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List of Notation

[L: K]
NL/K(Oé)

[]

The set of nonnegative integers

The ring of rational integers

The field of rational numbers

The field of algebraic numbers

The set of nonzero algebraic numbers

The field of complex numbers

The field of p-adic numbers for a prime number p
The algebraic closure of Q,

The completion of @p

The ring of integers of a number field K
The derivative of a function f(z) of order [

The Kronecker product of matrices A = (a;;) and B, namely the
block matrix (a;;B)

The identity matrix of size n
The zero matrix of size m x n

The sum of the components of a vector A with nonnegative integer
components

The cardinality of a set .S
The set of maps X — Y for sets X and Y
The degree of a finite extension L/K of fields

The norm of an element « of a field L with respect to a finite
extension L/K

The integral part of a real number x, namely the largest integer
not exceeding x

Let R and K be any commutative ring and any field, respectively.

Rlz1, ..., 2], R[Z] The ring of polynomials in variables zq, ..., z, with

coeflicients in R

R[[z1,.--,24]], R[[2]] The ring of formal power series in variables z1, ..., z,

with coeflicients in R

K(z1,...,2,), K(z) The field of rational functions in variables 21, ..., 2,

KX

with coeflicients in K

The multiplicative group of nonzero elements of K
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Chapter 1

Introduction

Algebraic independence properties of the values at algebraic numbers of analytic
functions have been studied by various authors. In this thesis, we are interested in
the necessary and sufficient condition on nonzero algebraic numbers aq,...,a, for
the infinite set { fOa) [ 1>0,1<4i< r} to be algebraically independent, where
f(#) is a given analytic function. If a; = a; for some distinct ¢ and j, then the set
above is obviously algebraically dependent. The converse does not hold in general
as shown by the following example:

Let fo(z) = >po, 2 and let ¢ be a d-th root of unity. Then we see that
fola) = fo(Ca) = Z;é akt — Z;é({a)k! € Q for any nonzero algebraic number o,
which implies that the values fo(a) and fy(Ca) are algebraically dependent.

For the function fy(z) and its certain generalizations, the necessary and sufficient
conditions mentioned above were obtained by Nishioka [19, 20, 21], which are more
restrictive than the condition that ay, ..., a, are distinct (see Theorems 1.1.4-1.1.6).
On the other hand, some analytic functions are known to have the remarkable
property that the infinite set above is algebraically independent as long as algebraic
numbers aq, . . ., a, are distinct. Previous results on such functions will be introduced
in Theorems 1.1.7, 1.1.8, 1.2.11, 1.2.14, and 1.2.15. These are the strongest results
on the necessary and sufficient conditions mentioned above; however, they only
deal with functions of one variable. In Theorem 1.3.1, the first main theorem of

this thesis, we construct an entire function of two variables satisfying the following

property:



The infinite set consisting of the values and the partial derivatives of any order
at any distinct algebraic points is algebraically independent.

Theorem 1.3.1 is valid also in the case of p-adic numbers. Moreover, in the case
of complex numbers, we prove Theorem 1.3.6 as the second main theorem of this
thesis, which provides an infinite family of entire functions of two variables having
the following property:

The infinite set consisting of the values and the partial derivatives of any or-
der at any distinct algebraic points of all the functions belonging to the family is

algebraically independent.

1.1 Transcendence and algebraic independence of
the values of analytic functions

One of the main purposes of transcendental number theory is to determine the
transcendency or the algebraic independency of given numbers. For example, in
1873, Hermite showed that e is a transcendental number. The proof was based on
the properties of the exponential function e®, in particular the properties that e?
satisfies the differential equation (e*)’ = e* and has the value 1 at z = 0. Extending
Hermite’s method and using the Euler’s identity e™ = —1, Lindemann proved, in
1882, that 7 is a transcendental number. He also proved the transcendency of e
for any nonzero algebraic number «. Moreover, the following is known today as
Lindemann-Weierstrass theorem:

Let aq,...,a, be algebraic numbers. If they are linearly independent over Q,
then the values e*',... e* are algebraically independent.

We note that the converse is trivial. Hence the Lindemann-Weierstrass theorem
gives the necessary and sufficient condition for the values of the exponential function
at algebraic numbers to be algebraically independent.

Furthermore, Mahler and Nesterenko studied p-adic analogues of these results.
Before stating their results, we introduce some notation and settings used through-

out this thesis.



Let p be a prime number and | - |, the p-adic absolute value on Q with the
normalization condition |p|, = p~'. We denote by Q, the completion of Q with
respect to | - |, and by Q, the algebraic closure of Q,. The p-adic absolute value |- |,

on Q, is extended uniquely to the algebraic closure @p by

’a’p = ‘N@p(a)/(@p (Q) ‘;/[Qp(a) :Qp)

for any a € Q, (cf. Waldschmidt [35, Chapter 3]). Let C, be the completion of
@p. While we consider the field Q of algebraic numbers as a subset of the field C of
complex numbers, we also consider it as a subset of C, by fixing an embedding of Q
into C,, for each prime number p. Several theorems or arguments in this thesis are
valid not only in the case where the functions in question are considered as complex
functions but also in the case where they are regarded as p-adic functions. In such
situations, we will deal with the two cases simultaneously by stating the phrase “Let
v be 0o or a prime number” and by denoting C as Q, or Cs and the absolute value
|a| of a complex number « as |a|«. (In the absence of such statements, we will
discuss only the case of complex numbers.) Let v be co or a prime number. Note
that an element o of Q, is transcendental over Q if and only if it is transcendental
over Q. Hence we simply say « is transcendental. For the similar reason, if elements
ai,...,ay, of Q, are algebraically independent over Q, then we simply say oy, . . ., oy,
are algebraically independent. Moreover, an infinite subset S of Q, is said to be
algebraically independent if any finite subset of S is algebaically independent.

Let p be a prime number. The p-adic exponential function exp,(x) is defined
as the power series - 2" /nl, which converges in the p-adic domain {z € C, |
|z, < p~Y/®=V}. In 1933, Mahler [15] proved that, for any algebraic number «
with 0 < |al, < p~/®P=Y_ the value exp,(«) is transcendental. The p-adic analogue
of the ‘full’ Lindemann-Weierstrass theorem is still open. In 2008, Nesterenko [18§]
obtained the following ‘half’ result:

Let ay,...,a, be algebraic numbers with 0 < |ay], < p~/®Y (1 < i < n).
If they form a basis of a finite extension of degree n of Q, then the transcendence

degree of Q(exp,(a),...,exp,(ay)) over Q is at least n/2.



Beginning with the studies on the arithmetic properties of the values of the
exponential function, various authors have investigated the transcendence and the
algebraic independence of numbers given as the values of complex analytic functions
at algebraic numbers and also their p-adic analogues.

As far back as 1844, Liouville proved the transcendency of the complex number
Yoo 27K This is not only the first example of transcendental numbers, but also
the first proof of the existence of transcendental numbers. His proof is based on
Diophantine approximation and can be summarized as follows. First, he proved
the following theorem, which gives a lower bound for rational approximations of

algebraic numbers.

Theorem 1.1.1 (Liouville’s inequality). Let a be a real algebraic irrational number

of degree n. Then there exists a positive constant ¢ depending only on « such that

for any rational number p/q with g > 0.

Remark 1.1.2. Thue, Siegel, Dyson, and Roth refined the exponent n in the de-
nominator of the right-hand side of Liouville’s inequality. In 1955, Roth [25] proved
the following: Let « be a real algebraic irrational number and € a positive number.

Then there exists a positive constant ¢ depending only on « and € such that

for any rational number p/q with ¢ > 0.

Secondly, he constructed a sharp rational approximation of the number Y7 ;27"
so as to contradict the lower bound above. In fact, letting p,, == 2™ >7" /27% and

¢m = 2™, we obtain

1 m

k=0

2

m+1
m

0<

for any positive integer m, which contradicts the bound in Theorem 1.1.1if Y72 27+

is algebraic. Hence we conclude that Y ;2 27" is a transcendental number.
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Because of this history, the power series ) .- 2" is called Liouville series. Let v
be oo or a prime number. Using the fundamental inequality, which gives a kind of
lower bound for algebraic approximations of algebraic numbers and will be proved
as Proposition 3.4.1 in this thesis, we can show the transcendency of the values
of the Liouville series at any nonzero algebraic numbers inside the unit circle in
C,. For the proof in the case of complex numbers, see Nishioka [23, Theorem
1.1.1]. Tts proof is valid also in the case of p-adic numbers, since the fundamental
inequality is extended to p-adic algebraic numbers (see Proposition 3.4.1, see also
Waldschmidt [35, p. 84]). Modifying the proof of Nishioka [23, Theorem 1.1.1],
for any sequence {ej}r>o of nonnegative integers satisfying limy o €x1/€x = 00,
we can prove the transcendency of the values of the power series ), 2% at any
nonzero algebraic numbers inside the unit circle in C,.

More generally, we consider the function
F{er};, 2) = Zxkze’“, (1.1.1)
k=0

where {ex }r>0 is a sequence of nonnegative integers satisfying lim infy o ext1/€x >
1. This series converges at any point (z,z) € C2 with |z|, < 1. A specialization
F({er}:1,2) = > po, 2% is called a lacunary series. By the so-called Hadamard’s
gap theorem (cf. Rudin [26, 16.6 Theorem]), every lacunary series has the unit circle
in the complex plane as its natural boundary and hence they are transcendental
functions.! Therefore, we may expect the transcendency of the values of any lacunary
series at nonzero algebraic numbers inside the unit cicle. Indeed, in 2002, using
Schmidt’s subspace theorem, which is a generalization of Roth’s theorem mentioned

in Remark 1.1.2, Corvaja and Zannier established the following:

Theorem 1.1.3 (Corvaja and Zannier [4, A special case of Corollary 5]). Let v

be 0o or a prime number. If a sequence {ex}r>o of nonnegative integers satisfies

'Tt is known more generally that, if lim sup,_, . (ex4+1—e€x) = 0o, then the power series Y- ) 2%
is transcendental over C(z) (see Mahler [16, p. 42]). Note that, some literature refers to a power
series Y o o 2% as a lacunary series in the case where limsup;,_, (ex41 — e) = 0o and a strongly
lacunary series in the case where liminfy_, o ep41/ex > 1.



liminfy_,o exp1/ex > 1, then the number F({ex};1,a) = > 7o a% of Q, is tran-

scendental for any algebraic number a with 0 < |al, < 1.

While it is difficult in general to determine the transcendency of the values of
given analytic functions at algebraic numbers, it is much more difficult to determine
their algebraic independency. In contrast with Theorem 1.1.3, there is no result
which is applicable to all lacunary series and provides the algebraic independence
of the values of those functions at distinct algebraic numbers. On the other hand,
for lacunary series with rapidly increasing exponents such as the Liouville series,
Nishioka obtained precise results on the algebraic independence by applying the
method of Diophantine approximations. The most remarkable of her results is that
they give necessary and sufficient conditions for the values of lacunary series, as well
as their derivatives, at algebraic numbers to be algebraically independent. In 1986,

she proved the following result on the Liouville series and its derivatives.

Theorem 1.1.4 (Nishioka [19, 20]). Let v be co or a prime number. Put f(z) =
F{k};1,2) = Y02 2™ and let aq, ..., a, be algebraic numbers with 0 < |a;|, < 1
(1 < i < r). Then the infinite subset {fO(a;) | 1 >0, 1 < i < 1} of Q, is
algebraically independent if and only if none of a;/a; (1 < i < j <) is a root of

unity.

Moreover, she established the following two theorems, from which we can deduce

Theorem 1.1.4.

Theorem 1.1.5 (Nishioka [21, A special case of Theorem 1]). Let {ex}r>0 be a
sequence of nonnegative integers satisfying limy_ o exr1/€x = o00. Put f(z) =
F({er}:1,2) = > oy 2%. Let ay,...,a, be algebraic numbers with 0 < |a;| < 1

(1 <i<r). Then the following three properties are equivalent:
(i) The infinite subset { f®(a;) |1 >0, 1 <i <r} of C is algebraically dependent.

(ii) The r + 1 complex numbers 1, f(ay), ..., f(a,) are linearly dependent over Q.



(iii) There exist a nonempty subset {a;,...,a;,} of {a1,...,a.}, roots of unity
Ciy-- -5 Cs, an algebraic number v with a;, = ¢y (1 < ¢ < s), and algebraic

numbers &1, ..., &, not all zero, such that

qu ¢ =0
q=1

for all sufficiently large k.

Theorem 1.1.6 (Nishioka [19, A special case of Theorem 1]). Let p be a prime
number and {ek}kzo a sequence of nonnegative integers satisfying limy_,o €gr1/e€x =
0o. Suppose that 0 is a limit point of {ex}r>0 with respect to the p-adic norm.
Put f(z) = F({er};1,2) = D> peg 2 and let aq,...,a, be algebraic numbers with
0 < ail, <1 (1 <i<r). Then, if none of a;/a; (1 <i < j < r)is a root of
unity, then the infinite subset {f®(a;) | 1 >0, 1 <i <r} of Q, is algebraically

independent.
The following theorem was obtained as another corollary to Theorem 1.1.5.

Theorem 1.1.7 (Nishioka [21]). Let f(z) = F({k! + k};1,2) = > o, 2M . Then
the infinite subset {fW(a) | 1 > 0, a € Q, 0 < |a| < 1} of C is algebraically

independent.

Furthermore, Nishioka also studied the algebraic independence of the values
and the derivatives of an entire function defined as a power series having rapidly

decreasing coefficients.

Theorem 1.1.8 (Nishioka [19, A special case of Theorem 4]). Let v be oo or a prime
number, {%}kzo a sequence of nonnegative integers satisfying limg_,o. €41 /ex = 00,
and a an algebraic number with 0 < |a|, < 1. Define F(z) = F({ex};z,a) =
S e paxk. Then the infinite subset {FO(a) |1 >0, a € QY of Q, is algebraically

independent.

As mentioned in the beginning of this chapter, Theorems 1.1.7 and 1.1.8 are
two of the strongest results on the necessary and sufficient conditions for the val-

ues of analytic functions, as well as their derivatives, at algebraic numbers to be
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algebraically independent. Here we formulate the properties possessed by the power

series Y po , zF* in Theorem 1.1.7 and Y ., a®z* in Theorem 1.1.8 as follows:

Property 1.1.9. The infinite set consisting of all the values of a single analytic
function and its derivatives of any order, at any nonzero algebraic numbers within

its domain of existence, is algebraically independent.

Analytic functions having this property provide explicit examples of algebraically
independent infinite subsets of the field of complex numbers or that of p-adic complex
numbers, which may help us to investigate the structure of the set of transcendental
numbers. In the next section we introduce further examples of complex analytic
functions, particularly entire functions, which are known to have Property 1.1.9;
however, those results only deal with functions of one variable. Moreover, it is quite
difficult to determine the algebraic independency of the union of several sets, each
of which is known to be algebraically independent. Therefore, it is a very interesting
problem to construct a family of entire functions, which may have several variables,

satisfying the following:

Property 1.1.10. The infinite set consisting of all the values of the functions be-
longing to the family and their partial derivatives of any order, at any algebraic

points with nonzero components, is algebraically independent.

This property is so strong that, if a family of entire functions satisfies Prop-
erty 1.1.10, then Property 1.1.9 is possessed by each of those functions. In this
thesis, we will explicitly construct an infinite family of complex entire functions of

two variables satisfying Property 1.1.10 (see Example 1.3.11).

1.2 Mahler’s method

In this section we focus on the case where 1 < limy_ o €pi1/€x < 00. We con-
sider the power series F({ex};x, z) defined by (1.1.1) and also the infinite product
G({ex}; vy, z) and the Lambert type series H({ex}; x,y, z) defined respectively by

= o0 k ek
Gk = [ -w2%).  Hadrys) =3 =
k=0 P



We note that G({ex};y,2) converges at any point (y,z) € C? with |z|, < 1 and
H({exr};r,y,2) converges at any point (x,y,z) € C> with |z|, < 1 such that 1 —
yz* # 0 for any & > 0. In the rest of this section, we consider F({ex};x, 2),
G({exr};y, 2), and H({ex}; z,y, z) as complex functions. In the previous works, the
transcendence and the algebraic independence of the values at algebraic numbers of

these functions were dealt with mainly in the following two cases:

(A) The case where z = y = 1 and z runs through a finite set of algebraic numbers.

(B) The case where z,y run through infinite sets of algebraic numbers and z is

fixed.

First we introduce the case (A). In this case, the power series F({ex};1,z2) =
SO0, 2% is a lacunary series. A typical example is f(z) = F({d*};1,2) = 33, 2%,
where d is an integer greater than 1. This power series is called Fredholm series.
Theorem 1.1.3 of course leads to the transcendency of the complex number f(a)
for any algebraic number a with 0 < |a| < 1. For example, the complex number
Y reo 272" is transcendental. However, in contrast with the case of the number
Y reo 2~* mentioned in Section 1.1, it is not very easy to derive its transcendency
by focusing on the rational approximation
2

a2
4m

Pm
22 gy

where p,, = 22" 37" 272" and ¢y, = 2*" for any positive integer m. In order to
deduce the transcendency of »"/° 272" from this approximation, we need to use a
refinement of Roth’s theorem given by Ridout [24] in 1957. Therefore, the method
of Diophantine approximation does not seem suitable for studying the arithmetic
properties of the values of the Fredholm series at algebraic numbers. On the other
hand, in 1929, Mahler [14] obtained the transcendency of the complex number f(a)
for any algebraic number a with 0 < |a| < 1, which is the same conclusion as
Theorem 1.1.3 for the Fredholm series. His proof is based on the properties of the

function f(z), in particular on the fact that f(z) satisfies the functional equation

f(2) = f(z%) + = (1.2.1)



This contrasts with Liouville’s proof on the transcendency of » 7~ 27* in which the
number was treated directly. Mahler’s method for proving the transcendency of the
number f(a) consists of the following three steps. First, he proved the transcendency
of the function f(z) itself. Note that, while Hadamard’s gap theorem is valid for
this purpose, we can prove it by a more elementary argument using the functional
equation (1.2.1) (cf. Nishioka [23, pp. 3-4]). Secondly, he constructed a polynomial
E(X,Y) with algebraic coefficients such that the auxiliary function E(z, f(z)) has
a sufficiently high order at the origin but does not vanish at points z = a® for
all sufficiently large k. Such a polynomial was constructed by linear algebra, while
the requirement on the non-vanishing of the values was satisfied by the identity
theorem and the transcendency of f(z) proved in the first step. Finally, under the
assumption that the number f(a) is an algebraic number, he derived a contradiction
by estimating a lower bound of the absolute value of a nonzero algebraic number
E(a™, f(a™)) from the functional equation (1.2.1) and the fundamental inequality
(Proposition 3.4.1). The most important and difficult of these three steps is the
second one, construction of the auxiliary function.

