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Chapter 1

Introduction

Algebraic independence properties of the values at algebraic numbers of analytic

functions have been studied by various authors. In this thesis, we are interested in

the necessary and sufficient condition on nonzero algebraic numbers a1, . . . , ar for

the infinite set {f (l)(ai) | l ≥ 0, 1 ≤ i ≤ r} to be algebraically independent, where

f(z) is a given analytic function. If ai = aj for some distinct i and j, then the set

above is obviously algebraically dependent. The converse does not hold in general

as shown by the following example:

Let f0(z) =
∑∞

k=0 z
k! and let ζ be a d-th root of unity. Then we see that

f0(α) − f0(ζα) =
∑d−1

k=0 α
k! −

∑d−1
k=0(ζα)k! ∈ Q for any nonzero algebraic number α,

which implies that the values f0(α) and f0(ζα) are algebraically dependent.

For the function f0(z) and its certain generalizations, the necessary and sufficient

conditions mentioned above were obtained by Nishioka [19, 20, 21], which are more

restrictive than the condition that a1, . . . , ar are distinct (see Theorems 1.1.4–1.1.6).

On the other hand, some analytic functions are known to have the remarkable

property that the infinite set above is algebraically independent as long as algebraic

numbers a1, . . . , ar are distinct. Previous results on such functions will be introduced

in Theorems 1.1.7, 1.1.8, 1.2.11, 1.2.14, and 1.2.15. These are the strongest results

on the necessary and sufficient conditions mentioned above; however, they only

deal with functions of one variable. In Theorem 1.3.1, the first main theorem of

this thesis, we construct an entire function of two variables satisfying the following

property:
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The infinite set consisting of the values and the partial derivatives of any order

at any distinct algebraic points is algebraically independent.

Theorem 1.3.1 is valid also in the case of p-adic numbers. Moreover, in the case

of complex numbers, we prove Theorem 1.3.6 as the second main theorem of this

thesis, which provides an infinite family of entire functions of two variables having

the following property:

The infinite set consisting of the values and the partial derivatives of any or-

der at any distinct algebraic points of all the functions belonging to the family is

algebraically independent.

1.1 Transcendence and algebraic independence of

the values of analytic functions

One of the main purposes of transcendental number theory is to determine the

transcendency or the algebraic independency of given numbers. For example, in

1873, Hermite showed that e is a transcendental number. The proof was based on

the properties of the exponential function ez, in particular the properties that ez

satisfies the differential equation (ez)′ = ez and has the value 1 at z = 0. Extending

Hermite’s method and using the Euler’s identity eiπ = −1, Lindemann proved, in

1882, that π is a transcendental number. He also proved the transcendency of eα

for any nonzero algebraic number α. Moreover, the following is known today as

Lindemann-Weierstrass theorem:

Let α1, . . . , αn be algebraic numbers. If they are linearly independent over Q,

then the values eα1 , . . . , eαn are algebraically independent.

We note that the converse is trivial. Hence the Lindemann-Weierstrass theorem

gives the necessary and sufficient condition for the values of the exponential function

at algebraic numbers to be algebraically independent.

Furthermore, Mahler and Nesterenko studied p-adic analogues of these results.

Before stating their results, we introduce some notation and settings used through-

out this thesis.
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Let p be a prime number and | · |p the p-adic absolute value on Q with the

normalization condition |p|p = p−1. We denote by Qp the completion of Q with

respect to | · |p and by Qp the algebraic closure of Qp. The p-adic absolute value | · |p
on Qp is extended uniquely to the algebraic closure Qp by

|α|p := |NQp(α)/Qp(α)|1/[Qp(α) :Qp]
p

for any α ∈ Qp (cf. Waldschmidt [35, Chapter 3]). Let Cp be the completion of

Qp. While we consider the field Q of algebraic numbers as a subset of the field C of

complex numbers, we also consider it as a subset of Cp by fixing an embedding of Q
into Cp for each prime number p. Several theorems or arguments in this thesis are

valid not only in the case where the functions in question are considered as complex

functions but also in the case where they are regarded as p-adic functions. In such

situations, we will deal with the two cases simultaneously by stating the phrase “Let

v be ∞ or a prime number” and by denoting C as Q∞ or C∞ and the absolute value

|α| of a complex number α as |α|∞. (In the absence of such statements, we will

discuss only the case of complex numbers.) Let v be ∞ or a prime number. Note

that an element α of Qv is transcendental over Q if and only if it is transcendental

over Q. Hence we simply say α is transcendental. For the similar reason, if elements

α1, . . . , αn of Qv are algebraically independent over Q, then we simply say α1, . . . , αn

are algebraically independent. Moreover, an infinite subset S of Qv is said to be

algebraically independent if any finite subset of S is algebaically independent.

Let p be a prime number. The p-adic exponential function expp(x) is defined

as the power series
∑∞

n=0 x
n/n!, which converges in the p-adic domain {x ∈ Cp |

|x|p < p−1/(p−1)}. In 1933, Mahler [15] proved that, for any algebraic number α

with 0 < |α|p < p−1/(p−1), the value expp(α) is transcendental. The p-adic analogue

of the ‘full’ Lindemann-Weierstrass theorem is still open. In 2008, Nesterenko [18]

obtained the following ‘half’ result:

Let α1, . . . , αn be algebraic numbers with 0 < |αi|p < p−1/(p−1) (1 ≤ i ≤ n).

If they form a basis of a finite extension of degree n of Q, then the transcendence

degree of Q(expp(α1), . . . , expp(αn)) over Q is at least n/2.
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Beginning with the studies on the arithmetic properties of the values of the

exponential function, various authors have investigated the transcendence and the

algebraic independence of numbers given as the values of complex analytic functions

at algebraic numbers and also their p-adic analogues.

As far back as 1844, Liouville proved the transcendency of the complex number∑∞
k=0 2−k!. This is not only the first example of transcendental numbers, but also

the first proof of the existence of transcendental numbers. His proof is based on

Diophantine approximation and can be summarized as follows. First, he proved

the following theorem, which gives a lower bound for rational approximations of

algebraic numbers.

Theorem 1.1.1 (Liouville’s inequality). Let α be a real algebraic irrational number

of degree n. Then there exists a positive constant c depending only on α such that∣∣∣∣α− p

q

∣∣∣∣ > c

qn

for any rational number p/q with q > 0.

Remark 1.1.2. Thue, Siegel, Dyson, and Roth refined the exponent n in the de-

nominator of the right-hand side of Liouville’s inequality. In 1955, Roth [25] proved

the following: Let α be a real algebraic irrational number and ε a positive number.

Then there exists a positive constant c depending only on α and ε such that∣∣∣∣α− p

q

∣∣∣∣ > c

q2+ε

for any rational number p/q with q > 0.

Secondly, he constructed a sharp rational approximation of the number
∑∞

k=0 2−k!

so as to contradict the lower bound above. In fact, letting pm := 2m!
∑m

k=0 2−k! and

qm := 2m!, we obtain

0 <

∣∣∣∣∣
∞∑
k=0

1

2k!
− pm
qm

∣∣∣∣∣ < 2

qm+1
m

for any positive integer m, which contradicts the bound in Theorem 1.1.1 if
∑∞

k=0 2−k!

is algebraic. Hence we conclude that
∑∞

k=0 2−k! is a transcendental number.
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Because of this history, the power series
∑∞

k=0 z
k! is called Liouville series. Let v

be ∞ or a prime number. Using the fundamental inequality, which gives a kind of

lower bound for algebraic approximations of algebraic numbers and will be proved

as Proposition 3.4.1 in this thesis, we can show the transcendency of the values

of the Liouville series at any nonzero algebraic numbers inside the unit circle in

Cv. For the proof in the case of complex numbers, see Nishioka [23, Theorem

1.1.1]. Its proof is valid also in the case of p-adic numbers, since the fundamental

inequality is extended to p-adic algebraic numbers (see Proposition 3.4.1, see also

Waldschmidt [35, p. 84]). Modifying the proof of Nishioka [23, Theorem 1.1.1],

for any sequence {ek}k≥0 of nonnegative integers satisfying limk→∞ ek+1/ek = ∞,

we can prove the transcendency of the values of the power series
∑∞

k=0 z
ek at any

nonzero algebraic numbers inside the unit circle in Cv.

More generally, we consider the function

F({ek}; x, z) :=
∞∑
k=0

xkzek , (1.1.1)

where {ek}k≥0 is a sequence of nonnegative integers satisfying lim infk→∞ ek+1/ek >

1. This series converges at any point (x, z) ∈ C2
v with |z|v < 1. A specialization

F({ek}; 1, z) =
∑∞

k=0 z
ek is called a lacunary series. By the so-called Hadamard’s

gap theorem (cf. Rudin [26, 16.6 Theorem]), every lacunary series has the unit circle

in the complex plane as its natural boundary and hence they are transcendental

functions.1 Therefore, we may expect the transcendency of the values of any lacunary

series at nonzero algebraic numbers inside the unit cicle. Indeed, in 2002, using

Schmidt’s subspace theorem, which is a generalization of Roth’s theorem mentioned

in Remark 1.1.2, Corvaja and Zannier established the following:

Theorem 1.1.3 (Corvaja and Zannier [4, A special case of Corollary 5]). Let v

be ∞ or a prime number. If a sequence {ek}k≥0 of nonnegative integers satisfies

1It is known more generally that, if lim supk→∞(ek+1−ek) = ∞, then the power series
∑∞

k=0 z
ek

is transcendental over C(z) (see Mahler [16, p. 42]). Note that, some literature refers to a power
series

∑∞
k=0 z

ek as a lacunary series in the case where lim supk→∞(ek+1 − ek) = ∞ and a strongly
lacunary series in the case where lim infk→∞ ek+1/ek > 1.
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lim infk→∞ ek+1/ek > 1, then the number F({ek}; 1, a) =
∑∞

k=0 a
ek of Qv is tran-

scendental for any algebraic number a with 0 < |a|v < 1.

While it is difficult in general to determine the transcendency of the values of

given analytic functions at algebraic numbers, it is much more difficult to determine

their algebraic independency. In contrast with Theorem 1.1.3, there is no result

which is applicable to all lacunary series and provides the algebraic independence

of the values of those functions at distinct algebraic numbers. On the other hand,

for lacunary series with rapidly increasing exponents such as the Liouville series,

Nishioka obtained precise results on the algebraic independence by applying the

method of Diophantine approximations. The most remarkable of her results is that

they give necessary and sufficient conditions for the values of lacunary series, as well

as their derivatives, at algebraic numbers to be algebraically independent. In 1986,

she proved the following result on the Liouville series and its derivatives.

Theorem 1.1.4 (Nishioka [19, 20]). Let v be ∞ or a prime number. Put f(z) :=

F({k!}; 1, z) =
∑∞

k=0 z
k! and let a1, . . . , ar be algebraic numbers with 0 < |ai|v < 1

(1 ≤ i ≤ r). Then the infinite subset {f (l)(ai) | l ≥ 0, 1 ≤ i ≤ r} of Qv is

algebraically independent if and only if none of ai/aj (1 ≤ i < j ≤ r) is a root of

unity.

Moreover, she established the following two theorems, from which we can deduce

Theorem 1.1.4.

Theorem 1.1.5 (Nishioka [21, A special case of Theorem 1]). Let {ek}k≥0 be a

sequence of nonnegative integers satisfying limk→∞ ek+1/ek = ∞. Put f(z) :=

F({ek}; 1, z) =
∑∞

k=0 z
ek . Let a1, . . . , ar be algebraic numbers with 0 < |ai| < 1

(1 ≤ i ≤ r). Then the following three properties are equivalent:

(i) The infinite subset {f (l)(ai) | l ≥ 0, 1 ≤ i ≤ r} of C is algebraically dependent.

(ii) The r + 1 complex numbers 1, f(a1), . . . , f(ar) are linearly dependent over Q.

6



(iii) There exist a nonempty subset {ai1 , . . . , ais} of {a1, . . . , ar}, roots of unity

ζ1, . . . , ζs, an algebraic number γ with aiq = ζqγ (1 ≤ q ≤ s), and algebraic

numbers ξ1, . . . , ξs, not all zero, such that

s∑
q=1

ξqζ
ek
q = 0

for all sufficiently large k.

Theorem 1.1.6 (Nishioka [19, A special case of Theorem 1]). Let p be a prime

number and {ek}k≥0 a sequence of nonnegative integers satisfying limk→∞ ek+1/ek =

∞. Suppose that 0 is a limit point of {ek}k≥0 with respect to the p-adic norm.

Put f(z) := F({ek}; 1, z) =
∑∞

k=0 z
ek and let a1, . . . , ar be algebraic numbers with

0 < |ai|p < 1 (1 ≤ i ≤ r). Then, if none of ai/aj (1 ≤ i < j ≤ r) is a root of

unity, then the infinite subset {f (l)(ai) | l ≥ 0, 1 ≤ i ≤ r} of Qp is algebraically

independent.

The following theorem was obtained as another corollary to Theorem 1.1.5.

Theorem 1.1.7 (Nishioka [21]). Let f(z) := F({k! + k}; 1, z) =
∑∞

k=0 z
k!+k. Then

the infinite subset {f (l)(a) | l ≥ 0, a ∈ Q, 0 < |a| < 1} of C is algebraically

independent.

Furthermore, Nishioka also studied the algebraic independence of the values

and the derivatives of an entire function defined as a power series having rapidly

decreasing coefficients.

Theorem 1.1.8 (Nishioka [19, A special case of Theorem 4]). Let v be ∞ or a prime

number, {ek}k≥0 a sequence of nonnegative integers satisfying limk→∞ ek+1/ek = ∞,

and a an algebraic number with 0 < |a|v < 1. Define F (x) := F({ek}; x, a) =∑∞
k=0 a

ekxk. Then the infinite subset {F (l)(α) | l ≥ 0, α ∈ Q×} of Qv is algebraically

independent.

As mentioned in the beginning of this chapter, Theorems 1.1.7 and 1.1.8 are

two of the strongest results on the necessary and sufficient conditions for the val-

ues of analytic functions, as well as their derivatives, at algebraic numbers to be
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algebraically independent. Here we formulate the properties possessed by the power

series
∑∞

k=0 z
k!+k in Theorem 1.1.7 and

∑∞
k=0 a

ekxk in Theorem 1.1.8 as follows:

Property 1.1.9. The infinite set consisting of all the values of a single analytic

function and its derivatives of any order, at any nonzero algebraic numbers within

its domain of existence, is algebraically independent.

Analytic functions having this property provide explicit examples of algebraically

independent infinite subsets of the field of complex numbers or that of p-adic complex

numbers, which may help us to investigate the structure of the set of transcendental

numbers. In the next section we introduce further examples of complex analytic

functions, particularly entire functions, which are known to have Property 1.1.9;

however, those results only deal with functions of one variable. Moreover, it is quite

difficult to determine the algebraic independency of the union of several sets, each

of which is known to be algebraically independent. Therefore, it is a very interesting

problem to construct a family of entire functions, which may have several variables,

satisfying the following:

Property 1.1.10. The infinite set consisting of all the values of the functions be-

longing to the family and their partial derivatives of any order, at any algebraic

points with nonzero components, is algebraically independent.

This property is so strong that, if a family of entire functions satisfies Prop-

erty 1.1.10, then Property 1.1.9 is possessed by each of those functions. In this

thesis, we will explicitly construct an infinite family of complex entire functions of

two variables satisfying Property 1.1.10 (see Example 1.3.11).

1.2 Mahler’s method

In this section we focus on the case where 1 < limk→∞ ek+1/ek < ∞. We con-

sider the power series F({ek}; x, z) defined by (1.1.1) and also the infinite product

G({ek}; y, z) and the Lambert type series H({ek}; x, y, z) defined respectively by

G({ek}; y, z) :=
∞∏
k=0

(1 − yzek), H({ek}; x, y, z) :=
∞∑
k=0

xkzek

1 − yzek
.
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We note that G({ek}; y, z) converges at any point (y, z) ∈ C2
v with |z|v < 1 and

H({ek}; x, y, z) converges at any point (x, y, z) ∈ C3
v with |z|v < 1 such that 1 −

yzek 6= 0 for any k ≥ 0. In the rest of this section, we consider F({ek}; x, z),

G({ek}; y, z), and H({ek}; x, y, z) as complex functions. In the previous works, the

transcendence and the algebraic independence of the values at algebraic numbers of

these functions were dealt with mainly in the following two cases:

(A) The case where x = y = 1 and z runs through a finite set of algebraic numbers.

(B) The case where x, y run through infinite sets of algebraic numbers and z is

fixed.

First we introduce the case (A). In this case, the power series F({ek}; 1, z) =∑∞
k=0 z

ek is a lacunary series. A typical example is f(z) := F({dk}; 1, z) =
∑∞

k=0 z
dk ,

where d is an integer greater than 1. This power series is called Fredholm series.

Theorem 1.1.3 of course leads to the transcendency of the complex number f(a)

for any algebraic number a with 0 < |a| < 1. For example, the complex number∑∞
k=0 2−2k is transcendental. However, in contrast with the case of the number∑∞
k=0 2−k! mentioned in Section 1.1, it is not very easy to derive its transcendency

by focusing on the rational approximation

0 <

∣∣∣∣∣
∞∑
k=0

1

22k
− pm
qm

∣∣∣∣∣ < 2

q2m
,

where pm := 22m
∑m

k=0 2−2k and qm := 22m for any positive integer m. In order to

deduce the transcendency of
∑∞

k=0 2−2k from this approximation, we need to use a

refinement of Roth’s theorem given by Ridout [24] in 1957. Therefore, the method

of Diophantine approximation does not seem suitable for studying the arithmetic

properties of the values of the Fredholm series at algebraic numbers. On the other

hand, in 1929, Mahler [14] obtained the transcendency of the complex number f(a)

for any algebraic number a with 0 < |a| < 1, which is the same conclusion as

Theorem 1.1.3 for the Fredholm series. His proof is based on the properties of the

function f(z), in particular on the fact that f(z) satisfies the functional equation

f(z) = f(zd) + z. (1.2.1)
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This contrasts with Liouville’s proof on the transcendency of
∑∞

k=0 2−k! in which the

number was treated directly. Mahler’s method for proving the transcendency of the

number f(a) consists of the following three steps. First, he proved the transcendency

of the function f(z) itself. Note that, while Hadamard’s gap theorem is valid for

this purpose, we can prove it by a more elementary argument using the functional

equation (1.2.1) (cf. Nishioka [23, pp. 3–4]). Secondly, he constructed a polynomial

E(X,Y ) with algebraic coefficients such that the auxiliary function E(z, f(z)) has

a sufficiently high order at the origin but does not vanish at points z = ad
k

for

all sufficiently large k. Such a polynomial was constructed by linear algebra, while

the requirement on the non-vanishing of the values was satisfied by the identity

theorem and the transcendency of f(z) proved in the first step. Finally, under the

assumption that the number f(a) is an algebraic number, he derived a contradiction

by estimating a lower bound of the absolute value of a nonzero algebraic number

E(ad
k
, f(ad

k
)) from the functional equation (1.2.1) and the fundamental inequality

(Proposition 3.4.1). The most important and difficult of these three steps is the

second one, construction of the auxiliary function.

Applying this method to the infinite product g(z) := G({dk}; 1, z) =
∏∞

k=0(1 −
zd

k
) and the Lambert series h(z) := H({dk}; 1, 1, z) =

∑∞
k=0 z

dk/(1 − zd
k
), which

satisfy the functional equations g(z) = (1 − z)g(zd) and h(z) = h(zd) + z/(1 − z),

respectively, Mahler also proved the transcendency of the complex numbers g(a)

and h(a) for any algebraic number a with 0 < |a| < 1. Moreover, Mahler [14] also

studied the transcendence of the values of functions of several variables at algebraic

points. Here, those functions are assumed to satisfy functional equations under a

transformation z 7→ Ωz of variables defined in a certain way via a matrix Ω with

nonnegative integer entries (see (3.1.1)). In the case of several variables, the second

step above becomes more difficult, since the values of the auxiliary function at the

sequence {Ωkα}k≥0 converging to the origin, where α is the algebraic point we are

considering, may all vanish. In order to overcome this difficulty, he proved a theorem,

now called Mahler’s vanishing theorem, which gives a sufficient condition on Ω and

α for the values above do not vanish (see Lemma 3.1.1). Using this theorem, Mahler
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established Theorem 1.2.3 below, which includes the result above on the values of

the Fredholm series.

Let {Rk}k≥0 be a linear recurrence of nonnegative integers satisfying

Rk+n = c1Rk+n−1 + · · · + cnRk (k ≥ 0), (1.2.2)

where R0, . . . , Rn−1 are not all zero and c1, . . . , cn are nonnegative integers with

cn 6= 0. Define the polynomial associated with (1.2.2) by

Φ(X) := Xn − c1X
n−1 − · · · − cn. (1.2.3)

Mahler assumed the following condition to apply his vanishing theorem.

Condition 1.2.1. Φ(X) is irreducible over Q and there exists an ordering of the

roots ρ1, . . . , ρn of Φ(X) such that ρ1 > max{1, |ρ2|∞, . . . , |ρn|∞}.

If {Rk}k≥0 satisfies Condition 1.2.1, then

Rk = cρk1 + o(ρk1), (1.2.4)

where c is a positive constant, and thus the power series F({Rk}; 1, z) =
∑∞

k=0 z
Rk is

a lacunary series. He modified this series to
∑∞

k=0 z
Rk , where zRk := z

Rk+n−1

1 · · · zRk
n .

Then
∑∞

k=0 z
Rk satisfies a functional equation of the form

∑∞
k=0 z

Rk−
∑∞

k=0(Ω1z)Rk

∈ Q[z], where Ω1 is a matrix determined by the coefficients of Φ(X) (see (4.1.3)).

Letting a be an algebraic number with 0 < |a| < 1 and putting γ1 := (1, . . . , 1, a),

we see that
∑∞

k=0 γ
Rk
1 =

∑∞
k=0 a

Rk . In order to prove the transcendency of this

number, Mahler used the following auxiliary result, which is deduced from Mahler’s

vanishing theorem. (For the entire statement of Mahler’s vanishing theorem, see

Lemma 3.1.1.)

Lemma 1.2.2 (Mahler [14]). Let {Rk}k≥0 be a linear recurrence of nonnegative

integers satisfying (1.2.2). Suppose that {Rk}k≥0 satisfies Condition 1.2.1. Then,

for any nonzero f(z) ∈ C[[z1, . . . , zn]] which converges in some neighborhood of the

origin of Cn, there are infinitely many positive integers k such that f(Ωk
1γ1) 6= 0.

