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Abstract 

The electrification and automation of various devices will continue to advance toward the 

realization of a carbon-neutral society. One of the most important components to realize a 

carbon-neutral society is the power converter. The power converter consists of a power 

semiconductor and a control circuit. Power semiconductors have a loss-noise tradeoff. As power 

semiconductors become more advanced, the converter becomes more efficient, but noise is 

more likely to occur. To cope with noise, losses increase. Active gate techniques are a solution 

to break the trade-off between power device loss and noise. It solves the tradeoff by driving the 

power semiconductors with waveforms that match their condition. However there is no research 

on active gate driver techniques with load-adaptive functions integrated in a chip. 

This thesis is a study of chip-integrated active gate drivers with load-adaptive functions. 

Chip-integrated active gate drivers were developed for both analog feedback and digital 

feedforward techniques.  

Chapter 1 provides an introduction to this thesis. An overview of power electronics is given, 

and the importance of power converters is presented in terms of applications and power.  

In Chapter 2, the fundamentals of active gate technique are presented, including the 

characteristics of each power device, the relationship between switching waveform and noise. 

Issues in terms of the characteristics of active gate technique and power devices are 

summarized. 

In Chapter 3, an analog active gate driver IC using discrete-time feedback technique is 

proposed. Two resistors are controlled by the feedback technique to control the turn-on dVd/dt 

of the SJMOS. Since the proposed technique feeds back the feedback result to the next 

switching, it can control the dVd/dt that depends on the reverse recovery current. The results of 

successfully reducing the switching losses by 25% using the prototype IC are described. 

In Chapter 4, an active gate driver IC using digital feed-forward technique is proposed, and a 

turn-off simulation analysis is performed considering the non-linearity of SiC-MOSFET 

capacitance. The active gate waveform that reduce the surge voltage is proposed based on the 

analysis. In addition, a time resolution extension circuit that reduce the amount of memory and 
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time resolution of the driver IC is proposed. The ADC integrated in the driver IC is used to 

detect the SiC-MOSFET load and output the active gate waveform according to the load, and 

the turn-off voltage surge is reduced by 51% without increasing the loss. 

Chapter 5 presents the conclusions of this part and future research directions. 
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Chapter 1 Introduction 

1.1 Power electronics 

Power electronics is a technology related to the elements, circuits, and controls used in power 

converters [1]. As shown in Figure 1.1, power converters that convert electrical power into 

mechanical power or convert the quantity or type of electricity are used everywhere, including 

in electric equipment in the industrial field, in the generation and stabilization of renewable 

energy, in highly reliable power sources supporting the information society, and in social 

infrastructure such as power and mobility. Power converters are one of the most important 

devices supporting modern society. Figure 1.2 shows global power consumption by application 

[2]. Motors, which are a type of power converter, account for 40% to 50% of the world's total 

power consumption. In Japan, the number of motors for residential, commercial, and industrial 

use is approximately 100 million units, and their annual power consumption accounts for about 

55% of the total power consumption in Japan. In 2020, the Japanese government announced the 

"2050 Carbon Neutral Declaration," which calls for a decarbonized society and virtually zero 

greenhouse gas emissions by 2050 [3]. The electrification and automation of equipment is 

expected to advance toward the realization of a carbon-neutral society. The importance of 

research and development in power electronics is increasing with the aim of improving the 

performance of power converters, which play a central role in the electrification and 

automation. 
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Figure 1.1: Power semiconductors and power converters used in various applications in society. 

 

Figure 1.2: Global power consumption by application. 

 

Figure 1.3 shows the technology s curve for power electronics and the technologies that have 

broken the limits of the curve [4]. In the past, power electronics has improved converter 

performance with the introduction of new devices such as IGBTs [5] and Superjunction 

MOSFETs (SJMOS) [6] and new modulation methods such as vector control [7]. Even today, 

various efforts are being made to improve converter performance.  
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Figure 1.3: The technology s curve for power electronics and the technologies that have 

broken the limits of the curve. 

 

Figure 1.4 shows each technology. Device evolution is one of the most important aspects of 

power electronics. Wide bandgap devices such as SiC-MOSFETs and GaN, which have lower 

on-resistance and faster switching than conventional silicon and IGBT, have been 

commercialized in recent years, contributing to improved converter performance [8] [9]. 
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the system including the converters [16]. 

 

Figure 1.4: Technologies for the advancement of power electronics. 

 

Figure 1.5 shows active gate technique, which we focus on as a technology to improve 

converter performance [17]. Active gate technique brings the characteristics of power devices 

closer to those of ideal switches by modifying the signals input to the gate that control the on/off 

switching of the power devices. This technology contributes to downsizing and higher 

efficiency of converters by reducing losses and controlling switching waveforms to reduce noise. 

When driving power devices, drive current is conventionally controlled by resistance. Smaller 

resistances allow power devices to be switched at higher speeds, thereby reducing losses. 

However, the transition speed between current and voltage becomes faster, and ringing occurs in 

the waveform, generating noise. Noise can cause peripheral devices and one's own devices to 

malfunction. On the other hand, if the resistance value is increased to reduce noise, the 

waveform transition speed decreases and ringing does not occur, but the loss increases. In other 

words, there is a tradeoff between loss and noise. Active gate technique solves the above 

trade-off and was proposed in 2005 [17]. By optimizing the waveform of the gate current 

supplied to the power device to match the characteristics of the power device, switching is 

performed with high switching speed, no ringing, and low loss. Active gate technology can 

extend the performance evolution of power devices as stand-alone switches, and at the same 
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time, it can contribute to the reduction of components such as filters by reducing noise. It is an 

important technology that affects everything from the device level to the system architecture 

level, centered on the driving circuits. 

 

Figure 1.5: Active gate drive technique.  

 

1.2 Power devices and active gate drive technology 

Figure 1.6 shows the relationship between types of power devices, converter power, 

switching frequency, and applications. The most appropriate power device is used according to 

the speed and power required for the converter. For applications such as power transmission and 

distribution or railroad motors that require high power and high switching speed, Insulated Gate 

Bipolar Transistors (IGBT) and Gate Turn-Off thyristors (GTO) are used because they can 

achieve low conduction losses. On the other hand, power devices used in AC adapters and 

lighting fixtures use GaN, which offers low power and high switching speeds. Si-MOSFETs and 

Superjunction MOSFETs (SJMOS) are used in compressor converters for home appliances 

because they have low power requirements, can be operated without increasing the switching 

speed, and are low cost. In recent years, Silicon Carbide MOSFETs (SiC-MOSFETs) have been 

used in automotive applications, such as e-mobility, to achieve high-speed and low-loss 
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circuits. In this paper, we focus on two of the above four areas, the low-power, low-switching 

area and the high-power, high-speed switching area, to develop active gate technology. In the 

high-speed, high-power region, advanced active gate technology is required. On the other hand, 

low-speed, low-power regions require low-cost active gate technology with simple technology. 

This thesis section will research and develop these two distinctive areas. 

 

Figure 1.6: The relationship between types of power devices, converter power, switching 

frequency, and applications. 

1.3 Structure of this paper 

The structure of this thesis is shown in Figure 1.7. This thesis is organized as follows.  

Chapter 2 describes the characteristics of power devices and the fundamentals for developing 

active gate technology, including device switching characteristics and an overview of active 

gate technology. The relationship between device characteristics and the applications used is 

clarified. The switching characteristics of power devices are presented. The impact of each 

waveform on the performance to the converter, e.g., loss and noise are shown. In addition, 

existing research on active gate technique are reviewed to identify target devices for which 

active gate technique will be applied and the applications. 

Chapter 3 describes a slew-rate (SR) control technique for SJMOS using analog feedback 

technology, focusing on the recovery current, which is a phenomenon unique to SJMOS, and 

controlling the peak recovery current to keep the turn-on drain voltage transition rate constant. 
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In Chapter 4, we describe a ringing suppression technique for next-generation SiC devices using 

digital feed-forward technology to break the trade-off between loss and drain voltage transition 

speed. Theoretical analysis, simulation, and measurements are used to comprehensively 

demonstrate the waveforms that reduce ringing. Chapter 5 provides a summary of this study and 

future work. 

 

Figure 1.7: Structure of this thesis. 
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Chapter 2 Overview of power device 

and active gate drive technology 

2.1 Overview of this chapter 

This chapter provides an overview of power device switching principles and active gate 

technology. First, characteristics of power devices are described as basic knowledge to explain 

switching principles. Specifically, characteristics of SJMOS, IGBT, and SiC-MOSFETs are 

described. Next, the switching principles of power devices are described. Furthermore, we 

describe how the switching waveforms of the power devices represent the influence on the noise 

of the converter system. This is followed by a technical classification of active gate 

technologies. 

2.2 Power device characteristics. 

 In this section, the characteristics of each power device are described. silicon, SJMOS, 

IGBT, and Silicon Carbide (SiC) are described in this order. 

2.2.1 Si-MOSFET 

Figure 2.1 shows the cross-sectional structure of a silicon power MOSFET. A power 

MOSFET consists of small cells arranged in a row, covering a silicon wafer. Current flows 

vertically from top to bottom. Metal gate and source electrodes are formed on the top surface of 

the wafer shown in Figure 2.1, and metal drain electrodes are formed on the bottom surface of 

the wafer. When the device is turned off, a depletion layer appears as shown in Figure 2.2(a). 

When the device is turned on, a channel is formed, and current flows as shown in Figure 2.22(b). 

In devices with large breakdown voltage, the resistance is mainly determined by the n- diffusion 

layer. There is also a parasitic diode at the position shown in Figure 2.2(c). This parasitic diode 

conducts when the drain-source voltage is negative. This diode allows the power MOSFET to 

conduct current in both positive and negative directions. However, this diode is not optimally 
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designed to have a small recovery current, so a large recovery current may occur. 

 

Figure 2.1: Cross-sectional structure of a silicon power MOSFET. 

 

Figure 2.2. Cross-sectional structure of a silicon power MOSFET. (a) Turn-off, (b)Turn-on, (b) 

Parasitic diode. 
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power MOSFETs [18] [19]. Figure 2.3(a) shows a cross-sectional view of standard power 
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arranged alternately. Conventional power MOSFETs have a depletion layer that extends 

vertically as shown in Figure 2.3. The depletion layer thickness determines the electric field 

strength, and the depletion layer thickness is roughly inversely proportional to the drift layer 

concentration. On the other hand, the on-resistance of the drift layer is also inversely 

proportional to the concentration, so if the field strength is increased, the breakdown voltage 

cannot be maintained. In a super junction MOSFET, as shown in Figure 2.3(b), the drift layer 

consists of alternating P and N layers. When voltage is applied, the depletion layers spread 

horizontally and eventually unite to form a depletion layer equivalent to the groove depth. Since 

a depletion layer equivalent to the groove depth can be obtained with only half the groove 

spacing depletion layer spread, low ON-resistance is achieved. On the other hand, there is a 

problem of large recovery charge due to the increased area of parasitic diodes. The area where 

the p-layer and n-layer are in contact is increased, resulting in a large recovery current. 

Due to their low ON-resistance, SJMOS are often used in low-power and low-speed motors 

for home appliances, etc. The voltage transition rate in the above application is about 5 V/nsec. 
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Figure 2.3: Cross-sectional structure and electric field of a silicon power MOSFET and 

Superjunction MOSFET(SJMOS). 

 

2.2.3 IGBT 

Figure 2.4 shows a cross-sectional view of an IGBT. As shown in Figure 2.4, the 

cross-sectional view of an IGBT is similar to that of a power MOSFET, the difference being that 

the P layer is connected to the collector. The role of the added P layer is to inject a minority 
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charge into the N layer when the IGBT is conducting. When the P and N layers are forward 

biased during conduction and the minority charge is injected into the N layer, conductivity 

modulation occurs [20]. This reduces the resistance of the N layer, resulting in an IGBT with 

high breakdown voltage and low resistance. On the other hand, because a P layer is added to the 

collector, the IGBT has a forward PN junction between the collector and emitter. This causes a 

certain amount of loss even when the collector current is small. IGBTs are not suitable for 

high-speed operation and cause extra switching losses. IGBTs are often used in low-speed, 

high-power converters for electric railways and industrial applications because of their high 

current capability and lower on-resistance than SJMOS. The voltage transition speed is 

approximately 5 V/nsec. 

 

Figure 2.4: Cross-sectional structure of IGBT. 

 

2.2.4 SiC-MOSFETs 

SiC with a wide band gap enables MOSFETs with higher breakdown voltage, lower 

on-resistance, and faster switching than power MOSFETs. SiC-MOSFETs offers low 

ON-resistance in a small area in the high voltage range of 600V or higher. It also enables high 

switching due to reduced parasitic capacitance. The device structure is similar to the power 

MOSFET shown in Figure 2.1. Comparing SiC and Si with respect to electron mobility only, Si 

has a higher mobility than SiC. On the other hand, SiC has a large critical electric field and can 
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achieve low on-resistance at voltages above 600V [21]. In addition, SiC has small characteristic 

fluctuation with temperature and can be operated up to 300°C. Temperature characteristics 

restrictions of package technology typically limit SiC-MOSFETs operating temperatures to 

175°C. Similar to power MOSFETs, SiC-MOSFETs also have parasitic diodes, but parasitic 

diodes of SiC-MOSFETs have a large forward voltage of 3 to 4 V, and another diode is 

connected in parallel. SiC-MOSFETs can switch faster than IGBT and requires smaller 

inductors, etc., so SiC-MOSFETs has been replacing IGBT in applications with 600 V or more 

and higher power. SiC-MOSFETs are smaller in area and have smaller parasitic capacitance 

than other devices, so the voltage switching speed exceeds 10 V/nsec. 