Applying this method to the infinite product g(z) == G({d*};1,2) = [, (1 —
2%") and the Lambert series h(2) = H({d*};1,1,2) = 352, 2% /(1 — 2%), which
satisfy the functional equations g(z) = (1 — 2)g(2%) and h(z) = h(z%) + z/(1 — 2),
respectively, Mahler also proved the transcendency of the complex numbers g(a)
and h(a) for any algebraic number a with 0 < |a| < 1. Moreover, Mahler [14] also
studied the transcendence of the values of functions of several variables at algebraic
points. Here, those functions are assumed to satisfy functional equations under a
transformation z — 2z of variables defined in a certain way via a matrix {2 with
nonnegative integer entries (see (3.1.1)). In the case of several variables, the second
step above becomes more difficult, since the values of the auxiliary function at the
sequence {Q*a}y>o converging to the origin, where « is the algebraic point we are
considering, may all vanish. In order to overcome this difficulty, he proved a theorem,
now called Mahler’s vanishing theorem, which gives a sufficient condition on €2 and

« for the values above do not vanish (see Lemma 3.1.1). Using this theorem, Mahler

10



established Theorem 1.2.3 below, which includes the result above on the values of
the Fredholm series.

Let { Ry }x>0 be a linear recurrence of nonnegative integers satisfying
Ryin=c1Rpina+ -+ ey (k2>0), (1.2.2)

where Ry,...,R,_1 are not all zero and c¢q,...,c, are nonnegative integers with

¢n # 0. Define the polynomial associated with (1.2.2) by
PX)=X" - X" -~ (1.2.3)
Mahler assumed the following condition to apply his vanishing theorem.

Condition 1.2.1. ®(X) is irreducible over Q and there exists an ordering of the
roots p1,. .., pn of ®(X) such that p; > max{1l, |p2|ec,- -, |Pnloc}-

If { Ry }r>0 satisfies Condition 1.2.1, then
Ry, = cpi +o(ph), (1.2.4)

where ¢ is a positive constant, and thus the power series F({Rx};1,2) = > 0 2 is
a lacunary series. He modified this series to >, 2%+, where 2z = zfz SR Al
Then )", 2% satisfies a functional equation of the form > j 2B — 3" (0 z)F*
€ Q[z], where €2 is a matrix determined by the coefficients of ®(X) (see (4.1.3)).
Letting a be an algebraic number with 0 < |a| < 1 and putting v, == (1,...,1,a),
we see that > oo vi* = S50, a™. In order to prove the transcendency of this
number, Mahler used the following auxiliary result, which is deduced from Mahler’s

vanishing theorem. (For the entire statement of Mahler’s vanishing theorem, see

Lemma 3.1.1.)

Lemma 1.2.2 (Mahler [14]). Let {Ry}r>0 be a linear recurrence of nonnegative
integers satisfying (1.2.2). Suppose that {Ry}r>o satisfies Condition 1.2.1. Then,
for any nonzero f(z) € C|[z1,. .., z4]] which converges in some neighborhood of the

origin of C", there are infinitely many positive integers k such that f(Q5,) # 0.

11



This lemma makes Mahler’s method for proving the transcendence of the values
of functions applicable to the function Y ;7 2% as well as the Fredholm series
S, 2%, Using the functional equation of 3> 2%, the relation 75" 4™ =

> ey a’™, and Lemma 1.2.2, Mahler proved the following:

Theorem 1.2.3 (Mabhler [14]). Let {Ry}r>o0 be a linear recurrence of nonnegative
integers satisfying (1.2.2). Suppose that {Ry}r>o satisfies Condition 1.2.1. Then,
for any algebraic number a with 0 < |a| < 1, the complex number Y ;- a® is

transcendental.

Example 1.2.4. Let {Fj}x>0 be the Fibonacci numbers defined by
FOZO, F]_:]_, Fk+2:Fk+1+Fk (k’ZO)

Then {F},},>o satisfies Condition 1.2.1 and thus the number Y ;- a’* is transcen-

dental for any algebraic number a with 0 < |a| < 1.

In 1982, Masser [17] established a necessary and sufficient condition on a matrix €2
and a point a under which the non-vanishing requirement on the values of auxiliary
functions is satisfied (see Lemma 3.1.3). Using Masser’s vanishing theorem, Tanaka

relaxed Condition 1.2.1 on the linear recurrence { Ry }r>o to the following:

Condition 1.2.5. ®(+1) # 0 and the ratio of any pair of distinct roots of ®(X) is

not a root of unity.

Since the polynomial ®(X) is not assumed to be irreducible in Condition 1.2.5,
it is weaker than Condition 1.2.1. It is also known that Condition 1.2.5 implies the
asymptotic formula (1.2.4), which ensures the convergence of the series in Theo-

rem 1.2.6 below. (For the proofs of these two statements, see Tanaka [29, Remarks
1 and 4].)

Theorem 1.2.6 (Tanaka [28, A special case of Theorem|). Let { Ry }x>0 be a linear
recurrence of nonnegative integers satisfying (1.2.2). Suppose that { Ry }x>o satisfies
Condition 1.2.5. Then, for any algebraic number a with 0 < |a| < 1, the complex

number Y _p- , a'* is transcendental.
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Example 1.2.7 (cf. Tanaka [29, Example 1]). Let {Ry}r>0 be a linear recurrence
satisfying

with initial values Ry = 1, R; = 3, and Ry = 33. Then the associated polynomial
is (X) = X3 — X2 — 16X — 20 = (X — 5)(X +2)% Thus the linear recurrence
{Ry}r>0 satisfies Condition 1.2.5 and so the number > . a’* is transcendental
for any algebraic number a with 0 < |a| < 1. In addition, we can verify that
Ry, = 5% + k(=2)* for all kK > 0, which implies that {Ry}x>0 does not satisfy any

recurrence formula of the form (1.2.2) with n < 2.

Remark 1.2.8. Tanaka’s results mentioned above include the case of geometric
progressions, namely that of the Fredholm series. Indeed, Condition 1.2.5 admits
geometric progressions even if we assume n > 2. For instance, the geometric progres-
sion {5*}1>¢ satisfies the recurrence formula (1.2.5) in Example 1.2.7. In this thesis
we deal with linear recurrences satisfying Condition 1.2.5 which are not geometric

progressions.

Analytic functions satisfying functional equations such as f(z), g(z), h(z) or
> ne 2 above are called Mahler functions. Mahler’s method is suitable for prov-
ing not only the transcendence of the values of Mahler functions but also their
algebraic independence. For certain types of Mahler functions, Kubota [11] and
Nishioka [22] proved, independently, the algebraic independence of the values under
the assumption that the functions themselves are algebraically independent over
the field of rational functions. Moreover, they also established necessary and suffi-
cient conditions for the Mahler functions themselves to be algebraically independent.
These results are so powerful that the algebraic independency of the values of Mahler
functions can be reduced to the linear independency or the multiplicative indepen-
dency of the functions themselves in many cases. For instance, applying Kubota’s
criterion, we can show that, if aq,...,a, are multiplicatively independent algebraic
numbers with 0 < |a;| < 1 (1 <4 < r), then the 3r numbers f(a;) = >, a?*,

g(a;) = TI72,(1—af"), and h(a;) = 352 a? /(1 —ad") (1 <i < 7) are algebraically
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independent (cf. Nishioka [23, pp. 106-107]).

On the other hand, the values of f(z), g(2), and h(z) at multiplicatively depen-
dent algebraic numbers can be algebraically dependent. Indeed, by the functional
equations we have f(a) — f(a?), g(a)/g(a®), h(a) — h(a®) € Q" for any algebraic
number a with 0 < |a| < 1. For the Fredholm series f(z), Loxton and van der
Poorten [12, Theorem 3| obtained a necessary and sufficient condition on algebraic
numbers ay, ..., a, for the values f(a;),..., f(a,) to be algebraically independent.
For the Lambert series h(z), Bundschuh and Vé&énénen [2, Theorem 2] obtained the
following:

Let a be an algebraic number with 0 < |a|] < 1 and let my, ..., m, be positive
integers such that none of m;/m; (1 <i < j <r) is a power of d. Then, for each
choice of r signs, the r numbers h(+a™), ..., h(+a™) are algebraically independent.

Except for this result, there are no known results on the algebraic independence
of the values at multiplicatively dependent algebraic numbers of the functions g(z)
and h(z) so far. In particular, it is an open problem to determine the necessary and
sufficient condition on algebraic numbers ay, .. ., a, for the 3r numbers f(a;), g(a;),
and h(a;) (1 < i < r) to be algebraically independent. On the other hand, if we
replace the {d*};> appearing in f(z), g(z), and h(z) with a linear recurrence which
is not a geometric progression, then the situation on the algebraic independence of
the values at algebraic numbers becomes quite different. Tanaka proved the following
theorem, which gives the necessary and sufficient condition above for the functions

generated by such a linear recurrence.

Theorem 1.2.9 (Tanaka [31, Theorem 1]). Let {Ry}r>0 be a linear recurrence of
positive integers satisfying (1.2.2). Suppose that { Ry }r>o satisfies Condition 1.2.5.
Assume that { Ry } x>0 is not a geometric progression. Define f*(z) = F({Rx};1,2) =
S0, 7(2) = GU{R L,2) = TIEo(L - 2%), and b() = H{R}1,1,2) =
Sore g2 /(1 — 2%, Let ay,. .., a, be algebraic numbers with 0 < |a;| <1 (1 <i <
r). Then the following three properties are equivalent:

(i) The 3r complex numbers f*(a;), g*(a;), and h*(a;) (1 < i <) are algebraically

dependent.

14



(ii) The r + 1 complex numbers 1, f*(a1),..., f*(a,) are linearly dependent over

Q.

(iii) There exist a nonempty subset {a;,...,a;.} of {a1,...,a.}, roots of unity
Ciy-- -5 Cs, an algebraic number v with a;, = (v (1 < ¢ < s), and algebraic

numbers &1, ..., &, not all zero, such that

> &G =0
q=1

for all sufficiently large k.

In particular, there are no algebraic relations among the values of the functions
1*(2), g*(2), and h*(z) at algebraic numbers such as a and a? with 0 < |a| < 1 and

d > 2, in contrast with the case of geometric progressions.

Remark 1.2.10. Let { R }x>0 be a linear recurrence of nonnegative integers satisfy-
ing (1.2.2). Define fi(z) == > poy 2™ and fo(z) = Y 2, 2% *. Tanaka, Toyama,
and the author [10, Theorems 1.11 and 1.16] proved that, if the roots of ®(X) satisfy
suitable conditions, then each of fi(z) and f5(z) possesses Property 1.1.9, namely
the infinite subset {fi(l)(a) |1>0, a€Q, 0< l|a| <1} of C is algebraically inde-
pendent for each ¢ = 1, 2. In particular, if d is an integer greater than 1, then each of
S0, 28R and 3770 2% F has Property 1.1.9. As far as the author knows, these are
the only examples of lacunary series ), 2% with 1 < limy_, €x41/€x < 0o having
Property 1.1.9. We note that the series Y~ ;2" ** in Theorem 1.1.7 is an example
of lacunary series satisfying limy_,, ex11/ex = 0o and Property 1.1.9. On the other
hand, Tanuma [34, Corollary 2] proved that the exponential type Hecke-Mahler se-
ries » oo, 2IF] has Property 1.1.9, where w is a positive quadratic irrational number.
This is the only result on power series -, 2 satisfying limy_, ex41/€x = 1 and

Property 1.1.9.

Next we introduce the case (B) mentioned at the beginning of this section.
We fix an algebraic number ¢ with 0 < |a| < 1. First we consider the functions
F{d*};za™) (m=1,2,...), G{d*};y,a), and H({d*}; x,y,a), where d is an inte-
ger greater than 1. Nishioka proved that each of the entire functions F({d*}; x;a™)

15



(m =1,2,...) has Property 1.1.9, using her criterion on the algebraic independence

of the values of Mahler functions.

Theorem 1.2.11 (Nishioka [22, Theorem 7]). Let m be a positive integer and let
Fn(z) = F{d*};z;a™) = 3352 a™ 2%, Then the infinite subset {Fqgf)(oz) | 1 >
0, a € @X} of C is algebraically independent for each fized m.

Remark 1.2.12. The family {F,,(z)};>1 in Theorem 1.2.11 does not have Prop-
erty 1.1.10. Indeed, the infinite set {Fyg)(a) |[I>0,m>1, ac @X} is algebraically

dependent since aFy(a) + a = Fi(«a) for any nonzero algebraic number a.

Using Mahler’s method, we can also derive the transcendency of the values of
the infinite product G({d*};y,a) = [Tiy(l — a®y) and the Lambert type series
H{d"};2,y,0) = Yoo a® 2% /(1 — a®y). Let a and 8 be nonzero algebraic num-
bers with 5 ¢ {a~%" | k > 0}. Then the values G({d*}; 3,a) and H({d"};, 3, a)
are transcendental if (d, ) # (2,—1) and (d, o, 8) # (2,2, —1), respectively (cf.
Nishioka [23, Theorems 1.2 and 1.3]). However, in contrast with Theorem 1.2.11,
these values at distinct algebraic points are not always algebraically independent
as shown below. Let 7q,...,74 be the d-th roots of . Then the d + 1 values
G{d*};: B,a),G({d*};v1,a),...,G({d*};v4, a) are algebraically dependent and so are

H({dk};l,ﬁ, )7 ({dk}aLVh )7 ({dk},l,'yd, ) since
(1= aB) [J9({d"}s @) = G({d"}; B,0)

and

d
;%H({dk}; 1,v,a)+ adl —6a6 - dﬁf;_[({dk}; 1,8,a).

Remark 1.2.13. For the case where (d, 5) = (2, —1), we see that

G210 = [[(1+a) = —— €@

Moreover, for the case where (d, a, ) = (2,2, —1), we can verify that

M2z -1 =Y 20 - % cg




Finally, we consider the functions

Fo(z) = F{Rr};x;a™) = ZamR’“xk (m=1,2,...), (1.2.6)
k=0
Gly) = G({Re};y,a) = [[(1 = a™™y), (1.2.7)
k=0
and o m
H(z,y) = H{Rk};z,y,a) = Z %, (1.2.8)

where {Ry}r>o is a linear recurrence of nonnegative integers satisfying (1.2.2). We
suppose that { Ry }x>o satisfies Condition 1.2.5 and that { Ry }r>o is not a geometric
progression (cf. Remark 1.2.8). For the algebraic independence of the values of
the functions above, there are more remarkable results than the case of geometric
progressions. In contrast with Remark 1.2.12; not only each function F,(z) has

Property 1.1.9, but also the infinite family {F},(x)},,>1 has Property 1.1.10.

Theorem 1.2.14 (Tanaka [30, A special case of Theorem 3|). Let {Ry}r>0 be a
linear recurrence of nonnegative integers satisfying (1.2.2). Suppose that { Ry} x>0
satisfies Condition 1.2.5. Assume that { Ry }r>o is not a geometric progression. Then
the infinite subset {Fﬁ)(a) |l>0, m>1, ac @X} of C is algebraically indepen-
dent.

This theorem was obtained by applying Nishioka’s criterion for the algebraic
independence of the values of Mahler functions. On the other hand, using Kubota’s
criterion, Tanaka [33, Theorem 2] proved the algebraic independency of the infinite
set

(G0 15 BYU{ 50 0.9)

where B denotes the set of nonzero algebraic numbers different from the zeros of

mZO,BGB},

G(y). From this, he deduced the following theorem by using the fact that the deriva-
tives of G(y) are expressed as polynomials with integral coefficients of G(y), H(1,y),
and the partial derivatives of H(1,y) with respect to y.
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Theorem 1.2.15 (Tanaka [33, Theorem 1]). Let {Ry}i>0 be a linear recurrence
of nonnegative integers satisfying (1.2.2). Suppose that {Ry}r>o satisfies Condi-

tion 1.2.5. Assume that {Ry}r>0 is not a geometric progression. Then the infinite

subset {G™(B) | m >0, 8 € B} of C is algebraically independent.

This theorem asserts that the infinite product G(y) has ‘quasi’ Property 1.1.9,
however does not give an answer to whether the algebraic independency of a larger

infinite set {G™(8) | m > Nj, § € Q" } holds, where Ny is defined by
Ng=#{k>0]a ™ =8} = orcﬁl Gi(y) (1.2.9)
sk

for each nonzero algebraic number /5.

1.3 Main results

In this section we introduce two main theorems of this thesis and their corollaries.
In the first main theorem we deal with not only the complex case but also the
p-adic case. Let v be oo or a prime number and {Rj}r>o a linear recurrence of
nonnegative integers satisfying (1.2.2). In the case where v is 0o, we suppose that
{ Ry }x>0 satisfies Condition 1.2.5. On the other hand, in the case where v is a prime
number, we suppose the stronger Condition 1.2.1 on {Rj}r>0. In both of these two
cases we assume further that {Ry}r>o is not a geometric progression. We fix an
algebraic number a with 0 < |a|, < 1 and consider the functions F,(x), G(y), and
H(z,y) given by (1.2.6), (1.2.7), and (1.2.8), respectively. If v is a prime number
p, we regard these functions as p-adic functions. Moreover, we define a two-variable

function ©(z,y) by

O(z,y) = G(y)H(w,y) = Y _aa* [] (1 - ay). (1.3.1)
k=0 k=0,
o

By the asymptotic formula (1.2.4), ©(z,y) is an entire function on C, x C,. For
cach nonzero algebraic number f3, let Ng be the number defined by (1.2.9). Note
that Ng is 0 or 1 for all but finitely many 3. The following is the first main theorem
of this thesis.
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Theorem 1.3.1 (Ide [7, Theorem 1.7]). Let v be 0o or a prime number and { R }r>o
a linear recurrence of nonnegative integers satisfying (1.2.2). Suppose that { Rg }r>o0
satisfies Conditions 1.2.5 or 1.2.1 according respectively as v is o0 or a prime num-
ber. Assume further that { Ry }r>o0 is not a geometric progression. Then the infinite

subset
{F@|tz0 m21 ae@}U{c™0) | 3T}

Jtme —x —x
U{W(a,ﬁ)‘lz(), m>Ng, acQ , B€Q }

of Q, is algebraically independent.

