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Abstract

In assistive care technologies, activity detection is one of the vital tasks to assist

people by preventing or at least detecting any accident that might occur. Activity

detection has conventionally relied on two leading families of devices: wearable and

non-wearable ones. As their name suggests, wearable devices are devices that re-

quire the person being monitored to wear them or at least carry them with him/her

anywhere (s)he goes, such as smartphones, smartwatches, accelerometers, kinetic sen-

sors, etc. It is a burden to the person to carry the device. Non-wearable devices, on

the other hand, do not have such limiting constraints. A device (typically a sensor)

is placed in a specific location in the area under monitoring, with no need for the

monitored person to worry about its functioning. In recent years, many non-contact

activity detection techniques have been proposed using Wireless Fidelity (Wi-Fi),

Light Detection and Ranging (LiDAR), radar etc. These approaches have limitations

like coverage issues, and deployment issues related to computational resources.

The recent introduction of the wide-angle low-resolution infrared (IR) array sensor

helped develop device-free monitoring systems to solve most of the issues. Many IR-

based activity detection systems have been proposed in recent years. The limitations

of the existing works include but are not limited to the difficulty to detect the activity,

the non-robustness to the environment, and the computational resource constraints

in deployment.

To address the aforementioned issues, this thesis proposes activity detection sys-

tems using a hybrid deep learning model, which could classify blurriness and noisy

images produced by the two wide-angle IR array sensors. One is placed on the wall,

and another one is placed on the ceiling. Activity detection technique involves two

stages. First, we classify the individual frames collected by the wall sensor and the

ceiling sensor separately using a Convolution Neural Network (CNN). In the second

stage, the output of the CNN is passed through a Long Short-Term Memory (LSTM)

with a window size equal to 5 frames to classify the sequence of activities. Afterwards,

we combine the ceiling data and wall data and classify each pair of frames using hy-
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brid deep learning model. Furthermore, we propose an activity detection systems

using one IR array sensor on the ceiling allowing for performance comparable to that

when using dual sensors. By applying advance deep learning based computer vision

techniques, we remove the noise and blurriness in data, which help to improve the

IR image quality. The IR images/image sequences are then classified using a hybrid

DL model that combines a CNN and an LSTM. By incorporating a wider variety of

samples, we use data augmentation to improve the training of neural networks and

make the model robust to the environment. A Conditional Generative Adversarial

Network (CGAN) performs the data augmentation process. By enhancing the im-

ages with Super-Resolution (SR), removing the noise, and augmenting the training

data with more samples, the classification accuracy of activity detection can be im-

proved. We used quantization to optimize the neural network so that it could run on

low-powered devices.

The contribution of the thesis as follows:

• We propose a lightweight Deep Learning model for activity classification that

is robust to environmental changes. Being lightweight, such a model can run

on devices with very low computation capabilities, making it a base for a cheap

solution for activity detection.

• The blurriness and noise present in the IR captured frames, due to the sensor

characteristics the imprecision in the sensor lead to a noticeable drop in per-

formance in conventional methods. Our proposed neural network architecture

manages to address this issue by exploiting the temporal changes in the frames

to identify the activities accurately.

• We identify the activity using a time window of less than 1 second. Despite the

smaller time window, we have remarkably enhanced the classification accuracy

in comparison to conventional works, which require a larger time window.

• Low Resolution (LR) sensors are always preferred over High Resolution (HR)

ones if they provide similar performance. It preserve the privacy of the person

12



and have much lower cost. We demonstrate that it is possible, by using deep

learning techniques such as Super-resolution, denoising, and CGAN, to achieve

classification performance on the LR data that is nearly identical to that of the

classification of the HR data, namely 24×32.
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Chapter 1

Introduction

Population ageing is a societal issue facing many countries nowadays that affects not

only social life but also the economy. As a matter of fact, advancements in healthcare

and medicine have continuously increased the average life expectancy over the last

few decades. Today, the total world population stands at 7.9 billion [1] with 703

million people above the age of 65. Asia and Europe account for most of the elderly

population in the world. Japan, for instance, is at the very top, with 28% [2] of

its population above the age of 65. This high ratio of elderly people and increase

in life expectancy combined with the fact that most of these people are living alone

have made it necessary to develop more sophisticated techniques and technologies to

monitor them. In this regard, artificial intelligence (AI) [3] plays an important role

in healthcare, particularly in assistive care technologies [4–6] for old people owing to

the spurt in the Internet of Things (IoT)-based technological applications.

Activity detection (AD) is one of the vital positions in assistive care technologies

for assisting individuals by preventing or at least detecting any accidents that may

occur. In general, AD has relied on two major families of devices: wearable and

non-wearable. Wearable devices, as the name implies, are devices that require the

person being monitored to wear them or take them with him/her everywhere (s)he

goes. Smartphone [7], smartwatch [8], accelerometer [9], and kinetic sensors [10] all

fall within this category. Carrying these devices, users must be extremely careful and

ensure that they are always taking the correct measurements (e.g., the smartwatch

14



is well placed, etc.). Elderly persons may not prefer such a burden because it causes

them discomfort. Non-wearable devices, on the other hand, are not constrained by

such limits. A device (usually a sensor) is placed in a precise location in the moni-

tored area, with no requirement for the monitored person to be concerned about its

operation. Several approaches were proposed in the literature to do so. They used

array antennas [11], doppler radars [12], Light Detection and Ranging (LiDAR) [13],

Wi-Fi [14], and infrared (IR) array sensors [15]. An example of the devices are shown

in Fig. 1-1

Wearable
Device

Non-Wearable
Device

Smartphone Smartwatch Accelerometer Kinetic Sensor 

LiDAR
Doppler Radar Sensor Infared Array Sensor

Figure 1-1: Some examples of wearable and non-wearable devices.

Wearable sensor technology has the ability to sense, collect, and upload physiolog-

ical data in a continuous manner, providing opportunities to improve quality of life

in a way that is not easily attainable with smartphones alone. Additionally, wearable

sensors can make it much easier and more natural for users to complete numerous

other helpful micro tasks, such as checking incoming text messages and viewing urgent

information, than is possible with a smartphone, which is frequently carried in pock-

ets or bags. A variety of value-added services are also offered by wearables, including

indoor localization and navigation [16], [17], financial payments [18], [19], monitoring

15



of physical and mental health [20], [21], sport analytics [22], and medical insurance

analytics [23]. Recent market reports [24], predict a 44.4 percent increase in wearable

device shipments for 2016, compared to the 80 million devices shipped in 2015, with

annual shipments reaching 200 million by 2019. By 2022, the market for wearable

technology is anticipated to reach a value of $57,653 million, nearly threefold that of

2016 ($19,633 million).

As they offer a combination of human activity recognition and vital sign detection,

wearable sensor technologies are an efficient solution for smart healthcare applications

[25–28]. Wearable sensors are capable of capturing small fractions of the body, such

as finger movement [29]. Wearable sensing technologies can also detect physiological

signals like heart rate and speech patterns [30]. However, the disadvantages of this

technology are that the battery life of wearable sensors is notoriously short. Because

they are "wearable," elderly people may forget to wear them or feel uncomfortable

wearing them [31].

Non-wearable technology is independent of the user. They don’t have to wear

the device. There are many non- wearable based technologies available, including

acoustic-based [32, 33], ambient, and vision-based sensors [34]. The acoustic-based

[35] approaches is vulnerable to ambient noise and surrounding sound interference,

and the sensing range is also limited due to the fast attenuation of acoustic signals.

The ambient-based approaches are vulnerable to power constraint signal weakness,

and high temperature caused data affected. The vision-based approaches relying on

camera [36] or visible light sensors can only work well in environments under certain

light conditions, which could be easily interfered with by low illumination conditions,

smoke, or opaque obstructions. The better solution for those mentioned above issued

is infrared imaging it is also one of the vision-based approaches. The thermal camera

or sensor [37] is essentially a passive sensor that detects infrared variations emitted

by people in a room. Initially, they were typically used for nighttime surveillance for

military purposes [38, 39]. But since they have gotten much cheaper in recent years,

they are now affordable and popular for everyday uses as well. Thermal cameras can

detect the human body and motion in a scene regardless of variations in illumination,
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color of human surfaces, and backgrounds for human activity detection [40]. On the

other hand, most normal cameras rely heavily on these parameters to create depth

images of their surroundings. As a result, thermal cameras or sensors can be useful for

monitoring human activities, particularly in low-light environments [41] where other

conventional cameras would typically fail to provide enough data to accomplish the

purpose of the various applications.

1.1 AD Based on IR Array Sensor

IR array sensors have attracted attention in healthcare technologies [42]. The IR

array sensor measures the heat generated from the human body and projects it on a

low-resolution (LR) matrix which could then be visualized as an image. It has several

advantages: non-invasive from a privacy perspective, ease of positioning/set-up, bet-

ter coverage resulting in a wider area of detection, etc. Moreover, its low cost makes it

affordable to implement. These advantages make IR array sensors economical for use

in a variety of industries such as aerospace [43], healthcare [44], automotive [45], etc.

In the research related to the human AD, two types of IR sensors are used: pyroelec-

tric infrared sensor (PIS) [46] and thermophile IR array sensor [47] [48] are shown in

Fig. 1-2. The PIS is only capable of detecting motion-type of human activities (i.e.,

activity where the person or part of his body is moving). It is not capable of detecting

static human activities (e.g., when he is sitting still, standing, or laying, etc.) [49].

The thermopile IR array sensor quantifies the temperature distribution within the

field of view. It is capable of detecting static and dynamic human activities, pro-

viding us with an understanding of the surrounding environment and pertinent data.

As a result, several studies have used such sensors for human AD, position detection,

counting the number of people [50–54] in a room, etc.
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Pyroelectric infrared sensor Thermophile  infrared sensor

Figure 1-2: Two types of IR sensor.

The IR sensor-based AD systems have relied mostly on two categories of classifiers:

the conventional machine learning classifiers, and the more advanced Deep Learning

(DL) ones. Machine learning models such as Support Vector Machine (SVM) [15],

k-Nearest Neighbors (k-NN) [55], random forest [56], and others were used in conven-

tional machine learning approaches. These conventional approaches rely on activity-

related engineered features to make the task of identifying activities possible. As

such, the effectiveness of these approaches relies heavily on the nature of features,

and their performance could change drastically if these features are not tuned well,

or capture information characterizing the surrounding environment, leading to over-

fitting issues. Neural networks are used in the DL approaches. In this case, the

detailed patterns needed to perform the classification of activities are learned auto-

matically by the network, without requiring human engineering. However, in both

cases, there is still a room for improvement.

DL has recently benefited from the advances in both the hardware and software

sides (i.e., powerful Graphical Processing Units -GPUs- and libraries such as Ten-

sorflow and PyTorch) making training large neural networks feasible in reasonable

amounts of time. With relation to the IR-based AD systems, there are many con-

straints in the temperature, room coverage, and other environment-related limita-

tions, all of which have an impact on the AD. Many techniques, such as background

extraction [57–60], height estimation [61,62], people identification [50,63–66], and so

on, have been used to improve these AD systems. However, such techniques do not
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offer solutions for problems such as the noise, blurriness or distortion in the images.

Nonetheless, most of the time, a model trained in one environment tend to drop in

performance when tested in another environment with different characteristics such

as the room temperature, the presence of heat-emitting devices, etc. making such

systems less robust to environmental changes.

1.2 Existing Approaches

Many infrared array sensor-based AD have been proposed in the past few decades

[15] [55] [67] [68] [69]. However, each of these AD systems has its own limitations.

Most AD systems are based on conventional machine learning methods such as SVM,

k-NN, etc. These conventional methods extract activity features manually to identify

activities. As a result, the identification of activity with different people is less accu-

rate. Mashiyama et al. [15] proposed an activity and fall detection technique [55] with

an IR array sensor (8×8 pixels) mounted at the ceiling using the SVM and k-NN clas-

sifiers. This approach does not perform well on detecting certain activities, such as

sitting, etc. Kobayashi et al. [67] proposed an AD system with two IR array sensors,

one on the ceiling and the other on the wall and classified the activities using SVM.

This approach was intended to improve on the previous one [55] by integrating the

data obtained from both sensors. They achieved over 90% in the detection of all the

activities. In particular, the detection of sitting activity increased from 78% to 93%.

However, the detection of some other activities, including walking and falling, under-

performed. Recently, Xiyui et al. [68] and Taramasco et al. [69] proposed to detect

activities using IR array sensors placed on the ceiling and on the wall, respectively.

Classifying activities such as walking, sitting, standing, etc. using Recurrent Neural

Network (RNN) models achieved 85% and 93% accuracy, respectively. Furthermore,

state-of-the-art methods on AD using various approaches, and their limitations are

reviewed in Chapter 2.
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1.3 Proposed Approaches

Based on the limitations of the existing systems, we strongly believe that the AD

could be further improved, and more accurate systems could be built.

1. Therefore, first we propose an AD systems to improve the coverage and solve

the temperature distribution problem using two IR array sensors and classified

the activity using hybrid DL model by combining Convolution Neural Network

(CNN) and Long Short-Term Memory (LSTM).

2. To further improve detection, we propose the AD systems using computer vision

(CV) techniques to remove the noise in the image using Deep Image Prior (DIP)

denoising technique, improve the quality of the image using Super-Resolution

(SR), and improve the neural network’s training using the data augmentation

method.

1.3.1 AD Systems Using Dual IR Sensors

AD systems using dual IR array sensors approach use hybrid DL technique to detect

the activities. One is placed on the wall, and another is placed on the ceiling. Both the

sensors collect the data at eight frames per second. The consecutive frames collected

by the sensors are classified using the hybrid DL model, regardless of the pattern of

various temperature distribution pixels within them. The classification is performed

on individual frames by CNN, and continuous sequences of frames by combining CNN

and LSTM models with short time window size (5 frames which is less than a second).

In addition, combine the ceiling data and wall data and classify each pair of frames

using CNN and LSTM. This leads to an improvement of the classification accuracy

of various activities thanks to combining both sensor data.

1.3.2 AD Systems Using Single IR Sensor

AD systems using a wide-angle IR array sensor with advanced DL based CV tech-

niques. An IR array sensor is placed on the ceiling and collect data with various
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resolutions (i.e., 24×32, 12×16, and 6×8). And apply the advanced DL techniques

of SR and denoising to enhance the quality of the images. Then we classify the im-

ages/sequences of images using a hybrid DL model combining a CNN and a LSTM.

We use data augmentation to improve the training of the neural networks by incor-

porating a wider variety of samples. The process of data augmentation is performed

by a Conditional Generative Adversarial Network (CGAN). By enhancing the images

using SR, removing the noise, and adding more training samples via data augmen-

tation, to improve the classification accuracy of the neural network. On employing

these DL techniques to noisy IR images leads to a noticeable improvement in AD

performance.

1.4 Contributions

We propose a lightweight Deep Learning model for activity classification that is robust

to environmental changes. Being lightweight, such a model can run on devices with

very low computation capabilities, making it a base for a cheap solution for activity

detection.

