慶應義塾大学学術情報リポジトリ Keio Associated Repository of Academic resouces

Title	PREFACE
Sub Title	
Author	石川, 史郎(Ishikawa, Shiro)
Publisher	Keio University Press Inc.
Publication year	2006
Jtitle	Mathematical Foundations of Measurement Theory (測定理論の数学的基礎). (2006.)
JaLC DOI	
Abstract	
Notes	
Genre	Book
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO52003001-0000000 003

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

PREFACE

It is well known that the dynamical system theory (DST) starts from the following equations:

$$\boxed{\text{DST}} = \begin{cases} \frac{dx(t)}{dt} = f(x(t), u_1(t), t), \ x(0) = x_0 & \cdots \text{(state equation)}, \\ y(t) = g(x(t), u_2(t), t) & (\text{measurement equation}) \end{cases}$$
(D)

where u_1 and u_2 are external forces (or noises). Also recall that quantum mechanics is formulated as the following form:

$$\begin{array}{c|c} \hline \text{quantum mechanics} \end{array} = \begin{bmatrix} \text{the rule of time evolution} \end{bmatrix} + \underbrace{\begin{bmatrix} \text{measurement} \end{bmatrix}}_{\text{(Born's quantum measurements)}} \\ \hline (Q) \end{array}$$

The above two theories (D) and (Q) are, of course, fundamental and famous. Thus, a quarter of a century ago, I already knew them. However, about fifteen years ago, I was suddenly surprised by the similarity between (D) and (Q), particularly, the fact that:

(F) the term "<u>measurement</u>" is common to both dynamical system theory (D) and quantum system theory (Q).

This surprise urged me to propose "measurement theory". I want to share my surprise with all people.¹ This is the reason for this book.

Shiro ISHIKAWA²

21st, October, 2006

¹Some sections of this book were lectured in the master-course program: "Advanced study of mathematics A" at Keio university (three-hour lecture every week from April to July in 2006).

²For the further information of our theory, see "http://www.keio-up.co.jp/kup/mfomt/"

It is recommended to read this book as follows:

