

Title	内容の要旨；論文審査の要旨
Sub Title	
Author	
Publisher	慶應義塾大学理工学部
Publication year	2010
Jtitle	慶應義塾大学理工学部研究報告別冊 Vol.69, (2010.) ,p.1- 63
JaLC DOI	
Abstract	
Notes	
Genre	Thesis or Dissertation
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50002003-20100001-0001

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the Keio Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

内容の要旨

報告番号	甲 第3336号	氏名	楠岡 誠一郎
主論文題目 :			
Existence of Densities and their Regularity for Solutions of Stochastic Differential Equations by Malliavin Calculus (マリアヴァン解析による確率微分方程式の解の密度関数の存在とその滑らかさ)			
<p>マリアヴァン解析とは1976年にMalliavinによって提唱されたアイデアを基に作られた理論であり、ウィナー空間上の無限次元解析とも呼ばれている。このマリアヴァン解析は確率微分方程式の解の密度関数の存在とその滑らかさを知る手段としてよく知られている。その最も重要な結果は、確率微分方程式の係数に橙円性に関する条件を与えたとき、係数の滑らかさに応じて密度関数が滑らかさを持つということである。本論文の目的は、未だマリアヴァン解析が適用されていないような確率微分方程式に対してマリアヴァン解析を適用することである。具体的には次の二つのことを目的とする。</p> <p>一つ目の目的は、ブラウン運動でノイズを入れた確率微分方程式で係数がリプシツ連続でないようなものに対してマリアヴァン解析を適用するというものである。係数がリプシツ連続である場合はBouleauとHirschによる結果(1986)がある。しかし、係数がリプシツ連続でない場合は、多くの困難が生じる。最も大きな困難は、解がH-微分に対するソボレフ空間に必ずしも属さないということである。そのため、このソボレフ空間を含むような確率変数の新しいクラスV_hを導入し、これ用いて確率微分方程式の解の密度関数の存在を示した。</p> <p>二つ目は、ジャンプ過程に対するマリアヴァン解析の新しい定式化である。ジャンプ過程に対するマリアヴァン解析の定式化はたくさんある。しかし、既に知られているような定式化では安定過程でノイズを入れた確率微分方程式には適用できないので、回転不变な安定過程に対して、これまでに知られている定式化とは異なる定式化を行った。この新しい定式化により、回転不变な安定過程でノイズを入れた確率微分方程式の解の密度関数の存在とその滑らかさに関するいくつかの結果が得られた。この定式化には従属操作を使っている。この定式化により、ブラウン運動でノイズを入れた確率微分方程式と極めて似た議論を、回転不变な安定過程でノイズを入れた確率微分方程式に対して行うことができる。この手法は回転不变な安定過程だけでなく従属操作を行ったブラウン運動でノイズを入れた確率微分方程式に対しても有効である。</p> <p>本論文では、ブラウン運動に対するマリアヴァン解析の定式化の簡単な要約を行ってから、上記二つの結果の議論を行う。</p>			

論文審査の要旨

報告番号	甲 第 3336 号	氏 名	楠岡 誠一郎
論文審査担当者 :	主査 慶應義塾大学准教授	理学博士	田村 要造
	副査 慶應義塾大学教授	工学博士	前島 信
	慶應義塾大学教授	理学博士	谷 温之
	慶應義塾大学教授 (経済学部)	博士(数理科学)	厚地 淳
<p>学士 (理学) 修士 (理学) 楠岡誠一郎君提出の学位請求論文は「Existence of Densities and their Regularity for Solutions of Stochastic Differential Equations by Malliavin Calculus (マリアヴァン解析による確率微分方程式の解の密度関数の存在とその滑らかさ)」と題し、全 4 章から成っている。</p> <p>Malliavin 解析とは 1976 年に P. Malliavin が確率微分方程式に関する国際シンポジウムで提唱した無限次元解析の一つの手法で、Wiener 測度に基づく無限次元の Sobolev 空間論ともいえるものである。その後多くの日本人を含む研究者によって厳密な基礎づけがなされた。Malliavin 自身もこれを用いて特別な場合に 2 階の橙円型微分作用素の準橙円性を示したが、このように Malliavin 解析の重要な応用は、確率微分方程式の係数が適当な橙円性の条件を満たす場合に、その解が密度関数を持つこと、およびその密度関数が滑らかさを持つことを示すことである。本論文で著者は今まで Malliavin 解析が適用できなかった 2 つの確率微分方程式に対して Malliavin 解析が適用できることを証明した。</p> <p>第 1 章は序論であり、第 2 章では以後必要となる Malliavin 解析に関する要約を行っている。</p> <p>第 3 章ではノイズが Brown 運動であり、係数が必ずしも Lipschitz 連続ではないような確率微分方程式の解の密度関数の存在を示している。ノイズが Brown 運動で、その係数が適当な橙円性の条件を満たす確率微分方程式の解の密度関数の滑らかさについては、確率微分方程式の係数の滑らかさに応じた滑らかさを持つことが知られていた。知られている最も弱い条件は、1986 年の Bouleau と Hirsch によるもので、係数が Lipschitz 連続性を持つならば解が密度関数を持つというものである。本論文で著者はこの条件をさらに弱めることを試みた。そのために、今までに知られていた無限次元 Sobolev 空間を含むような新しい関数族を導入し、この族の関数の分布は、h-方向微分をかければ Lebesgue 測度に関する密度関数を持つことを一般的に証明した。これを応用して、係数が Lipschitz 連続性より弱い連続性しか持たない確率微分方程式の解の密度関数の存在に関する結果を得ている。</p> <p>第 4 章は、典型的には対称安定過程のようなジャンプを持つ確率過程をノイズに持つ、確率微分方程式の解の密度関数の存在およびその滑らかさに関するものである。ジャンプを持つ確率過程に対する Malliavin 解析は、Lévy 過程に関する Malliavin 解析が知られているが、現在よく用いられている定式化では 2 次モーメントの存在を仮定しているので安定過程には使えない。そこで、本論文の著者は従属操作と呼ばれる手法を用いることで、安定過程に対しても通常の Wiener 空間上の Malliavin 解析を適用するという新しい手法を導入した。具体的には、Brown 運動の非確率的時間変更により定まる確率過程に対する Malliavin 解析の一般論をまず構築し、それと条件付確率を用いて、Brown 運動と独立な時間変更によって定まる確率過程をノイズに持つ確率微分方程式の解について密度関数の存在とその滑らかさを証明した。さらに、対称安定過程をノイズに持つ確率微分方程式の解の密度関数の存在と滑らかさの証明も行っている。</p> <p>以上要するに、本論文の著者は確率解析の中心的分野である Malliavin 解析において、今まで適用できなかった対象に Malliavin 解析を適用する一般論を与え、このような対象を扱う様々な問題に対し新しい手法を提供し確率解析の分野の発展に大きく貢献した。これはまた著者が数学の分野で独立して研究を行っていけることを示している。</p> <p>よって、本論文の著者は博士(理学)の学位を受ける資格があるものと認める。</p>			

内容の要旨

報告番号	甲 第3337号	氏名	田中 教介
主論文題目：			
分子内デツツ反応を用いたケンドマイシンの全合成			
<p>本研究は分子内デツツ反応を鍵反応として用いたケンドマイシンの全合成に関するものである。ケンドマイシン(1)は、高度に置換されたテトラヒドロピラン環がキノンメチド部分に連結したアンサタイプの天然有機化合物であり放線菌の培養液から単離された。生理活性としては、エンドセリン受容体拮抗作用、抗骨粗鬆症作用、抗菌活性および細胞毒性が報告されている。</p> <p>ケンドマイシン合成に向けたモデル実験として、フィッシャー型クロムカルベン錯体(\pm)-pentacarbonyl[((11<i>R</i>,12<i>S</i>,13<i>S</i>,14<i>R</i>)-11,13-(<i>O</i>-isopropylidenedioxy)-12,14-dimethylheptadec-15-oxo-16-yn-1-oxy](isopropenyl)carbene]chromium(\pm)-136と、pentacarbonyl[(2-methylene-octadec-17-yn-1-oxy)(isopropenyl)carbene]chromium(157)を合成し、それらを用いて分子内デツツ反応を行った。テトラヒドロピラン環部分の全ての置換基を持つ(\pm)-136の分子内デツツ反応は、高い位置選択性で進行し、望む(\pm)-(12<i>R</i>,13<i>S</i>,14<i>S</i>,15<i>R</i>)-18-hydroxy-12,14-(<i>O</i>-isopropylidenedioxy)-16-oxo-13,15,20-trimethyl-1-oxa-[16]-metacyclophane(\pm)-137を与えた。また、キノンメチド部分構築のための足がかりを持つ157を用いた場合も分子内デツツ反応は高い位置選択性で進行し、望む19-hydroxy-21-methyl-3-methylene-1-oxa-[17]-metacyclophane(156)を与えた。この156より、クライゼン転位およびIBXを用いたフェノールの2-ヒドロキシ-1,4-キノンへの酸化を含む7工程を経て、7,8,9,10,11,12,13,14,15,16,17,18,19,20-tetradecahydro-2-hydroxy-3-methylbenzo[18]annulene-1,4,6-trione(185)を合成した。185をシリカゲルTLCに塗布することで、ベンゾフラン環の構築と互変異性化が容易に進行し、6,7,8,9,10,11,12,13,14,15,16,17,18-tetradecahydro-4,19-dihydroxy-2-methyl-1,19-epoxybenzo[18]annulen-3(5<i>H</i>)-one(95)が得られた。</p> <p>モデル実験での知見を踏まえて、ケンドマイシンの全合成に着手した。左側セグメント(3<i>RS</i>,4<i>S</i>,5<i>R</i>,6<i>S</i>,7<i>R</i>,10<i>S</i>,11<i>E</i>)-12-iodo-5,7-(<i>O</i>-isopropylidenedioxy)-4,6,10-trimethyl-1-(trimethylsilyl)tridec-11-en-1-yn-3-ol(235)と、右側セグメント(3<i>S</i>,5<i>S</i>)-2-(<i>tert</i>-butyldimethylsiloxy)methyl)-6-iodo-3,5-dimethylhex-1-ene(193)から誘導したアルキルホウ素化合物との鈴木カップリングは良好な収率で進行し、付加体236を与えた。236から合成したテトラヒドロピラン環を持つフィッシャー型クロムカルベン錯体242の分子内デツツ反応を行ったところ、好収率で望む(4<i>S</i>,6<i>S</i>,8<i>E</i>,10<i>S</i>,13<i>R</i>,14<i>S</i>,15<i>S</i>,16<i>S</i>,17<i>R</i>)-13,17-epoxy-15-triethylsilyloxy-19-hydroxy-4,6,8,10,14,16,21-heptamethyl-3-methylene-1-oxa-[17]-metacyclophane(243)が得られた。クライゼン転位に続くエキソオレフィンの酸化的開裂を経て得られるフェノールのIBX酸化、シリカゲルTLCへの塗布により、(5<i>R</i>,6<i>S</i>,7<i>S</i>,8<i>R</i>,9<i>R</i>,12<i>S</i>,13<i>E</i>,16<i>S</i>,18<i>S</i>,19<i>S</i>)-7-triethylsilyloxy-6,7,8,9,10,11,12,15,16,17,18,19-dodecahydro-4,19-dihydroxy-2,6,8,12,14,16,18-heptamethyl-1,19:5,9-diepoxybenzo[18]annulen-3(5<i>H</i>)-one(315)を合成した。最後に、TES基の脱保護を行いケンドマイシン(1)の全合成を達成した。</p> <p>また、ケンドマイシンの左側セグメントをより効率よく合成するために、メチル基、ヒドロキシ基、メチル基を持つ3連続不斉中心骨格のジアステレオ選択性的な構築を試みた。その結果、2-(1,3-dithian-2-yl)-1-propan-1-al(251b)とpotassium <i>E</i>-crotyl trifluoroborate(101_E)を用いたクロチル化は高いジアステレオ選択性で進行し、高収率で(2<i>S</i>,3<i>R</i>,4<i>R</i>)-2-(1,3-dithian-2-yl)-4-methylhex-5-en-3-ol(252b)を与えることがわかった。上記の結果より、本クロチル化反応の、3連続不斉中心の新しい構築法としての有用性を示すことができた。</p>			

論文審査の要旨

報告番号	甲 第 3337 号	氏 名	田中 教介
論文審査担当者：	主査 慶應義塾大学教授	工学博士	中田 雅也
	副査 慶應義塾大学教授	理学博士	千田 憲孝
	慶應義塾大学教授	博士(工学)	垣内 史敏
	慶應義塾大学教授	工学博士	西山 繁

学士(工学) 修士(工学) 田中教介君提出の学位請求論文は、「分子内デツツ反応を用いたケンドマイシンの全合成」と題し、序論、本論7章、総括、および実験項より構成されている。

ケンドマイシンは、優れた生物活性をもつアンサマイシン系天然物であり、5置換のテトラヒドロピラン環を含む脂肪族アンサチーン部分が、芳香族パラキノンメチド部分に環状に連結しているユニークな化学構造をもっている。一般に、アンサマイシン系天然物の全合成においては、脂肪族部分と芳香族部分を別々に合成し、次いでそれらを連結し、最後にマクロ環化するという合成法が用いられる。本論文の著者は、デツツ反応を分子内で用いることにより、芳香族部分構築とマクロ環化反応を一挙に行うという新規で斬新な合成法でケンドマイシンの全合成を達成した。

本論第一章では、ケンドマイシンの概要と他グループによる全合成研究例について述べている。

第二章では、フィッシャー型クロムカルベン錯体とアセチレン類との反応により芳香族化合物を合成するデツツ反応の概要と、ケンドマイシンの全合成のためのデツツ反応の基礎研究について述べている。

第三章では、ケンドマイシンの全合成研究に先立つ2つのモデル実験について述べている。1つ目は、5置換のテトラヒドロピラン環構築の足がかりをもつモデル脂肪族部分のクロムカルベン錯体を合成し、その分子内デツツ反応により位置選択的にオキサメタシクロファン骨格が構築できることを示した。さらに、テトラヒドロピラン環が立体選択的に構築できることも示した。2つ目は、パラキノンメチド部分構築の足がかりをもつモデル脂肪族部分のクロムカルベン錯体を合成し、その分子内デツツ反応により目的とするオキサメタシクロファン骨格が構築できることを示した。さらに、パラキノンメチド部分の簡便な構築法も開発した。

第四章では、ケンドマイシンの全合成のための脂肪族アンサチーン部分をもつクロムカルベン錯体の合成とその分子内デツツ反応について述べている。すなわち、脂肪族アンサチーン部分合成のための2つのセグメントを合成し、次いでそれらを鈴木・宮浦カップリングで連結した。さらに、クロムカルベン錯体へ誘導したのち、分子内デツツ反応により、有用な合成中間体であるオキサメタシクロファンを合成した。

第五章では、ケンドマイシンの全合成研究中に見いだした、高立体選択的な3連続不斉中心構築法の開発について述べている。ジチアニル基とメチル基をもつアルデヒド類へのクロチルトリフルオロホウ酸カリウムの付加反応により、メチル基、水酸基、メチル基が特定の立体配置で置換した3連続不斉炭素鎖を高収率、高立体選択的に構築できることを見いだし、また、この反応によって生成したホモアリルアルコールのキラルビルディングブロックとしての有用性を示した。さらに、この反応の立体選択性発現機構について詳細に考察した。

第六章では、第五章で開発した反応を利用して、ケンドマイシンの脂肪族アンサチーン部分の新規合成を達成したことについて述べている。

第七章では、本論第四章で合成した合成中間体であるオキサメタシクロファンからのケンドマイシンへの誘導について述べている。クライゼン転位、フェノールのオルト位酸化、およびシリカゲル上でのパラキノンメチド構築を鍵反応として、効率的にケンドマイシンの全合成を達成した。

以上、著者の研究は、ユニークな構造をもつケンドマイシンを新規で独創的な合成経路で全合成したものであり、天然物化学および有機合成化学の発展に大いに貢献し、工学上寄与するところが少なくない。

よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

内容の要旨

報告番号	甲 第3340号	氏名	市川 尋代
主論文題目：			
空間表示3Dディスプレイにおけるコンテンツ描画に関する研究			
<p>高出力レーザを用いて空間中にプラズマ発光体を生成する新しいデバイスが開発されている。このデバイスを用いることで、スクリーンを用いることなく、空間に光点列でコンテンツを描画する空間表示3Dディスプレイを実現することができている。</p> <p>本ディスプレイは1kHzで発生/消滅を繰り返すプラズマ発光体を3次元のベクタスキャンで点列として描画し、人間が同時に観測できる発光体数は200個程度である。また、3Dスキャナには急激にスキャン方向を変更できないなどの制約がある。本論文ではこのような空間表示3Dディスプレイシステムの特徴と人間の視覚特性を考慮してコンテンツ描画を行うために必要となる要素技術の研究開発と、それらの有効性を検証する実験結果について述べるものである。</p> <p>本論文では、まず、本ディスプレイの描画領域キャリブレーションについて述べる。デバイスの光学系の性質から、描画領域全体のプラズマ発光体の位置計測データを用いることなく、2点のプラズマ発光体の計測位置を用いて簡単にキャリブレーションする手法を提案し、有効性を示した。</p> <p>次に、人間の3次元物体認識における情報取得について考察するため、さきに多面体像の情報量として定義されていた物体像エントロピーと人間の物体の認知しやすさの関係を参考にする。ここでは人間の認知しやすさを尺度化する手法を提案し考察を行った。</p> <p>実際の描画手法としては、エッジで表現できる物体とエッジでは表現できない物体について本システムに適した物体の表現手法を提案する。エッジで表現できる物体については、多角形と多面体を対象とし、ディスプレイシステムのスキャナへの負担を考慮する描画手法を提案する。多角形では頂点付近におけるスキャナの加速度を滑らかにして、スキャナの負荷を軽減しながら頂点を強調して描画する。多面体では、スキャナの負担を考慮した最適化経路で描画手法を提案する。しかし、前述した人間の多面体に対する認知の特性を考慮し面を一つずつ描画する表現手法も合わせて提案し、両手法の比較を行い、主観評価実験により有効性を確認した。そして、エッジで表現できるコンテンツとして、文字/文字列の描画手法を提案する。文字表現では文字描画に適したプラズマ発光体の密度や文字の提示時間について実験から検証した。さらに、文字列の描画では、複数の文字を繰り返し描画して文字列描画を進めていく手法を提案し、その有効性を実験から示した。この手法により、長い文字列の認識ができるようになった。</p> <p>エッジで表現できない物体については、らせんを用いて球体を表現する手法を提案する。らせんを用いた表現手法によって、本ディスプレイで初めて3次元物体の表面を描画することに成功した。さらに、一般的なCGコンテンツであるポリゴンモデルから、その断面を基に点列データを生成する手法を提案する。描画実験には、本ディスプレイと類似した技術を用いた小型、高速・高精細描画できるデスクトップ型の空間描画装置の試作機を用いた。結果として、本ディスプレイシステムで採用しているベクタスキャンを用いて3次元物体を描画できるデータが生成できることが示された。</p>			

論文審査の要旨

報告番号	甲 第 3340 号	氏 名	市川 尋代
論文審査担当者：	主査 慶應義塾大学教授	博士(工学)	斎藤 英雄
	副査 慶應義塾大学教授	工学博士	岡田 謙一
	慶應義塾大学教授	工学博士	萩原 将文
	慶應義塾大学教授	理学博士	藤代 一成
<p>学士(工学) 修士(工学) 市川 尋代君提出の学位請求論文は、「空間表示 3D ディスプレイにおけるコンテンツ描画に関する研究」と題し、7 章より構成されている。</p> <p>高出力レーザを用いて空間中にプラズマ発光体を生成し、レーザの走査により空間に光点列でコンテンツを描画するレーザプラズマ 3D ディスプレイが開発されている。本論文は、このレーザプラズマ 3D ディスプレイシステムの特徴と人間の視覚特性を考慮してコンテンツ描画を行うために必要となる要素技術の研究開発と、それらの有効性を検証する実験結果をまとめたものである。</p> <p>各章の内容は次の通りである。</p> <p>第 1 章では、3 次元ディスプレイ研究開発の動向と本研究の目的と位置付けが述べられている。</p> <p>第 2 章では、レーザプラズマ 3D ディスプレイシステムのスキャナ制御方法が説明され、このときの描画空間の設定のためにカメラを利用したキャリブレーション手法が提案され、描画空間のサイズに対して、0.6 ~ 1.5% 程度の誤差でキャリブレーション可能であることが示されている。</p> <p>第 3 章では、レーザプラズマ 3D ディスプレイによるコンテンツ描画のためのコンテンツデータ処理の流れ、データ補間方法を始めとするコンテンツ生成のための要素技術が記述され、さらに生成されたコンテンツの描画結果と見え方の関連性について考察されている。</p> <p>第 4 章では、人間の視覚による多面体認知の心理的特性の関係を明らかにするための手法が提案され、その実験結果が示されている。本手法は、多面体像の面に基づく情報量として定義された物体像エントロピーを心理的に評価するために、多面体像に対する認知のしやすさを、一対比較法と Thurstone の比較判断法を用いて心理尺度構成するものである。そして、本手法に基づく心理実験から物体像エントロピーと認知しやすさには高い相関があり、面の情報が重要であるという貴重な知見が得られている。</p> <p>第 5 章では、レーザプラズマ 3D ディスプレイにおいて、エッジで表現可能な物体形状の表現手法を扱っている。具体的には、プリミティブ物体として多角形と多面体を対象とし、本システムにおけるスキャナの特性と認知特性を考慮した物体形状の表現手法を提案している。そして、本手法による描画結果に対する主観評価実験を行い、その有効性を確認している。さらに、多面体に関しては、提案手法による表現では視方向や描画の時間経過に対して安定した物体像エントロピーが得られ、安定した認知が可能となることが示されている。さらに、エッジ表現可能な物体形状の応用例として文字を採り上げ、複数の文字を繰り返し描画して文字列描画を進めていく手法を提案し、従来は認識できなかった 5 ~ 6 文字以上の文字列の認識が可能となっている。</p> <p>第 6 章では、エッジで表現できない物体として、球体を採り上げ、らせんを用いて表現する手法を提案している。さらに応用として、一般的な CG のコンテンツデータを利用できるように、ポリゴンモデルから本ディスプレイ用の点列データを生成する手法が提案されている。また、本手法の検証のために、小型デスクトップ型の空間描画装置で描画実験を行い、本ディスプレイシステムで採用しているベクタスキャンを用いて 3 次元物体を描画可能であることが示されている。</p> <p>第 7 章は結論であり、本論文で得られた成果と今後の研究課題についてまとめている。</p> <p>以上要するに本研究では、空間中に発光体を用いて実体を描画するレーザプラズマ 3D ディスプレイに対して、3D ディスプレイとしての描画制御に関する基本的な機能を作り上げるとともに、視覚による物体認知を考慮した本ディスプレイにおけるコンテンツ表現法について提案し、実験により有効性を確認したものである。これらの成果は、芸術表現、エンターテインメント、広告等、レーザプラズマ 3D ディスプレイを始めとする空間描画 3D ディスプレイを利用した様々な分野への貢献が期待でき、工学上、工業上寄与するところが少なくない。</p> <p>よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。</p>			

内容の要旨

報告番号	乙 第4412号	氏名	中園 邦彦
主論文題目：			
遺伝的アルゴリズムに基づくクレーンシステムの制御			
<p>土木建築分野のみならず、工場などの製造現場で、幅広い用途や役割で活躍している機械装置にクレーンシステムがある。クレーンシステムには、所定の位置に吊り荷を運搬する際、可能な限り素早く、吊り荷の揺れを最小限に抑えながら運転操作しなければならない技能が必要である。しかしながら、このような技能は熟練操縦者の操作技術に頼ることが多いため、クレーンシステムの自動制振化技術の開発が盛んに行われている。そこで本研究では、クレーンシステムの自動制振化技術の確立を目的に、生物の進化過程を模擬した遺伝的アルゴリズムに基づくクレーンシステムの制御系設計法に関する検討を行った。ここでは、工場や建設現場でよく見かける走行型と旋回型の2種類のクレーンシステムを制御対象とした。はじめに、走行クレーンシステムの振動制御では、遺伝的アルゴリズムに基づき最適化されるニューラルネットワークを用いて、制御系設計への実装方法について提案し、シミュレーションにより有効性を検証した結果を示す。次に、旋回クレーンシステムの振動制御に対して、同様にニューラルネットワークを用いて制御系設計法を適用する。走行クレーンシステムの振動制御では、ニューラルネットワークの制御器は外乱やシステムの初期変動に対してロバスト性を有しており、比較的安定した制御結果を示した。一方、非ホロノミックシステムである旋回クレーンシステムの振動制御では、既学習条件下において良好な制御性能は保有していたが、外乱などに対するロバスト性にやや劣ることがあった。そこで、外乱の影響や非線形システムに有効な安定化制御法である直接勾配降下制御器を用いて制御系を構成する方法を提案し、その有用性を示す。なお、システムの初期変動の同定には、動的特性を有するニューラルネットワークが適用可能である。本論文において得られた成果は、工学分野における非線形システムの制御系設計法、およびシステム同定法における有効な手段として幅広く利用されることが期待される。</p> <p>第1章では、クレーンシステム、ニューラルネットワークおよび遺伝的アルゴリズムに関する既往研究についてまとめた。</p> <p>第2章では、非厳密評価規準を導入した遺伝的アルゴリズムに基づくニューラルネットワークの制御器を提案した。ここでは走行型のクレーンシステムの吊り荷の振れ止め制御問題に適用し、シミュレーションにより有効性を検証した。</p> <p>第3章では、旋回方向軸周りに制限した旋回クレーンシステムの吊り荷の振動を抑制する制御系に対して、ニューラルネットワークの制御器を用いて構成する手法を提案した。最適化に実数値遺伝的アルゴリズムを採用し、比較的容易に制御系を構築できることを示した。単一の初期旋回角度と広範囲な旋回可動域にある複数の初期旋回角度からの振動制御を検証した。</p> <p>第4章では、非線形システムの有効な安定化制御法である直接勾配降下制御法を用いて、旋回クレーンに対して、対象を安定化するための直接勾配降下制御器のパラメータ値を遺伝的アルゴリズムによって探索する方法について述べた。</p> <p>第5章では、各章で得られた内容をまとめ、本研究の成果を要約した。また、残された問題点、および今後の研究の展望について述べた。</p>			