The activities are performed in all possible positions within the sensor coverage

area irrespective of the sensor position. Most of the existing works require the subjects

to perform the activities only in front of or under the sensor. In such a case, the

blurriness and noise is due to the sensor characteristics the imprecision of the sensor

capturing the temperature in a stationary position of the same activity, lead to a

noticeable drop in performance. Our proposed neural network architecture manages

to address this issue by exploiting the temporal changes in the frames to identify the

activities accurately.

We identify the activity using a time window of less than 1 second. Despite the

smaller time window, we have remarkably enhanced the classification accuracy in

comparison to conventional works, which require a larger time window.

Low Resolution (LR) sensors are always preferred over High Resolution (HR)

ones if they provide similar performance. This is thanks to their lower risk of privacy
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invasion and cheaper cost. We demonstrate that it is possible to use the LR data to

achieve classification performance that is nearly identical to that of the classification

of the HR data, namely 24×32, by using deep learning techniques such as Super-

resolution, denoising, and CGAN.

1.5 Outline of Dissertation

The remainder of this thesis is organized as follows.

• Chapter 2 discusses the various AD approaches that use IR array sensors, show-

casing their limitations and motivations of the thesis.

• Chapter 3 elaborates the proposed AD approach with dual IR array sensors

based on the corresponding framework, with performance evaluation through

experiments.

• Chapter 4 further elaborates the proposed AD approach using advance DL based

CV techniques with corresponding framework, and performance evaluation by

experiments.

• Chapter 5 concludes this thesis and indicates future research directions.

For better understanding this dissertation, the organization and the relation among

key chapters are shown in Figs. 1-3 and 1-4, respectively. Also, Tables 1.1 and 1.2

list the limitations of existing approaches of AD using IR array sensor, and the con-

tributions of Chapters 3 and 4, respectively.
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Chapter 1 
Introduction:

Activity detection based on infrared
array sensor

Chapter 2 
Related Works: 

Limitations of existing work and
motivations of the thesis

Chapter 3 
AD Systems Using Dual IR Array Sensors

Chapter 4 
AD Sytem Using Single IR Array Sensor 

Chapter 5 
Conclusion and Future Work

Figure 1-3: The organization of this thesis.
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Figure 1-4: The relationship among the key chapters.
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Table 1.1: Limitations of conventional machine learning based AD approaches and
the contributions of chapter 3.

Research Problem

• Developing the effective AD using the wide
angle IR array sensor.

Limitations of Existing
Approaches • Conventional machine learning approaches

[55] [15] [67] relies heavily on manually en-
gineered features.

• In [68] [55] [15] uses a long time window
size equal to 20 frames to identify the activ-
ity. However, despite the relatively long time
window, the performance of these method
still needs to be improved.

Proposed Approach

• AD approach that also uses LR IR array sen-
sors placed on the ceiling and the wall.

• The hybrid DL model combining CNN and
LSTM. In this model, activity-related fea-
tures are automatically created and learned
by neural network.

• Our model uses a window size equal to 5
frames (i.e., less than a second) to identify
the activities.

Improvements

• The performance of AD is improved in wide
coverage area by combining ceiling and wall
sensor data.

• Despite using a shorter time window, our hy-
brid DL model outperforms the conventional
approaches.
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Table 1.2: Limitations of existing AD approaches and contributions of chapter 4.

Research Problem

• Developing the AD systems using advance
DL based CV techniques using wide angle
IR array sensor.

Limitations of Existing
Approaches • The raw data from the IR array sensor is

noisy and it affects the AD [70].

• Most of IR based AD use multiple sensors to
improve the performance

• Due to multiple sensors deployment. [71]
[72], cost is high and also it is not robust
to the environment.

Proposed Approach

• Our AD systems use advance DL based CV
techniques to remove the noise and blurriness
of the image.

• We use advance data augmentation method
to improve the robustness to the environ-
ment.

• We use quantization to optimize the neural
network for low-power devices, reducing de-
ployment costs.

Improvements

• Using a single IR array sensor, we achieved
LR data classification accuracy equal to HR
data classification accuracy.

• The optimized neural network can run on low
powered device with advance DL methods.
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Chapter 2

Related Work

2.1 Wearable Device Based AD Approach

2.1.1 Various Wearable Devices

Activity Detection using Accelerometer

A device that measures the acceleration or rate of change of velocity of a body in

its instantaneous rest frame is known as an accelerometer. There are single-axis and

multi-axis accelerometer models available to detect the magnitude and direction of

proper acceleration as a vector quantity. Accelerometers are commonly used to detect

orientation, vibration, shock, and falling in a resistive environment [73, 74]. Micro-

electromechanical systems (MEMS) accelerometers are found in almost all modern

portable devices. These accelerometers detect screen orientation, position, and so on.

They are, however, perfectly capable of detecting fall events [75–78]. For fall detec-

tion, data from accelerometers can be used in machine learning, statistical models [76],

or threshold-based algorithms [75].

Activity Detection Using Smartwatch

Smartwatches have created new opportunities for smart health [79–81], and wearable

devices can detect and record a user’s health-related daily activities unobtrusively. We

can collect motion related sensor data from the smartwatch to detect daily activities
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through analysis of wrist movement patterns because it is integrated with motion

sensors (e.g., accelerometer, gyroscope, etc.) and worn by a user on his/her wrist

most of the time. There are numerous applications for smartwatch-based activity

recognition. It can function more intelligently if it is aware of what its user is doing.

Physical inactivity has been used primarily to improve people’s health and wellbeing.

By providing accurate, real-time information about sedentary behavior and exercise,

activity monitoring can help combat both inactivity and overeating. Because it is

always readily and unobtrusively accessible, the smartwatch is perfectly positioned to

convey this information, which is one of the reasons why smartwatch manufacturers

tout its potential to improve health. Despite the fact that smartwatches have several

activity recognition applications [8, 82–87]

2.1.2 Existing Works

Dinis et al. [7] proposed a human activity recognition approach using the smartphone

inertial sensors. In their approach, the user has to carry a device (i.e., the phone

in this case), and data are obtained from the device. Data for activities both in-

doors and outdoors are collected. The data are preprocessed and classified using

ConvolutionalLSTM (ConvLSTM). The overall classification accuracy reaches 73%.

Andrea et al. [88] proposed a method for classifying various physical activities us-

ing a wearable accelerometer sensor. The data acquired by the accelerometer sensor

are used to derive features based on the linear acceleration component due to the

body motion and the gravitational acceleration component. Following feature extrac-

tion, a classification task is carried out using a variety of probabilistic and geometric

approaches. The classifier with the best performance of classification accuracy 92.2%

was based on a Hidden Markov Model (HMM).

Davide et al. [89] proposed an approach that uses smartphones for AD. In this

approach, subjects must always hold the smartphone. Human activity signals are

obtained from smartphone inertial sensors. Features are extracted manually from the

signals received by the sensors and classify the activities using SVM with an overall

accuracy of 87%.
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Balli et al. [90] proposed a smartwatch-based approach for human activity detec-

tion. The device must be worn by the subject and data are obtained from the sensor.

Using various machine learning methods such as SVM, k-NN, and random forest al-

gorithm, features are extracted from the collected data. This study shows that the

random forest algorithm performs better than SVM and k-NN.

Wearable device-based methods have their performance varying quite widely based

on the type of sensor and the machine learning algorithm used. Nevertheless, they

have their own limitations. A common shortcoming among them, however, is the

need for manual extraction of features. Furthermore, the inconvenience of carrying

such devices continuously is a drawback inherent to wearable devices, and cannot be

avoided.

2.2 Non-Wearable Device Based AD Approach

In wearable device, there is a risk of device damage if they fall accidentally. With

that in mind, non-wearable devices have several advantages over wearable ones, such

as avoiding any physical contact with the person, which reduces the burden on the

elderly. The non-wearable device-based systems such as ones based on cameras, sen-

sors [15], antennas [11], Light Detection and Ranging (LiDAR) [13], Wi-Fi [14], and

other similar devices require these devices to be strategically placed in specific loca-

tions to monitor the elderly’s activities. That being said, non-wearable devices have

several significant disadvantages, including privacy concerns, coverage issues, and so

on.

Despite the limitations such as the privacy issues arising from the use of cameras,

the coverage issues arising from the use of radars, and the compatibility issues raising

from the use of wireless sensors, non-wearable devices are more convenient for the

elderly. With the recent introduction of the IR array sensor, these issues have been

mainly addressed. In indoor environments, these sensors are less intrusive and easier

to use. The IR array sensor detects the heat generated by the human body and

projects it onto a low-resolution matrix, which can then be treated as an image.
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The non-intrusion from a privacy standpoint, the easy positioning/set-up, and the

better coverage resulting in a wider detection area are just some of the advantages of

this technology. Furthermore, its low cost makes it practical to deploy for real-world

usage.

2.2.1 Various Non-Wearable Devices

Activity Detection Using WiFi

Electromagnetic signals in the radio or microwave spectrum comprise the wireless

medium. These signals contain binary data. The channel data resulting from human

interference with the wireless medium can be utilized for activity detection by ma-

chine learning or statistical models [91,92]. WiFall was developed by Wang et al. [92].

Human activities have an impact on the wireless medium. WiFall interprets the time

variability and unique diversity of Channel State Information (CSI) as evidence of

human activity. As almost all of the current wireless infrastructure already includes

CSI, WiFall doesn’t need wearable tech, special environmental changes, or even hard-

ware modifications. WiFall was used on laptops with commercial 802.11n NICs in the

system. CSI can estimate the channel properties of a communication link. Human

motion can also be detected because it affects wireless propagation space, causing

different patterns in the received signal. Based on the features extracted from the

anomaly patterns, a one-class SVM was used to distinguish human falls. Laboratory

experiments with WiFall yielded an 87% success rate and an 18% failure rate.

Activity Detection Using Radar

Radars are devices that use radio waves to track objects and determine their position,

size, and velocity. A radar system typically includes a transmitter capable of produc-

ing electromagnetic waves in the radio and microwave spectrums, a receiving antenna,

a receiver, a transmitting antenna, and a processor to determine the characteristics of

the objects. Radio waves are transmitted by the transmitter. The objects cause these

waves to reflect. Reflected waves can be used to determine the object’s position and
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speed [93]. Fall detection systems have made extensive use of Doppler radars [94,95].

Using the Doppler effect, Doppler radars can detect moving targets at a great dis-

tance. Doppler radars send out microwave signals and measure how the frequencies

of the returned signal change as the objects move. In order to detect falls from radar

data, various signal processing techniques are typically utilized [94,96–100].

Activity Detection Using LiDAR

Lidar is a type of sensing technology that determines the distance between a sensor

and a target. The Lidar can estimate the distance to an person by emitting light and

measuring the time it takes for the light to reflect from person and reach the receiver.

In technical terms, the emitter, also known as the waveform generator, generates a

laser wave-form (or an array of laser waveforms). The laser waveform travels through

a medium until it hits a target. The Lidar light bounces off the detected object and

returns through the same medium, where it is captured by the receiver. Depending

on the medium being explored (air, water, vacuum, etc.), the precision, and the pen-

etration required, different wave-lengths are used. In an application such as activity

detection [101, 102], the obvious medium is air, which has a light speed close to that

of a vacuum. A 2-D Lidar is simply a Lidar with a rotating motor that allows it to

cover 360 degrees. The Lidar sensors emit light, receive light, estimate the distance

to objects at various angles (points), and map them to a 2-D map by rotating. While

rotating, the Lidar emits light from its emitter. The receiver captures the reflected

light, and because the speed of light is constant, the distance to the object at that

particular angle can be calculated. By taking several measurements while rotating,

the lidar can create a 2-D map that can be used to identify people and their activities

in the vicinity of the Lidar.

Activity Detection Using IR Sensor

An infrared sensor is a type of electronic sensor that detects infrared light emitted by

objects in its field of view. Although infrared sensors can detect general movement,

they cannot provide information about the moving subject. Because humans emit
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Table 2.1: Comparison of various AD devices.
Parameters IR array sensor LiDAR [13] Radar [107] Wi-Fi [14]

Device cost 60$ 500$ 410 100$
Power source 30$ 100$ 40$ 50$

Embedded computer 40$ 700$ 100$ 40$
Total cost 130$ 1300$ 560$ 190$

Size (L×W×H mm) 56.5×85.6×17 76×76×41 171×158×41 212×183×34
Inference time 0.43 ms 126 ms 5.7 ms 7.9ms

mostly infrared radiation, IR sensors can be used to track human movement [103,104].

Infrared-based systems are primarily used for surveillance. IR sensor data is typically

used to generate 3D images or blocks that represent environmental infrared radiation

information [105]. Following feature extraction, a variety of machine learning or

statistical models are used to detect falls and ADL events [105,106].

In Table 2.1, we show a comparison of the various devices (thus the respective

approaches which employed them) in terms the cost, computational time and size of

the devices.

2.2.2 Conventional Machine Learning Based AD Approach

Support Vector Machine (SVM)

SVM, or Support Vector Machine, is a linear model that can be used to solve classifica-

tion and regression problems. Non-linear mapping of input quantities to a very high-

dimensional feature space. A line decision surface is built in this feature space [108].

According to [109], SVM transforms the original training data into a higher dimension

using a non-linear mapping. Within this new dimension, the optimal separation hy-

perplane is sought. SVMs can be used for both numerical prediction and classification.

They have been used in a variety of applications such as activity detection [110–114],

object detection [115–118], and so on.
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Naïve Bayesian Classifier

It is a unique subset of machine learning algorithms that deals with the classification

task [119]. The "Bayes theorem" [120] serves as the foundation for this. This algo-

rithm assumes the prediction variables are independent [121]. In other words, the

presence of a set of characteristics [122] in one data set does not imply the absence

of another character in another data set.

Random Forest

Random Forest [123] is a popular feature selection algorithm that automatically cal-

culates the importance of each feature without the need for additional programming.

This allows us to select a more limited set of features. The random forest has the

following advantages [124]: high precision, the introduction of randomness makes ran-

domforests avoid overfitting problem, it have good denoise ability (can handle outliers

better), can handle very high-dimensional data without feature selection, it can han-

dle both discrete data and continuous data, and high training speed. The random

forest has some drawbacks [125], including poor interpretability when there are lots

of decision trees present, which increases training time and space requirements.

2.2.3 Existing Works

Device-free approaches for AD have attracted more attention over the last few years.

Most of them still rely on conventional machine learning techniques. The conventional

approach use manually engineered features to identify activities. In [15] and [55],

Mashiyama et al. proposed two similar approaches for fall detection and AD, respec-

tively. In their work, they used a single IR array sensor (8×8 pixels) attached to the

ceiling. Data are collected from the sensor with a fixed time window size of frames.

From the data collected in each scenario, they extracted four features which they use

to run a classification task using conventional machine learning to identify the activ-

ity that the subject is performing. The features are extracted from the consecutive

frames where the motion is detected. The features used are: the maximum number of
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pixels that changed during these consecutive frames, the maximum of the variance of

temperature among the pixels, and the maximum temperature difference in the same

pixel before and after the activity. In their work, the authors ran several experiments.