11



This lemma makes Mahler’s method for proving the transcendence of the values

of functions applicable to the function
∑∞

k=0 z
Rk as well as the Fredholm series∑∞

k=0 z
dk . Using the functional equation of

∑∞
k=0 z

Rk , the relation
∑∞

k=0 γ
Rk
1 =∑∞

k=0 a
Rk , and Lemma 1.2.2, Mahler proved the following:

Theorem 1.2.3 (Mahler [14]). Let {Rk}k≥0 be a linear recurrence of nonnegative

integers satisfying (1.2.2). Suppose that {Rk}k≥0 satisfies Condition 1.2.1. Then,

for any algebraic number a with 0 < |a| < 1, the complex number
∑∞

k=0 a
Rk is

transcendental.

Example 1.2.4. Let {Fk}k≥0 be the Fibonacci numbers defined by

F0 = 0, F1 = 1, Fk+2 = Fk+1 + Fk (k ≥ 0).

Then {Fk}k≥0 satisfies Condition 1.2.1 and thus the number
∑∞

k=0 a
Fk is transcen-

dental for any algebraic number a with 0 < |a| < 1.

In 1982, Masser [17] established a necessary and sufficient condition on a matrix Ω

and a point α under which the non-vanishing requirement on the values of auxiliary

functions is satisfied (see Lemma 3.1.3). Using Masser’s vanishing theorem, Tanaka

relaxed Condition 1.2.1 on the linear recurrence {Rk}k≥0 to the following:

Condition 1.2.5. Φ(±1) 6= 0 and the ratio of any pair of distinct roots of Φ(X) is

not a root of unity.

Since the polynomial Φ(X) is not assumed to be irreducible in Condition 1.2.5,

it is weaker than Condition 1.2.1. It is also known that Condition 1.2.5 implies the

asymptotic formula (1.2.4), which ensures the convergence of the series in Theo-

rem 1.2.6 below. (For the proofs of these two statements, see Tanaka [29, Remarks

1 and 4].)

Theorem 1.2.6 (Tanaka [28, A special case of Theorem]). Let {Rk}k≥0 be a linear

recurrence of nonnegative integers satisfying (1.2.2). Suppose that {Rk}k≥0 satisfies

Condition 1.2.5. Then, for any algebraic number a with 0 < |a| < 1, the complex

number
∑∞

k=0 a
Rk is transcendental.

12



Example 1.2.7 (cf. Tanaka [29, Example 1]). Let {Rk}k≥0 be a linear recurrence

satisfying

Rk+3 = Rk+2 + 16Rk+1 + 20Rk (k ≥ 0) (1.2.5)

with initial values R0 = 1, R1 = 3, and R2 = 33. Then the associated polynomial

is Φ(X) = X3 − X2 − 16X − 20 = (X − 5)(X + 2)2. Thus the linear recurrence

{Rk}k≥0 satisfies Condition 1.2.5 and so the number
∑∞

k=0 a
Rk is transcendental

for any algebraic number a with 0 < |a| < 1. In addition, we can verify that

Rk = 5k + k(−2)k for all k ≥ 0, which implies that {Rk}k≥0 does not satisfy any

recurrence formula of the form (1.2.2) with n ≤ 2.

Remark 1.2.8. Tanaka’s results mentioned above include the case of geometric

progressions, namely that of the Fredholm series. Indeed, Condition 1.2.5 admits

geometric progressions even if we assume n ≥ 2. For instance, the geometric progres-

sion {5k}k≥0 satisfies the recurrence formula (1.2.5) in Example 1.2.7. In this thesis

we deal with linear recurrences satisfying Condition 1.2.5 which are not geometric

progressions.

Analytic functions satisfying functional equations such as f(z), g(z), h(z) or∑∞
k=0 z

Rk above are called Mahler functions. Mahler’s method is suitable for prov-

ing not only the transcendence of the values of Mahler functions but also their

algebraic independence. For certain types of Mahler functions, Kubota [11] and

Nishioka [22] proved, independently, the algebraic independence of the values under

the assumption that the functions themselves are algebraically independent over

the field of rational functions. Moreover, they also established necessary and suffi-

cient conditions for the Mahler functions themselves to be algebraically independent.

These results are so powerful that the algebraic independency of the values of Mahler

functions can be reduced to the linear independency or the multiplicative indepen-

dency of the functions themselves in many cases. For instance, applying Kubota’s

criterion, we can show that, if a1, . . . , ar are multiplicatively independent algebraic

numbers with 0 < |ai| < 1 (1 ≤ i ≤ r), then the 3r numbers f(ai) =
∑∞

k=0 a
dk

i ,

g(ai) =
∏∞

k=0(1− ad
k

i ), and h(ai) =
∑∞

k=0 a
dk

i /(1− ad
k

i ) (1 ≤ i ≤ r) are algebraically

13



independent (cf. Nishioka [23, pp. 106–107]).

On the other hand, the values of f(z), g(z), and h(z) at multiplicatively depen-

dent algebraic numbers can be algebraically dependent. Indeed, by the functional

equations we have f(a) − f(ad), g(a)/g(ad), h(a) − h(ad) ∈ Q×
for any algebraic

number a with 0 < |a| < 1. For the Fredholm series f(z), Loxton and van der

Poorten [12, Theorem 3] obtained a necessary and sufficient condition on algebraic

numbers a1, . . . , ar for the values f(a1), . . . , f(ar) to be algebraically independent.

For the Lambert series h(z), Bundschuh and Väänänen [2, Theorem 2] obtained the

following:

Let a be an algebraic number with 0 < |a| < 1 and let m1, . . . ,mr be positive

integers such that none of mi/mj (1 ≤ i < j ≤ r) is a power of d. Then, for each

choice of r signs, the r numbers h(±am1), . . . , h(±amr) are algebraically independent.

Except for this result, there are no known results on the algebraic independence

of the values at multiplicatively dependent algebraic numbers of the functions g(z)

and h(z) so far. In particular, it is an open problem to determine the necessary and

sufficient condition on algebraic numbers a1, . . . , ar for the 3r numbers f(ai), g(ai),

and h(ai) (1 ≤ i ≤ r) to be algebraically independent. On the other hand, if we

replace the {dk}k≥0 appearing in f(z), g(z), and h(z) with a linear recurrence which

is not a geometric progression, then the situation on the algebraic independence of

the values at algebraic numbers becomes quite different. Tanaka proved the following

theorem, which gives the necessary and sufficient condition above for the functions

generated by such a linear recurrence.

Theorem 1.2.9 (Tanaka [31, Theorem 1]). Let {Rk}k≥0 be a linear recurrence of

positive integers satisfying (1.2.2). Suppose that {Rk}k≥0 satisfies Condition 1.2.5.

Assume that {Rk}k≥0 is not a geometric progression. Define f ∗(z) := F({Rk}; 1, z) =∑∞
k=0 z

Rk , g∗(z) := G({Rk}; 1, z) =
∏∞

k=0(1 − zRk), and h∗(z) := H({Rk}; 1, 1, z) =∑∞
k=0 z

Rk/(1 − zRk). Let a1, . . . , ar be algebraic numbers with 0 < |ai| < 1 (1 ≤ i ≤
r). Then the following three properties are equivalent:

(i) The 3r complex numbers f ∗(ai), g
∗(ai), and h

∗(ai) (1 ≤ i ≤ r) are algebraically

dependent.

14



(ii) The r + 1 complex numbers 1, f ∗(a1), . . . , f
∗(ar) are linearly dependent over

Q.

(iii) There exist a nonempty subset {ai1 , . . . , ais} of {a1, . . . , ar}, roots of unity

ζ1, . . . , ζs, an algebraic number γ with aiq = ζqγ (1 ≤ q ≤ s), and algebraic

numbers ξ1, . . . , ξs, not all zero, such that

s∑
q=1

ξqζ
Rk
q = 0

for all sufficiently large k.

In particular, there are no algebraic relations among the values of the functions

f ∗(z), g∗(z), and h∗(z) at algebraic numbers such as a and ad with 0 < |a| < 1 and

d ≥ 2, in contrast with the case of geometric progressions.

Remark 1.2.10. Let {Rk}k≥0 be a linear recurrence of nonnegative integers satisfy-

ing (1.2.2). Define f1(z) :=
∑∞

k=0 z
Rk+k and f2(z) :=

∑∞
k=0 z

Rk−k. Tanaka, Toyama,

and the author [10, Theorems 1.11 and 1.16] proved that, if the roots of Φ(X) satisfy

suitable conditions, then each of f1(z) and f2(z) possesses Property 1.1.9, namely

the infinite subset {f (l)
i (a) | l ≥ 0, a ∈ Q, 0 < |a| < 1} of C is algebraically inde-

pendent for each i = 1, 2. In particular, if d is an integer greater than 1, then each of∑∞
k=0 z

dk+k and
∑∞

k=0 z
dk−k has Property 1.1.9. As far as the author knows, these are

the only examples of lacunary series
∑∞

k=0 z
ek with 1 < limk→∞ ek+1/ek <∞ having

Property 1.1.9. We note that the series
∑∞

k=0 z
k!+k in Theorem 1.1.7 is an example

of lacunary series satisfying limk→∞ ek+1/ek = ∞ and Property 1.1.9. On the other

hand, Tanuma [34, Corollary 2] proved that the exponential type Hecke-Mahler se-

ries
∑∞

k=1 z
[kω] has Property 1.1.9, where ω is a positive quadratic irrational number.

This is the only result on power series
∑∞

k=0 z
ek satisfying limk→∞ ek+1/ek = 1 and

Property 1.1.9.

Next we introduce the case (B) mentioned at the beginning of this section.

We fix an algebraic number a with 0 < |a| < 1. First we consider the functions

F({dk}; x; am) (m = 1, 2, . . .), G({dk}; y, a), and H({dk}; x, y, a), where d is an inte-

ger greater than 1. Nishioka proved that each of the entire functions F({dk}; x; am)

15



(m = 1, 2, . . .) has Property 1.1.9, using her criterion on the algebraic independence

of the values of Mahler functions.

Theorem 1.2.11 (Nishioka [22, Theorem 7]). Let m be a positive integer and let

Fm(x) := F({dk}; x; am) =
∑∞

k=0 a
mdkxk. Then the infinite subset {F (l)

m (α) | l ≥
0, α ∈ Q×} of C is algebraically independent for each fixed m.

Remark 1.2.12. The family {Fm(x)}m≥1 in Theorem 1.2.11 does not have Prop-

erty 1.1.10. Indeed, the infinite set {F (l)
m (α) | l ≥ 0, m ≥ 1, α ∈ Q×} is algebraically

dependent since αFd(α) + a = F1(α) for any nonzero algebraic number α.

Using Mahler’s method, we can also derive the transcendency of the values of

the infinite product G({dk}; y, a) =
∏∞

k=0(1 − ad
k
y) and the Lambert type series

H({dk}; x, y, a) =
∑∞

k=0 a
dkxk/(1 − ad

k
y). Let α and β be nonzero algebraic num-

bers with β /∈ {a−dk | k ≥ 0}. Then the values G({dk}; β, a) and H({dk};α, β, a)

are transcendental if (d, β) 6= (2,−1) and (d, α, β) 6= (2, 2,−1), respectively (cf.

Nishioka [23, Theorems 1.2 and 1.3]). However, in contrast with Theorem 1.2.11,

these values at distinct algebraic points are not always algebraically independent

as shown below. Let γ1, . . . , γd be the d-th roots of β. Then the d + 1 values

G({dk}; β, a),G({dk}; γ1, a), . . . ,G({dk}; γd, a) are algebraically dependent and so are

H({dk}; 1, β, a),H({dk}; 1, γ1, a), . . . ,H({dk}; 1, γd, a), since

(1 − aβ)
d∏

i=1

G({dk}; γi, a) = G({dk}; β, a)

and
d∑

i=1

γiH({dk}; 1, γi, a) + ad
β

1 − aβ
= dβH({dk}; 1, β, a).

Remark 1.2.13. For the case where (d, β) = (2,−1), we see that

G({2k};−1, a) =
∞∏
k=0

(1 + a2
k

) =
1

1 − a
∈ Q.

Moreover, for the case where (d, α, β) = (2, 2,−1), we can verify that

H({2k}; 2,−1, a) =
∞∑
k=0

2ka2
k

1 + a2k
=

a

1 − a
∈ Q.
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Finally, we consider the functions

Fm(x) := F({Rk}; x; am) =
∞∑
k=0

amRkxk (m = 1, 2, . . .), (1.2.6)

G(y) := G({Rk}; y, a) =
∞∏
k=0

(1 − aRky), (1.2.7)

and

H(x, y) := H({Rk}; x, y, a) =
∞∑
k=0

aRkxk

1 − aRky
, (1.2.8)

where {Rk}k≥0 is a linear recurrence of nonnegative integers satisfying (1.2.2). We

suppose that {Rk}k≥0 satisfies Condition 1.2.5 and that {Rk}k≥0 is not a geometric

progression (cf. Remark 1.2.8). For the algebraic independence of the values of

the functions above, there are more remarkable results than the case of geometric

progressions. In contrast with Remark 1.2.12, not only each function Fm(x) has

Property 1.1.9, but also the infinite family {Fm(x)}m≥1 has Property 1.1.10.

Theorem 1.2.14 (Tanaka [30, A special case of Theorem 3]). Let {Rk}k≥0 be a

linear recurrence of nonnegative integers satisfying (1.2.2). Suppose that {Rk}k≥0

satisfies Condition 1.2.5. Assume that {Rk}k≥0 is not a geometric progression. Then

the infinite subset {F (l)
m (α) | l ≥ 0, m ≥ 1, α ∈ Q×} of C is algebraically indepen-

dent.

This theorem was obtained by applying Nishioka’s criterion for the algebraic

independence of the values of Mahler functions. On the other hand, using Kubota’s

criterion, Tanaka [33, Theorem 2] proved the algebraic independency of the infinite

set

{G(β) | β ∈ B}
⋃{∂mH

∂ym
(1, β)

∣∣∣∣ m ≥ 0, β ∈ B
}
,

where B denotes the set of nonzero algebraic numbers different from the zeros of

G(y). From this, he deduced the following theorem by using the fact that the deriva-

tives of G(y) are expressed as polynomials with integral coefficients of G(y), H(1, y),

and the partial derivatives of H(1, y) with respect to y.
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Theorem 1.2.15 (Tanaka [33, Theorem 1]). Let {Rk}k≥0 be a linear recurrence

of nonnegative integers satisfying (1.2.2). Suppose that {Rk}k≥0 satisfies Condi-

tion 1.2.5. Assume that {Rk}k≥0 is not a geometric progression. Then the infinite

subset {G(m)(β) | m ≥ 0, β ∈ B} of C is algebraically independent.

This theorem asserts that the infinite product G(y) has ‘quasi’ Property 1.1.9,

however does not give an answer to whether the algebraic independency of a larger

infinite set {G(m)(β) | m ≥ Nβ, β ∈ Q×} holds, where Nβ is defined by

Nβ := #{k ≥ 0 | a−Rk = β} = ord
y=β

Gi(y) (1.2.9)

for each nonzero algebraic number β.

1.3 Main results

In this section we introduce two main theorems of this thesis and their corollaries.

In the first main theorem we deal with not only the complex case but also the

p-adic case. Let v be ∞ or a prime number and {Rk}k≥0 a linear recurrence of

nonnegative integers satisfying (1.2.2). In the case where v is ∞, we suppose that

{Rk}k≥0 satisfies Condition 1.2.5. On the other hand, in the case where v is a prime

number, we suppose the stronger Condition 1.2.1 on {Rk}k≥0. In both of these two

cases we assume further that {Rk}k≥0 is not a geometric progression. We fix an

algebraic number a with 0 < |a|v < 1 and consider the functions Fm(x), G(y), and

H(x, y) given by (1.2.6), (1.2.7), and (1.2.8), respectively. If v is a prime number

p, we regard these functions as p-adic functions. Moreover, we define a two-variable

function Θ(x, y) by

Θ(x, y) := G(y)H(x, y) =
∞∑
k=0

aRkxk
∞∏

k′=0,
k′ ̸=k

(1 − aRk′y). (1.3.1)

By the asymptotic formula (1.2.4), Θ(x, y) is an entire function on Cv × Cv. For

each nonzero algebraic number β, let Nβ be the number defined by (1.2.9). Note

that Nβ is 0 or 1 for all but finitely many β. The following is the first main theorem

of this thesis.
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Theorem 1.3.1 (Ide [7, Theorem 1.7]). Let v be ∞ or a prime number and {Rk}k≥0

a linear recurrence of nonnegative integers satisfying (1.2.2). Suppose that {Rk}k≥0

satisfies Conditions 1.2.5 or 1.2.1 according respectively as v is ∞ or a prime num-

ber. Assume further that {Rk}k≥0 is not a geometric progression. Then the infinite

subset {
F (l)
m (α)

∣∣∣ l ≥ 0, m ≥ 1, α ∈ Q×
}⋃{

G(Nβ)(β)
∣∣∣ β ∈ Q×

}
⋃{ ∂l+mΘ

∂xl∂ym
(α, β)

∣∣∣∣ l ≥ 0, m ≥ Nβ, α ∈ Q×
, β ∈ Q×

}
of Qv is algebraically independent.

We will see in Remark 2.2.3 that the algebraic independency of the infinite set

{F (l)
m (α) | l ≥ 0, m ≥ 1, α ∈ Q×} is equivalent to that of {∂l+mΘ/∂xl∂ym(α, 0) |

l ≥ 0, m ≥ 0, α ∈ Q×}. Hence the conclusion of Theorem 1.3.1 is equivalent to the

following:

The infinite subset{
G(Nβ)(β)

∣∣∣ β ∈ Q×
}⋃{ ∂l+mΘ

∂xl∂ym
(α, β)

∣∣∣∣ l ≥ 0, m ≥ Nβ, α ∈ Q×
, β ∈ Q

}
(1.3.2)

of Qv is algebraically independent, where N0 := 0.

On the other hand, substituting x = 1 into Θ(x, y), we see by the logarithmic

derivation of G(y) that Θ(1, y) = G(y)H(1, y) = −G′(y) and thus

∂mΘ

∂ym
(1, y) = −G(m+1)(y) (1.3.3)

for any m ≥ 0. Therefore the set {F (l)
m (α) | l ≥ 0, m ≥ 1, α ∈ Q×} treated in

Theorem 1.2.14 and the set {G(m)(β) | m ≥ Nβ, β ∈ Q×} mentioned immediately

after Theorem 1.2.15 can be regarded as subsets of the set (1.3.2), as long as we

are interested only in their algebraic independency. From this point of view, the

sets treated in Theorems 1.2.14, 1.2.15, and 1.3.1 are represented respectively in

Tables 1.1, 1.2, and 1.3 below. (In these tables, the function ∂l+mΘ/∂xl∂ym(x, y) is

written as Θ(l,m)(x, y).)

19



x = α ∈ Q×

α1 = 1 α2 α3 · · ·

y = β ∈ Q

β0 = 0 F
(l)
m (1) F

(l)
m (α2) F

(l)
m (α3) · · ·

β ∈ B
β1 G(m)(β1) Θ(l,m)(α2, β1) Θ(l,m)(α3, β1) · · ·
β2 G(m)(β2) Θ(l,m)(α2, β2) Θ(l,m)(α3, β2) · · ·
...

...
...

...
. . .

β ∈ Q× \ B
= {a−Rk | k ≥ 0}

β′
1 G(m)(β′

1) Θ(l,m)(α2, β
′
1) Θ(l,m)(α3, β

′
1) · · ·

β′
2 G(m)(β′

2) Θ(l,m)(α2, β
′
2) Θ(l,m)(α3, β

′
2) · · ·

...
...

...
...

. . .

Table 1.1: The numbers treated in Theorem 1.2.14

x = α ∈ Q×

α1 = 1 α2 α3 · · ·

y = β ∈ Q

β0 = 0 F
(l)
m (1) F

(l)
m (α2) F

(l)
m (α3) · · ·

β ∈ B
β1 G(m)(β1) Θ(l,m)(α2, β1) Θ(l,m)(α3, β1) · · ·
β2 G(m)(β2) Θ(l,m)(α2, β2) Θ(l,m)(α3, β2) · · ·
...

...
...

...
. . .

β ∈ Q× \ B
= {a−Rk | k ≥ 0}

β′
1 G(m)(β′

1) Θ(l,m)(α2, β
′
1) Θ(l,m)(α3, β

′
1) · · ·

β′
2 G(m)(β′

2) Θ(l,m)(α2, β
′
2) Θ(l,m)(α3, β

′
2) · · ·

...
...

...
...

. . .

Table 1.2: The numbers treated in Theorem 1.2.15

x = α ∈ Q×

α1 = 1 α2 α3 · · ·

y = β ∈ Q

β0 = 0 F
(l)
m (1) F

(l)
m (α2) F

(l)
m (α3) · · ·

β ∈ B
β1 G(m)(β1) Θ(l,m)(α2, β1) Θ(l,m)(α3, β1) · · ·
β2 G(m)(β2) Θ(l,m)(α2, β2) Θ(l,m)(α3, β2) · · ·
...

...
...

...
. . .

β ∈ Q× \ B
= {a−Rk | k ≥ 0}

β′
1 G(m)(β′

1) Θ(l,m)(α2, β
′
1) Θ(l,m)(α3, β

′
1) · · ·

β′
2 G(m)(β′

2) Θ(l,m)(α2, β
′
2) Θ(l,m)(α3, β

′
2) · · ·

...
...

...
...

. . .

Table 1.3: The numbers treated in Theorem 1.3.1

Extracting the first row and the first column from Table 1.3, we obtain the

following Corollary 1.3.2 and Table 1.4.
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Corollary 1.3.2. Let v be ∞ or a prime number and {Rk}k≥0 as in Theorem 1.3.1.

Then the infinite subset{
F (l)
m (α)

∣∣∣ l ≥ 0, m ≥ 1, α ∈ Q×
}⋃{

G(m)(β)
∣∣∣ m ≥ Nβ, β ∈ Q×

}
of Qv is algebraically independent.

x = α ∈ Q×

α1 = 1 α2 α3 · · ·

y = β ∈ Q

β0 = 0 F
(l)
m (1) F

(l)
m (α2) F

(l)
m (α3) · · ·

β ∈ B
β1 G(m)(β1) Θ(l,m)(α2, β1) Θ(l,m)(α3, β1) · · ·
β2 G(m)(β2) Θ(l,m)(α2, β2) Θ(l,m)(α3, β2) · · ·
...

...
...

...
. . .

β ∈ Q× \ B
= {a−Rk | k ≥ 0}

β′
1 G(m)(β′

1) Θ(l,m)(α2, β
′
1) Θ(l,m)(α3, β

′
1) · · ·

β′
2 G(m)(β′

2) Θ(l,m)(α2, β
′
2) Θ(l,m)(α3, β

′
2) · · ·

...
...

...
...

. . .