2.2.5 Summary of each device's features 

The characteristics of each device are summarized in Table 2.1. Power-MOSFETs are used in 

low-voltage inverters and converters; SJMOS have higher losses due to recovery current, but 

can achieve lower ON-resistance in the high-voltage range than Power MOSFETs and are used 

in high-voltage, low-power applications; IGBTs have losses due to saturation voltage and are 

not suitable for low-voltage, low-power applications. IGBTs are not suitable for low-power 

applications due to saturation voltage losses, but are used in high-voltage, high-power 

applications. SiC-MOSFETs are replacing IGBTs in high-voltage, high-power applications. 
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Table 2.1: Summary of each power device’s characteristics. 

 

 

2.3 Switching waveforms of power devices and the 

effect of each waveform on noise 

In this section, we describe what waveforms are generated when a power device switches. 

Next, the current-voltage waveforms of turn-on and turn-off are classified, and how the 

waveforms in each section affect the noise is described. Figure 2.5 shows the power device and 

drive circuit used in an inverter. This section describes the turn-off and turn-on operation of 

low-side power devices. Since the high-side power devices are turned off, only the diodes are 

considered. The low-side drive circuit is modeled with a current source. The load inductor acts 

as a current source. 

Breakdo
wn
voltage

Pros Cons Main application

Power
MOSFET

<400V Low on-resistance at 
low voltage.

High on-resistance at 
high voltage

Used in low-voltage 
inverters and 
converters.

SJMOS >500V Lower on-resistance 
than power MOSFET.

Large loss due to 
reverse recovery 
charge

Used for high-voltage, 
low-power household 
compressors.

IGBT >500V Lower on-resistance 
than silicon device.

Large loss compared to 
SJMOS at low current 
due to saturation 
voltage.
Large turn-off loss.

Widely used in high 
voltage and high power 
regions. Not suitable 
for low-power areas 
due to saturation 
voltage.

SiC-MOSFET >1.2kV Lower on-resistance 
than silicon and IGBT 
at high voltage. 
Low input capacitance 
allows high-speed 
operation.

Characteristics such as 
threshold voltage 
change significantly 
when electrical load is 
applied. Sensitive to 
short-circuit.

IGBTs are being 
replaced by SiC-
MOSFET in the high-
voltage, high-power 
region.
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Figure 2.5: The power device and drive circuit of the inverter and its equivalent circuit 

 

2.3.1 Turn-on waveform 

Figure 2.6 shows the waveforms at turn-on. At the end of section a, gate current begins to flow. 

The gate voltage increases in section b. At the end of section b, the gate voltage reaches the 

threshold voltage of the power device. Then drain current begins to flow. In section c, the drain 

current increases. At this point, the drain voltage is equal to the supply voltage. This is because 

the diode is turned on and the drain voltage and supply voltage are connected in a low 

impedance state. As the drain current increases, the current flowing through the diode decreases. 

At the end of section c, when the drain current becomes equal to the current charged to the load, 

the current flowing through the diode becomes zero and the diode turns off. The drain voltage 

then drops in section d. As the drain voltage drops, the parasitic drain-to-gate capacitance of the 

power device increases due to the Miller effect, and the gate voltage remains unchanged. At the 

end of section d, when the drain voltage reaches the ground voltage, the Miller effect disappears 

and the gate voltage rises again. When the gate voltage reaches the power supply voltage of the 

driver side, the turn-on operation is completed. 
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Figure 2.6: Waveforms at turn-on. 

2.3.2 Turn-off waveform 

Figure 2.7 shows the turn-off waveform. At the end of section a, the gate voltage flows in the 

direction of charge draw from the gate. The gate voltage begins to decrease. In section b, the 

power device is operating in the linear region, and the drain voltage increases slowly as the gate 

voltage decreases. At the end of section b, the power device transitions from the linear region to 

the saturation region, and the drain voltage rises at a faster rate in section c. Then, in section c, 

the gate voltage does not change due to the Miller effect. At the end of interval c, when the drain 

voltage becomes larger than the threshold voltage of the diode, the diode turns on and the drain 

current decreases. When the gate voltage becomes less than the threshold voltage at the end of 

section d, the drain current becomes zero. When the gate voltage reaches 0, the turn-off 
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operation ends. 

 

Figure 2.7: Waveforms at turn-off. 

2.3.3 Effect of switching waveform on noise spectrum 

This section shows how the waveforms of the power devices identified in Section 2.3.2 affect 

the noise. Figure 2.8(a) shows the switching waveform of a power device. The turn-off 

waveform is shown as an example. Figure 2.8(b) shows an example of the noise spectrum. 

There are various types of noise in converters, such as radiation noise mainly caused by current 

and conduction noise caused by voltage. 

In the switching waveform of a power device, there are three components that affect noise: A. 

Slew Rate (SR) of current voltage, B. Surge or ringing of current voltage, and C. Noise due to 

harmonic components in the waveform. Figure 2.8 shows how each component affects the noise 

spectrum. Assuming that the slew rate of the switching waveform of the power device is a 

first-order function of time, the current-voltage SR affects the frequency at which the slope of 
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the noise spectrum changes from -20 dB/dec to -40 dB/dec. The slower the transition rate, the 

lower the noise level at higher frequencies [22]. Ringing present in the current-voltage 

waveform shows up as a peak in the noise spectrum. As the ringing voltage or current peak 

decreases, the level in the noise spectrum shown in Figure 2.8(b), B, also decreases. Examples 

of noise due to harmonic components in the waveform can be found in reference [23]. Due to 

the nonlinearity of the parasitic capacitance of the power device, a steep current is generated, 

amplified by the resonant circuit of the power stage, and appears as a peak in the noise spectrum 

[23]. 

The characteristics of A, B, and C shown in Figure 2.8(b) all depend on the magnitude of the 

gate current of the power device. If the gate current is small, the inflection point on the spectrum 

moves to lower frequencies, reducing noise at high frequencies, as well as the peak value of 

current-voltage ringing and the peak value derived from harmonic components. Since a 

reduction in drive power leads to an increase in switching losses, there is a trade-off between 

noise spectrum and losses. 

 

 

Figure 2.8: (a)The switching waveform of a power device and (b) noise spectrum. 

2.3.4 Comparison of turn-on and turn-off loss 

This subsection compares the turn-on and turn-off losses of SiC-MOSFETs and SJMOS, 
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SiC-MOSFETs. Figure 2.9(a) shows the turn-on and turn-off losses of the SJMOS. The device 

model number is TK8A60W5, and the measured turn-on and turn-off losses are shown under the 

conditions of 3 V/nsec absolute slew rate and 1 A drain current of the load. As shown in the 

Figure 2.9(a), the value of turn-on loss is 35uJ, while the value of turn-off loss is 3.5uJ. Since 

the turn-on loss is 10 times larger than the turn-off loss, it is important to reduce the turn-on loss 

in SJMOS. Figure 2.9(b) shows the measured turn-on and turn-off losses of a SiC-MOSFET. 

The device model number is SCT3080KR, and the measurement results were obtained under the 

condition of 11V/nsec absolute slew rate. The turn-on loss was measured at a drain current of 

12A and the turn-off loss was measured at a drain current of 15A. The turn-on loss is 0.16mJ 

and the turn-off loss is 0.115mJ. Although the drain current values are under different conditions, 

the turn-on and turn-off losses are of similar values. In SiC-MOSFETs, it is important to reduce 

both turn-on and turn-off losses. 

 

Figure 2.9: Comparison of turn-on and turn-off loss. 
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2.4 Current-voltage waveform of the converter and 

the load adaptive operation. 

This section describes the current-voltage waveforms of converters in which power devices 

are used and the load adaptive functions. Figure 2.10 shows an example of an AC-DC converter 

used in a Power Factor Correction circuit (PFC). In a PFC, the load current varies from time to 

time in a sine wave shape. The active gate waveform input to the power device must change 

according to the current value of the power device. This is because the condition of the power 

device changes in response to the current in the power device. This function is called load 

adaptive. How to realize the load adaptive function is one of the key points in the development 

of active gate technique. 

 

Figure 2.10: Voltage and current waveform of AC-DC converter and load adaptive function of 

active gate drive. 

2.5 Active gate driving 

This section provides an overview of active gate drive techniques that resolve the tradeoffs 

presented in the previous section. First, the active gate drive techniques studied to date are 

classified into analog feedback and digital feedforward techniques, and the characteristics of 

each technique are described. 

2.5.1 Analog feedback active gate drive 

Figure 2.11 shows an active gate using analog feedback technique. The current or voltage of 
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the power device is detected and compared with a reference voltage by an operational amplifier 

(OP-AMP) to control the gate voltage or current of the power device. The advantage of this 

method is that robust control is possible regardless of variations in power devices and ICs. Since 

the drain voltage or current waveform is detected and instantaneously fed back to the gate, it has 

the load adaptive function described in Section 2.4. Furthermore, if the bandwidth of the 

feedback loop is wide enough, the waveform can be kept constant even if the operation of the 

power device is not fully understood. On the other hand, the disadvantage is that the waveform 

is less flexible, and each circuit must be prepared independently for the noise issues presented in 

Section 2.3.3. Also, as the slew rate transition speed becomes faster, the OP-AMP bandwidth 

needs to be wider. 

 

Figure 2.11: Active gate drive using analog feedback technique. 

2.5.2 Digital feedforward active gate drive 

Figure 2.12 shows an active gate technique using digital feed-forward technology. Digital data 

is sent out to an arbitrary waveform output circuit in response to the edge of a PWM signal, 

which is a gate control signal. The waveform output circuit outputs the gate waveform. Fine 

control of the waveform is possible, and the noise issues described in Section 2.3.3 can be 

addressed with a single circuit. On the other hand, the output waveform must be generated in a 

certain method. In addition, the output waveform must be changed according to the variations of 
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power devices and waveform output circuits. In addition, it is necessary to output waveforms 

that follow the load of the power device. When load adaptive function is performed, the digital 

waveforms need to be stored in memory. 

 

Figure 2.12: Active gate drive using digital feedforward technique. 

2.5.3 Issues and technology to be developed in this paper 

⚫ IC Integration 

Chip integration is essential for the application of active gates to consumer electronics and 

automotive products, which are expected to be mass-produced. However, there are challenges to 

integration with respect to existing technologies. 

In the literature using analog feedback technology [24] [25], a 300 MHz wideband operational 

amplifier is required to control the low-speed SR of 2 V/nsec for IGBTs. For SiC-MOSFETs, 

there is also a study to balance the current imbalance of parallel drive, which can be applied to 

slew rate control, but requires a wideband OP-AMP with a bandwidth of 320MHz [26] [27]. 

Based on the concept in the literature [28], an example of a 300-MHz OP-AMP integrated on a 

chip with active gate control has been reported [29], using GaN as the target power device. 

However, the required gate voltage for GaN is 5 V, which is not compatible with the 10 V to 20 

V voltages required by other devices such as SiC-MOSFETs and SJMOS. 
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ICs that can arbitrarily control the drive waveform of power devices have been reported in 

products [30] [31] [32] [33] [34] [35] [36] [37] [38] and papers [39]. In product [30] [31] and 

literature [40], the gate current control is shown and the switching of the power device is not 

described. Also, in products [32] [34] [35] [36], the assumed device voltage are below 100V, 

which is low. Products [37] [38] and literature [41] only make the driver section variable, and a 

separate waveform memory for load adaptive is required. 

An example of integration of a driver stage to drive a power device and a memory circuit has 

been reported [42]. In the literature [42] [43], only one waveform memory is provided, and it is 

not possible to control following the load of the power device. Even in the example using an 

external FPGA, it cannot be applied to follow a load that changes in about 1 msec [44] [45]. 

There are several examples of load adaptive control [46] [47]. However, in reference [46], the 

driver IC is controlled using an external measuring device, and the IC alone has not succeeded 

in load adaptive function. In reference [48], the current and voltage slew rates are sensed by an 

analog circuit and feedback signals are generated by an FPGA. The waveform is output to the 

gate of the power device by a mixed analog-digital circuit including an OP-AMP and DAC to 

achieve 800 V switching. However, the output stage requires a 300 MHz op-amp, which is 

difficult to integrate in the chip. In the literature [49], feedback control is performed by analog 

voltage/current threshold detection and digital time measurement, and many ideas are 

incorporated, such as using PI control and LUT, but the control part is a digital configuration 

using FPGA and has not been integrated. Reference [47] uses a driver that can generate positive 

and negative binary gate currents, and the optimal waveform is generated by feedback with an 

ADC. However, the switching voltage of the power device is as low as 48 V. The digital 

feedback method for IGBTs has a maximum SR of 0.0004 V /nsec, about three orders of 

magnitude lower than the speed normally used [50]. In the product [33], the emitter current is 

detected and the gate resistor is switched, but a separate current-sense pin must be provided on 

the power device side, and the trade-off between loss and noise has not been successfully 

overcome. The work [51] based on the concept of [52], has succeeded in reducing current 

ringing during turn-on by integrating a gate drive circuit with variable output current, a sensor 

circuit to determine appropriate timing, and a control circuit to change the current waveform, all 
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on a single chip. However, this was demonstrated with IGBTs, and the optimal gate waveform 

could not be output due to malfunction of the sensor circuit caused by noise during turn-on. In 

addition, this technology is not applicable to turn-off. Other active gate technologies that have 

been proposed include driving with a boost converter [53], detailed analysis of the relationship 

between switching losses and current [54], load current estimation from gate waveforms [55], 

and waveform generation by directly observing noise [56]. However, there are no examples of 

integrated chips and load adaptive function at high voltages of 100 V or higher. The main issues 

are that load detection is difficult due to the effects of noise from power device switching and 

the need to switch memories that store complex waveforms. 

⚫ Analysis that takes into account nonlinearities. 

In analog feedback technique, even if some difference in power device operation exists 

between simulation and actual measurement, the current and voltage of the power device can be 

controlled as long as the power device is operating within the feedback bandwidth. On the other 

hand, in digital feedforward technique, theoretical support for active gate waveforms is essential. 