However, the best results obtained are as follows. Using a k-NN classifier, their ap-

proach achieved an accuracy for fall detection equal to 94% classification accuracy.

Using a SVM classifier, the accuracy achieved for AD is 100% for no event, 94.8% for

stopping, 99% for walking, and 78% for sitting. Despite its merits, this system has

a few shortcomings. To begin with, no processing is done on the data. Nevertheless,

due to the LR data used (8×8 pixels), the noise is extremely high, making the values

for features extracted present a high level of error. As a result, the classification

performance was affected significantly for some activities.

Kobayashi et al. [67] proposed an AD system based on the temperature distribu-

tion captured by two IR array sensors placed on two different locations (i.e., on the

ceiling and on the wall) that collect the data simultaneously. An SVM classifier is used

to run a classification task on the data collected by both sensors together. Their pro-

posed activity recognition system addressed the limitations of the previous work [15],

namely the poor classification accuracy for some activities. For instance, the detec-

tion of the sitting activity has been improved from 78% to 93%. This system’s overall

classification accuracy is above 90% for all the activities including walking, falling,

sitting, etc. While this work addressed some of the limitations of the previous one

by introducing a few features and using two sensors simultaneously, it still has a few

shortcomings. For instance, no noise removal is done in this approach that may cause

the performance degradation. The improved performance is mainly attributed to the

combination of two sensors’ data. Nevertheless, this system has been tested in a

single environment.

Taniguchi et al. [69] has proposed a fall detection system using two thermal array

sensors (16×16 pixels). One is placed on the wall, and the other on the ceiling. All the

activities are carried out under and in front of the sensors. Both the sensor data are

combined, and the temperature distribution is used to distinguish fall activities from

non-fall activities. Their approach achieved an accuracy equal to 72%. This system,
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however, relies on one of the oldest time series analysis approaches like time-series

posture transition diagram, and the sum of temperature distribution. Several newer

machine learning models perform much better.

2.2.4 Deep Learning Based AD Approach

The deep learning techniques utilize neural networks. In this case, the neural network

learns the detailed patterns required to perform activity classification automatically,

without the need for manually engineered features.

Deep Neural Network

Deep neural networks (DNN) are derived from artificial neural networks (ANN)

(ANN). Deep neural networks (DNN) have more hidden layers than traditional neural

networks (ANN) (deep). DNN can learn from large amounts of data with more layers.

DNN is typically used as the dense layer in other deep models. In a convolution neural

network, for example, several dense layers are frequently added after the convolution

layers.

Hand-engineered features were first extracted from the sensors [126] before be-

ing fed into a Deep Neural Network model. Similarly, [127] In formed PCA before

employing DNN. Because DNN was only used as a classification model after hand-

crafted feature extraction in those studies, they may not generalize well. And the

network was a little shaky. In [128] improved performance by using a 5-hidden-layer

DNN for automatic feature learning and classification. Those studies found that

when the HAR data is multidimensional and the activities are more complex, adding

more hidden layers can help the model train well because their representation capa-

bility is stronger [129]. In certain circumstances, however, it is necessary to consider

additional information to help the model achieve a more accurate fit.
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Convolution Neural Network

Convolutional Neural Networks (ConvNets, or CNN) make use of three key concepts:

sparse interactions, parameter sharing, and equivariant representations [130]. Follow-

ing convolution, there are typically pooling and fully-connected layers that perform

classification or regression. CNN is capable of extracting features from signals and

has shown promise in image classification, speech recognition, and text analysis. CNN

has two advantages over other models when applied to time series classification, such

as HAR: local dependency and scale invariance. Local dependency in HAR refers to

the likelihood of nearby signals being correlated, whereas scale invariance refers to

the scale-invariant for different paces or frequencies. Because of CNN’s effectiveness,

the majority of the work surveyed was in this field.

When applying CNN to HAR, several factors must be considered, including input

adaptation, pooling, and weight-sharing.

1. Input modification. In contrast to images, most HAR sensors generate time

series readings such as acceleration signals, which are temporal multidimensional

1D readings. Before applying CNN to those inputs, input adaptation is required.

The main idea is to modify the inputs to create a virtual image. There are two

types of adaptation: model-driven adaptation and data-driven adaptation.

(a) The data-driven approach considers each dimension to be a channel and

then performs 1D convolution on it. The outputs of each channel are

flattened to unified DNN layers after convolution and pooling. In [131] an

early work in which each dimension of the accelerometer was treated as one

channel, similar to RGB of an image, and then convolution and pooling

were performed separately. In [132] also proposed using 1D convolution

in the same temporal window to unify and share weights in multi-sensor

CNN. In addition to this line, [133] resized the convolu- tion kernel to get

the best kernel for HAR data. [128,134,135] are examples of similar work.

This data-driven approach, which is simple and easy to implement, treats

the 1D sensor reading as a 1D image. This approach has the disadvantage
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of ignoring the interdependencies between dimensions and sensors, which

may affect performance.

(b) The model-driven approach resizes the inputs to a virtual 2D image so

that a 2D convolution can be used. This approach is typically used for

non-trivial input tuning techniques. While [136] created a more complex

algorithm to convert the time series into an image, [137] combined all

dimensions to create an image. In [138] used modality transformation

to convert pressure sensor data to an image. Similar work can be found

in [139,140]. This model-driven approach can make use of sensor temporal

correlation. However, mapping time series to images is a difficult task that

necessitates domain knowledge.

2. Pooling:Convolution-pooling is a common combination in CNN, with most ap-

proaches performing max or average pooling after convolution [134, 137, 141],

[19,31,48]. In addition to preventing overfitting, data pooling can accelerate the

training process for large datasets [129].

3. Weight distribution. Weight sharing [135, 142]is an effective way to accelerate

the training process for a new task. In [131] used a relaxed partial weight sharing

technique because the signal in different units behaved differently. In [143]

investigated the performance of various weight-sharing techniques using a CNN-

pf and CNN-pff structure. It has been demonstrated in the literature that

partial weight-sharing can improve CNN performance.

Autoencoder

The hidden layers of the Autoencoder learn a latent representation [144] of the input

values, which can be thought of as an encoding-decoding procedure. The autoen-

coder’s goal is to learn more advanced feature representations using an unsupervised

learning schema. The stack of some autoencoders is known as a stacked autoencoder

(SAE). SAE considers each layer to be the basic model of an autoencoder. The learned

features are stacked with labels to form a classifier after several rounds of training.
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In [145,146] used SAE for HAR, adopting the greedy layer-wise pre-training [147] and

then performing fine-tuning. In contrast to those studies, In [148] investigated the

sparse autoencoder by including noise and KL divergence in the cost function, indi-

cating that the addition of sparse constraints could enhance HAR performance. SAE

has the advantage of being able to perform unsupervised feature learning for HAR,

making it a powerful tool for feature extraction. However, SAE is overly reliant on

its layers and activation functions, making it difficult to find the best solutions.

Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) [149] is a bipartite, fully connected, undi-

rected graph with a visible and hidden layer [147]. By treating every two consecutive

layers as an RBM, the stacked RBM is referred to as a deep belief network (DBN).

Fully-connected layers are frequently added after DBN/RBM. In pre-training, most

studies used Gaussian RBM in the first layer and binary RBM in the subsequent lay-

ers [150–152]. A multi-modal RBM was developed by [153] for multimodal sensors,

in which an RBM is built for each modality of the sensor before the output from all

the modalities is combined. To extract the important features, [139] added pooling

after the fully-connected layers. In [154] used a contrastive gradient (CG) method to

fine-tune the weight, which allows the network to search and converge quickly in all

directions. In [155] went on to implement RBM on a mobile phone for offline training,

demonstrating that RBM can be very lightweight. RBM/DBN, like autoencoder, can

perform unsupervised feature learning for HAR.

Recurrent Neural Network

By utilizing the temporal correlations between neurons, recurrent neural networks

(RNN) are widely used in speech recognition and natural language processing. LSTM

(long-short term memory) cells are frequently combined with RNN, with LSTM serv-

ing as memory units via gradient descent. Few works [128, 156–158] used RNN for

HAR tasks, where learning speed and resource consumption are the primary con-

cerns for HAR. In [158] first investigated several model parameters before proposing
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a relatively good model capable of performing HAR with high throughput. In [156]

proposed a binarized-BLSTM-RNN model in which all hidden layer weight param-

eters, input, and output are all binary values. The main goal of RNN-based HAR

models is to work well in environments with few resources while still getting good

results.

Hybrid Model

A hybrid model is the result of the combination of several deep models [159]. The

combination of CNN and RNN is one emerging hybrid model. In [132, 160] pro-

vided excellent examples of combining CNN and RNN. In [160] demonstrates that

the performance of ’CNN + recurrent dense layers’ outperforms ’CNN + dense lay-

ers’. In [138] also shows similar results. The reason for this is that CNN can capture

spatial relationships while RNN can use temporal relationships. Combining CNN and

RNN [161, 162] may improve the ability to recognize various activities with varying

time spans and signal distributions. Other research combined CNN with models like

SAE [163] and RBM [164]. CNN is used to extract features in these works, and gen-

erative models can aid in the training process. We anticipate more research in this

area in the future.

2.2.5 Existing Work Based on IR Array Sensors

Xiyui et al. [68] has proposed a robust fall detection system using an infrared array

sensor (8×8 pixels). The sensor is placed on the wall in this system. The different

activities are carried out in parallel and perpendicular to the sensor. The data is

pre-processed by applying a Gaussian filter, and a median filter then forwarded to an

LSTM and a Gated Recurrent Units (GRU) recurrent neural networks to be classified.

The system achieved an accuracy equal to 75% using LSTM and 85% using GRU.

The activities in this system are performed in limited positions, and the accuracy of

the classification is low in both the algorithms.

Taramasco et al. [165] has proposed a fall detection system using an infrared ar-
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ray sensor (1×16 pixels). The sensor is placed on the ceiling, and the subjects have

carried out a variety of activities, the data of which are collected using the sensor.

Activities are classified using a RNN, which is used for classifying sequences with

different architectures, such as LSTM, GRU, and Bi-LSTM (Bi-directional LSTM).

Their performance varies. However, Bi-LSTM performed the best, achieving an ac-

curacy equal to 93%. The Bi-LSTM approach requires a high computation device to

run, limiting its usability on low computation devices.

Javier et al. [166] proposed an approach for fall detection that relies on a single

IR array sensor with a 32×31 resolution installed on the ceiling. In this work, the

authors use conventional data augmentation techniques such as rotating and cropping

the image to improve the classification. The classification is done by three different

types of CNN, the best of which reaches an accuracy equal to 92%.

Matthew et al. [71] proposed an unobtrusive pose recognition using five IR array

sensors with 32×31 resolution. In their work, the authors proposed to install a single

sensor on the ceiling and the other four ones on four corners of the room. The data

are collected and classified using a CNN. In their work, the authors analyzed the

performance of classification of data collected by the individual sensors, as well as

their combination. They achieved an overall F1-score equal to 92%. An interesting

finding of theirs is that the ceiling sensor data classification performance is poor

comparatively. This work did not perform the classification taking into account the

temporal changes in the collected frames due to activities. Nevertheless, they used

five sensors, which makes it relatively an expensive solutions to justify a marginal

improvement in performance.

Cankun et al. [70] proposed a multi-occupancy fall detection system using an IR

array sensor with a 32×31 resolution. This work decomposes multi-occupancy data

from the sensor using image binarization, contours detection, and single occupancy

sub-image. The features are extracted and classified using CNN. The highest average

classification accuracy achieved in this work is 98.39%. However, a few true negatives

were recorded for the class “fallen”, which presents a major drawback as this class is

the most crucial to detect. The misclassification is mainly due to the images being
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blurry and with high contrast, as well as to the person falling at the edge of coverage

of the sensor.

Tianfu et al. [167] proposed human action recognition using two IR array sensors,

whose resolution is 24×32. One of them is placed on the ceiling and the other is placed

on the wall. Sequentially, the two sensor data go through a set of pre-processing

operations. These include a quantification, a time-domain filtering, and a removal

of the background. The pre-processed data are used to locate the human target and

detect the activity (s)he is performing. The classification of the activities is done by

a CNN. The highest classification accuracy obtained is 96.73%. Although multiple

sensors are used in this work, this method failed to detect the position of the human

when (s)he is near the edges of coverage of the sensor. This is mainly due to the

blurriness and noise in the images.

Miguel et al. [72] proposed a fall detection system using two IR array sensors: one

with HR of 80×60 placed on the ceiling and the other with a LR of 32×31 placed on

the wall. The collected thermal data are in a fuzzy representation, and the activities

are classified using three different CNNs and their respective results are compared.

Nonetheless, in their work, the authors used a traditional data augmentation method

to improve the classification accuracy by rotating and cropping the images. Interest-

ingly, thanks to its wide angle lens allowing for a wider coverage, the LR sensor data

classification performs better than HR one. The highest classification accuracy they

obtained is 94.3%. In this work, the authors did not combine the data nor did they

perform the sequence data classification. Nonetheless, they did not consider removing

the noise or enhancing the resolution of the images.

Tateno et al. [168] proposed a fall detection system using one IR array sensor

placed on the ceiling. The data is preprocessed by applying noise removal and back-

ground subtraction, upon which the target in motion is located and his/her activity is

classified using a 3D-CNN and an LSTM, separately. In this work, the authors aimed

to detect the activity of multiple people. Using cross validation data, the highest

classification accuracy reached 98.8% of 3D-CNN and 94.9% of LSTM. Despite its

high accuracy, this approach has not been proven to be robust. As the authors did
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Figure 2-1: The sensor placed at the ceiling

not run a classification on unknown test data taken in a different environment. This

leads us to believe that chances of having similar performance in real-world applica-

tion on new unseen environments are not to be expected. Nevertheless, the authors

used Gaussian filter for noise removal, which is a linear smoothing filter that results

in information loss.

2.2.6 Position of IR sensor at Various Locations

Sensor Placed at Ceiling:

The ceiling sensor positioning has both merits and demerits [169–173]. When we

choose to place the sensor on the ceiling, it needs to be placed at a sufficient height in

order to cover a large area shown in the Fig 2-1. However, in the case of an infrared

sensor, as the subject moves farther away from the sensor the heat distribution in the

image reduces making it harder to identify the activity. Thus this positioning of the

sensor can cover a large area but the quality of the data collected is affected thereby

making it inadequate.
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Figure 2-2: The sensor placed at the corner of the room

Sensor Placed at the Corner of the Room:

When the same sensor is placed at one corner [174–178] of the room shown in the

Fig. 2-2, the coverage is affected because of the angle of inclination. This results in

a better view at the bottom and the top view being affected negatively. Thus when

the person moves farther away from the sensor he will be out of the coverage area

gradually, and this will make it harder to detect the activity towards the edge of the

coverage area.