Table 1.4: The numbers treated in Corollary 1.3.2

Corollary 1.3.2 refines Theorems 1.2.14 and 1.2.15, namely we obtain the alge-

braic independency of the union of the infinite sets treated in the two theorems as

well as the nonzero derivatives at the zeros of the infinite product G(y).

As another corollary to Theorem 1.3.1, we obtain an entire function of two

variables which possesses Property 1.1.9 for its partial derivatives. Such a function

is defined by

Ξ(x, y) :=
∂Θ

∂y
(x, y) = G(y)

∑
k1,k2≥0,
k1 ̸=k2

−aRk1
+Rk2xk1

(1 − aRk1y)(1 − aRk2y)
.

Corollary 1.3.3. Let v be ∞ or a prime number and {Rk}k≥0 as in Theorem 1.3.1.

Assume in addition that {Rk}k≥0 is strictly increasing. Then the infinite subset{
∂l+mΞ

∂xl∂ym
(α, β)

∣∣∣∣ l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ Q×

}
of Qv is algebraically independent.
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Remark 1.3.4. Corollary 1.3.3 establishes the algebraic independence of the partial

derivatives of the entire function Ξ(x, y) of two variables at any distinct algebraic

points. On the other hand, there are known results on the algebraic independence of

the values of three-variable functions without their partial derivatives. For example,

let {Gk}k≥0 be the generalized Fibonacci numbers defined by

G0 = 0, G1 = 1, Gk+2 = bGk+1 +Gk (k ≥ 0),

where b is a positive integer. We consider here the complex function

T (x, y, z) :=
∞∑
k=1

xkzG1+G2+···+Gk

(1 − yzG1)(1 − yzG2) · · · (1 − yzGk)
=

∞∑
k=1

k∏
l=1

xzGl

1 − yzGl

of three variables, which converges in the union of the two domains

{(x, y, z) ∈ C3 | |z| < 1, 1 − yzGk 6= 0 for any k ≥ 1} (1.3.4)

and

{(x, y, z) ∈ C3 | |x| < |y|, 1 < |z|, 1 − yzGk 6= 0 for any k ≥ 1}.

Let D be the subdomain of (1.3.4) defined by D := C× {|y| ≤ 1} × {|z| < 1}. For

the function T (x, y, z), Tanaka [32, Example 1] proved that the infinite set

{T (α, β, a) | (α, β, a) ∈ (Q×
)3 ∩D} = {T (α, β, a) | α, β, a ∈ Q×

, |β| ≤ 1, |a| < 1}

is algebraically independent. (More generally, he [32, Theorem] obtained a necessary

and sufficient condition for the values at algebraic points of a certain class of three-

variable functions including T (x, y, z) to be algebraically independent.) This is

a remarkable result that establishes the algebraic independence of the infinite set

consisting of the values of the three-variable function T (x, y, z) at distinct algebraic

points; however, it should be noted that the domains of definition of y and z are

restricted.

Let B be as in Theorem 1.2.15, namely

B := Q× \ {a−Rk | k ≥ 0} = {β ∈ Q× | G(β) 6= 0}.

We note that Nβ = 0 if and only if β ∈ B. In Chapter 2 we deduce Theorem 1.3.1

from the following:
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Theorem 1.3.5 (Ide [7, Theorem 1.11]). Let v be ∞ or a prime number and {Rk}k≥0

as in Theorem 1.3.1. Then the infinite subset{
F (l)
m (α)

∣∣∣ l ≥ 0, m ≥ 1, α ∈ Q×
}⋃

{G(β) | β ∈ B}⋃{ ∂l+mH

∂xl∂ym
(α, β)

∣∣∣∣ l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ B

}
of Qv is algebraically independent.

We prove Theorem 1.3.5 in Chapter 4. In what follows, we consider only the

case of complex numbers. In the second main theorem of this thesis, we merge

the two cases (A) and (B) described in Section 1.2 by extending Theorem 1.3.5.

Let a1, . . . , ar be algebraic numbers with 0 < |ai| < 1 (1 ≤ i ≤ r). Inspired by

Theorem 1.2.9, we define

Fi,m(x) := F({Rk}; x, ami ) =
∞∑
k=0

amRk
i xk (m = 1, 2, . . .), (1.3.5)

Gi(y) := G({Rk}; y, ai) =
∞∏
k=0

(1 − aRk
i y), (1.3.6)

Hi(x, y) := H({Rk}; x, y, ai) =
∞∑
k=0

aRk
i xk

1 − aRk
i y

, (1.3.7)

and

Bi := Q× \ {a−Rk
i | k ≥ 0} = {β ∈ Q× | Gi(β) 6= 0}

for each i (1 ≤ i ≤ r). Then the infinite set

Ti :=
{
F

(l)
i,m(α)

∣∣∣ l ≥ 0, m ≥ 1, α ∈ Q×
}⋃

{Gi(β) | β ∈ Bi}⋃{∂l+mHi

∂xl∂ym
(α, β)

∣∣∣∣ l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ Bi

}
is algebraically independent for each i (1 ≤ i ≤ r) by Theorem 1.3.5. However,

Theorem 1.3.5 provides no information on the algebraic independence of the union

T :=
r⋃

i=1

Ti

=
{
F

(l)
i,m(α)

∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 1, α ∈ Q×
}⋃

{Gi(β) | 1 ≤ i ≤ r, β ∈ Bi}⋃{∂l+mHi

∂xl∂ym
(α, β)

∣∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ Bi

}
.
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The main aim of this study is to obtain the necessary and sufficient condition on

algebraic numbers a1, . . . , ar for the infinite set T to be algebraically independent.

Suppose here that ai and aj are multiplicatively dependent for some i, j with

1 ≤ i < j ≤ r. Then it is easily seen that the infinite set T is algebraically

dependent. Indeed, assuming ad11 = ad22 for some positive integers d1 and d2, we

have F1,d1(α) =
∑∞

k=0 a
d1Rk
1 αk =

∑∞
k=0 a

d2Rk
2 αk = F2,d2(α) for any nonzero algebraic

number α, which implies that the infinite set T is algebraically dependent. In

addition, algebraic relations also appear respectively among the values at several

algebraic numbers of Gi(y) (i = 1, 2) and those of Hi(1, y) (i = 1, 2) in this case. To

see this, let ζi (i = 1, 2) be a primitive di-th root of unity. Then we have

d1−1∏
i=0

G1(ζ
i
1y

d2) =
∞∏
k=0

(1 − ad1Rk
1 yd1d2) =

∞∏
k=0

(1 − ad2Rk
2 yd1d2) =

d2−1∏
j=0

G2(ζ
j
2y

d1).

Taking the logarithmic derivative of this equation and using the relations Hi(1, y) =

−G′
i(y)/Gi(y) (i = 1, 2), we obtain

d1−1∑
i=0

d2ζ
i
1y

d2H1(1, ζ
i
1y

d2) =

d2−1∑
j=0

d1ζ
j
2y

d1H2(1, ζ
j
2y

d1).

Hence, if a nonzero algebraic number β satisfies ζ i1β
d2 ∈ B1 (0 ≤ i ≤ d1 − 1) and

ζj2β
d1 ∈ B2 (0 ≤ j ≤ d2− 1), then the d1 + d2 nonzero elements G1(ζ

i
1β

d2), G2(ζ
j
2β

d1)

(0 ≤ i ≤ d1 − 1, 0 ≤ j ≤ d2 − 1) of T are algebraically dependent and so are the

d1 + d2 elements H1(1, ζ
i
1β

d2), H2(1, ζ
j
2β

d1) (0 ≤ i ≤ d1 − 1, 0 ≤ j ≤ d2 − 1) of

T . Therefore the infinite set T is algebraically independent only if a1, . . . , ar are

pairwise multiplicatively independent. The second main theorem of this thesis is

the following:

Theorem 1.3.6 (Ide [8, Theorem 1.8]). Let {Rk}k≥0 be a linear recurrence of non-

negative integers satisfying (1.2.2). Suppose that {Rk}k≥0 satisfies Condition 1.2.5.

Assume that {Rk}k≥0 is not a geometric progression. Then the infinite subset

T =
{
F

(l)
i,m(α)

∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 1, α ∈ Q×
}⋃

{Gi(β) | 1 ≤ i ≤ r, β ∈ Bi}⋃{∂l+mHi

∂xl∂ym
(α, β)

∣∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ Bi

}
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of C is algebraically independent if and only if a1, . . . , ar are pairwise multiplicatively

independent.

In Chapter 4, we prove the if part of Theorem 1.3.6, namely the following:

Theorem 1.3.7 (Ide [8, Theorem 1.9]). Let {Rk}k≥0 be as in Theorem 1.3.6. As-

sume that a1, . . . , ar are pairwise multiplicatively independent. Then the infinite

subset T of C is algebraically independent.

In order to construct a family of entire functions of two variables having Prop-

erty 1.1.10, we define

Θi(x, y) := Gi(y)Hi(x, y) =
∞∑
k=0

aRk
i xk

∞∏
k′=0,
k′ ̸=k

(1 − a
Rk′
i y) (1.3.8)

and

Ni,β := #{k ≥ 0 | a−Rk
i = β} = ord

y=β
Gi(y)

for each i (1 ≤ i ≤ r) and for each nonzero algebraic number β. Applying Theo-

rem 1.3.7, we prove in Chapter 2 the following theorem, which is an extension of

Theorem 1.3.1 in the case of complex numbers.

Theorem 1.3.8 (Ide [8, Theorem 1.12]). Let {Rk}k≥0 and a1, . . . , ar be as in The-

orem 1.3.7. Then the infinite subset{
F

(l)
i,m(α)

∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 1, α ∈ Q×
}

⋃{
G

(Ni,β)
i (β)

∣∣∣ 1 ≤ i ≤ r, β ∈ Q×
}

⋃{∂l+mΘi

∂xl∂ym
(α, β)

∣∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ Ni,β, α ∈ Q×
, β ∈ Q×

}
of C is algebraically independent.

Similarly to Corollary 1.3.2, we can deduce the following from Theorem 1.3.8.

Corollary 1.3.9. Let {Rk}k≥0 and a1, . . . , ar be as in Theorem 1.3.7. Then the

infinite subset {
F

(l)
i,m(α)

∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 1, α ∈ Q×
}

⋃{
G

(m)
i (β)

∣∣∣ 1 ≤ i ≤ r, m ≥ Ni,β, β ∈ Q×
}
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of C is algebraically independent.

Moreover, similarly to Corollary 1.3.3, letting

Ξi(x, y) :=
∂Θi

∂y
(x, y) = Gi(y)

∑
k1,k2≥0,
k1 ̸=k2

−aRk1
+Rk2

i xk1

(1 − a
Rk1
i y)(1 − a

Rk2
i y)

for each i (1 ≤ i ≤ r), we obtain the following:

Corollary 1.3.10. Let {Rk}k≥0 and a1, . . . , ar be as in Theorem 1.3.7. Assume in

addition that {Rk}k≥0 is strictly increasing. Then the infinite subset{
∂l+mΞi

∂xl∂ym
(α, β)

∣∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ Q×

}
of C is algebraically independent.

Using Corollary 1.3.10, we exhibit a concrete example of an infinite family of

entire functions of two variables having Property 1.1.10.

Example 1.3.11. Let {Fk}k≥0 be the Fibonacci numbers as in Example 1.2.4. For

any nonnegative integer i, letting ai = 2−13−i and regarding {Fk+2}k≥0 as {Rk}k≥0,

we define

Ξi(x, y) =

(
∞∏
k=2

(1 − (2 · 3i)−Fky)

) ∑
k1,k2≥2,
k1 ̸=k2

−(2 · 3i)−Fk1
−Fk2xk1−2

(1 − (2 · 3i)−Fk1y)(1 − (2 · 3i)−Fk2y)
.

Then by Corollary 1.3.10 the infinite family {Ξi(x, y)}i≥0 has Property 1.1.10, namely

the infinite subset{
∂l+mΞi

∂xl∂ym
(α, β)

∣∣∣∣ i ≥ 0, l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ Q×

}
of C is algebraically independent.

In the rest of this section we introduce another result on the algebraic inde-

pendence of the values and the partial derivatives of Fi,m(x), Gi(y), and Hi(x, y).

Assume here that none of ai/aj (1 ≤ i < j ≤ r) is a root of unity. In this case, we

cannot deduce the algebraic independency of the infinite set T itself since a1, . . . , ar
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are not always pairwise multiplicatively independent. On the other hand, we see by

Theorem 1.2.9 that, if 1 ∈ Bi (1 ≤ i ≤ r), then the 3r elements Fi,1(1) =
∑∞

k=0 a
Rk
i ,

Gi(1) =
∏∞

k=0(1 − aRk
i ), and Hi(1, 1) =

∑∞
k=0 a

Rk
i /(1 − aRk

i ) (1 ≤ i ≤ r) of T are

algebraically independent. Here we can extend this result to the following theorem,

whose proof will be provided in Chapter 4.

Theorem 1.3.12 (Ide [8, Theorem 1.13]). Let {Rk}k≥0 be as in Theorem 1.3.6.

Assume that none of ai/aj (1 ≤ i < j ≤ r) is a root of unity. Let m0 be a positive

integer. For each i (1 ≤ i ≤ r), let βi and β′
i be any elements of Bi. Then the

infinite subset{
F

(l)
i,m0

(α)
∣∣∣ 1 ≤ i ≤ r, l ≥ 0, α ∈ Q×

}⋃
{Gi(βi) | 1 ≤ i ≤ r}⋃{∂l+mHi

∂xl∂ym
(α, β′

i)

∣∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 0, α ∈ Q×
}

of T is algebraically independent.

This thesis is organized as follows. In Chapter 2, we establish Lemmas 2.1.1–

2.1.3 and 2.2.1–2.2.2. The first three lemmas assert the existence of invertible linear

relations among the values of a wider class of functions including those stated in

Section 1.3, using which we can avoid the zeros of the infinite products Gi(y). The

latter two lemmas claim the existence of invertible algebraic relations among the

above functions themselves, by which we can reduce the algebraic independency

of the values and the partial derivatives of the entire functions Θi(x, y) to that

of the Lambert type series Hi(x, y). Using these lemmas and shifting the linear

recurrence {Rk}k≥0 so as to avoid the zeros of the infinite products Gi(y), we deduce

Theorems 1.3.1 and 1.3.8 from Theorems 1.3.5 and 1.3.7, respectively. The proofs

of Corollaries 1.3.2, 1.3.3, 1.3.9, and 1.3.10 are also provided in Chapter 2. In

Chapter 3, we establish a criterion for the algebraic independence of the values of

Mahler functions corresponding to those stated in Theorems 1.3.5, 1.3.7, and 1.3.12.

Our criterion, which is valid not only in the complex case but also in the p-adic case,

includes Nishioka’s criterion and a special case of Kubota’s one. In the last chapter,

using our criterion, we reduce the negations of Theorems 1.3.5, 1.3.7, and 1.3.12
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to the linear dependence or the multiplicative dependence of the Mahler functions

above. Applying Tanaka’s results on the nonexistence of nontrivial rational function

solutions of certain types of functional equations, we obtain a linear dependence

relation of certain power series of one variable, which easily leads to a contradiction

in the case of Theorem 1.3.5. In the cases of Theorems 1.3.7 and 1.3.12, the situation

on the linear dependence becomes more complicated. We prove Theorem 1.3.12 by

showing directly that a term of sufficiently high order never vanishes in the linear

combination. On the other hand, in the proof of Theorem 1.3.7, using the precise

assumption on the algebraic numbers a1, . . . , ar, we can reduce the situation on the

linear dependence to that similar to Theorem 1.3.5. This observation allows us to

establish the algebraic independency of the infinite set T larger than that treated

in Theorem 1.3.12.
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Chapter 2

Proofs of Theorems 1.3.1, 1.3.8,
and their corollaries

2.1 Linear relations among the values of a wider

class of functions

Let v be ∞ or a prime number. In this section and the next section we consider the

functions f(x), g(y), h(x, y), and θ(x, y) defined by

f(x) :=
∞∑
k=0

akx
k, g(y) :=

∞∏
k=0

(1 − aky), h(x, y) :=
∞∑
k=0

akx
k

1 − aky
, (2.1.1)

and

θ(x, y) := g(y)h(x, y) =
∞∑
k=0

akx
k

∞∏
k′=0,
k′ ̸=k

(1 − ak′y), (2.1.2)

where {ak}k≥0 is a sequence of algebraic numbers satisfying

1

lim supk→∞ |ak|1/kv

=: r > 1. (2.1.3)

Then f(x), g(y), h(x, y), and θ(x, y) converge in {x ∈ Cv | |x|v < r}, in Cv, in

{x ∈ Cv | |x|v < r} × {y ∈ Cv | y 6= a−1
k for any k ≥ 0 with ak 6= 0}, and in

{x ∈ Cv | |x|v < r} × Cv, respectively. This framework includes the case of the

functions Fm(x), G(y), H(x, y), and Θ(x, y) defined by (1.2.6), (1.2.7), (1.2.8), and

(1.3.1) as the special case of ak = amRk or more simply that of ak = aRk . In the
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same way as (1.3.3), we see that

∂mθ

∂ym
(1, y) = −g(m+1)(y) (2.1.4)

for any m ≥ 0. Let α and β be any nonzero algebraic numbers with |α|v < r.

Similarly to the number Nβ defined by (1.2.9), we define the number nβ by

nβ := #{k ≥ 0 | ak = β−1} = ord
y=β

g(y).

In this section we establish explicit invertible linear relations between the values and

the (partial) derivatives of the functions above at (x, y) = (α, β) and those defined

by a shifted sequence of {ak}k≥0.

Since ak → 0 as k → ∞ by (2.1.3), there exists a sufficiently large integer k0

depending on β such that 1 − akβ 6= 0 for all k ≥ k0. Put ãk := ak+k0 (k ≥ 0).

Let f̃(x), g̃(y), h̃(x, y), and θ̃(x, y) be the functions given respectively by (2.1.1)

and (2.1.2) with the sequence {ãk}k≥0 in place of {ak}k≥0. For each positive integer

L, let ML(Q) be the multiplicative group of L × L lower triangular matrices with

entries in Q whose diagonal entries are nonzero. We note that, if A ∈ ML1 and

B ∈ ML2 , then the Kronecker product A⊗B belongs to ML1L2 . The following three

lemmas, especially the latter two, play a crucial role in the proofs of Theorems 1.3.1

and 1.3.8.

Lemma 2.1.1 (Ide [7, Proof of Theorem 2.1]). Let L be a nonnegative integer. Then

there exists Aα ∈ ML+1(Q) depending on α such that
f(α)
f ′(α)
...

f (L)(α)

 ≡ Aα


f̃(α)

f̃ ′(α)
...

f̃ (L)(α)

 (mod QL+1
).

Lemma 2.1.2 (Ide [7, Proof of Theorem 2.1]). Let L be a nonnegative integer. Then

there exists Bβ ∈ ML+1(Q) depending on β such that
g(nβ)(β)
g(1+nβ)(β)

...
g(L+nβ)(β)

 = Bβ


g̃(β)
g̃ ′(β)
...

g̃(L)(β)

 .
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Lemma 2.1.3 (Ide [7, Proof of Theorem 2.1]). Let L be a nonnegative integer. Let θ

and θ̃ be column vectors given respectively by sorting the values ∂l+mθ/∂xl∂ym(α, β)

and ∂l+mθ̃/∂xl∂ym(α, β) in the ascending lexicographical order of (l,m) ∈ {0, . . . , L}2

such that

(0, 0) < (0, 1) < · · · < (0, L) < (1, 0) < · · · < (L,L).

Then

θ ≡ (Aα ⊗ Bβ)θ̃ (mod W (L+1)2), (2.1.5)

where Aα and Bβ are as in Lemmas 2.1.1 and 2.1.2, respectively, and W is the

Q-vector space generated by {g̃(m)(β) | 0 ≤ m ≤ L + 1}. In particular, for the case

of α = 1, let θ′ and θ̃′ be column vectors given respectively by sorting the values

∂l+mθ/∂xl∂ym(1, β) and ∂l+mθ̃/∂xl∂ym(1, β) in the ascending lexicographical order

of (l,m) ∈ {1, . . . , L} × {0, . . . , L} such that

(1, 0) < (1, 1) < · · · < (1, L) < (2, 0) < · · · < (L,L).

Then

θ′ ≡ (A′
1 ⊗ Bβ)θ̃′ (mod WL(L+1)), (2.1.6)

where A′
1 ∈ ML(Q) is the submatrix of A1 given by

A1 =

(
1 O1,L

∗ A′
1

)
.

Remark 2.1.4. For each m (0 ≤ m ≤ L+1), we see by Lemma 2.1.2 that g(m+nβ)(β)

is represented as a linear combination of g̃(µ)(β) (0 ≤ µ ≤ m) and conversely g̃(m)(β)

is represented as that of g(µ+nβ)(β) (0 ≤ µ ≤ m). Hence {g(m+nβ)(β) | 0 ≤ m ≤
L + 1} and {g̃(m)(β) | 0 ≤ m ≤ L + 1} generate the same Q-vector space W in

Lemma 2.1.3.

Proof of Lemma 2.1.1. Let

R(x) := xk0 . (2.1.7)

Since

f(x) =
∞∑

k=k0

akx
k +

k0−1∑
k=0

akx
k = R(x)f̃(x) +

k0−1∑
k=0

akx
k,
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we have

f (l)(α) ≡
l∑

h=0

(
l

h

)
R(l−h)(α)f̃ (h)(α) (mod Q)

for any l (0 ≤ l ≤ L). Hence, letting

Aα :=


αk0

R′(α) αk0 0
...

. . . . . .

R(L)(α) · · · LR′(α) αk0

 ,

we obtain the lemma.

Proof of Lemma 2.1.2. We define polynomials Pβ(y) and Qβ(y) with algebraic co-

efficients by

Pβ(y) := (1 − β−1y)nβ , Qβ(y) :=

k0−1∏
k=0,

ak ̸=β−1

(1 − aky). (2.1.8)

Let

pβ := P
(nβ)

β (y), qβ := Qβ(β). (2.1.9)

Then pβ and qβ are nonzero algebraic numbers. Since

g(y) =

k0−1∏
k=0

(1 − aky) ×
∞∏

k=k0

(1 − aky) = Pβ(y)Qβ(y)g̃(y),

we see that, for any m (0 ≤ m ≤ L),

g(m+nβ)(β) =
m∑

h=0

(
m+ nβ

nβ m− h h

)
pβQ

(m−h)
β (β)g̃(h)(β).

Hence, letting

Bβ :=


pβqβ

(1 + nβ)pβQ
′
β(β) (1 + nβ)pβqβ 0

...
. . . . . .(

L+nβ

L

)
pβQ

(L)
β (β) · · ·

(
L+nβ

nβ 1 L−1

)
pβQ

′
β(β)

(
L+nβ

L

)
pβqβ

 ,

we obtain the lemma.
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Proof of Lemma 2.1.3. We define

Uβ(y) := (1 − β−1y)max{nβ−1,0} ∈ Q[y]

and

Vβ(x, y) :=

(
k0−1∑
k=0

akx
k

k0−1∏
k′=0,
k′ ̸=k

(1 − ak′y)

)
Uβ(y)−1.