Studies have been conducted to derive the waveform using optimization algorithms [39] [46] 

[57]. However, these studies do not explain why the optimal waveform can reduce ringing of 

drain current and voltage, making it difficult to apply to other devices. Reference [58] also 

considers the relationship of the drain waveform to noise, but does not logically explain the 

logic of waveform generation.  

Since the capacitance of power devices strongly depends on the drain voltage [59] [60] [61] 

[62] [63], analysis that takes nonlinearities into account is essential. In the literature [64], the 

turn-on current is analyzed, but the capacitance nonlinearity is not analyzed. Furthermore, the 

literature [64] models the power device as a voltage source, which leads to incorrect conclusions. 

In reference [44], both turn-on and turn-off analyses are performed, but again capacitance 

nonlinearities are not taken into account. Reference [65] mentions the analysis of SiC-MOSFET 

turn-off and capacitance nonlinearity, but the verification by simulation is incomplete. As a 

result, no gate current patterns are shown in the simulations to break the trade-off between surge 

voltage and losses. In addition, no experiment results are shown to break the trade-off. Even if 

one tries to generate the optimal waveform for each device variation, it is not realistic, as it 
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requires 2500 measurements in reference [39] and about 500 seconds in reference [46]. In 

addition, the generated waveforms would be excessively complex and require excessive 

memory size. On the other hand, once theoretical analysis is performed, the arbitrary waveform 

generation capability of digital feedforward technology can be used to apply active gate 

waveforms in a variety of devices to solve the tradeoff between loss and noise. It is possible to 

know what waveforms should be input when the threshold voltage and capacitance of power 

devices vary. 

⚫ Reverse recovery current specific to SJMOS 

Active gate control for revers recovery currents unique to SJMOS has not yet been developed. 

Reverse recovery current occurs when carriers in the drift layer move when the diode turns off 

[19] [20]. Modeling the recovery current of a diode is difficult, and differences exist between 

the SPICE models provided by various vendors and the values in the data sheets. There is no 

precedent for a studied example of active gate control of a SJMOS due to the difficulty of 

controlling the recovery current. 

⚫ Active gate drive technique proposed in this paper 

We will discuss how the technology proposed in this paper relates to the challenges presented 

above. 

Figure 2.13, Figure 2.14 and Figure 2.15 show the challenges presented in this subsection and 

the active gating technology proposed in this paper as a solution. Figure 2.13 shows the 

relationship between the issue and the analog FB active gate technology proposed Chapter 3. 

Figure 2.14 and Figure 2.15 show the relationship between the issue and the digital FF active 

gate technology proposed in Chapter 4. The challenges can be broadly classified into two 

categories: chip integration and device characteristics. The challenges of chip integration can be 

categorized into the need for wideband OP-AMP in analog technique and the lack of logical 

support for complex active gate waveforms in digital technique. The issues of device 

characteristics can be categorized as follows: for SJMOS, active gate control corresponding to 

reverse recovery current is necessary, and for both SJMOS and SiC-MOSFETs, control that 

takes into account the nonlinearity of parasitic capacitance is a common issue. 

The discrete-time feedback technique proposed in Chapter 3 enables active gate control that 
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also accommodates the reverse recovery current unique to SJMOS and does not require a 

wideband OP-AMP. The digital feedforward technique logically derives the active gate 

waveforms by analyzing the capacitance nonlinearity. The time resolution extension technique 

eliminates the need for wideband amplifiers. Furthermore, the backward gate current injection 

technique enables active gate control to accommodate the capacitance nonlinearity of power 

devices. 

 

Figure 2.13:The relationship between the issue and the analog FB active gate technology 

proposed Chapter 3. 

 

Figure 2.14: The relationship between the issue for chip integration and the digital FF active 

gate technology proposed in Chapter 4. 
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Figure 2.15: The relationship between the issue for device characteristics and the digital FF 

active gate technology proposed in Chapter 4. 

2.6 Summary 

In this chapter, the switching principles of power devices and active gate technology were 

outlined. The characteristics of SJMOS, IGBT, and SiC-MOSFETs were described as basic 

knowledge to explain the switching principles. In addition, the switching principle of power 

devices was described. Furthermore, we described how the switching waveforms of power 

devices represent the influence on the noise of the converter system. Then, the technical 

classification of active gate technology is described and the current issues are summarized. We 

then described how the technologies proposed in Chapters 3 and 4 relate to each of these issues. 
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Chapter 3 Analog feedback active gate 

drive for Superjunction MOSFET 

3.1 Introdutcion 

This chapter describes an active gate driver IC that uses analog feedback technology. This 

chapter describes an active gate driver IC that uses analog feedback technology. The target 

device is SJMOS. The target device is a converter that handles power used in home appliances. 

In conventional gate driver design for the converter that handles power used in home 

appliances, the converter designer selects a fixed value of gate resistance to ensure that the slew 

rate (SR) of the drain voltage Vd, or dVd/dt, does not exceed the noise suppression design 

guidelines for each application or use case. The guidelines or maximum SR is mainly 

determined from the conduction noise of each application because conducted noise depends on 

dVd/dt. Minimizing the gate resistance within the range where dVd/dt does not exceed the 

guideline value results in lower switching losses. However, the effect is limited because dVd/dt 

becomes uncontrollable because of changes in load current, temperature, and Vth of the power 

transistor. The maximum dVd/dt must be less than the guideline value in all conditions and there 

is an extra loss in conditions other than those where dVd/dt is high. If dVd/dt can be fixed for all 

load currents and environments by active gate control, the extra losses can be reduced as shown 

in Figure 3.1(a). Furthermore, if the drain current rise dId/dt can be improved while keeping 

dVd/dt constant, losses can be further reduced as shown in Figure 3.1(b). In order to improve the 

efficiency of the converter, the turn-on delay shown in Figure 3.1(c) must also be reduced.  

Superjunction MOSFET (SJMOS) has a low on-resistance among devices with a breakdown 

voltage of several hundred volts and, unlike IGBTs, does not have a saturation voltage between 

collector and emitter. For this reason, SJMOS are often used in inverters with several hundred 

volts and several amperes. In the case of the IGBT, the dVc/dt can be controlled by the gate 

current Igcnt during the Vcd transition as shown on the left in Figure 3.1(d). However, dVd/dt of 

SJMOS is determined by the peak reverse recovery current (IRR) of the diode in the other-side 
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device. For example, the dVd/dt of the low-side device is determined by the IRR of the high-side 

device as shown on the right in Figure 3.1(d). The IRR generated on the high-side SJMOS must 

flow to the low-side SJMOS. When the low-side current returns to the value of the load current 

after the IRR reaches its peak, the drain voltage must change. The dVd/dt depends on the IRR peak 

and the active gate control should be focused on the IRR peak. The determination of dVd/dt by 

IRR is a phenomenon unique to SJMOS and does not occur in devices such as IGBTs. As shown 

in Figure 3.1(d), the method of controlling gate current Ig in accordance with the transition of 

VC, which is possible with IGBTs, cannot be applied to dVd/dt control of SJMOS. 
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Figure 3.1: Motivations of the active feedback in chapter 3. 

 

Figure 3.1 summarizes the requirements and motivations for the active gate SR or dVd/dt 

control for SJMOS discussed above. As shown in Figure 3.1(a), dVd/dt variation due to device 

variation and environmental variations can be reduced to reduce losses. In the turn-on sequence, 

by improving the current dId/di during rise time, the loss can be further reduced as shown in 

Figure 3.1(b).  Compared to resistive control, turn-on delay time shown in Figure 3.1(c) can 
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also be reduced by using active gate technology. For devices with large recovery current IRR 

such as SJMOS, control based on IRR is required because the dVd/dt strongly depends on IRR as 

shown in Figure 3.1(d).  

In this work, a discrete-time background feedback that overcomes the challenges and satisfies 

all the motivations summarized in Figure 3.1(a)-(d) simultaneously is proposed. The proposed 

method controls the peak value of IRR by switching between two resistors. A discrete-time 

feedback technique using capacitors and integrators can control the voltage SR depending on 

the IRR by changing the resistor value at the next switching. 

The remainder of this chapter is organized as follows. Section II shows the feature of the 

proposed discrete-time feedback scheme. The mechanism to control the SR and analysis to 

reduce loss are described in Section III. Section IV shows a detailed schematic of the 

discrete-time feedback. The measurement result is shown in Section V. Section VI concludes the 

paper. 

 

3.2 Discrete-time feedback scheme 

The feature of the discrete-time feedback scheme [66] is shown in Figure 3.2(a). The 

technique is based on time-domain switching of two values of gate resistance, namely, R1 and 

R2, where R2 is much smaller than R1. R2 is activated in the initial part and the latter part of the 

switching cycle to boost the gate charging and shorten the turn-on delay. The duration of the 

intermediate high gate resistance state in which only R1 feeds the gate current is controlled so 

that dVd/dt reaches the maximum allowable SR and minimizes the switching loss. dVd/dt 

originating in IRR can be controlled as well thanks to the background feedback feature. 

Background here means that the loop samples the dVd/dt in the previous cycle, reflecting it in 

duration of the high gate resistance state of the following cycles and achieving convergence in 

multiple switching cycles. As shown on the right in Figure 3.2(c), the pulse width of V2 is 

modulated based on the sample results of Vd from previous cycles. In the loop, the transition 

period of Vd is translated into the voltage domain and sampled by the SR detector and held until 

the next switching cycle. The error voltage Verr indicates the integrated difference between the 
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sampled voltage and the reference voltage Vref_dvdt, which reflects the target dVd/dt. The Verr 

modulates pulse width of V2 at the next switching cycle. The dVd/dt is gradually increased in 

each switching cycle and finally settles to the target value as shown in Figure 3.2(b). The 

proposed SR Control (SRC) technique keeps the SR or dVd/dt constant regardless of changes in 

the load current or temperature. And this minimizes the switching loss while the original dVd/dt 

decreases and the loss increases as the load current or temperature decreases without SRC. As 

shown in Figure 3.2(c), the proposed feedback provides short turn-on delay without violating 

the SR guideline thanks to the fast gate charge by R2 and regulating IRR by R1.  

 

 Figure 3.2: Proposed slew rate control gate driver with feedback. 
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Figure 3.3 and Figure 3.4 based on the waveform comparisons with and without the feedback. 

Figure 3.3 shows the waveform of a conventional gate driver and Figure 3.4 shows the 

waveform of the proposed gate driver. The turn-on sequence is shown in Figure 3.3 and Figure 

3.4. The voltage V1 is same as the gate driving PWM signal in Figure 3.3 and Figure 3.4. In the 

conventional control using a single resistor R0 as shown in Figure 3.3, the gate voltage is 

charged by the resistor R0 and the rise rate of the drain current Id is determined by R0. When the 

current value exceeds the load or inductor current ID0, the recovery current starts to flow. The 

reverse recovery current (IRR1) of the parasitic diode in MPH and the load current ID0 flow in to 

the low-side device MPL simultaneously. When all the recovery current has finished flowing, the 

current value returns to ID0 and the drain voltage decreases in proportion to the value of IRR.  

In the proposed gate driver shown in Figure 3.4, the voltage V2 whose first pulse width is 

controlled by SRC rises at the same edge as voltage V1, which represents the original gate drive 

PWM signal. At this point the gate-source capacitor of MPL is mainly charged via the R2 smaller 

than R1. The reverse recovery current (IRR1) of the parasitic diode in MPH and the load current 

IL=ID0 flow in to the low-side device MPL simultaneously before the drain voltage Vd starts to 

fall. The peak of the Id is the summation of ID0 and IRR1. The V2 falls to zero at t2 and the gate 

voltage of the MPL is charged via the large resistor R1 and hence the speed of the Id increment 

slows down. The Id starts to decrease at t3 and the Vd whose SR depends on IRR1 starts to 

decrease as well. When the falling edge of V2 is moved from t2 to t1, the peak of Id is decreased 

from (ID0+IRR1) to (ID0+IRR2). The speed of voltage transition that starts at t4 slows down because 

IRR2 is smaller than IRR1. The SR can be controlled by modulating the falling edge of V2. When 

compared with the waveforms by constant gate resistance shown in Figure 3.4, the SRC 

feedback clearly shortens the turn-on delay thanks to the fast charge via R2.  

Although there are several oms of parasitic gate resistance in the power device, the resistance 

value R2 should not be too low to prevent gate oscillation. On the other hand, after the voltage 

transition is completed, the gate is again driven with a small resistance R2. This is because if the 

gate is driven with a large resistance, it may malfunction due to noise from other inverters. 
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Figure 3.3: Time waveform of conventional gate driver. 
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Figure 3.4: Time domain waveform of proposed gate driver. 

3.4 The analysis of switching loss 

The effect of loss reduction using SRC technology is explained using Figure 3.5. Figure 3.5(a) 
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is equal is shown in Figure 3.5(a) and Figure 3.5(b). Therefore, the value of IRR is equal in 
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conventional gate driver is QRR,cnv. In Figure 3.5(b), the recovery charge of the proposed gate 
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Figure 3.5: Loss reduction by waveform shaping of drain current. 

 

It has been shown in previous work that the QRR can be given by the following equation [67]. 

 

𝑄𝑅𝑅 = 𝑘𝑄𝑅𝑅√𝐼𝐷0                                  (3.1) 

 

ID0 is the drain current and kQRR is a coefficient related to the junction temperature and turn-off 

dId/dt. The turn-off dId/dt of the high-side diode corresponds to the turn-on dId/dt of the low-side 

SJMOS. As for the dId/dt, in the proposed method, the dId/dt is high in the section driven by a 

small resistance R2, and the dId/dt is low in the section driven by a large resistance R1. There is 

no previous work on QRR when the dId/dt is switched in the middle of the turn-on process. In 

this section, two cases are assumed and discussed. First, we will discuss the case where QRR is 

not sensitive to dId/dt and QRR,prp and QRR,cnv are equal. Next, we discuss the case where the QRR 

is sensitive to dId/dt and the QRR of the proposed method is not equal to the QRR of the 

conventional method. Finally, the simulation results will be used for discussion. 