以上

論文審査の要旨

報告番号	乙 第 4412 号	氏 名	中園 邦彦	
論文審査担当者：	主査	慶應義塾大学教授	工学博士	大西 公平
	副査	慶應義塾大学教授	工学博士	大森 浩充
		慶應義塾大学教授	博士(工学)	村上 俊之
		慶應義塾大学教授	工学博士	萩原 将文
<p>工学士、工学修士 中園邦彦君の学位請求論文は「遺伝的アルゴリズムに基づくクレーンシステムの制御」と題し、5章から構成されている。</p> <p>クレーンシステムはその機械的な形状により、非線形性を強く有するため吊り荷の揺れ止めの制御は簡単ではない。特に荷役などで需要の高い旋回クレーンは旋回動作のみに限れば非ホロノミックシステムになり制御が困難である。このため、簡単で柔軟性の高いコンピュータによる解決可能な方法が希求されている。本論文は遺伝的アルゴリズムを用いた制御器の最適化を行うことで、吊り荷終端における新しい揺れ止め制御を提案しつつその性能評価を数値実験で検証したものである。</p> <p>第1章は序論であり研究の背景を述べるとともに、遺伝的アルゴリズムに基づくニューラルネットワークおよび対象としているクレーンシステムの制御とその現状についてまとめている。</p> <p>第2章は1次元走行クレーンを対象にした揺れ止め制御を考察している。具体的には吊り荷を最終目標位置に移動させ、荷揺れを止めるサーボ制御の提案になる。このため、整定時間が短くなるように学習するニューラルネットワーク制御器を直列に挿入する。一般に、学習には時間がかかるが、遺伝的アルゴリズムにより、ネットワークの結合重みや構造の最適化を図ることが可能になる。数値実験により、その効果を確認した。</p> <p>第3章は前章の手法をより自由度の高く、非線形性の強い旋回クレーンに拡張したものである。旋回クレーンは非ホロノミックシステムであり、吊り荷の揺れ止め制御は格段に困難である。従って、第2章の手法を適用しても、既学習初期値近傍からの出発以外の場合は、制御器の再設計や切り替えが必要であるばかりでなく、パラメータ変動に対してロバストではない。そこで、複数の初期値を用意しニューラルネットワーク制御器の汎化性を高めた。その際に問題になる未学習初期状態や対雑音特性などに対する性能限界を数値実験により明らかにした。</p> <p>第4章は制御系の切り替えなどが不可能である場合の旋回クレーンシステムについて考察し、任意の初期値に対して整定時間を最適化する直接勾配降下法を提案した。この方法は動的制御器の設計論となるが、効率の良い設計にはパラメータ最適化が必要である。本論文では遺伝的アルゴリズムを導入し、膨大な探索を伴わずとも任意の初期値に対する制御器設計が可能になる。これを数値実験でも検証した。</p> <p>第5章は本論文の総括である。</p> <p>以上要するに、本論文の著者は、クレーンシステムの揺れ止め制御に遺伝的アルゴリズムによる学習制御を導入し、膨大なパラメータ検索を行わずとも整定時間の短い制御器設計が可能になることを示したもので、機械システム工学分野における工業上・工学上の寄与が少なくない。</p> <p>よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。</p>				

内容の要旨

報告番号	甲 第3347号	氏名	鈴木 大三
主論文題目：			
離散コサイン変換のリフティング実現とロッサー・ロスレス統合画像符号化への応用			
<p>近年のハードウェアの発達やプロードバンド網の普及により，“情報”的”のデジタル化は留まる所を知らず、音楽や画像、動画像などのデジタルコンテンツの情報量は増大し続けている。そのためデジタル信号処理による情報圧縮技術の更なる発展が重要である。画像圧縮（符号化）は、ロスレス（可逆）とロッサー（非可逆）符号化に大別される。昨今の技術発展によって情報損失のないロスレス画像符号化の需要が伸びており、一方でモバイル機器のような低スペックなハードウェアのためのロッサー画像符号化も未だ重要である。現行標準規格であるJPEGでは、ロスレスのためにDPCMが、ロッサーモードのために離散コサイン変換（DCT）が用いられており、互換性のない変換がそれぞれ利用されている。多様なニーズに応えるためには、ロッサー・ロスレス両圧縮データを用意しなくてはならない。</p>			
<p>近年、両モードで互換性を持つロッサー・ロスレス統合画像符号化（以下、統合画像符号化）が注目されている。これは、エンコーダ側でロスレスビットストリームを生成し、デコーダ側では環境に応じた情報でビットストリームを打ち切り、最適な状態で表示できる技術である。その実現には、Sweldensが1996年に提唱したリフティング構造が鍵となる。次世代標準規格のJPEG2000では、リフティングによる離散ウェーブレット変換（DWT）が用いられている。しかし変換性能のために、ロスレスでは5/3-DWT、ロッサーモードでは9/7-DWTという異なる変換を採用しており、互換性はない。本研究では現在のデフォルトスタンダードであるJPEGとの互換性も考慮して、統合画像符号化のためのDCTのリフティング実現（整数DCTの実現）を提案し、符号化の際の有効性を示す。</p>			
<p>第1章では本研究の背景及び動機を述べた。</p>			
<p>第2章では本研究を議論するに当たって、様々な直交変換、リフティング、JPEGやJPEG2000、本研究で用いる符号化方式のSPIHT、統合画像符号化の概要などについて示した。</p>			
<p>第3章ではより一般性のあるM点整数DCTを実現した。標準のJPEGでは8点DCTが用いられているが、分割サイズによりその性能が大幅に変化し、状況によっては異なる分割サイズの整数DCTを用いることが望まれる。そこでDCTの構造自体を直接リフティング構造で実現することで、符号化性能に影響を及ぼすラウンディング処理をできるだけ削減したM点整数DCTの実現法を提案した。</p>			
<p>第4章ではソフトウェア／ハードウェア実現の際に重要な変換係数の有限語長化問題を解決した。各リフティング係数を低ビットで有限語長化すると、低成本で高速実現が可能になるが、短い語長を割り当てた従来の整数DCTでは、性能に影響を及ぼすレギュラリティ条件を満たすことはできず、低ビットレートで圧縮を行った場合に視覚的な問題となるチェス盤歪みを生成する。そこで単純な構造を持ち、またDCTと関係の深いウォルシュ・アダマール変換（WHT）に注目し、その2次元可分形変換を変形することで、短語長割当・低ビットレート符号化時でもレギュラリティ条件を満たし、チェス盤歪みを生じない整数DCTの実現法を提案した。</p>			
<p>第5章では、DCTと逆DCT（IDCT）を各リフティングブロックとして用いた新たなリフティング実現を示した。これによりこれまで普及しているDCTのチップやアルゴリズムを直接用いることができる。更に2次元可分形変換を利用することでラウンディング数を大幅に削減できるため有効な統合画像符号化が可能であり、またロッサーモードは従来のJPEGと高い互換性を有していることを示した。</p>			
<p>第6章では提案法のみの比較によって詳細な考察を行った。</p>			
<p>最後に第7章で全体の総括をし、本研究の成果を述べた。</p>			
以上			

論文審査の要旨

報告番号	甲 第 3347 号	氏 名	鈴木 大三
論文審査担当者：	主査 慶應義塾大学教授	工学博士 池原 雅章	
	副査 慶應義塾大学教授	工学博士 浜田 望	
	慶應義塾大学教授	工学博士 岡田 英史	
	慶應義塾大学教授	工学博士 田中 敏幸	

学士（工学）、修士（工学）鈴木大三君提出の学位請求論文は「離散コサイン変換のリフティング実現とロッシー・ロスレス統合画像符号化への応用」と題し、7章から構成されている。

画像圧縮（符号化）は、ロスレス（可逆）とロッシー（非可逆）符号化に大別され、一般に利用されているロッシー符号化のみならず、昨今の技術発展によって情報損失のないロスレス画像符号化が注目され、普及しつつある。現行標準規格である JPEG では、ロスレスのために差分パルス符号化（DPCM）が、ロッシーモードのために離散コサイン変換（DCT）が用いられているが、互換性はなく、必要に応じてロッシー・ロスレス両圧縮データを別々に用意しなければならない。

近年、両モードで互換性を持つロッシー・ロスレス統合画像符号化（以下、統合画像符号化）が注目されている。これは、エンコーダ側でロスレスビットストリームを生成し、デコーダ側ではシステム環境に応じた情報量でビットストリームを打ち切り、最適な状態で表示できる技術である。次世代標準規格の JPEG2000 では、リフティングによる離散ウェーブレット変換（DWT）が用いられており、統合符号化のために同一の符号化法が用いられているが、変換は異なり、完全な互換性はない。本研究では現在の標準規格である JPEG 方式との互換性を考慮して、統合画像符号化のための DCT のリフティング実現を提案し、符号化した際の有効性を示している。

第 1 章では、本研究の背景及び動機を述べ、関連研究と本研究の位置づけを示している。

第 2 章では、本論文で用いる基礎事項を説明し、第 3 章から第 5 章で本研究の成果を述べている。

第 3 章では、より一般性のある M 点整数 DCT を実現している。標準の JPEG では 8 点 DCT が用いられているが、分割サイズによりその性能が大幅に変化し、異なる分割サイズの整数 DCT が望まれる場合がある。そこで DCT の構造自体を直接リフティング構造で実現することで、符号化性能に影響を及ぼすラウンディング処理をできるだけ削減した M 点整数 DCT の実現法を提案している。

第 4 章では、ソフトウェア / ハードウェア実現の際に重要な変換係数の有限語長化問題を解決している。各リフティング係数を低ビットで有限語長化すると、低演算コストで高速実現が可能になるが、短い語長を割り当てた従来の整数 DCT は、性能に影響を及ぼすレギュラリティ条件を満たすことはできず、低ビットレートにおいて視覚的な問題となるチェス盤歪みを生ずる。そこでウォルシュ・アダマール変換（WHT）に注目し、その 2 次元可分形変換を変形することで、短語長割当・低ビットレート符号化時でもレギュラリティ条件を満たし、チェス盤歪みを生じない整数 DCT の実現法を提案している。

第 5 章では、DCT と逆 DCT を各リフティングブロックとして用いた新たなリフティング実現を示している。これによりこれまで普及している DCT のチップやアルゴリズムを直接用いることができる。更に 2 次元可分形変換を利用することでラウンディング数を大幅に削減できるため、有効な統合画像符号化が達成でき、またロッシー画像符号化の結果は従来の JPEG との高い互換性を示している。

第 6 章では提案法の比較によって、各章の関係を考察している。

第 7 章は結論であり、本研究の成果をまとめ、今後の展望を述べている。

以上要するに、本論文の著者はリフティング構造による離散コサイン変換の実現法を確立し、統合画像符号化に適用した際の有効性を示しており、信号処理分野において工学上、工業上寄与するところが少なくない。よって、本論文の著者は博士（工学）の学位を受ける資格があるものと認める。

Thesis Abstract

Registration Number	“KOU” No.3353	Name	Kizilirmak, Refik Caglar
Thesis Title	Performance Improvement of Antenna Array Communications Through Time Shifted Sampling for OFDM Systems		
<p>Recent developments in wireless communications have shown that, by applying antenna diversity techniques, it is possible to provide link improvement without increasing the transmission power and bandwidth. Usually a separation of a few wavelengths is required between two antennas in order to obtain signals that fade independently. In this work, a new technique called Time Shifted Sampling (TSS) to improve the performance of transmission with the correlated fading signals for Orthogonal Frequency Division Multiplexing (OFDM) is proposed.</p> <p>Chapter 1 gives the detailed introduction on antenna array communications, OFDM and spatial correlation is given in.</p> <p>Chapter 2 proposes the TSS technique. TSS is a signal processing technique that takes the benefit of multipath diversity and improves the performance of correlated antenna arrays. In conventional array systems, individual receivers of an array start sampling the received signals at the same time with the same sampling rate. On the other hand, in the proposed scheme, the received signals are sampled with the same rate. However, the sampling points are shifted in each receiver. Numerical results through computer simulation show that with correlated received signals, by applying the proposed technique the correlation for some subcarriers can be reduced to a sufficient level for diversity reception.</p> <p>In Chapter 3, a new adaptive modulation scheme for orthogonal frequency division multiplexing (AOFDM) that provides efficient data transmission for correlated receiver antenna arrays is proposed. Conventional AOFDM schemes generally select the modulation scheme based on the estimated carrier-to-noise ratio (CNR) on each subcarrier to maximize the throughput for a target bit error rate (BER). However, when the antennas are correlated, these schemes fail to achieve the target BER. In the proposed scheme, modulation scheme is chosen based on the CNR and the correlation coefficient for each subcarrier and transmission throughput is optimized for a given target BER.</p> <p>Chapter 4 analyzes the performance of the OFDM diversity systems with the spatial fading correlation when the network includes an RF repeater. In this chapter, a multipath channel is generated by the paths from the mobile and the repeater terminals. The correlation between the antenna branches is evaluated and it is found that the TSS technique is also effective to improve the BER performance when the network includes an RF Repeater.</p> <p>Chapter 5 summarizes each chapter and concludes this dissertation.</p>			

論文審査の要旨

報告番号	甲 第 3353 号	氏 名	Kizilirmak, Refik Caglar	
論文審査担当者：	主査	慶應義塾大学准教授	博士(工学)	眞田 幸俊
	副査	慶應義塾大学教授	工学博士	笹瀬 巍
		慶應義塾大学教授	博士(工学)	大槻 知明
		慶應義塾大学准教授	博士(工学)	石黒 仁揮

学士(工学)、修士(工学) KIZILIRMAK, Refik Caglar 君提出の学位請求論文は「Performance Improvement of Antenna Array Communications Through Time Shifted Sampling for OFDM Systems (OFDM システムにおける時間シフトサンプリングを用いたアレイアンテナの特性改善法)」と題し、5 章から構成されている。

今日の無線通信においてアンテナダイバーシチは送信電力や帯域幅を変えずに回線品質を改善できる重要な技術である。一般的にアンテナダイバーシチにおいては統計的に独立な信号を受信するために、アンテナ素子間に数波長分の間隔を必要とする。したがって特性を改善するためにアンテナ素子数を増加すると、移動端末もしくは基地局のサイズが増加してしまう。またアンテナ間隔を狭くして信号を受信すると、各アンテナ素子の受信信号の相関が増加し、ビット誤り率(Bit Error Rate: BER) 特性が劣化する。本論文では相関の高い OFDM (Orthogonal Frequency Division Multiplexing) 信号を複数のアンテナ素子で受信した場合においても特性を改善することができる、時間シフトサンプリング (Time Shifted Sampling: TSS) という新しい技術を研究している。

第 1 章は序論であり、本研究の背景および OFDM 受信機やアレイアンテナシステムの概要、並びに本研究の目的と意義を示している。

第 2 章は提案する TSS 方式の特性を評価している。TSS は相関の高い信号を受信するアンテナ素子において、パスマティバーシチを実現する信号処理技術である。従来のアレイアンテナでは各々のアンテナ素子において同一のタイミングで受信信号をサンプリングしていた。一方提案する TSS 方式では各アンテナ素子において異なるタイミングで受信信号をサンプリングする。この章では計算機シミュレーションにより提案する TSS 方式を評価している。その結果提案方式は各アンテナ素子で受信した信号間の相関を下げ、2 - 4 dB のダイバーシチ利得を得る。

第 3 章では OFDM システムにおいて新しい適応変調方式を提案している。従来の適応変調方式では搬送波対雑音電力比(Carrier-to-Noise Ratio: CNR)を基準に、各サブキャリアにおける目標 BER を保ちつつスループットを最大化するように変調方式を選択する。他方提案する適応変調方式では、CNR だけでなく各サブキャリアにおけるアンテナ素子間の相関も考慮して変調方式を決定する。提案する適応変調方式は同一のスループットにおいて BER を約 1/4 に低減する。

第 4 章では TSS 方式をリピータに用いた OFDM ネットワークの特性を評価している。リピータは端末と基地局の中間に位置し、端末からの信号を基地局に中継する。そして端末から基地局へ直接受信するパスとは異なる信号伝達パスを形成することによって、ダイバーシチを達成する。この章では端末からの信号とリピータからの信号の各 OFDM サブキャリアにおける相関を計算している。提案する TSS 方式はリピータシステムにおいてダイバーシチ利得により BER 特性を 2 - 4 dB 改善する。

第 5 章は本論文の結論であり、各章で得られた知見を総括し本研究の成果を要約している。

以上要するに、本研究は OFDM 受信機におけるアレイアンテナによるダイバーシチ利得を改善するサンプリング方式を提案したものであり、無線通信工学分野において工業上、工学上寄与するところが少なくない。

よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

内容の要旨

報告番号	甲 第3354号	氏名	内山 英昭
主論文題目：			
Texture-Free Keypoint Matching and its Applications (テクスチャによらない特徴点マッチングとその応用)			
<p>特徴マッチングは、コンピュータビジョンや画像処理における基礎研究の1つとして挙げられる。近年、テクスチャに基づく特徴点マッチングが多く対象物体に適用することのできる一般的な手法として考えられつつある。しかしながら、この手法は必ずしも全ての物体に対して適用可能ではなく、制約として対象物体にテクスチャが多く含まれている必要がある。本論文では、テクスチャによらない特徴点マッチングのために、幾何学的特徴量と時間軸の特徴量の2つの特徴量を用いた手法について検討を行う。</p> <p>幾何学的特徴量を用いたアプローチでは、幾何学的特徴量のオンライン学習を提案することで、特徴点トラッキングを実現する。幾何学的特徴量は視点が変化するにつれて特徴量も変化するため、カメラが移動している間に生じる特徴量の変化を学習する必要がある。新たに生じる特徴量を学習することで、カメラが大きく移動した場合にも特徴点のマッチングが可能となる。</p> <p>時間軸の特徴量を用いたアプローチでは、時系列画像における輝度の変化を特徴量として用いる。輝度変化を生じさせるデバイスとして、点滅する光源を利用する。各光源の点滅パターンを独立に設定することで、異なる視点で撮影された画像において、光源を特徴点とした特徴点マッチングが可能となる。</p> <p>これら2つのアプローチに基づいたアプリケーションとして、3つの拡張現実感に基づくシステムと1つの写真測量システムを構築する。拡張現実感によるビリヤード支援システムでは、幾何学的特徴量としてビリヤード台のコーナーの位置関係を用いることで、ビリヤード台に対するカメラの位置姿勢推定を行う。文書を対象とした拡張現実感では、幾何学的特徴量に基づく特徴点トラッキングを用いることで自由なカメラの動きが可能なシステムを構築する。地図を対象とした拡張現実感では、文書を対象とした場合と同じ手法を利用し、地図画像検索を実現している。最後に、屋外の夜間における建物の写真測量を実現するために、光源をマーカとして用いたシステムを構築する。</p>			

論文審査の要旨

報告番号	甲 第 3354 号	氏 名	内山 英昭
論文審査担当者 :	主査 慶應義塾大学教授	博士(工学)	斎藤 英雄
	副査 慶應義塾大学教授	工学博士	岡田 謙一
	慶應義塾大学教授	理学博士	藤代 一成
	慶應義塾大学准教授	博士 (工学)	青木 義満
	Ecole Centrale de Nantes 准教授	Ph.D.	Moreau, Guillaume
	Ecole Centrale de Nantes 専任講師	Ph.D.	Servieres, Myriam
学士(工学)修士(工学)内山 英昭君提出の学位請求論文は、「Texture-Free Keypoint Matching and its Applications (テクスチャによらない特徴点マッチングとその応用)」と題し、8章より構成されている。	コンピュータビジョンや画像処理における基礎となる特徴点マッチングの従来技術では、撮影対象物体にテクスチャが多く含まれている必要があった。本論文では、テクスチャによらない特徴点マッチングのために、幾何学的特徴量と時間軸特徴量の2つの特徴量を用いた新しい特徴点マッチング手法を提案し、本手法を複合現実感提示や大規模建造物の測量に応用したシステムとそれらの有効性を検証する実験結果についてまとめたものである。	第1章では、本研究の目的・背景と位置付けが述べられている。	第2章では、特徴点マッチングのための関連研究についてのサーベイとして、マーカーを利用した方法、テクスチャを利用した方法、幾何学的特徴を利用した方法、の3つのカテゴリの手法が紹介され、それらの特長・問題点について論じられている。
第3章では、本研究で提案する、幾何学的特徴量と時間軸特徴量の2つの特徴量を用いた手法について述べられている。幾何学的特徴量は視点が変化するにつれて特徴量も変化するため、カメラが移動している間に生じる特徴量の変化を学習する必要がある。そこで、幾何学的特徴量のオンライン学習を利用した特徴点トラッキング手法が新たに提案されている。本手法では、新たに生じる特徴量を学習することで、カメラが大きく移動した場合にも特徴点のマッチングが可能となる。時間軸特徴量を用いたアプローチでは、時系列画像における輝度の変化を特徴量として用いる方法が提案されている。本手法のために、輝度変化を生じさせるデバイスとして点滅する光源を複数利用する。この各光源の点滅パターンを独立に設定することにより、異なる視点で撮影された画像において、光源を特徴点とした特徴点マッチングが実現可能となる。	第4章から第7章では、第3章で提案した2つの特徴量を利用した特徴点マッチング手法を利用して構築した、3つの拡張現実感提示システムと1つの写真測量システムが述べられている。	3つの拡張現実感提示システムは、ビリヤード支援システム、文書へのアノテーション表示システム、地図への地理情報表示システムであり、いずれのシステムにおいても、幾何学的特徴量を利用した特徴点トラッキングにより、ビリヤード台、文書、地図、それぞれの平面に対するカメラの位置姿勢推定をリアルタイムで行うことにより、それぞれの上に映像情報を拡張現実表示できるシステムになっている。文書や地図においては、特徴点の配置関係を利用することにより、大量の文書・地図画像の中から、カメラに撮影されている文書や地図を検索することも可能になっている。	写真測量システムでは、点滅する光源を時間特徴を利用してマッチングすることにより、各光源の3次元位置を数ミリ程度の誤差で計測可能としている。
第8章は結論であり、本論文で得られた成果と今後の研究課題についてまとめている。	以上要するに本研究では、対象物のテクスチャによらない特徴点マッチングのために幾何学的特徴量と時間軸特徴量を利用した2つの新しい手法を提案し、それらを利用して構築した3つの拡張現実感提示システムと1つの写真測量システムを示し、それらのその有効性・有用性を確認したものである。これらの成果は、映像メディア処理・解析・表現、映像メディア検索、映像サーベイランスなどを始めとするカメラ映像を利用した様々な分野への貢献が期待でき、工学上、工業上寄与するところが少なくない。	よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。	

