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Abstract

In recent years, Mobile Edge Computing (MEC) has been gaining attention due to
the progress of the expansion of the 5th Generation mobile network (5G), which
offers high capacity and low latency wireless communication. MEC is an edge
computing method that uses computing resources located in the edge environment
of a wireless base station to application task offloading requiring computing power
near client devices. Utilizing the 5G network and MEC enables the implementation
of various applications that have been difficult to achieve with cloud computing and
mobile devices due to network latency.

However, MEC is often installed on power and space restricted environments
such as wireless base stations; hence, it is difficult to employ a conventional
computing platform used in the data center. Therefore, this thesis focuses on
Field-Programable-Gate-Array (FPGA) as a computing platform for MEC, which
has high flexibility with programmable logic circuits and achieves high performance
with hardware-based data processing. Traditionally, FPGAs have been utilized as
hardware devices to realize logic circuits for specific applications. However, the
latest FPGAs are multifunctional and utilized for highly efficient general computing
acceleration platforms.

As a proof-of-concept to validate the application of FPGA systems to MEC,
we have developed a scale-flexible stand-alone multi-FPGA system called FiC and
its successor M-KUBOS. A stand-alone multi-FPGA system is an FPGA system
consisting of multiple stand-alone FPGA nodes with a high-speed inter-FPGA
network, and each FPGA node can operate in both stand-alone and clustered mode.
The system scale is flexibly adjustable according to the application and performance
requirements by changing the number of FPGA nodes. Utilizing FPGA’s high
energy efficiency and flexibility, the stand-alone multi-FPGA system is expected to
be an ideal computing platform for MEC, achieving space-saving and low power
consumption.

On the other hand, FPGA is still a low-layer device compared to CPUs and
GPUs. There are challenges in improving platform accessibility, manageability, and
application programmability to adopt a stand-alone multi-FPGA system for MEC.
For instance, FPGAs are versatile devices and can implement various dedicated
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iv Abstract

hardware logic, but in order to use them from applications, they generally require
dedicated device drivers and middleware. Therefore, to adopt FPGA as a computing
platform on MEC, it is necessary to provide a general-purpose platform management
interface and protocol that various application platforms can support. In addition,
application programmability for stand-alone multi-FPGA systems is a fundamental
problem because no standard method has been provided. Hence, providing an
application development environment for a stand-alone multi-FPGA system is also
required.

To facilitate the use and management of stand-alone multi-FPGA systems from
applications, this thesis proposes a platform management system called FiC-RFC
for stand-alone multi-FPGA systems. With FiC-RFC, MEC applications can access
stand-alone multi-FPGA systems directly via simple HTTP access by RESTful APIs,
which is a programming fashion widely used in cloud applications. Using RESTful
APIs allows direct use of stand-alone multi-FPGA systems from various application
platforms and improves platform accessibility and manageability. In a scenario that
provisioning FPGA applications by FiC-RFC to 12 nodes FiC system over HTTP
access, FiC-RFC achieved scalable management performance and provisioned an
application below 20 seconds. The result shows that FiC-RFC improves platform
utilization efficiency compared to conventional application provisioning methods
such as JTAG, and it supports enough manageability as a computing platform on
MEC.

To improve the programmability of applications on stand-alone multi-FPGA
systems, we also focus on Message Passing Interface (MPI), a parallel programming
environment commonly used in distributed memory architectures, and propose
FiC-MPI, an MPI-compatible library to facilitate parallel programming in
stand-alone multi-FPGA systems. This MPI-compatible library can be directly used
in the standard C/C++ HLS FPGA application development flow. It is expected
to enable application designers to design parallel programming applications with
MPI interface for multi-FPGA nodes easily and improve the programmability of
stand-alone multi-FPGA systems. Also, the FiC-MPI provides an application test and
debug environment called FiC-MPI Simulator for the MPI applications. It eliminates
FPGA implementation of the debugging on the real FPGA platform and improves
application productivity dramatically. In order to show the feasibility and usability
of FiC-MPI, the thesis ported an MPI-based general numerical benchmark Himeno
Benchmark (Himeno-BMT) to an application for six nodes M-KUBOS system as a
case study. The ported Himeno-BMT implemented with FiC-MPI achieved 178.7
MFLOPS with a single node; scaled to 643.7 MFLOPS with four nodes; and 896.9
MFLOPS with six nodes. The result showed that the FiC-MPI could achieve scalable
performance along with the number of nodes, and the case study demonstrated the
easiness of developing parallel programs with FiC-MPI on multi-FPGA systems.
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1
Introduction

1.1 Background

In recent years, the number of mobile devices connecting to the Internet, such as
smartphones and the Internet-of-Things (IoT), has increased explosively. According
to a study [1] in 2017 by Deloitte, smartphone penetration in developed and
developing countries is more than 80%, 4G and other high-speed mobile network
coverage reached over 50%. Most U.S. and other developed countries are investing
and deploying the 5th generation mobile network (5G) progressively, which has
higher capacity and lower latency than the previous 4G network [2].

With the popularization of these mobile devices and the expansion of high-speed
mobile networks, edge computing methods known as Multi-access Edge Computing
(MEC) [3] have been gaining attention. MEC is an extension of mobile-cloud
computing (MCC), which provides data processing services to mobile devices that
require real-time and high computational performance, using computing resources
installed on the radio base station. MEC is expected to reduce network latency
for accessing computing resources; it enables applications that require real-time
performance, such as real-time image processing and artificial intelligence (AI)
applications; it improves application users’ quality of experience (QoE).

The computing platform can provide scalable and sufficient computing power on
MEC to meet various application demands is desired. However, the environment of
MEC is often strongly restricted for space and power consumption due to installation
at radio stations; therefore, deploying high-performance computing equipment like
those used in cloud computing is not feasible. Thus, an eligible computing platform
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2 Introduction

for MEC with excellent space-saving and power efficiency is demanded.

1.2 Motivation and Objectives

Figure 1.1 shows an example of a computing platform proposed for MEC. Currently,
embedded server vendors and industry organizations such as the Open Radio Access
Network (O-RAN) Alliance [4] has proposed high-density computing platform that
integrates servers, storage, and networking in a single unit or rack for the computing
platform for MEC.

These existing edge server platforms on the market are versatile, and they can
be adapted to a variety of use cases. However, these CPU-based platforms are
basically optimized for batch processing of memory data, and they are unsuitable
for streaming data processing requiring predictable performance and latency. For
example, video analysis is one of the typical applications for processing streaming
data [5][6][7] expected to be widely used in applications, such as face detection [8],
automatic license plate recognition (ALPR) [7], object recognition for augmented
reality [9], etc. Although it is possible to install accelerators such as GPUs on the
edge server platform to support these applications, it hardly deploys these systems on
a power-constrained and thermal-constrained environment due to GPU’s high energy
consumption.

Figure 1.1: Converged Platform for 5G Edge Computing by Advantech [10]

To fulfill the computing demands on MEC, this thesis focused on using a
multi-FPGA system as a computing acceleration platform for MEC, which can
deliver a small footprint and high power efficiency. FPGA is a flexible device that
can realize a computing platform with high performance and low power consumption
by implementing application-specific hardware. Compared to the GPU, the FPGA
is expected to achieve 3-4 times lower power consumption and 10-60 times better
energy efficiency [11][12]. Combining multiple FPGAs to structure a multi-FPGA
system, it is possible to build a computing platform that can deliver scalable
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computing performance and flexible system size to meet application requirements
and demands.

As a multi-FPGA system targeted for MEC, the FiC project [13] proposed a
stand-alone multi-FPGA system called FiC cluster and its successor M-KUBOS
cluster. A stand-alone multi-FPGA system is an FPGA system design that each
FPGA node can be used as a stand-alone FPGA host, but also it can construct a
clustered multi-node FPGA system. This architectural design is expected to achieve
scalable computing performance and system flexibility to fit MEC. The FiC and
M-KUBOS clusters employ this stand-alone multi-FPGA design and consist of a
high-speed FPGA-to-FPGA network that directly connects cost-effective mid-range
FPGAs. Each cluster node operates as an independent FPGA server in stand-alone
mode, providing FPGA compute offload services to applications. Depending on
the problem, applications can use these nodes as individual or clustered compute
resources. However, in order to apply these FiC and M-KUBOS as a computing
platform on MEC and to enable FPGA acceleration for MEC applications, the
following issues need to be addressed.

FPGA’s platform accessibility and manageability issues

For applying FPGA systems to MECs, the FPGAs are devices with low-level access
interfaces at the hardware level. The accessibility and manageability for applications
to handle FPGA platforms must be improved. In addition, accessibility from remote
environments via the Internet should be considered.

Application programmability issues of stand-alone multi-FPGA systems

Currently, many efforts are made by FPGA vendors to improve the development
productivity of FPGA applications, such as high-level synthesis (HLS) using C/C++.
These efforts have enabled software engineers to develop FPGA applications, and
they have dramatically improved the productivity of FPGA applications. However,
these FPGA development tools target a single FPGA, and there is no standard way
to design bare-metal applications targeting multi-FPGA systems such as FiC and
M-KUBOS. Typically, application development on FiC and M-KUBOS requires the
implementation of communication protocols specific to each application, and its
debugging and testing environment is inadequate. Thus, there is a need to improve the
programmability and productivity of applications targeting stand-alone multi-FPGA
systems.

The objective of this thesis is to solve the issues of adopting multi-FPGA systems
such as FiC and M-KUBOS for MEC and to build an efficient computation platform.
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1.3 Thesis Contributions

Development of a platform management system to improve accessibility and
manageability of stand-alone multi-FPGA platforms

In order to apply the multi-FPGA platform to MEC, we investigated access methods
and management of the multi-FPGA platform from applications, and we focused on
Representational State Transfer (REST), a general-purpose programming interface
used in cloud applications. By applying this REST concept to the application
interface of the multi-FPGA platform, we studied an access method and management
architecture that is less dependent on a specific environment and enables the use of
the multi-FPGA platform from various application platforms. This study developed
FiC Restful FPGA Control (FiC-RFC), a platform management system for FiC and
M-KUBOS using RESTful APIs. FiC-RFC enables applications to remotely use and
manage FiC and M-KUBOS using a standardized interface provided by the RESTful
API, allowing applications on MEC to improve accessibility and manageability of
FiC and M-KUBOS.

Development MPI based parallel programming environment for stand-alone
multi-FPGA architecture

We focused on the Message Passing Interface (MPI) parallel programming
environment commonly used in distributed memory systems to improve
the programmability of bare-metal multi-FPGA applications on FiC and
M-KUBOS. Designing applications using MPI is expected to improve application
programmability by making it possible to design applications using parallel
programming on FiC and M-KUBOS application design. In this study, we
developed an MPI library, FIC-MPI, which can be directly used in the FPGA
application development flow with standard C/C++ and HLS. We also developed the
FiC-MPI Simulator to improve the efficiency of application testing and debugging
of multi-FPGA applications using FiC-MPI. Compared to traditional methods for
developing bare metal multi-FPGA applications with FiC and M-KUBOS, FiC-MPI
can significantly improve programmability and the efficiency of the application
debugging process by more than 100 times.

1.4 Thesis Outline

The rest of this thesis is organized as shown in Figure 1.2.

Chapter 2: Background and State-of-the-art
This chapter introduces related topics of this thesis and state-of-the-art FPGA,
then introduces various multi-FPGA system architectures by use cases.
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Chapter 3: Target Systems
This chapter first introduces FiC and M-KUBOS, the stand-alone multi-FPGA
systems covered in this thesis, describe their concepts and detailed hardware
architecture, and then discusses challenges in applying FiC and M-KUBOS to
MEC.

Chapter 4: Platform Management Architecture for Stand-Alone Multi-FPGA Systems

In this chapter, we propose a platform management system, FiC-RFC,
which improves the accessibility and manageability of the platform when
stand-alone multi-FPGA systems such as FiC and M-KUBOS are applied to
MEC. FiC-RFC is a platform management system for FiC and M-KUBOS
developed by focusing on HTTP access and RESTful API, which are cloud
application methods, to provide remote access and management functions
to FPGA platforms. FiC-RFC standardizes the operations required for
managing FPGA clusters as a RESTful API, thereby providing a device-
and environment-independent application interface. The APIs enable MEC
applications and upper-level management systems to remotely access FiC and
M-KUBOS for application execution and management using general-purpose
HTTP communication.