We will see in Remark 2.2.3 that the algebraic independency of the infinite set
{F,(,f)(a) |1>0, m>1, aeQ}is equivalent to that of {976 /dz'dy™(av,0) |
[>0, m>0, ae @X} Hence the conclusion of Theorem 1.3.1 is equivalent to the
following:

The infinite subset

—x ome —x —
{c™)@)|sen }U{agclaym(a,ﬂ) )lzo, m 2 Np, a€Q, 56@}

(1.3.2)

of Q, is algebraically independent, where N := 0.
On the other hand, substituting x = 1 into O(x,y), we see by the logarithmic
derivation of G(y) that O(1,y) = G(y)H(1,y) = —G'(y) and thus

L) = ~G ) (133)
for any m > 0. Therefore the set {Fy () |1 >0, m > 1, o € Q"} treated in
Theorem 1.2.14 and the set {G™ () | m > N3, f € Q" } mentioned immediately
after Theorem 1.2.15 can be regarded as subsets of the set (1.3.2), as long as we
are interested only in their algebraic independency. From this point of view, the
sets treated in Theorems 1.2.14, 1.2.15, and 1.3.1 are represented respectively in

Tables 1.1, 1.2, and 1.3 below. (In these tables, the function 0"7™0 /0z!0y™(x,y) is
written as @™ (x,y).)

19



Tr=aoc @X
a; =1 a2 a3
Bo =0 (1) F(a) FY (as)
B | GM(B) 0l (ag, ) ©L™ (s, B)
B pebB Bo | G (By) O™ (g, By) O™ (g, Bs)
y=p3eQ : : : :
— / G(m)(ﬂl) 9(l,m)(a2 ,3/) @(l,m)(a3 ﬁ/)
Be QX \ B B . 1 - ) P1 . » P1
P e R GO G i G
Table 1.1: The numbers treated in Theorem 1.2.14
T =0oc @X
a; =1 a2 a3
Bo =0 o) FY(ag) F (a3)
B | G () ©m(ay, 1) O™ (ag, )
B peb Bo | G (By) O™ (ag,By) O™ (g, Bs)
y=p3eQ : : : :
— / G(m)(ﬁl) @(l’m)(ag /3/) @(l,m)(a3 ﬁ/)
BeQ\B A e St S
~ (o P | k> 0} By | G () €™ (ag, B3)  ©™ (g, Bh)
Table 1.2: The numbers treated in Theorem 1.2.15
r=acQ”
o] = 1 [65) (0%
Bo =0 FR(1)  FY(as) Fy) (as)
81| GM(B) 0™ (ag, B1) OU™ (s, B1)
B peb Ba | GM(By) O™ (ag,B) O™ (ag, Bs)
y=p3eQ : 3 ; :
— / G(m)(B/) @(l,m) (Ckg /3/) @(l,m) (Ckg ,8/)
Be QX \B B . 1 - ) P1 . » P1
~taRe ks oy | |G 86T (azf) €6 as, )

Table 1.3: The numbers treated in Theorem 1.3.1

Extracting the first row and the first column from Table 1.3, we obtain the

following Corollary 1.3.2 and Table 1.4.
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Corollary 1.3.2. Let v be 0o or a prime number and { Rg }r>o0 as in Theorem 1.3.1.

Then the infinite subset

{F,f,f)(a) )ZEO, m > 1, aE@X}U{G(m)(ﬁ)‘mzNﬁ, BG@X}

of Q, is algebraically independent.

r=acQ”
o] = 1 a9 a3
Bo=0 FP1)  FY(a) Fy) (as)
B @B 0l (ay,81) ©L™ (ag,5)
(8

BeB By | G (By) O™ (g, By) O™ (g, Bs)

— B amg) etmiay, 8 06m (ay, 8)
B
Bi?a—>k|k>o} By | GM(BL) 0™ (ay, By) O™ (a3, 8))

Table 1.4: The numbers treated in Corollary 1.3.2

Corollary 1.3.2 refines Theorems 1.2.14 and 1.2.15, namely we obtain the alge-
braic independency of the union of the infinite sets treated in the two theorems as
well as the nonzero derivatives at the zeros of the infinite product G(y).

As another corollary to Theorem 1.3.1, we obtain an entire function of two

variables which possesses Property 1.1.9 for its partial derivatives. Such a function
is defined by

— Bk T Biq R

oy g 20, (1 — aRkl y)(l — aRkQQ)'
k15ks

Corollary 1.3.3. Let v be co or a prime number and { Ry }x>o as in Theorem 1.5.1.

Assume in addition that { Ry }r>o is strictly increasing. Then the infinite subset

l+m= —X —X
{gﬂTy;(a,ﬁ)‘lzamZO, aeQ, BeQ }

of Q, is algebraically independent.
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Remark 1.3.4. Corollary 1.3.3 establishes the algebraic independence of the partial
derivatives of the entire function Z(z,y) of two variables at any distinct algebraic
points. On the other hand, there are known results on the algebraic independence of
the values of three-variable functions without their partial derivatives. For example,

let {Gj}i>0 be the generalized Fibonacci numbers defined by
Go=0, Gi=1, Giyo=0Gy1+Gr (k>0),

where b is a positive integer. We consider here the complex function

o 1k G1+Gat+Gy,
T(z,y,2) = Z (1 — y261)(1 — y252) - - y2Cr) ZH ZGz
k=1 k=1 1=1

of three variables, which converges in the union of the two domains
{(z,9,2) €C*| |z] <1, 1 —yzC #£0 for any k > 1} (1.3.4)
and
{(z,9,2) € C* | |z < [y|, 1< 2], 1 —yz #0 for any k > 1},
Let D be the subdomain of (1.3.4) defined by D = C x {|y| < 1} x {|z] < 1}. For
the function T'(x,y, z), Tanaka [32, Example 1] proved that the infinite set
{T(a, ,0) | (@, 8,0) € (@")*N D} = {T(a, B,a) | @, B,a €Q", |B| <1, |a] < 1}

is algebraically independent. (More generally, he [32, Theorem| obtained a necessary
and sufficient condition for the values at algebraic points of a certain class of three-
variable functions including 7'(x,y, z) to be algebraically independent.) This is
a remarkable result that establishes the algebraic independence of the infinite set
consisting of the values of the three-variable function T'(x,y, z) at distinct algebraic
points; however, it should be noted that the domains of definition of y and z are

restricted.
Let B be as in Theorem 1.2.15, namely
B:=Q \{a ™ |k=0}={8€Q" |G(B)#0}.

We note that Ng = 0 if and only if 3 € B. In Chapter 2 we deduce Theorem 1.3.1

from the following:
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Theorem 1.3.5 (Ide [7, Theorem 1.11]). Let v be 0o or a prime number and { R }r>o
as in Theorem 1.5.1. Then the infinite subset

{F0@) 120, m>1, acQ}U{GH) | 8 € B}

otm —x
U{W(a,ﬁ)’lZO, m=>0, a€Q, 563}

of Q, is algebraically independent.

We prove Theorem 1.3.5 in Chapter 4. In what follows, we consider only the
case of complex numbers. In the second main theorem of this thesis, we merge
the two cases (A) and (B) described in Section 1.2 by extending Theorem 1.3.5.
Let ay,...,a, be algebraic numbers with 0 < |a;| < 1 (1 < i < r). Inspired by
Theorem 1.2.9, we define

Fim(x) = F{R};2,af") = > af"™ab (m=1,2,..), (1.3.5)
k=0
Gi(y) = G{ R}y ai) = [ [(1 = o), (1.3.6)
o akak
Hi(z,y) = H{Rr}; 2, y,a;) = Z 1_’7%, (1.3.7)

and
Bi=Q \{a;" | k>0}={8cQ" | Gi(B) # 0}
<

for each ¢ (1 <i <r). Then the infinite set

To={F@) 120, m>1, a e }U{G(H) | 5 € B}
al-l—mHi
U{ G te9)

is algebraically independent for each i (1 < ¢ < r) by Theorem 1.3.5. However,

le,mEO,ae@X,ﬁeBl}

Theorem 1.3.5 provides no information on the algebraic independence of the union
T=T7
i=1
:{HQQW1gignzza7nzL@e@ﬂ¢H@wn1gignﬁeBg

ot H, —
U{W(a,ﬁ)‘lgigr, [>0, m>0, aeQ, BGBZ}.
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The main aim of this study is to obtain the necessary and sufficient condition on
algebraic numbers aq, ..., a, for the infinite set T to be algebraically independent.

Suppose here that a; and a; are multiplicatively dependent for some i, j with
1 <4 < j < r. Then it is easily seen that the infinite set 7T is algebraically
dependent. Indeed, assuming ad1 = agQ for some positive integers d; and do, we
have Fy g, (o) = S50 af ok = 3700 a5 ok = Fy 4, () for any nonzero algebraic
number «, which implies that the infinite set 7 is algebraically dependent. In
addition, algebraic relations also appear respectively among the values at several
algebraic numbers of G;(y) (¢ = 1,2) and those of H;(1,y) (i = 1,2) in this case. To
see this, let (; (i = 1,2) be a primitive d;-th root of unity. Then we have

di—1 00 (o) do—1
[T Gatcio™) =TT - att ™t = [T - ) = T Galclo™
k=0 k=0 §=0

Taking the logarithmic derivative of this equation and using the relations H;(1,y) =
—Gi(y)/Gi(y) (i =1,2), we obtain

d11 d21

ZM Yy Hi(1, Cly" Zdlc y™ Hy(1, Gy™).

Hence, if a nonzero algebraic number 3 satisfies (3% € By (0 < i < d; — 1) and
¢JpM € By (0 < j < dy—1), then the dy +dy nonzero elements Gy (¢i %), Go(¢A™)
(0<i<d;—1,0<j<dy—1)of T are algebraically dependent and so are the
dy + dy elements Hy (1, %), Hy(1,GA%) (0 < i <di—1, 0 < j <dy—1)of
T. Therefore the infinite set T is algebraically independent only if a4,...,a, are
pairwise multiplicatively independent. The second main theorem of this thesis is

the following:

Theorem 1.3.6 (Ide [8, Theorem 1.8]). Let {Ry}r>0 be a linear recurrence of non-
negative integers satisfying (1.2.2). Suppose that { Ry }r>o satisfies Condition 1.2.5.

Assume that { Ry} x>0 is not a geometric progression. Then the infinite subset

T = {F(l ‘1<z<rl>0 m>1, @EQ}U{G()\lgigr,ﬁeBl}

al—l—mH, .
U{ax,aynﬁa,ﬁ)'lszg, 130, m>0, acQ", ﬁezsz}
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of C is algebraically independent if and only if aq, ..., a, are pairwise multiplicatively

independent.
In Chapter 4, we prove the if part of Theorem 1.3.6, namely the following:

Theorem 1.3.7 (Ide [8, Theorem 1.9]). Let {Ry}r>0 be as in Theorem 1.3.6. As-
sume that aq,...,a, are pairwise multiplicatively independent. Then the infinite

subset T of C is algebraically independent.

In order to construct a family of entire functions of two variables having Prop-

erty 1.1.10, we define

O;(x,y) = Gy ZaR’“ K H —al™y) (1.3.8)
o
and
Nigi=#{k 2 0] a;"" = B} = ord Gi(y)
for each ¢ (1 < ¢ < r) and for each nonzero algebraic number 3. Applying Theo-
rem 1.3.7, we prove in Chapter 2 the following theorem, which is an extension of

Theorem 1.3.1 in the case of complex numbers.

Theorem 1.3.8 (Ide [8, Theorem 1.12]). Let {Ry}x>0 and ay,...,a, be as in The-
orem 1.3.7. Then the infinite subset

,m

U{c™ )| 1<i<r, s}
U{ S (a9

of C is algebraically independent.

{Fl) ‘1<z<7’l>0 m > 1, &GQ}

1<i<r, 1>0, m>N;3 acQ, B€Q }

Similarly to Corollary 1.3.2, we can deduce the following from Theorem 1.3.8.

Corollary 1.3.9. Let {Ry}r>o and ay,...,a, be as in Theorem 1.3.7. Then the

infinite subset
{F.(”( )‘1<i<r 1>0, m>1, ae@x}

U{G(m ‘1<z<r m>N,5,BEQ}
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of C is algebraically independent.

Moreover, similarly to Corollary 1.3.3, letting

% % (1= )1 = a;"*y)
k1#k2

for each i (1 <i <), we obtain the following:

Corollary 1.3.10. Let {Ry}r>0 and ay,...,a, be as in Theorem 1.3.7. Assume in
addition that { Ry }k>o is strictly increasing. Then the infinite subset

Hmz, X X
{gxlay“;(a,ﬁ)'lﬂgr, >0, m>0,0eQ, B€Q }

of C is algebraically independent.

Using Corollary 1.3.10, we exhibit a concrete example of an infinite family of

entire functions of two variables having Property 1.1.10.

Example 1.3.11. Let {F}r>0 be the Fibonacci numbers as in Example 1.2.4. For
any nonnegative integer i, letting a; = 27'37% and regarding { Fiy2}r>0 as { Rk b0,
we define

_(2 . 3’i>*Fk1 *sz :Ckl_Q

Zi(z,y) = (H(l - (2‘3i>_F’“y)> 2 o) a2 3) )

k=2 k1,k2>2,
k1o

Then by Corollary 1.3.10 the infinite family {Z;(x, y) };>0 has Property 1.1.10, namely
the infinite subset

al—i—mEi
{ st

z'zO,lZO,sz,aE@X,BG@X}

of C is algebraically independent.

In the rest of this section we introduce another result on the algebraic inde-
pendence of the values and the partial derivatives of Fj,,(z),G;(y), and H;(x,y).
Assume here that none of a;/a; (1 < i < j <r)is aroot of unity. In this case, we

cannot deduce the algebraic independency of the infinite set T itself since a4, ..., a,
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are not always pairwise multiplicatively independent. On the other hand, we see by
Theorem 1.2.9 that, if 1 € B; (1 < < r), then the 3r elements F} (1) = Y52 a;™,
Gi(1) = T2y (1 — a), and Hy(1,1) = 3202 jal™* /(1 —aj*) (1 < i < 1) of T are
algebraically independent. Here we can extend this result to the following theorem,

whose proof will be provided in Chapter 4.

Theorem 1.3.12 (Ide [8, Theorem 1.13]). Let {Ry}r>0 be as in Theorem 1.5.6.
Assume that none of a;/a; (1 <1i < j <) is a root of unity. Let mqy be a positive
integer. For each i (1 < i < r), let 5; and B, be any elements of B;. Then the

infinite subset

{FoOg@) [1gi<r 120 acQFUGH) 11<i<r}

o mH;
U { 83:183/” (Oé, 61)

1<i<r, 1 >0, m=>0, ae@x}
of T is algebraically independent.

This thesis is organized as follows. In Chapter 2, we establish Lemmas 2.1.1-
2.1.3 and 2.2.1-2.2.2. The first three lemmas assert the existence of invertible linear
relations among the values of a wider class of functions including those stated in
Section 1.3, using which we can avoid the zeros of the infinite products G;(y). The
latter two lemmas claim the existence of invertible algebraic relations among the
above functions themselves, by which we can reduce the algebraic independency
of the values and the partial derivatives of the entire functions ©;(x,y) to that
of the Lambert type series H;(z,y). Using these lemmas and shifting the linear
recurrence { Ry }x>0 S0 as to avoid the zeros of the infinite products G;(y), we deduce
Theorems 1.3.1 and 1.3.8 from Theorems 1.3.5 and 1.3.7, respectively. The proofs
of Corollaries 1.3.2, 1.3.3, 1.3.9, and 1.3.10 are also provided in Chapter 2. In
Chapter 3, we establish a criterion for the algebraic independence of the values of
Mahler functions corresponding to those stated in Theorems 1.3.5, 1.3.7, and 1.3.12.
Our criterion, which is valid not only in the complex case but also in the p-adic case,
includes Nishioka’s criterion and a special case of Kubota’s one. In the last chapter,

using our criterion, we reduce the negations of Theorems 1.3.5, 1.3.7, and 1.3.12
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to the linear dependence or the multiplicative dependence of the Mahler functions
above. Applying Tanaka’s results on the nonexistence of nontrivial rational function
solutions of certain types of functional equations, we obtain a linear dependence
relation of certain power series of one variable, which easily leads to a contradiction
in the case of Theorem 1.3.5. In the cases of Theorems 1.3.7 and 1.3.12, the situation
on the linear dependence becomes more complicated. We prove Theorem 1.3.12 by
showing directly that a term of sufficiently high order never vanishes in the linear
combination. On the other hand, in the proof of Theorem 1.3.7, using the precise
assumption on the algebraic numbers ay, ..., a,, we can reduce the situation on the
linear dependence to that similar to Theorem 1.3.5. This observation allows us to
establish the algebraic independency of the infinite set T larger than that treated
in Theorem 1.3.12.
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Chapter 2

Proofs of Theorems 1.3.1, 1.3.8,
and their corollaries

2.1 Linear relations among the values of a wider
class of functions

Let v be 0o or a prime number. In this section and the next section we consider the
functions f(z), g(y), h(z,y), and 6(z,y) defined by

= aat, gly) =[]0 - aw) =Y : o (2.1.1)
— axy
k=0 k=0 k=0
and
O(z,y) =gy Zaka: H 1—apy (2.1.2)

k’;ék
where {ay }r>0 is a sequence of algebraic numbers satisfying

1

lim supy._, [ax]s*

—r > 1 (2.1.3)

Then f(x), g(y), h(x,y), and 6(x,y) converge in {x € C, | |z|, < r}, in C,, in
{r € C, | |z, <7} x{y € C, | y # a," for any k > 0 with a;, # 0}, and in
{z € C, | |x|, < r} x C,, respectively. This framework includes the case of the
functions F,,(x), G(y), H(x,y), and O(x,y) defined by (1.2.6), (1.2.7), (1.2.8), and

(1.3.1) as the special case of a; = a™® or more simply that of a;, = af*. In the
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same way as (1.3.3), we see that
oo

——(1,y) = =gt 2.1.4
gy Y =97 W) (2.1.4)
for any m > 0. Let a and § be any nonzero algebraic numbers with |a, < 7.

Similarly to the number Nz defined by (1.2.9), we define the number ng by

ng =k 20| ar = 57"} = ordg(y).