Since Uβ(y) is a common divisor of
∏k0−1

k′=0, k′ ̸=k(1 − ak′y) (0 ≤ k ≤ k0 − 1), we see

that Vβ(x, y) ∈ Q[x, y]. Let R(x), Pβ(y), and Qβ(y) be as in (2.1.7) and (2.1.8).

Noting that Pβ(y)Qβ(y) and Uβ(y)Vβ(x, y) do not depend on β, we see that

θ(x, y) = R(x)Pβ(y)Qβ(y)θ̃(x, y) + Uβ(y)Vβ(x, y)g̃(y).

Since max{nβ, 1} + min{1, nβ} = nβ + 1 and so nβ − max{nβ − 1, 0} = min{1, nβ},

we have

∂l+m+nβθ

∂xl∂ym+nβ
(α, β)

=
l∑

h1=0

(
l

h1

)
R(l−h1)(α)

m∑
h2=0

(
m+ nβ

nβ m− h2 h2

)
pβQ

(m−h2)
β (β)

∂h1+h2 θ̃

∂xh1∂yh2
(α, β)

+

m+min{1,nβ}∑
h3=0

((
m+ nβ

max{nβ − 1, 0} m+ min{1, nβ} − h3 h3

)
×uβ

∂l+m+min{1,nβ}−h3Vβ
∂xl∂ym+min{1,nβ}−h3

(α, β)g̃(h3)(β)

)
(2.1.10)

for any l (0 ≤ l ≤ L) and m (0 ≤ m ≤ L), where pβ ∈ Q×
is defined by (2.1.9)

and uβ := U
(max{nβ−1,0})
β (y) ∈ Q×

. Hence we obtain the linear relation (2.1.5).
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Considering the case where α = 1 in (2.1.10), we see by (2.1.4) that

∂l+m+nβθ

∂xl∂ym+nβ
(1, β)

=
l∑

h1=1

(
l

h1

)
R(l−h1)(1)

m∑
h2=0

(
m+ nβ

nβ m− h2 h2

)
pβQ

(m−h2)
β (β)

∂h1+h2 θ̃

∂xh1∂yh2
(1, β)

+

m+min{1,nβ}∑
h3=0

((
m+ nβ

max{nβ − 1, 0} m+ min{1, nβ} − h3 h3

)
×uβ

∂l+m+min{1,nβ}−h3Vβ
∂xl∂ym+min{1,nβ}−h3

(1, β)g̃(h3)(β)

)
−R(l)(1)

m∑
h4=0

(
m+ nβ

nβ m− h4 h4

)
pβQ

(m−h4)
β (β)g̃(h4+1)(β)

for any l (1 ≤ l ≤ L) and m (0 ≤ m ≤ L), which implies the linear relation

(2.1.6).

2.2 Algebraic relations among the functions them-

selves

Next we provide invertible algebraic relations among the functions g(y), h(x, y),

and θ(x, y) themselves defined by (2.1.1) and (2.1.2). In this section we write

φ(l,m)(x, y) := ∂l+mφ/∂xl∂ym(x, y) for any analytic function φ(x, y) and nonneg-

ative integers l,m. For each positive integer L, let M∗
L(R) be the multiplicative

group of L × L lower triangular matrices with entries in the commutative ring R
whose diagonal entries are 1’s of R.

Lemma 2.2.1. Let l be a nonnegative integer and L a positive integer. Then there

exists C ∈ M∗
(L+1)2

(Z[{g(m)(y)/g(y) | 1 ≤ m ≤ L}]) such that
θ(l,0)(x, y)/g(y)
θ(l,1)(x, y)/g(y)

...
θ(l,L)(x, y)/g(y)

 = C


h(l,0)(x, y)
h(l,1)(x, y)

...
h(l,L)(x, y)

 .
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Proof. From (2.1.2), we see that

θ(l,m)(x, y)

g(y)
=

m∑
µ=0

(
m

µ

)
g(m−µ)(y)

g(y)
h(l,µ)(x, y)

for any m (0 ≤ m ≤ L). Hence, letting

C :=


1

g′(y)/g(y) 1 0
...

. . . . . .

g(L)(y)/g(y) · · · Lg′(y)/g(y) 1

 ,

we obtain the lemma.

Lemma 2.2.2 (Ide and Tanaka [9, Lemma 2.4]). Let L be a positive integer.

Then there exist D1 ∈ M∗
L+1(Z[{h(0,m)(1, y) | 0 ≤ m ≤ L − 1}]) and D2 ∈

M∗
L+1(Z[{g(m)(y)/g(y) | 1 ≤ m ≤ L}]) such that

−g′(y)/g(y)
−g′′(y)/g(y)

...
−g(L+1)(y)/g(y)

 = D1


h(1, y)

h(0,1)(1, y)
...

h(0,L)(1, y)


and 

h(1, y)
h(0,1)(1, y)

...
h(0,L)(1, y)

 = D2


−g′(y)/g(y)
−g′′(y)/g(y)

...
−g(L+1)(y)/g(y)

 .

Proof. Since g′(y) = −g(y)h(1, y) by (2.1.1), we see inductively that, for any m ≥ 0,

g(m)(y) = g(y)Pm

(
h(1, y), . . . , h(0,m−1)(1, y)

)
, (2.2.1)

where P0 := 1 and Pm(X0, . . . , Xm−1) ∈ Z[X0, . . . , Xm−1] (m ≥ 1). Then again from

the equation −g′(y) = g(y)h(1, y), using the Leibniz rule and (2.2.1), we have

−g
(m+1)(y)

g(y)
=

m∑
µ=0

(
m

µ

)
g(m−µ)(y)

g(y)
h(0,µ)(1, y)

=
m∑

µ=0

(
m

µ

)
Pm−µ

(
h(1, y), . . . , h(0,m−µ−1)(1, y)

)
h(0,µ)(1, y) (2.2.2)
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for any m ≥ 0. On the other hand, we see inductively that, for any m ≥ 0,

dm

dym

(
1

g(y)

)
=

1

g(y)
Qm

(
−g

′(y)

g(y)
, . . . ,−g

(m)(y)

g(y)

)
,

where Q0 := 1 and Qm(Y1, . . . , Ym) ∈ Z[Y1, . . . , Ym] (m ≥ 1). Since h(1, y) =

−g′(y)/g(y), we have

h(0,m)(1, y) = −
m∑

µ=0

(
m

µ

)
g(µ+1)(y)

dm−µ

dym−µ

(
1

g(y)

)

=
m∑

µ=0

(
m

µ

)
Qm−µ

(
−g

′(y)

g(y)
, . . . ,−g

(m−µ)(y)

g(y)

)(
−g

(µ+1)(y)

g(y)

)
(2.2.3)

for any m ≥ 0. Hence, letting

D1 :=


1

P1(h(1, y)) 1 0
...

. . . . . .

PL(h(1, y), . . . , h(0,L−1)(1, y)) · · · LP1(h(1, y)) 1


and

D2 :=


1

Q1(−g′(y)/g(y)) 1 0
...

. . . . . .

QL(−g′(y)/g(y), . . . ,−g(L)(y)/g(y)) · · · LQ1(−g′(y)/g(y)) 1

 ,

we obtain the equations in the lemma from (2.2.2) and (2.2.3).

Remark 2.2.3. Here we consider the case of ak = aRk in Lemmas 2.2.1 and 2.2.2.

Substituting y = 0 into the equation in Lemma 2.2.1 and using the relation

∂mH

∂ym
(x, 0) = m!

∞∑
k=0

a(m+1)Rkxk

(1 − aRky)m+1

∣∣∣∣∣
y=0

= m!
∞∑
k=0

a(m+1)Rkxk = m!Fm+1(x), (2.2.4)

we obtain 
Θ(l,0)(x, 0)
Θ(l,1)(x, 0)

...
Θ(l,L)(x, 0)

 = C ′


0!F

(l)
1 (x)

1!F
(l)
2 (x)
...

L!F
(l)
L+1(x)

 ,
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where C ′ ∈ M∗
L+1(Z[{G(m)(0) | 1 ≤ m ≤ L}]). Then by (1.3.3) we have C ′ ∈

M∗
L+1(Z[{Θ(0,m)(1, 0) | 0 ≤ m ≤ L− 1}]). On the other hand, by the first equation

in Lemma 2.2.2 and (2.2.4) we see that
−G′(0)
−G′′(0)

...
−G(L)(0)

 = D′
1


0!F1(1)
1!F2(1)

...
(L− 1)!FL(1)

 ,

where D′
1 ∈ M∗

L(Z[{Fm(1) | 1 ≤ m ≤ L − 1}]). Hence C ′ ∈ M∗
L+1(Z[{Fm(1) | 1 ≤

m ≤ L}]). Therefore the algebraic independency of the infinite set {Θ(l,m)(α, 0) |
l ≥ 0, m ≥ 0, α ∈ Q×} is equivalent to that of {F (l)

m (α) | l ≥ 0, m ≥ 1, α ∈ Q×},

since their finite subsets {Θ(l,m)(αλ, 0) | 0 ≤ l ≤ L, 0 ≤ m ≤ L, 1 ≤ λ ≤ L} and

{F (l)
m (αλ) | 0 ≤ l ≤ L, 1 ≤ m ≤ L + 1, 1 ≤ λ ≤ L} generate the same field over Q

for any positive integer L and nonzero distinct L algebraic numbers α1, . . . , αL with

α1 = 1.

2.3 Proofs of Theorem 1.3.8 and its corollaries

Using the lemmas proved in the previous two sections, we deduce Theorem 1.3.8

from Theorem 1.3.7.

Proof of Theorem 1.3.8. Let L be any positive integer and α1, . . . , αL any nonzero

distinct L algebraic numbers with α1 = 1. Let β1, . . . , βL be any nonzero distinct L

algebraic numbers. To simplify our notation, we write Ni,µ := Ni,βµ (1 ≤ i ≤ r, 1 ≤
µ ≤ L). It suffices to show that the finite set{

F
(l)
i,m(αλ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ l ≤ L, 1 ≤ m ≤ L, 1 ≤ λ ≤ L
}

⋃{
G

(Ni,µ)
i (βµ)

∣∣∣ 1 ≤ i ≤ r, 1 ≤ µ ≤ L
}

⋃{∂l+m+Ni,µΘi

∂xl∂ym+Ni,µ
(αλ, βµ)

∣∣∣∣ 1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ, µ ≤ L

}
is algebraically independent. Using the lemmas in Sections 2.1 and 2.2, we reduce the

algebraic independency of this set to that of other sets having the same cardinality.
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By the equation (1.3.3), the algebraic independency of the above set is equivalent

to that of{
F

(l)
i,m(αλ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ l ≤ L, 1 ≤ m ≤ L, 1 ≤ λ ≤ L
}

⋃{
G

(m+Ni,µ)
i (βµ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ m ≤ L+ 1, 1 ≤ µ ≤ L
}

⋃{∂l+m+Ni,µΘi

∂xl∂ym+Ni,µ
(αλ, βµ)

∣∣∣∣ 1 ≤ i ≤ r, l0(λ) ≤ l ≤ L, 0 ≤ m ≤ L,
1 ≤ λ, µ ≤ L

}
,

where

l0(λ) :=

{
1 (λ = 1),

0 (2 ≤ λ ≤ L).

Since Rk → ∞ as k → ∞ by (1.2.4), there exists a sufficiently large integer k0 such

that 1 − aRk
i βµ 6= 0 (1 ≤ i ≤ r, 1 ≤ µ ≤ L) for all k ≥ k0. Let R̃k := Rk+k0 (k ≥ 0).

Clearly, the linear recurrence {R̃k}k≥0 also satisfies Condition 1.2.5 and {R̃k}k≥0

is not a geometric progression. Let F̃i,m(x), G̃i(y), H̃i(x, y), and Θ̃i(x, y) be the

functions given respectively by (1.3.5), (1.3.6), (1.3.7), and (1.3.8) with {R̃k}k≥0 in

place of {Rk}k≥0. Then Lemmas 2.1.1, 2.1.2, and 2.1.3, together with Remark 2.1.4,

imply that the second set above and the set{
F̃

(l)
i,m(αλ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ l ≤ L, 1 ≤ m ≤ L, 1 ≤ λ ≤ L
}

⋃{
G̃

(m)
i (βµ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ m ≤ L+ 1, 1 ≤ µ ≤ L
}

⋃{∂l+mΘ̃i

∂xl∂ym
(αλ, βµ)

∣∣∣∣∣ 1 ≤ i ≤ r, l0(λ) ≤ l ≤ L, 0 ≤ m ≤ L,
1 ≤ λ, µ ≤ L

}

generate the same Q-vector space. Hence the algebraic independency of these two

sets are equivalent. Moreover, the algebraic independency of the third set is equiv-

alent to that of{
F̃

(l)
i,m(αλ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ l ≤ L, 1 ≤ m ≤ L, 1 ≤ λ ≤ L
}

⋃{
G̃

(m)
i (βµ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ m ≤ L+ 1, 1 ≤ µ ≤ L
}

⋃{∂l+mH̃i

∂xl∂ym
(αλ, βµ)

∣∣∣∣∣ 1 ≤ i ≤ r, l0(λ) ≤ l ≤ L, 0 ≤ m ≤ L,
1 ≤ λ, µ ≤ L

}
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since these two sets generate the same field over Q by Lemma 2.2.1. Furthermore,

the algebraic independency of the fourth set is equivalent to that of{
F̃

(l)
i,m(αλ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ l ≤ L, 1 ≤ m ≤ L, 1 ≤ λ ≤ L
}

⋃{
G̃i(βµ)

∣∣∣ 1 ≤ i ≤ r, 1 ≤ µ ≤ L
}

⋃{∂l+mH̃i

∂xl∂ym
(αλ, βµ)

∣∣∣∣∣ 1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ, µ ≤ L

}
since these two sets generate the same field over Q by Lemma 2.2.2. This completes

the proof since Theorem 1.3.7 for the linear recurrence {R̃k}k≥0 asserts that the last

set is algebraically independent.

Proof of Corollary 1.3.9. By the relation (1.3.3), the infinite set treated in Corol-

lary 1.3.9 coincides with{
F

(l)
i,m(α)

∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 1, α ∈ Q×
}

⋃{
G

(Ni,β)
i (β)

∣∣∣ 1 ≤ i ≤ r, β ∈ Q×
}

⋃{
−∂

mΘi

∂ym
(1, β)

∣∣∣∣ 1 ≤ i ≤ r, m ≥ Ni,β, β ∈ Q×
}
,

whose algebraic independency is deduced from Theorem 1.3.8.

Proof of Corollary 1.3.10. If {Rk}k≥0 is strictly increasing, then Ni,β ≤ 1 for any i

and nonzero algebraic number β. Thus, if {Rk}k≥0 is strictly increasing, then the

infinite set {
∂l+mΞi

∂xl∂ym
(α, β)

∣∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 0, α ∈ Q×
, β ∈ Q×

}
=

{
∂l+mΘi

∂xl∂ym
(α, β)

∣∣∣∣ 1 ≤ i ≤ r, l ≥ 0, m ≥ 1, α ∈ Q×
, β ∈ Q×

}
is a subset of the infinite set treated in Theorem 1.3.8, and hence it is algebraically

independent.

We omit the proofs of Theorem 1.3.1 and Corollaries 1.3.2 and 1.3.3, since their

proofs are obtained by considering the case where r = 1 in the proofs above and

using Theorem 1.3.5 instead of Theorem 1.3.7.
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Chapter 3

Mahler functions of several
variables

Theorems 1.3.5, 1.3.7, and 1.3.12 will be proved in the next chapter by reducing the

algebraic independency of the numbers in question to that of the values of certain

Mahler functions of several variables. The aim of this chapter is to establish a

criterion for algebraic independence of the values of Mahler functions.

3.1 Multiplicative transformation Ω

Let Ω = (ωij) be an n × n matrix with nonnegative integer entries. Then the

maximum ρ of the absolute values on C of the eigenvalues of Ω is itself an eigenvalue

of Ω (cf. Gantmacher [6, p. 66]). Let v be ∞ or a prime number. We define a

multiplicative transformation Ω: Cn
v → Cn

v by

Ωz :=

(
n∏

j=1

z
ω1j

j ,

n∏
j=1

z
ω2j

j , . . . ,

n∏
j=1

z
ωnj

j

)
(3.1.1)

for any z = (z1, . . . , zn) ∈ Cn
v . Then the iterates Ωkz (k = 0, 1, 2, . . .) are well-

defined. Let α = (α1, . . . , αn) be a point with α1, . . . , αn nonzero algebraic numbers.

We consider the following four conditions on Ω and α.

(I) Ω is nonsingular and none of its eigenvalues is a root of unity, so that ρ > 1.

(II) Every entry of the matrix Ωk is O(ρk) as k tends to infinity.
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(III)v If we put Ωkα =: (α
(k)
1 , . . . , α

(k)
n ), then

log |α(k)
i |v ≤ −cρk (1 ≤ i ≤ n)

for all sufficiently large k, where c is a positive constant.

In the case where v is ∞, the fourth condition is the following:

(IV)∞ For any nonzero f(z) ∈ C[[z1, . . . , zn]] which converges in some neighborhood

of the origin of Cn, there are infinitely many positive integers k such that

f(Ωkα) 6= 0.

On the other hand, in the case where v is a prime number p, the fourth condition

becomes the following:

(IV)p For any nonzero f(z) ∈ Cp[[z1, . . . , zn]] which converges in some neighbor-

hood of the origin of Cn
p and for any positive integer a, there are infinitely

many positive integers k such that f(Ωakα) 6= 0.

In the case where v is ∞, Mahler proved the following lemma, called Mahler’s

vanishing theorem, which gives a sufficient condition for a matrix Ω and a point α

to satisfy the four conditions (I)–(IV)∞.

Lemma 3.1.1 (Mahler [14], cf. Nishioka [23, Theorem 2.2]). Let Ω be an n × n

matrix with nonnegative integer entries. Suppose that the characteristic polynomial

of Ω is irreducible over Q and that Ω has an eigenvalue ρ > 1 which is greater

than the absolute values on C of any other eigenvalues. We denote by Aij the (i, j)-

cofactor of the matrix Ω − ρIn. Then Ai1 6= 0 for all i (1 ≤ i ≤ n). Moreover, if

nonzero algebraic numbers α1, . . . , αn satisfy

n∑
i=1

|Ai1|∞ log |αi|∞ < 0,

then the matrix Ω and the point α = (α1, . . . , αn) satisfy the four conditions (I)–

(IV)∞.
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Although the condition (IV)p for a prime number p is stronger than the condition

(IV)∞, we can prove the following lemma, which is the p-adic analogue of Mahler’s

vanishing theorem.

Lemma 3.1.2. Let Ω and Aij be as in Lemma 3.1.1. Then Ai1 6= 0 for all i

(1 ≤ i ≤ n). Suppose that p is a prime number. If nonzero algebraic numbers

α1, . . . , αn satisfy
n∑

i=1

|Ai1|∞ log |αi|p < 0,

then the matrix Ω and the point α = (α1, . . . , αn) satisfy the four conditions (I)–

(IV)p.

Proof. By Lemma 3.1.1, Ω satisfies the conditions (I) and (II). Moreover, in the

same way as in the proof of Lemma 3.1.1, we see that |A11|∞, . . . , |A1n|∞ are linearly

independent over Q and so are |A11|∞, . . . , |An1|∞ (see Nishioka [23, pp. 36–38]). In

particular, Ai1 6= 0 for all i (1 ≤ i ≤ n).

We see that the (i, j)-entry of Ωk is equal to A1|A1i|∞|Aj1|∞ρk + o(ρk), where

A1 > 0. For any index h = (h1, . . . , hn) ∈ Zn
≥0, we have

log |(Ωkα)h|p = log |(α(k)
1 )h1 · · · (α(k)

n )hn |p

= (h1, . . . , hn)Ωk

 log |α1|p
...

log |αn|p


= ρkA1(h1, . . . , hn)

 |A11|∞
∑n

j=1 |Aj1|∞ log |αj|p
...

|A1n|∞
∑n

j=1 |Aj1|∞ log |αj|p

+ o(ρk)

= ρkA1

(
n∑

i=1

|A1i|∞hi

)(
n∑

j=1

|Aj1|∞ log |αj|p

)
+ o(ρk).

In particular,

log |α(k)
i |p = ρkA1|A1i|∞

n∑
j=1

|Aj1|∞ log |αj|p + o(ρk).

By the assumption of the lemma,
∑n

j=1 |Aj1|∞ log |αj|p < 0 and so the condition

(III)p is satisfied.
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Finally we show that Ω and α satisfy the condition (IV)p. Let f(z) =
∑

h bhz
h

be a nonzero power series of n variables with coefficients in Cp which converges

in some neighborhood of the origin of Cn
p . Since |A11|∞, . . . , |A1n|∞ are linearly

independent over Q, if (h1, . . . , hn) and (h′1, . . . , h
′
n) are distinct indices in Zn

≥0, then

n∑
i=1

|A1i|∞hi 6=
n∑

i=1

|A1i|∞h′i.

Let H = (H1, . . . , Hn) be the only index in Zn
≥0 such that

min

{
n∑

i=1

|A1i|∞hi

∣∣∣∣∣ bh 6= 0, h = (h1, . . . , hn) ∈ Zn
≥0

}
=: H =

n∑
i=1

|A1i|∞Hi.

Let Λ1 be the finite subset of Zn
≥0 consisting of the indices (h1, . . . , hn) such that

|A1i|∞hi ≤ H for all i (1 ≤ i ≤ n) and let Λ2 be the complement of Λ1 in Zn
≥0. If

h = (h1, . . . , hn) 6= H with bh 6= 0, then

log

∣∣∣∣ (Ωkα)h

(Ωkα)H

∣∣∣∣
p

= ρkA1

(
n∑

i=1

|A1i|∞hi −H

)(
n∑

j=1

|Aj1|∞ log |αj|p

)
+ o(ρk)

→ −∞ (k → ∞)

and hence the finite sum
∑

h∈Λ1
bh(Ωkα)h/(Ωkα)H tends to the nonzero coefficient

bH as k tends to infinity. Assume that k is sufficiently large. Since the p-adic

absolute value | · |p is ultrametric, if
∑

h∈Λ2
bh(Ωkα)h 6= 0, then there exists a finite

subset Λ3 of Λ2 depending on k such that∣∣∣∣∣∑
h∈Λ2

bh(Ωkα)h

∣∣∣∣∣
p

=

∣∣∣∣∣∑
h∈Λ3

bh(Ωkα)h

∣∣∣∣∣
p

≤ max
h∈Λ3

|bh(Ωkα)h|p ≤ max
h∈Λ3

c
|h|
1 |(Ωkα)h|p ≤ c2 max

1≤i≤n
|α(k)

i |[H/|A1i|∞]+1
p ,
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where c1 and c2 are positive constants independent of k. Since

log

∣∣∣∣∣(α(k)
i )[H/|A1i|∞]+1

(Ωkα)H

∣∣∣∣∣
p

= ρkA1

(
|A1i|∞

([
H

|A1i|∞

]
+ 1

)
−H

)( n∑
j=1

|Aj1|∞ log |αj|p

)
+ o(ρk)

→ −∞ (k → ∞)

for any i = 1, . . . , n, we see that
∑

h∈Λ2
bh(Ωkα)h/(Ωkα)H tends to zero as k tends

to infinity. Therefore f(Ωkα)/(Ωkα)H tends to the nonzero coefficient bH as k tends

to infinity, which implies the condition (IV)p.