First, we discuss the loss reduction method when the QRR,prp of the proposed method is equal 
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shown as solid lines. Since IRR is equal, the slew rate or dVd/dt of the drain voltage is the same 

in the conventional and the proposed gate driver. The switching loss is defined as the 

multiplication of drain voltage and drain current. And since the drain voltage waveforms are 

equal, the drain current difference shown in green in Figure 3.5(c) is the loss reduction.  

The relationship between R1 and R2 that minimizes the loss is introduced. Figure 3.6 shows 

the drain current of the proposed gate driver. The region related to the turn-on current loss can 

be divided into QRR and Qx, as shown in Figure 3.6. The current rise time can be divided into the 

time tA and tB, which are determined by the values of the parallel resistances of R1 and R2. 

However, R2 is sufficiently smaller than R1 that it can be approximated to be determined by R2. 

And the time tC, which is determined by the large resistance R1. The time tD is the time when the 

current IRR0 reaches load current ID0 and tD does not change if the IRR is kept constant. To 

minimize the switching loss, the electric charge Qtotal which is the summation of Qx and QRR, is 

minimized. Qx is a function of tA, tB and tC. The charge Qtotal can be expressed by the following 

equation. 

 

Qtotal = QRR +Qx(tA, tB, tC)                        (3.2) 

Qx(tA, tB, tC)=0.5ID0(tA+2tB+2tC+2tD)                    (3.3) 

 

As shown in equation (3.2) and (3.3), the sensitivity of time tB and tC to Qtotal is equal. On the 

other hand, QRR can also be expressed using tA, tB, tC, and tD, IRR, IDR1, where IDR1 is the current 

that rises when driven by a large resistor R1 as shown in Figure 3.6. 

 

QRR=(0.5IRR0-0.5IDR1)tB+(IRR0+0.5IDR1)tC+0.5IRRtD        (3.4) 

 

The recovery charge QRR, shown in equation (3.4), must be a constant value as long as ID0 is 

constant. And the time tC is more sensitive to QRR than time tB because the coefficient of tC is 

larger than tB. To reduce Qtotal and loss under the condition of constant QRR, make the rise of Id 

as fast as possible and reduce QX. By choosing a resistance value that makes the time tC as long 

as possible and the time tB as short as possible, we can reduce the Qtotal while keeping QRR 
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constant. It is preferable to choose as large a value as possible for R1 and as small a value as 

possible for R2. 

 

Figure 3.6: Loss calculation of proposed gate driver. 
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is sensitive to dId/dt. By reducing both the charge QRR and Qx, the loss can be reduced. From 
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specifications such as breakdown voltage, current rating, and charge QRR are shown in Table 3.1. 

In this simulation, the system was configured such that the drain current ID0 does not exceed half 

of the maximum current value listed in the specification. In other words, the drain current ID0 

should be between 0 and 4A. Also, the charge QRR of this device is 3.5 uC. The device 

TK39N60W5 [69], which has a higher current rating, was also used in the simulation for 

comparative. The high-accuracy model presented in the literature [70] is used for the simulation, 

and the nonlinearity of the parasitic capacitance is modeled within an error of 2% [70]. 

Therefore, the transient characteristics of the rising drain current and falling drain voltage can 

be simulated with high accuracy. On the other hand, the recovery charge QRR of the diode is not 

described in the literature [70]. Therefore, the recovery charge QRR described in the datasheet of 

each device was compared with the recovery charge QRR obtained by simulation. Table 3.2 

shows the results of the charge QRR comparison. As shown in Table 3.2, differences exist in the 

amount of charge QRR between the simulated and datasheet values, with a ratio of 37% for 

TK8A60W5 and 50% for TK39N60W5. The accuracy of the model is low with respect to the 

recovery charge QRR, which is a note of caution when considering the simulation results. 

 

Table 3.1: Specification of the device used in the simulation. 

 

 

Device name TK8A60W5 TK39N60W5

Breakdown drain-source 

voltage
600 V 600 V

Maximum drain current 8 A 39 A

On resistance 0.44 ohm 0.062 ohm

Reverse recovery charge QRR 0.35 uC 1.2 uC

Peak reverse recovery 

current IRR

9.2 A 13 A

Internal gate resistance 7.5 ohm 2 ohm
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Table 3.2: Comparison of charge QRR and current IRR value from simulation and datasheet. 

 

 

Figure 3.7 shows the results of the proposed feedback control using devices TK39N60W5 and 

TK8A60W5. When the control voltage of resistor R2 reaches 5 V, resistor R2 is enabled. Table 

3.3 also shows the values of R1 and R2 used and the value of dVd/dt. The dVd/dt is the absolute 

value of the slope of the drain voltage from 90% to 20% of the power stage supply voltage. The 

devices TK39N60W5 and TK8A60W5 differ in the value of charge QRR by a factor of 10 or 

more, however, the feedback works to keep dVd/dt constant.  

TK8A60W5 TK39N60W5

Datasheets value Simulation Datasheets value Simulation

Reverse recovery 

charge QRR

0.35 uC 0.22 uC 1.2 uC 2.4 uC

Peak reverse 

recovery current IRR

9.2 A 7.7 A 13 A 40 A
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Figure 3.7: Simulation of the proposed feedback control with device TK39N60W5 and 

TK8A60W5. 
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Table 3.3: The resistance and dVd/dt value of simulation in Figure 3.7. 

 

Next, the relationship between two gate resistance values and power dissipation is clarified by 

using the device TK8A60W5. Figure 3.8 shows the simulation results with R1 fixed and R2 

swept, where R1 is fixed at 450 ohm and R2 is 50 ohm, 100 ohm and 210 ohm. The drain voltage 

Vd and drain current ID0 in the simulation are 290V and 3.7A, respectively. Figure 3.8 also 

shows the simulation results when the device is driven with a resistance value of 220 ohm 

without feedback. Table 3.4 also shows the values of Qtotal, QRR, Qx switching (SW) loss, time 

ta+tb driven by resistance value R2, and time tc driven by resistance value R1 for each simulation 

result.  According to the simulation results, when resistance R2 is 100 ohm and resistance R1 is 

450 ohm, the time ta+tb and tc are 0.08 us and 0.036 us respectively. The peak value of the 

recovery current, IRR0, is 2.9A, and the time td is about 0.01us.  As shown in Table 3.2, using 

the model of device TK8A60W5, the charge QRR is not constant, and the value of QRR changes 

with the presence of feedback. Comparing the results for different resistance values R2 with 

feedback, the smaller the resistance value R2 is, the more the time ta and tb decrease and the time 

tc increases. The charge Qtotal and Qx decrease with shorter time ta and tb. In the device model 

TK8A60W5, reducing the resistance R2 and shortening the time ta+tb increases the charge QRR. 

However, the charge Qx can be reduced, resulting in a reduction in charge Qtotal and switching 

loss.  

Device name TK8A60W5 TK39 N60W5

R1 450 ohm 450 ohm

R2 10 ohm 10 ohm

dVd/dt (90% to 20%) 5.3V/nsec 5.4V/nsec
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Figure 3.8: Simulation results for the case where the resistance value R1 is fixed and R2 is 

varied. 

 

Table 3.4: Simulation results of charge Qtotal, Qx, QRR, switching loss, and time ta+tb, tc where 

resistance value R1 is fixed and R2 is varied. 
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Feedback

(FB)
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Figure 3.9 shows the results when the resistance R2 is fixed and R1 is varied. The simulation 

results of drain current and drain voltage when resistance R2 is fixed at 10 ohm and resistance 

R1 is 450 ohm, 550 ohm and 650 ohm are shown. Table 3.5 shows the values of Qtotal, switching 

loss, time ta+tb driven by resistance R2, and time tc driven by resistance R1 in each simulation 

result. As resistance R1 is increased, the amount of charge Qtotal and switching loss decreases. 

Using the device model TK8A60W5, the charge QRR increases with increasing R1. However, the 

charge Qx decreases, resulting in a decrease in the charge Qtotal. As the resistance value R1 is 

increased, the time tc is also decreased and the time ta+tb is increased. In case of using the device 

TK8A60W5, the loss can be reduced by increasing the resistance R1 and decreasing the 

resistance R2.  

The loss reduction ratio with a larger resistor R1 is 1.4%, which is smaller than the loss 

reduction ratio with a smaller resistor R2, which is 12%. The resistor R1 affects the drain current 

rise performance. The rise of drain current is affected by the capacitance characteristics of the 

power device. Since the model used in this study has highly accurate capacitance characteristics, 

the simulation also showed that a smaller resistor R2 resulted in lower loss. On the other hand, 

the resistance R1 mainly affects the behavior of the recovery charge. As shown in Table 3.2, the 

recovery charge is not accurately modeled. Therefore, the simulation confirmed the loss 

reduction effect of resistance R1, however, it was as small as 1.4%. It is necessary to confirm the 

loss reduction effect by R1 in measurements. 
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Figure 3.9: Simulation results for the case where the resistance value R2 is fixed and R1 is 

varied. 
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Table 3.5: Simulation results of charge Qtotal, Qx, QRR, switching loss, and time ta+tb, tc where 

resistance value R2 is fixed and R1 is varied. 

 

3.5 Detailed circuit schematic and time domain 

waveform 

Detailed schematics of the proposed SRC feedback driver and its waveforms are shown in 

Figure 3.10 and Figure 3.11, respectively. It consists of SR-to-voltage sampling (SRVS) block, 

error amplifier, and PWM block. A voltage-domain error amplifier is adopted to provide the 

target SR or dVd/dt in a voltage domain. To accommodate this, the SR information is converted 

to a voltage domain at the SRVS block. As discussed below, interleaving operation in SRVS 

reduces timing complexity of timing generation. The comparators CMP1 and CMP2 compare the 

divided drain voltage Vd_fb to the reference voltages, VrefH and VrefL. The switch S1 turns-on 

when the divided voltage Vd_fb stays between the reference voltages, VrefH and VrefL, as shown in 

Figure 3.11. The pulse width of Tp represents the duration of the drain voltage transition and is 

inversely proportional to SR. The Tp is converted to the voltage VSL1 by charging the capacitor 

C1 , with current source I1, as shown in Figure 3.10. In this work, the capacitance C1 and C2 are 

located outside of the chip and the value is 100pF. The value of the capacitor should be chosen 

so that it can hold the charge while the voltage Vin switches two times. The charge C1 x VSL1 is 

transferred to the capacitor Citg at the timing of VSW3. After a period of a half-switching cycle, 

VSL1 is reset.  

Feedback 

(FB)
R1 [Ohm] R2 [Ohm] Qtotal [uC] QRR [uC] Qx [uC]

SW loss 

[mJ]

ta+tb

[usec]
tc [usec]

w/ FB 450 10 0.488 0.169 0.319 0.144 0.028 0.058

w/ FB 550 10 0.481 0.174 0.307 0.1423 0.03 0.051

w/ FB 650 10 0.479 0.176 0.303 0.1420 0.032 0.047
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Figure 3.10: Circuit diagram. 
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Figure 3.11: Transient waveform. 

 

As shown in Figure 3.11, VS1/VS2, VSL1/VSL2, and VSW3 /VSW4 operate in an interleaving 

fashion, respectively. The interleaving operation reduces complexity of timing generation, since 

all of the above-mentioned switching timing can be generated based on Vin, which represents 

the original gate drive PWM signal. The output voltage of the error amplifier Verr represents the 

integrated error between the target transition indicated by reference voltage Vref_dvdt and the 

measured transition indicated as VSL1 and VSL2. The falling edge of V2 is decided by the cross 

point of the Verr and the saw-tooth waveform Vsaw. Finally, the voltage information is converted 

into the timing by using the comparator CMP3. The pulse width of the V2 is increased when the 

Verr is large, resulting in the increment of the IRR and SR. The end of the transition of the drain 

voltage Vd is detected by comparing the voltage Vd_fb with the threshold voltage VrefL of the 
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low-resistance R2 after the power device turns on. By keeping the gate in low impedance, it 

Vin, V1

Vd_fb

VS1

VS2

VSL1

VSL2

VSW4

VSW3

Vsaw

V2

Verr

VrefH
VrefL

SR is converted to pulse width TP

TP

Tp is converted 

to voltage

V2 falls down at the cross point of Verr and Vsaw

VS1, VS2

Interleave

operation

VSL1, VSL2

Interleave

operation

VSW3, VSW4

Interleave

operation

Time 

Vd
Vdmax



 

63 

 

prevents malfunctions caused by noise from other inverters. 

Figure 3.12 shows a circuit diagram of the timing generation circuit and error amplifier. The 

timing generation circuit uses a frequency divider circuit to generate interleaved signals. The 

error amplifier is a simple differential circuit configuration. The comparator uses a circuit that 

combines NMOS and PMOS differential circuits as shown in reference [13]. 

 

Figure 3.12: Circuit diagram of the timing generation circuit and error amplifier. 

 

If the drain voltage Vd varies with the application, or if the target value of dVd/dt is to be 

varied, the input value of the integrator's reference voltage Vref_dvdt is changed. The relationship 

between the target dVd/dt and the reference voltage Vref_dvdt of the integrator is shown below. If 

target dVd/dt is the speed at which the drain voltage Vd transitions from 90% to 10% of its 

maximum value Vdmax shown in Figure 3.11, the relationship between the sampled time Tp, the 

maximum drain voltage value Vdmax, and dVd/dt is expressed by the following equation. 

 

𝑇𝑝 =
0.9𝑉𝑑𝑚𝑎𝑥−0.1𝑉𝑑𝑚𝑎𝑥

𝑑𝑉𝑑
𝑑𝑡

                             (3.5) 

 

The time Tp is converted to a voltage by capacitor C1 and current I1. The reference voltage 

Vref_dvdt and time Tp of the integrator are expressed by the following equation. 