In this section we establish explicit invertible linear relations between the values and
the (partial) derivatives of the functions above at (z,y) = («, ) and those defined
by a shifted sequence of {ay}x>o.

Since ay — 0 as k — oo by (2.1.3), there exists a sufficiently large integer ko
depending on f such that 1 — a8 # 0 for all k& > ko. Put ap == agys, (K > 0).
Let f(z), §(y), h(z,y), and 6(z,y) be the functions given respectively by (2.1.1)
and (2.1.2) with the sequence {ay}r>o in place of {ag}r>o. For each positive integer
L, let M(Q) be the multiplicative group of L x L lower triangular matrices with
entries in Q whose diagonal entries are nonzero. We note that, if A € My, and
B € M,,, then the Kronecker product A® B belongs to M, 1,. The following three
lemmas, especially the latter two, play a crucial role in the proofs of Theorems 1.3.1

and 1.3.8.

Lemma 2.1.1 (Ide [7, Proof of Theorem 2.1]). Let L be a nonnegative integer. Then

there exists A, € Mp41(Q) depending on o such that

f/(oz) f(@)
f (:04) = A, f (:04> (mod @LJrl).
fHa) FO(a)

Lemma 2.1.2 (Ide [7, Proof of Theorem 2.1]). Let L be a nonnegative integer. Then

there ezists Bg € M 41(Q) depending on 3 such that

%(Z@)()B) g(ﬁ)
g :‘* (B) _ 3, g (:ﬂ)
gLt (B) g (B)
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Lemma 2.1.3 (Ide [7, Proof of Theorem 2.1}). Let L be a nonnegative integer. Let @
and 6 be column vectors given respectively by sorting the values 87™0/0x'0y™ (v, B)
and 00/ 0x 0y™ (v, B) in the ascending lexicographical order of (1, m) € {0,. .., L}?
such that

(0,0) < (0,1) <--- < (0,L) < (1,0) < --- < (L, L).

Then
0= (A, ® Bs)8 (mod WD), (2.1.5)

where A, and Bg are as in Lemmas 2.1.1 and 2.1.2, respectively, and W 1is the
Q-vector space generated by {g™(8) | 0 < m < L+ 1}. In particular, for the case
of a = 1, let " and 0’ be column vectors given respectively by sorting the values
9™ 92l dy™ (1, B) and 0F™0/0z'0y™ (1, B) in the ascending lexicographical order
of (I,m) e {l,...,L} x{0,..., L} such that

(1,0) < (1,1) <--- < (1,L) < (2,0) < --- < (L, L).

Then

0 = (A, ® Bz)@ (mod WD) (2.1.6)

where A} € Mp(Q) is the submatriz of A, given by

(1|01
w-(G1%)

Remark 2.1.4. For each m (0 < m < L+1), we see by Lemma 2.1.2 that g(™+"8)(3)
is represented as a linear combination of g () (0 < p < m) and conversely ™ (3)
is represented as that of g(*t"8)(B) (0 < pu < m). Hence {g™m+)(B) | 0 < m <
L+ 1} and {g™(B) | 0 < m < L + 1} generate the same Q-vector space W in
Lemma 2.1.3.

Proof of Lemma 2.1.1. Let

R(x) = a*. (2.1.7)
Since
o0 ko—1 . ko—1
f(x) = Z apzt + Z arpz® = R(z)f(z) + Z apx®,
k=ko k=0 k=0
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we have
fO(a zXl%( ) (@) [ () (mod Q)

for any [ (0 <1 < L). Hence, letting

ako
R'(a) afo O
Aa = . . . )
RW(a) --- LR'(a) ako

we obtain the lemma.

O

Proof of Lemma 2.1.2. We define polynomials Ps(y) and @Q(y) with algebraic co-

efficients by

ko—1

Poly) = (1= 8790, Qs) = ] (- aw).
Let
ps =P ), a5 = Qa(B).
Then ps and gg are nonzero algebraic numbers. Since

ko—1

gy) = J] (1 = ary) x H (1 —ary) = Ps(y)Qs(y)9(y),

k=0 k=ko

we see that, for any m (0 < m < L),

g () = 3 ( m + g >p5@g“—h> (BT (5).

e~ \ng m—nh h

Hence, letting

Psqp
(14 n)ps@s(8) (14 ns)psas 0
Bg = :
(1 )psQ?(8) - (s @i(8) (M) psas

we obtain the lemma.
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Proof of Lemma 2.1.3. We define
Uﬁ(y) — (1 . /8—1y)max{n5—1,0} c @[y]

and
ko—1 ko—1
(Z ar® [[ (1= ak,w) Us(y)™
k'=0,
k' £k
Since Us(y) is a common divisor of [[}_, o ekl —awy) (0 <k < ko — 1), we see

that Vz(7,y) € Q[v,y]. Let R(z), Ps(y), and Qg(y) be as in (2.1.7) and (2.1.8).
Noting that Ps(y)Qs(y) and Us(y)Vs(x,y) do not depend on S, we see that

0(z,y) = R(x)P3(y)Qs(y)0(x,y) + Us(y)Va(w, v)3(v).

Since max{ng, 1} + min{1,nz} = ng+ 1 and so ng — max{ng — 1,0} = min{1, ng},
we have

al+m+n50
W(@» B)

_ 1) = m+ng (m—hs) ah1+h29
Z ( ) l h )Z <n5 m_h2 h2> BQ (ﬁ)axhlath( ﬁ)

ho=0
m4+min{1l,n
+ 2{: ’ (( mng )
Py max{ng — 1,0} m+min{l,ng} —hs hs
8l+m+nnn{1 ngl— h3V6
~(h3)
Xuﬁ axlamermln{l ngt—hs (Oé B)g ? (6)) (2110)

for any [ (0 <1 < L)and m (0 < m < L), where pg € @X is defined by (2.1.9)
and ug = U[gmax{nﬁ_l’o})(y) € Q". Hence we obtain the linear relation (2.1.5).
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Considering the case where av = 1 in (2.1.10), we see by (2.1.4) that

al+m+n50
W(L B)

m +n ah1+h2§
_ l h1) 1 m 8 (m—hs) g
Z( ) )};<nﬁm—h2 h, JPE9s (ﬁ)axhlayhz( B)
m+min{l,ng} - .
’ hzo (<max{"5 — 1,0} m+min{l,ng} — hs hg)
3=

8l+m+m1n{1 ng}— h5V5
(hs3)
Xuﬁaxlamermm{l ngt—hs (1 ﬁ)g ’ (5))

RO (L Y e )
ha—0

ng m— hy

for any [ (1 <1 < L) and m (0 < m < L), which implies the linear relation
(2.1.6). O

2.2 Algebraic relations among the functions them-
selves

Next we provide invertible algebraic relations among the functions g¢(y), h(x,y),
and O(x,y) themselves defined by (2.1.1) and (2.1.2). In this section we write
oM (z,y) = 0F™p/0xl0y™(x,y) for any analytic function o(z,y) and nonneg-
ative integers [,m. For each positive integer L, let M3 (R) be the multiplicative
group of L x L lower triangular matrices with entries in the commutative ring R

whose diagonal entries are 1’s of R.

Lemma 2.2.1. Let [ be a nonnegative integer and L a positive integer. Then there

exists C € M*  (Z[{g"™(y)/g(y) | 1 < m < L}]) such that

L+1
000 (x,y)/g(y) R0 (2, y)
00 (2, y)/g(y) - RED (2, y)
00D (2, 9)/g(y) hED) (2, y)
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Proof. From (2.1.2), we see that

g(l m)

Doy () e

for any m (0 < m < L). Hence, letting

we obtain the lemma. O

Lemma 2.2.2 (Ide and Tanaka [9, Lemma 2.4|). Let L be a positive integer.
Then there exist Dy € M (Z[{h®™(1,y) | 0 < m < L —1}]) and D, €
M (ZI{g"™ (y)/9(y) | 1 < m < L})) such that

—9'(y)/9(y) h(1,y)
—9"(y)/9(y) b h(® 1)( ,Y)
g () /g(y) h )(1 y)
and
h(1,y) —9'(y)/9(y)
RO (1 ) —9"(y)/9(y)
| — D, .
hOL) (1, y) L“( )/9(y)

Proof. Since ¢'(y) = —g(y)h(1,y) by (2.1.1), we see inductively that, for any m > 0,

9" (y) = g(y) P (h(L,y), ..., KO™D(1,y)), (2.2.1)

where Py =1 and P,,(Xo, ..., Xm-1) € Z[Xo, ..., X;n—1] (m > 1). Then again from
the equation —¢'(y) = g(y)h(1,y), using the Leibniz rule and (2.2.1), we have

9" (y) i (m) g (y) RO (1)

9(y)

- Z (Z) Py (h(l Y), - h(o’m_“_l)(l,y)) h(O,#)(Lw (2.2.2)
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for any m > 0. On the other hand, we see inductively that, for any m > 0,

a1\ 1 A A )

dy™ <9(y)> a g(y)Qm( gw) T gly) > ’
where Qy = 1 and Q. (Y1,...,Yn) € Z[Y1,...,Yn] (m > 1). Since h(l,y) =
—9'(y)/g(y), we have

o) = =3 (") g S (L)

= \n 9(y)
-3 (Mo (- E5) () e29
for any m > 0. Hence, letting
1
. Pi(h(1,) L | 0
Pu(h(Ly).... . AOD(Ly)) - LP(h(Ly) 1
and
1
by -9/ )/0) L 01
Qul=gW)/9®)- - —dPW)/9w) - LQi(~g®)/g(y) 1
we obtain the equations in the lemma from (2.2.2) and (2.2.3). O

Remark 2.2.3. Here we consider the case of a; = ™ in Lemmas 2.2.1 and 2.2.2.

Substituting ¥y = 0 into the equation in Lemma 2.2.1 and using the relation

O H > a(m—i—l)kak > .
Gy @0 =m mres| = ml ) d et = miFLa(), (224)
Y k=0 LA B k=0
we obtain
CICRIEN) 01FY (2)
e (z,0) | AP ()
01 (z,0) LFY (x)
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where C' € M (Z[{G"™(0) | 1 < m < L}]). Then by (1.3.3) we have C' €

./\/l*LH(Z[{@(O’m)(l, 0)| 0 <m < L —1}]). On the other hand, by the first equation
in Lemma 2.2.2 and (2.2.4) we see that

—~G'(0) 01Fy (1)
=G"0) | _ o 11Fy(1)
—G(ZL)(O) (L — 1j!FL(1)

where D} € M} (Z[{F»(1) |1 <m < L —1}]). Hence C" € M} (Z[{F,(1) |1 <
m < L}]). Therefore the algebraic independency of the infinite set {©¢™)(a,0) |
[>0, m>0, ac @X} is equivalent to that of {Fﬁ)(a) |1>0, m>1, a€ @X},
since their finite subsets {@(l’m)(ax,O) |10<I<L,0<m<L, 1<A<L}and
{F,(,f)(oo\) |0<I<L,1<m<L+1, 1< X< L} generate the same field over Q
for any positive integer L and nonzero distinct L algebraic numbers ay, ..., ay with

Oélzl.

2.3 Proofs of Theorem 1.3.8 and its corollaries

Using the lemmas proved in the previous two sections, we deduce Theorem 1.3.8

from Theorem 1.3.7.

Proof of Theorem 1.3.8. Let L be any positive integer and ay, ..., a; any nonzero
distinct L algebraic numbers with ay = 1. Let (3, ..., 8 be any nonzero distinct L
algebraic numbers. To simplify our notation, we write N;, = N;3, (1<i<r, 1<

pu < L). It suffices to show that the finite set

{Fia|1<isroisi1sm<r 1A=L}

U{GENW(@) ‘ 1<i<r 1<p< L}

[ N;
{ 3 +m+ "‘@i

W(@A,ﬂu)‘léiéﬁoﬁl,mﬁﬂ 1§)\,M§L}
QYT i

is algebraically independent. Using the lemmas in Sections 2.1 and 2.2, we reduce the

algebraic independency of this set to that of other sets having the same cardinality.
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By the equation (1.3.3), the algebraic independency of the above set is equivalent
to that of

G(m+Ni,u) 1<i<r, 0<m<L+1,1<u<lL
i H :

N, 1<i<r l(A)<I<L, 0<m<L,
OxtOym+Nip (ax, Bu) 1< \u<L ’
where
1 (A=1),
l0(>\) =
0 2<A<L).

Since Ry — 0o as k — oo by (1.2.4), there exists a sufficiently large integer ko such
that 1 —afkﬁu #0(1<i<r, 1<pu<L)forall k> kg Let ﬁk = Rpyr, (kK >0).
Clearly, the linear recurrence {Ry}ro also satisfies Condition 1.2.5 and {Ry}rso
is not a geometric progression. Let Fi,(x), Gi(y), H;(x,y), and ©;(z,y) be the
functions given respectively by (1.3.5), (1.3.6), (1.3.7), and (1.3.8) with {R;}xs in
place of { Rg }x>0. Then Lemmas 2.1.1, 2.1.2, and 2.1.3, together with Remark 2.1.4,
imply that the second set above and the set

{F(n |1<i<r0<i<r 1<m<r, 1<a<1}

generate the same Q-vector space. Hence the algebraic independency of these two
sets are equivalent. Moreover, the algebraic independency of the third set is equiv-

alent to that of




since these two sets generate the same field over Q by Lemma 2.2.1. Furthermore,

the algebraic independency of the fourth set is equivalent to that of
{Eﬁg(m)ﬁgigr, 0<I<L 1<m<L, 1§)\§L}

U{Gia) |1<i<r 1<p<L]

al—i—mﬁi
U {W(am Bu)

1<i<r, 0<Im<L, 1§)\,M§L}

since these two sets generate the same field over Q by Lemma 2.2.2. This completes
the proof since Theorem 1.3.7 for the linear recurrence {ﬁk}kzo asserts that the last

set is algebraically independent. O]

Proof of Corollary 1.3.9. By the relation (1.3.3), the infinite set treated in Corol-
lary 1.3.9 coincides with

{FO@[1<i<r 120, m>1,0eT}
U{c™ @) [1<i<r peT}
8m@l . —x
U{-Gmo) [1<inmz N 5T,

~ T
whose algebraic independency is deduced from Theorem 1.3.8. O]
Proof of Corollary 1.8.10. 1f { Ry }x>o is strictly increasing, then N; g < 1 for any i

and nonzero algebraic number J. Thus, if {Ry}r>o is strictly increasing, then the

infinite set

l+m=.
{gx,ayi;(w) ‘ 1<i<r 120, m=>0, acQ, BGQX}
al+m@‘ X X

is a subset of the infinite set treated in Theorem 1.3.8, and hence it is algebraically

independent. L

We omit the proofs of Theorem 1.3.1 and Corollaries 1.3.2 and 1.3.3, since their
proofs are obtained by considering the case where r = 1 in the proofs above and

using Theorem 1.3.5 instead of Theorem 1.3.7.
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Chapter 3

Mahler functions of several
variables

Theorems 1.3.5, 1.3.7, and 1.3.12 will be proved in the next chapter by reducing the
algebraic independency of the numbers in question to that of the values of certain
Mabhler functions of several variables. The aim of this chapter is to establish a

criterion for algebraic independence of the values of Mahler functions.

3.1 Multiplicative transformation )

Let Q = (wj;;) be an n x n matrix with nonnegative integer entries. Then the
maximum p of the absolute values on C of the eigenvalues of €2 is itself an eigenvalue
of Q (cf. Gantmacher [6, p. 66]). Let v be co or a prime number. We define a

multiplicative transformation 2: C!! — C? by

Oz = (ﬁzf”, - z72j,...,ﬁzf"j> (3.1.1)

j=1 j=1 j=1

for any z = (z1,...,2,) € C". Then the iterates QFz (k = 0,1,2,...) are well-
defined. Let & = («q, ..., ) be a point with oy, ..., a;,, nonzero algebraic numbers.

We consider the following four conditions on 2 and a.
(I) € is nonsingular and none of its eigenvalues is a root of unity, so that p > 1.

(IT) Every entry of the matrix QF is O(p*) as k tends to infinity.
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(I11),, If we put Q*Fa = (ozgk), . ,ozg,,k)), then
log o], < —cp* (1 <i<n)
for all sufficiently large k, where c is a positive constant.
In the case where v is 0o, the fourth condition is the following:

(IV)s For any nonzero f(z) € C[[z, ..., z,]] which converges in some neighborhood

of the origin of C", there are infinitely many positive integers k£ such that

(@) #0.

On the other hand, in the case where v is a prime number p, the fourth condition

becomes the following:

(IV), For any nonzero f(z) € C,[[21,...,2,]] which converges in some neighbor-
hood of the origin of C} and for any positive integer a, there are infinitely

many positive integers k such that f(Q%a) # 0.

In the case where v is oo, Mahler proved the following lemma, called Mahler’s
vanishing theorem, which gives a sufficient condition for a matrix {2 and a point «

to satisfy the four conditions (I)~(IV)x.

Lemma 3.1.1 (Mahler [14], cf. Nishioka [23, Theorem 2.2]). Let 2 be an n X n
matriz with nonnegative integer entries. Suppose that the characteristic polynomaial
of Q0 is irreducible over Q and that €1 has an eigenvalue p > 1 which is greater
than the absolute values on C of any other eigenvalues. We denote by A;; the (i,J)-
cofactor of the matriz Q@ — pl,,. Then A; # 0 for all i (1 < i < n). Moreover, if

nonzero algebraic numbers aq, . .., oy, satisfy

Z ’Azl|oo log ’az’oo < 07

=1

then the matriz 0 and the point oo = (au, ..., an) satisfy the four conditions (I)-
(IV) o
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Although the condition (IV), for a prime number p is stronger than the condition
(IV) s, we can prove the following lemma, which is the p-adic analogue of Mahler’s

vanishing theorem.

Lemma 3.1.2. Let Q) and A;j be as in Lemma 3.1.1. Then A;; # 0 for all i

(1 < i < n). Suppose that p is a prime number. If nonzero algebraic numbers

Q1. .., Satisfy

Z ’Azl|oo IOg ’ailp < 0,

i=1
then the matriz 0 and the point o = («u, ..., q,) satisfy the four conditions (I)-
(IV),.

Proof. By Lemma 3.1.1, € satisfies the conditions (I) and (II). Moreover, in the
same way as in the proof of Lemma 3.1.1, we see that |A11|co, - - -, |A1n|oo are linearly
independent over Q and so are |Aj1|eo; - - -5 |Ani|oo (see Nishioka [23, pp. 36-38]). In
particular, A;; # 0 for all i (1 < i <n).