内容の要旨

報告番号	甲 第3355号	氏名	伊藤 二郎
主論文題目：			
次世代ネットワーク用高密度集積光合分波回路の研究			
<p>近年、FTTH (Fiber To The Home)の普及により通信トラフィックは爆発的に増大し、今後も通信の高速化・大容量化への社会的要望が大きいことが予想される。次世代ネットワークでは波長パスを高速切り替え可能な高機能光ノードや周波数利用効率の高い多値変調伝送、偏波多重伝送技術の導入が期待される。しかし、現状の光回路技術では、不十分な応答速度、大きい素子寸法が課題であり、高密度集積化による光回路の高速化、小型化、大規模化がより一層求められる。</p>			
<p>第1章では、光ネットワークの現状と技術開発動向を述べる。さらに、ネットワークを支える PLC(Planar Lightwave Circuit)技術、光デバイスに使用される各種材料について詳しく解説する。本研究の目的は、ATB(Air Trench Bend)構造及び低屈折率材料充填導波路を用いた光合分波回路の小型化と PBS (Polarization Beam Splitter)の実現、PLZT ($Pb_{1-x}La_x(Zr_xTi_{1-y})_{1-x/4}O_3$)導波路を用いた光合分波回路の高速化である。</p>			
<p>第2章では、導波路コアの両側に溝を有する ATB 構造を用いた小型アレイ導波路回折格子(AWG: Arrayed-Waveguide Grating)を提案した。ATB 構造を最適化し、チャネル数 8、チャネル間隔 100 GHz の AWG を作製した。試作した AWG の挿入損失は 5.6 dB、隣接チャネル間クロストークは-20.1 dB であった。従来の同仕様の AWG に比較して、寸法を約 1/4 に小型化することに成功した。</p>			
<p>第3章では、ATB の欠点を解決するために低屈折率材料を溝部分に充填した導波路構造を提案した。石英微小溝構造へのクラックの生じない樹脂充填硬化条件を確立し、多段溝構造を有する導波路で低損失な光学特性を確認した。従来の石英導波路の最小曲げ半径は 2 mm であるが、本構造を用いて最小曲げ半径を 200 μm に縮小することに成功した。</p>			
<p>第4章では、第3章の検討結果を活用し、低屈折率材料充填導波路構造を AWG に適用して AWG を小型化した。チャネル数 8、チャネル間隔 100 GHz の 90° 曲げ型 AWG と、チャネル数 8、チャネル間隔 12.5 GHz の Arrowhead 型 AWG を設計、作製した。90° 曲げ型 AWG の挿入損失、隣接チャネル間クロストークは、それぞれ、4.5 dB、-26.3 dB であり、Arrowhead 型 AWG の挿入損失、隣接チャネル間クロストークは、それぞれ、8.3 dB、-15.7 dB であった。従来の同仕様の AWG に比較して、寸法を、それぞれ、約 1/2 及び約 1/4 に小型化することに成功した。</p>			
<p>第5章では、低屈折率材料充填導波路の持つ 10^3 オーダーの高い複屈折を利用した導波路型 PBS を提案した。中心波長付近で非常に高い偏波消光比が得られる狭帯域型と広い波長帯域で高い偏波消光比が得られる広帯域型 PBS を提案、作製した。狭帯域型 PBS の挿入損失、最大偏波消光比、偏波消光比の-10dB 幅はそれぞれ 9.0 dB、-28.9 dB、45 nm であった。広帯域型 PBS は低屈折率材料充填導波路の等価屈折率の波長依存性を考慮に入れて設計し、最大偏波消光比を多少犠牲にし、広い透過帯域を得ることに成功した。挿入損失、最大偏波消光比、偏波消光比の-10dB 幅はそれぞれ 4.4 dB、-22.8 dB、105 nm であった。両 PBS とも従来の石英導波路型 PBS と比較して、アーム長を 1/5 以下に縮小することができた。</p>			
<p>第6章では、世界で初めて PLZT 導波路を用いて、高速に波長選択が可能な可変波長 AWG と光スイッチ集積型 AWG の作製を行った。両素子とも光分岐挿入スイッチに適用して、柔軟なネットワークの構築に重要な役割が期待される。可変波長 AWG 及び光スイッチ集積型 AWG は、それぞれ、印加電圧 22 V、32 V で動作し、その動作速度は立ち上がり、立ち下がり時間ともに 15 ns 以下であった。</p>			
<p>第7章は結論で本論文の成果をまとめ、今後の課題や将来の展望を述べた。</p>			

論文審査の要旨

報告番号	甲 第 3355 号	氏 名	伊藤 二郎
論文審査担当者：	主査 慶應義塾大学教授	博士(工学)	津田 裕之
	副査 慶應義塾大学教授	工学博士	神成 文彦
	慶應義塾大学教授	博士(工学)	斎木 敏治
	慶應義塾大学教授	博士(工学)	松本 佳宣
<p>学士(工学)、修士(工学)伊藤二郎君提出の学位請求論文は「次世代ネットワーク用高密度集積光合分波回路の研究」と題し、7章から構成されている。</p> <p>近年、通信トラフィックは爆発的に増大し、通信の高速化、大容量化への社会的要望が大きい。次世代ネットワークでは波長パスを高速切り替え可能な高機能光ノードや周波数利用効率の高い多値変調伝送及び偏波多重伝送技術の導入が期待される。しかし、現状の光回路技術では、不十分な応答速度、大きい素子寸法が課題であり、高密度集積化による光回路の高速化、小型化、大規模化が求められている。</p> <p>第1章では、光ネットワークの現状と技術開発動向を述べている。さらに、光ネットワークを支える平面光回路、光デバイスに使用される材料について詳しく解説している。本研究の目的が ATB (Air Trench Bend)構造及び低屈折率材料充填導波路を用いた光合分波回路の小型化と PBS(Polarization Beam Splitter)の実現、PLZT($Pb_{1-x} La_x (Zr_y Ti_{1-y})_{1-x/4} O_3$)導波路を用いた光合分波回路の高速化であると述べている。</p> <p>第2章では、ATB 構造を用いた小型 AWG(Arrayed-Waveguide Grating)を提案している。ATB 構造の最適化を行い、チャネル数 8、チャネル間隔 100 GHz の AWG を作製している。試作した AWG の挿入損失は 5.6 dB、隣接チャネル間クロストークは -20.1 dB であり、従来の同仕様の AWG に比較して、寸法を約 1/4 に小型化することに成功している。</p> <p>第3章では、ATB 構造の欠点を解決するために低屈折率材料を溝部分に充填した導波路構造を提案している。石英微小溝構造へのクラックの生じない樹脂充填硬化条件を確立し、多段溝構造を有する導波路で低損失な光学特性を確認している。</p> <p>第4章では、第3章の検討結果を活用し、低屈折率材料充填導波路構造を AWG に適用して AWG を小型化している。チャネル数 8、チャネル間隔 100 GHz の 90° 曲げ型 AWG と、チャネル数 8、チャネル間隔 12.5 GHz の Arrowhead 型 AWG を設計、作製している。90° 曲げ型 AWG の挿入損失、隣接チャネル間クロストークは、それぞれ、4.5 dB、-26.3 dB であり、Arrowhead 型 AWG の挿入損失、隣接チャネル間クロストークは、それぞれ、8.3 dB、-15.7 dB である。従来の同仕様の AWG に比較して、寸法を、それぞれ、約 1/2、約 1/4 に小型化することに成功している。</p> <p>第5章では、中心波長付近で非常に高い偏波消光比が得られる狭帯域型 PBS と広い波長帯域で高い偏波消光比が得られる広帯域型 PBS を提案、作製している。狭帯域型 PBS の挿入損失、最大偏波消光比、偏波消光比の-10dB 幅は、それぞれ、9.0 dB、-28.9 dB、45 nm であり、広帯域型 PBS では、偏波消光比の-10dB 幅は 105 nm となっている。</p> <p>第6章では、世界で初めて PLZT 導波路を用いて、可変波長 AWG と光スイッチ集積型 AWG を作製している。可変波長 AWG 及び光スイッチ集積型 AWG は、それぞれ、印加電圧 22 V、32 V で動作し、その動作速度は立ち上がり、立ち下がり時間ともに 15 ns 以下である。</p> <p>第7章は結論であり、本論文の成果をまとめ、今後の課題や将来の展望を述べている。</p> <p>以上要するに、本研究では、ATB 構造、あるいは、低屈折率材料充填導波路を利用して光合分波回路と PBS の小型化、PLZT 導波路を用いて高速可変波長フィルタを実現している。これらのデバイスは、次世代の超大容量光ネットワークの構築に、工業上、工学上寄与するところが少なくない。よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。</p>			

内容の要旨

報告番号	甲 第3356号	氏名	三木 秀夫
主論文題目：			
Slow-fast系に起るる跳躍遅れ現象の経済システムにおける発生可能性について			
本論文では、景気循環モデルにおける遅れ現象の発生可能性について考察した。景気循環モデルとして、グッドワインの景気循環モデルとグッドワインモデルに貿易を導入して拡張して得られる2国間モデルを扱った。またそれぞれのモデルにおいて、投資関数として飽和型単調増加関数と、経済政策を考慮した関数の2つの場合について考察した。			
グッドワインの景気循環モデルは国民所得水準を景気の指標にしたモデルであり、微分方程式で記述される。近年の情報技術の進歩を考慮することにより、情報伝達に関するタイムラグを表すパラメーターを微小であると考えると、グッドワインモデルにおける系はslow-fast系と呼ばれる微分方程式系とみなせる。Slow-fast系において、ある条件下のもとで解の跳躍の遅れが生じることが知られており、その現象はダック解と呼ばれている。ダック解は、物理学や化学などのモデルで存在することが知られている。本論文では、経済モデルである景気循環モデルにおけるダック解の発生可能性について考察した。			
第1章では、本研究の序論として目的、景気循環理論とダック解の研究の歴史背景、そして本論文全体の概要を述べた。			
第2章では、マクロ経済学の基礎理論を景気循環論を中心にして概観し、グッドワインが提案した景気循環モデルの詳細を説明した。また経済政策を考慮した投資関数についても言及した。			
第3章では、分析に必要となる微分方程式論について概説し、slow-fast系の理論とダック解について先行研究の結果をまとめた。			
第4章では、グッドワインの景気循環モデルにおけるダック解の存在についてZvonkin and Shubin (1984) の結果を用いて考察した。まず投資関数として、飽和型単調増加関数を用いる限り、ダック解は起こらないことを示した。次に経済政策を考慮した投資関数として、Puu (1989) が提案した3次関数の投資関数を考えた。ダック解が起るための経済的パラメーターの条件を与えた。			
第5章では、2国間景気循環モデルにおけるダック解の存在について考察した。最初にグッドワインモデルを、貿易を導入することによって2国間の景気循環モデルに拡張し、4次元のslow-fast系を構成した。まず投資関数が飽和型単調増加関数の場合について、Benoit (1983) が3次元のslow-fast系で考えた概念を4次元のslow-fast系に拡張したもの用いて考察した。この場合において、系はある経済的パラメーター設定のもとでは、その不变集合上に特異点を2つもつことを証明した。数値実験により、解がその特異点の近くを通過するときダック解が起ることを示した。また不变集合上の極限周期軌道上にもダック解が起ることを示した。次に投資関数が3次関数の場合について考えた。この場合においては、極限周期軌道上にダック解が起る数値実験例を与えた。			
第6章では、結論として本研究で得られた成果を要約した。			

論文審査の要旨

報告番号	甲 第 3356 号	氏 名	三木 秀夫
論文審査担当者：	主査 慶應義塾大学教授 Ph.D.	増田 靖	
	副査 慶應義塾大学名誉教授 工学博士	西野 寿一	
	慶應義塾大学教授 博士（工学）	櫻井 彰人	
	慶應義塾大学教授 理学博士	谷 温之	
学士（工学）修士（工学）三木秀夫君提出の学位請求論文は、「Slow-fast 系に起る跳躍遅れ現象の経済システムにおける発生可能性について」と題し、6 章から構成されている。			
景気循環の研究において、グッドワインのモデルがその後の研究に大きな影響を与えてきた。グッドワインの景気循環モデルは、国民所得水準を景気指標とし、微分方程式で記述される。近年の情報技術の進歩により、情報伝達に関するタイムラグが小さくなっている。この状況下では、グッドワインのモデルは slow-fast 系と呼ばれる微分方程式系で記述される。Slow-fast 系においては、ある条件下のもとで解の跳躍に遅れが生じることが知られており、その現象はダック解と呼ばれている。ダック解は、物理学や化学などのモデルで存在することが知られている。			
本研究では、グッドワインの景気循環モデルとその拡張である 2 国間モデルにおいて、ダック解がどのような条件で発生するかを解析的・数値的に調べている。投資関数としては、飽和型単調増加関数と、経済政策の影響を考慮した関数の 2 つの場合を扱っている。本論文の構成は以下の通りである。			
第 1 章では、本研究の序論として目的、景気循環理論とダック解の研究の歴史背景、そして本論文全体の概要を述べている。			
第 2 章では、マクロ経済学の基礎理論を、景気循環論を中心にして概観し、グッドワインの景気循環モデルを説明し、経済政策を考慮した投資関数について言及している。			
第 3 章では、分析に必要となる微分方程式論について概説し、slow-fast 系の理論とダック解について先行研究の結果をまとめている。			
第 4 章では、グッドワインの景気循環モデルにおけるダック解の存在について、Zvonkin and Shubin (1984) をもとに分析している。投資関数が飽和型単調増加関数であるときは、ダック解は起こらないことを示している。経済政策の影響を考慮して投資関数を 3 次関数とする設定 (Puu (1989)) において、ダック解が起こるための十分条件を与えていている。			
第 5 章では、2 国間景気循環モデルにおけるダック解の存在について考察している。貿易を導入することにより 1 国景気循環モデルを 2 国間モデルに拡張し、4 次元の slow-fast 系を構成した。Benoit (1983) が 3 次元の slow-fast 系で導入した概念を 4 次元の slow-fast 系に拡張し、投資関数が飽和型単調増加関数の場合を分析した。具体的な投資関数としては \tanh を用いている。この場合、系は、あるパラメータ設定のもとで、不变集合上に特異点をもつことを証明している。数値実験により、軌道がその特異点の近くを通過するときダック解が起こることを示している。投資関数が 3 次関数の場合は、極限周期軌道上にダック解が起こる数値実験例を与えている。			
第 6 章では、結論として本研究で得られた成果を要約している。			
以上、要するに、本論文では、景気循環モデルにおいてダック解が発生するための条件を工学的に解析することにより、景気循環モデルの挙動分析に対して新たな視点を与えており、本研究の成果は工学上寄与するところが少なくない。			
よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。			

内容の要旨

報告番号	甲 第3357号	氏名	山下 建
主論文題目：			
ポテンシャルプログラムされた 共役デンドリマーの創製			
<p>天然のタンパク質は精密に制御された3次元的な電気的・力学的なポテンシャル構造によって高効率な電子移動や反応・結合を起こしている。本論文では、3次元のポテンシャル構造を精密に制御できる構造体として剛直なデンドリマー構造に着目した。新規なカルバゾールデンドリマーの合成法を開発し、カルバゾールデンドロン内に外層電子リッチなポテンシャル勾配が存在することを明らかにした。さらに、カルバゾールとフェニルアゾメチルを組み合わせたダブルレイヤー型のデンドリマーを合成し、ポテンシャル勾配有機ELのホール輸送層やフラーレンの分子認識材料として有用であることを実証した。各章の構成を以下に示す。</p> <p>第一章では、デンドリマーの高分子における位置づけと機能、電子材料としての利用とポテンシャル勾配型のデンドリマーについてまとめた。</p> <p>第二章では、新規なカルバゾールデンドロンの合成ルートを開発し、初めて第4世代の合成に成功した。種々の誘導体の測定からカルバゾールデンドロンは高度にねじれた構造を有しており、それによりカルバゾールの電子求引的置換基効果が誘起され、デンドリマー外層が電子リッチなポテンシャル勾配の発現を示した。</p> <p>第三章では、コアにテトラフェニルメタンをデンドロン内層にフェニルアゾメチルを外層にカルバゾールを有するダブルレイヤー型デンドリマーを合成し、金属集積を含めた基礎物性について測定を行った。さらに、このデンドリマーが光照射によって架橋することで溶媒に不溶化することを見出し、反応機構についての考察をしている。</p> <p>第四章では、前章で合成したダブルレイヤー型デンドリマーのコアを亜鉛ポルフィリンに変更し、基礎物性や構造、金属集積に加えてデンドロンが光捕集アンテナとして機能していることを見出した。このデンドリマーを有機ELのホール輸送材料と発光材料として展開し、EL素子を組み上げた。従来型の非対称型デンドリマーと比べてフェニルアゾメチル部位が高世代化しても優れたホール輸送能を有していることを明らかとした。</p> <p>第五章では、新しい光変換素子を目指し、ホール輸送性亜鉛ポルフィリンコアのダブルレイヤー型デンドリマーと電子輸送性フラーレンとの錯体形成について検討した。ポルフィリンとカルバゾールデンドロンとの協同作用により、フラーレンが取り込まれることを明らかとした。錯形成定数は高次フラーレンの方が高く、デンドリマーの構成単位それがデンドリマー構造によって結合することで錯形成能が大幅に上昇していることを見出し、フラーレン誘導体の選択的分子認識機能を有していることが明らかとなった。さらに、亜鉛ポルフィリンとピリジンとの錯形成反応を用いることでフラーレンの認識をアロステリックに制御できることを示した。</p>			

(以上)

論文審査の要旨

報告番号	甲 第 3357 号	氏 名	山下 建
論文審査担当者：	主査 慶應義塾大学 教授	工学博士	吉岡 直樹
	副査 慶應義塾大学 教授	博士(工学)	垣内 史敏
	慶應義塾大学 准教授	博士(工学)	栄長 泰明
	慶應義塾大学 客員教授	工学博士	山元 公寿

学士(理学) 修士(理学) 山下 建君 提出の学位請求論文は「ポテンシャルプログラムされた 共役デンドリマーの創製」と題し、本論 5 章より構成されている。

天然のタンパク質は精密に制御された 3 次元的な電気的・力学的なポテンシャル構造によって高効率な電子移動や反応・結合を起こしている。申請者は、3 次元のポテンシャル構造を精密に制御できる構造体として剛直なデンドリマー構造に着目、新規なカルバゾールデンドリマーの合成法を開発し、デンドリマー内部にポテンシャル勾配を持たせる事に成功している。さらに、ポテンシャル勾配を持つデンドリマーを有機 EL のホール輸送層やフラーレンの分子認識材料へ利用している。本論文の各章の構成を以下に示す。

第一章では、デンドリマーの高分子における位置づけと機能、電子材料としての利用とポテンシャル勾配型のデンドリマーについてまとめている。

第二章では、新規なカルバゾールデンドロンの合成ルートを開発し、初めて第 4 世代の合成に成功した事を述べている。種々の誘導体の測定からカルバゾールデンドロンは高度にねじれた構造を有しており、それによりカルバゾールの電子求引的置換基効果が誘起される。これが、デンドリマー外層が電子リッチなポテンシャル勾配を発現させる一因と結論付いている。

第三章では、コアにテトラフェニルメタンをデンドロン内層にフェニルアゾメチンを外層にカルバゾールを有するダブルレイヤー型デンドリマーを合成し、金属集積を含めた基礎物性についてまとめている。さらに、このデンドリマーが光照射によって架橋し溶媒に不溶化する事を見出し、反応機構についても考察をしている。

第四章は、前章で合成したダブルレイヤー型デンドリマーのコアを亜鉛ポルフィリンに変更し、基礎物性や構造、金属集積に加えてデンドロンが光捕集アンテナとして機能している事を見出した内容である。このデンドリマーを有機 EL のホール輸送材料と発光材料として展開し、高性能の EL 素子を組み上げている。

第五章では、新しい光変換素子を目指し、ホール輸送性デンドリマーと電子輸送性フラーレンとの超分子形成について検討している。高次フラーレンほど錯形成能が上昇することを見出し、フラーレン誘導体の選択的分子認識機能を明らかした内容である。さらに、亜鉛ポルフィリンとピリジン類との錯形成反応を用いることで、フラーレンの認識をアロステリックに制御できる重要な事実を述べている。

以上、本研究では新しい物質として、ポテンシャルプログラムされたデンドリマーの合成法の確立とその機能解明からデバイスへの展開に成功している。これらの成果は、機能材料やナノテクノロジーなどへ波及する事はもとより、高分子化学や有機化学の進展に貢献し、学術上、寄与するところが少なくない。

よって、本論文の著者は博士(理学)の学位を受ける資格があるものと認める。

内容の要旨

報告番号	甲 第3358号	氏名	大友 一夫
主論文題目：			
クロムの土壤中の挙動と土壤汚染問題に関する地球化学的研究			
<p>近年、多くの土壤汚染問題が発生しており、特に、大都市周辺の工場跡地における土壤汚染という問題は、遊休土地の有効利用と都市の再開発および市民生活との共生を考える上では重要な課題となっている。都心における土壤汚染は、東京都江東区東京ガス豊洲工場跡地の土壤汚染（畠、2007）が話題になっている。しかし、過去においては、東京都江東区のクロム鉱滓埋め立て問題（浅見、1975）が発生し、日本における市街地土壤汚染の原点として注目されたのである。研究の目的および実験などに関する概要は、以下のような各章ごとに区別しながら概説した。</p> <p>第1章では、今回の研究経緯を中心にしながら、クロム汚染問題に絡む様々な事象と問題解決のために行った実験計画などについて述べている。ここでは、地球表面を覆っている土壤に関する環境変化、および都心部における土地の有効活用に関する土壤汚染問題を研究課題として採り上げた経過を述べている。</p> <p>第2章は、研究目的について述べており、今回の研究地域となった工場跡地や遊休地における土壤汚染状況について概説するとともに、クロムによって汚染された土壤の処分や封じ込められたクロム鉱滓の不溶化に関する科学技術的な内容になっている。また、クロム汚染による環境問題の解決は、地下水とその地層との間におけるクロムの挙動に関する研究が不可欠であるため、土壤と地下水との相互作用におけるクロムの挙動に関する研究が重要であることを強調している。</p> <p>第3章は、クロムおよびクロム化合物に関する一般的な性質や特性および製造方法などの情報を文献などを中心にしながら整理するとともに、研究地域における事件の経過と最終処分方法を巡る問題などの事実関係についてまとめた。そして、クロムの性質、特に、六価クロム(Cr^{6+})は、人体に与える影響の大きいことと、今回のクロム鉱滓の処分方法に関する問題点について述べている。</p> <p>第4章は、今回の研究対象としての東京都江東区と江戸川区の境界線を流れる旧中川流域および高濃度のクロム鉱滓を封じ始めた地域としての江戸川区大島小松川公園（以下、「風の広場」とする）地域の地質的な内容と土壤の性質について述べている。また、今回の研究は、いろいろな性質を持っている土壤とクロム化合物との吸着や溶出状況を知ることが必要と考えたため、全国の主な土壤9ヶ所を選択し、それぞれの土壤に関する地質的な性質などについて述べている。</p> <p>第5章は、クロムに関する具体的な分析方法に関する試験分析項目や土壤中の重金属元素の抽出や溶解実験に関する操作方法について述べるとともに、旧中川および風の広場公園地域の重金属分析を始めとする各種土壤を用いた抽出・溶解実験やクロムの水中における土壤反応実験と砂質土壤からのクロム溶出実験に関する実験、さらに、河川の堆積物とCr^{6+}溶出の実験について記載している。</p> <p>第6章は、分析結果および考察について述べており、ここでは、旧中川の河川水と堆積物および風の広場公園表層土の分析に関する結果と考察や各種土壤に対するクロム溶解・吸着に関する実験結果および各種の土壤を用いた抽出実験と砂質層によるCr^{6+}の溶出実験や標準試料と汚染土壤によるクロムの水反応実験の結果について記載している。その結果、旧中川の堆積物は、全クロム（以下、T Cr）を始めとする重金属元素（Zn, Ni, Cu）濃度が国内の主要な河川の堆積物における分析結果（柴原ら、1975）と比べると、極めて高い濃度を示していた。また、風の広場公園の表層土に含まれる重金属元素は、Crなどの重金属元素を含めて低い濃度を示しており、現時点において、この土壤が地下部分からのクロムによって汚染されているか否かは判断できなかった。</p> <p>さらに、人体に有害なCr^{6+}は、公園の表層部や河川の堆積物および河川水からは検出されなかった。また、クロムの土壤中の挙動と吸着に関するメカニズム実験は、いろいろな土壤を選択してみたが、関東ローム層（生田緑地）の試料が土壤中に含まれる還元物質としての二価鉄(Fe^{2+})の含有量が多いこともあって、Cr^{6+}をCr^{3+}に還元することと、土壤中の非晶質物質も多く含まれており、これらによる吸着の影響を受けていた。</p> <p>このことから、溶出水中のCr^{6+}が減少していることがわかった。さらに、風の広場公園の地下層は、砂層であるために封じ始めたクロム鉱滓から再溶出したクロムが地下水とともに移動・流出することが考えられ、クロム鉱滓</p>			

が存在する砂層試料に対するクロム溶液との反応実験を行なった。その結果、これら砂層試料は、還元性物質や非晶質物質が少なく、そのために Cr^{6+} を Cr^{3+} に還元したり、クロムを吸着したり固定化するような能力の少ないことがわかった。一方、クロムで汚染された土壤と水溶液との反応を知るため、クロムで汚染された工場跡地の汚染土壤と堆積物としての標準試料 (JS0-1:JS0-2 混合試料) を用いた Cr^{6+} 抽出実験を行なった、その結果、標準試料は、汚染土壤と比べてクロムの吸着や固定化する能力の高いことがわかった。この実験は、混合試料と反応した溶液中のクロム濃度の時間的变化を測定したが、これらの溶液中のクロム濃度は、早い時間(1日以内)で増加する傾向がある、これらの変化は3日間を経過するとほとんど進まなかった。また、混合土壤は、汚染土壤よりも水溶液における酸化還元反応を進めるための因子、すなわち、土壤中の還元性鉄 (Fe^{2+}) が汚染土壤よりも多く含んでいることと、非晶質物質や低結晶質物質 (アロフェン、フェリハイドライト) などが多く含まれていたことが明らかになった。また、汚染土壤と反応した水溶液中の Cr 濃度が高かったのは、工場跡地の整地作業中に加えられたことが予想される酸化カルシウムや水酸化カルシウムによって溶液の pH が高くなり、その結果として、 Cr の土壤中からの溶出が促進されたものと考えた。