 

𝑉𝑟𝑒𝑓_𝑑𝑣𝑑𝑡 =
𝐼1

𝐶1
∙ 𝑇𝑝                                 (3.6) 
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From equations (3.5) and (3.6), the relationship between the reference voltage of the integrator 

Vref_dvdt and the target dVd/dt can be expressed by the following equation. 

 

𝑉𝑟𝑒𝑓_𝑑𝑣𝑑𝑡 =
𝐼1

𝐶1
∙
0.9𝑉𝑑𝑚𝑎𝑥−0.1𝑉𝑑𝑚𝑎𝑥

𝑑𝑉𝑑
𝑑𝑡

                      (3.7) 

 

When the target dVd/dt or drain voltage changes, the reference voltage of the integrator Vref_dvdt 

must be changed with reference to equation (3.7). 

The values of capacitors Cex1 and Cex2 are 10 pF and 1000 pF, respectively, and the drain 

voltage Vd is divided by a factor of 100. The threshold values VrefH and VrefL should be set so 

that the divided voltage can be detected. When the drain voltage Vd transitions from 0V to 280V 

and the capacitance divider ratio is set to 1/100, a transition time of 10% to 90% can be obtained 

by setting VrefH to 2.52V and VrefL to 0.2 V. The comparator operates at 0V to 5V. In this work, 

the drain voltage is assumed to be a ramp wave. In applications where dVd/dt exceeds 20 V/nsec 

ringing may occur in the drain voltage. Ringing causes the comparator threshold to be exceeded 

many times, resulting in false detection of the transition time. For applications where dVd/dt is 

high speed, the layout of the inverter board should be carefully designed to avoid ringing.  

It takes about 10 switching cycles for the feedback to converge. During the settling transient 

period, the value of dVd/dt may oscillate depending on the conditions. The stability can be 

improved by adjusting the integrating capacitance Citg. If dVd/dt is unstable, it is necessary to 

control the loop by adjusting the integrating capacitance Citg by actual measurement. Increasing 

the value of the capacitance Citg stabilizes the loop. However, it increases the number of 

switching cycles until the dVd/dt reaches the desired value. 

The use of multiple capacitances C1 and C2 to sample time may result in inconsistent sampling 

times due to variations in capacitance. The presence of a capacity mismatch can cause dVd/dt to 

fluctuate. The effect of keeping dVd/dt constant and reducing losses becomes compromised. By 

matching the capacitance values of the capacitors to the factory test, the discrepancy in 

sampling time can be avoided. 

 In this work, the device to be controlled was a low-side SJMOS. However, the high-side 
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SJMOS should be controlled in the same way. This is because the dVd/dt of the high-side is 

determined by the QRR of the low-side. 

3.6 Measurement result 

To evaluate the continuous operation of the proposed SRC driver, it was implemented in a 

low-side switch of a boost converter. Figure 3.13 shows the photograph of the measurement 

setup and circuit schematic. 600 V-class superjunction MOSFETs (TK8A60W5) are utilized for 

both the low-side switch and the high-side diode whose gate-source terminals are shortened. 

Figure 3.14 shows the measured transient waveforms at a low temperature of 45 ℃ centigrade 

and a high temperature of 95 ℃. The peak of the IRR was kept constant by SRC feedback against 

temperature change. The width of the boost pulse V2 is modulated to keep IRR and dVd/dt 

constant. The proposed SRC feedback that keeps dVd/dt constant and shortens the turn-on delay 

is demonstrated. 

 

Figure 3.13: Photograph of the measurement setup and circuit schematic. 

 

Id
Vd

R1

R2

SRC driver

test chip
MPL: 600V-

SJMOS

MPH: 600V-
SJMOS

Vg

IL

+
-

Pattern 

generator

5kHz clock

DC input

140V

L 50mH

C 88uF

Electronic 
load

V2

V1

V2 monitor

(5V logic)

DC output 280V

Verr monitor

Inductor(L) 

Capacitor(C)
Backside of the board 

SJMOS(MPL) 

SJMOS(MPH) 

SRC Chip
in socket

DC input 

Cex1

Cex2



 

66 

 

 

Figure 3.14: Measured waveform w/ and w/o feedback. 
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Figure 3.15 shows the measured dVd/dt with different drain current. As shown in Figure 3.15, 

dVd/dt is decreased as the load current decreases without SRC feedback. It is kept constant at 

4.5 V/nsec or 3 V/nsec depending on the reference voltage of Vref_dvdt by the SRC feedback. The 

dVd/dt variation is compressed from 37% to 7% when the target is 4.5V/nsec and from 31% to 

10% when the target is 3.3V/nsec. Figure 3.16 shows the temperature characteristics of dVd/dt. 

Thanks to SRC feedback, dVd/dt is kept constant. The measurement results of samples with 

different threshold voltage are also shown in Figure 3.16. The dVd/dt is kept constant with 

different threshold voltages. In the measurements, a heat sink was connected to the metal plate 

on the back side of the SJMOS TO220 package. The temperature was measured by inserting a 

thermocouple between the heat sink and the metal plate on the backside. 

 

Figure 3.15: Measured dVd/dt with drain current. 
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Figure 3.16: Measured dVd/dt with Vth and temperature. 

 

Figure 3.17 and Figure 3.18 show the loss decrement ratio (1 - Ew/Ewo), where Ew and Ewo are 

the switching losses with/without SRC feedback, respectively. The maximum loss reductions 
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Figure 3.17: Measured loss decrement ratio with drain current. 
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Figure 3.18: Measured loss decrement ratio with temperature. 
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Figure 3.19: Measured turn-on delay with drain current. 

 

 

Figure 3.20: Measured turn on delay with temperature. 
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results for variable R1 and fixed R2, where larger R1 reduces the loss for the same dVd/dt. The 

bottom of Table 3.6 shows the results when the resistance value R1 is fixed and the resistance 

value R2 is varied. The load current is 0.5 A and the resistance R1 is fixed to 1.5 K ohm. The use 

of smaller resistors reduces the loss, even if the dVd/dt of 4.9V/nsec is constant, and the 

measurement results tend to agree with the analysis results in Chapter IV. The loss is reduced by 

14% by decreasing resistor R2 and by 19% by increasing resistor R1. The loss reduction due to 

resistor R2 is roughly consistent with the simulation, and the loss reduction due to resistor R1 is 

larger than in the simulation. 

 

 

Figure 3.21: Measured dVd/dt with different resistance. 
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Table 3.6: Measurement result of the dVd/dt and switching loss with different gate resistance 

R1 and R2. 

 

 

The measured transient waveform of the start-up is shown in Figure 3.22. The Vg and Vd 

shown in Figure 3.22 are the gate and drain voltages of the low-side SJMOS. Figure 3.22 also 

shows the output voltage of the integrator Verr. In the absence of environmental fluctuations or 

changes in device characteristics, when the voltage of the integrator Verr reaches a constant 

value, it can be determined that the dVd/dt is converged to the target value.  The error voltage 

Verr is settled to a constant value in 7 switching cycles after the gate voltage is input, which can 

be used for applications operating at frequencies from several kHz to several tens of kHz.  

 

R1 [ohm] R2 [ohm] dVd/dt[V/nsec] Loss [uJ]

1500 10 4.97 52.9

1500 82 4.94 57.5

1500 150 4.93 61.5

IL=0.5A

R1 [ohm] R2 [ohm] dVd/dt[V/nsec] Loss [uJ]

560 47 4.31 303

560 47 2.92 301

IL=3.5A

R1 [ohm] R2 [ohm] dVd/dt[V/nsec] Loss [uJ]

560 47 2.85 201

680 47 2.95 163

IL=1.0A
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Figure 3.22: Measured transient waveform of the start-up. 

 

Table 3.7 shows a performance comparison. The digital feedback scheme is adopted in [1] for 

power MOSFET but the SR of 0.0004V/nsec is slow. The digital and analog feedback technique 

is applied to IGBTs and GaN [4-7], and in particular, feedback technology applied to the GaN 

device [7] has succeeded in controlling dVd/dt from 40 V/nsec to 4 V/nsec by integrating a 500 

MHz amplifier in a CMOS. However, the output drive voltage of 4 V is low, and it cannot be 

adopted for SJMOS. In addition, the continuous-time analog feedback technique is not adopted 

to the SJMOS which the dVd/dt depends on reverse recovery current IRR. The discrete-analog 

feedback proposed in this work successfully controls the dVd/dt of the SJMOS.  
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Table 3.7: Performance comparison of gate driver. 

 

 

The chip micrograph is shown in Figure 3.23. The test chip was fabricated in 0.13 um 1.5 V 

HV CMOS process. However, only 0.6 um 5 V CMOS transistors and 18 V DMOS transistors 

are used in the test chip. The chip size is 2.87 mm x 2.87 mm.  
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Figure 3.23: Chip micrograph 
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to all converters shown in Figure 1.6. However, to apply discrete-time analog feedback, the slew 

rate of the drain voltage must be detected. The presence of parasitic capacitance causes difficult 

conditions for detecting the slew rate of the drain voltage, depending on the device type. 

With the IC proposed in Chapter 3, capacitance is used for the voltage divider circuit.. A 

voltage divider circuit can also be formed using a resistor. Figure 3.24(a) shows the circuit 

diagram when a resistor is used. Figure 3.24(b) also shows the value of the capacitance Coss of 

the power device. Furthermore, the value of the voltage divider resistor is shown. In Figure 

3.24(b), the model number of the SJMOS is TK8A60W5. The resistance value shown in Figure 

3.24(b) is the sum of the voltage divider resistors Rd1 and Rd2. There is a substrate parasitic 

capacitance Cp at the drain node of the power device. The substrate parasitic capacitance Cp is 

1pF to 2pF or more, even if the substrate design is sophisticated. The drain voltage (Vd) rise 

time in Figure 3.24(b) is calculated based on the definition that dVd/dt is 5V/nsec, which is 

assumed in Chapter 3, and that dVd/dt is the time for the drain voltage to go from 90% to 10% 

of the power stage voltage. The resistance value is determined so that the CR time constant, 

which is determined by the capacitance and resistance, is the same value as the Vd rise time. The 

resistance value is 25 kOhm. As a result, the power consumed by the resistor is 3.6 W. The 

lower limit of the switching frequency for household appliances, which is the application 

assumed for the driver IC in Chapter 3, is about 1 kHz. In addition, as shown in the 

measurement results in Chapters 2 and 3, the turn-on loss of the SJMOS is about 0.2mJ. 

Therefore, the switching loss per second is about 200 mW. The loss that would be generated in 

the voltage divider circuit is greater than 10 times the switching loss. For the above reasons, 

resistive voltage divider circuits cannot be used. 

 

Figure 3.24: Voltage divider circuit with resistors and power consumption of the voltage 
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divider circuit 

Next, discussion of the case in which capacitance is used in the voltage divider circuit is 

presented. Figure 3.25(a) shows a circuit for detecting the slew rate of drain voltage. The 

capacitance Coss is the capacitance at the output of the power device. The capacitances Cd1 and 

Cd2 form a voltage divider circuit. Depending on the voltage divider ratio, the value of 

capacitance Cd1 is about 1/100 of the value of capacitance Cd2. To avoid influence on the power 

stage circuit, the value of capacitance Cd1 is designed to be less than one-tenth of the value of 

capacitance Coss. There is also a board parasitic capacitance Cp1 at the drain node of the power 

device. The parasitic capacitance Cp1 of the board is more than 1pF even if the board design is 

more sophisticated. If the value of the voltage divider capacitance Cd1 is close to the value of the 

parasitic capacitance Cp1 of the board, the design of the voltage divider circuit becomes 

significantly more difficult. 

 

Figure 3.25: The circuit schematic for detecting the slew rate of drain voltage and the values 

of capacitance Coss for power devices of various materials. 

  

Figure 3.25(b) shows the values of capacitance Coss for power devices of various materials. In 

addition, the design values of the voltage divider capacitance Cd1 are shown for each respective 

power device. In Figure 3.25(b), the model numbers of the power devices are: SJMOS is 

TK8A60W5 [68], IGBT is IKZ75N65EL5 [72], SiC-MOSFET is TW070J120B [73], GaN is 

GNP1150TCA-Z [74]. As shown in Figure 3.25(b), the capacitance of the GaN Coss is as small 

as 20pF, resulting in a divided capacitance Cd1 value of 2pF. The value of the capacitance Cd1 is 

close to the value of the board parasitic capacitance Cp1 (1pF), and the applicability of the 

analog feedback driver IC proposed in Chapter 3 to GaN is difficult because of the difficulty of 
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designing the voltage divider capacitance in GaN. The Figure 3.26 shows the range of possible 

applications of the driver IC proposed in Chapter 3, while the driver IC proposed in Chapter 3 is 

difficult to apply to GaN. However, the driver IC proposed in Chapter 3 can be applied to 

SiC-MOSFETs and IGBTs. 

 

Figure 3.26: Applicable scope of discrete time analog FB technology proposed in chapter 3. 

3.8 Summary of chapter 3 

In this chapter, the active slew rate control gate driver is proposed for SJMOS. The proposed 

driver with discrete-time feedback technology controls the dVd/dt of SJMOS by changing the 

two resistors. The proposed feedback applies feedback results to the next switching, which 

results in IRR dependent dVd/dt at constant value regardless of load current, temperature and 

threshold voltage variation. The switching loss is reduced by choosing the appropriate values of 

the two resistors. The driver is integrated in 0.6um CMOS technology and the measured dVd/dt 

is kept constant regardless of changes in the load current or temperature. The turn-on delay 

reduction of 74% and switching loss reduction of 25% are achieved by proposed feedback 

technique. 
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Chapter 4 Digital feedforward active 

gate drive for SiC-MOSFETs 

4.1 Introduction 

This chapter describes active gate driver ICs using digital feed-forward technology. The target 

device is a SiC-MOSFET. The target device is a converter that handles power such as used in 

electric vehicles. SiC-MOSFET allows high power density and compact system 

implementations, but the following three challenges manifest: 1. Large radiation noise and 

conduction noise caused by voltage surge and successive ringing in combination with the 

high-voltage slew rate, 2. Device performance degradation and failure owing to the repetitive 

application of surge voltage, and 3. Degradation of overcurrent tolerance for short-circuit faults. 