We see that the (i, j)-entry of QF is equal to A1|A1i|eo|Aj1leop™ + 0(p*), where
Ay > 0. For any index h = (hy, ..., h,) € ZL,, we have

log | (2", = log | (e1")" -+ (o)™

n p
log ’O‘1|p
= (hy, ..., hy)QF ;
log |avn |,
[A1loo D251 [Aj1lo log ],
= pFAi(hy, ... hy) : + o(p")

[ An oo Z?:1 | Aji]oo log [y,
=4 (Z \Auloohz) (Z At o \ajlp) +o(")
i=1 j=1
In particular,
log |, = p" Ar| Aulo D |451]u0 10 s + 0(p").
j=1
By the assumption of the lemma, 3 7 | [Aji]w log|al, < 0 and so the condition

(III), is satisfied.
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Finally we show that Q and a satisfy the condition (IV),. Let f(z) =, bnz"
be a nonzero power series of n variables with coefficients in C, which converges
in some neighborhood of the origin of C}. Since |Ajifu, ..., |Ain|e are linearly

independent over Q, if (hy,...,h,) and (h},...,h,) are distinct indices in Z%, then

n

Z | Aol # Z | Avi|sohy-
i—1

=1

Let H = (Hy, ..., Hy) be the only index in Z%, such that

i=1

Let A; be the finite subset of ZZ, consisting of the indices (hy,...,h,) such that
|Avilochs < H for all i (1 <4 < n) and let Ay be the complement of A; in Z%,. If
h = (hy,...,h,) # H with by # 0, then

=" A ( | Aviloohi — H) (Z | Aj]oo log ’O‘j’p) +o(p")
i=1

P j=1

b #0, h = (hy,...,hy,) € Zgo} = H =Y |AiluH:.
i=1

()"
(Qra)H

log

— —o0  (k— o)

and hence the finite sum Y, ., bp (%)™ /(2"a)™ tends to the nonzero coefficient
bg as k tends to infinity. Assume that k is sufficiently large. Since the p-adic
absolute value | - |, is ultrametric, if Y-, bn(Q2"a)™ # 0, then there exists a finite

subset Az of Ay depending on k such that

D ()

heAs

= ) ()

heAs

p

[H/|A1i|oo]+1

k_\h Bl rk R (k)
< max b (@), < maxc}"|(@a)"], < e max o] ,

heAs
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where ¢; and ¢y are positive constants independent of k. Since

(a\P) I/ Avileo]+1
log | —
(QFa)H
p

= p"A (| Ay H 1)|—H Ait]oo ] ; k

P Ar | [Aviloo 1AL + | Ajiloc log |ajlp | +o(p")

7100 ]:1
— — 0 (k — o0)
for any i = 1,...,n, we see that Y, bn(Q2"a)"/(Q* )™ tends to zero as k tends

to infinity. Therefore f(Q2*a)/(2*a)H tends to the nonzero coefficient by as k tends

to infinity, which implies the condition (IV),. O

In the case where v is 0o, Masser established the following lemma, called Masser’s
vanishing theorem, which gives a necessary and sufficient condition for 2 and « to

satisfy the condition (IV)q.

Lemma 3.1.3 (Masser [17]). Let 2 be an n X n matriz with nonnegative integer
entries satisfying the condition (I). Let a be an n-dimensional vector whose compo-
nents o, ..., oy, are nonzero algebraic numbers such that Q*o = (agk), e 7%(114:)) —
(0,...,0) in C" as k tends to infinity. Then the negation of the condition (IV ) is
equivalent to the following: There exist integers iy, ..., i,, not all zero, and positive
integers a, b such that
(@) - (al) =1

forallk=a+1b(1=0,1,2,...).

The p-adic analogue of Masser’s vanishing theorem is unsolved. This is the
reason why we need to assume the stronger condition (IV), in Theorems 3.2.1 and
3.2.4 below in the case where v is a prime number p (see Remark 3.4.5 stated in the

proof of Theorem 3.2.4).

3.2 Ciriterion for algebraic independence

Mahler functions of several variables are analytic functions which satisfy certain

types of functional equations under the transformation z — Qz defined by (3.1.1).
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Kubota [11] studied Mahler functions ¢;(2), ..., gm(2) satisfying respective func-
tional equations

9(2) e1(z) 0 91(Q2z) bi(2)

: = : + : . (3.2.1)

gm(2) 0 em(2) 9m(22) bm(2)
where ej,(2), bu(z) € Q(z1,...,2,) (1 < h < m), and established a criterion for the
algebraic independence of their values as well as that of the functions themselves
(see also Nishioka [23]). On the other hand, Nishioka [22] studied Mahler functions
fij(z) (1 <1 <1, 1 <j<n(i)) satisfying a system of functional equations

Ji(z) A 0 f1(Qz2) bi(2)
fi(z) 0 Ay fi(Qz) bi(z)
where
fi(z) ="fa(2), ... fim(2) (A1 <0<, (3.2.2)
a;
) a 0 _ |
Ai = S . € GLy(Q), a;#0, a  #0, (323)
anl()z)l T ani()i)n(z) 1
and
bZ(Z) = t(bil(Z), e 7bm(z) (Z)) S @(21, ceey zﬂ)n(z) (]_ <1< l), (324)

and established a criterion for the algebraic independence of their values as well as
that of the functions themselves.

In order to prove Theorems 1.3.5, 1.3.7, and 1.3.12, we need the following cri-
terion for the algebraic independence of the values of Mahler functions, which in-
cludes Nishioka’s criterion and a special case of Kubota’s one, that is, the case where
br(z) =0 for any h (1 < h < m) in the functional equation (3.2.1). In what follows,
we call a subfield K of Q a number field if K is a finite extension of Q.

Theorem 3.2.1 (Ide [7, Theorem 4.3]). Let v be co or a prime number, K a number

field, and Q an n x n matriz with nonnegative integer entries. Let fi;(z), gn(z) €
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K([z1,. 2]l (1 <i <1 1< 5 <n(i), 1 <h<m)with gn(0) #0 (1 < h <m).
Suppose that they converge in an n-polydisc U around the origin of C}} and satisfy

the system of functional equations

fi(z)

gm.(z)

J1(Q22)

gm(.Qz)

b1 (Z)

bl(‘Z)
0 )

0

where fi(z), A;, and bi(z) (1 < i < 1) are as in (3.2.2), (3.2.3), and (3.2.4),

respectively, and en(z) € Q(z,. ..,

zn) (1 < h <m). Let a = (ay,...,

ap) be a

point in U whose components are nonzero algebraic numbers. Assume that 2 and a
satisfy the four conditions (I)~(IV),. Assume further that b;;(Q*a) (1 <i <[, 1<
7 < n(i)) and en(a) (1 < h < m) are defined and e,(Qfa) # 0 (1 < h < m)
for all k > 0. Then, if the numbers fij(a) (1 < i <1, 1 <j <n(i)) and gp(cx)
(1 < h <m) of Q, are algebraically dependent, then at least one of the following

two conditions holds:

(i) There exist a non-empty subset {iy, ..

numbers cq, . .

and

(ii) There exist integers dy, . ..

that

f(z)=cifi1(z) +- -+ fii(z) €Qz,...

., ¢ such that

. dy, not all zero, and g(z) € Q(z1, ...

9(z) = (H eh(Z)dh> 9(92z).

iy of {1,...,1} and nonzero algebraic

X

,Zn) " such



Remark 3.2.2. If the case (i) in Theorem 3.2.1 arises, then the rational function

f(z) satisfies the functional equation
f(2z) = ai, [(Q2) + c1bi1(2) + -+ + e:by,1(2).

The proof of Theorem 3.2.1 consists of two parts. The first is Theorem 3.2.3
below, the algebraic independence over the field of rational functions of Mahler

functions themselves.

Theorem 3.2.3 (Ide [7, Theorem 4.4]). Let C' be a field of characteristic 0 and
M the quotient field of C[[z1,...,2n]]. Let  be an n x n matriz with nonnegative
integer entries satisfying the condition (I). Suppose that fij(z) e M (1 <i<l[, 1<
J < n(7)) satisfy the system of functional equations

fil(QZ) a; fil(z) bil(z)
. NOR. 0 ) )
: 21 T .
- . . . + )
' (0 W ' '
fini)(Q22) Uiyt Gyn@e) -1 % fin@)(2) bin(i)(2)
(3.2.5)

where a;, ' € C, a; # 0, a”)_, # 0, and bij(z) € C(z1,...,2,). Assume that
gn(z) € M (1 < h < m) satisfy the functional equations

9n(Qz) = en(2)gn(z) (1 <h <m), (3.2.6)

where ep(z) € C(z1,...,2,) (1 < h < m). Then, if the functions fi;(z) (1 <

i <1, 1 <7 <n@) and gi(z) (1 < h < m) are algebraically dependent over

C(z1,...,2n), then at least one of the following two conditions holds:

(i) There exist a non-empty subset {i1,...,i,} of {1,...,1} and nonzero elements
Ciy...,¢. of C such that

a’i1:“':air

and

f(Z) = lei11(z) + -+ Crfirl(z) S C(Zl, R ;Zn)-
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X

(ii) There exist integers dy, ..., dn,, not all zero, and g(z) € C(z1,...,2,)" such

that

9(Qz) = (H eh(Z)dh> 9(2).

The second part, Theorem 3.2.4 below, asserts the algebraic independence of
the values of Mahler functions under the assumption that the Mahler functions

themselves are algebraically independent over the field of rational functions.

Theorem 3.2.4 (Ide [7, Theorem 4.5]). Let v be co or a prime number, K a number
field, and  an n x n matriz with nonnegative integer entries. Let fi(2),..., fi(z),
91(2), ..., gm(2) € K[[z1,. .., 2)] with g,(0) # 0 (1 < h < m). Suppose that they
converge in an n-polydisc U around the origin of C' and that f;(z) (1 < i <)

satisfy the system of functional equations

f(2) fi(Qz) bi(2)
: =A : + : , (3.2.7)
fiz) fiQ2z) bi(z)
where A is an | X | matriz with entries in K and b;(z) € K(z1,...,2,) (1 <i<1).

Assume that gn(z) (1 < h < m) satisfy the functional equations
gn(z) = en(2)gn(Qz) (1 < h <m), (3.2.8)

where ep(z) € K(z1,...,2,) (1 < h <m). Let a = (ay,...,ap) be a point in U
whose components are nonzero algebraic numbers. Suppose that ) and o satisfy the
four conditions (I)~(IV),. Assume further that b;(2*a) (1 < i < 1) and ex(Q*a)
(1 < h < m) are defined and e, (Q*a) # 0 (1 < h < m) for all k > 0. Then, if
the functions f;(z) (1 <i <) and gn(z) (1 < h < m) are algebraically independent
over K(z1,...,2y,), then the numbers fi(a) (1 < i <) and gp(ax) (1 < h < m) of

Q, are algebraically independent.

We prove Theorems 3.2.3 and 3.2.4 in Sections 3.3 and 3.4, respectively.
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3.3 Algebraic independence of Mahler functions
themselves

In this section we prove Theorem 3.2.3. First we introduce the following:

Lemma 3.3.1. Let F be a field and uq,...,u, elements of an extension field of
F. Suppose that the transcendence degree of F(u) over F equals n — 1. Let P
be an irreducible polynomial of F[Xy,...,X,] such that P(u) = 0. Then, if A €
F[Xy,...,X,] satisfies A(u) =0, then P divides A in F[Xy,...,X,].

Proof. We may assume that uq, ..., u,_; are algebraically independent over F'. Then
we have the ring isomorphism F[X,..., X,_1] ~ Flu,...,u,—1] = R, which in-
duces F[X1,...,X,] ~ R[X,]. Let P and A be the polynomials of R[X,,] corre-
sponding to P and A, respectively. Since P(u) = A(u) = 0, we have P(u,) =
A(uy,) = 0. Since P is irreducible in F[X;,...,X,], sois P in R[X,]. Letting K be
the quotient field of R, we see by Gauss’s lemma that P is also irreducible in K[X,,].
Then P is the minimal polynomial of u, over the field X and hence, P divides
A in K[X,]. Noting that P is primitive in R[X,,] since it is irreducible in R[X,,],
we see by Gauss’s lemma that P divides A in R[X,]. Therefore the isomorphism
F[Xy,...,X,] ¥ R[X,] implies the lemma. O

Let C be a field of characteristic 0, L the rational function field C'(zy, ..., z,), and
M the quotient field of C[[z1, ..., z,]]. Let Q be an n x n matrix with nonnegative

integer entries satisfying the condition (I). Then we can define an endomorphism

7: M — M by
f7(z) = f(Qz)
for any f € M. Suppose that f;; € M (1 <i <1, 1 <j < n(i)) satisfy (3.2.5).

define an endomorphism T of L[X] by

Ta=a" (a€L)
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and

TX; a; Xi bi1
. NON. 0 . )
_ 21 i n
x NORENNG o <. -

for each i (1 < ¢ <1). From the proof of Theorem 3 of Nishioka [22, pp. 56-58], we

obtain the following:

Claim 3.3.2. If there exists F' € L[X]\ L such that F divides TF in L[ X], then
the condition (i) of Theorem 3.2.3 holds.

Proof of Theorem 3.2.3. If the functions f;; (1 < i <[, 1 < j < n(i)) are alge-
braically dependent over L, then the condition (i) holds by Theorem 3 of Nishioka [22].
Thus we may assume that f;; (1 <i <[, 1 <j <n(i)) are algebraically indepen-
dent over L. Let L* be the subfield of M generated by f;; (1 <i <1, 1<j <n(i))
over L. In what follows, we prove inductively on m > 0 that, if the functions
gi,---,9m are algebraically dependent over L*, then the condition (ii) holds. If
m = 0, then the assertion is trivial. Hence we may suppose that m > 1 and that
g1, - - -, 9m—1 are algebraically independent over L*. Since ¢y, ..., g,, are algebraically
dependent over L*, there exists an irreducible G € L*[Y] such that G(g) = 0, where
Y = (Y1,...,Y,) is a vector of variables and g == (g1,...,9m). Put

GY)=)Y bY' brelL”
I

We may assume that by = 1 for some J = (j1,...,7m). Noting the functional

equation (3.2.5), we define an endomorphism 7* of L*[Y] by
T*a=a"€L* (a€L"), T*Y, = e Y, (1 <h<m).

By (3.2.6), we have (T*G)(g) = G(g)” = 07 = 0. Therefore, by Lemma 3.3.1, we
see that G divides T*G in L*[Y']. Since 7 is injective and since e, # 0 (1 < h < m),
we see that

TG = e’aG,
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where e’ == ¢J' - .- eJm. Comparing the coefficients of both sides above, we get

bre! = e’b; (3.3.1)

for any I. Since g, # 0 (1 < h < m), there exists I distinct from J such that

br # 0. Then we have a representation

where A, B € L[ X]\ {0} are coprime and f := {fi; }1<i<i,1<j<n()- By the functional
equation (3.2.5) and the definition of 7" we get A(f)” = (T'A)(f) and B(f)" =
(T'B)(f). Hence, by (3.3.1), we obtain

B(f) - (TA)(f) = e”TA(f) - (TB)(f).
Since f;; (1 <i <[, 1 <j<n(i)) are algebraically independent over L, we have
B-(TA) =e’ 1A (TB) (3.3.2)
and therefore, A and B divide TA and T'B in L[X], respectively. If either A or B do
not belong to L, then by the Claim 3.3.2 the condition (i) holds, which contradicts

the algebraic independency of f;; (1 < ¢ <1, 1 < j < n(i)). Hence we conclude
that A, B € L* and we see by (3.3.2) that

ANT S A
G-+

which implies that the condition (ii) holds since J — I € Z™ \ {0}. O

3.4 Algebraic independence of the values of
Mahler functions

In this section we prove Theorem 3.2.4. Let us first introduce some notation which
will be used in the proof. For any algebraic number «, we denote by m the
maximum of the absolute values on C of the conjugates of o and by den(«) the least

positive integer d such that do is an algebraic integer. We define

ool == max{] a |, den(a)}.
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It is easily seen that

n
<n]]lal
i=1

and

H Q|| < H el

i=1 i=1
for any algebraic numbers ay, ..., a,. Moreover, by Lemma 2.10.2 of Nishioka [23],
we have

la ! < flaf &)@

for any nonzero algebraic number «. The following proposition plays a fundamental

role in proving the transcendency or the algebraic independency of given numbers.

Proposition 3.4.1 (Fundamental inequality). Let v be 0o or a prime number. For

any nonzero algebraic number o, we have
]y, > ||Oé||f2[@(a):@]‘

Proof. Put n == [Q(«) : Q] and N(«a) := Ng(a)/o(). First we consider the case
where « is a nonzero algebraic integer. Then N(«) is a nonzero rational integer. If

v is 00, then we see that

1< IN(@)|oo < | [",
which implies

ol >[a ] (3.4.1)

Suppose that v is a prime number p. Since the conjugates of « are algebraic integers,
their p-adic absolute values are less than or equal to 1, which implies |N(a)|, < |o],
(cf. Waldschmidt [35, Corollary 3.2]). Since N(«) is a rational integer, we have

N(a)|,y <1 for any prime number p'. Hence by the product formula we get
p Y y

L= IN@)wIN@l, I IN@y < IN(@)|<lal, <[a]"|al,
p: prime number,
p'#p
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and thus
o, >[a ] (3.4.2)
Next we prove the proposition for a general a. Let D := dena. Then Da is a

nonzero algebraic integer. If v is 0o, then we see by (3.4.1) that

Dlalw = |Dals >[Da | " = D" | "

and hence

aloe > D" [a | " > [laf| 2 > (ol 72

If v is a prime number p, then |D|, <1 and therefore, by (3.4.2),
aly > |Daly > [Da " = D[] ™" > [laf "
[l

The following lemma is proved in a way similar to Nishioka [23, p. 6, Remark].

We give the proof for the sake of readers.

Lemma 3.4.2. Let C be a field and F a subfield of C. Let fi(2),..., fm(z) €
Fllz1,...,2n)]. Then they are algebraically dependent over C(z1,. .., z,) if and only
if they are algebraically dependent over F(zy, ..., z,).