Sensors Placed Linearly at the Ceiling:

When multiple IR array sensors are placed continuously in the ceiling [179–182] show

in Fig. 2-3, it will enable coverage of a larger area with lower height. Thus activity

detection is improved further. However, the job of combining multiple sensor data

[183] and ordering them to find the corresponding activity is a difficult task since the

features for the activities vary on account of the overlap between the field of view of

the sensors. Moreover, this kind of activity detection system only works in a specific

environment and is not robust to work in other environments.

Sensors Placed at Bottom Four Corner of the Room:

In the case where the sensor is placed at the bottom corner [71, 184,185] edge of the

room shown in Fig. 2-4, the peripheral view of the sensor struggles to register the

person’s activity and is hard to detect. An attempt to rectify this issue by placing
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Figure 2-3: The multiple sensors deployed linearly

Figure 2-4: The sensors placed at the bottom corner of the room.

multiple sensors in all four bottom corners of the room causes difficulty in ordering

of the data to identify the corresponding activity.

2.3 Limitations of Existing Work and Motivations

for the Thesis

2.3.1 AD Using Hybrid Deep Learning

Based on the limitations of the existing approaches, we have chosen to use a two

32×24 pixels resolution infrared array sensors. One is placed on the ceiling and an-

other on the wall. The sensor’s resolution is higher than that of the existing 8×8,

1×16, 16×16 pixels resolution sensors. Nonetheless, the sensor that we are using

has a wide-angle allowing for a coverage area that is much wider than that of the
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other sensors. The activities are performed in all possible positions within the sensor

coverage area irrespective of the sensor position. Most of the existing works require

the subjects to perform the activities only in front of or under the sensor. In such a

case, the blurriness and noise due to the imprecision of the sensor capturing the tem-

perature in a stationary position of the same activity. This makes this type of images

non-appropriate for feature extraction using conventional machine learning methods.

The features in these methods are extracted using temperature distribution changes.

Clear images are easily classified using these conventional methods, whereas, differ-

ent pattern of temperature distribution of same activities are much harder to classify.

Deep learning techniques are thus better suited to classify the these kind of images. In

the field of deep learning techniques, the activities’ features are automatically learned

by the neural network.

2.3.2 AD Using Computer Vision Techniques

Most of the state-of-the-art work related to the detection of activities relies heavily

on a multitude of sensors and is restricted by the environment conditions. Such AD

systems are less effective when deployed on new unseen environments. Nevertheless,

these works, for the most part, ignore the effect of noise and blurriness produce due

to the pattern of temperature distribution on their performance. This is a key point

to address as the noise level in low-resolution IR images is relatively high. It has a

significant impact on the detection of activity.

To develop the AD systems we choose one IR array sensor placed on the ceiling

and conduct various experiments. It offers a number of advantages to protect the

user’s privacy, it also works in a variety of environments (in terms of luminance,

including darkness). However, these sensors can only be used in a very small space

due to their limited coverage.

That being said, it is fair to assume that LR sensors are always preferred over HR

ones if they can provide similar performance. This is thanks to their cheaper cost and

lower risk of privacy invasion. In our work, we aim to introduce a solution which uses

LR sensors (i.e., 12×16 and 6×8) to perform AD with performance comparable to HR
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ones. For the sake of our experiments, we chose to use a 24×32 resolution IR array

sensor. We collect data in 12×16 and 6×8 resolutions, respectively. For these lower

resolutions, we try to achieve a performance nearly equal to the one reported when

using the 24×32 resolution. Using an LR image presenting a large amount of noise

makes it hard to identify the activity the subjects are performing. Thus, reaching

a performance comparable to that obtained using HR frames is a challenging task.

Another major challenge is the temperature distribution pattern varies due to the use

of a wide-angle lens. The same activity manifests differently depending on where it

has been performed, thus creates a different pattern. With the proposed classification

model, and thanks to the use of data augmentation, we aim to classify the activities

more accurately even with the patter of temeprature distribution changes. We apply

some advanced techniques of DL to achieve better performance.

Table 2.2 shows a comparison of the existing work and their limitations. Most

of the existing work performs the activity in front of the sensor. They did not do

the activities in different positions within the coverage areas of the sensor. The

different angles in addition to the temperature distribution pattern varies, produce

different patterns for the same activity, making it hard for these AD systems to

detect the activity, affecting their performance. Also, the majority of the work did

not address issues related to noise in the data collected, and it only works well in

specific environments. Another common limitation is the high computational and

deployment cost required for these approaches. In addition, many of the works use

two or more sensors to achieve the high performance which, again, is expensive for

real-world deployment.
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Table 2.2: A summary of the existing works that use IR sensors for AD alongside
with their shortcomings.

Study Resolution # sensors Position Methods Accuracy Limitations

Mashiyama et al. [15] 8× 8 1 Ceiling SVM 94% Data are highly noisy due to
their low resolution. Few
activities in a specific area, no
detection of transition
between activities.

Mashiyama et al. [55] 8× 8 1 Ceiling k-NN 94% Due to the noise in the data,
feature extraction is less
effective.

Kobayashi et al [67] 8× 8 2 Ceiling, Wall SVM 90% No reprocessing is done. Data
are noisy. Activities are
performed in very specific
positions.

Xiyui et al. [68] 8× 8 1 Wall LSTM, GRU 75% and
85%

Very limited positions:
activities are performed only
in parallel or perpendicular to
the sensor.

Taniguchi et al. [69] 16× 16 2 Ceiling, Wall Time series
analysis

72% Low accuracy due to the use
of an old approach.

Taramasco et al. [165] 1× 16 2 Opposite
corner of the

room

LSTM, GRU,
Bi-LSTM

93% High computation cost.

Javier et al. [166] 32× 32 1 Ceiling CNN 92% &
85%

Noisy and blurry image.
Difficult to detect activities in
high temperature areas.

Matthew et al. [71] 32× 31 5 Ceiling and all
corners

CNN based on
alexnet

F1-score
92%

Requires multiple sensors.
Expensive to deploy in
real-world.

Cankun et al. [70] 32× 31 1 Ceiling multi-
occupancy fall

detection
MoT-LoGNN

98.39% The misclassification of
activities is mainly due to the
image being blurry and having
high contrast.

Tianfu et al. [167] 24× 32 2 Ceiling, Wall CNN 96.73% Fails to detect the position of
the human near the edges of
coverage, due to the blurriness
and noise in the images.

Miguel et al. [72] 32× 31,
80× 60

2 Ceiling, Wall CNN 72% No sequence data
classification was performed.
Noise removal and
enhancement of the images
were not performed.

Tateno et al. [168] 24× 32 1 Ceiling 3D-CNN
3D-LSTM

93% Gaussian filter is used to
remove the noises, which
causes a loss of information.
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Chapter 3

AD Systems Using Dual IR Sensors

3.1 Introduction

There are a lot of non-wearable devices available for activity detection. They include

but are not limited to radars, Wi-Fi, IR sensors, etc. Among these, we specifically

choose to use the IR array sensor because it has several advantages. Not only does it

protect the privacy of the user, but it also operates in a variety of environments (in

terms of luminance, including darkness). Most of the applications and existing work

relying on IR array sensors use ones with a resolution equal to 8×8 pixels. However,

these sensors have very limited coverage and can be used only in a very small room.

Given the limitations, we listed above in Chapter 2, we have chosen to use a

32×24 pixels resolution IR array sensor. The sensor’s resolution is higher than that

of the existing 8×8, 1×16, 16×16 pixels resolution sensors. Nonetheless, the sensor

that we are using has a wide-angle allowing for a coverage area that is much wider

than that of the other sensors. The activities are performed in all possible positions

within the sensor coverage area irrespective of the sensor position. Most of the exist-

ing works require the subjects to perform the activities only in front of or under the

sensor. In such a case, the blurriness and noise is due to the sensor characteristics the

imprecision of the sensor capturing the temperature in a stationary position of the

same activity. This makes this type of images non-appropriate for feature extraction

using conventional machine learning methods. The features in these methods are
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extracted using temperature distribution changes. Clear images are easily classified

using these conventional methods, whereas, different pattern of temperature distri-

bution pixel images are much harder to classify. This makes DL techniques more

suitable for images of this kind. In the field of DL techniques, the activities’ fea-

tures are automatically learned by the neural network. In this AD systems we use

a hybrid deep-learning model to classify the same activity with different pattern of

temperature distribution; the neural network automatically learns pattern activity

features. Two sensors are used in the proposed system. One of the sensors is placed

on the wall, and another one is placed on the ceiling. Both the sensors collect the

data at eight frames per second and start simultaneously. After collecting the data,

the proposed activity detection technique involves two stages. First, we classify the

individual frames collected by the wall sensor and the ceiling sensor separately using

a CNN. In the second stage, the output of the CNN is passed through a LSTM with

a window size equal to 5 frames to classify the sequence of activities. Afterwards,

we combine the ceiling data and wall data and classify each pair of frames using

CNN. The output of the CNN is passed through the LSTM with a window size equal

to 5 frames. This leads to an improvement of the classification accuracy of various

activities thanks to combining both sensor data.

3.2 Framework of AD Systems

The overall framework of our proposed system is shown in Fig. 4-1. We collect data

from our experiments, and then using CNN and LSTM, we perform the classification

of the various activities. First, we classify individual frames collected by the wall

sensor and the ceiling sensor separately using the CNN. We then pass the output

of the CNN through the LSTM for sequential activity classification and check the

performance on both the ceiling sensor data and the wall sensor data separately.

Second, we combine the wall sensor data and the ceiling sensor data. Using CNN, we

classify the individual pairs of frames of the activities and analyze the performance.

The output of the CNN is passed through the LSTM for sequential classification of
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Figure 3-1: A flowchart of the proposed system.

the activities. The outputs of CNN and LSTM using wall sensor data are represented

by CNNw and LSTMw, respectively. In the same way, the outputs of CNN and

LSTM using ceiling data are represented by CNNc and LSTMc, respectively. The

output of CNN and LSTM using the combined ceiling sensor data and wall sensor

data is represented by CNNcw and LSTMcw, respectively. We use these notations

to differentiate between the different models and to make it easy to compare their

performance.
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Figure 3-2: The wide angle IR array sensor used for our experiments.

Table 3.1: The technical specifications of the sensor.

IR sensor model: Qwiic IR Array MLX90640
Camera 1
Voltage 3.3 V

Temperature range of targets −40∘C ∼ 85∘C
Absolute temperature accuracy ±2∘C

Number of pixels 768 (32×24)
Viewing angle 110∘ × 75∘

Frame rate 8 frames/second

3.3 Experiment Specification

3.3.1 Device Specification

We used two of the MLX90640 (Melexis corporation)1 IR array sensor shown in Fig.

3-2. These sensors are capable of detecting heat rays from any thermal source. Table

3.1 displays the main sensor specifications. The sensor temperature range covers

both the typical human temperature as well as indoor temperature. Nevertheless,

the sensor can collect data at different frame rates. The sensor frame resolution

is 32×24 pixels. The brighter the color is in the generated frames, the higher the

temperature is.

The sensor is attached to a Raspberry Pi 3 model b+ as shown in Fig. 3-3.

The Raspberry Pi is also equipped with a standard camera recording the same event
1https://www.melexis.com/en/product/MLX90640/
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Figure 3-3: An image of the Rasberry Pi 3+ with the camera and the IR senors
mounted which we used for collecting the data.

as the sensor. The data collected by the camera are used as ground truth and are

used to annotate the sensor data. We prepared two sets of devices with the same

configuration, one is placed on the wall, and the other is placed on the ceiling. The

wall sensor and the ceiling sensor as well as their corresponding cameras collect data

at the same rate of 8 frames per second (fps). The data are stored in the SD card

mounted in the Raspberry Pi.

3.3.2 Environment Specification

The experiment has been set up in a large meeting room environment with a standard

room temperature. Two IR array sensors are deployed in the room, one on the ceiling

and the other on the wall. In Fig. 3-4, we show a simplified scheme of the sensor

deployment and an example of a frame collected by the sensor.

Fig. 3-5 shows the coverage measurements according to the sensor specification.

The sensor has a wide-angle: the coverage alongside the first angle is 110°, and along-

side the other is 75°. Using these angles, we calculate the ceiling sensor coverage area,

i.e., length × breadth, which we refer to as l1 and l2, respectively (which correspond

to the coverage and the angles 𝜃1 and 𝜃2, respectively). The sensor is attached to the

ceiling at a height equal to 2.60 m from the ground. We refer to this height as ℎ𝑐.

Based on the known values, the coverage area can be calculated using the following

equations.
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Figure 3-4: The experiment coverage area of the sensor.

𝑙1 = 2ℎ𝑐 tan

(︂
𝜃1
2

)︂
, (3.1)

𝑙2 = 2ℎ𝑐 tan

(︂
𝜃2
2

)︂
. (3.2)

The coverage at the ground level, however, is not realistic. In addition, in the case

where the human is at the edge, barely his feet will be detected, as shown in Fig. 3-5.

Therefore, we use 𝛼 and 𝛽 coefficients to ensure that coverage is sufficiently reliable.

In consideration of our early experiments, 𝛼 is set to be 0.81, and 𝛽 is set to be 0.75.

This will effectively cover an area whose length and breadth are equal to 7.40 m and

3.90 m, respectively.

The wall sensor is placed on the wall at a height 1.00 m from the floor, the height

of the sensor represented in ℎ𝑤. The coverage area of the wall sensor is shown in

Fig. 3-5. We calculated the wall sensor coverage area using the angle of the sensor

𝜃1 and the ℎ𝑤. Here, 𝛾 is the angle between the sensor coverage and the wall. The

blind angle of the sensor, where the detection using the wall sensor is not possible, is

represented by the distance 𝑑. Based on the known values of 𝜃1 and ℎ𝑤, we calculated

𝑑 using the following equations.

𝛾 = 90° −
(︂
𝜃1
2

)︂
(3.3)
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Figure 3-5: The area covered by the sensor and its detailed dimensions: (a) Top View
of the ceiling sensor; (b) Side view of the ceiling sensor; (c) Front view of the ceiling
sensor and its calculated dimensions; (d) Top view of the wall sensor; (e) Side view
of the wall sensor and its calculated dimensions.

𝑑 = ℎw tan 𝛾 (3.4)

We experimented in 2 different rooms. The first room is a small closed space,

with a little amount of sunlight entering from its single window. The Air Conditioner

(AC) temperature in the room is set to 24° C. The second room is wider, has a large

window allowing more sunlight to enter the room, and has an AC whose temperature

is set to 22° C. Five different people, males and females of different ages, participated

in the experiments. In each experiment, a single person is asked to perform various

activities contentiously for 5 minutes. Data are collected by the sensors, which we use

later on for classification. We conducted several experiments and collected enough

data for training and evaluating the proposed approach.
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Table 3.2: The frame counts for each activity in the training and the test data sets.

No. Activity Train data frames Test data frames
0 Walking 1282 742
1 Standing 1174 956
2 Sitting 842 726
3 Lying 568 102
4 Action change 371 234
5 Falling 182 156

3.3.3 Data Collection

The two sensors kits run the same OS and script to collect the data. However, they

collect the data independently from each other. This means that, even though they

start simultaneously, a small time difference might occur. In such a case, we synchro-

nize the data later on and discard accordingly a few frames from whichever sensor

started before the other. Five people participated in our experiments, each perform-

ing different activities for over 5 minutes. Each 5-minute experiment generated over

2000 frames (per sensor), and therefore we collected in total more than 10, 000 frames.