EMI and reliability degradations are critically important for power electronics in public 

environments for which reliability is essential. 

The active gate drive technique shown in Figure 4.1 is one of the solutions for the 1st 

challenge, but the analog control scheme shown in Figure 4.1(a) is less effective owing to the 

limited arbitrariness of the gate drive waveform [66]. For example, reference [66] can only 

control dvd/dt due to reverse recover current (IRR) of SuperJunction MOSFETs and cannot 

control current or voltage ringing. In addition, the analog feedback for faster control increases 

costs. Reference [24] controls an IGBT dvd/dt of 2 V/nsec and Reference [26] [27] controls the 

rising current waveform of SiC-MOSFETs connected in parallel by feedback. However, a 14 V 

320 MHz wideband operational amplifier is required in [26] and 220MHz wideband operational 

amplifier with output voltage range of 20V is required in [27], making chip integration difficult, 

which is required for applications such as EV motors. The implementation in a discrete 

configuration also increases area and cost. The gate driver [29] for GaN devices is successfully 

integrated with 4 V 500 MHz bandwidth operational amplifiers in a CMOS to control dvd/dt 

with feedback. However, this technology cannot be applied to SiC-MOSFETs because the gate 

voltage of 4 V required to drive GaN is lower than the 18-25 V required for SiC-MOSFETs. 
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Figure 4.1: Conventional driver and proposed digital feed forward active gate driver. 
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 The digital gate drive shown in Figure 4.1(b) is an attractive solution [42] [44] [46] [43] [39] 

[47] [48], because arbitrary control of gate voltage can regulate various power device 

characteristics such as dvd/dt, did/dt, and current-voltage ringing. However the on-chip 

implementation with a single waveform Look Up Table (LUT) [42] was insufficient for the 

motor drive applications in which the load current varies in the order of sub-1 ms [29]. Even 

another FPGA-based digital implementation has not demonstrated real-time load current 

tracking [44]. An example of load application is given in reference [46], However an external 

measuring instrument is used to detect the load and output digital data to the gate driver IC. 

The second and third problems related to device degradation can be solved by an external 

controller in the case of IGBTs because of their relatively slow operation. However, 

SiC-MOSFETs are more sensitive to short circuits that cause thermal breakdown because the 

current density of the chip is higher than that of IGBTs, requiring a gate driver IC to complete 

fast detection and protection.  

This paper proposes a load-adaptive gate driver IC that solves issues related to surge 

voltage-induced noise and device gradients [75]. In this paper, theoretical analysis, simulation, 

and measurements are comprehensively performed to generate optimal waveforms for turn-off 

voltage surge reduction. The theoretical analysis and simulation of turn-off considering 

capacitor nonlinearity, which has not been done before, is performed. The gate waveform that 

reduces surge voltage is derived from theoretical analysis and simulation. The optimal 

waveforms are generated by measurements using the results of simulation and theoretical 

analysis. The proposed chip is fabricated and the optimum waveform is supplied to the power 

device. The switching that breaks the tradeoff between surge voltage and losses is demonstrated 

experimentally using SiC-MOSFETs as the power device. The proposed load adaptive digital 

gate driver is shown in in Figure 4.1(c). The IC implements the 3-bit  segmented current 

sources, each consisting of a transistor array, to pull-up and pull-down the gate, the 1.5 kb LUT 

to store multiple gate drive patterns, the assisting schemes to expand the time resolution of the 

gate current and reduce the LUT size, and the multipurpose 500 ksps Successive Approximation 

Register  (SAR) ADC whose concept is shown in reference [17], an isolated power supply and 

automatic power supply (VDD) selector is also implemented. The load adaptive digital gate 
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driver was monolithically integrated for the first time ever, making it possible to break the 

trade-off between surge/ringing noise and switching loss of SiC-MOSFETs for a wide variety of 

load varying applications. 

The remainder of this paper is organized as follows. In Section II, the optimal gate current 

pattern is derived by performing a turn-off voltage ringing analysis that takes into account the 

non-linearity of parasitic capacitance. Section III describes the driver circuit to output the 

derived optimal gate current pattern with less memory. Section IV presents the sampling 

front-end circuit for detecting surge voltage, on-voltage, and drain current. The isolated power 

supply circuit is also shown in Section IV. The measurement result is shown in Section V. 

Section VI concludes the paper. 

4.2 Turn-off voltage ringing analysis 

In this section, the optimal gate current pattern is derived by performing a turn-off voltage 

ringing analysis that takes into account the non-linearity of parasitic capacitance.  First, it is 

explained what is different from the conventional switching waveforms [19] [76] when 

capacitor nonlinearities of the SiC-MOSFETs are taken into account. Next, an analysis of 

turn-off voltage ringing considering capacitor nonlinearity and gate current waveforms that 

reduce ringing are shown. Figure 4.2 shows the equivalent circuit of the power device and 

power stage. Figure 4.3 shows what is different from the conventional switching waveforms 

[19] [76] by considering the nonlinearity of the capacitor. Figure 4.3(a) shows simulation results 

of turn-off using the circuit in Figure 4.2. Figure 4.3(b) is an enlarged view of a portion of 

Figure 4.3(a). The simulator is Cadence Spectre and the device is TW070J120B [12]. For 

simplicity of discussion, the inductance Ld is set to 0. The dotted line in Figure 4.3(a) and Figure 

4.3(b) shows the result when the nonlinearity of the capacitor is not considered, and the solid 

line shows the result when the nonlinearity of the capacitance is considered. As shown in Figure 

4.3(a), when nonlinearities in capacitance are not considered, the gate voltage does not change 

because the capacitance Cgd increases due to the Miller effect from time t1 to t2, when the drain 

voltage increases [18,19]. On the other hand, considering the nonlinearity of capacitance, as 

shown in Figure 4.3(b), the period during which the gate voltage does not change due to the 
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Miller effect begins at time t3 and ends at time t4. From time t4 to t5, the drain voltage rises 

sharply and the gate voltage also decreases due to the capacitance nonlinearity. 

 

Figure 4.2: The equivalent circuit of the power device and power stage.  
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Figure 4.3: Simulation results of turn-off waveforms with and without consideration of 

capacitor nonlinearity. 
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simulation results using the circuit in Figure 4.2 when the inductance Ld is set to 10 nH. The 

currents ig, id, ich, and icds are the gate current, drain current, channel current, and parasitic 

drain-source capacitance current, respectively. The voltages vds, vdio, and vgs are the drain and 

gate voltages of transistor M0 and the anode voltage of diode D0, respectively. The g(Abs) in 

Figure 4.4 is an absolute value of gain defined by dvds/dvgs. In Figure 4.4, Cds, Cgd, and Cds show 

the time variation of capacitance, where (1+g)Cgd is the gate-to-drain capacitance that takes into 

account the Miller effect.  
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Figure 4.4: Simulation results with nonlinearity of capacitors are considered and parasitic 

inductance is included. 
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from time ta, at time tb the power device M0 transitions from the inter-tripolar region to the 

saturation region, and at time tc the Miller plateau region begins [18,19]. In the Miller plateau 

region, the capacitance (1+Cgd), which takes into account the miller effect, becomes much larger 

than the capacitance Cgs, and most of the gate current ig flows through the capacitance Cds. From 

time tc to td, the drain voltage vds slowly increases. The capacitance Cgd of SiC-MOSFET has a 

drain voltage dependence, and as the drain voltage increases, the capacitance Cgd rapidly 

decreases [73]. Then, at time td, the capacitance Cgs becomes larger than the capacitance 

(1+g)Cgd, even considering the Miller effect. The gate current ig starts to flow into the 

capacitance Cgs, and the gate voltage vgs decreases. Even if the drain voltage does not reach the 

power supply voltage Vdc of the power stage, the miller plateau region ends at time td. As the 

gate voltage vgs decreases, the channel current ich decreases and the current flowing in the 

capacitance Cds increases. 

When the gate voltage vgs reaches the threshold voltage, the channel current ich becomes 

almost zero, and most of the current id flows into the capacitance Cds. Since the capacitance Cds 

also decreases with increasing drain voltage vds [73], the drain voltage vds and the diode voltage 

vdio increase rapidly. At time te, diode D0 begins to conduct. Here, a resonant circuit is formed 

and ringing occurs in the drain voltage vds. Figure 4.5 shows simulation results magnified 

around time te and the equivalent circuit at time te. Since capacitance Cgd is an order of 

magnitude smaller than Cds at time te as shown in Figure 4.4, the capacitance Cgd is ignored in 

Figure 4.5 to simplify the discussion. In the equivalent circuit shown in Figure 4.5, the drain 

voltage vds is vds(t), and furthermore, the current source ich becomes almost zero at time te, so the 

following equation is obtained. Time te in Figure 4.5 corresponds to t = 0 in Eq. (4.1) to (4.3). 

 

𝐶𝑑𝑠
𝑑2𝑣𝑑𝑠(𝑡)

𝑑𝑡2
−
Vdc − 𝑣𝑑𝑠(𝑡)

𝐿𝑑
= 0 (4.1) 

𝑣𝑑𝑠(0) = V0 (4.2) 

𝑑𝑣𝑑𝑠(0)

𝑑𝑡
=

I0
𝐶𝑑𝑠

(4.3) 

 

The initial values of the drain voltage vds and the current in the capacitance Cds are V0 and I0, 
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as shown in Figure 4.5. The drain voltage vds is expressed by the following equation. 

 

𝑣𝑑𝑠(t) = √(V0 − 𝑉𝑑𝑐)
2 + (

I0
𝐶𝑑𝑠𝜔

)
2

sin(𝜔𝑡 + 𝜑) + Vdc (4.4) 

𝜔 = 1/2𝜋√𝐿𝑑𝐶𝑑𝑠 (4.5) 

 

From Eq. (4.4), it can be seen that to reduce the amplitude of the resonance voltage, the initial 

current I0 of the capacitance Cds should be reduced.  

 

 

Figure 4.5: The outlines of the channel current ich, drain current id, and current flowing in the 

capacitance Cds 
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the capacitance Cds. The left figure in Figure 4.6 shows the waveform without current ich control, 

while the right figure shows an example with current ich control. To reduce the initial value 

current I0, the channel current ich should be increased, as shown in Figure 4.6. This can be 

accomplished by temporarily flowing the gate current ig in the opposite direction and increasing 

the gate voltage vgs above the threshold voltage. The following describes how the gate current ig 

is controlled to control the channel current ich. The requirement to control the gate current ig 

prior to time te in order to control the channel current is illustrated in Figure 4.7. The simulation 

results showing an example of uncontrolled channel current ich are shown in Figure 4.7(a). 

Figure 4.7(b) shows an example where the channel current ich is controllable. Figure 4.7(b) also 

shows that the surge voltage has been successfully reduced. As shown in Figure 4.7(a), even if 

the gate current ig flows in the opposite direction just before time te when resonance begins, the 

current icds flowing through the capacitance Cds cannot be reduced. This is because the gate 

voltage vgs is much lower than the threshold voltage just before resonance starts. Therefore, the 

gate current ig shown in Figure 4.7(b) is desirable. By flowing the gate current ig in the reverse 

direction around the point where the gate voltage vgs falls below the threshold voltage, holding 

the gate voltage at a value slightly below the threshold voltage, the channel current ich can be 

changed and the initial value current in the capacitance can be reduced. 

 

Figure 4.6: The outlines of the channel current ich, drain current id, and current flowing in the 

capacitance Cds 
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Figure 4.7: Simulation results with controlled channel current and reduced ringing, and 

simulation results with uncontrolled channel current. 
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4.3 Proposed gate driver design with time expansion 

technique 

As described in Section II, a gate waveform signal is required to drive the gate current ig in the 

opposite direction. The relationship between the time tp in Figure 4.7 and the maximum surge 

voltage is shown in Figure 4.8. The tp is the time when the gate current begins to flow in the 

reverse direction. The surge voltage shows the difference between the drain voltage and the 

main circuit dc voltage of 400V. The time tp is set to 31 nsec in the simulation shown in Figure 

4.7. As shown in Figure 4.8, when tp changes by 1 nsec, the surge voltage changes significantly. 

Therefore, controlling tp by 1 nsec is necessary. 

 

 

Figure 4.8: Simulation results of the relationship between the time Tp, when the gate current 

starts to flow in the reverse direction, and the surge voltage. 
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PMOS or NMOS of the inverter and the power supply, as shown at upper left in Figure 4.9. The 

fine delay circuit is enabled after the first falling edge of the PWM signal. The time tp can be 

controlled in 1 nsec increments by TRE. The output stage shown in Figure 4.9 can output 

current fast for a time resolution of 1 nsec, which has been confirmed by simulations that take 

parasitic resistance and parasitic capacitance into account. If the value of parasitic inductance 

between the power device and the gate driver becomes large, ringing may occur in the gate 

current and the intended active gate waveform may not be input to the power device. The 

inductance of the parasitic gate loop should be minimized by using TO247-4L with a Kelvin 

Source provided in the power device package. 

 

 

Figure 4.9: The proposed gate driver with Time Resolution Expansion (TRE). 
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The TRE scheme also keeps the clock frequency of the LUT at 80 MHz and LUT is 

significantly reduced in size by using TRE. The effect of the LUT on compactness is shown in 

Figure 4.10. The current profile specifications are shown at the top of Figure 4.10. The 

specification of the LUT includes the ability to store 6 bits (3 NMOS and 3 PMOS bits) of ig 

amplitude information with a resolution of 1 nsec. The total control interval is 375 nsec. As 

shown at lower left in Figure 4.10, if a conventional DAC [44] is used without the proposed 

TRE technique, data in 1 nsec increments is required, resulting in a total LUT size of 18 kbit. 