Chapter 5: Parallel Programming Environment for Multi-FPGA Systems
This chapter proposes an MPI-compatible parallel programming library,
FiC-MPI, to improve the programming environment for multi-FPGA systems
on FiC and M-KUBOS. FiC-MPI is an MPI library that can be directly used
in bare-metal FPGA application development with HLS and was developed to
facilitate multi-FPGA parallel application design and improve the efficiency
of application testing and debugging tasks. The productivity of application
development with FiC-MPI is discussed by comparing it with conventional
application development methods. As a case study, we also ported the Himeno
Benchmark, a general numerical computation benchmark implemented by
MPI, to M-KUBOS using FiC-MPI and showed the practicality of FIC-MPI
from its performance benchmark and performance scaling results.

Chapter 6: Conclusion and Future Work
This chapter concludes this thesis and outlook for future work.
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Background and State of the Art

2.1 Multi-access Edge Computing (MEC)

Multi-access Edge Computing (MEC) [3] is an edge computing method standardized
by ETSI (European Telecommunication Standards Institute). Figure 2.1 shows an
example MEC architecture and possible IoT use cases. MEC enables edge computing
by installing powerful compute nodes (MEC Server) at 5G wireless base stations
to take advantage of the 5G’s high-speed and low-latency network (Figure 2.2).
It realizes various timing-critical IoT use cases, which have been challenging to
achieve in the past due to network latency and insufficient computing power on edges.
Examples include video streaming and analysis, autonomous driving, real-time drone
control, and merged and augmented reality (MR/AR) [5][6][14].

According to iGR [16], the number of MEC installations in the U.S. is expected to
reach 563,000 stations in various industries by 2026. Especially in the retail industry,
it has the potential of the most significant number of small MEC station operators
that may have more than 2,000 locations across the U.S. Such compact MEC stations
are typically installed in retail stores, factories, and offices. It provides LTE or 5G
mobile network coverage through a specific area.

For the computing platform on the MEC, the following constraints must be taken
into account to place computing resources in a MEC station:

1) The platform must be compact in terms of physical and power consumption
due to the limitation of power consumption and physical space available in
the MEC station. (For example, a MEC station should be small enough to be
carried by a person or run on battery power.)

7
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Figure 2.2: Example private 5G base station by Fujitsu [15]



9

2) The MEC station may be located in remote areas inaccessible by humans.
Hence, the compute node needs to be monitored and managed remotely.

2.1.1 Potentials of Multi-FPGA systems on MEC

A multi-FPGA cluster has the following characteristics suitable for the computing
platform on MEC for the following reasons:

1) Data processing is executed in hardware logic using FPGAs. It is possible to
achieve low latency than software processing using CPUs. Therefore, it can be
used in applications that require real-time performance.

2) Power-efficient hardware logic specialized for specific processing can be
realized. Therefore, it consumes less energy than software processing with a
CPU and can be installed in small wireless base stations with power constraints.

3) The required system size can be scaled by increasing or decreasing the number
of computation nodes through clustering to optimize the footprint.

The Flow-in-Cloud (FiC) [13] is developing a multi-FPGA system for application
to compute nodes for the MEC station in order to verify the advantages of
multi-FPGA clusters. Chapter 3 describes the detailed system architecture and
hardware.
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2.2 Field Programmable Gate Array (FPGA)

An FPGA is a device that provides programmable logic circuits for a desired task
or application. FPGAs allow users to freely program operations at the boolean logic
level and have a high degree of flexibility to realize any desired logic circuit. With the
advent of FPGAs, most digital computer architectures can be reproduced on FPGAs,
making it easy to realize dedicated custom hardware for specific purposes.

Figure 2.3 shows the CMOS process technology used in FPGAs from
representative FPGA vendors Xilinx (now AMD) and Altera (now Intel). Until the
mid-2000s, FPGAs were slightly older than the latest process technologies. However,
recent years have seen dramatic performance, integration, and price improvements by
actively incorporating the latest process technologies.
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Figure 2.3: Xilinx and Altera’s FPGA fabrication Process Rule Trend

Figure 2.4 and Figure 2.5 show the number of logic blocks and RAM capacity
implemented in FPGAs. The scale of logic circuits that could be realized on FPGAs
in the early days was small compared to ASICs (Application Specific Integrated
Circuit). Therefore, these devices’ main application was to realize digital circuits,
such as substitutes for digital circuits using logic ICs or glue logic to connect digital
circuits. However, as you can see in Figure 2.4 and Figure 2.5, FPGAs have been
dramatically advanced in their available number of logic blocks and on-chip RAM
capacities, according to the semiconductor process improvement.
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The world’s first FPGA was XC2064 (Figure 2.6) introduced by Xilinx in 1984,
which contained 64 logic blocks called Configurable Logic Blocks (CLBs). FPGA
users could implement logic circuits by setting up Boolean expressions for these 64
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logic blocks and the connections between the logic blocks using a development tool
called XACT [17].

Figure 2.6: Xilinx’s XC2064 Package and Die [18]

Later, in the 1990s, as the number of logic blocks increased according to Moore’s
Law, development tools (EDA tools) for FPGAs became more automated. FPGA
users designed logic circuits using Hardware Description Language (HDL). EDA
tools enabled it to automate logic block allocation (placement) and interconnection
between them on FPGAs. FPGAs becomes more multifunctional in the 2000s.
Various functional blocks and interfaces incorporated logic blocks to realize system
LSIs using only FPGA.

This multifunctionality of FPGAs has brought various function blocks to
the architecture, such as large on-chip memory capacity, multiply-and-add
(DSP) suitable for digital signal processing operations, microprocessors, and
multifunctional I/O and transceivers. Today, the number of logic blocks in the latest
FPGAs has reached 4 million. Hardware advances in FPGAs are making steady
progress in response to application requirements. Such as Intel Statrix 10 MX with
high-speed and high-capacity on-chip memory (HBM) inside the FPGA enables to
implementation of memory-required applications on FPGA, and Xilinx Versal with
dedicated arithmetic circuit blocks to accelerate tensor calculations commonly is used
in AI applications.

Development tools for FPGAs have also advanced to keep pace with the
increasing sophistication of FPGA hardware. The latest development tools for
FPGAs now support High-Level Synthesis (HLS) as a standard feature, enabling
hardware logic generation from high-level languages such as C/C++. In addition,
OpenCL, an open heterogeneous computing programming standard, supports
FPGAs. Thus, an environment is being developed in which FPGAs can be used
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as high-performance computation platforms.

2.2.1 FPGA Architecture

This section describes the basic architecture of FPGAs. The basic idea of FPGA
architecture is using programmable logic blocks called Configurable Logic Block
(CLB) (Xilinx), Adaptive Logic Module (ALM) or Logical Element (LE) (Altera)
are connected with arranged vertically and horizontally via programmable connection
elements called Connection Block (CB), and Switch Block (SB) to realize arbitrarily
logic circuits by combining them. Figure 2.7 shows the basic structure of an
island-style FPGA architecture.
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Configuration Logic Block (CLB)

A Configuration Logic Block (a CLB in Xilinx and an ALM or LE in Altera) is a
programmable logic block unit that realizes a combinational circuit. The basic CLB
configuration consists of multiple programmable logic blocks called Slices within the
CLB.

Each Slice contains a multiplexer circuit that can implement an arbitrary N-input
Boolean function called a look-up table (LUT). The number of LUT inputs is
generally 4 or 6. The truth table of the LUT is held in SRAM, so the settings are
volatile when power is lost. Therefore, it is necessary to perform a configuration to
set the contents of the SRAM when power is turned on. The SRAM of the LUT is also
used as a small-capacity SRAM. The output of the LUT is connected to a flip-flop or
register via a programmable multiplexer. The circuit output can be synchronized to a
clock to form a synchronous circuit.

Connection Block (CB)

The Connection Block (CB) is a programmable switch element that connects the CLB
and the routing channel.

Switch Block (SB)

Switch blocks (SBs) are programmable switch elements located in routing channels
that intersect vertically and horizontally in the FPGA. Together with CBs, they set
the paths to form connections between blocks such as CLBs.

Input/Output Block (IOB)

Input/Output Block (IOB) is a functional block that provides an interface between the
FPGA’s internal circuitry and the package pins. Each IOB can be programmatically
set to a signal level such as TTL (1.2V) or CMOS (2.5V) and the direction of
input/output such as INPUT, OUTPUT, or Bi-directional.

DSP

A Digital Signal Processor (DSP) is a functional block that provides a
variety of functions commonly used in signal processing, such as multiply-add,
multiply-accumulate, counter functions, and bit-width boolean operations. These
operations can also be performed by combining CLBs, but the number of CLBs
required is large and inefficient. Therefore, a DSP is placed as a dedicated functional
block to perform these operations. Xilinx’s FPGAs typically include a 48 bits DSP
module called DSP48E blocks. Intel’s Arria 10 [19] has a floating-point arithmetic
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unit built into the DSP module, enabling the efficient implementation of applications
that require numerical calculations.

Block RAM

Block RAM is a functional block that provides random access memory (RAM). The
SRAM in the LUT of each CLB can also be used as a distributed RAM. However, the
capacity is small and inefficient to be used as a RAM to store large capacity data, so
the BRAM is provided as a dedicated RAM block. Recent Xilinx FPGAs typically
have a capacity of 36 kbits per block. Each BRAM is implemented as dual-port
RAM. In FPGA logic design, the typical use of BRAM is to implement FIFOs and
data queues.

Also, Xilinx’s UltraScale+ series has the UltraRAM (URAM) block [20], which
provides large-capacity RAM. UltraScale+’s URAM is implemented as a 72 bits wide
dual-port RAM with a capacity of 288 kbits per block. URAM can basically be used
in the same way as BRAM. But some FPGAs have URAM with a capacity as large as
360 Mbits, which is very useful for applications that require fast and large-capacity
RAM.

Embedded Microprocessor

Some FPGAs have a microprocessor as a functional block. These are system-on-chip
(SoC)-type devices that implement the FPGA fabric and microprocessor (CPU) on
the same package. Xilinx’s Zynq-7000 series [21] released in 2012 is implementing
Xilinx’s Virtex 7 medium-sized FPGA with a dual-core 1 GHz ARM Cortex-A9
processor on a single chip. The FPGA fabric part of Zynq is called Programmable
Logic (PL), and the CPU part is called Processing System (PS). The PL and PS are
connected by the Advanced eXtensible Interface (AXI) bus, which allows the PS’s
ARM processor to access the logic on the PL’s FPGA.

Also, Intel announced Xeon Scalable processor with integrated FPGA (Xeon
Gold 6138P) [22] in 2018. This CPU is Intel’s Skylake-SP generation 28-core
Xeon processor (14nm process) of Intel’s Skylake-SP generation and their Arria
10 GX 1150 FPGA (20nm process) on a single chip. Xeon and Arria 10 have
one Ultra Path Link (UPL) with 9.6 GT/s bandwidth on the chip, and two PCIe
3.0 x8 connections allow access to the FPGA directly from the processor via a
high-bandwidth, low-latency bus.

SoC-type FPGAs can realize applications that combine the high flexibility of
CPUs with the high processing efficiency of FPGAs, especially on embedded
applications. For example, highly efficient systems can be easily built by offloading
inefficient CPU processing to FPGAs. Thus, SoC-type FPGAs have characteristics
that make them suitable platforms for MEC and edge computing.
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2.2.2 FPGA Application Development

This subsection describes development techniques for implementing applications on
FPGAs.
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Figure 2.8: CPU/GPU and FPGA’s Application Development Flow

Figure 2.8 shows the comparison of application development flow between
CPU/GPU and FPGA. Typically, the application development flow for CPUs and
GPUs is implemented by a compiler. The compiler converts the programming
language description written by the application designer into a binary code that
the CPU or GPU can execute. On the other hand, in general FPGA application
development, applications are implemented as hardware logic using HDL (Hardware
Description Language) such as Verilog and VHDL. Implemented hardware logic
description is converted to the target FPGA device application using the Electric
Design Automation (EDA) tool provided by the FPGA vendor in the following steps:

Logic synthesis
Logic synthesis synthesizes the logic circuit for the target FPGA device from
the HDL description. This logic synthesis process involves the interpretation
and optimization (elaboration) of the HDL description into logic circuits.
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Technology mapping
After the Logic synthesis, Technology mapping is performed. This process
maps the generated logic circuits using target FPGA elements such as logic
and functional blocks.