Each 5-minute experiment is referred to as a scenario. The collected 5 scenarios are

split into a training data set and a validation data set. The training data set is

obviously used to train our DL model, whereas the validation data set is used to

evaluate the model. Three scenarios are used for training and two scenarios are used

for validation.

As stated above, we collected over 10, 000 frames. Frames corresponding to the

fractions of time where data are captured by one sensor and not the other, as well as

frames where a person is located at the very edge of the coverage area are removed.

Table 4.1 shows the distribution of the remaining frames per activity in both the

training and validation sets.

Data collected using the IR array sensor differ drastically from that collected using

typical RGB cameras. When we collect data using the IR array sensor, even for the

same activity, the patterns of temperature distribution within the coverage area varies
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Figure 3-6: The temperature distribution of continuous frames of same activity at
same position.

widely for different reasons. As can be seen, multiple factors lead to this difference

in patterns. These factors can be summarized as follows:

• Blurriness: If we consider continuous frames of the same activity at a stationary

position, the temperature distribution varies from one frame to another. This

is shown in Fig. 3-6, and is due to the sensor characteristics the imprecision of

the sensor capturing the temperature.

• Frames captured for the same activities, when the person is located at different

positions, the shape of the pixels with high temperature differ, because the

sensor captures different shapes.

• Attenuation of the temperature with distance: when the person moves to the

edge of sensor’s field of view, the temperature distribution attenuates since a

lower temperature is captured by the sensor.

We address these issues in the current work as they affect the activity classification

the most. Namely, the blurriness in the images conventionally lead to a drop in

classification accuracy when using conventional methods, or when using a typical

image classification CNNs.
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Figure 3-7: The General architecture of the neural network used for classification of
both ceiling sensor data and wall sensor data.

3.4 System Architecture and Description

3.4.1 CNN and LSTM Architecture for Sensor Data Classifi-

cation.

In the first step, we use data collected by each sensor individually to perform the

activity detection. Frames collected by the sensor attached to the ceiling are classified

using a CNN. Afterwards, the output of the CNN is passed to an LSTM which

classifies a sequence of frames for more accurate judgment. In the same way, wall

sensor data are classified using CNN and LSTM. The general architecture of the CNN

and the LSTM is shown in Fig. 4-3. Both the ceiling sensor data and the wall sensor

data are classified using this architecture.
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Neural network As previously stated, throughout this work, we use a hybrid DL

model to classify the different activities. Both the CNN and the LSTM networks are

composed of the following typical layers:

• Convolution layer: a convolution layer typically takes as input either the raw

data or the output of another layer, and applies a set of filters to output more

“meaningful” data.

• Max pooling layer: this layer is usually used to reduce the dimensionality of the

features extracted at a given previous layer by picking, for a subset of features,

the one with the highest value.

• Flatten layer: this layer is used to flatten the data. In other words, it transforms

a multi-dimensional matrix into a single vector.

• Dense layer: it aggregates all the features from the previous layers and maps

them to the final features.

• LSTM cell: used for sequential classification of continuous input.

Convolution Layer The convolution layers consist of a set of filters with an ac-

tivation function. The main function of a convolution layer is to get the input data

and apply filterers to extract the features. In this CNN architecture, we used 2D-

convolution layers. In this network, we use the term “convolution block” to refer

to 2 consecutive 2D-convolution layers with Rectified Linear Unit (ReLU) activation

function and filter size 3×3, followed by a MaxPooling layer. In our CNN, we have a

total of six 2D-convolution layers, where every 2 consecutive layers are followed by a

max pooling layer.

MaxPooling Layer The Maxpooling layer function is similar to that of the con-

volution layer as it also contains filters. It performs a specific function called pooling.

MaxPooling is simply taking the maximum value of a subset of values from its input.

This operation typicality reduces the dimensionality of the features. In our neural

network, we used 2D-max pooling layer with a filter size 2×2.
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Flatten Layer The flatten layer flattens the previous 2D layers output (which in

return is a 2D matrix as well) by converting it into a single vector. This layer has

no goal but to connect the 2D output to the fully-connected dense layer that comes

after.

Dense Layer Dense layers are also referred to in the literature as “fully-connected

layers”. A dense layer aggregates all the information from the previous layer and

maps them into a single feature vector used to identify the activity. The final dense

layer outputs the class probability for the different activities. In other words, given

an input frame, this last layer outputs a vector whose size is equal to the number

of activities, where each value corresponds to the probability of that activity being

shown in the frame.

Long Short Term Memory(LSTM) The LSTM is used for sequence classifica-

tion of input data. It consists of there gates: the input gate, the forget gate, and the

output gate. LSTM networks can retain information, allowing them to build a more

accurate representation of the current state as a function of the previous ones, even

ones far away in the past.

Activation Functions and Hyperparameters In this activity detection system,

2D-Convolution layers use ReLU activation function. This activation function does

not activate all the neurons at the same time. Since the output of some neurons is

set to zero, only a few neurons are activated making the network sparse, efficient,

and easy for computation. The output dense layer uses a softmax function. We use

a Stochastic Gradient Decent (SGD) optimizer to optimize the neural network. It

reduces the chances of over fitting problem and is less computation-wise costly. For

each model, we set dropout regularization between the layers with a probability equal

to 0.2. Batch normalization is used to accelerate the training process. These are the

details of the hyper parameters used in all the models of our activity detection system.

Our neural networks are designed based on Convolution-LSTM [186] and Siamese

Neural Network architecture [187]. This is a common family of neural networks for
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sequential activity classification. However, the architecture that we propose, as it

stands is novel and has been designed taking in mind 3 factors: 1) the type of input

data (i.e., sequences of 32×24 images) which are very low resolution, 2) the require-

ment in terms of performance: more complex neural networks might increase the

accuracy slightly but not much, and less complex ones have a remarkable perfor-

mance degradation, and 3) the complexity itself: we expect our model to run on low

computation devices such as the Raspberry Pi (which we used to collect the data).

A more complex neural network architecture might end up being very costly for a

negligible performance improvement.

3.4.2 CNN and LSTM Architecture for Combined Sensor Data

Classification.

The architecture of the CNN used for the classification of the combined data (i.e.,

data collected from the ceiling sensor and data collected from the wall one) is shown

in Fig. 3-8. The parameters of the different layers of the neural networks (both the

CNN and the LSTM) are the same as explained in the previous subsection. The

outputs of the first dense layers of the two sub-networks are concatenated and are

connected to a single dense layer whose size is equal to the number of activities. This

dense layer obviously outputs the probabilities of the activities.

The combined CNN output is passed to the LSTM whose detailed architecture is

shown in Fig. 3-9. The input to the LSTM is a vector in the time domain whose size

is equal to 5. Each time step consists of a vector whose size is equal to 6, which is

the output of the CNN.

The combined CNN+LSTM and combined CNN neural network are designed

based on convolution-LSTM and Siamese neural network, respectively. Our CNN

neural network architecture automatically learns the features and the weight of indi-

vidual frames. The layers of the CNN are then frozen, and the LSTM is trained to

use the output of the CNN to run the classification. This has led to a good prediction

result compared to the CNN when used alone. These kinds of architecture have sev-
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Figure 3-8: The architecture of the combined CNN for classification.

eral advantages: On the one hand, the CNN is more robust in classifying imbalanced

data, and able to achieve high accuracy of classification on its own. On the other

hand, some activities require observation over an extended period of time to detect

the motion. Here the LSTM has a higher potential in detecting such activities.

3.5 Experimental Results

3.5.1 Performance Evaluation Metrics

We use precision, recall, F1-score, and accuracy as metrics for evaluating the effi-

ciency of the proposed activity detection approach. The True Positive (TP), False

Positive (FP), True Negative (TN), and, False Negative (FN) values are reported in

the confusion matrix. The evaluation metrics are based on the following formulas:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (3.5)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (3.6)
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Figure 3-9: The architecture of the combined CNN and LSTM for classification.

F1 =
2× Precision × Recall

Precision + Recall
, (3.7)

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
. (3.8)

We obtained good results from each of the models. However, it is essential to show

the ability to detect the activities and robustness against false positives. For this,

we use precision and recall. Precision measures the correctly classified instances of

a given class relative to all the instances classified as belonging to that class. Recall

measures the number of correctly classified instances of a given activity relative to all

its instances. F1-score is the harmonic mean of both precision and recall.

3.5.2 CNN Classification Results

The confusion matrix of the classification of the ceiling sensor data using CNN is

shown in Table 3.3. Based on the observation of this confusion matrix, sitting and

standing activities are the most confused ones; and walking and action change activ-
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Table 3.3: The confusion matrix of the classification of the ceiling sensor data.

Class Classified as
0 1 2 3 4 5

Walking-0 717 9 0 0 14 2
Standing-1 6 913 26 0 11 0
Sitting-2 11 23 678 0 14 0
Lying-3 0 7 12 83 0 4
Action change-4 19 0 1 6 208 0
Falling-3 4 0 3 0 0 149

Table 3.4: The precision, recall and F1-score for classification of ceiling sensor data
using CNN for each activity.

Activity Precision Recall F1-Measure

Walking 0.95 0.97 0.94
Standing 0.96 0.96 0.96
Sitting 0.94 0.93 0.93
Lying 0.93 0.78 0.85

Action change 0.89 0.94 0.91
Falling 0.96 0.96 0.96

ities confusion comes second. From this, we conclude that there is confusion between

the sitting and standing activities when classifying ceiling sensor data using CNN.

Next, the performance evaluation for classification of the ceiling sensor data using

CNN is shown in Table 3.4. Walking and action change are misclassified activities, as

we can see from our previous observations from the confusion matrix. For instance,

despite its high recall, walking activity has low precision. This leads us to believe

that the CNN’s performance for the walking activity needs to be improved. Falling

and sitting activities have the highest classification performance, with falling reaching

the highest precision and F1.

The results of the classification of the wall sensor data using CNN is shown in

Table 3.5. The confusion matrix shown here, illustrates that this model does not

perform well for many activities. Misclassification of the sitting, standing, and walking

activities is very high owing to the limitations in the detection accuracy arising from

the activity being carried out of the wall sensor’s coverage range. These limitations
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Table 3.5: The confusion matrix of the classification of the wall sensor data using
CNN.

Class Classified as
0 1 2 3 4 5

Walking-0 719 0 0 5 11 7
Standing-1 0 917 19 17 3 0
Sitting-2 0 17 674 23 12 0
Lying-3 0 12 27 63 0 0

Action change-4 12 0 0 1 217 4
Falling-5 6 0 2 0 3 145

Table 3.6: The precision, recall and F1-score for classification of wall sensor data
using CNN for each activity.

Activity Precision Recall F1-Measure

Walking 0.98 0.97 0.97
Standing 0.97 0.96 0.96
Sitting 0.93 0.93 0.93
Lying 0.58 0.62 0.60

Action change 0.93 0.89 0.91
Falling 0.93 0.93 0.93

need to be overcome for the model to perform well. In addition to the confusion

matrix, the detailed performance evaluation of this model is shown in Table 3.6.

Based on the results so far, it is clear that the detection of some activities such as

sitting and falling is good when using the ceiling sensor, whereas the detection of some

other activities such as action change is better when using the wall sensor. Clearly,

there is a need for improvement of the detection of all the activities in a collective

manner. To do so, we combine both the data collected by the ceiling sensor and those

collected by the wall sensor and perform the classification on these combined data

using CNN.

The results of the classification of the combined data using CNN is presented

in Table 3.7. From these results, we clearly see that the overall misclassification of

all the activities has been reduced as compared to the previous results when using

individual sensor data for classification using CNN. Walking, standing, sitting, falling,
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Table 3.7: The confusion matrix of the classification of the combined sensor(s) data
using CNN.

Class Classified as
0 1 2 3 4 5

Walking-0 721 0 0 13 0 8
Standing-1 0 940 9 7 0 0
Sitting-2 0 12 705 9 0 0
Lying-3 7 4 13 73 5 0

Action change-4 5 0 0 7 220 2
Falling-5 3 0 0 0 2 151

Table 3.8: The precision, recall and F1-score for classification of the combined sensor
data using CNN.

Activity Precision Recall F1-Measure

Walking 0.98 0.97 0.97
Standing 0.98 0.98 0.98
Sitting 0.97 0.97 0.97
Lying 0.67 0.72 0.69

Action change 0.94 0.89 0.91
Falling 0.94 0.97 0.95

and lying activities have good detection measures compared to the individual sensor

data results. The performance evaluation of this classification is shown in Table 3.8.

Walking, standing, and sitting activities show a remarkable improvement in terms of

detection based on the precision and recall values.

3.5.3 CNN and LSTM Classification Results

In this section, we discuss the results of the hybrid DL model. In this model, the

output of the CNN is passed to the LSTM for sequence classification.

The confusion matrix of the sequential classification of the ceiling sensor data is

shown in Table 3.9. From this confusion matrix, it can be inferred that standing and

lying are the most misclassified activities. The performance evaluation metrics for

this experiment are shown in Table 3.10. Based on the results of this experiment’s

confusion matrix and previous results regarding the classification of ceiling sensor
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Table 3.9: The confusion matrix of the classification of the ceiling sensor data using
CNN and LSTM.

Class Classified as
0 1 2 3 4 5

Walking-0 721 7 0 0 11 3
Standing-1 0 920 14 22 0 0
Sitting-2 8 7 711 0 0 0
Lying-3 0 5 14 79 0 4

Action change-4 6 0 0 0 221 7
Falling-3 1 0 0 0 3 152

Table 3.10: The precision, recall and F1-score for classification of ceiling sensor data
using CNN and LSTM.

Activity Precision Recall F1-Measure

Walking 0.98 0.97 0.97
Standing 0.96 0.96 0.96
Sitting 0.96 0.98 0.97
Lying 0.78 0.77 0.77

Action change 0.94 0.94 0.94
Falling 0.92 0.97 0.94

data using CNN, it can be concluded that lying is the only activity that requires an

improvement in detection.

The confusion matrix of the classification of the wall sensor data using CNN

and LSTM is shown in Table 3.11. This result in relation to the results obtained

from the classification of the wall sensor data using CNN can be used to reduce the

misclassification rate of lying and sitting activities with the improvement in detection

for the other activities in case of the current results. Furthermore, Table 3.12 shows

the performance evaluation metrics of the classification using this model. It can be

observed that the detection of walking and standing activities performed well in this

model. However, detection of lying and sitting activities is still low due to the same

reason(s) described in the classification of the wall sensor data using CNN, i.e., the

limitation in activity detection due to the subject being out of the sensor’s peripheral

vision.
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Table 3.11: The confusion matrix of the classification of the wall sensor data using
CNN and LSTM.