On the other hand, when using TRE, 12.5 nsec segment data is sufficient. The time of one 

segment, 12.5 nsec, is controlled using fine delay at 1 nsec intervals. With 3 bits, 12.5 nsec can 

be adjusted in less than 1 nsec. Even considering the additional 3 bits needed for TRE, the total 

LUT size is reduced to 1.5 k. Figure 4.11 shows the time resolution and the required LUT size. 

When using a conventional 1 GS/s DAC, the smaller the required tp resolution, the larger the 

LUT size. On the other hand, when TRE is used, the increase in the required LUT size can be 

suppressed. By using TRE, the required LUT size can be reduced to 1/12 of that using a 

conventional DAC. The LUT size of 3 kbits or less can be integrated into a CMOS process 

using digital circuits. 
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Figure 4.10: LUT size specifications and comparison of LUT size with and without TRE. 
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Figure 4.11: The relationship of the time resolution and the required LUT size. 
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and buffer circuits can be powered via isolated power transmission.  

A. Load Current Sensing 

Figure 4.12 shows the schematics of sampling front-end (FE) for the load current sensing, the 

surge monitoring, and the Vds-on (short-circuit) monitoring with the integrated 500 ksps SAR 

ADC. The load current is detected by the resistor Rsense introduced in the source terminal of the 

low-side SiC-MOSFET, but both the positive and the negative voltages appear on vRsense because 

of the current commutation. To sense both of them, an inverting amplifier is integrated on the 

chip and the offset voltage vref is applied. The sample timing of the ADC is set to 4 us past the 

SiC voltage transient (steady sampling) so as to be unaffected by the switching noise of the 400 

V power stage.  
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Figure 4.12: Surge monitoring circuit, Vds-on monitoring circuit, load current detection 

circuit.  
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on the cathode of D1 to VCC of 400 V. When a surge occurs in the drain voltage of a low-side 

power device and the voltage becomes greater than 400 V, the cathode side of diode D1 becomes 

equal to the surge voltage. The surge voltage larger than 400 V is divided by capacitors C1 and 

C2 to match the 5 V ADC input inside the chip. Diodes D2 and D3 are located to provide the 

current path when capacitors C1 and C2 are discharged by the reset switch. The detected surge 

voltage can be used to predict device performance degradation or failure due to repeated 

application of surge voltage.  

C. Vds-On (short-circuit) Monitoring 

On-state Vds (Vds-on) is also observed to detect the short-circuit fault. Figure 4.12 also shows 

the Vds-on (short-circuit) monitoring front end. The Resistor R2 biases the cathode of diode D5 

to 5 V. When the low-side power device turns on, the drain voltage vds of the power device is 

lower than 5 V. Then diode D4 turns on and the anode of diode D4 is the same as the drain 

voltage of the power device. Diode D4 turns off when the low-side power device turns off and 

the ADC input voltage never exceeds 5V. With the proposed circuit, the on-voltage of diode D4 

is added to the Vds-on voltage. Therefore, a replica circuit consisting of resistor R3 and diode D6 

is prepared. By measuring the difference between the voltage at the anode of diode D6 and the 

voltage at the anode of diode D4, the effect of the on-voltage of the diode can be eliminated. 

D. Isolated Power Supply 

As shown in Figure 4.13, the receiver for the auxiliary isolated power transfer and the 

automatic VDD selector for the ADC and sensing frontend are integrated for functional safety. 

Power supply of the gate driver IC is typically provided from the VCC in the high-voltage 

domain through a step-down converter. But in terms of functional safety, the monitoring circuits 

should keep operating for diagnosis and safe system shutdown in case faults, including short 

circuit, occur in the high-voltage domain and the power supply is lost. Isolated power transfer is 

realized over a differential transformer implemented by a cost- and power-efficient Fan Out 

Wafer Level Package (FOWLP) process [77]. The automatic VDD selector consists of two 

diodes and outputs to the ADC whichever is the higher of the voltage generated from the 

high-voltage domain and the voltage transmitted wirelessly. 
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Figure 4.13: Isolated power supply circuits. 

4.5 Timing of ADC operation to detect power device 

information 

Power devices generate large noise during switching. If noise is generated at the timing of 

ADC operation, the ADC will not operate properly. The timing of ADC operation and the driver 

circuit for detecting the load state of a power device are shown in the Figure 4.14. Figure 

4.14(a) shows the timing of ADC operation and Figure 4.14(b) shows the driver circuit for 

detecting the load state of a power device. In the figure, PWM is a signal that indicates the 

on/off state command of the power device, Ig is the gate current output by the driver, VRsense is 

the voltage generated across a resistor placed at the source of the power device to detect the 

drain current of the power device, and ADC conversion enable is a signal that indicates when to 

start AD conversion. As shown in the Figure 4.14, the rising or falling edge of the PWM signal 

generates large noise, so ADC operation at this timing should be avoided. After a short time has 

elapsed after the PWM signal rises and the noise disappears, the ADC starts conversion. The 

gate current Ig output at the next switching is determined based on the AD conversion result of 

the previous switching. This operation sequence allows AD conversion of the load current 

information avoiding the switching noise of the power device. 

RX Rectifier

TX

Oscillator

Power Delivery (PD) 

Transmitter Chip
Gate Driver Chip

Gate driver VDD

generated from 

power line VCC.

Off chip
(FOWLP) 

Trans.

ADC

Automatic 
VDD selector

ADC 
VDD

Rect. 
out

S
e
le

c
to

r

Buffer



 

100 

 

 

Figure 4.14: The timing of ADC operation and the driver circuit for detecting the load state of 

a power device 

4.6 Measurement result 
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Figure 4.15: Measurement setup. 
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Figure 4.16: Measured turn-off waveforms with and without TRE. 
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Figure 4.17: Measured surge voltage and switching losses at 3A drain current. 

 

 

Figure 4.18: Measured surge voltage and switching losses at 15A drain current. 
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reduced by 51% from 85V to 40.1V. At time tx in Figure 4.19, the PMOS is turned on. However, 

six NMOS are also turned on. In this study, the current value of 1 segment of PMOS and 1 

segment of NMOS were designed as 522 mA and 153 mA, respectively. Therefore, at time tx, 

the current flows from the gate of the power device to the driver direction. At time ty in Figure 

4.19, the number of NMOS on is reduced to 3. From time ty, the current is flowing toward the 

gate of the power device. The gate current is flowing in the reverse direction before time tz, 

when the resonant circuit is formed. The ringing of the drain voltage is successfully reduced. 

The dvd/dt from 10% to 90% drain voltage increase with active gate control in Figure 4.19 is 16 

V/ nsec.   
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Figure 4.19: Measured switching waveforms using the proposed method and the conventional 

driving method at a drain current of 15 A. 

-1

0

1

2

3

4

5

6

7

8

100 200 300 400 500

P
M

O
S

 o
n

 n
u

m
b

e
r 

Time [ns]

Active  gate current

Constant gate current

-5

0

5

10

15

20

G
a

te
 v

o
lt

a
e

 [
V

]
Active  gate current

Constant gate current

-5

0

5

10

15

20

D
ra

in
 c

u
rr

e
n

t 
[V

]

Active  gate current

Constant gate current

0

100

200

300

400

500

600

D
ra

in
 c

u
rr

e
n

t 
[V

]

Active  gate current

Constant gate current

tx ty tz

-1

0

1

2

3

4

5

6

7

8

N
M

O
S

 o
n

 n
u

m
b

e
r 

Active  gate current

Constant gate current

tv

Time [nsec]



 

106 

 

 

The following shows the method of generating a gate current pattern that breaks the trade-off 

between surge voltage and losses in the measurement. The waveform generation was done 

manually with the measurement system shown in Figure 4.15, observing switching losses and 

surge voltages. As shown in the simulation and theoretical analysis in Section 2, there are two 

important aspects of the gate waveform that reduce the surge voltage. The first is to inject the 

gate current in the reverse direction shortly before the drain voltage reaches the power stage 

supply voltage, and the second is to keep the gate voltage value close to the threshold voltage 

value when injecting the gate current in the reverse direction. The method of how these two 

aspects are achieved with an active gate waveform is explained below. 

First, the method to keep the gate voltage value close to the threshold voltage value when 

injecting the gate current in the reverse direction is described. Discharging the gate charge with 

a large gate current when turning off the power device is desirable in terms of turn-off delay 

reduction and switching loss reduction. Therefore, in the waveform shown in Figure 4.19, when 

the gate current draw starts at time tv, the gate charge is discharged at the maximum current that 

the driver can provide. On the other hand, as shown in Section 2, the surge voltage cannot be 

reduced if the gate voltage is not close to the threshold voltage value when injecting the reverse 

current. If the gate charge continues to be discharged at a large gate current, the gate voltage 

falls far below the threshold voltage value at the time of injecting the reverse current. As a result, 

the surge voltage cannot be reduced even if the gate voltage is injected in the reverse direction, 

shown in Figure 4.7(a) in one example. The gate current should be varied to keep the gate 

voltage close to the value of the threshold voltage at the timing of injecting current in the 

reverse direction. At the time tx when the gate voltage becomes close to the value of the 

threshold voltage, the driving force of NMOS is reduced and the driving force of PMOS is 

increased so that the gate voltage remains close to the value of the threshold voltage. 

Next, the timing of injecting the gate current in the reverse direction is described. According to 

the simulation results shown in Figure 4.7 and the theoretical analysis in Section 2, injecting 

gate current in the reverse direction just before the drain voltage matches the power stage supply 

voltage does not reduce the surge voltage. Injecting gate current at an earlier timing enables the 
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surge voltage to be reduced. In the simulation shown in Figure 4.7(b), the surge voltage is 

successfully reduced when the gate current is injected in the reverse direction at the timing 

when the drain voltage reaches 100V instead of when the drain voltage reaches the power stage 

voltage of 400V. In the measurement, the gate current must be injected in the reverse direction 

at an earlier time as in the simulation, not just before the drain voltage matches the power stage 

voltage. In this measurement, the surge voltage was successfully reduced by injecting the gate 

current in the reverse direction at the time ty shown in Figure 4.19, when the drain voltage 

reached 200V. With respect to the timing of injecting the gate current in the reverse direction, 

the difference between the simulation and the actual measurement is considered to be the 

difference in the non-linearity of the capacitance of the device used. 

Figure 4.20 shows the relationship of the surge voltage and load current for each optimized 

gate pattern. As shown in Figure 4.20, the gate pattern optimized at a specific load current is not 

the best in other current ranges, and therefore the load adaptation is obviously effective. 

 

 

Figure 4.20: The relationship of the surge voltage and load current for each optimized gate 

pattern. 

 

Figure 4.21 shows the dynamic load adaptation. The measurement circuit is shown in the 

lower left corner of Figure 4.20. The load current is detected by sensing the drain current id after 
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SiC-MOSFET turn-on. The ADC shown in Figure 4.20 detects the drain current id flowing in the 

SiC-MOSFET by sensing the voltage across the resistor Rsense. One of the LUTs is selected 

according to the output value of the ADC, and the gate current ig defined by the selected LUT is 

output to the SiC-MOSFET. The time waveforms of drain voltage vds, drain current id, and gate 

voltage vgs are shown at lower right in Figure 4.21. A double pulse signal is used as input. The 

drain current id is 3 A at the first switching shown by the red frame at lower right in Figure 4.21. 

In the second switching, shown by the blue frame at lower right in Figure 4.21, the drain current 

id is 6 A. A magnified view of the first switching waveform is shown at upper left in Figure 4.21,  

and a magnified view of the waveform during the second switching is shown at upper right in 

Figure 4.21. In the first switching with drain current id=3 A, the gate current ig defined by LUT1 

is supplied to the gate of the SiC-MOSFET. In the second switching, the output of the ADC 

changes because the drain current id has increased from 3 A to 6 A. The LUT2 is selected by the 

ADC changes because the drain current id has increased from 3 A to 6 A. The LUT2 is selected 

by the ADC output and the gate current ig defined by LUT2 is supplied to the gate of the 

SiC-MOSFET.  
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Figure 4.21: Measured result of dynamic load adaption. 
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Figure 4.22: On number of MOS stored in LUT1 and LUT2 used to measure the dynamic load 

adoption shown in Fig 4.19. The measured waveforms of the gate voltages of the first and 

second switching overlaid. 

 

The measurement results of the three sampling FEs are presented in Figure 4.23. The 

measured result of the load current sampling FE is shown at upper left in Figure 4.23. The blue 

line shows the analog drain current waveform. This current waveform is obtained from the 

calculation by measuring the differential voltage of the resistor Rsense by differential probe. The 

orange line shows the output code of the ADC. The ADC output code matches the measurement 

result of the drain current. The load current sensing FE is also used for the dynamic LUT 

adaptation as shown in Figure 4.21. The measurement result of the Vds-on monitoring FE is 

shown at upper right in Figure 4.23. The blue line shows the analog voltage of the ADC input. 

This input voltage is the same as the anode voltage of diode D4. The orange line is the ADC 

output code. The ADC output code matches the measurement result of the analog Vds-on voltage. 

The measurement result of the surge monitoring FE is shown at the bottom of Figure 4.23. The 
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FE circuit and the ADC output code matches the analog input voltage. By using the proposed 

sampling FE, the Vds-on voltage and the surge voltage sensing during the SiC switching is 

acceptable, and very fast short-circuit protection in 2 us, which is limited by the ADC sampling 

rate, is achieved. 

 

 

Figure 4.23: Measured result of sampling front-end. 
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Figure 4.24: Photograph and measured results of isolated power transfer.   
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technology in this study is 16 V/nsec, which is slower than the switching rate with GaN devices, 

however the same or faster than the other works SiC-MOSFET, IGBT and Si-MOSFET devices. 