Placement and Routing
After the Technology mapping, Placement and Routing is performed to connect
the mapped logic circuit to the FPGA elements using routing resources, such
as CBs, SBs, and channels.

Timing analysis and Design rule check (DRC)
Timing analysis and DRC analyze whether the implemented logic circuit meets
physical restrictions such as operational clock frequency.

Bitstream generation and Programming
Finally, the FPGA application is implemented by generating the FPGA
programming bitstream file. FPGA user programs FPGA device with the
bitstream before use.

IP-based Logic Design

Although IP-based design is available on the FPGA logic design, application
designers need to implement hardware in HDL when implementing a specific
application logic that cannot achieve with IPs. It is still presenting programmability
challenges in FPGA logic design. To address the issue, FPGA vendor has provided
a High-Level Synthesis (HLS) FPGA development environment since around 2013.
The HLS can be expected to improve the programmability of FPGA applications.
Although the current HLS has some limitations, it frees application designers from
low-level hardware implementation with HDL. Instead, they can implement FPGA
hardware in high-level languages like C/C++ and System-C.

The typical HLS compiler, such as Xilinx’s Vivado HLS and Intel’s (Altera)
HLS Compiler, converts C/C++ code into HDL with Verilog or VHDL. This
converted code can be imported as an IP in the FPGA design tool. HLS allows
the implementation of FPGA applications by application designers who do not have
hardware design knowledge in HDL. Thus, the HLS is one of the solutions for
FPGA programmability challenges. However, the FPGA design flow with HLS
simply extends the conventional FPGA design flow. There is still not eliminated the
complexity of the FPGA design process, such as the time-consuming logic synthesis
and the effort required in debugging and verification.



18 Background and State of the Art

Overlays

An overlay is a method of implementing an application on FPGA by implementing
a specialized architecture for specific processing on FPGA. In this method, the
application designer implements an application for the implemented architecture on
FPGA. This specific architecture implemented on the FPGA is called the Overlay.

Since the overlay virtualizes the FPGA device, application designers can design
FPGA applications with less effort than conventional FPGA hardware design flow,
and it can eliminate the complexity of the application development on FPGA. A
typical example of an Overlay is a soft-core processor implemented on an FPGA.
FPGA vendor often provides soft-core processors as an IP. For example, Xilinx’s
MicroBraze [23] and OpenRISC [24] are well known. Using these soft-core
processors, the application designer can easily implement their application on FPGA
while utilizing the rich functional blocks of FPGAs. On the other hand, the efficiency
of the application is dominated by the efficiency of the overlay used.

For Multi-FPGA Environment

Application development on multi-FPGA systems that use multiple FPGAs is
fundamentally challenging because typical FPGA design tools target a single
FPGA. Therefore, two typical methods can be considered to design applications
on multi-FPGA systems. The first option is using FPGAs indirectly by overlay,
then implementing multi-node applications on the overlay. Another option is using
a heterogeneous computing framework that can support multiple FPGAs such as
OpenCL and Xilinx SDAccel.

For the specific multi-FPGA architecture, application development environments
that support parallel processing with multiple FPGAs have been proposed. For
example, the related research [25] and [26] proposed a multi-node FPGA application
development environment for specific multi-FPGA architecture. These environments
implement special code converters to extract Message Passing Interface (MPI)
operations from the user code and generate HLS code for each FPGA node. These
approaches deserve attention because they reduce the complexity of application
development on a multi-FPGA environment while taking advantage of FPGAs’ high
parallelism and efficiency rather than using abstractions such as overlay virtualization
and frameworks.

2.3 FPGA for General Computing

The essential advantage of FPGAs over general-purpose CPUs and GPUs is their
potential to achieve high performance and efficiency through purpose optimized
hardware-based data processing. In recent years, there has been a strong interest
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in computing platforms that can process large amounts of data with higher efficiency
due to the growing demand for big data processing and AI processing. Therefore,
there have been attempts to utilize FPGAs in various computing domains.

From the next section onward, we will focus on specific computing systems that
utilize FPGAs, with particular attention to notable examples and those mainly related
to this study.

2.3.1 Big-Data Analysis

Microsoft Catapult v1 and v2

Microsoft Catapult v1 [27] is known as a notable example of large-scale FPGA use in
the back-end of a commercial Web service. The system is a large-scale deployment
of FPGA-equipped computing nodes in a data center to accelerate the Page Ranking
process of Microsoft’s Bing search engine.

Catapult v1 system achieves a 1.95x throughput and 28% processing latency
reduction than the software-only PageRank implementation. The v1 system consists
of 17 racks of compute nodes, each equipped with a 12-core SandyBridge generation
Intel Xeon server and Stratix V FPGAs, Intel’s high-end FPGAs, for a total of 1632
nodes in a large-scale system. Each FPGA mounted on the server constitutes a 6x8
torus network that enables direct communication between FPGAs on other compute
nodes using a 10Gbps SAS cable and SerialLite III (SL3) [28] protocol. PageRank
is implemented to perform pipeline processing on 8 FPGA nodes using this local
FPGA network. Each FPGA board is equipped with 8GB of DDR3 SDRAM and
connected to the server of the compute node via PCIe Gen3 x8. The FPGA design
separates the Role, which implements the processing kernel part, and the Shell part,
which implements other fundamental functions, such as PCIe connection with the
host server and SL3 switches. Therefore, the Role part can be replaced according to
the application, enabling a general-purpose design that can be used for applications
other than PageRank.

Catapult v2 [29] is the successor system developed based on the results of the v1
system, which is a more extensive system than the v1 system with 5,760 nodes. In
order to solve the scalability and flexibility issues identified in the v1 system, the v2
system allows servers and FPGAs to be interconnected to a standard Ethernet network
in the data center instead of the rack-closed FPGA network used in the v1 system.
For this architecture, the v2 system uses a high-density blade server with an FPGA
daughter board with Intel Stratix V D5 high-end FPGA and 4GB of DDR4 SDRAM
connected to the PC server via two PCIe Gen3 x8. Another architectural uniqueness
of the v2 system is that the two 40GbE interfaces on the FPGA board and the PC
server’s NIC is directly connected to one port on the FPGA board, and the other port
on the FPGA board is connected to the rack’s top-of-rack (TOR) switch. PC server



20 Background and State of the Art

communication always goes through the programmable switch implemented on the
FPGA; FPGA can provide offloading features intervening in the middle of the PC
server’s communication path, such as network encryption and compression. Since the
FPGAs are connected to the PC server locally via PCIe and the data center network
via 40GbE, a compute node can offload a process to a local FPGA connected via
PCIe and offload to remote FPGAs in the other compute nodes connected via 40GbE.
Therefore, in the v2 system, PC servers and FPGAs on compute nodes can be used
as independent computing resources, and the architecture can improve operational
efficiency in the data center.

2.3.2 Artificial Intelligence

Microsoft Project Brainwave

Microsoft’s Project Brainwave [30] uses the Catapult v2 architecture deployed in
data centers to build an architecture that can execute deep neural network (DNN)
models at high speed and low latency. Brainwave’s architecture is based on the
Catapult v2 architecture with a soft-core accelerator called Brainwave NPU deployed
as an overlay on FPGA. The Brainwave NPU architecture is based on the Neural
Functional Unit (NFU), an accelerator core for matrix-vector operations with a
dedicated instruction set (ISA) for DNN model execution, and Altera’s Nios soft-core
processor IP for controlling the NFUs. Brainwave achieves more than ten times the
DNN model execution performance and less than one-tenth the processing latency of
CPU-based implementations.

2.3.3 Cloud Computing

Galapagos

Galapagos [31] is a project to build a large-scale CPU and FPGA heterogeneous
computing environment for use in cloud computing is being developed at the
University of Toronto. Galapagos uses OpenStack [32], an open-source orchestration
tool, to manage a multi-FPGA cluster system built using x86 servers and compute
nodes connected via PCIe or SoC-type FPGA nodes with ARM. The FPGA hardware
is virtualized using Galapagos Hypervisor, a Shell that contains essential functions
such as communication interfaces with outside FPGAs and local DRAM controllers.
FPGA applications are implemented as Roles on this hypervisor. Users can define
applications and networks that combine CPUs and FPGAs, and Galapagos selects the
CPUs and FPGAs available in the cluster and connects them according to the resource
and network requirements defined in the application to provide a heterogeneous
computing environment combining CPUs and FPGAs.
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Amazon EC2 F1 Instance

Amazon EC2 F1 Instance [33] is an FPGA-equipped instance available on Amazon’s
EC2 cloud computing service. The F1 instance is a breakthrough in that cloud
computing and FPGA-based acceleration can work seamlessly. The F1 instance
consists of a single server node with an Intel Broadwell E5 2686 v4 processor and
976 GB of memory, up to eight Xilinx UltraScale+ VU9P FPGAs connected via PCIe
x16. The eight FPGAs are provided with 64 GB DDR4 local memory with ECC
and connected by a 400 Gbps bidirectional ring bus, allowing users to implement
their protocols on the FPGAs to connect them in a high-bandwidth, low-latency
network [34].

IBM cloudFPGA platform

IBM’s cloudFPGA [35] platform is a high-density FPGA cluster system for cloud
computing developed by IBM Research Zurich. The unique feature of this system is
that each FPGA node on the cloudFPGA platform is directly connected to the data
center network; unlikely typical FPGA systems that use FPGAs connected to PC
servers via internal buses such as PCIe. A high-density FPGA cluster is built in a 2U
chassis containing two backplanes with 40GbE Ethernet switches, each containing 32
FPGA boards with Xilinx Kintex UltraScale XCKU060 equipped with 10GbE. The
FPGA design on the cloudFPGA architecture uses Shell and Role design approach.
The Shell is a pre-designed FPGA design for implementing fundamental functions
to use FPGA, and the Role is a user-designed FPGA design for an application. The
Shell of the cloudFPGA implemented the Ethernet, TCP/IP stacks, and HTTP server
for RESTful API provider to manage the FPGA node. Since the FPGA nodes are
directly exposed to the data center network, the applications that want to use FPGA
acceleration can access the FPGA remotely through HTTP access by RESTful APIs.
The cloudFPGA architecture and its management system have many similarities with
FiC and M-KUBOS, which are the target of this research. However, the cloudFPGA
system aims to build a large-scale FPGA infrastructure in a data center, and its
purpose and scale are different.

2.3.4 Edge Computing

Zedwulf

Zedwulf [36] was developed at the Nanyang Technological University (NTU)
Singapore. It is a small-scale multi-FPGA system using Xilinx’s Zynq MP-SoC
FPGA. The architecture consisted of 32 Zynq-Z7020 FPGA nodes with a 1 Gbps
Ethernet network. Each node has Xilinx’s Zynq-Z7020 MPSoC, an SoC-type FPGA
with dual-core 32-bit ARMv7 architecture and FPGA fabric, and 512 MB onboard
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DRAM. The communication between the FPGA nodes is done by ARM optimized
version of Open MPI or MPICH, an open-source MPI implementation. Each node
installed the MPI and Xillinux 1.3 on Zynq’s PS, enabling them to offload the
application kernel implemented on the PL from PS. With the 32-node graphing
problem benchmark, the Zedwulf cluster system achieved 1.5x the performance of
the Intel Core i7-4770K (4 cores, 8 threads) with nearly the same power efficiency.



3
Target Systems

This chapter introduces target stand-alone multi-FPGA systems in this thesis. The
chapter is organized as follows: Section 3.1 is the preface of the chapter. Section 3.2
introduces the architecture of the FiC multi-FPGA cluster. Section 3.3 presents the
architecture of the M-KUBOS multi-FPGA cluster. Section 3.4 explains the STDM
network implementation used in the inter-FPGA network for FiC and M-KUBOS
clusters.

3.1 Multi-FPGA System for MEC Environment

In the edge environments with power restrictions and space constraints such as MEC,
introducing conventional typical server-based FPGA systems is inefficient. This
research focused on the stand-alone multi-FPGA systems for MEC that realize a
small footprint and system scale flexibility according to application demands on
edge computing. The stand-alone multi-FPGA system constructs independent FPGA
nodes with an inter-FPGA network to connect nodes. Each node can be used as an
independent FPGA node, and it also can be used as a clustered multi-FPGA system
with the inter-FPGA network.

