3.44)

for some probability measures ,u};’e, (k,i=1,2,0 € L), on {—1,1} and some nonnegative

sequence {ay}er, such that ), a, = 1. Then, it holds that
1P(91',95") — P(91*, 9)| + P91, 95') + P9, 95°)| < 2, (3.45)

where the correlation functions P(g, ¢5) are defined by (3.41).

Proof. A simple calculation shows that

Plolgf) = acl Y awwe i ()i, ({w))]

Lel (z1,x2)e{—1,1}2

= Z (Al i g + 1= 2083 0 — 2413, ),
teL
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where pg , = i, ,({1}). Thus, we see that

[P(91,95") = Plor*,92°)| + | P9, 95') + P97, 95°)]

=| Z aé@#ieﬂie +1- 2:“%,( - 2#5,0 - Z aé@ﬂieﬂaz +1- 2#%,@ - 2#3,4”
leL leL

+ | Z 04@@#%,4#5,4 +1- 2#?,5 - 2#%,@) + Z aﬁ(‘*ﬂieﬂg,e +1- 2#?,@ - 2M§,z)|

el teL
=| Z (A gy g — 2ptg p — A1 o3 0 + 2115 )]
el
+ | Z 04@@#%,4#%,5 +2 - 4#?,5 - 2#%,@ + 4#%,5#%,2 - 2#3,2)‘ = |A| + | B,
el

and consequently,

— { | ZeeL 2 — 4(/@,3 + Né,e + M;M%,e - Mi,zﬂée - Mz,zﬂé,e - Ni,zﬂ%em (if A-B>0)
| D ser o2 = 4p g + 1o + 1 eka e — M ebae — 11 okoe — P ko)l (iF A B <0)

< { > ver Q|2 — 4(#;,3 + Né,é + lﬁ,zﬂ%,e — Nieﬂé,e - M;Mé,e - /@,W%z)‘ (if A-B>0)

T 2ver |2 = A(pt g+ 1o+ B ela e — B el — i eka e — Hiekag)|  (EA-B <0).
Hence, it suffices to prove that 0 < C(z,y,z,w) < 1 (V(z,y,2,w) € [0,1]?), where
C(z,y,z,w) = y+ z+ 2w — xz — yz — yw. This is shown as follows:

[Case 1; w — z > 0].

0<y(1

yl—w)+z01l—y)+zx(w—2)=C<C+ (w—2)(1—2x)
y(1 -

w)+w—yz<1l—yz<1.

[Case 2; w — z < 0].

0<yl—z2)4w(l—y)=y+z+(w—2)—yz—yw

<y4z4zw—2)—yz—yw=C<y+z—yz—yw<y(l—2z2)+2<1

This completes the proof. n

Remark 3.12. It is interesting to see that Corollary 3.10 can be regarded as a particular
case of Theorem 3.11. This can be easily shown as follows: Let (Y, 5, m) and g,ij be as in
Corollary 3.10. Thus, we assume that the condition (3.42) holds. Put L = {-1,1}%
For each £ ( = (¢1,01,65,03) € L), define the oy ( € [0,1]) such that o ;2am) =
m((git, 9% 93" 93%) ™" ({(41, 63, 03,03)})). Clearly it holds that > ,.; a; = 1. Define
the probability measures fi; and fi—; on {—1,1} such that i ({—1}) = 0, 1 ({1}) =1
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and :a—l =1 _ﬁl- It is easy to see that m((g%17 9%27 géla 932)71({(,%%, l%a ZL’%, JT%)})) = ZEGL
ar fig({z1)ie ({21 ({z2}) g ({23}) (V(z1, 2,23, 23) € {~1,1}"). Thus, putting
1 @2 = ﬁ%, we can immediately see that the {a,}ser and the {ut , i,k =1,2,4 €
NS RASEADE) B}
L} satisty the condition (3.44).
|

3.7.3 Generalized Bell’s inequality in Measurements

Put X = {—1,1}. Consider a measurement My( O = (X® P(X*®),G), S,,) formu-
lated in arbitrary C*-algebra A. Putting 2 (-) = po(G( - )), we have the sample space
(X®,P(X®),12 ), which is induced by the measurement My( O, Sj,). Consider the
{—1, 1}-valued functions g,ij on X8 (i,7,k = 1,2). And define the correlation functions
P(g?,95) (i,5 = 1,2) by (3.41). Assume the condition (3.44) in Theorem 3.11. Then, we

see, by Theorem 3.11, that the following inequality holds:
P91, 92') = Plai*, 9°)| + P91, 63") + Pg7%, 93°)| < 2. (3.46)

Therefore, it may be viable to compare the measurement M, ( O, S,,) with the measure-
ment ®i,j:1,2 Mg c2ec2) (Ogivi, Spp,)) in Bell’s thought experiment, though it is also sure
that these are not connected with each other. For example, some may, by some reason,
consider that the singlet state ps in Bell’s thought experiment (cf. the formula (2.75)) is
reduced to a certain state py ( € &(B(C? ® C?)*)) such as

s~ po = €@ FUED f] (3.47)

for some €@ f ( € C2®C2) such that ||&]|cz = || f]jcz = 1. Ifso, instead of the measurement
X j:12MB(CZ®C2)(Oaibj, Sips)); we must consider the measurement ®i’j:12MB(CQ®Cz)

(Ouivi, Sipo]), which has the sample space (X*®, P(X?®),v) such that:

I/({(x%ljxélv:UP’x?vx%laxgl»l%z?w%z)}) = H pO((Fai ®FbJ)({<x21]>w12J)}>)

= I [eRula? DA Fuat D).

ij=1,2
Or more generally (or, in the sense of “ensemble”), using the adjoint operator ®* of a
Markov operator @ : B(C? ® C?) — B(C? ® C?), we may consider the following Markov
evolution:

2 2
i R — /= g
0 =30 s @ Fo) (o ® ol (3.48)

n=1 m=1
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where {€,,}2,_; and { fm}le are respectively the complete orthonormal basis in C?, and
0 < aypy < 1 such that Zi:l anzl mn = 1. Thus we have the (statistical) measurement
;=12 Mp(c2oc?) (POqi, S),,)). Thus, we may have the sample space (X®, P(X*®),v)
such that:

v({(ar 2yt i g’ ot a3t 2P ) = [ pc((@Fw @ Fo)({(a?,25)}))

= I @) ((Fu B a)h)= 1] of ((Fu @ R (@Y, 2)})

2 2

= TL I Y ol e D) (o B (5 D).

4,j=1,2 m=1 n=1

Note that the probability space (X3, P(X?®), v) and the g/’ defined by (2.77) satisfy the
condition (3.44) in Theorem 3.11. That is because it suffices to put L = {—1,1}? and

M%,(m,n)( ’ ) = <gm7 Fal( : )gm>a ,ui(mm)( : ) = <€m, Fa2< . )€m>7
Hév(m»n)( ’ ) - <fn7Fb1( ) )fn>7 Mg,(m,n)( ’ ) = <fn7 FbQ( ' )fn>7
for each (m,n) ( € L = {—1,1}?). Thus, Theorem 3.11 says that such Markov evolution

as the above (3.47) or (3.48) does not occur in Bell’s thought experiment. Therefore we

can conclude that

o if we admit PMT (= “Axiom 1 + Axiom 2 (Markov relation)” ), we must also admit

the fact that there is something faster than light. (3.49)

Of course we admit PMT, and therefore, we believe that there is something faster than

light.