In the case where v is ∞, Masser established the following lemma, called Masser’s

vanishing theorem, which gives a necessary and sufficient condition for Ω and α to

satisfy the condition (IV)∞.

Lemma 3.1.3 (Masser [17]). Let Ω be an n × n matrix with nonnegative integer

entries satisfying the condition (I). Let α be an n-dimensional vector whose compo-

nents α1, . . . , αn are nonzero algebraic numbers such that Ωkα = (α
(k)
1 , . . . , α

(k)
n ) →

(0, . . . , 0) in Cn as k tends to infinity. Then the negation of the condition (IV)∞ is

equivalent to the following: There exist integers i1, . . . , in, not all zero, and positive

integers a, b such that

(α
(k)
1 )i1 · · · (α(k)

n )in = 1

for all k = a+ lb (l = 0, 1, 2, . . .).

The p-adic analogue of Masser’s vanishing theorem is unsolved. This is the

reason why we need to assume the stronger condition (IV)p in Theorems 3.2.1 and

3.2.4 below in the case where v is a prime number p (see Remark 3.4.5 stated in the

proof of Theorem 3.2.4).

3.2 Criterion for algebraic independence

Mahler functions of several variables are analytic functions which satisfy certain

types of functional equations under the transformation z 7→ Ωz defined by (3.1.1).
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Kubota [11] studied Mahler functions g1(z), . . . , gm(z) satisfying respective func-

tional equations g1(z)
...

gm(z)

 =

 e1(z) 0
. . .

0 em(z)


 g1(Ωz)

...
gm(Ωz)

+

 b1(z)
...

bm(z)

 , (3.2.1)

where eh(z), bh(z) ∈ Q(z1, . . . , zn) (1 ≤ h ≤ m), and established a criterion for the

algebraic independence of their values as well as that of the functions themselves

(see also Nishioka [23]). On the other hand, Nishioka [22] studied Mahler functions

fij(z) (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)) satisfying a system of functional equations f1(z)
...

fl(z)

 =

 A1 0
. . .

0 Al


 f1(Ωz)

...
fl(Ωz)

+

 b1(z)
...

bl(z)

 ,

where

fi(z) = t(fi1(z), . . . , fin(i)(z)) (1 ≤ i ≤ l), (3.2.2)

Ai =


ai
a
(i)
21 ai 0
...

. . . . . .

a
(i)
n(i)1 · · · a

(i)
n(i)n(i)−1 ai

 ∈ GLn(i)(Q), ai 6= 0, a
(i)
s s−1 6= 0, (3.2.3)

and

bi(z) = t(bi1(z), . . . , bin(i)(z)) ∈ Q(z1, . . . , zn)n(i) (1 ≤ i ≤ l), (3.2.4)

and established a criterion for the algebraic independence of their values as well as

that of the functions themselves.

In order to prove Theorems 1.3.5, 1.3.7, and 1.3.12, we need the following cri-

terion for the algebraic independence of the values of Mahler functions, which in-

cludes Nishioka’s criterion and a special case of Kubota’s one, that is, the case where

bh(z) = 0 for any h (1 ≤ h ≤ m) in the functional equation (3.2.1). In what follows,

we call a subfield K of Q a number field if K is a finite extension of Q.

Theorem 3.2.1 (Ide [7, Theorem 4.3]). Let v be ∞ or a prime number, K a number

field, and Ω an n × n matrix with nonnegative integer entries. Let fij(z), gh(z) ∈
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K[[z1, . . . , zn]] (1 ≤ i ≤ l, 1 ≤ j ≤ n(i), 1 ≤ h ≤ m) with gh(0) 6= 0 (1 ≤ h ≤ m).

Suppose that they converge in an n-polydisc U around the origin of Cn
v and satisfy

the system of functional equations

f1(z)
...

fl(z)
g1(z)
...

gm(z)


=



A1 0
. . . 0

0 Al

e1(z) 0

0 . . .

0 em(z)





f1(Ωz)
...

fl(Ωz)
g1(Ωz)

...
gm(Ωz)


+



b1(z)
...

bl(z)
0
...
0


,

where fi(z), Ai, and bi(z) (1 ≤ i ≤ l) are as in (3.2.2), (3.2.3), and (3.2.4),

respectively, and eh(z) ∈ Q(z1, . . . , zn) (1 ≤ h ≤ m). Let α = (α1, . . . , αn) be a

point in U whose components are nonzero algebraic numbers. Assume that Ω and α

satisfy the four conditions (I)–(IV)v. Assume further that bij(Ω
kα) (1 ≤ i ≤ l, 1 ≤

j ≤ n(i)) and eh(Ωkα) (1 ≤ h ≤ m) are defined and eh(Ωkα) 6= 0 (1 ≤ h ≤ m)

for all k ≥ 0. Then, if the numbers fij(α) (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)) and gh(α)

(1 ≤ h ≤ m) of Qv are algebraically dependent, then at least one of the following

two conditions holds:

(i) There exist a non-empty subset {i1, . . . , ir} of {1, . . . , l} and nonzero algebraic

numbers c1, . . . , cr such that

ai1 = · · · = air

and

f(z) := c1fi11(z) + · · · + crfir1(z) ∈ Q(z1, . . . , zn).

(ii) There exist integers d1, . . . , dm, not all zero, and g(z) ∈ Q(z1, . . . , zn)× such

that

g(z) =

(
m∏

h=1

eh(z)dh

)
g(Ωz).
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Remark 3.2.2. If the case (i) in Theorem 3.2.1 arises, then the rational function

f(z) satisfies the functional equation

f(z) = ai1f(Ωz) + c1bi11(z) + · · · + crbir1(z).

The proof of Theorem 3.2.1 consists of two parts. The first is Theorem 3.2.3

below, the algebraic independence over the field of rational functions of Mahler

functions themselves.

Theorem 3.2.3 (Ide [7, Theorem 4.4]). Let C be a field of characteristic 0 and

M the quotient field of C[[z1, . . . , zn]]. Let Ω be an n × n matrix with nonnegative

integer entries satisfying the condition (I). Suppose that fij(z) ∈M (1 ≤ i ≤ l, 1 ≤
j ≤ n(i)) satisfy the system of functional equations

fi1(Ωz)
...
...

fin(i)(Ωz)

 =


ai
a
(i)
21 ai 0
...

. . . . . .

a
(i)
n(i)1 · · · a

(i)
n(i)n(i)−1 ai




fi1(z)
...
...

fin(i)(z)

+


bi1(z)

...

...
bin(i)(z)

 ,

(3.2.5)

where ai, a
(i)
st ∈ C, ai 6= 0, a

(i)
s s−1 6= 0, and bij(z) ∈ C(z1, . . . , zn). Assume that

gh(z) ∈M× (1 ≤ h ≤ m) satisfy the functional equations

gh(Ωz) = eh(z)gh(z) (1 ≤ h ≤ m), (3.2.6)

where eh(z) ∈ C(z1, . . . , zn) (1 ≤ h ≤ m). Then, if the functions fij(z) (1 ≤
i ≤ l, 1 ≤ j ≤ n(i)) and gh(z) (1 ≤ h ≤ m) are algebraically dependent over

C(z1, . . . , zn), then at least one of the following two conditions holds:

(i) There exist a non-empty subset {i1, . . . , ir} of {1, . . . , l} and nonzero elements

c1, . . . , cr of C such that

ai1 = · · · = air

and

f(z) := c1fi11(z) + · · · + crfir1(z) ∈ C(z1, . . . , zn).
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(ii) There exist integers d1, . . . , dm, not all zero, and g(z) ∈ C(z1, . . . , zn)× such

that

g(Ωz) =

(
m∏

h=1

eh(z)dh

)
g(z).

The second part, Theorem 3.2.4 below, asserts the algebraic independence of

the values of Mahler functions under the assumption that the Mahler functions

themselves are algebraically independent over the field of rational functions.

Theorem 3.2.4 (Ide [7, Theorem 4.5]). Let v be ∞ or a prime number, K a number

field, and Ω an n× n matrix with nonnegative integer entries. Let f1(z), . . . , fl(z),

g1(z), . . . , gm(z) ∈ K[[z1, . . . , zn]] with gh(0) 6= 0 (1 ≤ h ≤ m). Suppose that they

converge in an n-polydisc U around the origin of Cn
v and that fi(z) (1 ≤ i ≤ l)

satisfy the system of functional equations f1(z)
...

fl(z)

 = A

 f1(Ωz)
...

fl(Ωz)

+

 b1(z)
...

bl(z)

 , (3.2.7)

where A is an l × l matrix with entries in K and bi(z) ∈ K(z1, . . . , zn) (1 ≤ i ≤ l).

Assume that gh(z) (1 ≤ h ≤ m) satisfy the functional equations

gh(z) = eh(z)gh(Ωz) (1 ≤ h ≤ m), (3.2.8)

where eh(z) ∈ K(z1, . . . , zn) (1 ≤ h ≤ m). Let α = (α1, . . . , αn) be a point in U

whose components are nonzero algebraic numbers. Suppose that Ω and α satisfy the

four conditions (I)–(IV)v. Assume further that bi(Ω
kα) (1 ≤ i ≤ l) and eh(Ωkα)

(1 ≤ h ≤ m) are defined and eh(Ωkα) 6= 0 (1 ≤ h ≤ m) for all k ≥ 0. Then, if

the functions fi(z) (1 ≤ i ≤ l) and gh(z) (1 ≤ h ≤ m) are algebraically independent

over K(z1, . . . , zn), then the numbers fi(α) (1 ≤ i ≤ l) and gh(α) (1 ≤ h ≤ m) of

Qv are algebraically independent.

We prove Theorems 3.2.3 and 3.2.4 in Sections 3.3 and 3.4, respectively.
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3.3 Algebraic independence of Mahler functions

themselves

In this section we prove Theorem 3.2.3. First we introduce the following:

Lemma 3.3.1. Let F be a field and u1, . . . , un elements of an extension field of

F . Suppose that the transcendence degree of F (u) over F equals n − 1. Let P

be an irreducible polynomial of F [X1, . . . , Xn] such that P (u) = 0. Then, if A ∈
F [X1, . . . , Xn] satisfies A(u) = 0, then P divides A in F [X1, . . . , Xn].

Proof. We may assume that u1, . . . , un−1 are algebraically independent over F . Then

we have the ring isomorphism F [X1, . . . , Xn−1] ' F [u1, . . . , un−1] =: R, which in-

duces F [X1, . . . , Xn] ' R[Xn]. Let P and A be the polynomials of R[Xn] corre-

sponding to P and A, respectively. Since P (u) = A(u) = 0, we have P (un) =

A(un) = 0. Since P is irreducible in F [X1, . . . , Xn], so is P in R[Xn]. Letting K be

the quotient field of R, we see by Gauss’s lemma that P is also irreducible in K[Xn].

Then P is the minimal polynomial of un over the field K and hence, P divides

A in K[Xn]. Noting that P is primitive in R[Xn] since it is irreducible in R[Xn],

we see by Gauss’s lemma that P divides A in R[Xn]. Therefore the isomorphism

F [X1, . . . , Xn] ' R[Xn] implies the lemma.

Let C be a field of characteristic 0, L the rational function field C(z1, . . . , zn), and

M the quotient field of C[[z1, . . . , zn]]. Let Ω be an n× n matrix with nonnegative

integer entries satisfying the condition (I). Then we can define an endomorphism

τ : M →M by

f τ (z) := f(Ωz)

for any f ∈ M . Suppose that fij ∈ M (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)) satisfy (3.2.5).

Let Xij (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)) be variables and let X := {Xij}1≤i≤l, 1≤j≤n(i). We

define an endomorphism T of L[X] by

Ta := aτ (a ∈ L)
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and 
TXi1

...

...
TXin(i)

 :=


ai
a
(i)
21 ai 0
...

. . . . . .

a
(i)
n(i)1 · · · a

(i)
n(i)n(i)−1 ai




Xi1
...
...

Xin(i)

+


bi1
...
...

bin(i)


for each i (1 ≤ i ≤ l). From the proof of Theorem 3 of Nishioka [22, pp. 56–58], we

obtain the following:

Claim 3.3.2. If there exists F ∈ L[X] \ L such that F divides TF in L[X], then

the condition (i) of Theorem 3.2.3 holds.

Proof of Theorem 3.2.3. If the functions fij (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)) are alge-

braically dependent over L, then the condition (i) holds by Theorem 3 of Nishioka [22].

Thus we may assume that fij (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)) are algebraically indepen-

dent over L. Let L∗ be the subfield of M generated by fij (1 ≤ i ≤ l, 1 ≤ j ≤ n(i))

over L. In what follows, we prove inductively on m ≥ 0 that, if the functions

g1, . . . , gm are algebraically dependent over L∗, then the condition (ii) holds. If

m = 0, then the assertion is trivial. Hence we may suppose that m ≥ 1 and that

g1, . . . , gm−1 are algebraically independent over L∗. Since g1, . . . , gm are algebraically

dependent over L∗, there exists an irreducible G ∈ L∗[Y ] such that G(g) = 0, where

Y := (Y1, . . . , Yn) is a vector of variables and g := (g1, . . . , gm). Put

G(Y ) =:
∑
I

bIY
I , bI ∈ L∗.

We may assume that bJ = 1 for some J = (j1, . . . , jm). Noting the functional

equation (3.2.5), we define an endomorphism T ∗ of L∗[Y ] by

T ∗a := aτ ∈ L∗ (a ∈ L∗), T ∗Yh := ehYh (1 ≤ h ≤ m).

By (3.2.6), we have (T ∗G)(g) = G(g)τ = 0τ = 0. Therefore, by Lemma 3.3.1, we

see that G divides T ∗G in L∗[Y ]. Since τ is injective and since eh 6= 0 (1 ≤ h ≤ m),

we see that

T ∗G = eJG,
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where eJ := ej11 · · · ejmm . Comparing the coefficients of both sides above, we get

bτIe
I = eJbI (3.3.1)

for any I. Since gh 6= 0 (1 ≤ h ≤ m), there exists I distinct from J such that

bI 6= 0. Then we have a representation

bI =
A(f)

B(f)
,

where A,B ∈ L[X]\{0} are coprime and f := {fij}1≤i≤l, 1≤j≤n(i). By the functional

equation (3.2.5) and the definition of T we get A(f)τ = (TA)(f) and B(f)τ =

(TB)(f). Hence, by (3.3.1), we obtain

B(f) · (TA)(f) = eJ−IA(f) · (TB)(f).

Since fij (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)) are algebraically independent over L, we have

B · (TA) = eJ−IA · (TB) (3.3.2)

and therefore, A and B divide TA and TB in L[X], respectively. If either A or B do

not belong to L, then by the Claim 3.3.2 the condition (i) holds, which contradicts

the algebraic independency of fij (1 ≤ i ≤ l, 1 ≤ j ≤ n(i)). Hence we conclude

that A,B ∈ L× and we see by (3.3.2) that(
A

B

)τ

= eJ−I A

B
,

which implies that the condition (ii) holds since J − I ∈ Zm \ {0}.

3.4 Algebraic independence of the values of

Mahler functions

In this section we prove Theorem 3.2.4. Let us first introduce some notation which

will be used in the proof. For any algebraic number α, we denote by α the

maximum of the absolute values on C of the conjugates of α and by den(α) the least

positive integer d such that dα is an algebraic integer. We define

‖α‖ := max{ α , den(α)}.
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It is easily seen that ∥∥∥∥∥
n∑

i=1

αi

∥∥∥∥∥ ≤ n
n∏

i=1

‖αi‖

and ∥∥∥∥∥
n∏

i=1

αi

∥∥∥∥∥ ≤
n∏

i=1

‖αi‖

for any algebraic numbers α1, . . . , αn. Moreover, by Lemma 2.10.2 of Nishioka [23],

we have

‖α−1‖ ≤ ‖α‖2[Q(α) :Q]

for any nonzero algebraic number α. The following proposition plays a fundamental

role in proving the transcendency or the algebraic independency of given numbers.

Proposition 3.4.1 (Fundamental inequality). Let v be ∞ or a prime number. For

any nonzero algebraic number α, we have

|α|v ≥ ‖α‖−2[Q(α) :Q].

Proof. Put n := [Q(α) : Q] and N(α) := NQ(α)/Q(α). First we consider the case

where α is a nonzero algebraic integer. Then N(α) is a nonzero rational integer. If

v is ∞, then we see that

1 ≤ |N(α)|∞ ≤ |α|∞ α
n−1

,

which implies

|α|∞ ≥ α
−n+1

. (3.4.1)

Suppose that v is a prime number p. Since the conjugates of α are algebraic integers,

their p-adic absolute values are less than or equal to 1, which implies |N(α)|p ≤ |α|p
(cf. Waldschmidt [35, Corollary 3.2]). Since N(α) is a rational integer, we have

|N(α)|p′ ≤ 1 for any prime number p′. Hence by the product formula we get

1 = |N(α)|∞|N(α)|p
∏

p′: prime number,
p′ ̸=p

|N(α)|p′ ≤ |N(α)|∞|α|p ≤ α
n |α|p,
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and thus

|α|p ≥ α
−n
. (3.4.2)

Next we prove the proposition for a general α. Let D := denα. Then Dα is a

nonzero algebraic integer. If v is ∞, then we see by (3.4.1) that

D|α|∞ = |Dα|∞ ≥ Dα
−n+1

= D−n+1 α
−n+1

and hence

|α|∞ ≥ D−n α
−n+1 ≥ ‖α‖−2n+1 ≥ ‖α‖−2n.

If v is a prime number p, then |D|p ≤ 1 and therefore, by (3.4.2),

|α|p ≥ |Dα|p ≥ Dα
−n

= D−n α
−n ≥ ‖α‖−2n.

The following lemma is proved in a way similar to Nishioka [23, p. 6, Remark].

We give the proof for the sake of readers.

Lemma 3.4.2. Let C be a field and F a subfield of C. Let f1(z), . . . , fm(z) ∈
F [[z1, . . . , zn]]. Then they are algebraically dependent over C(z1, . . . , zn) if and only

if they are algebraically dependent over F (z1, . . . , zn).

Proof. Assume that f1(z), . . . , fm(z) are algebraically dependent over C(z1, . . . , zn).

Then there exist a non-empty finite subset Λ of Zm
≥0 and nonzero polynomials aI(z) ∈

C[z1, . . . , zn] \ {0} (I ∈ Λ) such that∑
I∈Λ

aI(z)f(z)I = 0,

where f(z)I := f1(z)i1 · · · fm(z)im for I = (i1, . . . , im). Let {b1, . . . , bN} be a max-

imal subset of the set of all the coefficients of aI(z) (I ∈ Λ) which is linearly

independent over F . For each I ∈ Λ, we can write

aI(z) =
N∑
j=1

aIj(z)bj,
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where aIj(z) ∈ F [z1, . . . , zn] (1 ≤ j ≤ N). Then we have

N∑
j=1

(∑
I∈Λ

aIj(z)f(z)I

)
bj = 0.

Since
∑

I∈Λ aIj(z)f(z)I ∈ F [[z1, . . . , zn]] (1 ≤ j ≤ N), by the linear independency

of b1, . . . , bN we obtain∑
I∈Λ

aIj(z)f(z)I = 0 (1 ≤ j ≤ N).

Let I0 be an element of Λ. Since aI0(z) 6= 0, there exists j0 with 1 ≤ j0 ≤ N such

that aI0j0(z) 6= 0. Hence the equation∑
I∈Λ

aIj0(z)f(z)I = aI0j0(z)f(z)I0 + · · · = 0

implies that f1(z), . . . , fm(z) are algebraically dependent over F (z1, . . . , zn). The

converse is trivial.

The following lemma plays a crucial role in the proof of Theorem 3.2.4.

Lemma 3.4.3. Let v be ∞ or a prime number. Let Ω be an n × n matrix with

nonnegative integer entries and α an n-dimensional vector whose components are

nonzero algebraic numbers. Suppose that Ω and α satisfy the four conditions (I)–

(IV)v. Define the function

ψ(z; x) :=

q∑
i=1

di∑
j=1

xj−1γxi hij(z),

where γ1, . . . , γq are nonzero distinct elements of Cv and hij(z) ∈ Cv[[z1, . . . , zn]]

(1 ≤ i ≤ q, 1 ≤ j ≤ di) converge in an n-polydisc U around the origin of Cn
v . Then,

if ψ(Ωkα; k) = 0 for all sufficiently large k, then hij(z) = 0 for every i, j.

This lemma was proved by Loxton and van der Poorten [13, Lemma 2] in the

case where v is ∞. For the proof, see Nishioka [22, Lemma 3]. The proof is valid also

in the case where v is a prime number p since the condition (IV)p is stronger than

the condition (IV)∞. For the reader’s convenience, we prove the lemma in these two

cases simultaneously. In the proof we use the following:
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Lemma 3.4.4 (Nishioka [22, Lemma 1]). Let C be a field and Ω an n × n matrix

with nonnegative integer entries satisfying the condition (I). Then, if an element

f(z) of the quotient field of C[[z1, . . . , zn]] satisfies the constant coefficient equation

f(Ωz) = af(z) + b (a, b ∈ C),

then f(z) ∈ C.

Proof of Lemma 3.4.3. We prove the lemma by induction on
∑qi

i=1 di. If
∑qi

i=1 di =

1, then the lemma is true by the condition (IV)v. Let
∑q

i=1 di > 1. By the induction

hypothesis, it suffices to prove that hq dq(z) = 0. Suppose on the contrary that

h(z) := hq dq(z) 6= 0. Replacing γi by γi/γq for each i (1 ≤ i ≤ q), we may assume

γq = 1. Consider

ξ(z; x) := h(Ωz)ψ(z; x) − h(z)ψ(Ωz; x+ 1)

=

q−1∑
i=1

di∑
j=1

xj−1γxi h
∗
ij(z) +

dq−1∑
j=1

xj−1h∗j(z),

where

h∗j(z) := h(Ωz)hqj(z) − h(z)

dq∑
s=j

(
s− 1

j − 1

)
hqs(Ωz) (1 ≤ j ≤ dq − 1)

and

h∗ij(z) := h(Ωz)hij(z) − γih(z)

di∑
s=j

(
s− 1

j − 1

)
his(Ωz) (1 ≤ i ≤ q − 1, 1 ≤ j ≤ di).