The FiC cluster and M-KUBOS clusters have been developed for
proof-of-concept of the stand-alone multi-FPGA systems for MEC. The FiC
cluster is a multi-FPGA system built with cost-efficient FPGA nodes that combine
Xilinx’s mid-range FPGA Kintex UltraScale and Raspberry Pi 3B single-board
computer. And the successor M-KUBOS cluster is a multi-FPGA system using Zynq
UltraScale+ MPSoC, addressing the weaknesses of the FiC cluster. Both systems are
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equipped with an inexpensive, high-speed inter-FPGA network directly connecting
FPGAs. This inter-FPGA network can flexibly change the network’s topology and
the number of connected nodes according to the system requirements and scale of
the application demands on the edge environment. The following sections describe
the architecture and hardware systems of the FiC and M-KUBOS systems.

3.2 Flow-in-Cloud (FiC) Multi-FPGA Cluster

The prototype Flow-in-Cloud (FiC) multi-FPGA cluster consists of multiple FiC-SW
FPGA boards connected by an inter-FPGA network that uses high-speed serial links
illustrated in Figure 3.1. The system is the first generation of the stand-alone
multi-FPGA system that we developed to apply to the MEC environment. In the
FiC system, four FiC-SW nodes are mounted in a 4U height dedicated cabinet that
can fit on a standard 19-inch server rack.

Figure 3.2 shows current 24 FiC-SW nodes configuration diagram. The nodes are
connected to form a 6x4 torus network, for example. Each of the nodes is connected
with cost-efficient Firefly™ Micro Flyover™ flat cables by Samtec [37] (Figure 3.3).
Each flat cable offers four bidirectional lanes to one destination, so this design
restricts the four lanes connected to the same destination. Hereafter, we call such
a set of four bidirectional lanes a channel. The high-speed network between nodes
uses a Static Time Division Multiplexing (STDM) data communication scheme to
keep a constant latency and bandwidth between multiple communications [38]. Each
FiC-SW node equips Xilinx’s mid-range FPGA Kintex UltraScale and cost-efficient
Raspberry Pi3 single-board computer (SBC). Each node works as an independent
FPGA node, and FPGAs are directly connected with the inter-FPGA network. We
call this multi-FPGA architecture style for stand-alone multi-FPGA architecture.

The current prototype FiC cluster has one cluster management server connected
to the inter-FPGA network of the FiC cluster nodes. The management server equips
a Xilinx KCU1500 PCIe attached FPGA board. This FPGA board is connected to
the server by PCI Express Gen3.0 x8 and is connected to the cluster via two serial
channels (4 lanes x 2 channels) for data exchange with the FiC cluster.
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Figure 3.1: Prototype 24 nodes FiC Cluster

Figure 3.2: Prototype 24 nodes FiC Cluster Diagram
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3.2.1 FiC-SW Prototype FPGA Board

Figure 3.4 shows the FiC-SW prototype board. We employ a mid-range Xilinx’s
Kintex Ultrascale XCKU095 FPGA for the first generation and XCKU115 FPGA for
the second generation of the FiC-SW board. Both FPGAs support up to 64 GTH
high-speed serial transceivers for the inter-FPGA network. Although the maximum
bandwidth of the GTH serial ports is 16.3 Gbps, we regulated the transfer speed to
9.9 Gbps to avoid implementation complexity. The inter-FPGA network connectivity
delivers up to 32 lanes (4 lanes x 8 channels) per board at the current design to provide
enough bandwidth. It can support various network topologies connecting hundreds
of cluster nodes.

Each board equips two 16 GB DDR4 SDRAM for storing data of FPGA
computation, and a Raspberry Pi3 single-board computer is mounted on the board
as an FPGA node controller. This RPi3 and FPGA are connected via GPIO port to
configure and control the FPGA from the RPi3. Table 3.1 summarizes the detailed
hardware specifications of the current 24 nodes FiC cluster and FiC-SW FPGA board.

Table 3.1: Specifications of current 24 nodes FiC cluster

System Scale 24 FiC-SW board and
an I/O board (KCU1550)

FPGA Kintex UltraScale
XCKU095-FFVB2104 (ver 1)
XCKU115-FFVB2104 (ver 2)

Clock Freq. 100 MHz
STDM Switch four 9x9 at maximum
Serial Links 32 channels bundled into 8 lanes
Effective Speed 8.5 Gbps (9.9 Gbps at a link)
Total Exchange Bandwidth 272 Gbps
Total Available Throughput 34 GBps
Pass through Latency 550µsec
Max Latency of the System 1710µsec
DRAM 16Gbit DDR4 DRAM (200 MHz) x 2
On-board Controller Raspberry Pi3 Model B

(BCM2837 ARM Cortex-A53
Quad 1.2 GHz)
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Figure 3.3: Samtec Firefly Flat Cable

Figure 3.4: FiC-SW FPGA board
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3.2.2 FPGA Logic Design on the FiC-SW board

Figure 3.5 shows FPGA logic design diagram of the FiC-SW board. To design
the FPGA logic for the FiC-SW board, we employed Shell and Role FPGA design
approach. The Shell is a static and pre-redesigned region of the FPGA design, which
contains fundamental logic for user application. The Role is a dynamic region for
user application logic implementation.

Figure. 3.6 shows Shell and Role FPGA design flow of the FiC-SW. The
application designer uses a Shell for the base FPGA design and implements
application logic into the Role. Then, it imports the Role to the Shell design as
an IP to connect them on the Vivado’s block design. This FPGA design flow allows
the application user rapidly design FPGA logic and improve productivity. The Shell
is provided as a pre-designed Vivado project, and the Role can be designed with
IP-based FPGA design flow using HDL (Verilog/VHDL) or HLS with C/C++ (Xilinx
Vivado HLS [39]). The Shell of the current FiC-SW contains Xilinx’s Aurora serial
transceivers IP [40] for GTH serial link, STDM switch for inter-FPGA network,
DRAM controller IP (Xilinx’s MIG [41]) for onboard DDR4 DRAM, and GPIO
interface IP for communication to the onboard Raspberry Pi 3. Currently, the Shell
provides four in and out ports of the STDM switch to the Role, and the Role can
communicate with other FPGA nodes through this STDM switch. Each STDM
switch port is implemented as a 170 bits AXI stream bus interface on the block
design.
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Figure 3.5: Block Diagram of the FiC-SW’s FPGA Design

3.3 M-KUBOS Multi-FPGA Cluster

3.3.1 Introduction of M-KUBOS Multi-FPGA Cluster

The M-KUBOS cluster system is a successor stand-alone multi-FPGA system to
the FiC cluster introduced in Section 3.2. Figure 3.8 shows the current six nodes
M-KUBOS cluster system. The M-KUBOS cluster consists of the M-KUBOS
board and a high-speed inter-FPGA network. The M-KUBOS board employs Zynq
UltraScale+ MPSoC XCZU19EG, the current highest-ranked System-on-Chip (SoC)
FPGA from Xilinx. Currently, the cluster is constructed with a simple ring topology
with six M-KUBOS nodes. The interconnect between M-KUBOS nodes uses the
STDM network the same as the FiC cluster. Therefore, the M-KUBOS and FiC
clusters can operate each other for system expansion. In the SoC FPGA, CPU and
FPGA are tightly connected by a high-speed and large capacity SoC bus, which can
avoid communication capacity drawbacks on the FiC-SW board architecture. An
application environment that can easily access FPGA is realized by employing SoC
FPGA for the FPGA nodes.
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Figure 3.6: FPGA Design Flow on the FiC-SW

3.3.2 M-KUBOS Zynq FPGA board

Figure 3.9 shows the M-KUBOS board. The M-KUBOS board is a Zynq SoC FPGA
board that can build FPGA clusters, commercialized by PALTEK [42] based on the
concept of FiC [43]. Table 3.2 shows the detailed hardware specifications of the
M-KUBOS board. The Zynq UltraScale+ MPSoC XCZU19EG has a processing
system (PS) based on ARM Cortex A53 Quad-core and Cortex R5 Quad-core. This
PS is coupled with the PL (Processing Logic) of the UltraScale+ FPGA fabric. The
PL (Processing Logic) has 1143K logic cells, 70.6 Mb BRAM/URAM, and 1948
DSPs. The scale of PL resources is roughly equivalent to the Kintex UltraScale
FPGA used in the FiC-SW board. The board equips two sets of onboard DDR4
SDRAM (4 GB): the one is accessible from both PS and PL, and the other is PL-only.
As shown in Figure 3.2, the board is equipped with a variety of standard I/Os to
support a wide range of applications. For the inter-FPGA network, the board equips
eight sets of GTH and four sets of GTY high-speed serial links. This serial link has
compatibility with the FiC cluster.

3.3.3 Introducing PYNQ to M-KUBOS

For the cluster node management of the stand-alone multi-FPGA systems, an
individual FPGA node management capability is required. For this purpose, the
M-KUBOS has employed PYNQ (Python productivity for Zynq) [44] a Linux
distribution for the PS of Zynq SoC. PYNQ is a Linux distribution based on Ubuntu
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Figure 3.7: M-KUBOS Cluster

Figure 3.8: Six nodes M-KUBOS Cluster Diagram

which includes device drivers and Python libraries for controlling the PL of Zynq
SoC. By introducing the PYNQ environment, the PL can be controlled and used
from Python scripts running on the PS. For example, the configuration information
of the PL can be set as an overlay from a Python script on the PS. The logic circuits
on the PL can be accessed using MMIO (Memory Mapped IO) or DMA (Direct
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Figure 3.9: M-KUBOS board

Table 3.2: Detailed Specification of the M-KUBOS board

Item Specification
Form Factor 244mm x 244mm (microATX)
FPGA XCZU19EG-2FFVC1760

Memory
PS: 4 GB DDR4-2400
PL: 1x 4 GB DDR4-2400 SODIMM Socket

I/O

4x GTY 4TX/4RX (max 28．125 Gbps)
4x GTH 8TX (max 16．3 Gbps)
4x GTH 8RX (max 16．3 Gbps)
USB3.0 × 1
USB-UART × 1
1 Gb Ether(RJ45)
DisplayPort 1.2

Memory Access) from the PS by integrated device drivers on the PYNQ. The PL
logic can be designed using standard IP-based block design flow for FPGA design by
Xilinx Vivado. Introducing the PYNQ environment for the M-KUBOS improves
FPGA node manageability and enhances the accessibility of the FPGA from the
applications.

3.3.4 FPGA Logic Design on M-KUBOS board

The FPGA logic design flow of the M-KUBOS board uses Shell and Role design
flow approach, the same as the FiC-SW board. The difference between the FiC-SW
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Figure 3.10: Block Diagram of M-KUBOS Board

board’s design and the M-KUBOS board’s design, the M-KUBOS uses Zynq SoC
FPGA and equips two onboard DRAMs. In the M-KUBOS board, one DRAM is
connected to PS and PL and shared with them. PS uses this DRAM for running
Linux. Another DRAM is dedicated to the PL. The application user can choose a few
design options to exchange data to/from PS and PL with these DRAMs. Table 3.3
shows the currently available Shell for user application design for the M-KUBOS
board.

Figure 3.11 shows the resource utilization of each Shell. Overall, Shell’s
resource overhead is within 10%. This leaves sufficient resources for user-designed
IP. However, in M and F, due to the large STDM switch buffers, the BRAM
resource usage is as large as 20% and 25%, thus leaving room for BRAM resource
optimization of the STDM switch design. The amount of BRAM consumed by the
current Shells may not cause an extreme shortage of BRAM resources in the practical
implementation of user designs. Moreover, the URAMs available in UltraScale+
generation FPGAs are not used by the Shell. Therefore, the all amount URAM
resources can be used in the user design.
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Table 3.3: Shell design template for M-KUBOS logic design

Shell Type Description
S (Single) The simplest shell with only the connection

interface to the PS, including DMA controller,
control registers

SwD (Single with DRAM) S with an additional DRAM controller (MIG)
M (Multiple) S plus Network Interface IP (Aurora)

Multi-board connection is possible
F (Fully embedded) Shell equipped with all of the above.

The most resource-intensive

.