第7章は、今後の課題について述べているが、ここでは、クロム汚染土壤に関する自然科学的な研究内容および実験結果からの所見と対策等について解説している。風の広場公園の地下水からの Cr^{6+} 溶出の潜在的な可能性と予防対策に関しては、地下水の流れ方向や流速などの定期的な観測と Cr^{6+} 溶出測定の実施などの汚染拡大の防止策としての立案と実行が望まれる。今回の研究では、9ヶ所の土壤試料に関する実験的・分析的な研究であったが、今後は、国内の種々な土壤を選択し、今回と同様の手法による実験と分析を行って、今回の研究結果の妥当性の評価を行う必要がある。

論文審査の要旨

報告番号	甲 第 3358 号	氏 名	大友 一夫
論文審査担当者：	主査 慶應義塾大学教授	理学博士	鹿園 直建
	副査 慶應義塾大学教授	工学博士	寺坂 宏一
	慶應義塾大学教授	工学博士	朝倉 浩一
	筑波大学教授	理学博士	林 謙一郎
<p>学士（法学）修士（法学）大友一夫君提出の論文は“クロムの土壤中の挙動と土壤汚染問題に関する地球化学的研究”と題している。</p> <p>近年、多くの土壤汚染問題が発生しており、特に、大都市周辺の工場跡地における土壤汚染という問題は、遊休土地の有効利用と都市の再開発および市民生活との共生を考える上では重要な課題となっている。</p> <p>都心における土壤汚染は、東京都江東区のクロム鉱滓埋め立て問題（浅見、1975）を契機として、多くの地域で問題となっている。この中で、「東京都江東区六価クロム鉱滓事件」は、日本における市街地土壤汚染の原点であり、その後の廃棄物処理に関する法規制の強化と環境行政の見直しになった事件であった。</p> <p>本研究では、東京都江東区と江戸川区の境界線を流れる旧中川と、かつて $1,000 \text{ mgkg}^{-1}$ 以上の高濃度クロム鉱滓を封じ込めた地域となっている江戸川区大島小松川公園（以下、「風の広場」とする）地域に焦点を絞り、河川水と河川堆積物および公園の表層土壤の重金属元素の分析を行い、特にクロムの形態的な分布と濃度について検討している。河川水、旧中川の堆積物中は全クロム（以下、T-Cr）を始めとする重金属元素（Zn, Ni, Cu）濃度が国内主要河川における堆積物と比べて極めて高い濃度を示した。しかし、人体に有害な六価クロム（以下、Cr⁶⁺）に関しては、公園の表層部土壤や河川の堆積物および河川水からは検出されていない。</p> <p>クロムの土壤中の挙動のメカニズムを解明するため、国内の主な土壤と岩石試料を選定（9ヶ所）し、この試料に一定濃度（$1,000 \text{ mgkg}^{-1}$）の六価クロム（K_2CrO_4）を添加し、さらに試料に対して10倍量のミリポア水を加えた吸着反応の実験を行った。その結果、関東ローム層（生田緑地）土壤がクロムを最も効果的に吸着・固定することを明らかにし、関東ローム層土壤には二価鉄（Fe^{2+}）分が Cr^{6+} を Cr^{3+} に還元し、非晶質物質がクロムを吸着・固定化していると考えられる。以上の実験結果は、公園表層土の成分が関東ローム層と同様の源岩質のために、これらの土壤が公園の表層部分を覆土されており、地下部分から溶出するクロム鉱滓からの不溶化に効果的であることを示している。</p> <p>一方、風の広場公園の地下部分は、砂質構造になっており、地中に埋められたクロム鉱滓からの Cr^{6+} が再溶出し、Cr^{6+} が地下水とともに外部に流出することも考えられる。したがって、砂質試料と Cr^{6+} 吸着との関係を確認するために荒川上流の汚染されていない砂質試料を用いて、これに $1,000 \text{ mgkg}^{-1}$ の K_2CrO_4 を加えて、これと水溶液によるクロム溶出の反応実験を行っている。この実験では、溶液のpHを3種類（pH=3, 7, 11）に調整し、それぞれの溶液に対して、一定時間の振とう操作を行ってクロム濃度の経時変化を求めている。その結果、砂質試料は、溶液のpHに影響されることなく、全ての溶液においてクロムを吸着・固定化する能力が低いことを明らかにした。したがって、砂層中の地下水中に溶解した Cr^{6+} イオンは、地下水とともに移動することが可能な状態にあるといえよう。</p> <p>さらに、クロムで汚染された土壤を不溶化するための土壤からのクロム溶出実験を行った。ここでは、クロムで汚染された工場跡地の土壤（汚染試料）と土壤の標準試料（JSO-1:JSO-2 混合試料、以下「混合試料」）に $1,000 \text{ mgkg}^{-1}$ の K_2CrO_4 を加え、その試料と水溶液の溶出反応実験を行い、Cr^{6+} と Cr^{3+} などの挙動と反応メカニズムについての考察を行った。その結果、混合試料にあっては、各ステップごとのクロム溶出量が汚染土壤よりも低くなっている。これは、混合土壤中に含まれる Fe^{2+} などの還元性物質や非晶質物質および低結晶性物質（アロフェン、フェリハイドライト）などの含有量が土壤汚染よりも多いこととの関連性があるものといえる。したがって、水溶性の Cr^{6+} の不溶化に適した方法は、土壤中の還元性物質（Fe^{2+}）と非晶質物質および低結晶性物質などの物質を多く含む土壤を選択することであるといえる。</p> <p>今回の研究から得られた重要なことは、汚染土壤中のクロムを効果的に不溶化するためには、水溶性の Cr^{6+} から不溶性の Cr^{3+} に還元させる物質（Fe^{2+}）や土壤中のクロムに対して有効的な吸着・固定化を行える物質（非晶質物質、低結晶性物質）の存在が必要であり、これらの存在と濃度が土壤試料によって大きく異なることを示した点である。</p> <p>わが国のクロム汚染土壤に関するこのような詳細な地球化学的研究はこれまでになされてこなかった。今後、本研究によってもたらされた知見に基づいて、本研究地域とさらに多くの汚染土壤地域に関する分析的研究、実験的研究を進めることにより、汚染土壤問題の解決に対して、貢献することが少なくない。</p> <p>よって、本論文の著者は博士（工学）の学位を受ける資格があるものと認める。</p>			

Thesis Abstract

Registration Number	"KOU" No.3359	Name	Sharmin, Shaila
Thesis Title			
Geochemical Distribution of Trace Metals and Some Rare Earth Elements : An Evaluation, Fractionation and Assessment of Anthropogenic Pollution in River Water and Sediments			
<p>Water and sediment samples from Nomi River (located in Ota ward of Tokyo, Japan) were collected to determine trace metal concentration, contamination and pollution level. The study also aimed to clarify the trace metal pollution and distribution of rare earth elements (REEs)/ minor elements by measuring trace metal association with various geochemical substrates in the sediments. The concentrations of trace metals in water and sediments were measured in the liquid extract by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), respectively. The concentrations of cations (Na, K, Ca, Sr, Cd, Pb, Fe and Mn) and anions (F⁻, Cl⁻, Br⁻, NO₃⁻, PO₄³⁻, SO₄²⁻) in water samples were determined by Atomic Absorption Spectroscopy (AAS) and Ion Chromatography, respectively. Other major elements and mineralogy of sediments were determined on bulk prior to extracting by X-ray fluorescence (XRF) and X-ray diffraction (XRD) analysis, respectively, which allowed qualitative correlation between the fractionation results obtained and the presence of defined geochemical phases. For REE, total concentrations were measured by X-ray fluorescence method. Total concentrations of trace metals in sediments were determined after strong acid attack. The correlation study reflects, a majority of trace metals in sediments showed significant correlation with each other, REEs, organic matter and fine grained particles (silt and clay). The results showed that most of the trace metals (Zn, Cd, Cu, Ni, Pb, Mo and Cr) concentration in water and sediment exceeded the surface water standard, environmental limit and geochemical background values. According to geoaccumulation index (I_{geo}), the sediments were strongly polluted by Zn and Cd, and moderately polluted by Cr, Cu, Mo, Ni and Pb. Pollution load index (PLI) values of the sediments for all the sampling sites were also higher than 1, which indicates progressive deterioration of the sites and estuarine quality. Normalization with iron (Fe) in sediment samples showed that the pollution could be linked to anthropogenic activities. Geochemical partitioning of trace metals were done by employing a widely used 5- step sequential extraction procedure and the concentrations of trace metals were measured to understand enrichment and metal availability in five geochemical phases. A certified reference sample (JSd-2) provided by the Geological Survey of Japan was also analyzed by using the same procedure as a check and reached 94-102% recovery for all the trace metals studied. The association of Zn and Cd was found highest with adsorbed, exchangeable and carbonate (AEC) fraction and maximum association of Cu was recorded with amorphous Fe oxyhydroxide phase. According to the geochemical partitioning results, the order of potential trace metals mobility in the aquatic environment of Nomi River was- Cd > Zn > Cu > Cr > Ni > Pb > Fe > Mn. The REE and minor element concentrations in the sediment samples appeared to have</p>			

relatively uniform composition at all the sampling sites of Nomi River. The content of organic matter in sediment samples were comparatively high and sediments grain size (silt and clay) in some sites were also fine. The XRD study detected the presence of several clay minerals in sediment samples. All of those are likely to be the major host of trace metals and REEs/ minor elements in sediments. Enrichment factors (EFc) were also compatible with the aforementioned result which confirms sediments are highly contaminated by Zn and Cd. According to the risk assessment code (RAC), the sediments possess very high risk of Zn and Cd, medium risk of Cu, Ni, Cr and Pb, and low risk of Fe and Mn. The study also compared trace metals status in sediments of Old Nakagawa River and revealed that both rivers are mostly polluted in terms of some trace metals toxicity and availability. Further elevated levels of these trace metals in sediments and water of Nomi River might create higher risk to the benthic biota of the river.

論文審査の要旨

報告番号	甲 第 3359 号	氏 名	Sharmin, Shaila
論文審査担当者 :	主査 慶應義塾大学教授	理学博士	鹿園 直建
	副査 慶應義塾大学准教授	Ph. D.	堀田 篤
	慶應義塾大学専任講師	博士(工学)	深渕 康二
	産業技術総合研究所	理学博士	丸茂 克美
学士(農学)修士(農学)Sharmin, Shaila君提出の論文は、“Geochemical Distribution of Trace Metals and Some Rare Earth Elements : An Evaluation, Fractionation and Assessment of Anthropogenic Pollution in River Water and Sediments(微量元素と希土類元素の地球化学的研究：河川水と堆積物の人為的汚染の評価と分別)”と題している。			
河川の汚染問題は、都市の環境問題の中で最も大きな問題の1つである。わが国においては、これまでに河川の水質問題(分析、汚染浄化、水質基準など)については取り上げられてきたが、河川堆積物の汚染についての調査研究はほとんどなされていない。そこで、本研究では、都市の河川として、大田区、世田谷区呑川を取り上げ、その堆積物と河川水の分析的研究を様々な方法を用いて行った。			
堆積物中の分析は、鉱物分析を粉末X線回析法、主要成分(Si, Al, Fe, Ca, Mg, Na, K, Mn, P)の分析を蛍光X線分析法、微量元素(Cr, Ni, Cu, Pb, Zn, Cd, Mo)、希土類元素(La, Pr, Ce, Eu, Sm, Dy, Nd, La等)の分析をICP-MS法と蛍光X線分析法で行った。河川水の分析は、主要成分(Ca, Mg, Na, K, Mn, Cl ⁻ , SO ₄ ²⁻ , PO ₄ ³⁻ , F ⁻ , Br ⁻)の分析法ICP-AES法、陰イオン(Cl ⁻ , SO ₄ ²⁻ , NO ₃ ⁻ , F ⁻ , Br ⁻)分析をイオンクロマトグラフ法、微量元素(Cr, Ni, Cu, Pb, Zn, Cd, Mo)、希土類元素(La, Pr, Ce, Eu, Sm, Dy, Nd, La等)の分析をICP-MAS法によって行った。			
これらの分析より、河川水、堆積物共に微量元素濃度の多くが、表層水の標準値、地球化学バックグラウンド値、環境基準値を超えていたといえる。分析結果を基に求められた堆積物の汚染指標であるIgeo(geoaccumulation index)値、Efc(enrichment factor)値、PLI(Pollution load index)値も多くの“汚染値”であった。特にZnとCdが高い値を示した。堆積物のリスク評価コード(RAC)を求めたところ、Zn, Cdが“高リスク”、銅、ニッケル、クロム、鉛が“中間的リスク”、鉄、マンガンが“低リスク”であった。			
堆積物中の微量元素の存在状態を明らかにするために、堆積物からの微量元素の抽出実験(Hall法)を行った。その結果、堆積物中の微量元素の移動度の順序は、Cd > Zn > Cu > Cr > Ni > Pb > Fe > Mnであった。特に、Cd, Znの存在状態としてイオン交換態/吸着態が主なものであり、これらの移動度が大きいのが特徴的である。河川水中のこれらの元素濃度も高く、Znは河川水の環境基準値を超えていた。			
以上の都市河川(呑川)の堆積物と河川水に関する詳細な分析的、実験的研究は、わが国の都市河川に関して、これまでになされてこなかった研究であり、都市河川の環境問題を考える上で基礎的なデータを提供している。			
今後は、本研究によってもたらされた主要な知見に基づいて、本研究地域とさらには他の多くの汚染都市河川に関する分析的研究、実験的研究を進めることにより、汚染都市河川問題の解決に対して、大きく寄与すると考えられる。			
よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。			

Thesis Abstract

Registration Number	“KOU” No.3360	Name	Muhammad Agung Bramantya
Thesis Title			
Fundamental Study on the Inner Structure of Magnetorheological Fluids by Ultrasonic Propagation Method			
<p>Magnetorheological (MR) fluids are formed by magnetizable micron-size particles suspended in a nonmagnetic fluid. The physical bases of the remarkable characteristics of these fluids are fairly simple. In the absence of an external magnetic field, these suspensions behave as non-Newtonian fluids. When an external magnetic field is applied, a magnetic dipole moment is induced in the magnetic particles. The magnetic interaction between the resulting induced dipoles causes the particles to aggregate forming columnar clusters aligned in the magnetic field direction. These columnar cluster structures restrict the motion of the fluids, thus increasing the viscosity of the MR fluids. MR fluids usually show yield stress strongly depending on the amplitude of the external magnetic field. Practical interest in these MR fluids derives from their ability to provide for rapid response interfaces between electronic controls and mechanical systems, which make them especially useful in control devices.</p> <p>The key to the numerous technology applications of MR fluids lies in their reversible rheological transition which is closed to the rapid change in the inner microstructures. Therefore a detailed understanding of the inner structures and dynamics due to the application of an external magnetic field is needed in order to understand and controlling its rheological properties. Since MR fluids are opaque, it is very difficult to analyze the inner structure using common optical method. Ultrasonic propagation velocity and attenuation in MR fluids change with the application of an external magnetic field. It seems that the formation of clustering structures influences the ultrasonic propagation. Therefore, the author proposes a qualitative analysis of these structures by measuring properties of ultrasonic propagation. Because this ultrasonic technique can be applied to an opaque fluid, it can be useful for analyzing the inner structures of the MR fluids. The main objectives of this dissertation are focused on:</p> <ol style="list-style-type: none">1. Study and investigation of clustering structure in magnetic functional fluids, especially for MR fluids2. Measuring properties of ultrasonic wave propagation in MR fluids3. Study of the effect of the external magnetic field, the elapsed time dependence, effect of the removal of magnetic field, and sweep rate, as well as the volume fraction effect and frequency dependency.4. Study of the hysteresis and anisotropy of ultrasonic wave propagation phenomena. <p>Chapter 1 summarizes the background, previous studies and outline of this study. Chapter 2 provides complete description of the used experimental system and measurement method. An experimental system is the physical, technical and procedural basis for an experiment or series of experiments. Preliminary experimental is conducted before main experimental is realized. It is important because the author is using new equipments, devices and test cell that are not standardized. Investigations of the magnetic field dependencies are given in the chapter 3. Chapter 4 dedicates to discussion of time and frequency dependence. This chapter consists of two sections, first is time dependence that would discuss about application of magnetic field, residual effect of magnetic field and sedimentation phenomenon, second is frequency dependency. Anisotropy is the property of being directionally dependent, as opposed to isotropy, which involves homogeneity in all directions. Chapter 5 explains the results of ultrasonic propagation velocity anisotropy. The author is interesting to investigate the effect of volume fraction due to its significant change on the behaviors of MR fluids in chapter 6. In chapter 7 the author elaborates experiment result of inner structure of MR fluid by means of visualization using optical microscope and CCD camera. Finally, conclusion and future work is summarized in chapter 8.</p>			

論文審査の要旨

報告番号	甲 第 3360 号	氏 名	Muhammad Agung Bramantya
論文審査担当者 :	主査 慶應義塾大学教授	工学博士 澤田達男	
	副査 慶應義塾大学教授	工学博士 三井公之	
	慶應義塾大学教授	工学博士 佐藤徹哉	
	慶應義塾大学准教授	Ph.D. 堀田 篤	
	名古屋工業大学大学院教授	工学博士 井門康司	

学士（工学）、修士（工学）Muhammad Agung Bramantya 君提出の学位請求論文は、「Fundamental Study on the Inner Structure of Magnetorheological Fluids by Ultrasonic Propagation Method（超音波伝播特性による磁気粘性流体の内部構造に関する基礎研究）」と題し、8章から構成されている。

本論文では、流体内部に強磁性体微粒子を含んだ MR 流体(Magnetorheological fluid)を取り上げている。MR 流体に磁場を印加すると内部の強磁性体微粒子が凝集してクラスターを形成し、高い降伏応力を示す。しかし、印加磁場と内部のクラスター形成の関係は詳細には明らかにされていない。そこで、本論文の著者は、非接触で内部構造を解明するために、MR 流体中の超音波伝播速度を調べることを試みている。

第 1 章は序論であり、MR 流体を含む磁気機能性流体の説明を行い、MR 流体の特徴を概説している。そして、超音波計測技術の紹介を行い、本研究の目的を述べている。

第 2 章では、本研究における超音波伝播速度の計測システムを記述している。本システムはパルス法に基づいて構成され、セラミック振動子間に設置された試料中の超音波伝播時間から、超音波伝播速度が計測される。磁場分布、温度制御、超音波送受信の遅延時間等に対する詳細な実験および検討が実施され、高度な計測システムが構築されていることが示されている。

第 3 章では、磁場強度、磁場増加割合が超音波伝播速度におよぼす影響を検討している。磁場の増加・減少過程における超音波伝播速度のヒステリシスに言及し、クラスター形成との関係を考察している。また、クラスター形成には磁場に対応した特性時間が存在することを見出し、磁場増加割合との関連を明らかにしている。

第 4 章では、磁場印加時間および超音波周波数が超音波伝播速度に与える影響を調べており、内部微粒子の沈殿と超音波伝播速度変化の関連を明らかにしている。磁場除去後もクラスターが完全に崩壊せず、残存している可能性を示唆し、その形態は磁場強度に依存することを示している。また、1MHz ~ 8MHz 程度の周波数変化では、MR 流体中の超音波伝播速度は大きく変化しないことを確認している。

第 5 章では、磁場印加方向に応じた超音波伝播速度の異方性を検討し、超音波伝播速度変化とクラスター構造の因果関係について検討を行っている。

第 6 章では、内部の強磁性体微粒子濃度の影響を調べており、微粒子濃度の増加に伴い、クラスター形成時間が短くなることが確認されている。磁場除去後の超音波伝播速度に関しても、第 4 章と同様の結果を得ており、微粒子濃度が変化しても、印加磁場強度に応じてクラスターが残存することを明らかにしている。

第 7 章では、顕微鏡を用いて、印加磁場に応じたクラスターの成長・崩壊過程を可視化し、これまでに明らかとなった超音波伝播速度特性とクラスター可視化画像との対応関係を調べた結果を述べている。印加磁場強度に応じたクラスター個数の変化割合を画像処理によって求め、超音波伝播速度変化との比較検討を行った。その結果、超音波伝播速度とクラスター形成の間には、対応関係があることが定性的に確認されている。

8 章では、結論を述べており、本研究の成果を総括している。

以上要するに、本論文では MR 流体の複雑な内部構造と超音波伝播速度との関連を詳細に調べ、その結果の妥当性を、クラスターの可視化画像によって確かめたものであり、磁気機能性流体工学に関する、工業上・工学上寄与するところが少なくない。よって、本論文の著者は博士（工学）の学位を受ける資格があるものと認める。

内容の要旨

報告番号	甲 第3361号	氏名	浅沼 尚
主論文題目：			
多空間デザインモデルに基づくデザイン法の提案とその適用			
<p>人工物の複雑化や、人工物の周辺である場（ユーザや環境など）の多様化および変動にともない、デザインにおいて検討すべき要素は拡大の一途を辿っている。膨大なデザイン要素の検討においては、デザイン展開における的確な思考が難しく、デザイン要素や要素間関係の見落としが増加すると考えられる。そのため、これからデザインでは、様々なデザインにおいて適用可能な包括的観点を導入し、デザイン要素を明確に整理しつつデザイン展開を進めていくことが必要であるといえる。さらに、膨大なデザイン要素の存在が制約となることで、局所的なデザイン展開に陥る可能性が増加し、新規性を有するデザイン解の導出が難しくなることも考えられる。一般に、新規性を有するデザイン解は、多様なデザイン案を発想するボトムアップ型の展開と、デザイン案の完成度を高めるトップダウン型の展開を双方向的に行うことで導出される。前者には発想法の活用が、後者には分析法の活用が有効である。しかし、発想法や分析法をデザインの視点から分類した研究は少なく、膨大なデザイン要素の存在による制約のもと、新規性の検討を十分に行なうことは難しいといえる。このような背景から、本研究では、デザインにおける包括的な観点を導入したデザイン展開を発想法と分析法の適切な活用により進めることで、的確なデザイン思考および新規性を有するデザイン解の導出を行う新しいデザイン法を提案するとともに、事例適用によりその有効性を示すことを目的とする。</p> <p>第1章では、本研究の目的を示すためにデザインの現状とその課題を概説し、デザインにおける包括的な観点および発想法と分析法を活用した双方向的なデザイン展開の必要性を述べた。</p> <p>第2章では、提案するデザイン法の要件について述べた。包括的な観点として活用する多空間デザインモデルの概要を示し、同モデルに基づきデザイン法の要件を整理した。</p> <p>第3章では、ボトムアップ型のデザイン展開で活用する発想法の分類とその特徴について述べた。デザインにおける活用が想定される36の発想法について、多空間デザインモデルに基づく項目を用いたクラスター分析を実施した。その結果、発想法は5つの類型に分類され、さらに、デザインを視点とした考察により各類型に含まれる発想法の特徴を明確化した。</p> <p>第4章では、トップダウン型のデザイン展開で活用する分析法の分類とその特徴について述べた。第3章で述べた発想法と同様に、デザインにおける活用が想定される40の分析法を6つの類型に分類し、各類型に含まれる分析法の特徴を明確化した。</p> <p>第5章では、提案するデザイン法について述べた。本デザイン法では、まず、多空間デザインモデルにおける価値、意味、状態、属性の4空間（多空間）を観点として、第3章で述べた分類から選定される発想法を用いたボトムアップ型のデザイン展開を行い、つぎに、第4章で述べた分類から選定される分析法を用いたトップダウン型のデザイン展開を行うこととした。</p> <p>第6章では、提案したデザイン法の事例適用について述べた。本適用におけるデザイン法は、発想法によりデザイン要素の抽出、分類、構造化を行ったのち、分析法によりデザイン要素の詳細化を行う構成とした。そして、事例適用におけるデザイン過程やデザイン解の特徴に対する考察を行った結果、多空間を観点としてすることで、多数のデザイン要素の位置づけや関係性を明確に整理したデザイン展開が可能となり、場の多様性や変動に適切に対応する価値と意味を実現し得るデザイン解が導出されることを確認した。さらに、発想法と分析法の両者を用いたことで、場と属性の関係による新たな状態が発想され、かつ、その状態から生まれる価値と意味を適切に具現化するためのデザイン解が導出されることを確認した。以上より、提案したデザイン法が、的確なデザイン思考および新規性を有するデザイン解の導出において有効である可能性を示した。</p> <p>第7章では、本研究の成果および今後の研究課題と展望を述べ、本研究を総括した。</p>			