Class Classified as
0 1 2 3 4 5

Walking-0 724 11 0 0 7 0
Standing-1 0 923 24 9 0 0
Sitting-2 7 13 706 0 0 0
Lying-3 0 4 26 72 0 0

Action change-4 11 0 0 0 219 4
Falling-5 5 0 0 0 11 206

Table 3.12: The precision, recall and F1-score for classification of wall sensor data
using CNN and LSTM.

Activity Precision Recall F1-Measure

Walking 0.97 0.98 0.97
Standing 0.97 0.92 0.94
Sitting 0.93 0.97 0.95
Lying 0.89 0.71 0.79

Action change 0.94 0.89 0.91
Falling 0.97 0.90 0.93

Based on the above results obtained so far for sequential classification (CNN+LSTM),

certain activities are better detected when using the ceiling sensor data, whereas oth-

ers are better detected when using the wall sensor data. Therefore, there is still room

for improvement in the activity detection when using the hybrid model, as our ulti-

mate goal is to have a single model performing well for all the activities. This is best

illustrated in the case of detection of lying and sitting activities which is low when

the wall sensor data are used compared to when the ceiling sensor is used.

The confusion matrix of the sequential classifier (CNN+LSTM) is presented in

Table 3.13. The results reported in the confusion matrix show an improvement in

the detection of all the activities, compared to the case where we used only the

CNN. However, lying activity is still relatively poorly detected, requiring further

improvement. That being the case, to improve the detection performance of all the

activities but particularly that of lying, we combine both the ceiling sensor data and
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Table 3.13: The confusion matrix of the classification of the combined sensor(s) data
using CNN and LSTM.

Class Classified as
0 1 2 3 4 5

Walking-0 727 8 0 0 5 2
Standing-1 0 939 8 9 0 0
Sitting-2 3 9 714 0 0 0
Lying-3 0 0 19 73 11 0

Action change-4 13 0 0 0 219 2
Falling-5 1 0 0 0 2 153

Table 3.14: The precision, recall and F1-score for classification of combined sensor(s)
data using CNN and LSTM.

Activity Precision Recall F1-Measure

Walking 0.98 0.98 0.98
Standing 0.98 0.98 0.98
Sitting 0.96 0.98 0.97
Lying 0.89 0.71 0.79

Action change 0.94 0.89 0.87
Falling 0.97 0.98 0.97

wall sensor data and perform the classification using CNN and LSTM.

The performance evaluation of the classification of the combined sensor data us-

ing CNN and LSTM is shown in Table 3.14. The results indicate that this model

performed the best as compared to the other models that have been discussed so far.

In particularly noticeable in the case of walking, standing, falling, and action change

activities.

3.5.4 Overall Performance

Accuracy is defined as the correctly classified instances over all the instances of all

the activities. We downscale our dataset to 8× 8 and run it on the previous existing

conventional machine learning models. We classified different activities using various

models that have been used in the conventional works. Table 3.15 shows the compar-

ison of classification accuracy for these models. Based on this table, we observe that
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Table 3.15: Comparison of the classification accuracy of our models with those in the
conventional work.

Methods No. of the sensor Position and classification accuracy
Ceiling Wall Combine ceiling and wall

SVM [15] 1 0.72 - -
k-NN [55] 1 0.84 - -
SVM [67] 2 ✓ ✓ 0.90

CNN 2 0.94 0.93 0.96
CNN+LSTM 2 0.96 0.95 0.97

the combined sensor data classification using CNN and LSTM model performed the

best and reached over 0.97 accuracy.
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Chapter 4

AD Systems Using Single IR Array

Sensor

4.1 Introduction

AD systems using a wide-angle IR array sensor with advanced DL based CV tech-

niques. The wide angle IR sensor used produces noisy and blurry images, making

it difficult to accurately identify the activity. Due to environmental factors such as

sunlight, temperature, heat objects, etc., the amount of noise and blurriness in the

IR images is high. This makes it difficult to correctly identify the activity. Making a

generalized model that works for different environments and that is robust to differ-

ences between the conditions where/when it was trained and those where/when it is

deployed is also a very challenging task. To address all these challenges and to build

a robust activity detection system, we employ more advanced DL techniques. In this

approach, we use a single IR sensor placed on the ceiling and collect data with various

resolutions (i.e., 24×32, 12×16, and 6×8). To faithfully increase the resolution and

enhance the low quality of the collected data, we use two techniques referred to as

SR [188] and image denoising [189]. By enhancing the quality of the collected images,

not only do we improve the activity detection accuracy, but we also make it more

robust to changes in the environment, namely ones related to the temperature and

the presence of noise sources. We use two mainstream types of DL classifiers, namely
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a CNN and a combination of a CNN and a LSTM. The classification process goes as

follows. First, all the individual images are classified using CNN. The CNN learns

the appropriate weight in the convolution part of the network and performs a rough

classification of activities. Second, the CNN output is passed to the LSTM, which

performs a more robust classification by taking into account the temporal component.

Nonetheless, since it is difficult to collect the data in many environments, we use a

technique referred to as data augmentation [190] to generate artificial data that mim-

ics real ones. For this sake, we employ a particular type of neural network conceived

for this task known as Conditional Generative Adversarial Networks (CGAN). The

use of the aforementioned DL techniques leads to a noticeable improvement in the

AD.

4.2 Framework of AD Systems Using Advance DL

Based CV Techniques

A flowchart of the overall framework is shown in Fig. 4-1. The data collected by

the sensor have 24×32, 12×16, and 6×8 resolution. We apply the SR and denoising

techniques to the LR data. The HR data 24×32 used to generated synthetic data using

CGAN to diversify the samples and cover potentially important missing samples. The

synthetic data are used to train the CNN model. We classify the individual frames

using a CNN. The output of the CNN is passed to the LSTM with a time window

size of five frames to improve the classification accuracy. Finally, we compare all the

data classification performance.

4.3 Data Collection

Experiments are conducted by placing IR sensor on the ceiling subjects were ask to

perform the six different activities (i.e., walking, falling, standing, sitting, lying, and

the action change is define as transition between the activities.) under the sensor

coverage area. We conducted the experiment in three different rooms with following
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Figure 4-1: A flowchart of the proposed system.

different environment

• The first room is a small, closed space with only one window that lets in little

light. The temperature in the room has been set to 24∘C.

• The second room is larger, brighter, and equipped with an air conditioner whose

temperature is set to 22∘C.

• In comparison to the other rooms, the third room is a little dark and its air

conditioner temperature is set to 24∘C.

Some examples of the data collected in different environments with different res-

olutions are shown in Fig. 4-2

In total we collected 12 scenarios of data. Each scenario lasts for five minutes.

The camera and the sensor both collected data at 8 frames per second. One scenario

is defined as 5 minutes of continuous activities. Each scenario includes all the ac-

tivities (i.e., walking, falling, standing, sitting, lying, and the action change referred
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First Room Second Room Third Room 

24×32

12×16

6×8

Figure 4-2: Some examples of the raw data collected in different environments with
different resolution.

transition between the activities.). Out of the 12 scenarios, we used 8 for training

and the remaining 4 to test the model of our proposed approach. Table 4.1 shows

the distribution of frames showing the different activities in the training and test

data sets. Raw data from the sensor is 24×32 resolution to obtain the LR data we

downscale the images to 12×16 and 6×8 resolutions.

4.4 DL based CV Techniques

4.4.1 Super-Resolution

The SR technique is used on LR data (6×8, 12×16), to learn how to upscale them

back to the HR resolution 24×32. By doing so, we can use low-end cheaper sensors
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Table 4.1: The frame counts for each activity in the training and testing data sets.

No. Activity Training data frames Testing data frames
0 Walking 5456 2351
1 Standing 1959 882
2 Sitting 3102 1566
3 Lying 2486 647
4 Action change 1961 939
5 Falling 613 264

that collect the data naively at these low resolution (i.e., 6×8 and 12×16) and apply

the trained SR model to upscale them faithfully to a higher resolution, then perform

the classification. By doing so, it is possible to improve the classification accuracy of

frames collected by low-end sensor to match (or get as close as possible to) the HR

24×32 pixel frames collected by higher-end more expensive ones.

In our work, we use the Fast Super-Resolution convolution Neural Network (FS-

RCNN) [188] to improve image quality. The architecture of the neural network is

depicted in Fig. 4-3. It is based on a shallow network design that reproduces images

faster and more clearly. The FSRCNN is made up of five components:

• Feature extraction

• Shrinking

• Non-linear mapping

• Expanding

• Deconvolution

Feature Extraction

The low-resolution image’s overlapping patches are extracted and represented as a

high-dimensional feature vector. It is accomplished through the use of 𝑛1 convolution

filters with kernel sizes equal to 5×5.
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Figure 4-3: The architecture of the neural network used for Super-Resolution.

Shrinking

To reduce the feature dimension, a shrinking layer is added after the feature extraction

layer. This will help reduce the computational complexity. In this convolution layer,

a set of 𝑛2 filters of size 1×1 is used to linearly combine the low-resolution features.

Non-Linear Mapping

Non-linear mapping is one of the vital part of the SR process. The purpose of the

non-linear mapping is to map the feature vector to a higher dimensional space. This

higher dimensional space contains richer information that could be mapped to the

expected output vector. In other words, it is responsible for generating enough context

to reconstruct the high-resolution image. The number of sub-blocks in the non-

linear mapping block and the filter size used highly influence the neural network’s

performance. In our current work, we adopted a convolution layer with 𝑛3 filters of

size 3×3. The total number of sub-blocks is represented as 𝑚 = 3.

Expanding

The shrinking layer reduces the dimension of the low-resolution feature. The qual-

ity will be poor if we generate HR image directly from the low-resolution feature

dimension. This is why we add the expanding layer after the mapping block. We

use a convolution layer with 𝑛4 filters of size 1×1 to maintain consistency with the

shrinking layer
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Deconvolution

A deconvolution layer is used to upscale and aggregate the previous layer’s output,

resulting in a more accurate representation of the data. Unlike the convolution layer,

the deconvolution layer expands the low-resolution into higher dimension data. More

precisely, this is determined by the stride size, as a stride of size 1 with padding would

yield information of the same size, whereas a stride of size 𝑘 will yield condensed

information of size 1/𝑘. Deconvolution with stride expands the input data so that

the output image can be 24×32 resolution.

Activation Functions and Hyperparameters

In FSRCNN, a new activation function introduced called Parametric Rectified Linear

Unit (PReLU) for better learning. The activation threshold of PReLU is different from

that of conventional ReLU. PReLU’s threshold is learned through training, whereas

ReLU uses a fixed 0 as a threshold, mapping all negative values to zero. This is

essential for both training and later estimating the architecture’s complexity.

We use our neural network’s total number of parameters as an indicator to estimate

its complexity. To recall, our network is basically composed of a set of convolutions

followed by a single deconvolution. In addition to that, we include the number of

PReLU parameters.

To measure the total number of parameters of the neural network, we use the

following equations which measure the total number of parameters in a convolution

layer (𝐶𝑠𝑟), and the parameter in the PReLU layer (𝐴𝑠𝑟):

𝐶𝑠𝑟 = ((𝑚𝑛𝑝) + 1)𝑘, (4.1)

𝐴𝑠𝑟 = ℎ𝑤𝑘, (4.2)

where 𝑚 and 𝑛 are the width and height of each filter, respectively, 𝑝 is the number

of channels, 𝑘 is the number of filters used in the layer, and ℎ and 𝑤 are the input

image’s height and width, respectively.
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As a result, the total number of parameters in the network is 21,745 for the input

images are 8×6 and 47,089 for the input images are 16×12.

An example of a 24×32 image, its low resolution version to 12×16 (resp. 6×8)

and the reconstructed SR one are given in Fig. 4-4.

LR (12×16) SR (24×32)

LR (6×8) SR (24×32)

Figure 4-4: The output of SR technique applied to 12×16 frame and 6×8 frame.

4.4.2 Denoising

Denoising refers to the process of restoring an image that has been contaminated

by additive noise. Due to their ability to learn very fine patterns in an image, deep

convolution networks have proven to be highly effective in denoising images in recent

years. One of the image restoration techniques is the Deep Image Prior (DIP) [189].

This technique demonstrates that the network structure is adequate to restore the

original image from the degraded image. Pretrained networks or large image datasets

are not required for this technique. It operates directly on the degraded images and

learns internally what makes noise and what makes useful pixels.
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Generally speaking, the most commonly used methods for image restoration in

CV are learned prior [191] and explicit prior [192]. Learned-prior is a simple method

for training a deep convolution network to learn how to denoise images by training

on a data set. It takes noisy images as training data and clean images as ground

truth, and trains the network to reconstruct the clean image from the noisy one. In

the explicit-prior method noises are mathematically calculated and removed. DIP

bridges the gap between these two popular methods by constructing a new explicit

prior using a convolution neural network.

The DIP structure is based on the U-Net [193] type neural network shown in

Fig. 4-5 with multiple downstream and upstream steps and skip connections, each

of which consists of a batch normalization and an activation layer. Random noise

is fed into the network. The target is the image that has been tainted by the use

of a mask. The loss is calculated by applying the same mask to the output image

𝑥* and comparing it to the noisy image. This implies that the loss function does

not explicitly drive the noise/corruption repair (as it is re-applied before computing

the loss). This is due to the neural network’s implicit behavior. When the network

attempts to optimize toward the corrupted image. The neural network contains the

parameterized weight 𝜃. Based on the 𝜃, the neural network will use gradient descent

optimization to find the optimized weight 𝜃𝑘+1.

𝜃 = argmin
𝜃

𝐸(𝑓𝜃(𝑧);𝑥0), (4.3)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼
𝛿𝐸(𝑓𝜃(𝑧);𝑥0)

𝛿𝜃
, (4.4)

𝑥* = 𝑓𝜃(𝑧), (4.5)

where 𝑥0 is noisy image and 𝑧 is random noise. Here E (𝑓𝜃 (z); 𝑥0) is a data term

usually used in the denoising problem. The 𝑓𝜃 is convolution neural network based

encoder-decorder parameterized by the weight 𝜃. The result of denoised images is

shown in Fig. 4-6. In our work, we applied the denoising DIP technique on 24×32,
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Figure 4-5: The architecture of the neural network used for denoising.
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12×16, and 6×8 data.

Original image Original imageOriginal image

Denoised imageDenoised image Denoised image

Figure 4-6: The outputs of denoising technique applied to a 24×32, 12×16, and 6×8

frame.