The driver IC in this paper can output active gate waveforms and suppress surge voltage under 

switching conditions where the drain voltage slew rate is more than 10 V/nsec. The proposed 

driver IC successfully breaks the trade-off between surge voltage and power consumption. The 

function to switch the optimum waveform following the load current of the power device was 

realized in a single chip. The load adaptive gate waveform output was demonstrated using 

proposed digital gate driver with a high degree of freedom of waveform.  

 

 

Figure 4.25: Chip micrograph. 
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Table 4.1: Comparison table of conventional driver and proposed digital gate driver. 
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4.7 Generation nethod of optimal gate waveforms for  

products 

This section describes how to generate the optimum gate waveform for an actual product. 

The Figure 4.26 shows a flowchart of the optimal gate waveform generation method assuming 

an actual product. First, the optimal waveform is designed by simulation. To perform the 

simulation, the value of parasitic inductance of the equivalent circuit shown in Figure 4.2 is 

required. This value is extracted based on information from the boards of power converters and 

inverters in similar products in the past. For example, the layout of power stage circuits of 

inverters and converters in electric vehicle powertrains and server power supplies will not 

change significantly when the products are replaced by next-generation ones. Therefore, it is 

possible to extract parasitic inductance values with sufficient accuracy by referring to past 

products. 

Next, the optimal gate waveform is designed by simulation. The gate waveform is designed 

based on the method described in section 4.2 of this paper. In this process, the variation in the 

characteristics of the power device is simulated, and the gate waveform is also designed for the 

variation in the characteristics of the power device. 

 Finally, the optimal waveforms are designed by measurement. The parasitic inductance in 

the power stage of the actually created inverter or converter may differ from the value used in 

the simulation. Based on the simulation waveforms created in No. 2 of the flowchart shown in 

Figure 4.26, the optimal gate waveforms are designed by measurement. The method of 

designing the waveforms by measurement with reference to the simulation is described in 

section 4.5 of this paper. 
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Figure 4.26: Flowchart of the optimal gate waveform generation method assuming an actual 

product 

4.8 Optimum gate waveform application method for 

characteristic variation of power devices 

This section describes how to apply optimal gate waveforms to the characteristic variations of 

power devices. Power devices have variations in temperature, supply voltage, capacitance, 

transconductance, and threshold voltage. The above variations can be classified into two types: 

those caused by environmental variations and those caused during manufacturing. Temperature 

and supply voltage depend on the environment surrounding the board on which the power 

device is mounted. On the other hand, capacitance is a variation caused by the manufacturing 

process of the power device and does not depend on the surrounding environment. 

Transconductance and threshold voltage vary with temperature and also exist as 

manufacturing-induced variations. 

First, the following shows how the optimal waveform is applied with respect to the variation 

caused by environmental variations. Figure 4.27 shows the method of applying the optimum 

waveform to the variation caused by environmental variation. The driver IC proposed in 

Chapter 4 has an integrated ADC. The ADC detects variations in the power device and outputs 

the optimal waveform for each variation. By adopting the above method, the optimal waveform 

can be supplied according to the condition of the power device, even if environmental variations 

1. Determination of element values for simulation 

circuits from existing power converter or inverter

2. Determine gate drive waveforms based on the 

method proposed in this paper

3. Determine gate drive waveform (LUT) by 

measurement.
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of the power device occur. 

 

Figure 4.27: The method of applying the optimum waveform to the variation caused by 

environmental variation. 

 

 The method of detecting environmental fluctuations of power devices is described below. 

For power supply voltage fluctuations, the power supply voltage is divided by a resistor, and the 

divided voltage is detected by an ADC. There are several methods for detecting temperature. As 

shown in the Figure 4.28(a), the temperature of a power device can be detected by integrating a 

thermistor in the package of the power device and detecting the voltage of the thermistor. 

Depending on the position of the thermistor in the package, there is a difference between the 

junction temperature of the power device and the temperature of the thermistor. However, in the 

application of optimal gate waveform switching, it is not always necessary to accurately detect 

the junction temperature. Temperature information without high accuracy obtained from the 

voltage of the thermistor can also be used to switch the optimal gate waveform. 

In addition, the internal gate resistance of a power device has temperature-dependent 

characteristics. By detecting the value of the internal gate resistance as shown in the Figure 

4.28(b), the junction temperature Tj of the power device can be detected. Methods for detecting 

internal gate resistance have been studied in the literature [79] [80]. Compared to the method 

using a thermistor, it can detect the temperature more accurately. 
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Figure 4.28: Temperature detection method of power device 

 

Next, the method of applying the optimal gate waveform in the presence of manufacturing 

variation is discussed. Figure 4.29 shows the concept of writing the optimal gate waveform to 

the LUT at the shipment stage. The optimal gate waveforms corresponding to the threshold and 

capacitance variations of power devices are prepared, and the waveforms are written into the 

LUT when the driver IC is shipped. For example, for a device with a large threshold value, the 

optimal gate waveforms for a high threshold value are written to the driver IC in advance at the 

shipment. 

 

Figure 4.29: The concept of writing the optimal gate waveform to the LUT at the shipment 

stage. 
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Finally, the figure shows how to handle both environmental variations and 

manufacturing-induced variations. Even if the characteristics of the power device fluctuate, the 

characteristics of the power device can be improved by preparing an optimal gate waveform that 

covers all variation characteristics. For example, as shown in the figure, if an optimal gate 

waveform can be prepared that can be applied under all capacitance variations, the 

characteristics of the power device can be improved even if manufacturing-induced capacitance 

variations exist. 

 

Figure 4.30: Uses waveforms that can improve performance even when variability in 

characteristics occurs 

4.9 Applicability of the proposed digital FF driver IC 

proposed in chapter 4  

This section describes the scope of application of the digital feed-forward driver IC proposed 

in chapter 4. As described in chapter 2, the driver IC proposed in Chapter 4 is designed for 

SiC-MOSFETs used at high switching frequency and at high converter power. However, the 
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optimal gate waveform using the backward current injection technique proposed in Chapter 4 

can be applied to devices with large nonlinearities in capacitance Crss. 

The Figure 4.31 shows the drain voltage dependence of the capacitance in a Toshiba 

SiC-MOSFET and SJMOS. The model number of the SiC-MOSFET is TW070J120B. the 

model number of the SJMOS is TK8A60W5. As shown in Figure 4.31(a), the SiC-MOSFET 

capacitance Crss depends on the drain voltage. The capacitance Crss of the SJMOS also depends 

on the drain voltage as shown in Figure 4.31(b). The value of the capacitance Crss changes by 

2.5 orders of magnitude with increasing drain voltage. Therefore, the driver IC proposed in 

Chapter 4 can be applied to SJMOS as well. 

 

Figure 4.31: Drain voltage dependence of SiC-MOSFET and SJMOS capacitance. 

 

The Figure 4.32 shows the voltage dependence of the capacitance of a Rohm GaNFET and an 

Infenion IGBT; the model number of the GaNFET is GNP1150TCA-Z. The model number of 

the IGBT is ILZ75N65EL5. As shown in Figure 4.32(a), the capacitance Crss of the GaNFET 

changes its value by two orders of magnitude as the drain voltage increases. On the other hand, 

the capacitance Crss of the IGBT, as shown in Figure 4.32(b), increases in value by only about 

one order of magnitude with increasing drain voltage. Although Figure 4.32(b) only shows the 

collector-emitter voltage up to 30V, the capacitance Crss is expected to change by only 1.5 orders 

of magnitude even when the voltage reaches several hundred volts. From the above, the driver 

IC proposed in Chapter 4 can be applied to GaN. On the other hand, for IGBTs, the capacitance 
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nonlinearity is not so large that it is unclear whether the technology proposed in Chapter 4 can 

be applied. 

 

Figure 4.32: Drain voltage dependence of GaNFET and IGBT capacitance. 

 

For IGBTs, it is also necessary to consider the tail current during turn-off. Figure 4.33(a) 

shows the equivalent circuits of SiC-MOSFETs and IGBTs. Figure 4.33(b) shows the 

waveforms of the drain current ID and drain voltage VD for the SiC-MOSFET and the collector 

current IC and collector voltage VC for the IGBT. IGBTs take more time to reach zero current at 

turn-off compared to SiC-MOSFETs. The turn-off phenomenon of IGBTs is different from that 

of SiC-MOSFETs. Therefore, the results of the SiC-MOSFET analysis presented in Chapter 4 

cannot be used for IGBTs. For the above reasons, it is also unclear whether the driver IC 

proposed in Chapter 4 can be applied to IGBTs. 

IGBT from Infineon

Model name: IKZ75N65EL5

2

decade

1~1.5

decade

GaNFET from Rohm

Model name: GNP1150TCA-Z

(a) (b)



 

122 

 

 

Figure 4.33: Equivalent circuit and turn-off time waveforms of SiC-MOSFET and IGBT. 

 

Figure 4.34shows the range of possible applications of the driver IC proposed in Chapter 4, 

and it is unclear whether the driver IC proposed in Chapter 4 can be applied to IGBTs. However, 

the driver IC proposed in Chapter 4 can be applied to SJMOS and GaN. 

 

Figure 4.34: Applicable scope of digital FF + reverse current injection technology. 
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4.10 Summary of chapter 4 

A fully integrated load adaptive digital gate driver with an on-chip ADC for functional safety 

is demonstrated for SiC-MOSFETs. The turn-off behavior of SiC-MOSFETs is analyzed by 

simulation, and it is shown that injecting the gate current in the reverse direction is effective in 

reducing the surge voltage. Measured surge voltage was reduced by 51% without increasing 

losses. The optimized current patterns stored in the on-chip LUT reduce surge voltage without 

increasing the switching loss. The sampling FE for functional safety successfully monitors the 

load current, surge voltage and Vds-on voltage of the power device.  
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Chapter 5 Summary and future 

discussions 

5.1 Summary 

This chapter summarizes the findings of this thesis. 

In Chapter 1, an overview of power electronics was presented and the importance of power 

converters was shown in terms of industrial aspects and power consumption. The history of the 

evolution of power electronics and the technologies that are expected to be responsible for the 

next generation of technological innovation are presented. It was also shown that the active gate 

technology presented in this paper is not only an important technology responsible for 

improving the performance of power converters, but also a fundamental technology that can be 

applied to other innovative technologies. Furthermore, the structure of this paper is presented. 

In chapter 2, the characteristics, advantages, and disadvantages of power devices for each 

material are presented: SJMOS is used in high-voltage, low-power applications due to its low 

cost, although it has the disadvantage of increased loss due to recovery current, and 

SiC-MOSFETs with low ON-resistance and fast switching speed are used in high-voltage, 

high-power applications. SiC-MOSFETs, which have low ON-resistance and fast switching, 

have been used in recent years for high-voltage and high-power applications. The time 

waveform of a power device switching and the effect of the waveform on noise were described, 

and the trade-off between switching loss and noise was explained. Active gate technology was 

classified into analog and digital technologies, and the advantages and disadvantages of each 

were described. Issues in terms of the characteristics of active gate technology and power 

devices are summarized, and the corresponding relationship to the issues to be solved by the 

technology proposed in this paper is presented. 

Chapter 3 describes an analog active gate driver IC using discrete-time feedback technique, 

where two resistors are controlled by the feedback technique to control the turn-on dVd/dt of the 

SJMOS. The proposed technique feeds back the feedback result to the next switching, thus 
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controlling the dVd/dt that depends on the reverse recovery current. It also does not require a 

wideband amplifier. The driver IC was prototyped in a 0.6um CMOS process, and the turn-on 

delay and switching losses were successfully reduced by 74% and 25%, respectively. 

Chapter 4 describes an active gate driver IC using digital feed-forward technology. simulation 

analysis of turn-off considering the non-linearity of SiC-MOSFET capacitance was performed 

to identify the cause of voltage ringing during turn-on and the gate current that reduces ringing. 

The waveforms of the gate current that reduces ringing were clarified. An active gate waveform 

was proposed to temporarily reverse the gate current to reduce ringing. We also proposed a time 

resolution extension circuit to reduce the amount of memory and time resolution of the driver IC. 

Using an ADC integrated in the driver IC, the load of the SiCMOSFET was detected and the 

active gate waveform was successfully output according to the load. Turn-off voltage surges 

were reduced by 51% without increasing losses. 

5.2 Future work 

5.2.1 Parallel device drive. 

To increase the current rating of a power device, multiple power devices are placed in parallel 

and driven (parallel drive). Figure 5.1 shows the schematic of parallel drive. In parallel driving, 

if there is an imbalance in the current of each power device, the current will be concentrated in 

one device and the device will be destroyed. Current imbalance can be classified into two types: 

transient imbalance, which is caused by the difference in the rise speed of current at turn-on due 

to the difference in parasitic capacitance, and unbalance in the conduction state due to the 

difference in threshold voltage. The transient unbalance has been studied for IGBTs and 

SiCMOSFETs using active gate technology [81] [82]. However, there is no research on how to 

resolve the unbalance in the conduction state. Furthermore, current-voltage ringing due to 

parasitic inductance and parasitic capacitance also occurs in parallel drive, causing noise. By 

placing an active gate driver for each element in parallel drive and driving with waveforms 

appropriate for each element, it may be possible to eliminate current imbalance and drive 

without current-voltage ringing and without increasing loss. 
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Figure 5.1: Schematic of parallel driving. 

 

 

Figure 5.2: Schematic of series driving. 

 

5.2.2 Series device drive 

To increase the breakdown voltage of power devices, multiple power devices are placed in 

series and driven. Figure 5.2 shows schematic of series drive. If the transition rate of the voltage 

at turn-off of the power devices is not constant, the voltage will be concentrated in one device 

and the device may be destroyed. Furthermore, current-voltage ringing may occur due to 

parasitic capacitance and parasitic inductance present in devices placed in series. Two 
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Techniques have been proposed to eliminate voltage imbalance by placing devices in series [83] 

[84]. However, there is no example of eliminating voltage imbalance and voltage ringing at the 

same time. By applying active gate technology to each device, it may be possible to eliminate 

voltage imbalance and voltage ringing at the same time. 
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