論文審査の要旨

報告番号	甲 第 3361 号	氏 名	浅沼 尚
論文審査担当者：	主査 慶應義塾大学教授	博士(工学)	松岡 由幸
	副査 慶應義塾大学教授	工学博士	小茂鳥 潤
	慶應義塾大学教授	博士(工学)	青山 英樹
	慶應義塾大学准教授	工学博士	中澤 和夫
<p>学士(工学) 修士(工学) 浅沼尚君の学位請求論文は「多空間デザインモデルに基づくデザイン法の提案とその適用」と題し、7章から構成されている。</p> <p>膨大なデザイン要素の検討が必要なデザインにおいては、デザイン展開における的確な思考が難しく、デザイン要素や要素間関係の見落としが増加すると考えられる。そのため、これからデザインでは、包括的観点を導入し、デザイン要素を明確に整理可能なデザイン展開が望まれる。さらに、膨大なデザイン要素の存在により、局所的なデザイン展開に陥る可能性が増加し、新規性を有するデザイン解の導出が難しくなることも考えられる。一般に、新規性を有するデザイン解の導出には、多様なデザイン案を発想するボトムアップ型の展開である発想法と、デザイン案の完成度を高めるトップダウン型の展開である分析法の活用が有効である。しかし、発想法や分析法をデザインの視点から分類した研究は少なく、膨大なデザイン要素の存在による制約のもと、新規性の検討を十分に行なうことは難しいといえる。以上の背景から、本研究では、的確なデザイン思考と新規性を有するデザイン解の導出を行う新たなデザイン法を提案し、事例適用によりその有効性を示すことを目的としている。</p> <p>第1章では、本研究の目的を示すためにデザインの現状とその課題を概説し、デザインにおける包括的な観点および発想法と分析法を活用した双方向的なデザイン展開の必要性を述べている。</p> <p>第2章では、提案するデザイン法の要件について述べている。包括的な観点として活用する多空間デザインモデルの概要を示し、同モデルに基づきデザイン法の要件を整理している。</p> <p>第3章では、ボトムアップ型のデザイン展開で活用する発想法の分類とその特徴について述べている。デザインにおける活用が想定される36の発想法について、多空間デザインモデルに基づく項目を用いたクラスター分析を実施している。その結果、発想法は5つの類型に分類され、さらに、デザインを視点とした考察により各類型に含まれる発想法の特徴を明確化している。</p> <p>第4章では、トップダウン型のデザイン展開で活用する分析法の分類とその特徴について述べている。第3章で述べた発想法と同様に、デザインにおける活用が想定される40の分析法を6つの類型に分類し、各類型に含まれる分析法の特徴を明確化している。</p> <p>第5章では、提案するデザイン法について述べている。本デザイン法では、まず、多空間デザインモデルにおける価値、意味、状態、属性の4空間(多空間)を観点として、第3章で述べた分類から選定される発想法を用いたボトムアップ型のデザイン展開を行い、つぎに、第4章で述べた分類から選定される分析法を用いたトップダウン型のデザイン展開を行うこととしている。</p> <p>第6章では、提案したデザイン法の事例適用について述べている。事例適用におけるデザイン過程やデザイン解の特徴に対する考察を行った結果、多空間を観点とすることで、多数のデザイン要素の位置づけや関係性を明確に整理したデザイン展開が可能となり、場の多様性や変動に適切に対応する価値と意味を実現し得るデザイン解が導出されることを確認している。さらに、発想法と分析法の両者を用いたことで、場と属性の関係による新たな状態が発想され、かつ、その状態から生まれる価値と意味を適切に具現化するためのデザイン解が導出されることを確認している。以上より、提案したデザイン法が、的確なデザイン思考および新規性を有するデザイン解の導出において有効である可能性を示している。</p> <p>第7章では、本研究の成果および今後の研究課題と展望を述べ、本研究を総括している。</p> <p>以上要するに、本論文は、多空間デザインモデルに基づくデザイン法の、的確なデザイン思考および新規性を有するデザイン解導出に対する有効性を示したものであり、デザイン方法の分野において工学上、工業上寄与するところが少なくない。よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。</p>			

内容の要旨

報告番号	甲 第3362号	氏名	佐藤 智矢
主論文題目：			
Advanced Motion Control of Biped Robot (2足歩行ロボットの高度なモーションコントロール)			
<p>本論文は2足歩行ロボットの高度なモーションコントロールについて述べる。従来、2足歩行ロボットの安定な歩行の実現のために多くの手法が提案されてきた。しかし、複数の手法を同時に使用した場合の研究や議論は不十分である。例えば、整地歩行のための手法は安定性指標が異なるため不整地歩行に応用できなかった。また、制御器ごとの独立した設計についても考慮されていない。しかし、2足歩行ロボットを実用化するためには、このような汎用性や制御特性の独立設計の考慮が重要である。そこで本論文では、2足歩行ロボットの性能を向上させ、手法の汎用性および制御特性の独立設計を考慮した高度なモーションコントロールを示す。</p> <p>第1章では、本研究の背景および位置付けを説明する。</p> <p>第2章では、シリアルリンク型の2足歩行ロボットと爪先関節と踵関節を備えた2足歩行ロボットのモデリングと軌道追従制御を説明する。爪先関節と踵関節を活用することで、歩幅の増加と不整地への適応性の向上が期待できる。</p> <p>第3章では、2足歩行の安定性指標を示す。歩行における安定性指標の1つであるゼロモーメントポイント(ZMP)は整地にのみしか定義できなかったため、ZMPに基づく手法を不整地歩行に適用できなかった。そこで、本研究では不整地歩行のための安定性指標として仮想平面上に定義した仮想ZMPを用いる手法を導出する。仮想ZMPの導入により、整地歩行の安定性と不整地歩行の安定性とを同様に扱うことができZMPに基づく手法の汎用性の向上が期待できる。</p> <p>第4章では、2足歩行の軌道計画について説明する。まず、整地歩行のための軌道計画法を示し、歩幅を増加させるための爪先と踵を用いた2足歩行ロボットのための軌道計画法を提案する。さらに、不整地における軌道計画法と階段における軌道計画法をそれぞれ提案する。これらの提案手法により、整地、不整地、階段いずれの場合であっても、ZMPに基づく整地歩行のための軌道生成法を用いることが可能となり、軌道計画の汎用性が向上する。</p> <p>第5章では、歩行安定化制御を説明する。歩行安定化制御により外乱下においてもより安定な歩行が可能となる。従来当分野であまり考慮されていなかった周波数特性に着目し、歩行安定化のためのZMP外乱オブザーバを提案する。ZMP外乱オブザーバにより、歩行安定化性能が向上し、歩行速度を上げることが可能となる。ZMP外乱オブザーバでは、ZMP外乱の周波数帯域に応じて2つの歩行安定化制御の特性が独立に設計され、用いられている。さらに重心の上下動を考慮した歩行安定化制御を提案する。この手法により、歩行安定化制御の汎用性が向上する。</p> <p>第6章では、未知不整地に適応するための制御を説明する。ここでは、爪先と踵を用いた切り替えインピーダンス制御器を提案する。この提案手法により、未知不整地への適応性を向上させることができる。そして、歩行安定化制御と未知不整地に適応するための制御の両立を図った制御計画を述べる。この制御計画により、それぞれの制御特性を独立に設計することが可能となる。</p> <p>第4章、第5章、第6章においては、それぞれシミュレーションと実験の結果が示され、提案手法の有効性が確認される。最後に第7章にて、本論文の結論を述べる。</p>			

論文審査の要旨

報告番号	甲 第 3362 号	氏 名	佐藤 智矢
論文審査担当者 :	主査 慶應義塾大学教授	工学博士 大西 公平	
	副査 慶應義塾大学教授	博士(工学) 村上 俊之	
	慶應義塾大学教授	工学博士 藤野 浩司	
	慶應義塾大学教授	博士(工学) 斎藤 英雄	
<p>学士(工学)、修士(工学) 佐藤智矢君提出の学位請求論文は「Advanced Motion Control of Biped Robot」(2足歩行ロボットの高度なモーションコントロール)と題し、7章から構成されている。</p> <p>高齢化社会を迎えつつある我が国では、人間支援のために開放空間における2足歩行機械の研究の重要性が指摘されている。そのような歩行機械が様々な状況に対応するには、エネルギー効率の良い歩行軌道に対する追従性、歩行自体に対する安定性および不整地などの未知環境に対する適応性が求められる。本論文の著者はこれらの要求を満たすため、運動の自由度の高い足底を考案し、これに歩行安定性の評価指標となるゼロモーメントポイント(ZMP)を拡張して適用することで高度な歩行の運動制御が可能になることを示したものである。</p> <p>第1章は序論であって研究の背景を述べ、2足歩行に関する従来の研究をまとめた。</p> <p>第2章では不整地歩行に対する能力を増加させるため、足先とかかとの自由度を歩行機械足底に与えることで高度な歩行能力が獲得できることを数式で明らかにし、これに基づく歩行軌道の制御方式を示した。</p> <p>第3章では歩行安定性の指標として用いられるZMPを不整地歩行に拡張する手法を提案した。通常用いられるZMPは平面歩行に適用されるが、仮想支持多角形を用いることで仮想ZMPを定義することが可能になるとともに、これを三次元的な不整地歩行に拡張できた。</p> <p>第4章は仮想ZMPを用いて軌道計画を行う手法を提案した。足先とかかとを持つ歩行機械はストライドを伸張できるが、このような場合でも、足先とかかとの接地を考慮した新しい参照ZMP軌道を考えることで、重心位置変動が小さくかつ安定性を損なわない歩行軌道計画を可能にした。また、第3章で提案している手法を援用することで階段歩行のような連続段差環境での安定歩行実験に成功した。</p> <p>第5章ではモデル誤差や外力印加によるZMP軌道誤差を低減するため、周波数特性に着目したZMP外乱観測器を新たに提案した。これを歩行軌道計画に組み入れることでより安定した歩行ができるることを理論的にも、実験的にも示した。</p> <p>第6章では接地と蹴上げにおける制御剛性を切り変えることで環境に対する適応性が増すことを示すとともに、実機により検証を行った。</p> <p>第7章は各章で得られた成果をまとめ、論文全体の結論を述べた。</p> <p>以上要するに、本論文では歩行の安定指標であるZMPを拡張し、その観測器信号により歩行制御を安定化して軌道計画に取り込むことで、環境親和性の高い歩行ができるることを理論的に実験的に示したもので、2足歩行ロボット分野において工業上・工学上寄与するところが少なくない。</p> <p>よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。</p>			

Thesis Abstract

Registration Number	"KOU" No.3363	Name	Tumerdem, Ugur			
Thesis Title	High Performance Haptic Teleoperation and Collaboration over Networks					
<p>In this dissertation, networked motion control laws are proposed for highly transparent and robust teleoperation systems which can operate over unreliable networks that pose such problems as communication blackouts and time delays. The common approach for these two cases is the use of networked motion controllers which provide robust and high performance tracking. The solution for communication blackouts involves the use of consensus algorithms which can work under switching network topologies, whereas the time delay problem is solved through the application of local damping injection.</p>						
<p>In chapter 1, the background and the motivations for the research are presented as introduction.</p>						
<p>In chapter 2, robust acceleration control using disturbance observers is introduced. It is also shown that acceleration controllers can be used for motion control tasks such as force and position control.</p>						
<p>In chapter 3, firstly, information graphs and consensus algorithms based on graph Laplacians are briefly described. Following this an acceleration consensus algorithm is synthesized, based on the 2nd order consensus algorithms and consensus filters as well as the robust acceleration controllers. The behavior of the acceleration consensus algorithms under local and common inputs is analyzed and a null space controller for networked motion control is introduced.</p>						
<p>In chapter 4, it is shown that haptic teleoperation can be considered as a consensus problem. Acceleration consensus is used for realizing multilateral teleoperation. Force consensus filters are introduced for estimating the average of the forces on a network. Haptic consensus on networks with switching network topologies is shown, demonstrating the robustness of the algorithm, and the validity of the method is verified with experiment results.</p>						
<p>In chapter 5, the haptic consensus algorithm is generalized for scaled teleoperation and micro-macro teleoperation with multiple robots, which is called asymmetric multilateral teleoperation. A new scaled consensus algorithm-filter is introduced which can enable the nodes to track functions of inputs, based on the weights of weighted graphs. Similarly, scaled haptic consensus algorithms are obtained, which enable the scaling of the inputs of operators and the robot sizes, meanwhile guaranteeing stable and transparent asymmetric multilateral teleoperation.</p>						
<p>In chapter 6, the focus of the dissertation shifts to the problem of time delay on the networks, and the issue of stability and transparency in bilateral teleoperation. It is possible to realize stable and high performance teleoperation using the four channel teleoperation architecture by augmenting it with local damping injection. Delay independent L2 stability of the proposed system is shown and transparency analysis is also provided. Furthermore, it is shown with experiments results that the proposed method has good performance under constant and varying time delay scenarios.</p>						
<p>In chapter 7, the ideas in the previous chapter are extended to multilateral control. Again the delay independent L2 stability of multilateral teleoperation based on four channel controllers with damping injection is shown and the sufficient conditions to guarantee the stability are provided. Validity of the proposed method under constant and varying time delay is shown with experiments results.</p>						
<p>In chapter 8, the dissertation is concluded and the contributions are summarized.</p>						

論文審査の要旨

報告番号	甲 第 3363 号	氏 名	Tumerdem, Ugur
論文審査担当者：	主査 慶應義塾大学教授	工学博士 大西 公平	
	副査 慶應義塾大学教授	工学博士 大森 浩充	
	慶應義塾大学准教授	博士(工学) 矢向 高弘	
	慶應義塾大学准教授	博士(工学) 西 宏章	

Bachelor of Science, 修士(工学) TUMERDEM, Ugur (トゥメルデム ウル) 君提出の学位請求論文は「High Performance Haptic Teleoperation and Collaboration over Networks」(ネットワークを介した高性能ハaptic遠隔操作と協調作業の研究)と題し, 7章から構成されている。

力覚や触覚をロボットにより人間に伝えるハapticは, 医療, 介護などの応用のみならず, 遠隔操作や協調作業などの高度な作業への拡張が期待されている。このような拡張にはマスターとスレーブが一対一の関係ではなく, 不特定多数のマスター・スレーブ間のマルチラテラル制御が必要になる。本論文は, 最近着目されているコンセンサス制御を用いることで不特定のマスター・スレーブによる非対称形のタスク分担が可能になることを示した。このように多数のハapticデバイスが遅れのあるネットワークで結合されている場合は, その安定動作を保証しなくてはならないが, 著者は減衰注入法という一種の整形フィルタを提案し, ロバスト安定性が確保できることを示し, ハapticのマルチラテラル化に成功した。

第1章は序論であって研究の背景を述べ, コンセンサス制御とハapticに関する従来の研究をまとめた。

第2章ではすべてのハapticの基礎となっている加速度基準バイラテラル制御について説明するとともに, これがコンセンサス制御方式と極めて整合性が良いことを示した。これを加速度コンセンサスと名付け, マルチラテラル制御に拡張できることを示した。

第3章ではハapticにおける重みつきのコンセンサス制御について考察し, 重み関数から加速度指令を求める具体的なアルゴリズムを示した。

第4章では上記で求めた重み関数によるコンセンサス形成は, 非対称形のタスク分担と等価であり, 遠隔操作や協調作業におけるタスク割当に拡張できることを示した。

第5章では時間遅れのあるバイラテラル制御における安定問題を扱った。マスターとスレーブのモデルと遅れ時間が既知である場合は, スミス予測のような安定化手法が適用できるが, 遅れが未知の場合は適用が難しい。そこで著者はマスターとスレーブの制御器に減衰項のあるフィルタを投入し, L_2 安定な制御が可能になることを示すとともに, この制御系設計法が整形フィルタの設計法と等価であることを示し, これを減衰注入法と名付けた。

第6章では, 上記の結果をマルチラテラル制御に適用し, コンセンサス制御と減衰注入法を融合させた制御系設計法を提案し, 優れたハaptic性能を有することを実験的にも検証した。

第7章は各章で得られた成果をまとめ, 論文全体の結論を述べた。

以上要するに, 本論文では不特定多数によるハapticシステムがコンセンサス制御により制御可能になることを示し, 減衰注入法により安定性が確保できることを示したものでハaptic分野において工業上・工学上寄与するところが少なくない。

よって, 本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

Thesis Abstract

Registration Number	"KOU" No.3364	Name	Yalcin, Baris
Thesis Title	Towards Human to Robot Mutual Skill Transfer		
<p>In this PhD thesis, some possible systems and models are proposed to realize human to robot mutual skill transfer. From the perspective of this thesis, "skill" is the ability to achieve a motion task appropriately. Therefore robots have a lot to learn from a skilled human and then teach to other humans. That is what "mutual transfer" means. Particularly, humans are much better than robots while dealing with the real world environments. On the other hand, robots are better than humans for accomplishing repetitive tasks. It is the reason why robots have been kept in the industrial spaces. The need for the utilization of robots in daily life for various tasks is increasing recently and there are still many issues to be solved to fulfill this need. The concept of skill transfer is proposed to ease the way for the robots to enter social environments which are occupied by humans.</p> <p>Chapter 1 describes the basic organization of the thesis.</p> <p>Chapter 2 describes fundamental structures such as disturbance and reaction force observers to attain robust motion control.</p> <p>Chapter 3 describes force reflecting bilateral teleoperation mechanism.</p> <p>Chapter 4 proposes haptic associative memories based on correlation matrices. Walsh associative memories (WAM) are matrix memories and in this thesis it is shown that they are suitable candidates to realize haptic databases and motion reproduction. Haptic interactions are reproduced perfectly by WAM.</p> <p>Chapter 5 proposes neural network approach to stiffness based storage and reproduction of haptic motion.</p> <p>Chapter 6 proposed Infinite Mode Networks (IMN) as an intelligent learning algorithm for robots. IMNs have been tested under different conditions including noise and time delay. The results show the robustness of the learning algorithm of IMNs.</p> <p>Chapter 7 proposes acceleration waves to reduce the effects of time delay which is caused by communication lines during data transfer between human and robots. Communication delay time may result in possible instabilities for the robot control as well as inappropriate information transfer. Therefore transparent and stable data transfer and control are needed.</p> <p>Chapter 8 proposes a novel design for human-machine interaction. Ferroliquids can be used as the media to communicate with the machines. Ferroliquids feature shape change to convey meaning from one agent to another. In the future, it can be possible to extend the mechanism to a tactile display.</p> <p>Chapter 9 summarizes this dissertation and indicates future expectations.</p>			

論文審査の要旨

報告番号	甲 第 3364 号	氏 名	Yalcin , Baris
論文審査担当者 :	主査 慶應義塾大学教授	工学博士 大西 公平	
	副査 慶應義塾大学教授	博士(工学) 村上 俊之	
	慶應義塾大学教授	工学博士 萩原 将文	
	慶應義塾大学専任講師	博士(工学) 桂 誠一郎	

Bachelor of Science , 修士(工学) YALCIN , Baris (ヤルチュン バルシュ) 君提出の学位請求論文は「 Towards Human to Robot Mutual Skill Transfer 」(人間とロボットの相互スキル伝達)と題し , 8 章から構成されている .

人間のスキルを抽出し , ロボットに転移すれば医療介護のみならず産業にも広く応用が可能であろう . マトリクスメモリーであるウォルシュ連想記憶を用いれば , ハプティックデータベースをスキルごとに記録できる . また , 学習過程には無限モードニューラルネットワーク(IMN)を用いることで雑音に強いシステムにすることができる . これらをハプティクスに応用するため , 従来用いられていた速度と力の波変数を加速度にまで拡張することで高い安定性と透明性が得られる . これらを統合しネットワークを介したハプティックシステムに応用することで人間のロボットへのスキル伝達が可能になる . 本論文はその理論的側面について主に記述したものである .

第 1 章は序論であって研究の背景を述べ , ハプティックデータに関する従来の研究をまとめた .

第 2 章ではモーションコントロールの基礎概念についてまとめるとともに , 力追従型のハプティクスを中心に遅れのあるシステムについて解析を行った .

第 3 章ではハプティック連想記憶に関する考察を行い , ウォルシュ連想記憶により人間の動作ごとのデータベースをロスレスで保存再生できることを示した . また , モーションのスケーリングや時間シフトが可能であることを数式で示した . スキルの抽出にはマトリクスメモリーが効果的であるが , これを実際のハプティクスに導入して , ばねダンパー モデルによる人間のスキルの抽出が可能であることを示した .

第 4 章ではニューラルネットワークを用いて環境モデルの構築が可能であることを示し , 実験により検証を行った .

第 5 章では , モーションコントロールに IMN を適用することで雑音耐性の高い制御が可能になることを示した . 実際にエンコーダ雑音に対する考察を行い , 位置誤差が低減できることを示すとともに , マスターとスレーブの双方で実験を行い , 誤差低減が可能であることを示した .

第 6 章では , バイラテラル制御に加速度波変数を導入することで応答性の改善と安定性の確保という二律背反の要求が高いレベルで実現できることを示した .

第 7 章はこのようなハプティクスの媒体として有力な磁性流体について基礎的な実験と評価を行い , 将来有望であることを示した .

第 8 章では論文全体の結論を述べた .

以上要するに , 本論文では連想記憶によるスキル抽出 , IMN による学習過程および加速度波変数の統合により , 人間のスキル抽出とそのロボットによる再現が可能であることを示したもので , ハプティクス分野において工業上・工学上寄与するところが少なくない .

よって , 本論文の著者は博士 (工学) の学位を受ける資格があるものと認める .