4.4.3 Conditional Generative Adversarial Networks (CGAN)

When training neural networks, a common technique referred to as “data augmen-

tation” is used to address some of the issues related to the nature and amount of

data used for training. Data augmentation refers to the process of generating ar-

tificial (or synthetic) data to enlarge the size of the training set. The synthetic

data improve the classification result and strengthen the system’s ability to work

in various environments. The most advanced DL technique for data augmentation

is the conditional generative adversarial neural network (CGAN) [190]. CGAN is a

generative model for supervised learning. The labeled data are used to train and

generate synthetic data based on the number of classes. The CGAN structure is

comprised of two neural networks: a generator 𝐺 and a discriminator 𝐷, as depicted

in Fig. 4-7. 𝑥 is the real image, 𝑝𝑑𝑎𝑡𝑎(𝑥) and 𝑝𝑧(𝑧) denote the distribution of the

real and the synthetic samples, respectively. A random noise 𝑧 is taken from prior

distributions with the label 𝑦 and is used as an input to the generator known as a
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Figure 4-7: The architecture of data augmentation technique (CGAN).

latent vector ((𝑧 | 𝑦) ∼ 𝑝𝑧(𝑧 | 𝑦)). The generator aims to create, out of the input

noise, samples with more complex distribution 𝐺(𝑧 | 𝑦) that similar to that of the

real ones (i.e., 𝑥) for the given class 𝑦. (𝑥 | 𝑦) and (𝑧 | 𝑦) are the real image with

label and random noise with label, respectively. In the meantime, the discriminator

should distinguish between real samples ((𝑥 | 𝑦) ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥 | 𝑦)) and the generated

samples(𝐺(𝑧 | 𝑦) ∼ 𝑝𝑧(𝑧 | 𝑦)). Back-propagation optimizations are used to train both

networks, and they are completely independent of one another. The optimization of

the generator using the discriminator’s predictions about the samples it generated.

The discriminator is trained using the generator’s synthetic data. This optimization

uses CGANs’ training cost function, min max loss, as shown in the equation below.

minGmaxD = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) [log (𝐷 (𝑥|𝑦))] + 𝐸𝑧∼𝑝𝑧(𝑧) [log (1−𝐷 (𝑧|𝑦))] (4.6)

After several iterations of the two training techniques described above, the gen-

erator learns to generate more sophisticated samples that do resemble the real ones,

and the discriminator learns how to identify the slight variation between the real and

synthetic data. To reduce the cost function of each network and optimize its internal
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Figure 4-8: The architecture of the CNN used for classification.

weights, a gradient step with back-propagation is performed at each iteration.

4.5 Activity Classification

The classification neural network’s architecture is illustrated in Fig. 4-8 and Fig. 4-9.

The classification consists of two stages:

• In the first stage, the sensor’s raw data are given as input to the CNN that

classifies the individual frames and produces the first output.

• In the second stage, we perform the sequence classification using the LSTM.

The output of the CNN is given as input to the LSTM with a window size

equals to five frames. The LSTM produces the sequence classification output.

Our neural network architecture consists of six 2D-convolution layers and two fully

connected layers. Each convolution layer uses filters with a kernel size equal to 3 and

has a ReLU activation function. Every two 2D-convolution layers are followed by a

2D-Maxpooling layer whose kernel size is set to 2. The output of the sixth convolution

layer is flattened, and is connected to a dense layer with a ReLU activation function.

In the final dense layer, the activation function is sigmoid. The output of the CNN

is given as input to the LSTM network.
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Figure 4-9: The architecture of the CNN+LSTM network used for classification.

To evaluate the complexity of the neural network, we measure the total number of

parameters of the neural network. We use the following equations which measure the

total number of parameters in a convolution layer (𝐶𝑝), that in a dense layer (𝐷𝑝),

and that in an LSTM layer (𝐿𝑝):

𝐶𝑝 = ((𝑤𝑓ℎ𝑓𝑝) + 1)𝑐, (4.7)

𝐷𝑝 = ((𝑠𝑛) + 1), (4.8)

𝐿𝑝 = 4((𝑖𝑙 + 1)𝑑𝑙 + 𝑑2𝑙 ), (4.9)

where 𝑤𝑓 , ℎ𝑓 , and 𝑐 represent the width, height, and the number of channels of

each filter, respectively, 𝑓 represents the number of filters in the convolution layer,

𝑠 represents the size of the dense layer, and 𝑛 represents the number of neurons

in the previous layer. The 𝑖𝑙 and 𝑑𝑙 are the input and output sizes of the LSTM

neural network, respectively. The total number of parameters is about 189K in the

83



Table 4.2: A comparison between the total number of parameters of the neural net-
works used in the current work and those of the state of the art neural networks used
for image classification.

Model Parameters
ResNET [194] 21 Million

VGG16 [195] 138 Million

CNN 189 Thousand

CNN+LSTM 568 Thousand

CNN, and about 568K in the LSTM network. Compared to the existing pre-trained

models like ResNet [194] (21M parameters) and VGG16 [195] (138M parameters),

our model is lightweight and can easily run on low-end computational devices such as

the Raspberry Pi. The total number parameters of the neural networks proposed in

this work is shown in Table 4.2 along with that of some of the state of the art neural

network architectures. For its size and weight, the proposed architectures provide a

very good classification performance.

4.5.1 Further Model Optimization Using Quantization

In the realm of DL, Quantization [196,197] refers to the concept of using low bit width

(conventionally 8-bits) numbers to represent the weights within the neural network,

rather than using floating numbers, which occupy much more space, and are more

computation costly. These operations with low bit width numbers, such as integers,

are the lighter from a computer’s perspective.

With that in mind, to achieve a high accuracy for our models while keeping their

computational demands as low as possible, we use this concept of quantization as

introduced in [196, 198, 199] to reduce the size of our model. The purpose of weight

quantization is to replace high weights with low weights without modifying the net-

work’s architecture. As a result, approximated weights are used for compression.

There is a trade-off between weight quantization and classification accuracy because

precise weight is given up for low memory space. Weight sharing typically utilizes the
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same weight rather than retraining parameters. This significantly reduces computa-

tional costs. We use a quantization aware training [200, 201], which has a lower loss

in quantization. However, it is important to emphasize, that despite its contribution

to the minimization of the model size and the computation cost, the accuracy of

the model when using quantization drops compared to that when using the original

weights in the model after training. Quantization aware training (QAT) [201] works

by applying a fake quantized 8-bit weight float to the input. The training is then

operated normally as it deals with floating point numbers, even though it emulates

operations with low bit width numbers. Once the training is complete, the informa-

tion stored during the fake quantization are used to convert the floating-point model

to an 8-bit quantized model.

4.6 Experimental Results

4.6.1 CV Performance Results

To evaluate the network model’s performance in image SR and denoising, this paper

utilizes a widely used image quality metric, namely the Peak Signal-to-Noise Ratio

(PSNR). PSNR is commonly used to objectively evaluate image quality. It is defined

as the ratio between the maximum power of the effective signal and the power of

the noise in the signal. PSNR is measured in decibels (dB), and its mathematical

expression is

PSNR = 10× log10

(︂
2𝑛 − 1

MSE

)︂
, (4.10)

MSE =
1

𝑚𝑛

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

|𝑋𝑖𝑗 − 𝑌𝑖𝑗|2. (4.11)

Here, MSE stands for the mean squared error between the original image and the

generated image, which means that 𝑋𝑖𝑗 and 𝑌𝑖𝑗 are the values of the pixels in the 𝑖-th

row and the 𝑗-th column in the original image and the generated image, respectively.
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Table 4.3: The performance evaluation of SR and Denoising technique.
Method Input-output PSNR(dB)

Super-Resolution Image12×16→Image24×32 32.62
Image6×8→Image24×32 20.47

Denoising
Image24×32 34.12
Image12×16 30.52
Image6×8 23.74

Where 𝑚 represents the numbers of rows of pixels and 𝑛 represents the number of

columns of pixels. In general, the higher the MSE, the less similar the generated

image is compared to the original, thus the PSNR decreases. In other words, a higher

PSNR indicates a higher quality image.

Table 4.3 lists the result of SR and denoising. As can be seen, the PSNR of the

12×16 frames reaches 32.62 dB. As for 6×8 frames, the PSNR reaches 20.47 dB. The

denoising result performs well for the 24×32 frames. The PSNR reaches 34.62 dB.

This means that the denoised frames have good quality allowing for improving the

predictions. As for the low resolution 12×16 and 6×8 frames, the PSNR has also

been improved. However, it is not enough to generate good quality images as the

HR24×32 ones.

4.6.2 Overall Classification Results

We use accuracy as metric for evaluating the efficiency of activity detection classi-

fication. Using the True Positive (TP), False Positive (FP), True Negative (TN),

and False Negative (FN) values, the accuracy is calculated based on the following

formulas:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
. (4.12)

First we report the overall classification accuracy of various techniques. Table 4.4

show the classification accuracy achieved using the CNN. As evident, the individual

application of SR, denoising, and CGAN has helped obtain better results. The ac-
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Table 4.4: The overall activity classification results using CNN.

Method Image6×8 Image12×16 Image24×32

Raw data 76.57% 88.22% 93.12%
Interpolation [202] 76.81% 88.56% 93.53%

SR 77.72% 89.24 % –
Denoising 76.88% 88.30% 93.71%

CGAN+Raw data – – 95.24%

Denoising → SR 78.25% 89.31% –
SR → Denoising 80.47% 91.72% –

Denoising + CGAN – – 96.54%

Denoising → SR + CGAN 81.12% 92.66% –
SR → Denoising + CGAN 83.58% 94.44% –

Table 4.5: The overall activity classification results using CNN+LSTM.

S.No. Image6×8 Image12×16 Image24×32

Raw data 78.32% 90.11% 95.73%
Interpolation [202] 78.68% 90.27% 96.08%

SR 79.07% 90.89% –
Denoising 78.55% 90.33% 96.14%

CGAN+Raw data – – 96.42%

Denoising → SR 80.18% 92.38% –
SR → Denoising 82.76% 92.91% –

Denoising + CGAN – – 98.12%

Denoising → SR + CGAN 80.41% 93.43% –
SR → Denoising + CGAN 84.43% 94.52% –

Table 4.6: A comparison between the results achieved with our proposed approach
and those achieved by employing some of the existing methods in the literature.

Approach Image6×8 Image12×16 Image24×32

SVM [67] 61.45% 68.52% 88.16%
CNN [72] 67.11% 82.97% 90.14%

3D-CNN [168] 72.42% 90.89% 93.28%
CNN+LSTMSR → DE + CGAN 84.43% 94.52% –

CNN+LSTMDE + CGAN – – 98.12%
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curacy of classification using the raw data is high, it has been observed that the SR

technique has further enhanced the accuracy of the result. The denoising technique,

has also generated better results, though the accuracy of classification of the denoised

frames is less than that of SR. Furthermore, the combined application of CGAN and

raw data has noticeably improved the classification accuracy from 93.12% to 95.24%.

Besides experimenting with each technique aside, we applied a combination of the

preprocessing techniques on the low resolution data. As shown in Table 4.4, three

specific combinations have been applied namely,

1. Super-Resolution → Denoising,

2. Denoising → SR,

3. Denoising & CGAN.

Clearly, the classification accuracy of the frames enhanced using all these combina-

tions has improved further. We further combined the preprocessing techniques with

the augmented data, wherein the derived results reflect the improved classification

results, which is as high as that of the original HR(i.e., 24×32) frames. For the 6×8

low resolution data, the classification results reached 83.58%, while for the 12×16 low

resolution data, it reached 94.44%. Remarkably, the maximum accuracy of classifi-

cation of the original data with the HR (i.e., 24×32) has been obtained through the

combined application of ‘Denoising & CGAN’, and reached 96.54%.

Further, Table 4.5 presents the results of sequential classification, wherein the

output from the CNN is utilized as an input to the LSTM, with a time window

size of five frames. Here, we observe that the sequential classification of the raw

data and low resolution data has improved considerably. By applying the SR and

denoising (both independently and collectively), the data classification results have

further been improved. Also, using data augmentation techniques, we found that the

sequential classification accuracy has increased. From Tables 4.5 and 4.4 we observed

when we apply the interpolation technique proposed in [202] on the current data, the

performance is not good, and is almost equal to that when we use the raw data. A

very small improvement is observed.
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For a fairer evaluation of our approach, we ran it against some existing approaches,

namely ones that employ SVM, CNN, and 3D-CNN classifier. Table 4.6 compares the

classification accuracy for these models with the highest accuracy of our approach.

As can be seen from the table, our proposed approach outperforms the existing ones.

4.6.3 Activity Classification Results

Further experiments are run to evaluate the contribution of the different image en-

hancement techniques. We report activity classification accuracy using various combi-

nations of these techniques. For simplification, and since we used different techniques,

we use the following terminology for each of the resolutions or techniques used:

• The raw sensor data with various resolution are referred to as 𝑅(24×32), 𝑅(12×16),

and 𝑅(6×8).

• The SR technique applied to LR data are referred to as 𝑆𝑅(12×16), and 𝑆𝑅(6×8).

• The denoising technique applied to the HR and LR data are referred to as

𝐷𝐸(24×32), 𝐷𝐸(12×16), and 𝐷𝐸(6×8).

• The combination of raw data with CGAN techniques is referred to as 𝑅 +

𝐶𝐺(24×32)

• The denoising and CGAN techniques applied to HR data is referred to as 𝐷𝐸+

𝐶𝐺(24×32)

• The combination of denoising and SR techniques applied to LR data is referred

to as 𝐷𝐸 → 𝑆𝑅(12×16), 𝐷𝐸 → 𝑆𝑅(6×8), 𝑆𝑅 → 𝐷𝐸(12×16), and 𝑆𝑅 → 𝐷𝐸(6×8).

• The combination of SR, denoising and CGAN techniques applied to LR data

is referred to as 𝐷𝐸 → 𝑆𝑅 + 𝐶𝐺(12×16), 𝐷𝐸 → 𝑆𝑅 + 𝐶𝐺(6×8), 𝑆𝑅 → 𝐷𝐸 +

𝐶𝐺(12×16), and 𝑆𝑅 → 𝐷𝐸 + 𝐶𝐺(6×8).
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Table 4.7: The results of activity classification using CNN on 6×8 data.

Method Walking Standing Sitting Lying Action
change

Falling

𝑅(6×8) 80% 68% 77% 68% 57% 55%
𝑆𝑅(6×8) 86% 73% 86% 76% 60% 63%
𝐷𝐸(6×8) 85% 86% 82% 68% 62% 64%

𝐷𝐸 → 𝑆𝑅(6×8) 86% 78% 86% 70% 70% 62%
𝑆𝑅 → 𝐷𝐸(6×8) 84% 82% 84% 72% 73% 71%

𝐷𝐸 → 𝑆𝑅 + 𝐶𝐺(6×8) 82% 80% 79% 75% 78% 70%
𝑆𝑅 → 𝐷𝐸 + 𝐶𝐺(6×8) 80% 84% 83% 81% 80% 68%

Table 4.8: The results of activity classification using CNN on 12×16 data.
Method Walking Standing Sitting Lying Action

change
Falling

𝑅(12×16) 80% 88% 86% 75% 82% 81%
𝑆𝑅(12×16) 84% 86% 81% 85% 84% 83%
𝐷𝐸(12×16) 83% 85% 86% 85% 84% 79%

𝐷𝐸 → 𝑆𝑅(12×16) 84% 85% 89% 90% 82% 84%
𝑆𝑅 → 𝐷𝐸(12×16) 90% 92% 88% 91% 90% 94%

𝐷𝐸 → 𝑆𝑅+𝐶𝐺(12×16) 89% 94% 90% 85% 84% 88%
𝑆𝑅 → 𝐷𝐸+𝐶𝐺(12×16) 91% 92% 89% 92% 93% 91%

Table 4.9: The results of activity classification using CNN on 24×32 data.
Method Walking Standing Sitting Lying Action

change
Falling

𝑅(24×32) 88% 90% 87% 93% 90% 91%
𝐷𝐸(24×32) 92% 84% 92% 90% 91% 89%
𝑅 + 𝐶𝐺(24×32) 90% 95% 90% 94% 92% 92%
𝐷𝐸 + 𝐶𝐺(24×32) 96% 92% 95% 94% 87% 93%

90



The results of activity classification accuracy of CNN using LR 6×8 data are shown

in Table 4.7. We can see that each technique improved the activity classification

performance. The walking and sitting, for example, present high accuracy in the

𝐷𝐸 → 𝑆𝑅(6×8) technique, reaching both 86%. Also, the falling accuracy is 71% in

𝑆𝑅 → 𝐷𝐸(6×8). Data augmentation aids in the improvement of activity detection

in 𝑆𝑅 → 𝐷𝐸 + 𝐶𝐺(6×8) for other activities, like standing, lying and action change

reaches high accuracy of 84%, 81%, and 80%, respectively.