Proof. Assume that fi(z),..., f,(2) are algebraically dependent over C(z1, ..., 2,).
Then there exist a non-empty finite subset A of ZZ; and nonzero polynomials ar(z) €
Clz1, ..., 2] \ {0} (I € A) such that

S ar(2)f(=) =0,

IcA

where f(2)! = fi(2)" - f(2)™ for T = (iy,...,0pm). Let {by,...,by} be a max-
imal subset of the set of all the coefficients of ar(z) (I € A) which is linearly

independent over F. For each I € A, we can write
N
ar(z) =Y ari(2)b;,
j=1

93



where ar;(z) € Flz,...,2,) (1 < j < N). Then we have

i(Zah >b = 0.

j=1 \IeA
Since > ren arjx f(2)' € Fllz1,...,2,]] (1 <j < N), by the linear independency
of by,...,by we obtain
Y a(2)f(z)f =0  (1<j<N).
IeA
Let Iy be an element of A. Since ay,(z) # 0, there exists jo with 1 < jo < N such
that ar,;,(z) # 0. Hence the equation
Y ay(2)f(2)! = ang(2) f(2)° +--- =0
IeA
implies that fi(2),..., fm(2) are algebraically dependent over F(zi,...,z,). The

converse is trivial. O
The following lemma plays a crucial role in the proof of Theorem 3.2.4.

Lemma 3.4.3. Let v be oo or a prime number. Let € be an n X n matriz with
nonnegative integer entries and o an n-dimensional vector whose components are
nonzero algebraic numbers. Suppose that Q0 and o satisfy the four conditions (1)—

(IV),. Define the function

g  di
St
=1 j=1
where Y1, ...,7, are nonzero distinct elements of C, and h;;j(z) € C,[[z1, ..., 2]

(1<i<gq, 1<j<d;) converge in an n-polydisc U around the origin of C}}. Then,
if V(QFa k) = 0 for all sufficiently large k, then hij(z) = 0 for every i, j.

This lemma was proved by Loxton and van der Poorten [13, Lemma 2] in the
case where v is co. For the proof, see Nishioka [22, Lemma 3|. The proof is valid also
in the case where v is a prime number p since the condition (IV), is stronger than
the condition (IV)s. For the reader’s convenience, we prove the lemma in these two

cases simultaneously. In the proof we use the following:
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Lemma 3.4.4 (Nishioka [22, Lemma 1]). Let C' be a field and Q an n x n matriz
with nonnegative integer entries satisfying the condition (1). Then, if an element

f(z) of the quotient field of C|[z1, ..., z,]] satisfies the constant coefficient equation
fQz)=af(z)+b  (a,beC),
then f(z) € C.

Proof of Lemma 3.4.3. We prove the lemma by induction on > 7" d;. If >°F d; =
1, then the lemma is true by the condition (IV),. Let >°7_, d; > 1. By the induction
hypothesis, it suffices to prove that h,q4,(2z) = 0. Suppose on the contrary that
h(z) = hqq,(2) # 0. Replacing ; by 7;/v, for each i (1 < i < ¢), we may assume
v = 1. Consider

q—1 d; dg—1
= 2D k() + Y2 (2),
=1 j=1 Jj=1

and
G s -1
hi;(z) = h(Q2z)hi(z) —vih(2) Z (j )his(Qz) 1<i<qg—1,1<j5<d).
p
Then &(Q%a; k) = h(Q" M a)y(QFa; k) — h(QFa)(Q M a; k + 1) = 0 for all suffi-
ciently large k. Applying the induction hypothesis to the function £(z;x), we know

that h3(z) and hj;(z) are all identically zero. In particular,
h,—1(2) = h(Qz)hga,-1(2) — h(z) (hqdq_l(Qz) + (dy — 1)h(Qz)) = 0.

Since h(z)h(Q2z) # 0, we have

hqdq—l(z) . hqdq—l(Qz) B
Wz haz) Tl L
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By Lemma 3.4.4, hyq,—1(2)/M(z) € C, and so d; —1 = 0. By the assumption

;-121 d; > 1, we get ¢ > 2 and hence, we know in particular that
hia (2) = h(Q2)h14,(2) = h(2)h1,4,(Q22) = 0.

Thus hy4,(2)/h(z) € C, by Lemma 3.4.4. Since y; # 1, we have hy4,(2) = 0.
Applying the induction hypothesis to the function ¢ (z; x), we see that h;;(2) are all

identically zero. In particular hyq,(z) = 0, which is a contradiction. O
Proof of Theorem 3.2./. We may assume that aq,...,a, and the eigenvalues of A
are all contained in K. Since fi(z),..., fi(z) are algebraically independent over

K(z1,...,2,), we see that det A # 0. Let f(z) = "(fi(z),..., fi(z)), b(z) =
tb1(2),...,b(2)), and g(2z) = “(g1(2),...,9m(2)). Iterating the functional equa-
tions (3.2.7) and (3.2.8), we have

f(z) = AFF(QF2) + bW (2) (k> 0) (3.4.3)
and
gn(z) = e (2)gn(QF2) 1<h<m, k>0), (3.4.4)
where
b (2) =P (2), ... b (2)) = iAjb(sz) € K(z,...,z) (3.4.5)
and -
e (z) = Heh(sz) € K(z,..., ). (3.4.6)

We note here that, any power of €2 and the point « also satisfy the four conditions
(I)(IV),. Indeed, it is clear that they satisfy the conditions (I)—(III),. If v is oo,
then we see by Lemma 3.1.3 that they satisfy the condition (IV).,, and if v is a
prime number p, then it is obvious that they satisfy the condition (IV),. Therefore,
taking a sufficiently large integer ko and replacing €, A, b;(2), and e;(z) with Qo
Ao, bgkO)(z), and eék())(z), respectively, we may assume that Q*a € U for all k > 0
and that the multiplicative subgroup G of K* generated by the eigenvalues of A is

torsion free.
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Remark 3.4.5. We need the stronger condition (IV), for this argument to be valid

in the case where v is a prime number p.

Since e;,(QFa) # 0 (1 < h < m) for all k > 0, by the functional equation (3.2.8),
the condition (III),, and the assumption that g,(0) # 0 (1 < h < m), we see that
gn(Qfa) #0 (1 < h<m) for all k > 0.

To prove the theorem, we assume on the contrary that f;(a) (1 < i <) and
gn(a) (1 < h < m) are algebraically dependent. Then there exist a positive integer
L and integers Tx, (A € £, p € M), not all zero, such that

> () gl =0,

AEL, peM
where £ :={X € ZL, | [A| < L} and M = {0,1,...,L}™. Let a;; (1 < i,j <1),
w; (1 <<,y (1<i<l),z, (1<h<m)uw, (1 <h<m),and ty,
(A€ L, p € M) be variables and let

i1 - Xu wq n
X = , W= , Y= ,
Tn - Ty wy Y
4 wy Thw
= . w = : ., 'w = : ,
x w! x w

and

F(zit) = Y taf(2)glz)*

AEL, peM
We define T, (t; X;y;2') (A € L, p € M) by the equality

Y tuXwtyP@w) = Y T Xya)wtuw,  (347)
AEL, peM AEL, ueEM

namely,

Tau(t; X;y; ')

l
I/4
Y ? Vi0 Vil Vil
=x'* E tup E | | < >yi1$i{ Ty
Vio Vi1 - Vil

..... VZEZQ_Ol, i=1
IA<|vISL vi=(Vi0,Vi1,--Vil),
lvil=v; (1<i<I),
Sy =Xy (1<)
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for any A = (A1,...,\) € £ and p € M. Letting

and
e®(2)g(QFz) =" (2)01(Q*2), ..., e®) (2)gm(QF2)),

by the functional equations (3.4.3) and (3.4.4), we have

F(zt)= > tuf(z) g(2)"

AEL, peM

= 3 (ARF(0F2) 4 b (2) ) (2)g(QF2))
AEL, peM

= Y Dt AN (2);eM(2) F(Q02) g (2 )
AEL, ueM
= F(Q'z; T (t; A% 6% (2); €M (2)))
for all £ > 0. Hence
F(Q'e; T(7; A b (a); €M () = Fas 1) =0 (k> 0).
We define an ideal V(1) of K|t] by

V(T) ={Q(t) € K[t] | Q(T(T; A*;y;')) = 0 for all k > 0}.

Lemma 3.4.6. V(1) is a prime ideal of K[t].

For the proof we use the following:

(3.4.8)

Lemma 3.4.7 (Skolem-Lech-Mahler, cf. Cassels [3, Theorem 1.1], see also Nishioka
[23, Theorem 2.5.3]). Let C' be a field of characteristic 0. Let v, ...,7s be nonzero
distinct elements of C and P(X), ..., Ps(X) € C[X] nonzero polynomials. Then,
if {k € Zso | Yoi_, Pi(k)yF = 0} is an infinite set, then v;/v; is a root of unity for

some distinct i, j.

Proof of Lemma 3.4.6. Recall that GG is a torsion free subgroup of K> generated

by the eigenvalues of A. Let R; be the subset of (K|[y;x'])?2° consisting of the
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sequences of the form {3 . p(k)¥*} >0, where I is a finite subset of G, indepen-
dent of k, and p,(Y) (v € I') are polynomials with coefficients in K[y;«’]. Then
R; forms a commutative ring including K[y; '] under termwise addition and mul-
tiplication. If we put A* =: (az(.f))7 then {aﬁf)}@o € Ry for any 1 < ,5 <. Since
(T X;y;2') € (Zy; @) [{zi;}], we have {Th.(7; A% y; @) }iso € Ry for any
A € L and p € M. Therefore, if P(t) € K[t], then {P(T(7; A%;y;2')) }i>0 € Ru,
so that there exist a finite subset I' = I'(P) of G and nonzero polynomials p,(Y') €
(K[y;2'])[Y] (v € T') such that

P(T(r; A% ;@) =) py(k)y"
~er
for all £k > 0.

To prove the lemma, let P (t), P5(t) € K[t] and suppose that Py (t)Px(t) € V(7).
Since Py (T (1; A*; y; &) Py (T (1; A*; y; ') = 0 for all k > 0, we may assume that
P(T(1; A*; y; 2')) = 0 for infinitely many k. Hence, if I'(P;) # 0, then Lemma 3.4.7
implies that there exist distinct v,~" € T'(P;) such that v/+" is a root of unity, which
contradicts the fact that G is torsion free. Thus I'(P;) =0 and Pi(¢) € V(7). O

Proposition 3.4.8. The following two conditions are equivalent for any P(z;t)

€ Klz;t|.
(i) P(Qa; T(7; A*; b (a); e () = 0 for all sufficiently large k.

(ii) If we put P(z:t) = 3,3 Qn(t)2", where Qy(t) € K[t] (n € H) and H is a
finite subset of Z2,, then Qu(t) € V(1) for any n € H.

Proof. We only prove that the condition (i) implies (ii) since the converse is trivial.

Let R, be the subset of (Q,[wy, ..., w;, %, ..., —])%=0 consisting of the sequences
1

of the form {37 . q,(k)y*}x>0, where T is a finite subset of G, independent of k,

and ¢,(Y) (y € T') are polynomials with coefficients in Q,[wy, ..., w, wi,l, ce i]
Then R, forms a commutative ring including Q, [wy, . . ., wy, %, ..., —] under term-
1

) ol
Wi,

wise addition and multiplication. In the same way as in the proof of Lemma 3.4.6,

we see that {Q,(T(T; A¥; f(a) — A*w; g(a)/w')) biso € Ry for any n € H, where
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gla)/w' ="(gi(a)/w},. .., gm(c)/w],). Hence there exist finite sets N C Z; and
X C 7Y%, distinct elements 71, . .., 7, of G, and positive integers dy, . . ., d, such that

Qu(T(r; 4 f(e) — Awigla)/w)) = 3 Ropelk)uwrw' S

veN, gex
for all £ > 0 and n € ‘H, where
q d;
Rove(k) =Y ) roweisk’ '9F ey € Qy
i=1 j=1

We claim that every {R;.¢(k)}r>o is the null sequence. Since g,(0) # 0 (1 <
h <m),

Z Z ravei (2)7°9(2) %27 (1<i<gq, 1<j<d)

neH veN, EeX

are formal power series in the variables zi,...,z, with coefficients in Q, which

converge in an n-polydisc around the origin of C}. Define

S D IS

=1 j5=1

By the condition (i) of the proposition and the functional equations (3.4.3) and
(3.4.4), we see that

0= P(Q"a; T(7; A% bW (a); M (r)))
=" Qu(T(7; A% W () ™ ())) ()"

neH

:Z<§:wammmm%“ymm

neH \veN, ex
= (Q a; k)

for all sufficiently large k. Then Lemma 3.4.3 implies that h;;(z) = 0 for any
1 <i<gand 1l < j<d. Therefore, since fi(2),..., fi(2),91(2),...,gm(2) are
algebraically independent over Q,(z1, ..., z,) by Lemma 3.4.2, we have Toueij = 0

for any n, v, &, ¢, and j. This proves our claim.
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By the claim we have

Qu(T(T; A; f(a) — Afwig(a)/w')) =0
for all £ > 0 and € H. Noting that det A # 0 and that g(a) # 0 (1 < h < m),
we obtain
Qn(T(; A% y; ")) = 0
for all £ > 0 and n € H, which implies the condition (ii) of the proposition. O

Definition 3.4.9. For P(z;t) = Znez’;o pn(t)2" € (K[t])[[21, .., 2n]] we define

ind P(z;t) = min{|n| | p,(t) ¢ V(7)},
where min ) := oo.

By Lemma 3.4.6, we have
ind(Py(z;t)Pa(z;t)) = ind Py(2;t) + ind Py(z; ). (3.4.9)
Lemma 3.4.10. ind F(z;t) < oc.

Proof. Since f1(z),..., fi(2),91(2), ..., gm(2) are algebraically independent, we see
that F(z;7) # 0. By the condition (IV),, there exists ko such that F(Q*a; 1) # 0.
Let

F(zit)= Y pylt)z",

nez,
where p,(t) € K|t]. Suppose on the contrary that ind F'(z;t) = co. Then p,(t) €
V(r) for every n € Z%,. Noting that 7 = T'(7;;;0;1) = T(1; A”;0; 1) by (3.4.7),
we have

F@%a;7) = ) py(T(; A% 0;1)) ()" =0,
nezy,

which is a contradiction. O

Let N be a nonnegative integer, R(N) the K-vector space of polynomials in Kt]
of degree at most N in each ty,, and d(N) the dimension over K of the quotient
space R(N) := R(N)/(R(N)NV(7)). The coset containing a polynomial P(t) of
R(N) in R(N) is denoted by P(t).
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Lemma 3.4.11. d(2N) < 20+D"™q(N).

Proof. Let {Q1(t),...,Qa)(t)} be abasis of R(N) over K, where Q;(t), ..., Qa)(t)
€ R(N). Let Q(t) € R(2N). Then Q(t) is written in the form

e(A,u)N
QY=Y ( | A )@e<t>,
ec{0,1}£XM \XeL, peM

where Qc(t) € R(N). For each € € {0,1}**M, there exist ge1, ..., geqv) € K such
that

d(N)
=) eiQi(t)
=1

in R(N). Then we can check that

(T e)ew-( T ) wor

AEL, peM AEL, ueM

= Zqﬂ( [1 5(””) Qilt)

AEL, peM

d(N)
H- Y zqe,.( M o w)@i(t)

ec{0,1}£xM =1 AEL, peEM

in R(2N), which implies that

( T s '”N) Qi(t) | e € {0,1}5M 1 <i < d(N)

AEL, peM

generates R(2N) over K. Therefore we have
d(2N) < 2FEM (N < 2HOL LT g ) = 94D (),
[l

In what follows, c1, cs,... denote positive constants independent of N and k. If

they depend on N, then we denote them by ¢1(N), ca(N),.. ..
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Proposition 3.4.12. Let N be a sufficiently large positive integer. Then there exist
N + 1 polynomials Py(z;t), ..., Pn(z;t) € Oklz;t] with degree at most N in each
of the variables z; (1 < i <n) and ty, (A€ L, p € M) such that the following two

conditions are satisfied.
(i) ind Py(z;t) < o0

(it) ind(3°0_, Pu(2z; 1) F(2;)") > ¢y (N + 1)1/,

Proof. Let {QgN) (t),..., ((i](vj\),)(t)} and {QgZN)(t),. 22(]2\[]\, (t)} be a basis over K
of R(N) and that of R(2N), respectively. We may assume that Q1 ( Yyenns El](vj\),)(t)

€ R(N) N Oklt] and that Q7™ (2),..., QY% () € R(2N) N Oklt]. For each i and
J with 1 <4, 5 < d(N), there exist g;;x € K (1 <k < d(2N)) such that

d(2N)

QM) (t) Z QP () (3.4.10)

in R(2N). For each h (0 < h < N), put

Then Fp,(t) € R(h) C R(N) for any v € Z%, and hence, there exist fj,; € K
(1 <j <d(N)) such that

F(t) Z Frur QY (3.4.11)

in R(N).
Let pre; (0 < h <N, £ €{0,1,...,N}" 1 <i<d(N)) be unknowns in Ok.
Put

Pre(t) = thgngN) (t) € R(N) N Oklt],

Py(z;t) = Z Pre(t)2* € Ok[z; ],
£e{0,1,..N}n
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and

E(z;t) = ZPh(z;t)F(z;t)h = Z E,(t)z".

Then
N
=3 Pue(t)Fun-¢(t) € R2N)
h=0 g€y,
for each m € ZZ,, where &, denotes the set of & € {0,1,..., N}" whose components
do not exceed the corresponding component of n. Using (3.4.10) and (3.4.11), we
can check that

=Y Pue(®)Fun£(®)

h=0 £€Xn
d(2N) d(N) [d(N)

Z Z Z Z th?? €39ijk | Phnei Ql(fN)(t)

k=1 | h=0g¢ex, i=1 =

in R(2N) for any n € Z%,. Choose N so large that J == [2-+D""/n(N 4 1)1+1/7] 1
is a positive integer. Then ind F(z;t) > J holds if and only if

d(N) [ d(N)

Z Z Z Z Jnn-¢39ij1 | Prei =0 (3.4.12)

h=0 £€Xy i=1 \ j=1

for any k € {1,...,d(2N)} and n € Z%, with |n| < J — 1. Here, the number of
the unknowns ppe; is equal to (N + 1)"**d(N) and that of the equations is equal to
(""" d(2N), which do not exceed J"d(2N). Since J" < 2~ (LD (N 4 1) we
see by Lemma 3.4.11 that

JUA(2N) < J2E0TT (N < (N + 1) d(N).