Figure 3.11: Resource Utilization of each Shell for M-KUBOS

3.4 Statically Time Division Multiplexing (STDM) network

Both FiC and M-KUBOS clusters use the statically time-division multiplexing
(STDM, a.k.a. TDM) network scheme for node-to-node intercommunication.
The STDM is a technique enabling several communications to share a single
communication lane and establish a circuit between a source node and a destination
node. Figure 3.12 shows comparison between STDM network (Figure 3.12(a)) and



35

packet switching network (Figure 3.12(b)). In the STDM network, communication
time is divided into slots. The data from one board to another can be transmitted
only at a fixed time slot. Compared with high-speed packet switching networks [45],
communication latency is more expensive under light traffic load, but communication
latency and bandwidth are predictable by a number of time slots. Since the STDM
is a relatively simple communication multiplexing method, it simplifies the network
switch and router implementation. Hence, it is beneficial for reducing the hardware
resource overhead of the FiC and M-KUBOS’s Shell.

(a) Statically time division multiplexing (STDM) network

(b) Packet switching network
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Figure 3.12: STDM and Packet Switching

However, the STDM network has some drawbacks on performance degradation
when the number of communication slots that share the same channel is increased. To
mitigate this drawback, Hu et al. [46] proposed an algorithm that generates an optimal
number of STDM slots and routing table on a specific topology and application
requirement. The STDM network has been only a few examples to be adopted
for an interconnection network of parallel computer systems [47][48]. However, we
believe the STDM is a more straightforward mechanism than packet switching, and
its characteristic is suitable for timing critical application of the MEC. Figure 3.13
shows the packet format used in the FiC / M-KUBOS STDM network. In the FPGA
design, the interface of the STDM switch is implemented as a 170 bits AXI stream
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interface. The total packet data length is 170 bits. The lower 128 bits field is the
data payload, and the middle 25 bits is a command field used for application-specific
usages, such as burst payload transfer control and address. The upper 17 bits are
header fields containing: a valid packet flag (1 bit), the packet’s destination board ID
(8 bits), and the packet’s slot ID.

169

8bit

Board
#

Slot

#

Command

(Application defined) Data (Payload)

8bit 25bit 128bit

0

1bit

Valid flag

Header field Application specific field

Figure 3.13: Packet Format of the FiC’s STDM Network
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Figure 3.14: STDM switch with 6 Ports and 6 Slots

Figure 3.14 shows the outline of the FiC’s STDM network switch with six ports
and six slots. Incoming data stored into input FIFO is transferred to the output port
at a given slot according to the header and the routing table set before the application
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starts. As mentioned in FiC-SW and M-KUBOS hardware implementation, we
employed economical Firefly flat cables for the inter-FPGA network. Each FiC-SW
and M-KUBOS board provides eight channels of flat cables. The cable bundles
four bidirectional lanes, connecting the lane to the same destination. Therefore,
we provide four independent STDM network switches for each channel. Each
board offers four 9x9 switches (eight channels + one port from/to on-chip HLS
modules) at the most extensive configuration. Since eight channels can be too
many for small-scale systems, we developed a parameterized switching generator
that can generate the HDL description of a switch, ranging from 3x3 to 9x9 for
various system configurations to maximize the partial reconfigurable region. For
more high-performance data transfer capability is required, the related work [49]
proposed lane aggregation with four lanes and slot distribution of the STDM network.

The inter-FPGA network implementation of the FiC-SW and M-KUBOS uses a
9.9 Gbps high-speed serial link, including Error Correction Coding (ECC) scheme.
For this implementation, the FiC-SW and M-KUBOS used Xilinx Aurora IP. Transfer
data is converted into 85 bits data for each 100 MHz system clock cycle. This
relatively slow system clock is adopted to avoid the implementation difficulty of the
user’s HLS modules. In other words, each channel’s effective data transfer rate is
approximately 8.5 Gbps (1.065 GB/s). Therefore, the total data exchange throughput
of the four switches is 272 Gbps (34 GB/s). The data throughput is divided number
of STDM slots, so the actual data throughput is 1/n. The maximum communication
latency can be expected as follows:

2S(L − 1) + (60 + 2S)HC

Here, the parameters are: S is a number of slots, L is a number of packets, H
is a number of network hops, and C is clock cycles. In the inter-FPGA network
evaluation on the FiC-SW system, the network latency required to pass through a
board is 55 clock cycles, thus 550 µsec. The Aurora-IP spends most of the clock
cycles on the serial-parallel conversion. Related studies [49] and [50] have performed
more detailed analysis of this STDM network.
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3.5 Challenges in Applying FiC and M-KUBOS as a
Computing Platform on MEC

3.5.1 Problems on stand-alone multi-FPGA FPGA platform
accessibility and manageability from applications
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Figure 3.15: Multi-FPGA Cluster Configurations

Generally, a multi-FPGA system is constructed by FPGAs installed on a server
and connected to CPUs via an internal bus such as PCI Express (PCIe). Figure 3.15(a)
shows this server-attached multi-FPGA system configuration. FPGAs are tightly
attached to a host CPU as an acceleration device like GPUs in this configuration. This
typical configuration is supported by heterogeneous computing environments such
as OpenCL [51] and FPGA vendor’s provided OpenCL environments such as Xilinx
SDAccel [52] and Intel SDK for OpenCL [53]. Hence, the framework has guaranteed
the accessibility of FPGAs from applications that offload tasks to FPGA by a device
driver and middleware provided by the framework. For example, SDAccel provides
application runtime (Xilinx Runtime (XRT)), device drivers, and FPGA shell design
for OpenCL applications. The OpenCL applications can access and manage FPGAs
by application runtime.

By contrast, a stand-alone multi-FPGA system like FiC and M-KUBOS
(Figure 3.15(b)) is not supported by a standardized FPGA acceleration environment
like OpenCL. Therefore, to provide task offloading service with stand-alone FPGAs
on MEC, establishing a standard access interface for the FPGA platform that
can support various client application environments and programming languages
is required. In particular, the computing platform of MEC may be installed in a
physically inaccessible environment. It is necessary to ensure the remote accessibility
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and manageability of the platform. Moreover, since FPGA is a low-level device
compared to other accelerator devices like GPUs, primitive device management
tasks like resetting a device and configuring an FPGA are sometimes required. For
example, provisioning an FPGA cluster application to the FiC and M-KUBOS from a
client application is an essential task. This task requires multiple device management
operations targeting multiple stand-alone FPGAs efficiently. Thus, a universal and
environment-independent stand-alone multi-FPGA platform management interface
for FiC and M-KUBOS is also required.

3.5.2 Problem on application programmability for FiC and M-KUBOS

Most FPGA vendors offer high-level synthesis (HLS) on FPGA application
development, which dramatically improves design productivity. HLS allows
application designers to design FPGAs using C/C++ with certain restrictions and
use directives to optimize their designs. This allows software engineers unfamiliar
with hardware design to use FPGAs in various application areas. However,
most FPGA development tools such as HLS from these vendors are designed
for a single FPGA system; there is no established way to design multi-FPGA
applications for stand-alone multi-FPGA systems such as FiC and M-KUBOS. For
example, in application development for FiC and M-KUBOS, application designers
have to implement an application-specific multi-FPGA communication protocol to
communicate among FPGAs [54][55][56].

Moreover, no application test environment is provided except for debugging on
the real system; the application designer needs many trials and errors on the real
system implementation to test the application. This less application programmability
of FiC and M-KUBOS hinders the opportunity to adopt multi-FPGA systems
on MEC. Thus, providing a parallel programming environment that can support
stand-alone multi-FPGA systems and improving application programmability is
required.





4
Platform Management
Architecture for Stand-Alone
Multi-FPGA System

This chapter presents a management architecture for the stand-alone multi-FPGA,
inspired by cloud service methodology. The management architecture is
implemented in the FiC cluster system and evaluated by the scenario of the cluster
setup remotely. The chapter is organized as follows: Section 4.1 describes the
proposed platform management system concept for stand-alone multi-FPGA. Section
4.2 presents the implementation of the proposed management system FiC-RFC.
Section 4.3 evaluates the FiC-RFC. Section 4.4 introduces related research on parallel
programming for multi-FPGA systems. Finally, we summarize the chapter in Section
4.5.

4.1 Concept Overview

In order to use FiC and M-KUBOS in MEC, it is necessary to have a platform
management system that can support various application environments by taking
advantage of the features of the stand-alone multi-FPGA architecture that can flexibly
change the system configuration. For example, in order for a MEC application to be
able to use FiC and M-KUBOS, it is necessary to have an interface that allows the
MEC application to perform management operations on multiple FiC and M-KUBOS
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nodes. Furthermore, it is important to ensure accessibility to remote management
functions on the computing platform of MEC.

In this research, we focused on RESTful interface, which is an application
programming interface widely used in cloud applications, as an interface for
managing and accessing the FIC and M-KUBOS platforms from applications.
RESTful interface [57] is an application programming interface that uses HTTP
access. HTTP access provides better remote accessibility and is less dependent
on the platform environment, ensuring accessibility from various applications and
platforms. In RESTful API, an associated uniform resource identifier (URI) is
provided to call API. The application can invoke these APIs by sending a specified
JavaScript Object Notation (JSON) or eXtensible Markup Language (XML) message
to the associated URI using HTTP GET and POST requests. And the API responses
can obtain as JSON or XML messages. Since RESTful API is accessible by simple
HTTP requests, applying a RESTful interface for FPGA management tasks improves
the accessibility from various client application environments or programming
languages.

In addition, since various applications are executed on-demand in MEC in
response to requests from clients, it is expected that the use of FPGA systems such
as FIC and M-KUBOS from MEC applications will be on-demand and spot-used.
Therefore, it is desired to realize an execution environment in which FPGA can
be used without being aware of the FPGA platform used by the application. This
research focuses on the serverless architecture method used in cloud applications.
We examined the realization of an FPGA usage environment in which MEC
applications can manage FPGA platforms and execute FPGA application kernels
in a Function-as-a-Service (FaaS) manner. FaaS is a category of cloud computing
services that provides an on-demand computation service to client applications that
allows running specific tasks as a function call style. This FaaS approach can
abstract the hardware platform behind them from the application use. We applied
this FaaS fashion service provision method for multi-FPGA platform management
from the client applications. With the FaaS-based FPGA usage environment, MEC
applications can manage the FPGA platform and execute FPGA applications with
only simple API calls. It anticipates that it will facilitate the applications’ FPGA
platform usability.

To examine these concepts, we developed an FPGA platform management
middleware called FiC-RFC (Restful FPGA Controller) for FiC and M-KUBOS
systems. FiC-RFC implemented essential platform management tasks for the
stand-alone multi-FPGA system from the MEC application and made them accessible
by RESTful APIs. The following sections introduce the FiC-RFC architecture
implementation on the FiC-SW multi-FPGA system.
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4.2 FiC-RFC Implementation for the FiC cluster

4.2.1 Platform management operations for FPGA task offloading

For considering a platform management system for MEC applications to utilize
FiC and M-KUBOS, extracting the required platform management operations from
typical FPGA platform usage scenarios is necessary. This section reviews task offload
scenarios from MEC applications to FiC clusters and describes the required platform
management tasks.

(a) FPGA node allocation
This task allocates the required FPGA nodes as requested by the client
application. Resource manager systems such as FiC-RM and MEC-platform
can perform this assignment task manually or automatically, taking into
account the inter-FPGA network topology of FIC and M-KUBOS.

(b) FPGA setup (FPGA programming)
This task sets up the FPGA of each FiC. Since the FPGA in the initial stage has
no logical configuration information (bitstream) programmed, it must perform
the programming task before use. In FiC, this task performs by the onboard
microcontroller (RPi3).

(c) Inter-FPGA network setup (STDM network)
This task sets up the routing table of the STDM switch for the inter-FPGA
network. The STDM switch is implemented as a Shell of the FPGA design, so
this operation must perform after the operation (b).

(d) Application data transfer
This task transfers application data to compute on FPGA from the client
application. The onboard RPi3 can transfer data to the FPGA’s BRAM or
DRAM.

(e) Application kernel control
This task controls the application kernel implemented on the FPGA, such as
starting, resetting, or setting parameters.

(f) Application result data transfer
This task transfers application results to the client application. The onboard
RPi3 can fetch data from the FPGA’s BRAM or DRAM.

(g) FPGA debugging from a remote environment
This task is to debug the FPGA from a remote environment. Generally, on
the FPGA debugging, JTAG and embedding debugging IPs such as Integrated
Logic Analyzer (ILA) [58] are used. The FiC establishes a JTAG connection to
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the FPGA with a USB JTAG cable and Xilinx Virtual Cable (XVC) [59] server
on RPi3. It allows debugging from Xilinx Vivado on a remote environment.