The results of activity classification accuracy of CNN using LR 12×16 are shown

in Table 4.8. Here, for the particular case of the falling activity, 𝑆𝑅 → 𝐷𝐸(12×16)

technique reaches a high accuracy of 94%. Similarly the standing accuracy is 94% in

𝐷𝐸 → 𝑆𝑅 + 𝐶𝐺(12×16) technique. The performance of detection of other activities

improved using the 𝑆𝑅 → 𝐷𝐸 + 𝐶𝐺(12×16) technique, reaching a maximum of 93%

accuracy in the action change activity, 92% accuracy in standing and lying.

We infer from these CNN classification results that performing SR followed by

denoising and then adding CGAN data improves performance.

Table 4.9 shows the results of the HR data classification using CNN. Here, 𝐷𝐸 +

𝐶𝐺(24×32) technique performs well for the majority of the activities. Walking reaches

an accuracy of 96%, sitting reaches an accuracy of 95%, and lying reaches an accuracy

of 94%. The performance boost provided by denoising, which creates a clear image,

aids in detecting activity.

Table 4.10 shows the activity classification results using CNN+LSTM on LR 6×8

data. Here, again we can see that each technique improves the activity classification

performance. For example, 𝑆𝑅 → 𝐷𝐸(6×8) has a high lying and action change accu-

racy of 82%. The classification accuracy of walking, standing, and sitting activities

in 𝑆𝑅 → 𝐷𝐸 + 𝐶𝐺(6×8) is 84%, 82%, and 84%, respectively. This is thanks to the

image qualify improvement after applying SR, then DE.

Table 4.11 shows the activity classification results using CNN+LSTM on LR

12×16 data. Here, sitting and lying activities, after applying 𝐷𝐸 → 𝑆𝑅+𝐶𝐺(12×16)

reaches a high accuracy of 93% and 94%, respectively. Other activities like walking

and action changes reaches 93% accuracy in 𝑆𝑅(12×16) and 𝑆𝑅 → 𝐷𝐸 + 𝐶𝐺(12×16)
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techniques, respectively. This is thanks to the fact that 12×16 resolution data con-

tains significantly more information than 6×8 resolution data. By applying the de-

noising technique after SR, images are smoothed and enhanced making it easier to

detect sitting and lying activities.

The results of activity classification using CNN+LSTM applied on HR data is

shown in Table 4.12. In most activities, the 𝐷𝐸 + 𝐶𝐺(24×32) technique performs

well. Walking has a highest classification accuracy of 96%, action change has that of

97%, lying has that of 94%, and falling has that of 96%. Denoising further improves

the performance by making the image clearer, which makes it easier to recognize the

activity.

4.6.4 Neural Network Quantization

As previously stated, we used quantization on our neural network because one of our

primary objectives is to have the proposed approach running on low-powered devices.

Although the process of quantization, generally speaking, reduces the accuracy, it

can still be used given a flexibility for a trade-off between performance and optimiza-

tion. In a first step, we compare the classification accuracy of our models with and

without quantization, when using the raw data (i.e., no image enhancement or data

augmentation is used). Table 4.13 compares the performance of classification of such

raw data with and without quantization. As can be seen, the accuracy is reduced,

but not significantly. The accuracy drops range from 0.06% for images of resolution

12×16 to 2.09% for images of resolution 6×8. However, to recall, our main goal is to

optimize the proposed deployment approach both in terms of performance and com-

plexity. Given the different techniques proposed in this work, we compare the results

of the best performing techniques with and without quantization in Table 4.14. As

can be seen, the table shows a degradation in accuracy to some extent compared to

when quantization is not used. However, that does not negate the many advantages

of quantization; model sizes are reduced, and inference times are reduced to the point

where they are more beneficial in low-end devices. All these results are generated

using 8-bit integer data on our computer.
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4.7 Comparative Study Analysis

Table 4.15 presents a comparative illustration of the results derived through the Chap-

ter 3 and Chapter 4 of the current thesis. Evidently, the setup for conducting the

two experiments is considerably varying. Chapter 3, two sensors have been used for

activity detection (placed on ceiling and wall), whereas in Chapter 4 only one sensor

has been used (played in ceiling). Conducted in two rooms, no preprocessing was done

on the date derived through Chapter 3. On the other hand, three different rooms

were utilized for the experiment in Chapter 4, and the derived data was preprocessed

using super resolution and denoising techniques. This helps to enhance the quality of

the data. Further, for the classification of results, we used the same neural network

architecture composed of CNN and LSTM in both approaches. However, CGAN data

are used in the training only in Chapter 4. Remarkably, the results derived through

both the experiments showcased high accuracy of 97% and 98% respectively. Even

more so, the approach using one sensor has delivered good results due to various deep

learning approaches, which is unprecedented in the field of activity detection. No-

tably, the use of one sensor not only minimizes the cost, but also reduces the inference

time and the model size, allowing it to run on low powered devices.

We tried to reproduce the existing approaches, run them on our data set, and

compared their performance with our proposed approaches. Table 4.16 shows the

comparison of the performance. It clearly shows that the our proposed approach

outperforms the existing approaches in terms of inference time and classification ac-

curacy. If we look at Table 4.16, we can see that our experiment with two sensors has

marked a computation time of 2.88 seconds, whereas that with one sensor approach

reaches 0.43 seconds.
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Table 4.10: The results of activity classification using CNN+LSTM on 6×8 data.

Method Walking Standing Sitting Lying Action
change

Falling

𝑅(6×8) 75% 78% 74% 77% 70% 74%
𝑆𝑅(6×8) 77% 74% 73% 78% 73% 76%
𝐷𝐸(6×8) 76% 72% 78% 70% 75% 72%

𝐷𝐸 → 𝑆𝑅(6×8) 81% 78% 78% 75% 77% 73%
𝑆𝑅 → 𝐷𝐸(6×8) 78% 81% 73% 82% 82% 75%

𝐷𝐸 → 𝑆𝑅 + 𝐶𝐺(6×8) 80% 74% 70% 76% 78% 75%
𝑆𝑅 → 𝐷𝐸 + 𝐶𝐺(6×8) 84% 82% 84% 78% 81% 80%

Table 4.11: The results of activity classification using CNN+LSTM on 12×16 data.
Method Walking Standing Sitting Lying Action

change
Falling

𝑅(12×16) 88% 90% 76% 77% 80% 82%
𝑆𝑅(12×16) 85% 88% 82% 90% 86% 79%
𝐷𝐸(12×16) 82% 86% 78% 89% 90% 83%

𝐷𝐸 → 𝑆𝑅(12×16) 92% 84% 77% 89% 91% 86%
𝑆𝑅 → 𝐷𝐸(12×16) 93% 90% 88% 84% 91% 88%

𝐷𝐸 → 𝑆𝑅+𝐶𝐺(12×16) 87% 90% 93% 94% 82% 90%
𝑆𝑅 → 𝐷𝐸+𝐶𝐺(12×16) 90% 92% 90% 86% 93% 92%

Table 4.12: The results of activity classification using CNN+LSTM on 24×32 data.
Method Walking Standing Sitting Lying Action

change
Falling

𝑅(24×32) 92% 91% 93% 90% 94% 89%
𝐷𝐸(24×32) 93% 95% 96% 91% 94% 92%
𝑅 + 𝐶𝐺(24×32) 95% 94% 95% 93% 92% 90%
𝐷𝐸 + 𝐶𝐺(24×32) 96% 94% 93% 96% 97% 96%
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Table 4.13: The performance comparison of raw data with quantization aware train-
ing.

Resolution With
quantization

Accuracy 100
epochs
training
time (s)

Inference
time
(ms)

Model
size

(MB)

6×8 Yes 76.23% 17 0.003 0.3
No 78.32% 54 0.048 1.4

12×16 Yes 90.05% 36 0.007 0.8
No 90.11% 88 0.078 2.4

24×32 Yes 94.20% 44 0.009 1.1
No 95.73% 132 0.093 3.2

Table 4.14: A comparison between the performance of classification with and without
quantization applied to the preprocessed and enhanced images using the techniques
proposed above.

Resolution With
quantization

Accuracy 100
epochs
training
time (s)

Inference
time
(ms)

Model
size

(MB)

6×8SR → DE + CGAN
Yes 82.27% 145 0.38 4.18
No 84.43% 321 2.57 10.20

12×16SR → DE + CGAN
Yes 93.18% 164 0.60 5.43
No 94.52% 352 3.21 14.68

24×32DE + CGAN
Yes 97.53% 136 0.43 4.37
No 98.12% 291 2.82 11.20
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Table 4.15: Comparison of Chapter 3 and Chapter 4
Comparison Chapter 3 Chapter 4

No. of Sensor Two One

Position Ceiling and Wall Ceiling

Preprocessing No Preprocessing Super Resolution and
Denoising

Experiment 2 different rooms 3 different rooms

Classification CNN+LSTM CNN+LSTM( CGAN
data is used for

Training )

Accuracy 97% 98%

Table 4.16: Comparison of existing work with the proposed approaches.

Comparison Method No. of
Sensors

Position Pre-
processing

Data
Augmentation

Accuracy Inference
time
(ms)

Conventional
Machine
Learning

SVM [15] 1 Ceiling Thresholding No 72% 2.17
k-NN [55] 1 Ceiling Thresholding No 84% 2.20
SVM [67] 2 Ceiling Based on

Motion
Detection

No 90% 2.86

Deep
Learning

CNN [72] 1 Ceiling
and Wall

Fuzzy set
representation

of data

Traditional
approach
(flipping

rotating the
image)

90% 3.17

3D-
CNN [168]

1 Ceiling Gaussian filter No 93% 4.12

Chapter 3 CNN+LSTM 2 Ceiling
and Wall

No
Pre-processing

No 97% 2.88

Chapter 4 CNN+LSTM 1 Ceiling SR and
Denoising

CGAN 98% 0.43
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

To conclude the thesis overall, we propose a lightweight DL model for activity classi-

fication that is robust to environmental changes. Being lightweight, such a model can

run on devices with very low computation capabilities, making it a base for a cheap

solution for activity detection. The blurriness and noise present in the IR captured

frames, due to the sensor characteristics the imprecision in the sensor lead to a no-

ticeable drop in performance in conventional methods. Our proposed neural network

architecture manages to address this issue by exploiting the temporal changes in the

frames to identify the activities accurately. We identify the activity using a time

window of less than 1 second. Despite the smaller time window, we have remarkably

enhanced the classification accuracy in comparison to conventional works, which re-

quire a larger time window. LR sensors are always preferred over HR ones if they

provide similar performance. This is thanks to their lower risk of privacy invasion

and cheaper cost. We demonstrate that it is possible to use the LR data to achieve

classification performance that is nearly identical to that of the classification of the

HR data, namely 24×32, by using deep learning techniques such as Super-resolution,

denoising, and CGAN.

In this thesis, first we proposed an activity detection technique using two wide-

angle low-resolution IR array sensors. The data collected by the sensors are classified
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using a hybrid DL model. The hybrid DL model is designed based on the Convolution-

LSTM. We used two sensors, one placed on the wall and the other placed on the ceil-

ing. This activity detection system involves two phases. In the first phase we classify

the wall sensor data and ceiling sensor data using CNN and achieve a classification

accuracy of 0.93 and 0.94, respectively. To improve this further, we combined both

the sensor data and performed classification using CNN and got an improved accu-

racy of 0.96. In the second phase, the output of the CNN is passed to an LSTM to

achieve better performance. The classification using the ceiling sensor data reaches

0.96 accuracy, whereas that using wall sensor data reaches 0.95 accuracy. When we

combine both the wall sensor data and ceiling sensor data, the classification accuracy

reaches 0.97. We run some of the existing conventional approaches on our data set

and compared the results. Based on these, we can conclude that by combining the

data collected by the sensor placed on the ceiling and that placed on the wall, and

using CNN and LSTM, we get the highest classification accuracy which is 0.97.

To further enhance the detection and optimize the AD system, we used one IR

array placed on the ceiling, and conducted the various experiments in which we col-

lected data under different conditions for a continuous period of time with different

resolutions (i.e., 24 × 32, 12 × 16, and 6 × 8) To identify the activity of the partici-

pants, we ran a classification task that takes the frames generated by the sensor as the

input and predicts the activity. To further enhance the classification, we applied three

advanced DL techniques: SR, denoising, and CGAN. Herein, the key purpose was to

enhance the classification accuracy of the low-resolution data. Through the results,

we observed that the application of these techniques has helped improve the classifica-

tion accuracy of low-resolution images from 78.32% to 84.43% (6 × 8 resolution) and

from 90.11% to 94.54% (12 × 16 resolution). We optimize the classification model to

run on low-powered devices. We used quantization on our neural network. It reduces

the model size and the running time of the prediction, trade off with classification

accuracy.
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5.2 Future Work

Focused on enhancing the activity detection, this research has used two-sensors for

activity detection. Further, to proving a cheaper solution with similar performance,

only one sensor was used, through which the model has been observed to be highly

optimized. It has been noted that in such a manner, the activity detection system

can also be run through low-power devices. Notably, by using low-resolution data,

nearly high-resolution data performance has been achieved in this research. Based on

our obtained results presented in this work, future studies include applying SR and

denisoing techniques on two sensor placed ceiling and wall, focusing on stereoscopic

vision using two sensors, and trying to build a 3D reconstruction of person to identify

his/her activities. In that way, we can improve the quality of data and remove

noise. We can also determine the height and depth of a person while performing

any activity and can effectively predict the fall with high precision. Moreover, this

research approach has been robust from environment perspective, such that it can

work even in unseen conditions.

Towards the end, it is important to highlight that this research is subject to certain

limitations. Firstly, the current research only considers one person and not more.

Also, if there is any heat emitting object, the activity detection system proposed in

this research may not deliver accurate results. Due to the optimization of neural

networks, the classification accuracy and the performance of activity detection is also

being reduced. Future studies should therefore address these research limitations.
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