Then ξ(Ωkα; k) = h(Ωk+1α)ψ(Ωkα; k) − h(Ωkα)ψ(Ωk+1α; k + 1) = 0 for all suffi-

ciently large k. Applying the induction hypothesis to the function ξ(z; x), we know

that h∗j(z) and h∗ij(z) are all identically zero. In particular,

h∗dq−1(z) = h(Ωz)hq dq−1(z) − h(z)
(
hq dq−1(Ωz) + (dq − 1)h(Ωz)

)
= 0.

Since h(z)h(Ωz) 6= 0, we have

hq dq−1(z)

h(z)
=
hq dq−1(Ωz)

h(Ωz)
+ dq − 1.
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By Lemma 3.4.4, hq dq−1(z)/h(z) ∈ Cv and so dq − 1 = 0. By the assumption∑q
i=1 di > 1, we get q ≥ 2 and hence, we know in particular that

h∗1 d1(z) = h(Ωz)h1 d1(z) − γ1h(z)h1,d1(Ωz) = 0.

Thus h1 d1(z)/h(z) ∈ Cv by Lemma 3.4.4. Since γ1 6= 1, we have h1 d1(z) = 0.

Applying the induction hypothesis to the function ψ(z; x), we see that hij(z) are all

identically zero. In particular hq dq(z) = 0, which is a contradiction.

Proof of Theorem 3.2.4. We may assume that α1, . . . , αn and the eigenvalues of A

are all contained in K. Since f1(z), . . . , fl(z) are algebraically independent over

K(z1, . . . , zn), we see that detA 6= 0. Let f(z) := t(f1(z), . . . , fl(z)), b(z) :=

t(b1(z), . . . , bl(z)), and g(z) := t(g1(z), . . . , gm(z)). Iterating the functional equa-

tions (3.2.7) and (3.2.8), we have

f(z) = Akf(Ωkz) + b(k)(z) (k ≥ 0) (3.4.3)

and

gh(z) = e
(k)
h (z)gh(Ωkz) (1 ≤ h ≤ m, k ≥ 0), (3.4.4)

where

b(k)(z) = t(b
(k)
1 (z), . . . , b

(k)
l (z)) :=

k−1∑
j=0

Ajb(Ωjz) ∈ K(z1, . . . , zn)l (3.4.5)

and

e
(k)
h (z) :=

k−1∏
j=0

eh(Ωjz) ∈ K(z1, . . . , zn). (3.4.6)

We note here that, any power of Ω and the point α also satisfy the four conditions

(I)–(IV)v. Indeed, it is clear that they satisfy the conditions (I)–(III)v. If v is ∞,

then we see by Lemma 3.1.3 that they satisfy the condition (IV)∞, and if v is a

prime number p, then it is obvious that they satisfy the condition (IV)p. Therefore,

taking a sufficiently large integer k0 and replacing Ω, A, bi(z), and eh(z) with Ωk0 ,

Ak0 , b
(k0)
i (z), and e

(k0)
h (z), respectively, we may assume that Ωkα ∈ U for all k ≥ 0

and that the multiplicative subgroup G of K× generated by the eigenvalues of A is

torsion free.
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Remark 3.4.5. We need the stronger condition (IV)p for this argument to be valid

in the case where v is a prime number p.

Since eh(Ωkα) 6= 0 (1 ≤ h ≤ m) for all k ≥ 0, by the functional equation (3.2.8),

the condition (III)v, and the assumption that gh(0) 6= 0 (1 ≤ h ≤ m), we see that

gh(Ωkα) 6= 0 (1 ≤ h ≤ m) for all k ≥ 0.

To prove the theorem, we assume on the contrary that fi(α) (1 ≤ i ≤ l) and

gh(α) (1 ≤ h ≤ m) are algebraically dependent. Then there exist a positive integer

L and integers τλµ (λ ∈ L, µ ∈ M), not all zero, such that∑
λ∈L,µ∈M

τλµf(α)λg(α)µ = 0,

where L := {λ ∈ Zl
≥0 | |λ| ≤ L} and M := {0, 1, . . . , L}m. Let xij (1 ≤ i, j ≤ l),

wi (1 ≤ i ≤ l), yi (1 ≤ i ≤ l), x′h (1 ≤ h ≤ m), w′
h (1 ≤ h ≤ m), and tλµ

(λ ∈ L, µ ∈ M) be variables and let

X :=

 x11 · · · x1l
...

...
xl1 · · · xll

 , w :=

 w1
...
wl

 , y :=

 y1
...
yl

 ,

x′ :=

 x′1
...
x′m

 , w′ :=

 w′
1

...
w′

m

 , x′w′ :=

 x′1w
′
1

...
x′mw

′
m

 ,

and

F (z; t) :=
∑

λ∈L,µ∈M

tλµf(z)λg(z)µ.

We define Tλµ(t;X;y;x′) (λ ∈ L, µ ∈ M) by the equality∑
λ∈L,µ∈M

tλµ(Xw + y)λ(x′w′)µ =:
∑

λ∈L,µ∈M

Tλµ(t;X;y;x′)wλw′µ, (3.4.7)

namely,

Tλµ(t;X;y;x′)

:= x′µ
∑

ν=(ν1,...,νl)∈Zl
≥0,

|λ|≤|ν|≤L

tνµ
∑

ν1,...,νl∈Zl+1
≥0 ,

νi=(νi0,νi1,...,νil),
|νi|=νi (1≤i≤l),∑l
i=1 νij=λj (1≤j≤l)

l∏
i=1

(
νi

νi0 νi1 · · · νil

)
yνi0i xνi1i1 · · · xνilil
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for any λ = (λ1, . . . , λl) ∈ L and µ ∈ M. Letting

e(k)(z) := t(e
(k)
1 (z), . . . , e(k)m (z))

and

e(k)(z)g(Ωkz) := t(e
(k)
1 (z)g1(Ω

kz), . . . , e(k)m (z)gm(Ωkz)),

by the functional equations (3.4.3) and (3.4.4), we have

F (z; t) =
∑

λ∈L,µ∈M

tλµf(z)λg(z)µ

=
∑

λ∈L,µ∈M

tλµ(Akf(Ωkz) + b(k)(z))λ(e(k)(z)g(Ωkz))µ

=
∑

λ∈L,µ∈M

Tλµ(t;Ak; b(k)(z); e(k)(z))f(Ωkz)λg(Ωkz)µ

= F (Ωkz;T (t;Ak; b(k)(z); e(k)(z)))

for all k ≥ 0. Hence

F (Ωkα;T (τ ;Ak; b(k)(α); e(k)(α))) = F (α; τ ) = 0 (k ≥ 0). (3.4.8)

We define an ideal V (τ ) of K[t] by

V (τ ) := {Q(t) ∈ K[t] | Q(T (τ ;Ak;y;x′)) = 0 for all k ≥ 0}.

Lemma 3.4.6. V (τ ) is a prime ideal of K[t].

For the proof we use the following:

Lemma 3.4.7 (Skolem-Lech-Mahler, cf. Cassels [3, Theorem 1.1], see also Nishioka

[23, Theorem 2.5.3]). Let C be a field of characteristic 0. Let γ1, . . . , γs be nonzero

distinct elements of C and P1(X), . . . , Ps(X) ∈ C[X] nonzero polynomials. Then,

if {k ∈ Z≥0 |
∑s

i=1 Pi(k)γki = 0} is an infinite set, then γi/γj is a root of unity for

some distinct i, j.

Proof of Lemma 3.4.6. Recall that G is a torsion free subgroup of K× generated

by the eigenvalues of A. Let R1 be the subset of (K[y;x′])Z≥0 consisting of the
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sequences of the form {
∑

γ∈Γ pγ(k)γk}k≥0, where Γ is a finite subset of G, indepen-

dent of k, and pγ(Y ) (γ ∈ Γ) are polynomials with coefficients in K[y;x′]. Then

R1 forms a commutative ring including K[y;x′] under termwise addition and mul-

tiplication. If we put Ak =: (a
(k)
ij ), then {a(k)ij }k≥0 ∈ R1 for any 1 ≤ i, j ≤ l. Since

Tλµ(τ ;X;y;x′) ∈ (Z[y;x′])[{xij}], we have {Tλµ(τ ;Ak;y;x′)}k≥0 ∈ R1 for any

λ ∈ L and µ ∈ M. Therefore, if P (t) ∈ K[t], then {P (T (τ ;Ak;y;x′))}k≥0 ∈ R1,

so that there exist a finite subset Γ = Γ(P ) of G and nonzero polynomials pγ(Y ) ∈
(K[y;x′])[Y ] (γ ∈ Γ) such that

P (T (τ ;Ak;y;x′)) =
∑
γ∈Γ

pγ(k)γk

for all k ≥ 0.

To prove the lemma, let P1(t), P2(t) ∈ K[t] and suppose that P1(t)P2(t) ∈ V (τ ).

Since P1(T (τ ;Ak;y;x′))P2(T (τ ;Ak;y;x′)) = 0 for all k ≥ 0, we may assume that

P1(T (τ ;Ak;y;x′)) = 0 for infinitely many k. Hence, if Γ(P1) 6= ∅, then Lemma 3.4.7

implies that there exist distinct γ, γ′ ∈ Γ(P1) such that γ/γ′ is a root of unity, which

contradicts the fact that G is torsion free. Thus Γ(P1) = ∅ and P1(t) ∈ V (τ ).

Proposition 3.4.8. The following two conditions are equivalent for any P (z; t)

∈ K[z; t].

(i) P (Ωkα;T (τ ;Ak; b(k)(α); e(k)(α))) = 0 for all sufficiently large k.

(ii) If we put P (z; t) =:
∑

η∈HQη(t)zη, where Qη(t) ∈ K[t] (η ∈ H) and H is a

finite subset of Zn
≥0, then Qη(t) ∈ V (τ ) for any η ∈ H.

Proof. We only prove that the condition (i) implies (ii) since the converse is trivial.

Let R2 be the subset of (Qv[w1, . . . , wl,
1
w′

1
, . . . , 1

w′
m

])Z≥0 consisting of the sequences

of the form {
∑

γ∈Γ qγ(k)γk}k≥0, where Γ is a finite subset of G, independent of k,

and qγ(Y ) (γ ∈ Γ) are polynomials with coefficients in Qv[w1, . . . , wl,
1
w′

1
, . . . , 1

w′
m

].

Then R2 forms a commutative ring including Qv[w1, . . . , wl,
1
w′

1
, . . . , 1

w′
m

] under term-

wise addition and multiplication. In the same way as in the proof of Lemma 3.4.6,

we see that {Qη(T (τ ;Ak;f(α) − Akw; g(α)/w′))}k≥0 ∈ R2 for any η ∈ H, where
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g(α)/w′ := t(g1(α)/w′
1, . . . , gm(α)/w′

m). Hence there exist finite sets N ⊂ Zl
≥0 and

X ⊂ Zm
≥0, distinct elements γ1, . . . , γq of G, and positive integers d1, . . . , dq such that

Qη(T (τ ;Ak;f(α) − Akw; g(α)/w′)) =
∑

ν∈N , ξ∈X

Rηνξ(k)wνw′−ξ

for all k ≥ 0 and η ∈ H, where

Rηνξ(k) =

q∑
i=1

di∑
j=1

rηνξijk
j−1γki , rηνξij ∈ Qv.

We claim that every {Rηνξ(k)}k≥0 is the null sequence. Since gh(0) 6= 0 (1 ≤
h ≤ m),

hij(z) :=
∑
η∈H

∑
ν∈N , ξ∈X

rηνξijf(z)νg(z)−ξzη (1 ≤ i ≤ q, 1 ≤ j ≤ di)

are formal power series in the variables z1, . . . , zn with coefficients in Qv which

converge in an n-polydisc around the origin of Cn
v . Define

ψ(z; x) :=

q∑
i=1

di∑
j=1

xj−1γxi hij(z).

By the condition (i) of the proposition and the functional equations (3.4.3) and

(3.4.4), we see that

0 = P (Ωkα;T (τ ;Ak; b(k)(α); e(k)(α)))

=
∑
η∈H

Qη(T (τ ;Ak; b(k)(α); e(k)(α)))(Ωkα)η

=
∑
η∈H

( ∑
ν∈N , ξ∈X

Rηνξ(k)f(Ωkα)νg(Ωkα)−ξ

)
(Ωkα)η

= ψ(Ωkα; k)

for all sufficiently large k. Then Lemma 3.4.3 implies that hij(z) = 0 for any

1 ≤ i ≤ q and 1 ≤ j ≤ di. Therefore, since f1(z), . . . , fl(z), g1(z), . . . , gm(z) are

algebraically independent over Qv(z1, . . . , zn) by Lemma 3.4.2, we have rηνξij = 0

for any η, ν, ξ, i, and j. This proves our claim.
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By the claim we have

Qη(T (τ ;Ak;f(α) − Akw; g(α)/w′)) = 0

for all k ≥ 0 and η ∈ H. Noting that detA 6= 0 and that gh(α) 6= 0 (1 ≤ h ≤ m),

we obtain

Qη(T (τ ;Ak;y;x′)) = 0

for all k ≥ 0 and η ∈ H, which implies the condition (ii) of the proposition.

Definition 3.4.9. For P (z; t) =
∑

η∈Zn
≥0
pη(t)zη ∈ (K[t])[[z1, . . . , zn]] we define

indP (z; t) := min{|η| | pη(t) /∈ V (τ )},

where min ∅ := ∞.

By Lemma 3.4.6, we have

ind(P1(z; t)P2(z; t)) = indP1(z; t) + indP2(z; t). (3.4.9)

Lemma 3.4.10. indF (z; t) <∞.

Proof. Since f1(z), . . . , fl(z), g1(z), . . . , gm(z) are algebraically independent, we see

that F (z; τ ) 6= 0. By the condition (IV)v, there exists k0 such that F (Ωk0α; τ ) 6= 0.

Let

F (z; t) =:
∑

η∈Zn
≥0

pη(t)zη,

where pη(t) ∈ K[t]. Suppose on the contrary that indF (z; t) = ∞. Then pη(t) ∈
V (τ ) for every η ∈ Zn

≥0. Noting that τ = T (τ ; Il;0;1) = T (τ ;A0;0;1) by (3.4.7),

we have

F (Ωk0α; τ ) =
∑

η∈Zn
≥0

pη(T (τ ;A0;0;1))(Ωk0α)η = 0,

which is a contradiction.

Let N be a nonnegative integer, R(N) the K-vector space of polynomials in K[t]

of degree at most N in each tλµ, and d(N) the dimension over K of the quotient

space R(N) := R(N)/(R(N) ∩ V (τ )). The coset containing a polynomial P (t) of

R(N) in R(N) is denoted by P (t).
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Lemma 3.4.11. d(2N) ≤ 2(L+1)l+m
d(N).

Proof. Let {Q1(t), . . . , Qd(N)(t)} be a basis of R(N) overK, whereQ1(t), . . . , Qd(N)(t)

∈ R(N). Let Q(t) ∈ R(2N). Then Q(t) is written in the form

Q(t) =
∑

ε∈{0,1}L×M

( ∏
λ∈L,µ∈M

t
ε(λ,µ)N
λµ

)
Qε(t),

where Qε(t) ∈ R(N). For each ε ∈ {0, 1}L×M, there exist qε1, . . . , qεd(N) ∈ K such

that

Qε(t) =

d(N)∑
i=1

qεiQi(t)

in R(N). Then we can check that( ∏
λ∈L,µ∈M

t
ε(λ,µ)N
λµ

)
Qε(t) =

( ∏
λ∈L,µ∈M

t
ε(λ,µ)N
λµ

)
d(N)∑
i=1

qεiQi(t)

=

d(N)∑
i=1

qεi

( ∏
λ∈L,µ∈M

t
ε(λ,µ)N
λµ

)
Qi(t)

in R(2N). Hence

Q(t) =
∑

ε∈{0,1}L×M

d(N)∑
i=1

qεi

( ∏
λ∈L,µ∈M

t
ε(λ,µ)N
λµ

)
Qi(t)

in R(2N), which implies that
( ∏

λ∈L,µ∈M

t
ε(λ,µ)N
λµ

)
Qi(t)

∣∣∣∣∣∣ ε ∈ {0, 1}L×M, 1 ≤ i ≤ d(N)


generates R(2N) over K. Therefore we have

d(2N) ≤ 2#(L×M)d(N) ≤ 2#{0,1,...,L}l+m

d(N) = 2(L+1)l+m

d(N).

In what follows, c1, c2, . . . denote positive constants independent of N and k. If

they depend on N , then we denote them by c1(N), c2(N), . . . .
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Proposition 3.4.12. Let N be a sufficiently large positive integer. Then there exist

N + 1 polynomials P0(z; t), . . . , PN(z; t) ∈ OK [z; t] with degree at most N in each

of the variables zi (1 ≤ i ≤ n) and tλµ (λ ∈ L, µ ∈ M) such that the following two

conditions are satisfied.

(i) indP0(z; t) <∞.

(ii) ind(
∑N

h=0 Ph(z; t)F (z; t)h) ≥ c1(N + 1)1+1/n.

Proof. Let {Q(N)
1 (t), . . . , Q

(N)
d(N)(t)} and {Q(2N)

1 (t), . . . , Q
(2N)
d(2N)(t)} be a basis over K

of R(N) and that of R(2N), respectively. We may assume that Q
(N)
1 (t), . . . , Q

(N)
d(N)(t)

∈ R(N) ∩ OK [t] and that Q
(2N)
1 (t), . . . , Q

(2N)
d(2N)(t) ∈ R(2N) ∩ OK [t]. For each i and

j with 1 ≤ i, j ≤ d(N), there exist gijk ∈ K (1 ≤ k ≤ d(2N)) such that

Q
(N)
i (t)Q

(N)
j (t) =

d(2N)∑
k=1

gijkQ
(2N)
k (t) (3.4.10)

in R(2N). For each h (0 ≤ h ≤ N), put

F (z; t)h =:
∑

ν∈Zn
≥0

Fhν(t)zν .

Then Fhν(t) ∈ R(h) ⊂ R(N) for any ν ∈ Zn
≥0 and hence, there exist fhνj ∈ K

(1 ≤ j ≤ d(N)) such that

Fhν(t) =

d(N)∑
j=1

fhνjQ
(N)
j (t) (3.4.11)

in R(N).

Let phξi (0 ≤ h ≤ N, ξ ∈ {0, 1, . . . , N}n, 1 ≤ i ≤ d(N)) be unknowns in OK .

Put

Phξ(t) :=

d(N)∑
i=1

phξiQ
(N)
i (t) ∈ R(N) ∩ OK [t],

Ph(z; t) :=
∑

ξ∈{0,1,...,N}n
Phξ(t)z

ξ ∈ OK [z; t],
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and

E(z; t) :=
N∑

h=0

Ph(z; t)F (z; t)h =:
∑

η∈Zn
≥0

Eη(t)zη.

Then

Eη(t) =
N∑

h=0

∑
ξ∈Xη

Phξ(t)Fhη−ξ(t) ∈ R(2N)

for each η ∈ Zn
≥0, where Xη denotes the set of ξ ∈ {0, 1, . . . , N}n whose components

do not exceed the corresponding component of η. Using (3.4.10) and (3.4.11), we

can check that

Eη(t) =
N∑

h=0

∑
ξ∈Xη

Phξ(t)Fhη−ξ(t)

=

d(2N)∑
k=1


N∑

h=0

∑
ξ∈Xη

d(N)∑
i=1

d(N)∑
j=1

fhη−ξ jgijk

 phξi

Q
(2N)
k (t)

in R(2N) for any η ∈ Zn
≥0. Choose N so large that J := [2−(L+1)l+m/n(N+1)1+1/n]−1

is a positive integer. Then indE(z; t) ≥ J holds if and only if

N∑
h=0

∑
ξ∈Xη

d(N)∑
i=1

d(N)∑
j=1

fhη−ξ jgijk

 phξi = 0 (3.4.12)

for any k ∈ {1, . . . , d(2N)} and η ∈ Zn
≥0 with |η| ≤ J − 1. Here, the number of

the unknowns phξi is equal to (N + 1)n+1d(N) and that of the equations is equal to(
J+n−1

n

)
d(2N), which do not exceed Jnd(2N). Since Jn < 2−(L+1)l+m

(N + 1)n+1, we

see by Lemma 3.4.11 that

Jnd(2N) ≤ Jn2(L+1)l+m

d(N) < (N + 1)n+1d(N).

Hence the system (3.4.12) has nontrivial solutions phξi in OK . Using these phξi, we

construct the polynomials Ph(z; t) above. Since Q
(N)
1 (t), . . . , Q

(N)
d(N)(t) are linearly

independent over K, we see that indPh(z; t) <∞ for some h with 0 ≤ h ≤ N . Let

r be the least one among such h and put

E0(z; t) :=
N∑
h=r

Ph(z; t)F (z; t)h−r.
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By (3.4.9) and the fact that indPh(z; t) = ∞ for any h with 0 ≤ h ≤ r − 1, we see

that

indE(z; t) = ind

(
N∑
h=r

Ph(z; t)F (z; t)h

)
= ind(F (z; t)rE0(z; t))

= r indF (z; t) + indE0(z; t).

Using Lemma 3.4.10, we have

indE0(z; t) = indE(z; t) − r indF (z; t)

≥ J −N indF (z; t)

> 2−(L+1)l+m/n(N + 1)1+1/n − 2 −N indF (z; t).

Hence, letting c1 be a positive constant less than 2−(L+1)l+m/n, we obtain indE0(z; t)

≥ c1(N + 1)1+1/n for any sufficiently large N . The proposition is proved.

Let E(z; t) be the
∑N

h=0 Ph(z; t)F (z; t)h in Proposition 3.4.12 and ρ the maxi-

mum of the absolute values of the eigenvalues of Ω.

Proposition 3.4.13. If k > c2(N), then

log |E(Ωkα;T (τ ;Ak; b(k)(α); e(k)(α)))|v ≤ −c3(N + 1)1+1/nρk.

Proof. Since fj(Ω
kα) → fj(0) (k → ∞) for 1 ≤ j ≤ l, by the functional equation

(3.4.3) we have |b(k)i (α)|v ≤ ck4 for 1 ≤ i ≤ l. Similarly, since gh(Ωkα) → gh(0) 6= 0

(k → ∞) for 1 ≤ h ≤ m, by the functional equation (3.4.4) we have |e(k)h (α)|v ≤ c5

for 1 ≤ h ≤ m. Hence |Tλµ(τ ;Ak; b(k)(α); e(k)(α))|v ≤ ck6 for λ ∈ L and µ ∈ M.