4.2.2 Management System Architecture on FiC cluster

FiC cluster

FiC-RM

FPGA virtualization, Resource Allocation, Job Scheduling

ficmgr / libficmgr

Cluster configuration, I/O, Node monitoring

Ethernet

HTTP Request (RESTful I/F)

ficdash
User dashboard

HTTP Request (RESTful I/F)

1st layer

2nd layer

3rd layer

FiC-SW

μC
(RPi3)

ficwww

FPGA

(Kintex Ultrascale)

XVCd

JTAG

libfic2

GPIO

FiC-SW

μC
(RPi3)

ficwww

FPGA

(Kintex Ultrascale)

XVCd

JTAG

libfic2

GPIO

Shell Shell

DDRGPIO I/F

Role

DDRGPIO I/F

Role

FiC-RFC

Slurm WM

(3rd party)

Figure 4.1: Management System Architecture and FiC-RFC Scope

The management architecture of FiC and M-KUBOS implements each
management layer of the platform management function as an independent module
and combines them with a general-purpose application interface (RESTful API).
In this way, we aimed to realize a highly versatile management architecture by
reducing the dependency between specific environments and each management layer.
By adopting a highly independent architecture at each management layer, we have
realized an architecture design that can use and manage FiC and M-KUBOS in
various environments and system configurations. For example, if an advanced job
management system is not required, it is possible to use only the FPGA platform
from the application.

The current FiC’s cluster management system consists of three layers, as shown
in Figure 4.1. The first layer provides FPGA virtualization, resource management
of the FPGA cluster, and job scheduling. This layer depends on the deployment
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environment or purpose of the FPGA system. For example, the MEC uses the
MEC platform to allocate computing resources to the MEC application [60]. The
current FiC cluster uses the FiC resource manager (FiC-RM) [61] for this resource
management task which is a lightweight job and resource manager developed in
related work. The FiC-RM manages FiC-SW nodes as computational resources. It
automatically assigned accepted jobs to available nodes according to the scheduling
policy.

The first layer can also apply a general-purpose job scheduler such as Slurm
Workload Manager [62] or LSF [63]. These are often used in HPC clusters and other
clustering computing systems. We currently employ Slurm Workload Manager when
combining the FiC cluster and its successor M-KUBOS cluster instead of FiC-RM.

The second and third layers are the FiC-RFC architecture’s main scope; the
second layer is the cluster node management layer, which provides primitive FPGA
management operations such as configuring cluster nodes, data I/O, and monitoring
nodes. The ficmgr is a CLI-based multi-FPGA management utility that setup
the multi-FPGA cluster with JSON description. And libficmgr is an application
programming library version of ficmgr that the client application can use. Both ficmgr
and libficmgr communicate FPGA nodes by RESTful interface.

The third layer is the device layer. FPGA management middleware called ficwww
and libfic2 and XVCd are running on each RPi3 of the FPGA nodes. The ficwww
is a RESTful API provider for FPGA node management functions, and libfic2 is an
FPGA hardware driver for accessing Shell on the FPGA device. The XVCd is a JTAG
server for debugging FPGA implemented for Xilinx Virtual Cable [59] protocol to
communicate Xilinx Vivado’s hardware server. The FPGA design of the FiC-SW
board employs Shell and Role style. The Shell on the FPGA device is an FPGA logic
design template that contains glue logic for fundamental functions such as GPIO
interface to the libfic2, onboard DRAM controller, and STDM switch. And the user
application is implemented in the Role.

The following subsections describe the details of each management component.

ficmgr/libficmgr

The ficmgr and libficmgr are cluster management tools and libraries for user
applications running on the client side. Both ficmgr and libficmgr communicate each
FiC-SW board by RESTful APIs. The ficmgr provides cluster management operation
from the command line interface on the user client. The application user can define
the cluster configuration by JSON style setup files without the job scheduler on the
first layer. The ficmgr is useful when FPGA cluster assignment is predetermined, and
they can make the management architecture simple for the embedded environment.
The libficmgr is a cluster management API binding for Python language, and it can
be used in user applications such as Jupiter notebook.
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On-board Microcontroller for Cluster Node Management

As we described it in Section 3.2, we employed Raspberry Pi3 (RPi3) single-board
computer as an onboard management controller for the FiC-SW board. The RPi3
is one of the successful single-board computing platforms, available at a low-cost
and well-supported complete package of Linux distributions. In the FiC-SW board,
the onboard RPi3 is connected to the management network via the Ethernet (Wi-Fi
or Wired). It is also connected to the FPGA via RPi3’s GPIO port for FPGA
configuration and communicates to FPGA logic from the RPi3.

libfic2

A libfic2 is a low-level communication driver for communicating RPi3 and FPGA
via GPIO port, It provides FPGA programming and communication capabilities of
the FPGA logic. The libfic2 is developed with C language for small footprint and
high performance, and it is supported with Xilinx’s SelectMap x16 or x8 FPGA
configuration modes for the FPGA configuration.

The RPi3’s GPIO port is not the best design option for high-speed
communication. However, the RPi3 did not have any versatile high-speed IOs at
the time, so we had to use GPIO for FPGA communication on the FiC cluster.

Shell

Shell refers to the pre-designed and pre-implemented FPGA logic design containing
fundamental glue logic for FPGA applications. It enables the enhancement of
hardware re-usability and FPGA application productivity. FiC-SW’s Shell contains
GPIO interface for communicating on-board RRi3, DRAM memory controller for
onboard DDR and STDM switch for inter-FPGA network. The kernel of the user’s
FPGA application is implemented on the Role. Role refers to the dynamic region of
the FPGA logic design, which can independently reconfigure at the run time with the
partial reconfiguration technique [64].

ficwww and ficdash

Although the batch-style CLI-based multi-FPGA management utility ficmgr is
provided, a more user-friendly interface is needed, especially at the program
development stage.

A ficwww is a device-side RESTful API provider on the FiC-SW board. ficwww
is developed with Python and lightweight web framework PyFlask + JINJA2 [65],
hosted with lighttpd HTTP daemon on the RPi3. The ficwww also provides a simple
WebGUI (Figure 4.2(b)). It allows the users to do FPGA management operations



47

such as FPGA’s reset/set, programming, STDM switch configuration, and monitoring
the FPGA status and network link via a web browser.

A ficdash is a cluster management web dashboard for the FiC cluster
(Figure 4.2(a)). This web dashboard is hosted on the control server. It manages
and monitors multiple cluster nodes’ information in one web dashboard. Users can
monitor the multiple cluster node status via a web browser, such as node power and
STDM network status.

(a) ficdash

FiC Management Dashboard 


(Control Server)

(b) ficwww

WebGUI (Each node)

Link and launch to
each node's ficwww

Displays
node status

Reset control

FPGA setup

STDM switch

setup

Figure 4.2: ficdash and ficwww WebGUI

4.2.3 FPGA Configuration Bitstream Distribution over HTTP

The FPGA configuration bitstream is distributed via the management network by
the HTTP request for the cluster setup process. This FPGA configuration bitstream
data is sized around 30∼40 MB for each node depending on the FPGA logic size,
and the data size will be inflated due to encoded in BASE64 text data in RESTful
request. This FPGA configuration bitstream distribution time may become a problem
regarding the system installed into the edge and used by several applications.

Therefore, the ficmgr and ficwww use gzip compression on the HTTP transport
to suppress the configuration data size and distribution time. Table 4.1 shows our
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preliminary evaluation of gzip compression for three different design for FiC-SW. In
Table 4.1, Application name ending with pr means the configuration bitstream for
the partial reconfiguration. The column Config is a raw binary FPGA configuration
bitstream size. The column Clear is a clear configuration bitstream for partial
reconfiguration required to clear the FPGA logic region after the full configuration.

The compression ratio is reached at around 1/15, and the result shows that
compression is very effective for FPGA bitstream data.

Table 4.1: Configuration Size (in MB)

# Application Config Clear Total Gzip
1 lchk 34.18 - 34.18 2.32
2 lenet 34.18 - 34.18 2.85
3 sort 34.18 - 34.18 2.32
4 lchk_small_pr 12.31 0.81 13.11 1.01
5 lenet_small_pr 12.31 0.81 13.11 1.57
6 sort_small_pr 12.31 0.81 13.11 1.01
7 lchk_max_pr 26.64 1.82 28.46 1.23
8 lenet_max_pr 26.64 1.82 28.46 1.84
9 sort_max_pr 26.64 1.82 28.46 1.20
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4.2.4 FiC-RFC’s RESTful APIs

Representational State Transfer (REST) [57] is a software architecture style currently
widely used in web applications. In the RESTful API design, all API calls are
represented as a corresponding URI, and it is callable by simple HTTP requests
(POST / GET / DELETE / PUT, etc.) from clients. Considering the FiC cluster usage
as an accelerator on the MEC, web API is advantageous for making it accessible from
various applications and programming languages. ficwww provides the essential
node management API sets shown in Table 4.2.

Table 4.2: FiC-RFC’s RESTful APIs

API Method Function
/fpga POST Configure FPGA with bitstream

GET Obtain FPGA configuration status
DELETE Reset and flush FPGA configuration

/switch POST Configure switch routing table
/hls POST User HLS module start/reset control or

Data Send / Receive from HLS module
/status GET Obtain FiC board status information
/regread POST Read out data from specified memory

address on FiC-SW
/regwrite POST Transfer data to specified memory

address on FiC-SW
/runcmd POST Invoke specified command on RPi3 controller

4.2.5 Setting up an application on the FiC cluster

Executing an FPGA application on multiple FiC-SW nodes needs configuration data
deployed to each FPGA at first. Individual FPGA configuration bitstream is needed
to be transferred to each FPGA. In the FiC cluster, this process has done by HTTP
data transport by RESTful APIs. After FPGAs have been configured, the routing
table for the STDM switch on each node is distributed and configured.

To handle the multiple FiC-SW nodes setup sequences, a cluster provisioning
tool called ficmgr setups multiple nodes simultaneously with cluster configuration
JSON file. An example of the cluster setup JSON file is shown in Figure 4.3. A key
fic08 means the target cluster node for configuration. Entries under fpga specify
FPGA bitstream configuration settings. Entries under switch specify STDM switch
configuration. And entries under "option" specify after configuration behaviors such
as automatically starting the FPGA application after the FPGA configuration, running



50 Platform Management Architecture for Stand-alone Multi-FPGA System

a custom command on the RPi3, etc.

1 {
2 "fic08":{
3 "fpga":{
4 "bitstream": "fic_top.bin",
5 "progmode": "sm8",
6 "msg" : "Top module"
7 },
8 "switch": {
9 "slots": 1,

10 "ports": 4,
11 "outputs": 1,
12 "table": {
13 "output0": {
14 "port0": {
15 "slot0": 0
16 },
17 "port1": {
18 "slot0": 0
19 },
20 "port2": {
21 "slot0": 0
22 },
23 "port3": {
24 "slot0": 0
25 }
26 }
27 }
28 },
29 "option": {
30 "auto_hls_reset_start": true,
31 "auto_runcmd": "cat /proc/cpuinfo"
32 }
33 },
34 ...

Figure 4.3: An example of JSON description
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4.2.6 Using FiC cluster from client application

The libficmgr provides cluster operation capabilities from the client application such
as Jupiter Notebook or Python. Figure 4.4 shows an example user application snippet
in Python. Since the library communicates to the cluster with RESTful APIs, the
client application can access the cluster from the Internet and offloads the workload.