内容の要旨

報告番号	甲 第3365号	氏名	濱田 学
主論文題目：			
高度に水酸化されたカルバサイクル類の化学 - 酵素複合合成			
<p>本研究では、高度に水酸化されたカルバサイクル類の合成をめざし、化学 - 酵素法を相補・相乗的に活用する効率的な手法によって、タミフル合成の中間体、シキミ酸類縁化合物、DHMEQ を合成する新しいルートの開発において以下の成果を挙げた。</p> <p>第一章の序論では背景として、従来行われてきたアプローチを紹介し、本論文の研究における目標・目的を示した。</p> <p>第二章では、カルバ糖類の合成原料として有用な三環性エポキシエステルを標的とし、ブタ肝臓エステラーゼを用いた速度論的光学分割を検討した。反応性の高い “fast isomer” に関し、エステル部位をさまざまに分子設計・合成した結果、エステラーゼの触媒中心モデルの疎水性ポケットによく適合するクロロエチル基を用いると、反応性・鏡像選択性ともに向上することを見出した。酵素反応後、鏡像異性体はカルボン酸とエステルとして得られるので、pH を変え有機溶媒で抽出する「分別抽出」のみで分離できるという点で、実用的にも優れている。分離した鏡像体の一方はオセルタミビルの出発原料として有用であり、もう一方は 3-エピシキミ酸へと導いた。</p> <p>第三章では、カルバサイクル類を合成化学上活用する上で重要な、位置・立体選択的に水酸基を保護・脱保護する新しい手法の開拓に取り組んだ。ラセミ体の 3-エピシキミ酸エステルを基質とし、リバーゼを用いた位置・鏡像選択的反応を検討した。シクロペンタノール中、<i>Candida antarctica</i> リバーゼ B を用いたエステル交換の際、C-5 位に導入したかさ高い TBS 基が効果的に機能し、C-3 位のみ位置選択的に脱アセチル化が進行することがわかった。鏡像体選択比は $E > 500$ と非常に高い値を示した。分割した鏡像異性体の一方は、非天然型シキミ酸エステルへと誘導し、もう一方は、立体選択的な α-配向ジヒドロキシ化を経由して、強力な α-グリコシダーゼ阻害活性を示す voglibose の前駆体へと変換した。さらに、出発物質とは鏡像の関係にある化合物へ展開するルートも確立した。</p> <p>第四章では、強力な NF-κB 活性化阻害剤である DHMEQ の合成に取り組んだ。生物活性本体である(2S,3S,4S)-体の不斉合成にむけ、キノンモノアセタールに対し、ベンジルシンコニジン塩酸塩を不斉源とするエノンの不斉エポキシ化を検討した。反応条件や基質構造を徹底的に検討することにより、反応の選択性、再現性が大幅に向上し、望みの立体化学を有するエポキシドを収率 46%、79.8% ee で調製できるようになった。さらに、10%ほど含まれる不要な鏡像異性体の除去には酵素反応を活用した。ジヘキサノイル体に対し、<i>Burkholderia cepacia</i> リバーゼを作用させる速度論的加水分解により、目的とする鏡像異性体のみを DHMEQ へと変換した。一方、不要な鏡像異性体はモノアシル体にとどまるので、分別結晶のみで両者を完全に分離することができた。</p> <p>第五章では、本研究の総括について述べている。</p>			

論文審査の要旨

報告番号	甲 第 3365 号	氏 名	濱田 学
論文審査担当者：	主査 慶應義塾大学教授	Ph. D.	梅澤 一夫
	副査 慶應義塾大学教授	工学博士	松村 秀一
	慶應義塾大学教授	工学博士	西山 繁
	慶應義塾大学教授	農学博士	須貝 威
<p>学士（理学）修士（理学）濱田学君提出の学位論文は、「高度に水酸化されたカルバサイクル類の化学 - 酵素複合合成」と題し、本論 5 章および実験項から構成されている。</p> <p>本研究では、水酸基の多いカルバサイクル類の合成をめざし、化学合成と酵素を用いた合成を組みあわせて活用する効率的な手法によって、タミフル合成中間体、シキミ酸の類縁化合物、(2S,3S,4S)-DHMEQ を合成する新しいルートの開発を行い、以下のような成果を挙げている。</p> <p>第 1 章では、カルバサイクル類の有用性と従来行われてきた合成法を紹介し、本論文の研究目的および意義について述べている。</p> <p>第 2 章では、高度に水酸化された多環性カルボン酸エステルの、エステラーゼを用いた速度論的分割について述べている。ブタ肝臓エステラーゼを用いた速度論的光学分割により、カルバ糖類の合成原料として有用な三環性エポキシエステルの調製を目的とし、エステラーゼの触媒活性中心に存在する疎水性ポケットに対し、よく適合するエステルを分子設計した結果、クロロエチルエステルを選択した。酵素反応後の粗生成物はカルボン酸とエステルとして得られるので、pH を変え有機溶媒で抽出する分別抽出によって鏡像体を分離し、一方はオセルタミビル合成の中間体とし、もう一方は医薬の原料として有用性の高い 3-エピシキミ酸へと導いている。さらに本章では、さまざまな基質設計からブタ肝臓エステラーゼの触媒中心に対する反応性の変化を示し、最適なエステルを安価かつ大量に調製する方法を確立し、さらに三環性エポキシエステルを基盤にいくつかの活性物質の合成を達成している。</p> <p>第 3 章では、リバーゼを用いた、シクリトール類の位置・鏡像選択的変換について述べている。生理活性物質の合成原料として有用なシクリトール類の調製を目的とし、位置・立体選択的に水酸基を保護・脱保護する新しい手法の開拓に取り組んだ。C-5 位に対して TBS 基を導入したラセミ体の 3-エピシキミ酸エステルを基質とし、シクロペンタノール中、<i>Candida antarctica</i> リバーゼ B を用いたエステル交換により、C-3 位のみ位置選択的に脱アセチル化が進行し、鏡像体選択比也非常に高い値 (E > 500) を示している。位置・鏡像選択的な酵素反応により調製した鏡像異性体は、非天然型シキミ酸エステルへと誘導している。もう一方の鏡像異性体は、立体選択的な α-配向ジヒドロキシ化を経由し、強力な α-グリコシダーゼ阻害活性を示す voglibose の前駆体へと変換している。さらに、出発物質とは鏡像の関係にある化合物へ展開するルートも確立した。このように分子内に多数の水酸基を有するシクリトール類を位置選択的に識別しただけでなく、同時に鏡像異性体の分割も達成し、さらに、酵素反応後の両生成物を有用性の高い物質に導いている。</p> <p>第 4 章では、化学的不斉合成および酵素触媒反応を活用した NF-κB 活性化阻害剤、(2S,3S,4S)-DHMEQ の合成について述べている。光学分割後、活性の高い DHMEQ(2S,3S,4S)-体の不斉合成にむけ、キノンモノアセタールに対し、ベンジルシンシンコニジン塩酸塩を不斉源とするエノンの不斉エポキシ化において反応条件や基質構造の検討により、望みの立体化学を有するエポキシドを収率 57%、79.8% ee で調製している。ここで、10%ほど含まれる不要な鏡像異性体の除去には酵素反応が活用された。ジヘキサノイル体に対し、<i>Burkholderia cepacia</i> のリバーゼを作用させる速度論的加水分解により、目的とする鏡像異性体のみを DHMEQ へと変換し、分別結晶により不要な鏡像体を除去し、活性の高い DHMEQ 光学活性体を大量に調製することができるようになった。</p> <p>第 5 章では、本研究の総括をした後、実験項において各反応の実験を詳細に述べている。以上のように本論文の申請者は、医薬シードの実用化に有用な、酵素を用いた新しい合成法を発見した。</p> <p>よって、本論文の著者は博士(理学)の学位を受ける資格があるものと認める。</p>			

内容の要旨

報告番号	甲 第3366号	氏名	元井 直樹
主論文題目：			
Motion Control of Humanoid Robot for Supporting Human Life (ヒューマノイドロボットによる人生活支援のためのモーションコントロール)			
<p>ヒューマノイドロボットは、構造的利点より人の生活空間に高い適応性を有しており、生活支援の実現が望まれている。しかしながら、生活空間において生活支援を実現しているロボットの研究は少なく、生活空間に対する適応性を十分に活かしていない。そこで本研究では、生活空間における人の典型的なタスクである押し動作に着目し、人生活支援を実現する手法を提案する。人生活支援を実現するためには、ロボットがタスクを行うための対象物に接近する「接近動作」、タスクを実現するための「タスク動作」、また安全性向上のために未知障害物接触時の「安全動作」が必要である。そこで、本論文では各々の期間に着目し、生活空間に適した個々のロボット動作を提案する。</p> <p>第1章では、本研究の背景および目的を述べる。</p> <p>第2章では、本研究で用いるヒューマノイドロボットのモデリングおよび上半身・下半身それぞれに用いるコントローラについて述べる。</p> <p>第3章では、「接近動作」に着目する。人の生活空間を移動する場合、ロボットと環境が衝突しないために所望の着地位置・軌道計画を実現する必要がある。そこでロボットの着地位置・軌道計画の算出において異なるモデルを用いる手法を提案する。その結果、従来の手法では、実現出来なかった所望の着地位置および重心の軌道を同時に実現することが可能となり、生活空間に適したロボットの移動を実現する。</p> <p>第4章では、「タスク動作」に着目する。タスクとして押し動作に着目し、未知対象物に対する押し動作を提案する。未知対象物に対する押し動作であるため、ロボットの能力において動かすことができる対象物であるかを判断し、判断に応じた押し動作を実現する。対象物が動く場合、対象物からの反力情報をもとに、ロボットの動作を修正することにより、安全な押し動作を実現する手法を提案する。結果、対象物が重い場合ほどゆっくりと対象物を押す人のような押し動作を実現し、人の生活支援を実現する。</p> <p>第5章では、「安全動作」に着目する。押し動作における適切なパラメータ設定方法を提案する。提案手法の一例としてロボットが移動中に未知障害と接触した際、腕の力を用いた安全な緊急停止を実現し、ロボットの安全性を向上させる。</p> <p>第6章で本論文の結論を述べる。第3章から第5章の提案手法を組み合わせることにより、人生活支援の一連動作が実現可能であることを言及する。</p>			

論文審査の要旨

報告番号	甲 第 3366 号	氏 名	元井 直樹
論文審査担当者：	主査 慶應義塾大学教授	工学博士 大西 公平	
	副査 慶應義塾大学教授	博士(工学) 村上 俊之	
	慶應義塾大学専任講師	博士(工学) 桂 誠一郎	
	慶應義塾大学教授	博士(工学) 斎藤 英雄	

学士(工学)、修士(工学) 元井直樹君提出の学位請求論文は「Motion Control of Humanoid Robot for Supporting Human Life」(ヒューマノイドロボットによる人生活支援のためのモーションコントロール)と題し、6章から構成されている。

ヒューマノイドロボットは、生活空間における人間支援技術の一つとしてその重要性が指摘されてきた。しかし、実際の生活空間においてどのようなタスクが人支援に繋がるのかいう基礎的な研究についてまとめた研究が少なかった。本論文の著者は、モーションコントロールにおける位置制御と力制御の組み合わせ方法が人支援技術の性能向上の大きな鍵であると考え、これをヒューマノイドロボットにおける接近、タスク、安全の三つの準静的動作で実現したものである。

第1章は序論であって、研究の背景と従来研究を述べ、上記三つの動作がヒューマノイドロボットの人支援に極めて重要であることを指摘した。

第2章では、本研究で用いるヒューマノイドロボットのモデリングおよび上半身・下半身それぞれに用いるコントローラについて述べた。

第3章では、接近動作が着地位置と重心位置の同時制御により実現できることを示した。従来用いられてきた倒立振子モデルによる歩容生成は片脚支持期のみに有効であり、両脚支持期が比較的長い歩行では軌道計画ができなかった。本論文の著者は、片脚支持期における仮想支持点 (VSP) による安定歩行と、両脚支持期における多項式近似によるなめらかな姿勢移行を巧みに融合することで首尾一貫した準静的安定歩行を実現した。この手法を取り入れることで、柔軟な軌道計画が可能になり、人の生活空間において問題となる衝突回避動作などの様々な動作計画に応用できることを明らかにした。

第4章では、タスク動作として需要の多い未知対象物に対する押し動作を、位置制御の修正により実現できることを示した。未知対象物の押し動作は、それが可能である場合は可動対象物であると判断して対象物からの反力情報による位置修正で押し動作を実現する。この修正項を軌道計画に反映させ、対象物に応じて速度を変えることで、人の生活支援に適合した押し動作を実現した。

第5章では、前章の結果を利用し、押し動作が不可能であることはコンフィギュレーション空間における歩行不能領域にあることと等価であると判断し、接触作業中の安全な停止を行う手法を提案した。このため、拡張軌道エネルギー (EOE) という指標を導入し、この空間分布から前進、後退または停止の動作を判断する新しい手法を提案した。また、実際にヒューマノイドロボットを用いて移動中の未知障害物に接触させる実験を行い、安全に停止が実現できることを検証した。

第6章では、第3章から第5章で述べた三つの動作の組み合わせにより、人生活支援の一連の準静的な動作が実現可能であることを示し、併せて論文全体の結論を述べた。

以上要するに、本論文では人支援に用いるヒューマノイドロボットの接近、タスク、安全の三つの準静的動作が EOE 規範で融合可能であることを理論的にも実験的にも示したもので、ヒューマノイドロボットの応用分野において工業上・工学上寄与するところが少なくない。

よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

Thesis Abstract

Registration Number	“KOU” No.3367	Name	Fung Chun Cheong Alex			
Thesis Title	A study of multicast on WDM optical network and IP network					
<p>With the increasing number of applications and devices making use of the network, the demand of high network bandwidth has been increasing sharply in the recent years. Although the advancement of different device technologies helps satisfying the demand, it involves a very high investment of equipments by the network service providers. The method of distributing data can also improve the usage efficiency of available network resources greatly. Multicast is a technique to deliver data from one point to multiple points effectively that the same stream of data is not sent more than once on the same path. Data stream is duplicated at the different branches of the network such that the data stream can be delivered to multiple destinations. The whole set of paths forms a multicast tree and this tree enables the efficient data delivery. However there are problems of how to allocate network resources on different layers of the network, and how to handle the complexity of the multicast delivery model.</p> <p>Chapter 1 presents an introduction to the multicast data delivery. We will first introduce multicast in the Internet Protocol (IP) layer, including the related protocols which realize multicast data delivery. Next we introduce the reliable multicast, in which data has to be delivered correctly to the recipients correctly. Although a large application area multicast is multimedia data delivery in which some data loss is tolerable, there are increasing demands for reliability in multicast such as distributed computing. Structure of the multicast tree for reliable multicast and the data recovery techniques are discussed. Then we move on to introduce multicast tree in the optical network in which wavelength division multiplexing (WDM) technique is employed. In the optical WDM network resources are being allocated to different sessions. We discuss the issues and limitations on the WDM network in order to setup a multicast session.</p> <p>Chapter 2 presents our proposed reliable multicast protocol using local retransmission and forward error correction (FEC) based on group-aided multicast (GAM) scheme. In reliable multicast, feedback and recovery traffic limit the performance and scalability of the multicast session. In our scheme, we improve the original GAM by making use of FEC locally in addition to NACK/retransmission in its local-group based recovery. Our scheme produces FEC packets and multicasts the packets within the scope of a local group in order to correct uncorrelated errors of the local members in each group of the multicast session, which reduces the need for NACK/retransmission. By using our scheme, redundancy traffic can be localized in each group within a multicast session, and the overall recovery traffic can be reduced.</p> <p>Chapter 3 explains the proposed scheme for multicast routing and wavelength assignment for dynamic</p>						

multicast sessions in WDM network using minimum Δ . In this scheme a light-tree for dynamic multicast session for the WDM network is established by choosing the wavelength that leads to a reduction in blocking probabilities by using a parameter Δ . Δ is defined as the overall reduction of connectivity of the nodes in the network caused by a wavelength assignment process when using a particular wavelength, and we assign wavelength resources to the multicast session by choosing the Δ which leads to smallest reduction in connectivity. Through computer simulation, we show that the proposed scheme has lower blocking probabilities when compared with minimum cost scheme under the condition that wavelength conversion is not allowed.

Chapter 4 concludes this dissertation with an overall discussion of the multicast data delivery and techniques discussed throughout the report.

論文審査の要旨

報告番号	甲 第 3367 号	氏 名	Fung Chun Cheong Alex
論文審査担当者：	主査 慶應義塾大学教授	工学博士 笹瀬 巍	
	副査 慶應義塾大学教授	工学博士 山中 直明	
	慶應義塾大学教授	博士(工学) 大槻 知明	
	慶應義塾大学教授	博士(工学) 津田 裕之	

工学士, 修士(工学), Fung Chun Cheong Alex 君提出の学位請求論文は, 「A study of multicast on WDM optical network and IP network (光波長多重ネットワーク及び IP ネットワークにおけるマルチキャストに関する研究)」と題し, 全 4 章から構成される。

近年, ブロードバンドネットワーキング技術のめざましい発展に伴い, 様々なネットワーク環境において, 多様化するユーザ要求に応じた高速かつ柔軟なサービスを達成することが求められている。特定多数のユーザに同一のデータストリームを効率よく伝送する方式として, マルチキャストがあり, 放送と通信の融合を促進する技術として重要になっている。マルチキャストでは, 1 つのデータストリームを, 宛先に近いノードでコピーして分岐伝送することにより, ネットワークリソースを効率よく利用しつつ, 複数ユーザへのデータストリーム伝送を可能にしている。しかしながら, 分岐後の伝送路の帯域や伝搬特性の違いにより, 各ユーザに到達するデータストリームのスループットや誤り率特性が異なるため, マルチキャストの信頼性が低いという課題がある。

本論文は, 放送と通信の融合における基盤サービス技術として, 今後より重要なマルチキャストの高信頼化に焦点を当て, インターネットプロトコル (IP) レイヤにおいて局所的な誤り検出・訂正を用いた高信頼性マルチキャストプロトコル, 及び, 波長多重を用いたフォトニックネットワークにおいて動的なマルチキャストセッションを実現するルーティング・波長割り当て方式を提案している。

1 章では, これまでのマルチキャストに関する研究の流れと, IP レイヤ, 及び, 波長多重を用いたフォトニックネットワークにおいて, マルチキャストを用いた場合の特徴と問題点について概説し, 本研究の目的と位置付けを示している。

2 章では, 多対多の信頼性の高いマルチキャスト通信プロトコルのスケーラビリティを改善する方法として, Group Aided Multicast protocol (GAM) をベースにし, 局所的なグループ内での誤り状況を考慮して, 柔軟に誤り訂正符号と再送要求におけるパラメータを選ぶことにより, 誤りと再送用トラヒックを低減できるマルチキャスト方式を提案している。そして, 計算機シミュレーションにより, 提案方式の有効性を明らかにしている。

3 章では, 波長多重を用いたフォトニックネットワークにおいて, 動的なマルチキャストセッションを実現する際に, ノード間の接続率に関する指標を用いることにより, セッションの変更が生じても適切な経路・波長選択ができるだけ高い確率で維持できるルーティング・波長割り当て方式を提案している。そして, 計算機シミュレーションにより, 従来方式に比べて, 低いブロッキング確率で動的なマルチキャストセッションが実現できることを示している。

第 4 章は結論であり, 本論文で得られた結果を総括している。

以上, 本論文の著者は, IP レイヤにおいて局所的な誤り検出・訂正を用いた高信頼性マルチキャストプロトコル, 及び, 波長多重を用いたフォトニックネットワークにおいて動的なマルチキャストセッションを実現するルーティング・波長割り当て方式を提案し, その有効性を明らかにしており, 工学上, 工業上寄与するところが少なくない。よって, 本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

Thesis Abstract

Registration Number	“KOU” No.3368	Name	Bouk,Safdar Hussain
Thesis Title			
Autoconfiguration, Multi-Metric Clustering and Gateway Selection Schemes for Mobile Ad-hoc Networks			
Mobile Ad hoc Networks (MANETs) are on demand, spontaneous, self-configuring, self-administrative, distributed, and plug-n-play type networks consisting of mobile wireless nodes. These properties attracted large research community to actively carry out research on MANETs. Also these properties make it difficult to solve most of the open issues in MANETs. These issues include IP address assignment to all the mobile nodes that are coming and leaving the MANET, manage network architecture or structure to effectively organize, utilize and manage the network resources, and in the case of connected MANET, MANET connected with IP network, fairly and efficiently provide IP services to all the MANET nodes etc. In this thesis, the solutions to the above-mentioned issues are proposed.			
Chapter 1 describes the background of ad hoc networks, general issues in MANETs, and the purpose and position of this dissertation.			
Chapter 2 focuses on the solution for the IP address assignment to the mobile nodes of the connected MANET. To connect a MANET with an IP network and to carryout communication, mobile nodes need to be configured with unique IP. Dynamic Host Configuration Protocol (DHCP) server auto configures nodes in wired networks. However, this cannot be applied to the ad hoc network as it is due to intrinsic properties of the network. We propose a scalable auto configuration scheme for connected MANETs with hierarchical topology consisting of leader and member nodes, by considering the global Internet connectivity with minimum overhead. In our proposed scheme, a joining node selects one of the pre-configured nodes for its Duplicate Address Detection (DAD) operation. We reduce overhead and make our scheme scalable by eliminating the broadcast of DAD messages in the network. We also propose the group leader election algorithm, which takes in account the resources, density and position information of a node to select a new leader. Also our scheme provides an efficient method to heal the network after partitioning and merging by enhancing the role of bordering nodes in the group.			
Chapter 3 discusses the proposed scheme that efficiently organizes the MANETs into clusters called Energy Efficient and Stable Weight Based Clustering (EE-SWBC) algorithm. EE-SWBC elects cluster heads without sending any additional weight message. It propagates node parameters to its neighbors through neighbor discovery message (HELLO Message) and stores these parameters in neighborhood list. Each node normalizes parameters and efficiently calculates its own weight and the weights of neighboring nodes from			

that neighborhood table using Grey Decision Method (GDM). GDM finds the ideal solution (best node parameters in neighborhood list) and calculates node weights in comparison to the ideal solution. The node(s) with maximum weight (parameters closer to the ideal solution) are elected as cluster heads. In result, EE-SWBC fairly selects potential nodes with parameters closer to ideal solution with less overhead.

Chapter 4 describes the proposed gateway selection scheme for the connected MANETs. In case of connected MANET, where MANET is connected to the IP Network through Gateway nodes, it is important to select a gateway node with stable path, a path with less traffic load, and small delay. Several gateway selection schemes have been proposed that select gateway nodes based on single Quality of Service (QoS) path parameter, for instance path availability time, link capacity or end-to-end delay etc. or multiple non-QoS parameters, e.g. the combination of gateway node speed, residual energy, and number of hops, for MANETs. Each scheme just focuses to improve only single network performance i.e. network throughput, packet delivery ratio, end-to-end delay or packet drop ratio etc. However, none of those schemes improve overall network performance because they focus on single QoS path parameter or multiple non-QoS parameters. To improve the overall network performance, it is necessary to select a gateway with stable path, a path with maximum residual load capacity and less latency. Here, we propose a gateway selection scheme that considers multiple QoS path parameters such as path availability time period, its available capacity and path latency, to select a potential gateway node. Also we improve the path availability computation accuracy, introduce feedback system to send updated path dynamics to the traffic source node and propose an efficient method to propagate QoS parameters in our scheme.

Finally, Chapter 5 concludes and summarizes this dissertation and discusses the future directions in the above mentioned research areas.

論文審査の要旨

報告番号	甲 第 3368 号	氏 名	Bouk, Safdar Hussain
論文審査担当者：	主査 慶應義塾大学教授	工学博士 笹瀬 巍	
	副査 慶應義塾大学教授	工学博士 山中 直明	
	慶應義塾大学教授	博士(工学) 大槻 知明	
	慶應義塾大学准教授	博士(工学) 真田 幸俊	
工学士、修士(工学)、Bouk, Safdar Hussain 君提出の学位請求論文は、「Autoconfiguration, Multi-Metric Clustering and Gateway Selection Schemes for Mobile Ad-hoc Networks (モバイルアドホックネットワークにおける自動設定、複数メトリッククラスタリング、ゲートウェイ選択方式に関する研究)」と題し、全 5 章からなる。			
近年、無線技術の発展に伴い、基地局や有線網などのインフラを必要とせずに、端末同士がパケットを中継することにより直接情報を交換する、自律分散型のモバイルアドホックネットワーク (MANETs) が注目されている。MANETs では、一般に中継ノードを用いたマルチホップ通信を行うため、ノードのクラスタリングやアドレスの設定だけでなく、トラヒック分布やトポロジの動的な変化およびノードリソースの状況に対応して、中継ノードやルーティング経路を適切に選択する必要がある。また、モバイルアドホックネットワークが IP ネットワークと接続する場合には、ゲートウェイとなるノードの選択や重複のない IP アドレスの設定が重要となる。			
本論文では、MANETs における自動設定、クラスタリング、ゲートウェイ選択において、従来方式より、オーバーヘッド、消費電力、パケット到達率などが優れた方式を提案している。			
1 章では、これまでの MANETs に関する研究をまとめ、研究の流れと課題について概説するとともに、本研究の目的について述べている。			
2 章では、MANETs では、マルチホップ経路が階層的なトポロジとなることに着目し、ノードがネットワークに加入する際に必要なアドレスやルーティング情報の割り当てを、前もって選ばれたリーダーノードが代行することにより、自動的に設定する方式を提案している。また、リーダーノードの選択法についても検討している。そして、計算機シミュレーションにより、提案方式は、従来方式に比べて、オーバーヘッドを低減し、スケーラビリティに優れていることを示している。			
3 章では、MANETs における要求品質 (QoS) の指標として、ノードのバッテリー残存量や移動速度、接続の安定度などの複数の評価基準 (メトリック) を考慮して各ノードの重みを算出し、その重みに基づいてクラスタリングを行いつつ、クラスタリング構造を維持するための制御パケットのオーバーヘッドを低減したクラスタリング方式を提案している。そして、計算機シミュレーションにより、提案方式は、従来方式に比べて、オーバーヘッドと電力消費を小さく保つつ、より少ないクラスタ数でネットワークを構築できることを示している。			
4 章では、MANETs が IP ネットワークに接続する場合において、各ノードの稼働時間、リンクの容量や遅延等の複数の QoS パラメータを用いてエンド端末間での特性を推定し、その推定値に基づいて最適なゲートウェイ選択法を提案している。そして、計算機シミュレーションにより、提案方式は、スループットおよびパケット到達率が向上し、かつ遅延量も改善できることを示している。			
第 5 章は結論であり、本論文で得られた結果を総括している。			
以上、本論文の著者は、モバイルアドホックネットワークにおいて、オーバーヘッド、消費電力、パケット到達率などが優れた自動設定、複数メトリッククラスタリング、ゲートウェイ選択方式を提案し、その有効性を明らかにしており、工学上、工業上寄与するところが少なくない。よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。			

内容の要旨

報告番号	甲 第3369号	氏名	矢代 大祐
主論文題目： Network Motion Control under Communication Constraints (通信制約を有するネットワークモーションコントロール)			
<p>産業機器の知能化に伴い、コントローラ・アクチュエータ・センサ間の情報配線のネットワーク化が進んでいる。産業機器の例としては、車載機器・ファクトリーオートメーション・遠隔操作システムなどが挙げられる。ネットワーク化が進む理由は、大規模システムへの高い適用性・S/N比の向上・通信レートの向上・冗長性の増加などの利点があるためである。しかしながら、ネットワークの利用はしばしば通信制約の問題を引き起こす。通信制約には通信遅延・レイテンシ・帯域制限などがあり、ネットワークモーションコントロールシステム(NMCS)の安定性と制御性能を著しく劣化させる。そこで本研究では NMCS の通信制約に対処するための集中型制御器・遅延補償器・フロー制御器・量子化器を提案した。</p> <p>第1章では、本研究の背景・目的・構成・表記法を説明した。</p> <p>第2章では、集中型制御器に基づく位置・力のハイブリッド制御系を提案した。集中型制御器を用いることで、モードに基づくネットワークを介したハイブリッド制御を実現した。また、第3章・第4章・第5章で扱う通信遅延・レイテンシ・帯域制限などの通信制約の問題を定式化した。</p> <p>第3章では、目標値追従特性とロバスト安定性を両立する遅延補償器を提案した。提案法は遅延モデルを必要としない利点を有する。また、集中型制御器を用いたハイブリッド制御系に各補償器を実装して安定性解析・性能解析・シミュレーション・実験を行い、提案した遅延補償器のスミス法と通信外乱オブザーバ(CDOB)に対する優位性及び、従来の分散型制御器に対する集中型制御器の優位性を示した。</p> <p>第4章では、NMCSにおいて制御周期とデータ伝送周期を独立に設計するマルチレートサンプリング手法を提案した。さらに、トラフィック状況に応じてデータ送信周期を動的に調整する端末間フロー制御器を提案した。提案法を用いることで、トラフィック状況がリアルタイムに変化した場合においても短いデータ送信周期と低通信遅延を両立できることをシミュレーションと実験により確認した。</p> <p>第5章では、集中型制御器に基づくハイブリッド制御のための量子化器を設計し、通信帯域制限に伴う目標値追従特性の劣化を補償できることを解析、シミュレーション、実験により確認した。</p> <p>最後に第6章で、結論として各章で得られた内容をまとめ、本研究の成果を要約した。</p>			
以上			