We note that E(z; t) is a polynomial in the variables tλµ (λ ∈ L, µ ∈ M) with

degree at most 2N in each variable whose coefficients are power series convergent in

U . Let

E(z; t) =:
∑

ν∈{0,1,...,2N}s
hν(z)tν , hν(z) =:

∑
ξ∈Zn

≥0

hνξz
ξ ∈ K[[z]],

where s := #L × #M =
(
L+l
l

)
(L+ 1)m. Then we have

|hνξ|v ≤ c7(N)c
|ξ|
8 (ν ∈ {0, 1, . . . , 2N}s, ξ ∈ Zn

≥0)
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and

E(z; t) =
∑

ξ∈Zn
≥0

 ∑
ν∈{0,1,...,2N}s

hνξt
ν

 zξ.

Therefore

|E(Ωkα;T (τ ;Ak; b(k)(α); e(k)(α)))|v ≤ c9(N)cNk
10

∑
ξ∈Zn

≥0,

|ξ|≥I

c
|ξ|
8 |(Ωkα)ξ|v,

where I := indE(z; t). By the condition (III), there exists a positive constant θ < 1

such that |α(k)
i |v ≤ θρ

k
for 1 ≤ i ≤ n and for all sufficiently large k. Hence

|E(Ωkα;T (τ ;Ak; b(k)(α); e(k)(α)))|v ≤ c9(N)cNk
10

n∑
i=1

∑
ξ=(ξ1,...,ξn)∈Zn

≥0,

ξi≥I/n

(c8θ
ρk)|ξ|

≤ nc9(N)cNk
10 (c8θ

ρk)I/n/(1 − c8θ
ρk)n.

Since I ≥ c1(N + 1)1+1/n by the condition (ii) of Proposition 3.4.12, we see that, if

k ≥ c2(N), then

log |E(Ωkα;T (τ ;Ak; b(k)(α); e(k)(α)))|v ≤ −c3(N + 1)1+1/nρk.

Proposition 3.4.14. If k > c11(N), then

log ‖E(Ωkα;T (τ ;Ak; b(k)(α); e(k)(α)))‖ ≤ c12Nρ
k.

Proof. From (3.4.8) we have

E(Ωkα;T (τ ;Ak; b(k)(α); e(k)(α))) = P0(Ω
kα;T (τ ;Ak; b(k)(α); e(k)(α))) ∈ K.

Letting Ak =: (a
(k)
ij ), we have ‖a(k)ij ‖ ≤ ck13 for 1 ≤ i, j ≤ l. By the condition (II) we

see that ‖bi(Ωkα)‖ ≤ cρ
k

14 for 1 ≤ i ≤ l and that ‖eh(Ωkα)‖ ≤ cρ
k

15 for 1 ≤ h ≤ m.

Hence we have

‖b(k)i (α)‖ ≤ kl

k−1∏
j=0

(cj13c
ρj

14)
l ≤ cρ

k

16 (1 ≤ i ≤ l)
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and

‖e(k)h (α)‖ ≤
k−1∏
j=0

cρ
j

15 ≤ cρ
k

17 (1 ≤ h ≤ m)

by (3.4.5) and (3.4.6), respectively. Therefore

‖Tλµ(τ ;Ak; b(k)(α); e(k)(α))‖ ≤ cρ
k

18

for λ ∈ L and µ ∈ M. Since the degree of each variable of P0(z; t) ∈ OK [z; t] is at

most N , we obtain

‖P0(Ω
kα;T (τ ;Ak; b(k)(α); e(k)(α)))‖ ≤ c19(N)cNρk

20 .

This implies the proposition.

Completion of the proof of Theorem 3.2.4. By the condition (i) of Proposition 3.4.12

together with Proposition 3.4.8, there exists a positive integer k greater than both

c2(N) and c11(N) such that

E(Ωkα;T (τ ;Ak; b(k)(α); e(k)(α))) = P0(Ω
kα;T (τ ;Ak; b(k)(α); e(k)(α))) 6= 0.

Therefore, by Propositions 3.4.1, 3.4.13, and 3.4.14, we have

−c3(N + 1)1+1/nρk ≥ −2[K : Q]c12Nρ
k.

Hence

c3(N + 1)1+1/n ≤ 2[K : Q]c12N,

which is a contradiction if N is large.
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Chapter 4

Proofs of Theorems 1.3.5, 1.3.7,
and 1.3.12

4.1 Lemmas

In this section we prepare several lemmas necessary for proving Theorems 1.3.5,

1.3.7, and 1.3.12. In the proofs of these theorems, we represent the numbers in

question as the values at a single algebraic point of Mahler functions satisfying a

system of functional equations as in Theorem 3.2.1. In the proofs of the latter two

theorems, we use Lemmas 4.1.1 and 4.1.3 below to construct such Mahler functions.

Lemma 4.1.1 (Loxton and van der Poorten [12, Lemma 3]). Let a1, . . . , ar be al-

gebraic numbers with 0 < |ai| < 1 (1 ≤ i ≤ r). Then there exist multiplicatively

independent algebraic numbers γ1, . . . , γs with 0 < |γj| < 1 (1 ≤ j ≤ s) such that

ai = ζi

s∏
j=1

γ
dij
j (1 ≤ i ≤ r), (4.1.1)

where ζi (1 ≤ i ≤ r) are roots of unity and dij (1 ≤ i ≤ r, 1 ≤ j ≤ s) are nonnegative

integers.

Remark 4.1.2. The most important assertion of Lemma 4.1.1 is that dij (1 ≤ i ≤
r, 1 ≤ j ≤ s) are nonnegative. In particular, at least one of di1, . . . , dis is positive

for any i.
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Lemma 4.1.3. Let {Rk}k≥0 be a linear recurrence of nonnegative integers satisfy-

ing (1.2.2) and N a positive integer. Then there exist a positive integer p and a

nonnegative integer q such that

Rk+p ≡ Rk (mod N) (4.1.2)

for any k ≥ q.

Proof. By the pigeonhole principle, we can choose distinct integers k1 and k2 with

0 ≤ k1 < k2 ≤ Nn such that Rk1+k ≡ Rk2+k (mod N) for any k with 0 ≤ k ≤ n− 1.

Letting p := k2 − k1 and q := k1, we obtain (4.1.2) from the recurrence formula

(1.2.2).

In the rest of this thesis, let

Ω1 :=


c1 1 0 · · · 0

c2 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . 1
cn 0 · · · · · · 0

 , (4.1.3)

where c1, . . . , cn are the coefficients of the polynomial Φ(X) defined by (1.2.3). In

order to apply Theorem 3.2.1, we need to ensure the four conditions stated in Sec-

tion 3.1. In the case where v is a prime number p, the p-adic analogue of Mahler’s

vanishing theorem (Lemma 3.1.2) implies that, if the polynomial Φ(X) satisfies the

stronger Condition 1.2.1, then the matrix Ω1 and the point

γ1 := (1, . . . , 1︸ ︷︷ ︸
n−1

, a),

where a is an algebraic number with 0 < |a|p < 1, satisfy the four conditions (I)–

(IV)p. In the case where v is ∞, Masser’s vanishing theorem (Lemma 3.1.3) induces

the following lemma, which ensures the four conditions (I)–(IV)∞ for more general

matrices and algebraic points under the weaker Condition 1.2.5 on Φ(X).
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Lemma 4.1.4 (Tanaka [29, Lemma 4, Proof of Theorem 2]). Suppose that Φ(X)

satisfies Condition 1.2.5. Let γ1, . . . , γs be multiplicatively independent algebraic

numbers with 0 < |γj| < 1 (1 ≤ j ≤ s). Let p be a positive integer and put

Ω2 := diag(Ωp
1, . . . ,Ω

p
1︸ ︷︷ ︸

s

).

Then the matrix Ω2 and the point

γ2 := (1, . . . , 1︸ ︷︷ ︸
n−1

, γ1, . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, γs)

satisfy the four conditions (I)–(IV)∞ stated in Section 3.1.

Let {Rk}k≥0 be a linear recurrence of nonnegative integers satisfying (1.2.2). We

define a monomial

P (z) := z
Rn−1

1 · · · zR0
n , (4.1.4)

which is denoted similarly to (3.1.1) by

P (z) = (Rn−1, . . . , R0)z. (4.1.5)

It follows from (1.2.2), (3.1.1), (4.1.3), and (4.1.5) that

P (Ωk
1z) = z

Rk+n−1

1 · · · zRk
n (k ≥ 0). (4.1.6)

In what follows, let C be an algebraically closed field of characteristic 0. The

following two lemmas are central to the proofs of the three theorems.

Lemma 4.1.5 (Tanaka [30, Theorem 1]). Let {Rk}k≥0 be a linear recurrence of non-

negative integers satisfying (1.2.2). Suppose that {Rk}k≥0 satisfies Condition 1.2.5.

Assume that {Rk}k≥0 is not a geometric progression. Assume further that f(z) ∈
C[[z1, . . . , zn]] satisfies the functional equation of the form

f(z) = αf(Ωp
1z) +

p+q−1∑
k=q

Qk(P (Ωk
1z)),

where α 6= 0 is an element of C, p > 0, q ≥ 0 are integers, and Qk(X) ∈ C(X)

(q ≤ k ≤ p + q − 1) are defined at X = 0. Then, if f(z) ∈ C(z1, . . . , zn), then

f(z) ∈ C and Qk(X) = Qk(0) (q ≤ k ≤ p+ q − 1).
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Lemma 4.1.6 (Tanaka [30, Theorem 2]). Let {Rk}k≥0 be as in Lemma 4.1.5. Sup-

pose that g(z) is a nonzero element of the quotient field of C[[z1, . . . , zn]] satisfying

the functional equation of the form

g(z) =

(
p+q−1∏
k=q

Qk(P (Ωk
1z))

)
g(Ωp

1z),

where p, q, and Qk(X) are as in Lemma 4.1.5. Assume in addition that Qk(0) 6= 0.

Then, if g(z) ∈ C(z1, . . . , zn)×, then g(z) ∈ C
×

and Qk(X) = Qk(0) (q ≤ k ≤
p+ q − 1).

In the proofs of Theorems 1.3.7 and 1.3.12, we apply Kronecker type specializa-

tion to rational functions with more variables than those treated in Lemmas 4.1.5

and 4.1.6. The following lemma ensures the non-vanishing of the denominators of

those rational functions.

Lemma 4.1.7 (Nishioka [22, Lemma 4]). Let L be a subfield of C and let

f(z) ∈ C[[z1, . . . , zn]] ∩ L(z1, . . . , zn).

Then there exist polynomials A(z), B(z) ∈ L[z1, . . . , zn] such that

f(z) = A(z)/B(z), B(0) 6= 0.

4.2 Proof of Theorem 1.3.5

Theorem 1.3.7 includes Theorem 1.3.5 in the case of complex numbers. In this

section we give the proof of Theorem 1.3.5, which also provides an outline of the

proof of Theorem 1.3.7.

Proof of Theorem 1.3.5. Let L be any positive integer, α1, . . . , αL any nonzero dis-

tinct L algebraic numbers, and β1, . . . , βL any distinct L elements of B. It suffices

to show that the finite set{
F

(l)
m+1(αλ)

∣∣∣ 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L
}

⋃
{G(βµ) | 1 ≤ µ ≤ L}⋃{ ∂l+mH

∂xl∂ym
(αλ, βµ)

∣∣∣∣ 0 ≤ l,m ≤ L, 1 ≤ λ, µ ≤ L

}
(4.2.1)
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is algebraically independent. Let z1, . . . , zn be variables and let z := (z1, . . . , zn).

Put β0 := 0. We define

fmµ(x; z) :=
∞∑
k=0

xk
(

P (Ωk
1z)

1 − βµP (Ωk
1z)

)m+1

(0 ≤ m ≤ L, 0 ≤ µ ≤ L)

and

gµ(z) :=
∞∏
k=0

(1 − βµP (Ωk
1z)) (1 ≤ µ ≤ L),

where Ω1 and P (z) are given by (4.1.3) and (4.1.4), respectively. Moreover, define

flmλµ(z) :=
∂lfmµ

∂xl
(αλ; z) (0 ≤ l,m ≤ L, 1 ≤ λ ≤ L, 0 ≤ µ ≤ L).

Letting

γ1 := (1, . . . , 1︸ ︷︷ ︸
n−1

, a),

we see by (4.1.6) that

F
(l)
m+1(αλ) = flmλ0(γ1) (0 ≤ l,m ≤ L, 1 ≤ λ ≤ L),

∂l+mH

∂xl∂ym
(αλ, βµ) = m!flmλµ(γ1) (0 ≤ l,m ≤ L, 1 ≤ λ, µ ≤ L),

and

G(βµ) = gµ(γ1) (1 ≤ µ ≤ L).

Hence the algebraic independency of the set (4.2.1) is equivalent to that of

{flmλµ(γ1) | 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L, 0 ≤ µ ≤ L}

∪ {gµ(γ1) | 1 ≤ µ ≤ L}. (4.2.2)

Here we see that

fmµ(x; z) = xfmµ(x; Ω1z) +

(
P (z)

1 − βµP (z)

)m+1

(0 ≤ m ≤ L, 0 ≤ µ ≤ L)

and thus

∂lfmµ

∂xl
(x; z) = x

∂lfmµ

∂xl
(x; Ω1z) + l

∂l−1fmµ

∂xl−1
(x; Ω1z)

(1 ≤ l ≤ L, 0 ≤ m ≤ L, 0 ≤ µ ≤ L).
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Hence, for each m,λ, µ (0 ≤ m ≤ L, 1 ≤ λ ≤ L, 0 ≤ µ ≤ L), the functions flmλµ(z)

(0 ≤ l ≤ L) satisfy the functional equation

fmλµ(z) = Aλfmλµ(Ω1z) + bmµ(z), (4.2.3)

where

fmλµ(z) := t(f0mλµ(z), f1mλµ(z), . . . , fLmλµ(z)),

bmµ(z) := t((P (z)/(1 − βµP (z)))m+1, 0, . . . , 0),

and

Aλ :=


αλ

1 αλ 0
2

. . .

. . . . . .

0 L αλ

 .

Moreover, for each µ (1 ≤ µ ≤ L), the function gµ(z) satisfies the functional equation

gµ(z) = (1 − βµP (z))gµ(Ω1z). (4.2.4)

Furthermore, applying Lemmas 3.1.2 or 4.1.4, we can verify that the matrix Ω1

and the point γ1 satisfy the four conditions (I)–(IV)v stated in Section 3.1. Now

we assume on the contrary that the set (4.2.2) is algebraically dependent. Noting

that α1, . . . , αλ are distinct, we see by Theorem 3.2.1, by Remark 3.2.2, and by the

functional equations (4.2.3) and (4.2.4) that at least one of the following two cases

arises:

(i) There exist λ ∈ {1, . . . , L}, algebraic numbers cmµ (0 ≤ m ≤ L, 0 ≤ µ ≤ L),

not all zero, and f(z) ∈ Q[[z]] ∩Q(z) such that

f(z) = αλf(Ω1z) +
L∑

m=0

L∑
µ=0

cmµ

(
P (z)

1 − βµP (z)

)m+1

. (4.2.5)

(ii) There exist integers eµ (1 ≤ µ ≤ L), not all zero, and g(z) ∈ Q(z)× such that

g(z) =

(
L∏

µ=1

(1 − βµP (z))eµ

)
g(Ω1z). (4.2.6)
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If the functional equation (4.2.5) is satisfied, then by Lemma 4.1.5

L∑
m=0

L∑
µ=0

cmµ

(
X

1 − βµX

)m+1

= 0 (4.2.7)

holds, where X is a variable. If the functional equation (4.2.6) is satisfied, then by

Lemma 4.1.6
L∏

µ=1

(1 − βµX)eµ = 1

holds. Taking the logarithmic derivative of this equation and then multiplying both

sides by −X, we get
L∑

µ=1

βµeµ
X

1 − βµX
= 0,

which is a special case of (4.2.7) since βµeµ (1 ≤ µ ≤ L) are not all zero. It is

easily seen that (4.2.7) does not hold since βµ (0 ≤ µ ≤ L) are distinct and cmµ

(0 ≤ j ≤ t, 0 ≤ m ≤ M) are not all zero. Therefore neither the case (i) nor (ii)

arises, which is a contradiction.

4.3 Proof of Theorem 1.3.7

Generalizing the proof of Theorem 1.3.5, we prove Theorem 1.3.7.

Proof of Theorem 1.3.7. Let L be any positive integer and α1, . . . , αL any nonzero

distinct L algebraic numbers. For each i (1 ≤ i ≤ r), let β
(i)
1 , . . . , β

(i)
L be any distinct

L elements of Bi. It suffices to show that the finite set{
F

(l)
i,m+1(αλ)

∣∣∣ 1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L
}

⋃ {
Gi(β

(i)
µ )
∣∣ 1 ≤ i ≤ r, 1 ≤ µ ≤ L

}
⋃{∂l+mHi

∂xl∂ym
(αλ, β

(i)
µ )

∣∣∣∣ 1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ, µ ≤ L

}
(4.3.1)

is algebraically independent. Let ζi, γj, and dij (1 ≤ i ≤ r, 1 ≤ j ≤ s) be as in

Lemma 4.1.1. Since a1, . . . , ar are pairwise multiplicatively independent, we see by

(4.1.1) that the s-tuples (di1, . . . , dis) (1 ≤ i ≤ r) are pairwise non-proportional,
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namely (di1 : · · · : dis) 6= (dj1 : · · · : djs) in P s−1(Q) if 1 ≤ i < j ≤ r. Take a positive

integer N such that ζNi = 1 for any i (1 ≤ i ≤ r). We choose a positive integer p and

a nonnegative integer q by Lemma 4.1.3. Let yj1, . . . , yjn (1 ≤ j ≤ s) be variables

and let yj := (yj1, . . . , yjn) (1 ≤ j ≤ s), y := (y1, . . . ,ys). Put β
(i)
0 := 0 (1 ≤ i ≤ r).

We define

fimµ(x;y) :=
∞∑
k=q

xk

(
ζRk
i

∏s
j=1 P (Ωk

1yj)
dij

1 − β
(i)
µ ζRk

i

∏s
j=1 P (Ωk

1yj)dij

)m+1

(1 ≤ i ≤ r, 0 ≤ m ≤ L, 0 ≤ µ ≤ L)

and

giµ(y) :=
∞∏
k=q

(
1 − β(i)

µ ζRk
i

s∏
j=1

P (Ωk
1yj)

dij

)
(1 ≤ i ≤ r, 1 ≤ µ ≤ L),

where Ω1 and P (z) are given by (4.1.3) and (4.1.4), respectively. Moreover, define

filmλµ(y) :=
∂lfimµ

∂xl
(αλ;y) (1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L, 0 ≤ µ ≤ L).

Letting

γ2 := (1, . . . , 1︸ ︷︷ ︸
n−1

, γ1, . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, γs),

we see by (4.1.1) and (4.1.6) that

F
(l)
i,m+1(αλ) − filmλ0(γ2) ∈ Q (1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L),

∂l+mHi

∂xl∂ym
(αλ, β

(i)
µ ) −m!filmλµ(γ2) ∈ Q (1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ, µ ≤ L),

and

Gi(β
(i)
µ )/giµ(γ2) ∈ Q×

(1 ≤ i ≤ r, 1 ≤ µ ≤ L).

Hence the algebraic independency of the set (4.3.1) is equivalent to that of

{filmλµ(γ2) | 1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L, 0 ≤ µ ≤ L}

∪ {giµ(γ2) | 1 ≤ i ≤ r, 1 ≤ µ ≤ L}. (4.3.2)

Let

Ω2 := diag(Ωp
1, . . . ,Ω

p
1︸ ︷︷ ︸

s

).
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Noting that Ω2y = (Ωp
1y1, . . . ,Ω

p
1ys), we have

fimµ(x;y) = xpfimµ(x; Ω2y) + bimµ(x;y) (1 ≤ i ≤ r, 0 ≤ m ≤ L, 0 ≤ µ ≤ L)

by (4.1.2), where

bimµ(x;y) :=

p+q−1∑
k=q

xk

(
ζRk
i

∏s
j=1 P (Ωk

1yj)
dij

1 − β
(i)
µ ζRk

i

∏s
j=1 P (Ωk

1yj)dij

)m+1

(1 ≤ i ≤ r, 0 ≤ m ≤ L, 0 ≤ µ ≤ L).

Hence, for each i,m, λ, µ (1 ≤ i ≤ r, 0 ≤ m ≤ L, 1 ≤ λ ≤ L, 0 ≤ µ ≤ L), the

functions filmλµ(y) (0 ≤ l ≤ L) satisfy the functional equation

fimλµ(y) = Aλfimλµ(Ω2y) + bimλµ(y), (4.3.3)

where

fimλµ(y) := t(fi0mλµ(y), fi1mλµ(y), . . . , fiLmλµ(y)),

bimλµ(y) :=
t(
bimµ(αλ;y),

∂bimµ

∂x
(αλ;y), . . . ,

∂Lbimµ

∂xL
(αλ;y)

)
,

and

Aλ :=


αp
λ

pαp−1
λ αp

λ 0
2pαp−1

λ

. . .

. . . . . .∗ Lpαp−1
λ αp

λ

 .

Moreover, for each i, µ (1 ≤ i ≤ r, 1 ≤ µ ≤ L), the function giµ(y) satisfies the

functional equation

giµ(y) =

(
p+q−1∏
k=q

(
1 − β(i)

µ ζRk
i

s∏
j=1

P (Ωk
1yj)

dij

))
giµ(Ω2y) (4.3.4)

by (4.1.2). Now we assume on the contrary that the set (4.3.2) is algebraically

dependent. Then by Theorem 3.2.1, Remark 3.2.2, Lemma 4.1.4, and the functional

equations (4.3.3) and (4.3.4), at least one of the following two cases arises:
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(i) There exist a non-empty subset {λ1, . . . , λν} of {1, . . . , L}, algebraic numbers

cimµσ (1 ≤ i ≤ r, 0 ≤ m ≤ L, 0 ≤ µ ≤ L, 1 ≤ σ ≤ ν), not all zero, and

f(y) ∈ Q[[y]] ∩Q(y) such that

αp
λ1

= · · · = αp
λν

(4.3.5)

and

f(y) = αp
λ1
f(Ω2y) +

∑
i,m,µ,σ

cimµσbimµ(αλσ ;y).