1 import os
2 import sys, traceback
3 import libficmgr
4 #----------------------------------------------------------
5 MK1_FPGA_BITSTREAM = ’mk1_ficbd_ddr4_20201017.bin’
6 STDM_TABLE_FILE = ’table.json’
7 DDR_DATA_FILE = ’1G.dat’
8 DATA_SIZE = 1024*1024*128
9 TARGETS = (’fic00’, ’fic01’, ’fic02’, ’fic03’)

10 #----------------------------------------------------------
11 if __name__ == ’__main__’:
12 ficmgr = libficmgr.libficmgr()
13
14 for target in TARGETS:
15 # ---- Configure target FPGA via HTTP request -----
16 ficmgr.fic_prog(target, ’sm8’, True,
17 MK1_FPGA_BITSTREAM, "Run example app")
18
19 # ---- Configure routeing table STDM switch
20 with open(STDM_TABLE_FILE, ’rt’) as f:
21 ficmgr.fic_set_switch(target, f.read())
22
23 # ---- Reset FPGA and Start HLS ----
24 ficmgr.fic_hls_cmd(target, ’reset’)
25 ficmgr.fic_hls_cmd(target, ’start’)
26
27 # ---- Transfer data to DDR DRAM ----
28 with open(DDR_DATA_FILE, ’rb’) as f:
29 ficmgr.fic_hls_ddr_write(target, f.read(DATA_SIZE), 0)
30
31 # ---- Set application parameter / command ----
32 ficmgr.fic_hls_send(target, [0x01, 0x01])
33
34 for target in TARGETS:
35 # ---- Wait until computation done signal assert ----
36 while ficmgr.fic_read(target, 0xfff0) == 0:
37 # ---- Read data file and transfer to DDR DRAM ----
38 # Readout 1MB from DDR memory
39 ret = ficmgr.fic_hls_ddr_read(target, DATA_SIZE, 0)
40 print(target, len(ret[’data’]))

Figure 4.4: An example user application in Python with libficmgr
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4.2.7 Remote FPGA Debug

Even for application development with HLS, hardware-level debugging is often
required. The FiC-RFC supports remote hardware debugging with the Integrated
Logic Analyzer (ILA) [58] of Xilinx FPGA. We use Xilinx Virtual Cable (XVC) [59]
protocol to support this feature. The XVC is an open-source TCP/IP protocol by
Xilinx, which acts like a JTAG cable to remotely access the target FPGA device.

The benefit of using XVC is the protocol acts just like a cable, which means
the XVC is just transferring the JTAG operation issued by the hardware server
(hw_server) on localhost to the target device in the remote. Therefore, the XVC
is independent of vendor-specific JTAG commands, and it allows us to use ILA with
various JTAG hardware.

Figure 4.5 shows the current FiC system remote debugging environment
overview. In the FiC-SW node, we use FTDI’s FT232H [66] based JTAG bridge
to the USB port on RPi3 and run an open-source XVCd server [67] on the RPi3.
Using this configuration allows users to access the JTAG port of each FPGA and
debug with ILA from the remote environment.

User/Developer FiC-SW ILA debug via XVC

Kintex

Ultrascale


FPGA

Raspberry Pi 3

GPIO

USB
XVCd

libfic2

FT232H
USB

JTAG

SelectMAP

configuration I/F


Ethernet

+ficmgr

FPGA
configuration


via HTTP

Figure 4.5: Debugging FiC-SW over XVC
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4.3 Evaluation

4.3.1 Evaluation environment setup

The provisioning time of an application to a cluster is an important performance
metric for a platform management system. Therefore, in this section, we
evaluated the provisioning time for FPGA applications using FiC-RFC, the proposed
multi-FPGA platform management system. The evaluation uses a 12-node FiC-SW
mk1 board and three different designs shown in Table 4.1, and evaluates the
performance of each part related to application provisioning shown in Figure 4.6.
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FPGA

bin

FPGA

bin

FPGA

bin

FiC-RM
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(1) FPGA configuration

time
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Figure 4.6: FiC-RFC evaluation setup
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4.3.2 FPGA configuration time of the FiC-SW board

Since the FiC cluster is a bare-metal and disaggregated multi-FPGA system for MEC
base stations, many applications are expected to set up and use FPGAs on demand.
Therefore, short FPGA reconfiguration time is essential to serve computation services
for multiple users or applications as many as possible. Table 4.3 shows a comparison
of a single FPGA configuration time for Kintex Ultrascale XCKU095 on the FiC-SW
board by several configuration methods.

(a) RPi3 - Configuring FPGA with SelectMap 8 bit parallel mode by RPi3 and
libfic2 library with three-speed modes.

(b) DLC9LP - Configuring FPGA with USB Xilinx Platform Cable (DLC9LP) by
Vivado hardware manager.

(c) XVC - Configuring FPGA with USB JTAG bridge (FT232H) and Xilinx
Virtual Cable (XVC) by Vivado hardware manager.

Table 4.3: Comparison of FPGA Configuration Time

# Method Mode Time Bitrate
1 RPi(Safe) SMAPx8 0:31 s 8.80 MB/s
2 RPi(Normal) SMAPx8 0:10 s 25.76 MB/s
3 RPi(Fast) SMAPx8 0:01 s 202.6 MB/s
4 DLC9LP JTAG 1:17 s 2.71 MB/s
5 XVC JTAG 4:26 s 1.05 MB/s

The speed mode differences between Safe/Normal/Fast in the RPi3 are signal
hold time differences for the SelectMap 8 bit parallel port driven by GPIO port. Safe
mode is the most conservative configuration mode; it holds the signal longer for a
stable FPGA configuration. Normal mode holds it shorter than Safe mode. The
Fast mode optimizes the GPIO bit-bang operation to reduce the number of parallel
port signal toggling. It can reduce the number of PIO operations by CPU. However,
due to variations in electrical signal characteristics in FiC-SW board and RPi3
manufacturing, we observed that the Fast mode is not always stable on some nodes,
so we use the Normal mode typically. The result shows that the RPi3(Normal) mode
achieved 10 seconds to configure the FPGA. Compared to other FPGA programming
methods, it is 6.4x faster than configuring by genuine Xilinx’s platform JTAG cable
DLC9LP.

As a comparison with other systems, the IBM’s cloud FPGA [68][69] achieved
8.264∼12.215 MB/sec of FPGA configuration throughput. This FPGA system uses
Xilinx’s Kintex Ultrascale XCKU60 FPGA of the same series as FiC and configures
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FPGA via HTTP access. The studies [70][71][72][73] are reported up to 10 MB/s of
FPGA configuration bitrate with 8 bit ICAP (Integrated Configuration Access Port)
on the Xilinx’s Spartan, Virtex-2, and Zynq-7000 MPSoC systems. Thus, FiC-SW
with RPi3 achieves 1.1-2.1x FPGA configuration performance compared to other
systems, which is sufficient to support FPGA application provisioning over HTTP.

4.3.3 FPGA bitstream distribution time over HTTP

FPGA bitstream distribution time is also an essential metric for the platform
management system. In the FiC cluster, each FPGA bitstream distributes by
RPi3’s 100Base-TX Ethernet network over HTTP (RESTful API). Since FiC-SW’s
Ultrascale FPGA is a middle-range FPGA, the size of each configuration bitstream
is around 35MB (Table 4.1). Figure 4.7 shows the comparison between the FPGA
configuration bitstream transfer time of the LeNet design 1∼12 of FiC-SW nodes. In
Figure 4.7, the w/o gzip is FPGA bitstream transfer time without gzip compression,
and w/gzip is FPGA bitstream transfer time with gzip compression.

For FPGA configurations via the RESTful API, the FPGA bitstream (binary
format) is converted to BASE64 encoding in REST messages (JSON). Therefore,
even though the total size of messages over HTTP has increased by about 1.3 times,
the results show that applying gzip compression reduced the bitstream transfer time
to 1/14. This result shows that applying gzip compression can reduce the overhead of
BASE64 conversion, as the FPGA configuration bitstream binaries can be effectively
compressed by gzip (Table 4.1). From a scalability point of view, when gzip
compression is not applied, the FPGA bitstream distribution time tends to increase as
the number of target nodes increases, which is 1.24 times that of 12 nodes compared
to 1 node. This is because the REST message that operates each node becomes huge
without gzip compression, which increases the load on the management network to
which RPi3 is connected. On the other hand, when gzip compression was applied,
no increase in FPGA bitstream distribution time was observed even for 12 nodes,
and stable performance was achieved. These results show that applying to gzip
compression to the FPGA bitstream contributes to shortening and improving the
efficiency of FPGA bitstream distribution time. In addition, in the evaluation of
12-node FiC clusters, the FPGA bitstream distribution time was within 10 ms, which
was a negligible percentage of the total application provision time.

4.3.4 Total application provisioning time with FiC-RFC

Figure 4.8 through Figure 4.10 show the total application provisioning time of each
number of FiC-SW nodes (up to 12). In this evaluation, we are using RPi3 (Normal)
configuration mode (method #2 in Table 4.3) with gzip bitstream compression for
HTTP transfer, and three different designs in Table 4.1 including w/ and w/o partial
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Figure 4.7: FPGA Bitstream Distribution Time over HTTP

reconfiguration. We have evaluated each condition ten times and compared it to the
shortest total setup time, which can be considered our current management system’s
achievable maximum setup performance. The total application provisioning time
includes a bitstream distribution time, FPGA configuration time from RPi3 to FPGA
via GPIO port, HTTP request processing time including bitstream data encoding
(BASE64 and compression, etc.), and client’s provisioning process synchronization
time.

Results in Figure 4.8 through Figure 4.10 show total application provisioning
time is not significantly increased according to the number of nodes. The
approximately increased time overhead per 4 nodes is 2%. Thus, the result shows the
application provisioning performance of the FiC-RFC has good enough scalability to
support up to 24 nodes, which is the current FiC cluster scale.

Comparing application provisioning time between full configuration (Full)
(avg. 16.80s) in Figure 4.8, partial reconfiguration in maximized PR area
configuration (Max PR) (avg. 14.02s) in Figure 4.9, and minimized PR area
configuration (Small PR) (avg. 8.00s) in Figure 4.10, the total time is reduced
16.54% in the Max PR case and 52.38% reduced in the Small PR, according to
the configuration bitstream size.

Comparing the bitstream file size of LeNet application between Full (34.18 MB),
Max PR (28.46 MB), and Small PR (13.11 MB), the Small PR size is 62% smaller
than Full, but the total time reduction is 57% only. On the other hand, the Max
PR size is 17% smaller than Full, but the total time reduction is 21%. The partial
reconfiguration requires 2 phases of FPGA programming with the clear bitstream
before programming the PR bitstream. However, the result suggests that the penalties
caused by 2 phases configuration are negligible, and a bigger PR region design is
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more efficient than a small PR region design in terms of the application provisioning
time.

Figure 4.11 and Figure 4.12 show total provisioning time variations of LeNet
application in every ten iterations. In both full configuration and PR cases, the result
shows that the worst provisioning time is longer, along with the increasing number of
target nodes. This result is caused by the issuable numbers of HTTP requests by the
cluster provisioning client application regulated. Comparing the full configuration
case and the PR case, the worst setup time in the full configuration case is more
stable than the PR case because the setup process is only once per node. But in the
PR case, the worst setup time is longer because it did two-phase configurations per
node. Thus, the result suggests that the setup time stability must be considered if
applying to larger-scale systems.
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Figure 4.8: Total Application Provisioning Time (Full configuration)

Figure 4.9: Total Application Provisioning Time (Max PR area)

Figure 4.10: Total Application Provisioning Time (Small PR area)
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Figure 4.11: Setup Time Variation (Full Configuration)
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Figure 4.12: Setup Time Variation (Partial Reconfiguration)



60 Platform Management Architecture for Stand-alone Multi-FPGA System

4.4 Multi-FPGA Applications on FiC and M-KUBOS
cluster using FiC-RFC

In the FiC project, many neural-network-based image recognition applications for
multi-FPGA have been implemented with FiC/M-KUBOS and using the FiC-RFC
multi-FPGA platform management system.

For example, a related work FiC-RNN [54] implements recurrent neural networks
(RNN) [74] on the FiC cluster using up to four FiC-SW nodes controlled by the
FiC-RFC. It achieved 31-61x speed-up compared to Intel Xeon E5 CPU and achieved
3.5-2.8x energy efficiency. And a related work [55] implements LeNet [75] on the
eight nodes FiC cluster. It achieved 149.6 GOPS, 12.6x performance compared to
Intel Xeon E5-2667. For the M-KUBOS cluster, a related work [56] implements
ResNet-18 [76] on M-KUBOS cluster. It achieved 158 GOPS, 1.16x performance,
and 6.56x energy efficiency compared to AMD Ryzen 3960X implementation.

According to these related work and results, the FiC-RFC allows accessible and
manageable stand-alone multi-FPGA systems such as FiC and M-KUBOS cluster
on the MEC by the applications, and the system can be expected to achieve better
performance and energy efficiency than the CPU in image recognition applications,
which is expected to be one of the primary tasks in MEC.