論文審査の要旨

報告番号	甲 第 3369 号	氏 名	矢代 大祐
論文審査担当者：	主査 慶應義塾大学教授	工学博士 大西 公平	
	副査 慶應義塾大学教授	工学博士 浜田 望	
	慶應義塾大学准教授	博士(工学) 矢向 高弘	
	慶應義塾大学教授	工学博士 笹瀬 巍	

学士(工学)、修士(工学) 矢代大祐君提出の学位請求論文は「Network Motion Control under Communication Constraints」(通信制約を有するネットワークモーションコントロール)と題し、6章から構成されている。

産業用ロボットや移動機械などが協調して作業を行うネットワーク型のモーションコントロールへの関心が高まっている。その中で、通信ネットワークを使ってのモーションコントロールは最も早い実用化が期待されている。しかし、実際には、通信路特有の制約のため必ずしも理想的な制御が可能になるわけではない。本論文の著者は、ネットワークに接続されたモーションコントロールシステム(NMCS)における通信制約を定式化し、これに沿った制御器の設計法を提案し、その有効性をシミュレーションと実験で確認したものである。

第1章は序論であって、研究の背景と従来研究を述べた。

第2章では、NMCSにおける通信の性能劣化は遅延および帯域制限などによる通信制約によるものであると捉え、その定式化を行った。また、集中型制御器による位置と力のハイブリッド制御系を提案し、運動のモード別制御が可能であることを示した。これを拡張することで機能や自由度に応じた NMCS 設計が可能になることを示した。

第3章では、NMCS の性能に大きく影響する遅延に対する性能評価を行った。遅延が大きいほど追従特性とロバスト安定性は大きく劣化する。しかもこの二つはトレードオフの関係にあるため、その両立が設計の鍵になる。本章では遅延モデルを用いない独自の制御方式を提案し、スミス補償法や通信外乱オブザーバに比べて性能の点で優位にあることを理論的にも実験的にも示した。

第4章では、ネットワークの性能と制御性能の分離を図るために、マルチレートサンプリングを用いた制御手法を提案した。NMCSにおけるデータ伝送周期と制御周期を独立にすれば、通信のトラフィックに応じた制御が可能になる。このために端末間のフロー制御器を提案し、その実装を行うとともに、実際にトラフィック状況を変化させる実験を行ってその有効性を検証した。

第5章では、集中制御器によるハイブリッド制御において通信帯域の制限により量子化誤差が性能に大きく影響することを示すとともに、制御性能劣化の少ない量子化器を設計し、再現性に関する性能が改善できることをシミュレーションと実験で検証した。

第6章は、本論文の結論である。

以上要するに、本論文では制御系ループに通信路を含む NMCS における通信路の遅延や帯域制限あるいはトラフィック状況の変化などに適応するモーションコントロールの制御器を開発し、ハイブリッド制御に有効であることを理論的にも実験的にも示したもので、ディジタル制御の応用分野において工業上・工学上寄与するところが少なくない。

よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

Thesis Abstract

Registration Number	“KOU” No.3370	Name	Liyanage, Maduranga			
Thesis Title	Resource allocation and channel estimation techniques for OFDMA systems					
<p>Wireless communications is ubiquitous. People are no longer just checking email from wireless devices. Multimedia services are in very high demand, while the quality of multimedia services is increasing. This puts enormous pressure on the wireless service providers to constantly increase the throughput. The 4th generation wireless systems are been designed to address this throughput demand. Orthogonal-frequency-division-multiplexing (OFDM) technology is being chosen as the PHY/MAC layer of the 4th generation networks due to number of advantages it provides and high throughput being one of them. Although OFDM is able to provide increased throughput in theory, in practice it is difficult to achieve this limit. Resource allocation is the technique that allocates bandwidth, power, etc., to users, such that the system throughput is increased, while at the same time user quality-of-service (QoS) is maintained.</p>						
<p>Chapter 1 presents an introduction to the OFDM system with its' theoretical background. Then resource allocation fundamentals are presented with some simulation results showing the importance of proper resource allocation and also the nature of the complexity of the problem. Finally we introduce the channel estimation fundamentals of the OFDM system. Channel estimation is an important, as well as an integral part of OFDM systems which uses coherent demodulation, multiple-input-multiple-output (MIMO), antenna selection and many other techniques. Most of all, channel estimations are required for proper resource allocation. Resource allocation algorithms rely heavily on the channel estimations to allocate subcarriers, power, modulation and coding levels, etc., to achieve better throughput and QoS. Hence, channel estimations play and important part in the resource allocation process as well. A discussion on importance of channel estimations and the complexity involved with the process is discussed here.</p>						
<p>Chapter 2 presents our proposed low complexity resource allocation technique using a user ranking procedure to address the complexity issue of the channel estimation in OFDM systems,. This technique takes in to account users channel characteristics and define several attributes. Fuzzy set theory is used then on these attributes to prioritize the users. The proposed methodology is flexible in the sense that it can be used with different attributes to customize to the system parameters and required performance.</p>						
<p>Chapter 3 explains the proposed steady-state Kalman filter for the channel estimation in OFDM systems. Conventional Kalman filters are used in OFDM systems for channel estimation due to their simplicity and the ability to operate in non-stationary environments. Nevertheless, Kalman filters are quite computationally complex due to a matrix inversion present in the calculation. In OFDM systems, channel estimations are required to perform frequency and this could become a computational burden. The</p>						

proposed steady-state Kalman filter uses channel and system characteristics to simplify the problem to a scalar level. In addition to reduced complexity, the steady-state Kalman filter is able to avoid the convergence period, thus providing better performance.

Chapter 4 presents a statistical analysis of the quantization noise present in an end-to-end OFDM link. Quantization noise is present in every digital communication system, and although the higher resolutions of currently available quantizers are able to reduce the quantization noise to negligible levels, this higher resolution comes at a high power consumption cost. With newer systems integrating MIMO, the effect of power consumption of the quantizers are going to be more severe as parallel radio-frequency (RF) links are required. Here we identify the effect of system model on the quantization noise. It has been shown that quantization noise is a function of the quantizing signal probability density function (PDF), and here we analyze how the signal PDF is changing from the transmitter to the receiver end, and how it affects the quantization noise. This study is motivated by the Kalman filter channel estimation, where the noise statistics are an important parameter that needs to be known. Often only background Gaussian noise is considered, but as we have shown in this chapter, quantization noise should also be taken into account depending not only on the quantizer resolution, but also on the propagating channel.

Chapter 5 concludes this dissertation with an overall discussion of the OFDM system and techniques discussed throughout the report.

論文審査の要旨

報告番号	甲 第 3370 号	氏 名	Liyanage, Maduranga
論文審査担当者：	主査 慶應義塾大学教授	工学博士 笹瀬 巍	
	副査 慶應義塾大学教授	工学博士 山中 直明	
	慶應義塾大学教授	博士(工学) 大槻 知明	
	慶應義塾大学准教授	博士(工学) 真田 幸俊	
工学士，修士（工学），Liyanage, Maduranga 君提出の学位請求論文は、「Resource allocation and channel estimation techniques for OFDMA systems (OFDMA システムにおけるリソース割り当てとチャネル推定技術)」と題し，全 5 章から構成される。			
近年，移動通信技術とその利用環境はめざましい発展を遂げてあり，多様化するマルチメディア情報を様々な通信環境において高速に送受信できる要求がますます高まっている。特に，マルチパス伝搬路での高速伝送に適した直交周波数分割多重(OFDM)変調方式や直交周波数分割多元接続方式(OFDMA)を基盤として，高スループット，低遅延，ユーザの要求に応じた柔軟な品質制御を図る研究開発が精力的になされている。ブロードバンド移動通信ではチャネルの伝搬状況が大きく変動する。よって，チャネル状況を的確に推定して，電力，サブキャリア，送受信アンテナ，変調方式，誤り訂正などのリソースを，ユーザ毎に適切に割り当てるることは重要な課題である。			
本論文は，今後のブロードバンド移動通信技術の発展を担う，OFDM および OFDMA を用いたシステムにおけるリソース割り当てとチャネル推定に焦点を当て，高性能化や高効率化に対する検討を行い，ユーザごとの品質要求を満足しながら高スループットを達成できる，優れたリソース割り当て方式，および，演算量を低減できるチャネル推定方式を提案している。			
1 章では，これまでの移動通信システムに関する研究の流れと，リソース割り当てとチャネル推定に関する研究課題について概説し，本研究の目的について述べている。			
2 章では，OFDMA システムにおいて，各ユーザのサブキャリアの受信特性を複数の評価尺度を用いて，ファジー理論によりユーザのランクを求め，そのランクに従って柔軟にサブキャリアを割り当てる方式を提案している。そして，計算機シミュレーションにより，提案方式は，サブキャリア割り当てに要する収束までの繰り返し演算量を低減できることを示している。			
3 章では，レイリーフェージング環境下の OFDM を用いた移動通信システムにおいて，定常状態でのカルマンゲインを用いて，フィルタの収束性が優れ，かつ，演算量も少ないチャネル推定法を提案している。提案方式では，行列の対角性を利用してカルマンフィルタ問題をベクトル領域からスカラ領域へ変換することにより，定常状態でのゲインを容易に導出することを可能にしている。また，信号対雑音電力比(SNR)によるチャネルの雑音分散を導出する手法も提案している。そして，計算機シミュレーションにより，提案方式が従来方式よりも大幅に演算量を低減できることを示している。			
4 章では，OFDM を用いたブロードバンド移動通信において，多入力多出力アンテナを併用して高スループットや低 SNR を達成する場合には，電力削減のために量子化レベルを低く抑える必要があるが，そのような場合での量子化が並列伝送信号に及ぼす影響について解析し，量子化 OFDM 伝送信号の確率密度関数と量子化雑音の関係を明らかにしている。			
第 5 章は結論であり，本論文で得られた結果を総括している。			
以上，本論文の著者は，OFDM を用いた次世代移動通信システムに適したリソース割り当て方式とチャネル推定方式を提案し，その有効性を明らかにしており，工学上，工業上寄与するところが少なくない。よって，本論文の著者は博士(工学)の学位を受ける資格があるものと認める。			

Thesis Abstract

Registration Number	"KOU" No.3371	Name	Gu, Ye
Thesis Title	A Study on Fundamental Technologies of Wearable Artificial Kidneys Using Microfluidic Systems		
<p>Recently, millions of people affected by Chronic Kidney Disease are receiving dialysis treatment which is complained for high costs and restrictions of patients' daily life. A wearable artificial kidney (WAK) which works instead of the dialysis system and allows patients to live daily lives is strongly demanded. In this thesis we propose a WAK using microfluidic system which can exploit the merits of small sizes, fast diffusion, and high specific surface. In particular we focus on the fundamental technologies including separation of wastes from blood and purification of dialysate. We developed a microfiltering device using polyethersulfone (PES) nano porous membranes which is superior in selective separation of molecules of nano orders. The device is geometrically optimized according to theoretical microfluidics so that a 2.5 times urea removal efficiency of a human kidney is realized. We consider a method of using bacteria in dialysate purification for their merits of complex multistage reaction at room temperature. For utilization in microfluidic systems, bacteria are immobilized using alginate gel beads. The gel beads, whose sizes affect the ferment efficiency of bacteria, are formed by an emulsion droplet generating device which is proved theoretically and experimentally to be capable of controlling droplet size. The relation between bead size and bacteria ferment efficiency is evaluated using yeast.</p> <p>Chapter 1 describes the motivation, original contributions and outline of this work.</p> <p>Chapter 2 describes the background knowledge and previous research related to this work including function of kidneys, wearable artificial kidney, porous membrane, immobilized organisms and relevant previous researches.</p> <p>Chapter 3 describes theoretical microfluidics related to separation and theories of diffusion through porous membrane in multilayered microfluidic device. And the structural design, fabrication and optimization of the microfilter according to the theories are also described.</p> <p>Chapter 4 describes the experimental setup and results including porous membrane separation properties, and diffusion efficiency evaluation of our multilayered microfilter. Also the geometrical optimization of our device is verified to be feasible.</p> <p>Chapter 5 describes theoretical equations on the equilibrium of drag forces and surface tension in droplets generation, and enzyme kinetics of bacteria immobilized with gel beads, and the design and fabrication of emulsion droplet generating device.</p> <p>Chapter 6 describes the procedure of gel beads generating and bacteria immobilization, and the experimental evaluation of bead size controlling and bacteria ferment efficiency. By experimental results, our size prediction equation is verified to be reliable with a differential of less than 5%.</p> <p>Chapter 7 summarizes the results of this work and discusses future research prospects.</p>			

論文審査の要旨

報告番号	甲 第 3371 号	氏 名	Gu, Ye
論文審査担当者：	主査 慶應義塾大学専任講師	博士（工学）三木 則尚	
	副査 慶應義塾大学教授	工学博士 植田 利久	
	慶應義塾大学准教授	博士（工学）佐藤 洋平	
	慶應義塾大学准教授	Ph.D. 堀田 篤	
	慶應義塾大学専任講師	博士（工学）須藤 亮	
<p>学士（工学）修士（工学）Gu, Ye 君提出の学位請求論文は「A Study on Fundamental Technologies of Wearable Artificial Kidneys Using Microfluidic Systems（マイクロ流体システムを用いた携帯型人工腎臓の基盤技術に関する研究）」と題し、7 章から構成されている。</p> <p>慢性腎臓病を患う数百万人の患者が透析治療を受けており、長時間の病院への拘束により QOL が著しく損なわれている。そこで、病院に行かずとも透析治療を行える携帯型人工腎臓の開発が強く求められている。本論文の著者は、短い拡散時間や、大きな比表面積、さらには小型、軽量なシステムなどの利点を有するマイクロ流体システムを用いた携帯型人工腎臓を提案し、特にその開発に必要な基盤技術として、血中不要物除去のためのマイクロフィルタ、ならびに透析液処理を行う微生物のマイクロ流体システム内への固定化技術に関する研究を行っている。</p> <p>第 1 章は序論であり、研究の背景を述べ、携帯型人工腎臓の要求機能を示すとともに、基盤技術として多孔質膜とマイクロ流路を多層化したマイクロフィルタ、ならびに微生物をアルギン酸ゲルビーズを担体としてマイクロ流体デバイス内に固定、利用する技術を提案している。</p> <p>第 2 章では、透析治療、携帯型人工腎臓、マイクロフィルタ、微生物固定など、本研究に関連する従来研究を詳述し、本研究の新規性ならびに意義を明らかにしている。</p> <p>第 3 章では、多孔質膜とマイクロ流路を多層化したマイクロフィルタの透過性能を理論的に導出した後、ポリエーテルサルファン膜（PES 膜）と流路パターンを有するチタン薄膜からなるマイクロフィルタの設計、ならびに製作方法について述べている。</p> <p>第 4 章では、製作したマイクロフィルタの特性を、低分子電解質イオンである Na^+ および Cl^-、分子サイズの異なる蛍光物質である FITC-Dextran を用いて評価した結果を示している。電解質イオン濃度は溶液の電気伝導度、FITC-Dextran 濃度は蛍光強度から導出し、分子サイズに依存したフィルタ特性を評価している。PES 膜の成膜条件の実験的探索、マイクロ流路形状の最適化ならびに多層化を通じ、製作したマイクロフィルタが腎臓に対し、体積比にして 2.5 倍のフィルタ性能を有することを示している。</p> <p>第 5 章では、同軸円管を用いた微小ゲルビーズ生成を提案し、内管から流出するビーズの表面張力と外管を流れる流体による抗力のつり合い式から、管形状ならびに流速と生成されるゲルビーズのサイズとの関係を理論的に導出している。また、微生物をゲルビーズで固定したときの微生物活性とゲルビーズサイズの関係を Michaelis-Menten の式から導出している。</p> <p>第 6 章では、同軸ガラス管を用いたゲルビーズ生成デバイスを開発し、アルギン酸ゲルビーズを生成、評価し、第 5 章で導出した理論との誤差が 5% 以下であることを示している。また、イースト菌をゲルビーズ内に固定化し、その活性をエタノール生成能により評価している。</p> <p>第 7 章は本論文の結論であり、各章で得られた知見を総括し、今後の展望を述べている。</p> <p>以上要するに、本論文の著者は、携帯型人工腎臓の基盤技術として、ポリエーテルサルファン膜を用いたマイクロフィルタ、ならびにアルギン酸ゲルビーズを用いた微生物固定化技術を提案し、理論的解析ならびに実験によりその有効性を確認している。その成果は、携帯型人工腎臓分野にとどまらず、マイクロ・ナノ工学分野において工学上、工業上寄与するところが少なくない。よって、本論文の著者は博士（工学）の学位を受ける資格があるものと認める。</p>			

内容の要旨

報告番号	甲 第3372号	氏名	三宅 健
主論文題目：			
On Extreme Points of the Tracial State Space of Noncommutative Spaces (非可換空間のトレース状態空間の端点について)			
<p>本学位論文はθ変形と呼ばれる座標環（多項式関数代数）の変形手法によって得られる幾つかの非可換空間（非可換代数）のトレース状態空間の端点の研究成果についてまとめたものである。状態、及び、状態空間の研究は量子力学にその起源を持ち、以後、関数解析学、特に作用素環論における重要な研究分野の一つとして現在に至っている。状態は代数的な見地からはある単位元を有する*-代数 A 上の正規化された正值線形汎関数 φ として定義される。この際、*-代数 A は確率論における確率変数の為す代数に対応し、組 (A, φ) は代数的確率空間と呼ばれる。状態の中で $\varphi(ab) = \varphi(ba), \forall a, b \in A$ なる性質を満たすものをトレース状態という。この時、*-代数 A 上のトレース状態全体は凸集合を為すことが知られている。このことはトレース状態空間の凸集合としての端点が特定されることによってトレース状態空間の構造が決定されることを意味する。通常、この種の研究は C^* 代数やフォン・ノイマン代数を用いた作用素環論的見地から行われる。本論文ではその観点は採らず、純代数的に幾つかの非可換空間のトレース状態空間の端点を取り扱う。非可換空間のトレース状態空間の端点を調べることの研究上の動機は、可換代数のトレース状態空間と複素パラメーターによって変形された非可換代数のトレース状態空間を比較照合することによって非可換代数の特質を調べることである。以下、各章の概略を述べていく。</p> <p>本論文の第1章では、これらの研究成果を叙述するうえで必要になる基本概念について述べる。まず*-代数とその上で定義される状態の定義を与え、それらの基本的な性質について述べる。更にトレース状態とその集合のなすトレース状態空間とその端点を定義する。また*-代数とその上の状態について成り立つ Jensen 型の不等式について述べる。</p> <p>本論文の第2章では、偶数次元非可換平面の非自明なトレース状態の構成について述べる。まずθ変形の基本的な例である偶数次元非可換平面を紹介する。θ変形とは量子群や量子包絡代数に用いられる代数の変形パラメーターが通常 $q \in C - \{0\}$ で与えられるのに対し、θ変形はその変形パラメーターとして歪対称行列の要素が用いられる変形手法である。次に*-代数の単項式に正則 (regular) という概念を導入したうえで、非可換平面上の自明に与えられるトレース状態空間の端点を紹介し、この定義の一般化として非自明なトレース状態を構成する。更にこれらのトレース状態が、変形パラメーターがある条件を満たす場合にトレース状態空間の端点になることを示す。</p> <p>本論文の第3章では、偶数次元非可換平面におけるトレース状態の構成法を3次元非可換球面の場合に応用しトレース状態空間の端点の決定について述べる。具体的には3次元非可換球面上のトレース状態を詳しく精査し、最終的に3次元非可換球面のトレース状態空間の端点が区間 $(0,1)$ と2組の円周によってパラメーター付けされることを示す。</p>			

論文審査の要旨

報告番号	甲 第 3372 号	氏 名	三宅 健
論文審査担当者 :	主査 慶應義塾大学教授	理学博士	前田 吉昭
	副査 慶應義塾大学教授	工学博士	仲田 均
	慶應義塾大学教授	Ph.D.	伊藤 公平
	慶應義塾大学准教授	理学博士	田村 要造
<p>学士（理学）修士（理学）三宅健君提出の学位論文は「On Extreme Points of the Tracial State Space of Noncommutative Spaces」（非可換空間のトレース状態空間の端点について）と題して3章からなる。確率論や数理物理の研究のなかで、状態（state）およびその状態空間（state space）の構造を調べる問題は古くから盛んに研究され、関数解析および作用素環の研究分野での重要な研究として発展している。状態は、単位元をもつ* 代数 A 上の正規化された正值線形汎関数として定式化される。状態のなかで、特に基本的であるトレースの性質を持つものをトレース状態という。また、* 代数 A の上のトレース状態全体は凸集合をなすことが知られており、端点が特定されれば、基本的にトレース状態の構造は解明される。トレース状態の研究は、C^* - 代数やフォン・ノイマン環といった完備位相空間をもとにした作用素環の問題として扱われているが、この問題を純代数的な問題として取り扱うという、従来にはない独自の問題意識で行ったことが特色といえる。本研究の基本的な結果は、具体的な代数的非可換空間（非可換環）のトレース状態空間の典型的な端点を具体的に構成したこと、その特性を調べることで、端点の分類に成功したことである。本研究では、可換代数でのトレース状態空間との比較により非可換代数の特質についても調べることが出来ている。</p> <p>第1章は、* - 代数およびその基本的概念、トレース状態およびその端点についての基本的性質について述べている。この章では、特に、端点を特徴づける際に重要な鍵となる Jensen 型不等式についての結果とその証明を与えている。本研究は、純代数的な立場で状態を調べることが目的であり、今までに知られている Jensen の不等式をこの立場から見直した新しい結果を得ている。</p> <p>第2章では、偶数次元非可換平面の非自明なトレース状態の構成について考察している。θ 变形の基本的な例である偶数次元非可換平面を考察している。θ 变形とは量子群や量子包絡代数に用いられる代数の変形パラメーターが通常 $q \in C - \{0\}$ で与えられるのに対し、θ 变形はその変形パラメーターとして歪対称行列の要素が用いられる変形手法である。この非可換平面上の自明に与えられるトレース状態空間の端点の構成を行っている。* 代数の単項式に対して正則性の概念を導入し、トレース状態空間の端点の再定義を行い、この定義の一般化として非自明なトレース状態を構成している。更に、これらのトレース状態が、変形パラメーターがある条件を満たす場合にトレース状態空間の端点になることを示している。</p> <p>第3章では、偶数次元非可換平面におけるトレース状態の構成法を3次元非可換球面の場合に応用しトレース状態空間の端点の決定を行っている。具体的には3次元非可換球面上のトレース状態を詳しく精査し、最終的に3次元非可換球面のトレース状態空間の端点が区間(0,1)と2組の円周によってパラメーター付けされることを示している。</p> <p>以上要するに、本論文の著者は、代数的な非可換空間におけるトレース状態の端点の具体的構成とさらにはその端点を決定付けることに成功したことであり、非可換幾何学の研究分野に大きく寄与した結果である。同君は、この問題を通して、能力を十分備えた独立した研究者であることを示したといえる。</p> <p>よって、本論文の著者は博士（理学）の学位を受ける資格があるものと認める。</p>			