(ii) There exist integers eiµ (1 ≤ i ≤ r, 1 ≤ µ ≤ L), not all zero, and g(y) ∈ Q(y)×

such that

g(y) =

(
p+q−1∏
k=q

∏
i,µ

(
1 − β(i)

µ ζRk
i

s∏
j=1

P (Ωk
1yj)

dij

)eiµ
)
g(Ω2y). (4.3.6)

Suppose first that the case (i) arises. By (4.3.5) we have ν ≤ p since α1, . . . , αL

are distinct. Changing the indices λ (1 ≤ λ ≤ L) if necessary, we may assume that

λσ = σ (1 ≤ σ ≤ ν). Then f(y) satisfies the functional equation

f(y) = αp
1f(Ω2y) +

p+q−1∑
k=q

∑
i,m,µ,σ

cimµσα
k
σ

(
ζRk
i

∏s
j=1 P (Ωk

1yj)
dij

1 − β
(i)
µ ζRk

i

∏s
j=1 P (Ωk

1yj)dij

)m+1

.

(4.3.7)

Let M be any positive integer and let

yj = (yj1, . . . , yjn) = (zM
j

1 , . . . , zM
j

n ) (1 ≤ j ≤ s).

Note that, by Lemma 4.1.7, the denominator of

f ∗(z) := f(zM1 , . . . , z
M
n , . . . , z

Ms

1 , . . . , zM
s

n )

does not vanish and so f ∗(z) ∈ Q[[z]] ∩Q(z). Then the functional equation (4.3.7)

is specialized to

f ∗(z) = αp
1f

∗(Ωp
1z) +

p+q−1∑
k=q

∑
i,m,µ,σ

cimµσα
k
σ

(
ζRk
i P (Ωk

1z)Di

1 − β
(i)
µ ζRk

i P (Ωk
1z)Di

)m+1

,
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where Di :=
∑s

j=1 dijM
j > 0 (1 ≤ i ≤ r). Hence, by Lemma 4.1.5, we see that

∑
i,m,µ,σ

cimµσα
k
σ

(
ζRk
i XDi

1 − β
(i)
µ ζRk

i XDi

)m+1

= 0 (4.3.8)

for any k (q ≤ k ≤ p+ q − 1). For each k (q ≤ k ≤ p+ q − 1), we define

Qk(X) :=
∑

i,m,µ,σ

cimµσα
k
σ

(
ζRk
i Xdi

1 − β
(i)
µ ζRk

i Xdi

)m+1

∈ Q(X1, . . . , Xs),

where Xdi := Xdi1
1 · · ·Xdis

s (1 ≤ i ≤ r). Then the left-hand side of (4.3.8) is

equal to Qk(XM , . . . , XMs
). We assert that Qk(X) = 0 for any k (q ≤ k ≤ p +

q − 1). Indeed, if Qk′(X) 6= 0 for some k′, then there exist nonzero polynomials

A(X), B(X) ∈ Q[X1, . . . , Xs] with B(0) = 1 such that Qk′(X) = A(X)/B(X).

We take M so large that M > max1≤j≤s degXj
A(X). Then, by the uniqueness of

the M -ary expression for nonnegative integers, we see that A(XM , . . . , XMs
) 6= 0.

Hence Qk′(X
M , . . . , XMs

) 6= 0, which contradicts (4.3.8), and so the assertion is

proved. For each i (1 ≤ i ≤ r) and k (q ≤ k ≤ p+ q − 1), define

Qik(Y ) :=
∑
m,µ,σ

cimµσα
k
σ

(
Y

1 − β
(i)
µ Y

)m+1

.

Then Qik(Y ) ∈ YQ[[Y ]] (1 ≤ i ≤ r, q ≤ k ≤ p+ q − 1) and

Qk(X) =
r∑

i=1

Qik(ζRk
i Xdi) = 0 (q ≤ k ≤ p+ q − 1).

Since di = (di1, . . . , dis) (1 ≤ i ≤ r) are pairwise non-proportional, we see that

Qik(ζRk
i Xdi) = 0 and hence

Qik(Y ) =
L∑

m=0

L∑
µ=0

(
ν∑

σ=1

cimµσα
k
σ

)(
Y

1 − β
(i)
µ Y

)m+1

= 0

for any i, k (1 ≤ i ≤ r, q ≤ k ≤ p+ q− 1). Noting that β
(i)
µ (0 ≤ µ ≤ L) are distinct

for each i (1 ≤ i ≤ r), we obtain

ν∑
σ=1

cimµσα
k
σ = 0 (q ≤ k ≤ p+ q − 1)
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for any i,m, µ (1 ≤ i ≤ r, 0 ≤ m ≤ L, 0 ≤ µ ≤ L). Since ν ≤ p and since

ασ (1 ≤ σ ≤ ν) are distinct and nonzero, by the non-vanishing of Vandermonde

determinant, we see that cimµσ = 0 for any i,m, µ, σ (1 ≤ i ≤ r, 0 ≤ m ≤ L, 0 ≤
µ ≤ L, 1 ≤ σ ≤ ν), which is a contradiction.

Suppose next that the case (ii) arises. By Lemma 3.4.4 and by the func-

tional equations (4.3.4) and (4.3.6), we see that g(y)/
∏

i,µ giµ(y)eiµ ∈ Q×
. Then

g(y), g(y)−1 ∈ Q[[y]] and hence, by Lemma 4.1.7,

g∗(z) := g(zM1 , . . . , z
M
n , . . . , z

Ms

1 , . . . , zM
s

n ) ∈ Q(z)×

for any positive integer M . Letting yj = (yj1, . . . , yjn) = (zM
j

1 , . . . , zM
j

n ) (1 ≤ j ≤ s)

in (4.3.6), we have

g∗(z) =

(
p+q−1∏
k=q

∏
i,µ

(
1 − β(i)

µ ζRk
i P (Ωk

1z)Di

)eiµ)
g∗(Ωp

1z),

where Di (1 ≤ i ≤ r) are the positive integers as in the case (i) above. Hence, by

Lemma 4.1.6, we see in particular that∏
i,µ

(1 − β(i)
µ ζ

Rq

i XDi)eiµ = 1.

Taking the logarithmic derivative of this equation and then multiplying both sides

by −X, we get ∑
i,µ

eiµ
Diβ

(i)
µ ζ

Rq

i XDi

1 − β
(i)
µ ζ

Rq

i XDi

= 0.

Let

R(X) :=
∑
i,µ

eiµ
Diβ

(i)
µ ζ

Rq

i Xdi

1 − β
(i)
µ ζ

Rq

i Xdi

∈ Q(X1, . . . , Xs).

Although Di (1 ≤ i ≤ r) depend on M , the maximum of the partial degrees of the

numerator of R(X) is bounded by a constant independent of M . Hence, similarly

to the case (i), we see that R(X) = 0 for any sufficiently large M . Using the fact

that di (1 ≤ i ≤ r) are pairwise non-proportional for any i, j with 1 ≤ i < j ≤ r,

we obtain
L∑

µ=1

eiµ
Diβ

(i)
µ Y

1 − β
(i)
µ Y

= 0
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for any i (1 ≤ i ≤ r). Since β
(i)
µ (1 ≤ µ ≤ L) are distinct and nonzero for each i

(1 ≤ i ≤ r), we see that eiµ = 0 for any i, µ (1 ≤ i ≤ r, 1 ≤ µ ≤ L), which is a

contradiction. This completes the proof of Theorem 1.3.7.

4.4 Proof of Theorem 1.3.12

Proof of Theorem 1.3.12. Let L be any positive integer and α1, . . . , αL any nonzero

distinct L algebraic numbers. It suffices to show that the finite set{
F

(l)
i,m0

(αλ)
∣∣∣ 1 ≤ i ≤ r, 0 ≤ l ≤ L, 1 ≤ λ ≤ L

}
⋃

{Gi(βi) | 1 ≤ i ≤ r}⋃{∂l+mHi

∂xl∂ym
(αλ, β

′
i)

∣∣∣∣ 1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L

}
(4.4.1)

is algebraically independent. Let ζi, γj, and dij (1 ≤ i ≤ r, 1 ≤ j ≤ s) be as in

Lemma 4.1.1. Then the s-tuples (di1, . . . , dis) (1 ≤ i ≤ r) are distinct since none of

ai/aj (1 ≤ i < j ≤ r) is a root of unity. In what follows, let N, p, q, P (z),Ω1,Ω2,

and γ2 be as in the proof of Theorem 1.3.7. Define

fi(x;y) :=
∞∑
k=q

xk
(
ζRk
i

s∏
j=1

P (Ωk
1yj)

dij

)m0

(1 ≤ i ≤ r),

him(x;y) :=
∞∑
k=q

xk

(
ζRk
i

∏s
j=1 P (Ωk

1yj)
dij

1 − β′
iζ

Rk
i

∏s
j=1 P (Ωk

1yj)dij

)m+1

(1 ≤ i ≤ r, 0 ≤ m ≤ L),

and

gi(y) :=
∞∏
k=q

(
1 − βiζ

Rk
i

s∏
j=1

P (Ωk
1yj)

dij

)
(1 ≤ i ≤ r).

Then the algebraic independency of the set (4.4.1) is equivalent to that of{
∂lfi
∂xl

(αλ;γ2)

∣∣∣∣ 1 ≤ i ≤ r, 0 ≤ l ≤ L, 1 ≤ λ ≤ L

}
⋃{∂lhim

∂xl
(αλ;γ2)

∣∣∣∣ 1 ≤ i ≤ r, 0 ≤ l,m ≤ L, 1 ≤ λ ≤ L

}
⋃

{gi(γ2) | 1 ≤ i ≤ r} .
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Assume on the contrary that this set is algebraically dependent. Similarly to the

proof of Theorem 1.3.7, changing the indices λ (1 ≤ λ ≤ L) if necessary, we see

by Theorem 3.2.1, by Remark 3.2.2, and by Lemma 4.1.4 that at least one of the

following two cases arises:

(i) There exist a positive integer ν with ν ≤ L, algebraic numbers biσ (1 ≤ i ≤
r, 1 ≤ σ ≤ ν), cimσ (1 ≤ i ≤ r, 0 ≤ m ≤ L, 1 ≤ σ ≤ ν), not all zero, and

f(y) ∈ Q[[y]] ∩Q(y) such that

αp
1 = · · · = αp

ν

and

f(y) = αp
1f(Ω2y) +

p+q−1∑
k=q

∑
i,σ

biσα
k
σ

(
ζRk
i

s∏
j=1

P (Ωk
1yj)

dij

)m0

+

p+q−1∑
k=q

∑
i,m,σ

cimσα
k
σ

(
ζRk
i

∏s
j=1 P (Ωk

1yj)
dij

1 − β′
iζ

Rk
i

∏s
j=1 P (Ωk

1yj)dij

)m+1

. (4.4.2)

(ii) There exist integers ei (1 ≤ i ≤ r), not all zero, and g(y) ∈ Q(y)× such that

g(y) =

(
p+q−1∏
k=q

r∏
i=1

(
1 − βiζ

Rk
i

s∏
j=1

P (Ωk
1yj)

dij

)ei
)
g(Ω2y). (4.4.3)

Let M be a positive integer and let

yj = (yj1, . . . , yjn) = (zM
j

1 , . . . , zM
j

n ) (1 ≤ j ≤ s).

Since (di1, . . . , dis) (1 ≤ i ≤ r) are distinct, we can take M so large that the following

two properties are both satisfied:

(A) Di :=
∑s

j=1 dijM
j (1 ≤ i ≤ r) are distinct positive integers.

(B) Di ≥ m0 (1 ≤ i ≤ r) and D1 · · ·Dr ≥ L.

Then by (4.4.2), (4.4.3), Lemmas 3.4.4 and 4.1.7, at least one of the following two

conditions holds:
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(i) f ∗(z) := f(zM1 , . . . , z
M
n , . . . , z

Ms

1 , . . . , zM
s

n ) ∈ Q[[z]] ∩Q(z) satisfies

f ∗(z) = αp
1f

∗(Ωp
1z) +

p+q−1∑
k=q

∑
i,σ

biσα
k
σ

(
ζRk
i P (Ωk

1z)Di

)m0

+

p+q−1∑
k=q

∑
i,m,σ

cimσα
k
σ

(
ζRk
i P (Ωk

1z)Di

1 − β′
iζ

Rk
i P (Ωk

1z)Di

)m+1

.

(ii) g∗(z) := g(zM1 , . . . , z
M
n , . . . , z

Ms

1 , . . . , zM
s

n ) ∈ Q(z)× satisfies

g∗(z) =

(
p+q−1∏
k=q

r∏
i=1

(
1 − βiζ

Rk
i P (Ωk

1z)Di

)ei)
g∗(Ωp

1z).

Hence by Lemmas 4.1.5 and 4.1.6, at least one of the following two properties is

satisfied:

(i) For any k (q ≤ k ≤ p+ q − 1),

r∑
i=1

Bi(k)(ζRk
i XDi)m0 +

L∑
m=0

Cim(k)

(
ζRk
i XDi

1 − β′
iζ

Rk
i XDi

)m+1


=
r∑

i=1

(
Bi(k)(ζRk

i XDi)m0 +
L∑

m=0

Cim(k)
∞∑
h=0

(
h+m

m

)
β′h
i (ζRk

i XDi)h+m+1

)

=
r∑

i=1

Bi(k)(ζRk
i XDi)m0 +

∞∑
h′=0

min{L,h′}∑
m=0

Cim(k)

(
h′

m

)
β′h′−m
i

 (ζRk
i XDi)h

′+1


= 0, (4.4.4)

where Bi(k) :=
∑ν

σ=1 biσα
k
σ (1 ≤ i ≤ r) and Cim(k) :=

∑ν
σ=1 cimσα

k
σ (1 ≤ i ≤

r, 0 ≤ m ≤ L).

(ii) For any k (q ≤ k ≤ p+ q − 1),

r∏
i=1

(1 − βiζ
Rk
i XDi)ei = 1. (4.4.5)

Suppose first that (i) is satisfied. We show that Cim(k) = 0 for any i (1 ≤ i ≤ r),

m (0 ≤ m ≤ L), and k (q ≤ k ≤ p + q − 1). Assume on the contrary that Cim(k′)
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(1 ≤ i ≤ r, 0 ≤ m ≤ L) are not all zero for some k′. Let

S := {i ∈ {1, . . . , r} | Cim(k′) (0 ≤ m ≤ L) are not all zero}

and let i′ ∈ S be the index such that Di′ < Di for any i ∈ S \ {i′}. Note that

Ci′m(k′) (0 ≤ m ≤ L) are determined independently of M . Hence, replacing M if

necessary, we may assume that the following property (C) is satisfied in addition to

the properties (A) and (B) above.

(C)
∑L

m=0Ci′m(k′)
(
D1···Dr

m

)
β′D1···Dr−m
i′ 6= 0.

Indeed, let m′ be the maximum of m ∈ {0, . . . , L} such that Ci′m(k′) 6= 0. Since(
x

m

)
=
xm

m!
+ o(xm) (Z 3 x→ ∞)

for each m ∈ {0, . . . ,m′}, we see that

L∑
m=0

Ci′m(k′)

(
x

m

)
β′x−m
i′ = Ci′m′(k′)

(
x

m′

)
β′x−m′

i′ +
m′−1∑
m=0

Ci′m(k′)

(
x

m

)
β′x−m
i′

=
Ci′m′(k′)

m′!β′m′
i′

xm
′
β′x
i′ + o(xm

′
β′x
i′ ) (Z 3 x→ ∞).

Thus the property (C) is satisfied if M is sufficiently large. Noting the fact that

(D1 · · ·Dr +1)Di′ is not divided by any Di with i ∈ S \{i′}, we see by the properties

(B) and (C) that the term(
L∑

m=0

Ci′m(k′)

(
D1 · · ·Dr

m

)
β′D1···Dr−m
i′

)
(ζ

Rk′
i′ XDi′ )D1···Dr+1

does not cancel in (4.4.4), which is a contradiction. Hence Cim(k) = 0 (1 ≤ i ≤
r, 0 ≤ m ≤ L, q ≤ k ≤ p + q − 1). Then, since D1, . . . , Dr are distinct by the

property (A), we have Bi(k) = 0 (1 ≤ i ≤ r, q ≤ k ≤ p + q − 1) by (4.4.4).

Therefore, noting that ν ≤ p, we see that biσ = 0 (1 ≤ i ≤ r, 1 ≤ σ ≤ ν) and

cimσ = 0 (1 ≤ i ≤ r, 0 ≤ m ≤ L, 1 ≤ σ ≤ ν), which is also a contradiction.

Next suppose that (ii) is satisfied. Taking the logarithmic derivative of (4.4.5)

and then multiplying both sides by −X, we see in particular that

r∑
i=1

ei
Diβiζ

Rq

i XDi

1 − βiζ
Rq

i XDi

= 0.
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This is a contradiction since ordX=0Diβiζ
Rq

i XDi/(1 − βiζ
Rq

i XDi) = Di (1 ≤ i ≤ r),

and the theorem is proved.
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Appendix A

Further examples of linear
recurrences satisfying
Conditions 1.2.1 and 1.2.5

In order to obtain a wealth of examples of the results stated in Section 1.3, it is

important to explicitly construct linear recurrences which satisfy Conditions 1.2.1

or 1.2.5. In this section we show the existence of linear recurrences satisfying Con-

dition 1.2.1, and thus Condition 1.2.5 (cf. Tanaka [29, Remark 1]), for any large

length n of the recurrence formula (1.2.2). For this purpose, the following result of

Tamura gives an answer.

Proposition A.1 (Tamura [27, Lemma 10]). Let n ≥ 2 and a1 ≥ · · · ≥ an−1 be

positive integers. Then the polynomial f(X) := Xn − a1X
n−1 − · · · − an−1X − 1 is

the minimal polynomial of a Pisot number α with a1 < α < a1 + 1, i.e.,

(i) f(X) is irreducible over Q,

(ii) there exists only one real root α of f(X) with α > 1,

(iii) |β| < 1 for every algebraic conjugate β( 6= α) of α.

Example A.2. For any integer n ≥ 2, we consider the linear recurrence {Rk}k≥0 of

nonnegative integers satisfying

Rk+n = a1Rk+n−1 + · · · + an−1Rk+1 +Rk (k ≥ 0),
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where a1, . . . , an−1 are as in Proposition A.1. The associated polynomial defined

by (1.2.3) is Φ(X) = Xn − a1X
n−1 − · · · − an−1X − 1. Then Φ(X) is irreducible

over Q and there exists an ordering of the roots ρ1, . . . , ρn of Φ(X) such that ρ1 >

1 > max{|ρ2|, . . . , |ρn|} by Proposition A.1. Hence the linear recurrence {Rk}k≥0

satisfies Condition 1.2.1.

The roots ρ1, . . . , ρn of the polynomial Φ(X) = Xn−a1Xn−1−· · ·−an−1X−1 in

Example A.2 are multiplicatively dependent, since ρ1 · · · ρn = (−1)nΦ(0) = (−1)n+1

and so ρ21 · · · ρ2n = 1. On the other hand, if the roots of a given polynomial Φ(X)

of the form (1.2.3) are multiplicatively independent, then the ratio of any pair of

distinct roots of Φ(X) is clearly not a root of unity. In that case, if in addition Φ(X)

is irreducible over Q, then any linear recurrence {Rk}k≥0 associated with the Φ(X)

satisfies not only Condition 1.2.5 but also Condition 1.2.1 (cf. Tanaka [29, Proof

of Lemma 4]). Therefore, in order to show further examples of linear recurrences

satisfying Condition 1.2.1, it suffices to give conditions for the roots of an irreducible

polynomial to be multiplicatively independent. One of such conditions was obtained

by Becker and Töpfer.

Proposition A.3 (Becker and Töpfer [1, Lemma 5, Proof of Theorem 2]). Let

f(X) = Xn − a1X
n−1 − · · · − an be a polynomial of degree n ≥ 2 with integral

coefficients. Suppose that f(X) is irreducible over Q. Then, if an 6= ±1 and

(an−1, an) = 1, then the roots of f(X) are multiplicatively independent.

In Proposition A.3, the coefficient an−1 of the first degree term of f(X) is assumed

to be nonzero, which excludes the case where f(X) is represented as f(X) = g(Xm)

for some polynomial g(X) and integer m ≥ 2. We note that, if the polynomial Φ(X)

associated with a linear recurrence {Rk}k≥0 is represented as Φ(X) = Ψ(Xm) for

some polynomial Ψ(X) and integer m ≥ 2, then {Rk}k≥0 does not satisfy Condi-

tion 1.2.5. Thus we need to exclude such cases, as in Proposition A.3. The following

result proved by Drmota and Ska lba leads to our desired conclusion under a weaker

assumption than Proposition A.3 in the case where the degree of a polynomial is

restricted to an odd prime number.
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Proposition A.4 (Drmota and Ska lba [5, Theorem 3]). Let p be an odd prime

number and let f(X) = Xp − a1X
p−1 − · · · − ap be a polynomial with rational

coefficients. Suppose that f(X) is irreducible over Q. Then, if ap 6= ±1 and if

ai 6= 0 for at least one i ∈ {1, . . . , p− 1}, then the roots of f(X) are multiplicatively

independent.

Example A.5. Let p be any odd prime number, q a prime number, and {Rk}k≥0 a

linear recurrence of nonnegative integers satisfying

Rk+p = qRk+1 + qRk (k ≥ 0).

The associated polynomial Φ(X) = Xp − qX − q is irreducible over Q by Eisen-

stein’s criterion. Then by Proposition A.4 the roots of Φ(X) are multiplicatively

independent and hence {Rk}k≥0 satisfies Condition 1.2.1. In this example, the dom-

inant root ρ1 appearing in Condition 1.2.1 and in the asymptotic formula (1.2.4)

can be arbitrary close to 1 by taking a sufficiently large prime number p, as shown

below. We fix a prime number q and define Φp(X) := Xp − qX − q for any odd

prime number p. Since Φ′
p(X) = pXp−1 − q has the only positive real root p−1

√
q/p

and since Φp(0) = −q < 0, the polynomial Φp(X) has the only positive real root

ρ(p), which appears as ρ1 in Condition 1.2.1 and so ρ(p) > 1 for any odd prime

number p. We show that ρ(p) → 1 as p → ∞. Let p1 and p2 be odd prime num-

bers with p1 < p2. Then Φp2(ρ(p1)) − Φp1(ρ(p1)) = ρ(p1)
p2 − ρ(p1)

p1 > 0 and so

Φp2(ρ(p1)) > Φp1(ρ(p1)) = 0. Since ρ(p2) is the only positive real root of Φp2(X), we

have ρ(p2) < ρ(p1). Thus the sequence {ρ(p)}p is strictly decreasing with respect to

p and hence it converges to some real number greater than or equal to 1. By the

fact that ρ(p)p − qρ(p) − q = 0 for any odd prime number p, we see that {ρ(p)}p
must converge to 1.
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