Hence the system (3.4.12) has nontrivial solutions ppe; in Ok. Using these ppe;, we

construct the polynomials P, (z;t) above. Since Q{™(¢), ..., g(vz\),) (t) are linearly

independent over K, we see that ind P,(z;t) < oo for some h with 0 < h < N. Let

r be the least one among such h and put

t):=> Pu(zt)F(z:t)"
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By (3.4.9) and the fact that ind P,(z;t) = oo for any h with 0 < h <7 — 1, we see
that

N
ind F(z;t) = ind (Z Ph(z;t)F(z;t)h> = ind(F(z;t)" Ey(z;t))
h=r
= rind F(z;t) + ind Ey(2; t).
Using Lemma 3.4.10, we have

ind Ey(z;t) = ind E(z;t) — rind F(z;1)
>J — Nind F(z;t)
> o (LA (N 4 1)HR _ 9 Nind F(z:t).

Hence, letting ¢; be a positive constant less than 2~ (LD /n we obtain ind Ey(z;t)

> ¢ (N + 1)'/" for any sufficiently large N. The proposition is proved. O

Let E(z;t) be the S0 Pu(z;t)F(2;t)" in Proposition 3.4.12 and p the maxi-

mum of the absolute values of the eigenvalues of €.

Proposition 3.4.13. If k > c3(N), then
log |E(QF o T(1; A% 5™ (a); e® () ]y < —c3(N + 1)1/ k.

Proof. Since f;(Q*a) — f;(0) (k — oo) for 1 < j <[, by the functional equation
(3.4.3) we have |0 (a)], < & for 1 < < . Similarly, since g,(Q*a) — g,(0) # 0
(k — o0) for 1 < h < m, by the functional equation (3.4.4) we have |e§lk)(a)\v < ¢
for 1 < h < m. Hence |Th,(7; A¥; 6% (a);e® ()], < ck for A € £ and p € M.
We note that E(z;t) is a polynomial in the variables ty,, (A € £, p € M) with
degree at most 2V in each variable whose coefficients are power series convergent in
U. Let

E(zit)= Y h(2)t', h(z)= ) hez* € K[z]],

ve{0,1,...2N}s gezy,

where s == #L x #M = (*/")(L + 1)™. Then we have
huelo < er(N)efl (v €{0,1,... 2N}, € € Z2)
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and
E(z;t) = Z Z hoet” | 25.
£€2%, \ve{0,1,....2N}*
Therefore
|E(QF o T(1; A% b®) (a); M (@)))]y < ca(N)eff > af|(QFa)f,,

g€y,
&1=>1

where [ = ind F(z;t). By the condition (III), there exists a positive constant 6 < 1
such that |a§k)|v < 0" for 1 < i <n and for all sufficiently large k. Hence

B Tir; A @) D@ < oMl Y 3 (@)
=1 57(51 ----- §n)eZ>0
&>I/n

< neg(N)eNF(es6” ) (1 = cs6”")™.

Since I > ¢;(N + 1)'/" by the condition (ii) of Proposition 3.4.12, we see that, if
k > co(N), then

log |E(QFa; T(7; A% b®) (a); € ()] < —c5(N + 1)1/ k.

Proposition 3.4.14. If k > ¢;1(N), then
log ||[E(QFa; T(1; A¥; b%®) (); e® ()| < c1aNp".
Proof. From (3.4.8) we have
E(QFa; T(7; A% b (a); e (a))) = Po(Qa; T(1; AF; 0P (a): e® () € K.

Letting AF = (ag.c)), we have Hagg)ﬂ < ck, for 1 <i,j <. By the condition (II) we

see that ||b;(QFa)|| < c’fz for 1 < i <[ and that |le,(QFa)|| < c’fg for 1 < h <m.

Hence we have

(2

||b(k)(a>|| < le(C{?;CM) < 016 (1<i<l)



and

k-1
k J k
e (@)l < J[ets <y (1 <h<m)
=0
by (3.4.5) and (3.4.6), respectively. Therefore

| Tae(; A% 88 (@) e®) (@) <

for X € £ and p € M. Since the degree of each variable of Py(z;t) € Ok|z;t] is at

most N, we obtain

1Py(2F; T(7; A% 5P (); € (@)))|| < cro(N) Y.
This implies the proposition. Il

Completion of the proof of Theorem 3.2.4. By the condition (i) of Proposition 3.4.12
together with Proposition 3.4.8, there exists a positive integer k greater than both
c2(N) and ¢11(N) such that

E(Q*a; T(1; A*: 8™ (a); e® () = Py(Q*a; T(1; A*: 8™ (a); €™ () # 0.
Therefore, by Propositions 3.4.1, 3.4.13, and 3.4.14, we have
—c3(N + D)M/mph > —2[K : QlenNpk.

Hence
Cg(N + 1)1+1/n < 2[K . Q]ClgN,

which is a contradiction if N is large. O]
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Chapter 4

Proofs of Theorems 1.3.5, 1.3.7,
and 1.3.12

4.1 Lemmas

In this section we prepare several lemmas necessary for proving Theorems 1.3.5,
1.3.7, and 1.3.12. In the proofs of these theorems, we represent the numbers in
question as the values at a single algebraic point of Mahler functions satisfying a
system of functional equations as in Theorem 3.2.1. In the proofs of the latter two

theorems, we use Lemmas 4.1.1 and 4.1.3 below to construct such Mahler functions.

Lemma 4.1.1 (Loxton and van der Poorten [12, Lemma 3]). Let a4, ...,a, be al-
gebraic numbers with 0 < |a;| < 1 (1 < i < r). Then there exist multiplicatively

independent algebraic numbers vy, ...,7vs with 0 < |v;| <1 (1 <j <'s) such that
o= a<i<n), (4.1.1)
j=1

where ¢; (1 <1 < r) are roots of unity and d;; (1 <1i <r, 1 <j <s) are nonnegative

integers.

Remark 4.1.2. The most important assertion of Lemma 4.1.1 is that d;; (1 <1i <
r, 1 < j < s) are nonnegative. In particular, at least one of d;1, ..., d;s is positive

for any 1.
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Lemma 4.1.3. Let {Ry}r>0 be a linear recurrence of nonnegative integers satisfy-
ing (1.2.2) and N a positive integer. Then there exist a positive integer p and a

nonnegative integer q such that
Riip =Ry (mod N) (4.1.2)
for any k > q.

Proof. By the pigeonhole principle, we can choose distinct integers k; and kg with
0 < ky < kg < N™ such that Ry, 1 = Ry,4r (mod N) for any k with 0 < k <n—1.
Letting p = ko — k; and ¢ := ki, we obtain (4.1.2) from the recurrence formula

(1.2.2). 0

In the rest of this thesis, let

C1 1 0 0
Co 0 1 .
0 = oo oo |, (4.1.3)
Do 1
¢, 0 «oo - 0

where ¢, ..., ¢, are the coefficients of the polynomial ®(X) defined by (1.2.3). In
order to apply Theorem 3.2.1, we need to ensure the four conditions stated in Sec-
tion 3.1. In the case where v is a prime number p, the p-adic analogue of Mahler’s
vanishing theorem (Lemma 3.1.2) implies that, if the polynomial ®(X) satisfies the
stronger Condition 1.2.1, then the matrix 2; and the point

where a is an algebraic number with 0 < |a|, < 1, satisfy the four conditions (I)-
(IV),. In the case where v is 0o, Masser’s vanishing theorem (Lemma 3.1.3) induces
the following lemma, which ensures the four conditions (I)-(IV). for more general

matrices and algebraic points under the weaker Condition 1.2.5 on ®(X).
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Lemma 4.1.4 (Tanaka [29, Lemma 4, Proof of Theorem 2]). Suppose that ®(X)
satisfies Condition 1.2.5. Let vi,...,7s be multiplicatively independent algebraic
numbers with 0 < |v;| <1 (1 < j <s). Let p be a positive integer and put

Qq = diag(Q, ..., Q).
—_——

S

Then the matrix Qs and the point

Yoi= (1, .., Ly, o )
——— ——

n—1 n—1

satisfy the four conditions (I)~(IV)s stated in Section 3.1.

Let { Ry }x>0 be a linear recurrence of nonnegative integers satisfying (1.2.2). We
define a monomial

P(z) = zjm 1. 2R, (4.1.4)
which is denoted similarly to (3.1.1) by
P(z) = (Ry-1,...,Ro)z. (4.1.5)
It follows from (1.2.2), (3.1.1), (4.1.3), and (4.1.5) that

P(QFz) = 2t 2B (k> 0). (4.1.6)

n

In what follows, let C' be an algebraically closed field of characteristic 0. The

following two lemmas are central to the proofs of the three theorems.

Lemma 4.1.5 (Tanaka [30, Theorem 1]). Let { Ry }x>0 be a linear recurrence of non-
negative integers satisfying (1.2.2). Suppose that { Ry }r>o satisfies Condition 1.2.5.
Assume that { Ry }r>o0 is not a geometric progression. Assume further that f(z) €
COl[z1, . .., 2zn]] satisfies the functional equation of the form

pt+q—1

f(z) = af(Rz) + Y Qu(P(Q2)),

where a # 0 is an element of C, p > 0, ¢ > 0 are integers, and Qi(X) € C(X)
(¢ <k <p+q—1) are defined at X = 0. Then, if f(z) € C(z1,...,2,), then
f(z) €C and Qi(X) =Qr(0) (< k<p+q—1).
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Lemma 4.1.6 (Tanaka [30, Theorem 2]). Let { Ry }x>0 be as in Lemma 4.1.5. Sup-
pose that g(z) is a nonzero element of the quotient field of C[[z1, ..., 2,]] satisfying

the functional equation of the form
pt+q-—1
9(z) = ( 11 Qk(P(Q'fZ))) 9('z),
k=q
where p,q, and Qr(X) are as in Lemma 4.1.5. Assume in addition that Q(0) # 0.
Then, if g(z) € Clz1,...,2)%, then g(z) € C" and Qi(X) = Qs(0) (¢ < k <
p+q—1).
In the proofs of Theorems 1.3.7 and 1.3.12, we apply Kronecker type specializa-
tion to rational functions with more variables than those treated in Lemmas 4.1.5

and 4.1.6. The following lemma ensures the non-vanishing of the denominators of

those rational functions.

Lemma 4.1.7 (Nishioka [22, Lemma 4]). Let L be a subfield of C and let
f(z) € Cllz1, ..., zn]] N L(21, ..., 20).

Then there ezist polynomials A(z), B(z) € L[z, ..., z,] such that

f(z) = A(2)/B(z), B(0)#0.

4.2 Proof of Theorem 1.3.5

Theorem 1.3.7 includes Theorem 1.3.5 in the case of complex numbers. In this
section we give the proof of Theorem 1.3.5, which also provides an outline of the

proof of Theorem 1.3.7.

Proof of Theorem 1.3.5. Let L be any positive integer, aq, ..., a7 any nonzero dis-
tinct L algebraic numbers, and (1, ..., 3 any distinct L elements of B. It suffices

to show that the finite set
PﬂJMWOgthLISASL}
U{GB) 1 <pn<L}

al—‘rmH
U {W(a)n 5u)

Ogl,mgL,lg)\,,ugL} (4.2.1)
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is algebraically independent. Let zi,...,z, be variables and let z = (21,...,2,).

Put £y == 0. We define

- k Q’fz) e
fap(z:2) =) @ 2P 0<m<L, 0<pu<L)

P 1—3,P(z
and -
gu(2) = [[(1 = B.P(2)) (1<p<i),
k=0

where ; and P(z) are given by (4.1.3) and (4.1.4), respectively. Moreover, define

O fon
final#) = A 0r2) (O <Lm <L 1SASL 0<psI)

Letting

we see by (4.1.6) that

FO (an) = famno(m1) (0<Lm <L, 1<A<L),
8l+mH

aaigyn @ B) = M) (O <bm <L 1<Ap<L),

and
G(Bu) = gu(m) QA <p<L).
Hence the algebraic independency of the set (4.2.1) is equivalent to that of
{frrna() |0<TI,m <L, 1<A<L, 0<pu<L}

U{gu(n) [1<p <L} (4.2.2)

Here we see that

P(Z) m+1
) = : S —— < < < <
me(ZE,Z) xfmu(xaﬁlz)‘f’ (1—5MP(Z)> (O_m_L, O_,U,_L)
and thus
alfm alfm al_lf'rn
&Bl“(x;z) = E(z) +1 axl_lu(x;le)

(1<I<L,0<m<L 0<pu<lLl).
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Hence, for each m, A\, p (0 <m < L, 1 <A< L, 0<p <L), the functions fi,x,(2)

(0 <1< L) satisfy the functional equation

.fm/\p(z> = A)\fm/\u(le) + bmu(z)v (423)
where
Frna(2) = "(fomnu(2), Frman(2)s -5 frma(2)),
b (2) = "((P(2)/(1 = B.P(2)))"",0,...,0),
and

«
1)\ (65N O
A)\ = 2 .

0 L oa

Moreover, for each p1 (1 <y < L), the function g, (2) satisfies the functional equation

gu(2) = (1 = BuP(2))gu(12). (4.2.4)

Furthermore, applying Lemmas 3.1.2 or 4.1.4, we can verify that the matrix
and the point v, satisfy the four conditions (I)—(IV), stated in Section 3.1. Now
we assume on the contrary that the set (4.2.2) is algebraically dependent. Noting
that aq, ..., a, are distinct, we see by Theorem 3.2.1, by Remark 3.2.2, and by the
functional equations (4.2.3) and (4.2.4) that at least one of the following two cases

arises:

(i) There exist A € {1,..., L}, algebraic numbers ¢,,, (0 <m < L, 0 < p < L),
not all zero, and f(2z) € Q[[z]] N Q(z) such that

F(2) = anf(02) + 3 e (%)m | (42.5)

m=0 pu=0

(i) There exist integers e, (1 < L), not all zero, and g(z) € Q(2)* such that

9(z) =

=
= A

Il
—

(1- WD(z))eu) 9(2). (4.2.6)

i
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If the functional equation (4.2.5) is satisfied, then by Lemma 4.1.5
L m—+1
X
§ E Conp ( ) =0 (4.2.7)
—0 1-f.X

holds, where X is a variable. If the functional equation (4.2.6) is satisfied, then by
Lemma 4.1.6

L
[0~ -

holds. Taking the logarithmic derivative of this equation and then multiplying both
sides by — X, we get

L
X
E ﬁueu =0,
= 1-8,X

which is a special case of (4.2.7) since fue, (1 < p < L) are not all zero. It is
easily seen that (4.2.7) does not hold since §, (0 < p < L) are distinct and ¢y,
(0<j <t 0<m< M) are not all zero. Therefore neither the case (i) nor (ii)

arises, which is a contradiction. Il

4.3 Proof of Theorem 1.3.7

Generalizing the proof of Theorem 1.3.5, we prove Theorem 1.3.7.

Proof of Theorem 1.3.7. Let L be any positive integer and ay, ..., a; any nonzero
distinct L algebraic numbers. For each i (1 <i <), let ﬁfi), e ,59 be any distinct
L elements of B;. It suffices to show that the finite set

[ e [1<i<ro<im<r 1<a<1L}
U{G(BY)|1<i<r 1<u<L}

al—l-mHi .
U{Maym(m,ﬁy) ‘ 1<i<r, 0<Im<L 1<Ap< L} (4.3.1)

is algebraically independent. Let ¢;, 7;, and d;; (1 <7 <71, 1 <j <s) beasin
Lemma 4.1.1. Since aq,...,a, are pairwise multiplicatively independent, we see by

(4.1.1) that the s-tuples (d;1,...,d;s) (1 < i < r) are pairwise non-proportional,
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namely (dj : -+ dis) # (dj1 -+ djs) in PS7HQ) if 1 <4 < j <r. Take a positive
integer N such that (¥ =1 for any i (1 <14 < ). We choose a positive integer p and
a nonnegative integer ¢ by Lemma 4.1.3. Let y;1,...,y;n (1 < j < s) be variables
and let y; = (yj1,...,ym) 1 <5 <s),y = (y1,...,¥s). Put ﬁoi) =0(1<i<nr).
We define

) Rk 5 P Qk . d,‘j m+1
Fimp(:9) =D a* ( gl(i)l_zl%i_l s ( ly])k d”>
k=q IR Ne Hj:l P(Qfy;)%
(1<i<rn 0<m<L 0<pu<L)
and
9in(y) = H(l — B¢ HP(Q’fyj)dij) (1<i<r 1<pu<L),
k=q 7=1

where € and P(z) are given by (4.1.3) and (4.1.4), respectively. Moreover, define

al im, .
film)\u(y) = éfxl“(ak;y) (1§z§7‘,0§l,m§l), 1§)\§L70§NSL)
Letting
o= (1, .., Ly, 1 1),
—1 -1

we see by (4.1.1) and (4.1.6) that

Fi(,?,LH(OéA) = fimrxo(12) €Q (1<i<r, 0<Im<L, 1<A<L),
al—&—mHi
oxtoym

and

(e, BY) =l famru(12) €Q (1<i<r, 0<Im<L, 1<\ pu<L),

Gi(B)/gin(72) €Q° (1<i<r 1<p<L).
Hence the algebraic independency of the set (4.3.1) is equivalent to that of
{fimn(12) |1 <i<r, 0<Im<L, 1<A<L, 0<p<L}
U{gin(r2) 11 <i<r, 1 <p< LY. (4.3.2)
Let
Qy = diag(Q, ..., Q).
———

S

75



Noting that Qoy = (Qy1, ..., Ny,), we have
fimp(@:y) = @ fimp(2; Qoy) + bimp(ziy) (1<i<r, 0<m <L 0<p<I)

by (4.1.2), where

~ s . m+1
bimu(2;Yy) = piq:l 2k ( Cz'R]‘“ szl P(Q’fyj)d” >
1— B T, P(Qhy;)%

k=q
(1<i<r,0<m<L 0<p<L)

Hence, for each i,m, A\, p (1 <i<r, 0<m <L, 1 <AX<L 0<pu<L), the

functions fiyma,(y) (0 <1 < L) satisfy the functional equation

Fimrnu(¥) = AxFirru (Q2Y) + bimnn(y), (4.3.3)
where
fim)\u(y) = t(fiDm)xu(y)ﬂ film)\u(y)7 ) fiLmAu(y))a
t
abzm aLbim L
bunsa(w) = (B, 22 i), 2 s ).
and )
B5Y
pah A O
Ay = 2pal !
S Lpa ™t o