Thesis Abstract

Registration Number	“KOU” No.3373	Name	Chen, Yanfei
Thesis Title			
A Study on Energy-and-Area-Efficient Charge Redistribution Successive Approximation Analog-to-Digital Converters			
<p>In battery-powered mixed-signal applications including data communication and image processing systems, high performance analog-to-digital converters (ADC) are in great demand. This work aims to design medium resolution and moderate sampling rate ADCs with very low power consumption and small footprint. Energy and area savings are realized in several aspects. In architecture selection, charge redistribution based successive-approximation-register (SAR) architecture shows the highest power efficiency, benefiting from the structure containing only one active analog component. In circuit design, each of ADC building blocks is simplified and optimized to reduce power consumption and area. Split capacitor digital-to-analog converter (CDAC) is used to reduce input load capacitance and area. This work proposes a split CDAC calibration scheme to improve linearity performance. A bridge capacitor larger than conventional design is implemented so that a tunable capacitor can be added in parallel with the lower-weight capacitor array to compensate for mismatches. A tri-level charge redistribution scheme is proposed to reduce the CDAC switching energy and improve the settling speed. Differential capacitor bottom-plate charge-sharing technique is used to realize the third reference level without consuming extra power. The tri-level scheme also helps simplifying the SAR control logic circuits by eliminating the need for set-and-reset function. To avoid on-chip reference generation and therefore save power and cost, any reference voltage different from the supply voltage is removed. Asynchronous processing technique is used to eliminate power-hungry GHz clock generation and speed up the SAR algorithm as well.</p>			
<p>The thesis is organized as follows:</p> <p>Chapter 1 is an introduction of the overall study, starting from the data converter history and a variety of architectures. The trend in ADC design and the motivation of this research is summarized.</p> <p>Chapter 2 presents the split CDAC calibration scheme. The issues of conventional split CDACs are analyzed, followed by the principle and implementation of the proposed calibration method. The feasibility is proved by the test chip measurement results.</p> <p>Chapter 3 presents the tri-level charge redistribution scheme. The switching energy inefficiency and settling problem of the conventional method are first analyzed. Then the tri-level method and differential capacitor bottom-plate charge-sharing technique are introduced in details. The improvement of energy efficiency and settling speed are shown in simulation results.</p> <p>Chapter 4 gives a high performance SAR ADC design, which combined the split CDAC calibration and the tri-level charge redistribution techniques. Circuit design details of each building block are provided. The ADC test chip implemented in a stand CMOS process is measured and compared with other state-of-the-art converters.</p> <p>Chapter 5 summarizes the thesis and provides a prospect of future work.</p>			

論文審査の要旨

報告番号	甲 第 3373 号	氏 名	Chen, Yanfei
論文審査担当者：	主査 慶應義塾大学教授	博士(工学)	黒田 忠広
	副査 慶應義塾大学教授	工学博士	松本 佳宣
	慶應義塾大学准教授	博士(工学)	中野 誠彦
	慶應義塾大学准教授	博士(工学)	石黒 仁揮

学士（理学）修士（工学）CHEN, Yanfei 君提出の学位請求論文は「A Study on Energy-and-Area-Efficient Charge Redistribution Successive Approximation Analog-to-Digital Converters（エネルギー効率とレイアウト効率の高い電荷再分配逐次比較アナログデジタル変換器の研究）」と題し、5 章から構成されている。

実世界の信号はアナログであり、情報処理の信号はデジタルである。デジタル情報処理が進展するほど両者を繋ぐアナログデジタル変換器（Analog-to-Digital Converter; A/D 変換器）が多く用いられ、その省エネルギー化と低コスト化が求められる。集積回路のコストはチップ面積で決まるので、レイアウト面積の低減が必要になる。電荷再分配逐次比較 A/D 変換器は、1 つのコンパレータで信号と参照電位を繰り返し比較するので、エネルギー効率が高い。しかし、A/D 変換器の分解能を高くすると比較回数が増え、高速な動作が困難になる。また、電荷再分配に必要な回路が増え、チップ面積と入力容量が増大する。この問題を解決するために、A/D 変換器の内部で用いる容量アレイデジタルアナログ変換器（Digital-to-Analog Converter; D/A 変換器）をスプリットアレイ方式で分割する技術が知られているが、容量のミスマッチで線形性が劣化するという問題があった。そこで本研究では、セルフキャリブレーション手法を用いてこの問題を解決し、チップ面積と入力容量を削減している。さらに、3 つの参照電位を用いた電荷再分配技術を提案してエネルギー効率を改善し、セッティング時間を短縮している。これらの提案技術を用いて設計したテストチップの実測を通じて、その効果を実証している。

第 1 章は序論である。A/D 変換器に関する研究動向を概説し、本研究の意義と解決すべき課題をまとめている。

第 2 章では、スプリットアレイ方式におけるセルフキャリブレーション手法を提案している。テストチップを設計し評価することで、微分非線形性と積分非線形性を共に 0.3 LSB (Least Significant Bit; 最下位ビット) 以下にできている。

第 3 章では、電荷再分配のエネルギー効率を高めるために、参照電位を従来の 2 つから 3 つに増やすことを提案している。更に、3 つの参照電位を生成する簡単な回路を考案している。その結果、エネルギー消費を 86% 低減でき、セッティング時間を短くできることをシミュレーションで検証している。

第 4 章では、第 2 章と第 3 章で得られた知見をもとに、9 ビットの A/D 変換器を 65 nm CMOS 技術を用いて 0.012 mm^2 のレイアウト面積で設計している。チップを実測して、100 MS/s のサンプリングレートで 1.46 mW の消費電力であることを確認している。有効変換ステップあたりの消費エネルギーは 39 fJ であり、世界最小クラスの変換エネルギーを達成している。

第 5 章は結論である。各章で得られた知見を総括し、今後の展望を述べている。

以上要するに、本論文の著者は、スプリットアレイ方式のキャリブレーション技術と 3 つの参照電位を用いた電荷再分配技術を考案し、これらを用いて省エネルギーで省面積の 9 ビット逐次比較 A/D 変換器を実現しており、集積回路工学分野において工学上、工業上寄与するところが少なくない。よって、本論文の著者は博士（工学）の学位を受ける資格があるものと認める。

Thesis Abstract

Registration Number	"KOU" No.3374	Name	Al-Qadi, Bassam			
Thesis Title	Optical Characterization and Rotational Dynamics Observation of Colloidal Gold Nanoparticles via Polarized Light Scattering Microscopy					
<p>Gold nanoparticles exhibit unique optical properties compared to the bulk form. These properties are size- and shape dependent, and originates from the localized surface plasmon resonance (LSPR) of the nanoparticle. The enhanced absorption and scattering, photochemical stability, good biocompatibility and polarization-sensitive optical response, make gold nanoparticles suitable probes for biosensing and detection applications. To enhance the sensitivity in these applications, robust techniques for optical characterization of nanoparticles as well as for monitoring their dynamics are highly needed.</p> <p>In this dissertation, we propose the use of polarized light scattering microscopy to characterize colloidal gold nanoparticles in solution, as well as to observe their rotational dynamics. Optical characterization is achieved by measuring the polarization anisotropy of the nanoparticle and then deducing its aspect ratio. Rotational diffusion of colloidal nanoparticles is observed as fluctuations in the scattering polarization, from which we were able to extract the rotational diffusion time on the microsecond time scale. Comparison of the experimental measurements with theoretical expectations is found in a good agreement confirming the validity of the proposed method.</p> <p>Chapter 1 summarizes the background, survey of metal nanoparticles research topics and the objectives of this study. Chapter 2 describes the fundamentals of electromagnetics in metals based on the macroscopic Maxwell equations and the metal dielectric function. Chapter 3 discusses the first branch of the plasmonics research area: surface plasmon polaritons at metal/dielectric interface. Chapter 4 describes the second branch of the plasmonics research area: LSPs of metal nanoparticles. Some related theories such as the quasi-static approximation of nanoparticles and Mie theory are outlined. It also discusses the observation methods of LSPs and their properties. Chapter 5 describes experimental results of a study of the polarization anisotropy for nearly spherical gold nanoparticles dispersed on a glass substrate. We found that each particle has its own scattering response due the relative changes in morphologies. The sensitivity of the optical response of particle dimers to the light polarization was figured out. Chapter 6 discusses experimental results of optical characterization of nearly spherical gold colloids in solution. Rotational diffusion of nanoparticles was visualized and their aspect ratio was evaluated. Chapter 7 describes experimental results of optical characterization of colloidal gold nanorods. Also, it discusses the rotational dynamics of the nanorods and how we could access the rotational diffusion time. We figured out the relation between the rotational time with both the rod's aspect ratio and the solution viscosity. Chapter 8 outlines the promising applications of gold nanoparticles and polarized light scattering in biosensing. Chapter 9 summarizes the conclusions and future perspectives.</p>						

論文審査の要旨

報告番号	甲 第 3374 号	氏 名	Al-Qadi, Bassam
論文審査担当者 :	主査 慶應義塾大学教授	博士(工学) 斎木 敏治	
	副査 慶應義塾大学教授	工学博士 岡田 英史	
	慶應義塾大学教授	博士(工学) 津田 裕之	
	慶應義塾大学准教授	博士(工学) 木下 岳司	

学士(工学)修士(工学)AL-QADI, Bassam君提出の学位請求論文は「Optical Characterization and Rotational Dynamics Observation of Colloidal Gold Nanoparticles via Polarized Light Scattering Microscopy (偏光顕微分光による金ナノ粒子の光学的評価と回転運動観察)」と題し、9章から構成されている。

分子生物学の分野において、DNA やタンパク分子の動的な機能解析、力学特性の解明を目的として、個々の分子の運動を一分子レベルで、かつ光学的に観察する技術が必要とされている。一分子観察のための明るい標識として、貴金属ナノ粒子が近年大きな注目を集めている。貴金属ナノ粒子はその形状、大きさに応じたプラズモン共鳴により、可視光領域で巨大な光学応答を示す。特に金ナノ粒子は化学的安定性に優れているため、標識材料として最も頻繁に用いられている。本論文では、金ナノ粒子やその二量体、金ナノロッドの大きな光学異方性に着目し、溶液中での回転運動の観察とそれを用いた粒子形状評価をおこなっている。これらの計測技術は、従来困難であった極微量生体分子検出や生体回転運動観察を可能にする。

第1章は序論であり、研究の背景、金属ナノ粒子のプラズモン光学に関する研究動向、ならびに本研究の目的を述べている。

第2章では金属の光学応答についてその基本事項を概説している。

第3章では金属表面を二次元伝搬する表面プラズモンポラリトンについて、その理論的定式化とこれまでの研究例を紹介している。

第4章では金属ナノ粒子に関する既存の光学応答理論を整理し、本論文と関連の深い先行研究について詳述している。

第5章ではガラス基板上に固定した孤立金ナノ粒子、ならびに金ナノ粒子二量体の光学異方性を2次元的に一括測定し、電子顕微鏡観察による実際の粒子形状と対比しながら、理論的予測との整合性を確認している。本研究で取り扱う金ナノ粒子の光学応答が第4章の理論モデルの範囲で記述可能であることを示している。

第6章では溶液中をブラウン運動する、球形に近い金ナノ粒子の回転拡散運動の観察、ならびに光学的異方指数に基づく粒子形状評価(アスペクト比の決定)をおこなっている。多数の粒子に対して測定をおこない、そのアスペクト比の分布が、電子顕微鏡による形状観察の結果と良い一致を示し、本手法が形状評価法として信頼性の高いものであることを確認している。

第7章では第6章の手法を金ナノロッドに適用し、より広範囲なアスペクト比分布をもつ粒子に対して形状評価をおこなっている。溶液中でのロッドの回転拡散運動が粒子形状に大きく依存することに着目し、光学的異方指数と回転拡散時間の両者からアスペクト比を推定している。本実験で使用したレーザ波長(532 nm)に対しては、アスペクト比 1.2 ~ 1.6 の範囲で電子顕微鏡形状観察との一致、ならびに光学的異方指数と回転拡散時間の強い相関を確認している。一粒子あたりの計測時間は数ミリ秒であり、本手法が高速かつ精確な形状評価技術であると結論づけている。

第8章では本研究で確立した手法に対して、バイオセンシングへの応用の可能性について検討している。

第9章は結論であり、本研究の成果を総括し、今後の展望について述べている。

以上要するに、本論文は光学的手法により金属ナノ粒子の形状を溶液中において高速かつ高精度に評価可能であることを示したものであり、光ナノ計測工学分野において工業上、工学上寄与するところが少なくない。よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

内容の要旨

報告番号	甲 第3375号	氏名	渡辺 剛志
主論文題目			
ホウ素ドープダイヤモンドを用いた機能性電極の設計			
<p>ホウ素が高濃度にドープされたダイヤモンドは金属様導電性を示し、電気化学電極として利用したとき、広い電位窓や小さな残余電流を示すユニークな電極材料となる。これらの電気化学特性を活かしてセンサへの応用が盛んに研究されている。またダイヤモンドが本来有する化学安定性や高い耐久性は、水処理技術やガス発生電極などの電解用途の電極として利用する際に、高効率、長寿命という特性をもち、極めて有利となる。一方で、このような電極応用を考える際には、その材料の特性を最大限に活かすための電極デザインが重要となる。そこで本研究では、電気化学センサや電解用途として用いた際に要求される機能の付加・向上を目的とし、ボロンドープダイヤモンド(BDD)を用いた電極デザインを行った。</p> <p>第1章に、本研究の背景としてダイヤモンドの特性やボロンドープダイヤモンドの電気化学分野における研究状況について概説した。</p> <p>第2章では、電気化学センサへの応用のための電極設計として、BDDに金属修飾を行うことによる、"外"からのアプローチにより、グルコースの電気化学センサを作製した研究についてまとめた。はじめに、イオン注入法により作製した銅修飾BDD電極を用いて、グルコースと検出の妨害物質となるアスコルビン酸や尿酸との間の拡散形態の違いを利用した新奇な検出システムを提案し、グルコースを選択的に検出できることを明らかにした。システムの原理はグルコースが球面拡散を、妨害物質が平面拡散をしていることで生まれる、電流応答の時間依存性の違いを利用している。さらに、この検出システムに適した電極のデザインとして、ニッケルの微小ディスクをフォトリソグラフィにより規則的に修飾したニッケル修飾BDD電極を作製し、より高いグルコース選択性を実現した。</p> <p>第3章は、電解応用のために電極設計として、BDDのホウ素濃度の制御とsp²炭素のブレンドによる、"内"からのアプローチにより、電解用電極としての機能となる"電極活性"を向上させた研究についてまとめた。異なる条件で作製したBDDの構造特性と電気化学特性の相関を調べた結果、sp²炭素を含む高濃度にホウ素ドープされたダイヤモンドが、通常のダイヤモンド電極とは異なる、高い電極活性を有する電極であることがわかった。この高い電極活性には電気化学的に活性な表面官能基のファラデー過程が強く関連しており、高濃度にホウ素がドープされた金属的なダイヤモンドとsp²炭素の相乗効果が働いていることが示唆される結果が得られた。さらに、この電極がダイヤモンド電極特有の高い耐久性を有することが分かり、不溶性アノードとしてのダイヤモンド電極の新たな用途が期待できることが示された。</p> <p>最後に第4章で全体の総括をし、本研究の成果を述べた。</p>			

以上

論文審査の要旨

報告番号	甲 第 3375 号	氏 名	渡辺 剛志
論文審査担当者：	主査 慶應義塾大学准教授	博士(工学)	栄長 泰明
	副査 慶應義塾大学教授	工学博士	鈴木 孝治
	慶應義塾大学准教授	博士(工学)	片山 靖
	慶應義塾大学専任講師	博士(工学)	牧 英之

学士(理学)修士(理学)渡辺剛志君提出の博士学位請求論文は、「ホウ素ドープダイヤモンドを用いた機能性電極の設計」と題し、4章より構成されている。

この論文で著者は、ホウ素を高濃度にドープした導電性のダイヤモンドを電気化学電極として用い、電気化学センサや水処理、ガス発生電極などの応用に向けて機能の付加・向上をめざした電極デザインについて述べている。

第1章に、本研究の背景としてダイヤモンドの特性やホウ素ドープダイヤモンドの電気化学分野における研究状況について述べている。特に、近年ダイヤモンド電極の電気化学的な応用への期待が高まっていることをふまえて、その基礎的な検討や高機能化を目指した電極デザインの検討を行うことが有意義であることについて詳細に述べている。

第2章では、電気化学センサへの応用のための電極設計として、“外”からのアプローチによる方法論について述べている。具体的には、ホウ素ドープダイヤモンドに金属修飾を行うことによる新規なグルコースの電気化学センサについて述べている。はじめに、イオン注入法により作製した銅修飾ダイヤモンド電極を用いて、グルコースと検出の妨害物質となるアスコルビン酸や尿酸との間の拡散形態の違いを利用した新規な検出システムを提案し、グルコースを選択的に検出できることを明らかにしている。システムの原理はグルコースが球面拡散を、妨害物質が平面拡散をしていることで生まれる、電流応答の時間依存性の違いを利用するものである。さらに、この検出システムに適した電極のデザインとして、ニッケルの微小ディスクをフォトリソグラフィにより規則的に修飾したニッケル修飾ダイヤモンド電極を作製し、より高いグルコース選択性を実現している。

第3章は、電解応用のための電極設計として、“内”からのアプローチによる方法論について述べている。具体的には、ホウ素ドープダイヤモンドのホウ素濃度の制御と sp^2 炭素のブレンドによって、電解用電極としての機能となる電極活性を向上させた研究についてまとめていく。異なる条件で作製したホウ素ドープダイヤモンドの構造特性と電気化学特性の相関を調べた結果、 sp^2 炭素を含む高濃度にホウ素ドープされたダイヤモンドが、通常のダイヤモンド電極とは異なる、高い電極活性を有する電極であることを見出している。この高い電極活性には電気化学的に活性な表面官能基のファラデー過程が強く関連しており、高濃度にホウ素がドープされた金属的なダイヤモンドと sp^2 炭素の相乗効果が働いていることが示唆され、さらに、この電極がダイヤモンド電極特有の高い耐久性を有することが分かり、不溶性アノードとしてのダイヤモンド電極の新たな用途が期待できることを示している。

最後に第4章で本研究の成果および今後の展望を述べ、結論としている。

以上要するに、本論文はホウ素ドープダイヤモンドの電極機能の向上を目指した電極設計の概念を提示しており、電気化学的な分析という観点のみならず、新しい機能材料としての詳細な知見は、電気化学、機能材料化学の分野において、工学上、工業上寄与するところが少なくない。よって、本論文の著者は博士(工学)の学位を受ける資格があるものと認める。

内容の要旨

報告番号	甲 第3376号	氏名	堀内 崇弘
主論文題名	構造の異なるダイヤモンドライクカーボン膜の損傷挙動に関する研究		
概要	<p>ダイヤモンドライクカーボン (DLC) 膜の実用化における課題は、コーティング基材との密着性向上と、実際に使用する環境に適した薄膜を前もって選択するための評価法の確立である。特に DLC 適用製品の約 50% を占める機械摺動部品においては、薄膜を実際に使用した際に生じる摩耗や剥離現象を予想する、相関性が高い評価法が求められている。現状では数多くのメーカー、さらに数多くの成膜プロセスより、構造が異なる DLC 膜が市場に出回っている。それらの膜特性が異なるため、摺動時の耐荷重性能や損傷挙動に大きな違いが見られるが、その要因を薄膜の物理的特性から、統一的に明確に解析した報告例は少ない。</p>		
<p>上記の課題を踏まえ、第 1 章では、本研究に関連した研究例を引用しながら、 製法が異なる DLC 膜を用い、膜の密度に注目し、機械的特性との関係を明らかにすること、 従来のスクラッチ試験やロックウェル試験に代わり、実際の使用環境で生じる現象と相関性の高い新たな評価手法を作り、その有効性を示すこと、 開発した評価手法を用い、構造の異なる DLC 膜の損傷・破壊形態への影響を明らかにし、DLC 膜の適用法を示すこと等を目的としてまとめた。第 2 章では、構造の異なる DLC 膜を用い、それぞれの特性評価として、膜硬度、膜弾性率、膜密度、水素量、膜構造について同一条件下で測定し、成膜プロセスの違いが与える各特性への影響を明らかにした。膜構造、すなわち炭素の結合状態に対応し、膜密度が増加すると、膜硬度および膜弾性率が増加し、それらの線形関係を明らかにした。また、同時に従来報告されている水素量と、膜硬度、膜弾性率との相関性は低いことも示した。第 3 章では、 DLC 膜の機械的特性の評価として、塑性変形率、密着性、摩擦係数を同一条件下で測定し、膜密度との関係性を明らかにした。炭素のみで構成される DLC 膜 (ta-C, a-C) は、膜密度と塑性変形率、摩擦係数、密着性との間に強い線形性を示した。一方、水素を含有する DLC 膜 (a-C:H) では、上記のような強い相関性は見られなかった。第 4 章では、ta-C, a-C および a-C:H の 3 種類の DLC 膜を用い、本研究で開発した密着・耐摩耗性評価 (連続荷重增加すべり摩耗試験) 法と、従来のスクラッチ試験法およびロックウェル試験法との結果を評価・比較した。この試験法は、試験条件を自由にコントロールでき、実際の使用環境下での摺動条件に近い試験条件で評価することができる。第 5 章では、ta-C, a-C および a-C:H の 3 種類の DLC 膜の損傷挙動を解析し、膜のクラック、摩耗による損傷形態および損傷進展形態を解析した。今回の試験法を用いることにより、DLC 膜の摺動条件下での膜損傷形態および損傷進展挙動の特徴が明らかとなり、この方法が有効であることが示された。実際、約 10 社の製造メーカーで、本研究で開発した方法が用いられている。第 6 章では、本研究から得られた結果を総括した。</p>			

論文審査の要旨

報告番号	甲 第 3376 号	氏 名	堀内 崇弘
論文審査担当者 :	主査 慶應義塾大学准教授 Ph.D. 堀田 篤		
	副査 慶應義塾大学教授 工学博士 今井 宏明		
	慶應義塾大学教授 工学博士 小茂鳥 潤		
	慶應義塾大学准教授 博士(工学) 大村 亮		
<p>修士(工学)堀内崇弘君提出の学位請求論文は「構造の異なるダイヤモンドライクカーボン膜の損傷挙動に関する研究」と題し,全6章より構成されている。</p> <p>近年,ダイヤモンドライクカーボン(DLC)膜の実用化研究が盛んに実施されている。その主な課題は,コーティング基材との密着性向上と,実際に使用する環境に適した薄膜を前もって選択するための評価法確立である。特にDLC適用製品の約50%を占める機械摺動部品においては,薄膜を実際に使用した際に生じる摩耗や剥離現象を予想する,相関性が高い評価法が求められている。現状では数多くのメーカー,さらに数多くの成膜プロセスにより,構造が異なるDLC膜が市場に出回っており,それらの膜特性が異なるため,摺動時の耐荷重性能や損傷挙動に大きな違いが見られる。</p> <p>本論文の著者は,上記の現状を踏まえ,構造の異なるDLC膜,約20種類を作製し,上記課題を解決するため,薄膜の物理的特性から統一的に解析し,得られた成果をまとめている。</p> <p>第1章では,本研究に関連した研究例を引用しながら, 製法が異なるDLC膜を用い,膜の密度に注目し,機械的特性との関係を明らかにすること, 従来のスクラッチ試験やロックウェル試験に代わり, 実際の使用環境で生じる現象と相関性の高い新たな評価手法を作り, その有効性を示すこと, 開発した評価手法を用い, 製法の異なるDLC膜の損傷・破壊形態への影響を明らかにする等を目的としてまとめている。</p> <p>第2章では,構造の異なるDLC膜を用い,それぞれの特性評価として,膜硬度,膜弾性率,膜密度,水素量,膜構造に関するラマン分光について同一条件下で測定し,成膜プロセスの違いが与える各特性への影響を明らかにしている。膜構造,すなわち炭素の結合状態に対応し,膜密度が増加すると,膜硬度および膜弾性率が増加した。それらの線形関係を明らかにし,また同時に従来報告されている水素量と,膜硬度,膜弾性率との相関性が低いことも示した。</p> <p>第3章では, DLC膜の機械的特性の評価として,塑性変形率,密着性,摩擦係数を同一条件下で測定し,膜密度との関係性を明らかにしている。炭素のみで構成されるDLC膜(ta-C, a-C)は,膜密度と塑性変形率,摩擦係数,密着性との間に強い線形性を示した。</p> <p>第4章では, ta-C, a-Cおよびa-C:Hの3種類のDLC膜を用い,本研究で開発した密着・耐摩耗性評価(連続荷重増加すべり摩耗試験)法と,従来のスクラッチ試験法およびロックウェル試験法との結果を評価・比較している。この試験法は,試験条件を柔軟にコントロールでき,実際の使用環境下での摺動条件に近い試験条件で評価することができる。</p> <p>第5章では, ta-C, a-Cおよびa-C:Hの3種類のDLC膜の損傷挙動を解析し,膜のクラック,摩耗による損傷形態および損傷進展形態を解析している。今回の試験法を用い,DLC膜の摺動条件下での膜損傷形態および損傷進展挙動の特徴が明らかとなり,本解析手法が有効であることが示されている。実際,約10社の製造メーカーで,本研究で開発した方法が現在用いられている。</p> <p>第6章では,本研究から得られた結果を総括している。</p> <p>以上要するに,著者は実用化されている数多くのDLC膜を構造の視点から整理し,また実際に使用する前段階で評価する方法を確立する目的で,X線解析法や自ら設計した摩擦摩耗試験方法で調べ,得られた結果をまとめている。これより,今日まで未解決または不可能であった,1) DLC膜の密度と硬さに与える水素量の効果,2) DLC膜の内部構造と耐摩耗性との関連,3) 異種基材に合成したDLC膜を実際に試験する前に,性能を見積もる評価法確立の課題に1つの解答を与えた。本論文の結果は工学上寄与するところが大きい。よって,本論文の著者は博士(工学)の学位の資格があるものと認める。</p>			