Moreover, for each 4,0 (1 <4 <7, 1 < p < L), the function g¢,,(y) satisfies the

functional equation
p+q—1 ‘ s
9inly) = ( I1 (1 —@”cﬁHP@’m»dw)) gin(Qy)  (434)
k=q j=1

by (4.1.2). Now we assume on the contrary that the set (4.3.2) is algebraically
dependent. Then by Theorem 3.2.1, Remark 3.2.2, Lemma 4.1.4, and the functional

equations (4.3.3) and (4.3.4), at least one of the following two cases arises:
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(i) There exist a non-empty subset {A1,..., A, } of {1,..., L}, algebraic numbers
Cimpo (1 < i <r, 0<m <L 0<pu<L 1<o0 <v), not all zero, and

f(y) € Q[[y]] N Q(y) such that

ol =-.=af (4.3.5)

1 v

and

f(y) = ailf(sz) + Z cimuabimu(a/\g; y)

2, (1,0

(ii) There exist integers e;, (1 <i <r, 1 < p < L), not all zero, and g(y) € Q(y)*

such that
pracl . 5 Cip
= ( H H(l - /Bl(j)gfk HP(Qlfyj)d”> ) 9(Qy). (4.3.6)
k=q j=1
Suppose first that the case (i) arises. By (4.3.5) we have v < p since oy, ..., ar

are distinct. Changing the indices A (1 < A < L) if necessary, we may assume that

A =0 (1 <o <v). Then f(y) satisfies the functional equation
f( )_alf(Q2y Z Z szua o'< Zi - s ’ ) .
1 - A(L)QR]C Hj:l P(Q’fyj)d”

k=q t,m,u,oc

(4.3.7)
Let M be any positive integer and let

Y= (Wit oum) = (27, 20) (1<) <s).
Note that, by Lemma 4.1.7, the denominator of
[r(z) = fM, .2 M

does not vanish and so f*(z) € Q[[z]] N Q(2). Then the functional equation (4.3.7)

is specialized to

ptg—1 R k _\D; ml
G P(Qiz)"
* _ Y4 L
f (z) - al (le Z Z Cimpo Xy ( (@) RkP(Q]fz)Di ’

k=q im,u,o 1_5H Cz
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where D; := 3% di;M? >0 (1 <i <r). Hence, by Lemma 4.1.5, we see that

,R’fXDi m+1
Z CimuUOé(li Cz() R =0 (438)
1- ﬁﬂz G XD

2,1, 1,0

forany k (¢ <k <p+4+q—1). Foreach k (¢ <k <p+qg—1), we define

Ry, d m+1
— 4 k G X =
Qr(X) = E Cimpo Ot (1 - fj)g,Rquh) € Q(Xy, ..., Xy),

1,1, 4,0 7

where X% = X{i1... X% (1 < i < r). Then the left-hand side of (4.3.8) is
equal to Qp(XM, ..., XM") We assert that Qx(X) = 0 for any k (¢ < k < p+
g — 1). Indeed, if Qu(X) # 0 for some k', then there exist nonzero polynomials
A(X),B(X) € Q[Xy,...,X,] with B(0) = 1 such that Qu(X) = A(X)/B(X).
We take M so large that M > max;<;<s deng A(X). Then, by the uniqueness of

the M-ary expression for nonnegative integers, we see that A(X™, ..., XM") £ 0.
Hence Qu (XM, ..., XM") £ 0, which contradicts (4.3.8), and so the assertion is
proved. Foreach i (1 <i<r)and k (¢ <k <p+q—1), define

m+1
Y
Qlk(Y) = Z Cim,uaag ( i ) .
M, 1,0 1 - ﬂl(i)y
Then Qi (Y) € YQ[[Y]] 1 <i<r, ¢<k<p+q—1)and

Qu(X) =) Q" X4 =0 (¢<k<p+q—1).
=1

Since d; = (d;1,...,d;s) (1 < i < r) are pairwise non-proportional, we see that
Qir(¢/* X %) = 0 and hence

L L v . % m—+1
)= 353 (Someet) () =0

for any i,k (1 <i<r, g <k <p+qg—1). Noting that B,(f) (0 < pu < L) are distinct

for each i (1 <i <), we obtain
Zcimuaagzo (q§k§p+q—1)
o=1
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for any i,m,pu (1 < i <r, 0 <m < L, 0 <pu < L). Since v < p and since
a, (1 < o < v) are distinct and nonzero, by the non-vanishing of Vandermonde
determinant, we see that ¢, = 0 for any i,m,pu,0 (1 <i<r, 0<m <L, 0<
p <L, 1<o<v), which is a contradiction.

Suppose next that the case (ii) arises. By Lemma 3.4.4 and by the func-
tional equations (4.3.4) and (4.3.6), we see that g(y)/ [, , gi(y)* € Q". Then
9(v),9(y)~' € Q[[y]] and hence, by Lemma 4.1.7,

9" (z) ::g(z{w,...,z%,...,z%s,...,zys) e@(z)X

for any positive integer M. Letting y; = (yj1,...,yjn) = (z{‘/[j, c zMj) (1<j<ys)
in (4.3.6), we have

p+q—1 ein
g'(z) = ( 11 H<1 - 53)65?’“13(9’#)&) ) g (R=2),
k=q ip

where D; (1 < i < r) are the positive integers as in the case (i) above. Hence, by
Lemma 4.1.6, we see in particular that

[T - B9¢ 2 xPy =1.

T,

Taking the logarithmic derivative of this equation and then multiplying both sides

by — X, we get .
DgIGxXD
Zeil‘ ) Revp,
I 1 - /BN CZ X !
Let

D: (i)CRqui .
R(X) =) ej——2ie € Q(Xy,..., X,).
1=l X

Although D; (1 <i <r) depend on M, the maximum of the partial degrees of the
numerator of R(X) is bounded by a constant independent of M. Hence, similarly
to the case (i), we see that R(X) = 0 for any sufficiently large M. Using the fact
that d; (1 < i < r) are pairwise non-proportional for any 4,j with 1 <i < j <r,

we obtain . A
= Y
m i
u=1 1— ﬁl(i)Y



for any ¢ (1 < i < r). Since B,(f) (1 < p < L) are distinct and nonzero for each ¢
(1 <i <r), we see that e;, = 0 for any 4,0 (1 <i <r, 1 <pu <L), which is a

contradiction. This completes the proof of Theorem 1.3.7. O]

4.4 Proof of Theorem 1.3.12

Proof of Theorem 1.3.12. Let L be any positive integer and a4, ...,y any nonzero

distinct L algebraic numbers. It suffices to show that the finite set

2,0

U{GiB) [1<i<r}

ornH,
U {8xl(9ym (a)n ﬁz)

{F.(” (a/\)llgigr,OéléL, 1§>\§L}

1§z’§r,0§l,m§L,1§)\§L} (4.4.1)

is algebraically independent. Let (;,v;, and d;; (1 < i <r, 1 < j <) be as in
Lemma 4.1.1. Then the s-tuples (d;1,...,d;s) (1 < i <r) are distinct since none of
a;/a; (1 <i < j <r)isaroot of unity. In what follows, let N,p,q, P(z), 1, Qo,
and v, be as in the proof of Theorem 1.3.7. Define

filz;y) = ixk (CZRI@ ﬁ P(Q’fyj)dij)mo (1<i<r),

k=q

i R TT5 - P(Qkqy.,)dis mtl
him (x5 y) = Zxk ( Gi / 1;[::15 ( 1%}3 d--) (1<i<r, 0<m<L),
k—q 1 = B¢ Hj:l P(Qiy;)%

j=1

and - i
o) =] (1 Al P(Q’fyj)d”) 1<i<n).
k=q j=1

Then the algebraic independency of the set (4.4.1) is equivalent to that of
d'f;
@(%; V2)

O him
U{ o1 (O‘A;’Y?)

Udgi(re)|1<i<r}.

1<i<r, 0<I1<L, 1§)\§L}

1<i<r, 0<I,m< L, 1§)\§L}
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Assume on the contrary that this set is algebraically dependent. Similarly to the
proof of Theorem 1.3.7, changing the indices A (1 < A < L) if necessary, we see
by Theorem 3.2.1, by Remark 3.2.2, and by Lemma 4.1.4 that at least one of the

following two cases arises:

(i) There exist a positive integer v with v < L, algebraic numbers b;, (1 < i <
r, 1 <o <V), Cime 1<i<r,0<m< L, 1<o0 <v), notall zero, and

f(y) € Q[ly]] N Q(y) such that

and

p+q—1

1) = 10) + 3 3o (e TLPitu)® )
1,0 7j=1

_ s B m+1
—i—pil Z o ok ngk Hj:l P(Q]fyj)d” '
"\ 1= B¢ T, P(Qhy;)d

k=q i,m,0

(4.4.2)

(ii) There exist integers e; (1 < i <), not all zero, and g(y) € Q(y)* such that

( H H(l - BiG;™ HP Ory;)* ) ) 9(Qay). (4.4.3)

k=q 1i=1

Let M be a positive integer and let

Yi = Wi yin) = (2310 nz) (LS5 <s).

Since (d;1, ..., d;s) (1 < i < r) are distinct, we can take M so large that the following

two properties are both satisfied:
(A) D=3, diiM? (1 < i <r) are distinct positive integers.
(B) Dlzmo (1§Z§7”) and DlDTZL

Then by (4.4.2), (4.4.3), Lemmas 3.4.4 and 4.1.7, at least one of the following two

conditions holds:
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(1) f5(z) = f(eM, .. M M M) € Q2] N Q(2) satisfies

ptq—1

()= od"0f) + 32 3 ool (=)™

p+q—1 & ) m~+1
o FP(QFz)Pi
+ Cimaaﬁ : .

(i) g*(z) = g(eM, ... 2M .. M0 M%) € Q(z)* satisfies
ptg—1 r .
<H H(l—ﬁz (P z)"P ) >g*(QfZ)-
k=q =1

Hence by Lemmas 4.1.5 and 4.1.6, at least one of the following two properties is

satisfied:

(i) Forany k (¢ <k <p+q—1),

r B k} RkXD L C,LRkXDl m4+1
T g ) - - h +m / K i m
= ;(Bz(k)<CZR X Piymo 4 mZ:OCim(k:) g < - )Bzh(CZR XDyt +1)
- 00 min{L,h’}
= Z Bi(k)(kaXDi)mo + Z Z Cim(k ( )Bl{h’—m (Cﬁ’“XDi)h’H
=1 =
h (4.4.4)

where B;(k) = >"_ b,k (1 <i <r)and Cy(k) = Y0 cimeak (1 <i <
r, 0 <m < L).

(i) Forany k (¢ <k <p+q—1),

T

[ - B xPye =1, (4.4.5)

=1

Suppose first that (i) is satisfied. We show that C;,, (k) = 0 for any i (1 < i <),
m(0<m<L),and k (¢ <k <p+qg—1). Assume on the contrary that C,, (k')
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(1<i<r, 0<m < L)arenot all zero for some k’. Let
S={ie{l,....r}| Cin(K) (0 <m < L) are not all zero}

and let i € S be the index such that Dy < D; for any ¢ € S\ {i’}. Note that
Cim(K') (0 < m < L) are determined independently of M. Hence, replacing M if
necessary, we may assume that the following property (C) is satisfied in addition to

the properties (A) and (B) above.
() an:o Ci,m(k/)(Dl;.r;DTWZ{/Dl---Dﬁm 20,

Indeed, let m’ be the maximum of m € {0,..., L} such that Cy,, (k) # 0. Since

(‘”) T i o@™) (Z3 13— o)

m m)!
for each m € {0,...,m'}, we see that
L x T il T
, / //m—m — O (K {fc—m' . / /f—m
5 Clnh) () 7 = Conmt) ()37 4 X Con) ()5
m=0 m=0
i’/ k/ / ’
_ CT—()xm B +o@™BY)  (Z3x — oo).
m/\ 3"

Thus the property (C) is satisfied if M is sufficiently large. Noting the fact that
(Dy -+ D,+1)D; is not divided by any D; with i € S\ {#'}, we see by the properties
(B) and (C) that the term

L
(Zczvmuc)( i )ﬁf & )(cﬁ XPeyPrebrt
m=0

does not cancel in (4.4.4), which is a contradiction. Hence Cj,(k) = 0 (1 < i <
r, 0 <m< L, q<k<p+qg—1). Then, since Dy,...,D, are distinct by the
property (A), we have B;(k) = 0 (1 < i <r, ¢ <k <p+q—1) by (4.4.4).
Therefore, noting that v < p, we see that b, =0 (1 <i<r, 1 <o <v) and
Cime =0 (1<i<r, 0<m <L, 1<o0<v), which is also a contradiction.
Next suppose that (ii) is satisfied. Taking the logarithmic derivative of (4.4.5)
and then multiplying both sides by —X, we see in particular that
i i —DiﬁiCiPZXDi
= 1= B X P
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This is a contradiction since ordy_o D; 3¢ XPi /(1 — B¢ XPy =D, (1 <i <),

and the theorem is proved. Il

84



Appendix A

Further examples of linear
recurrences satisfying

Conditions 1.2.1 and 1.2.5

In order to obtain a wealth of examples of the results stated in Section 1.3, it is
important to explicitly construct linear recurrences which satisfy Conditions 1.2.1
or 1.2.5. In this section we show the existence of linear recurrences satisfying Con-
dition 1.2.1, and thus Condition 1.2.5 (cf. Tanaka [29, Remark 1]), for any large
length n of the recurrence formula (1.2.2). For this purpose, the following result of

Tamura gives an answer.

Proposition A.1 (Tamura [27, Lemma 10]). Let n > 2 and a1 > -+ > a,_1 be
positive integers. Then the polynomial f(X) = X" —a; X" ' — - —a, 1 X — 1 is

the minimal polynomial of a Pisot number a with a; < a < a; + 1, i.e.,
(i) f(X) is irreducible over Q,
(i) there exists only one real root av of f(X) with a > 1,

(iii) |5 < 1 for every algebraic conjugate B(# «) of .

Example A.2. For any integer n > 2, we consider the linear recurrence { Ry }r>o of

nonnegative integers satisfying

Rk:+n = CL1R/€+n,1 + -+ (lnfleJrl + Rk (k’ > 0),
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where aq,...,a, 1 are as in Proposition A.1. The associated polynomial defined
by (1.2.3) is ®(X) = X" — ;X" ' — -+ —a,_1 X — 1. Then ®(X) is irreducible
over Q and there exists an ordering of the roots py, ..., p, of ®(X) such that p; >
1 > max{|psl,...,|pn|} by Proposition A.1. Hence the linear recurrence {Rj}r>o
satisfies Condition 1.2.1.

The roots py, . .., pp of the polynomial ®(X) = X" —a¢; X" ' —...—q, ;X —1in
Example A.2 are multiplicatively dependent, since p; - - p, = (—1)"®(0) = (—1)"*!
and so p?---p2 = 1. On the other hand, if the roots of a given polynomial ®(X)
of the form (1.2.3) are multiplicatively independent, then the ratio of any pair of
distinct roots of (X)) is clearly not a root of unity. In that case, if in addition ¢(X)
is irreducible over Q, then any linear recurrence { Ry }r>o associated with the ®(X)
satisfies not only Condition 1.2.5 but also Condition 1.2.1 (c¢f. Tanaka [29, Proof
of Lemma 4]). Therefore, in order to show further examples of linear recurrences
satisfying Condition 1.2.1, it suffices to give conditions for the roots of an irreducible
polynomial to be multiplicatively independent. One of such conditions was obtained

by Becker and Topfer.

Proposition A.3 (Becker and Tépfer [1, Lemma 5, Proof of Theorem 2]). Let
f(X) = X" —a; X" — ... —a, be a polynomial of degree n > 2 with integral
coefficients.  Suppose that f(X) is irreducible over Q. Then, if a, # +1 and
(an_1,an) = 1, then the roots of f(X) are multiplicatively independent.

In Proposition A.3, the coefficient a,,_1 of the first degree term of f(X) is assumed
to be nonzero, which excludes the case where f(X) is represented as f(X) = g(X™)
for some polynomial g(X) and integer m > 2. We note that, if the polynomial ®(X)
associated with a linear recurrence {Ry}r>o is represented as ®(X) = ¥(X™) for
some polynomial ¥(X) and integer m > 2, then {Rj}r>0 does not satisfy Condi-
tion 1.2.5. Thus we need to exclude such cases, as in Proposition A.3. The following
result proved by Drmota and Skatba leads to our desired conclusion under a weaker
assumption than Proposition A.3 in the case where the degree of a polynomial is

restricted to an odd prime number.
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Proposition A.4 (Drmota and Skalba [5, Theorem 3]). Let p be an odd prime
number and let f(X) = XP — a;XP~! — .-+ — a, be a polynomial with rational
coefficients. Suppose that f(X) is irreducible over Q. Then, if a, # £1 and if
a; # 0 for at least one i € {1,...,p— 1}, then the roots of f(X) are multiplicatively

independent.

Example A.5. Let p be any odd prime number, ¢ a prime number, and { R }r>0 a

linear recurrence of nonnegative integers satisfying
Ritp = qRp1 +qRr (K >0).

The associated polynomial ®(X) = X? — ¢X — ¢ is irreducible over Q by Eisen-
stein’s criterion. Then by Proposition A.4 the roots of ®(X) are multiplicatively
independent and hence { Ry }>o satisfies Condition 1.2.1. In this example, the dom-
inant root p; appearing in Condition 1.2.1 and in the asymptotic formula (1.2.4)
can be arbitrary close to 1 by taking a sufficiently large prime number p, as shown
below. We fix a prime number ¢ and define ®,(X) = X? — ¢X — ¢ for any odd
prime number p. Since @}, (X) = pXP~1 — ¢ has the only positive real root pm
and since ®,(0) = —¢ < 0, the polynomial ®,(X) has the only positive real root
p(p), which appears as p; in Condition 1.2.1 and so p(p) > 1 for any odd prime
number p. We show that p(p) — 1 as p — oo. Let p; and py be odd prime num-
bers with p; < pa. Then @,,(p(p1)) — @, (p(p1)) = p(p1)?> — p(p1)?* > 0 and so
., (p(p1)) > ®,, (p(p1)) = 0. Since p(p2) is the only positive real root of @, (X), we
have p(p2) < p(p1). Thus the sequence {p(p)}, is strictly decreasing with respect to
p and hence it converges to some real number greater than or equal to 1. By the
fact that p(p)? — gp(p) — ¢ = 0 for any odd prime number p, we see that {p(p)},

must converge to 1.
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