4.5 Related Work

Deploying orchestration software is a common approach to managing configurations
for multiple compute nodes. OpenStack [32] is an open-source orchestration software
that allows users to deploy user-defined configuration templates for relatively large
IT infrastructures in data centers. For example, in a related study [31], an FPGA
system applicable to a cloud environment is orchestrated using OpenStack.

Related researches [68][69][77] propose the concept of the cloudFPGA. It is
similar to the FiC concept, which provides FPGA acceleration as a cloud service.
Like the FiC cluster, they propose FPGA systems and management systems that allow
direct access to FPGAs from applications using a REST-based API over HTTP.

However, these architectures are different in purpose and scale from FiC. The
system was designed for applying high-density stand-alone FPGA systems to data
centers. Therefore, the cloudFPGA implements a management function that provides
a RESTful interface on the FPGA itself, which is a suitable architecture for designing
a high-density FPGA system. However, because this design shares the same FPGA
between the management function and the application, the implemented application
may affect the management function’s behavior and the platform’s reliability. For this
reason, an architecture like FiC in which the FPGA and management functions are
implemented separately is considered suitable for use in an edge environment where
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platform reliability is essential.

4.6 Summary

In this chapter, we introduced a platform management system for a stand-alone
multi-FPGA system which improves the accessibility of applications and the
manageability of the stand-alone multi-FPGA system. To prove the concept, we
developed a management system architecture called FiC-RFC and applied it to the
FiC cluster, stand-alone multi-FPGA systems intended for MEC environments.

The FiC-RFC enables the management and controlling of the multi-FPGA system
from a remote environment through a RESTful API, a web-based general-purpose
programming interface. And it allows supporting various application environments
to use the multi-FPGA cluster for task offloading.

We evaluated the time required for each part of a 12-node FiC cluster to provision
an application by HTTP access. The result showed the practicality of FiC-RFC on
the system scale of the current FiC cluster.





5
Parallel Programming
Environment for Multi-FPGA
System

This chapter presents a parallel application programming environment for the
multi-FPGA system and implements an MPI-compatible programming library for
bare-metal FPGA application development with HLS. The chapter is organized as
follows: Section 5.1 describes the concept and implementation details of FiC-MPI.
Section 5.2 describes the multi-FPGA application development with FiC-MPI.
Section 5.3 describes the performance evaluation of FiC-MPI and the porting work of
the Himeno Benchmark using FiC-MPI as a case study and evaluates its benchmark
performance. Section 5.5 introduces related research on parallel programming for
multi-FPGA systems. Finally, we summarize the chapter in Section 5.6.

5.1 FiC-MPI: Message Passing Interface library for HLS

5.1.1 Concept Overview

The design concept of the FiC-MPI is to enable parallel programming for
multi-FPGA systems such as FiC and M-KUBOS clusters in standard MPI and HLS
C/C++ languages. It eliminates efforts and burdens for multi-FPGA application
development and debugging. The FiC-MPI provides a standard MPI interface to
handle necessary node communications and synchronizations for multi-node parallel
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programming. And the library is designed for utilizing FPGA hardware efficiently.
It allows the application programmer can be managed the required FPGA hardware
resources for MPI hardware implementation according to the scale of the problem.

For improvement of application productivity, the library provided a function-level
multi-node MPI simulation environment called FiC-MPI simulator. The
environment enhanced debugging productivity and agility of multi-FPGA application
development.

5.1.2 Design and Limitations

The FiC-MPI library is designed to be available with standard C/C++ supported
by Xilinx’s Vivado HLS, without a special code transformer before compilation,
unlike [25][68]. The library is written in pure C++ in Vivado HLS and is designed
to be synthesizable into HDL in the Vivado HLS while maintaining compatibility
with standard MPI libraries. All APIs are available from the user’s HLS code with
the library header (ficmpi.h). The library is also designed to manage the required
hardware resources in FPGA and is adaptable to the STDM network used on FiC
and M-KUBOS clusters. Since the restriction on HLS and hardware resources is
unavoidable, the library currently supports a subset of MPI primitives to support
commonly well-used APIs in MPI applications.

5.1.3 Supported MPI APIs

Table 5.1 shows supported MPI APIs by the FiC-MPI. The library covers minimum
primitives for peer-to-peer and collective communication of the MPI specification.
Due to HLS’s execution model restriction, the FiC-MPI only supports blocking
communication APIs.

5.1.4 Feature for Efficient Hardware Synthesis

Figure 5.1 shows an example of simple multi-node π calculation using FiC-MPI
with Vivado HLS C/C++ code. As a unique feature of the FiC-MPI library, APIs
can be invoked with user-specified data widths for efficient hardware synthesis. For
example, MPI_Bcast()<uint32_t> in line 41 of Figure 5.1 specifies the data
type to generate hardware for 32 bits unsigned integer type data. This feature allows
the programmer to implement appropriate bit-width hardware synthesized by the
HLS compiler.

Arbitrary vector types in the general MPI library are also supported. This
arbitrary vector type can be defined by MPI_Type_vector(), and the vector
type can be used in the MPI data type specification (MPI_Type) argument. This
capability makes it possible to handle only a part of the data specified in an array.
For example, when a user wants to exchange a part of a huge size data array
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Table 5.1: APIs provided by FiC-MPI library

Type API Description
Program control MPI_Init MPI program init.

MPI_Finalize MPI program termination
MPI_Comm_rank Get current process rank
MPI_Comm_size Get process size

Peer-to-Peer MPI_Send P2P data send (blocking)
communication MPI_Recv P2P data receive (blocking)
Collective MPI_Bcast Broadcasting data send/receive
communication MPI_Scatter Scattering data send/receive

MPI_Gather Gathering data
MPI_Allgather All gathering data
MPI_Reduce Reduce data
MPI_Allreduce All reduce data
MPI_Alltoall Exchange data to all ranks

Misc MPI_Type_vector Define vector type
MPI_Cart_create Define Cartesian topology
MPI_Cart_get Get current location on Cartesian topology
MPI_Cart_shift Shift location on Cartesian topology

with another rank, the custom vector type can be selected for a part of the array
to be exchanged. It contributes to reducing the required hardware resource and
communication efficiency.

5.1.5 Integration with STDM Network

To make FiC-MPI compatible with STDM networks, the node identification
number on MPI communication, Rank, is mapped to the slot number on STDM
communication. As shown in line 23 of Figure 5.1, the application can recognize
its rank and available slot number by giving the identification number of the node
corresponding to the rank as an argument when the MPI library is initialized in
MPI_Init(node_id). The given node_id sets this identification number on
the board or gives an arbitrary ID before the application is executed. Figure 5.2
shows an example when communicating three nodes with Rank0, Rank1, and Rank2
in the STDM network.

• At Slot0, Rank0 is a sender, and Rank1 and Rank2 are receivers. Rank0 and
Rank2 are not physically connected, so the Rank0 data directly transfers to
Rank1, and Rank2 receives the data via Rank1 STDM switch.
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1 #include <ap_int.h>
2 #include "ficmpi.h"
3
4 #define MPI_WORLD_SIZE 4
5
6 void mpi_app(
7 uint8_t bid, uint32_t iter,
8 float result[1],
9 ficbus_T fic_in[128], // STDM network in

10 ficbus_T fic_out[128] // STDM network out
11 )
12 {
13 #pragma HLS INTERFACE s_axilite port=bid
14 #pragma HLS INTERFACE s_axilite port=iter
15 #pragma HLS INTERFACE s_axilite port=result
16 #pragma HLS INTERFACE s_axilite port=return
17 #pragma HLS INTERFACE axis port=fic_in
18 #pragma HLS INTERFACE axis port=fic_out
19
20 MPI_Status p_st;
21 int rank, size;
22
23 MPI_Init(bid); // Init MPI
24 MPI_Comm_size(MPI_COMM_WORLD, &size);
25 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
26
27 int interval[1];
28 int n[1];
29
30 interval[0] = iter;
31 n[0] = 0;
32
33 //-----------------------------------------------------
34 // Usage:
35 // int MPI_Bcast<DATA_T>(
36 // DATA_T *sendbuf, DATA_T *recvbuf,
37 // const int count, MPI_Datatype datatype,
38 // int root_rank, MPI_Comm comm,
39 // ficbus_T *fic_in, ficbus_T *fic_out)
40 //-----------------------------------------------------
41 MPI_Bcast<uint32_t>(
42 interval, n, 1, MPI_INT32_T, 0, MPI_COMM_WORLD,
43 fic_in, fic_out
44 );
45
46 const double h = 2.0 / n[0];
47
48 double sum[1];
49 double pi[1];
50 sum[0] = 0.0;
51 pi[0] = 0.0;
52
53 for (int i = rank; i < n[0]; i += size) {
54 const double x0 = i * h - 1.0;
55 const double x1 = (i + 1) * h - 1.0;
56 const double f0 = 2.0 / (1.0 + x0 * x0);
57 const double f1 = 2.0 / (1.0 + x1 * x1);
58 sum[0] += 0.5 * (f0 + f1) * (x1 - x0);
59 }
60
61 //-----------------------------------------------------
62 // Usage:
63 // int MPI_Reduce<DATA_T>(
64 // DATA_T *sendbuf, DATA_T *recvbuf, const int count,
65 // MPI_Datatype datatype,
66 // MPI_Op op, int root_rank, MPI_Comm comm,
67 // ficbus_T *fic_in, ficbus_T *fic_out)
68 //-----------------------------------------------------
69 MPI_Reduce<double>(
70 sum, pi, 1,
71 MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD,
72 fic_in, fic_out
73 );
74
75 if (rank == 0) {
76 result[0] = pi[0];
77 }
78
79 return;
80 }

Figure 5.1: An example HLS application with FiC-MPI library
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• At Slot1, Rank1 is a sender, and Rank0 and Rank2 are receivers. Both Rank0
and Rank2 are directly connected to Rank1 so that the Rank1 data directly
transfers to Rank0 and Rank2.

• At Slot2, Rank2 is a sender, and Rank0 and Rank1 are receivers. Rank2 and
Rank0 are not physically connected like Slot0, so Rank2 data directly transfers
to Rank1, and Rank2 receives data via Rank1 STDM switch, respectively.

(a) 

Slot 0

(b)

Slot 1

(c)

Slot 2

Rank 1

(receiver)

Rank 0
(sender)

Rank 2
(receiver)

Rank 1
(sender)

Rank 0

(receiver)

Rank 2
(receiver)

Rank 1

(receiver)

Rank 0

(receiver)

Rank 2
(sender)

Data CommunicationPhysical connection

Figure 5.2: Three nodes MPI communication on STDM network

The routing table of the STDM switch must be set up before executing an
application. The most straightforward routing table setup that allows different ranks
to send and receive data to and from each other is broadcasting.

Figure 5.3 shows this broadcasting configuration in the STDM switch of Rank1
node in Figure 5.2 at Slot1. In this way, Rank1’s output (HLS logic out) is sent
to other ranks, and all other ranks receive the data. This broadcasting can be
achieved by using the multicast function of STDM switches, and the current FiC-MPI
implementation assumes this broadcast method as the default network.

In the STDM network, increasing the number of slots has a side effect of
increasing communication delay. Hence, broadcasting is unnecessary if it is
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Figure 5.3: Broadcasting of the STDM Switch in the Rank1 at Slot1 in Figure 5.2

obvious that arbitrary ranks will not communicate with each other. Moreover, the
communication delay on the STDM network can be optimized by optimization
algorithm [46] to find the optimal number of slots for communication.

5.1.6 MPI Communication with STDM Network

The transferred data corruption with the STDM network is protected by the ECC
scheme provided by Xilinx Aurora IP. However, the MPI library needs to handle
burst data transfer and error handling such as data miss-delivery and non-reachable.

Figure 5.4 shows a typical MPI communication sequence in MPI_Send().
First, the sender rank sends a synchronization request to the receiver rank, and then
the receiver rank prepares for data receive and returns the sync acknowledge packet
to the sender rank. After synchronization, the sender rank sends a header and data
packets to the receiver rank. After finishing data packets transferred, the library
checks all data that have been received and sends a fin packet to the sender rank
to end the communication.

Since the STDM network is not guaranteed to transfer data in order if they use
different slots, the MPI library needs to handle correct incoming data orders from
the multiple ranks. Figure 5.5 shows the STDM network packet format used in the
FiC-MPI. All packets commonly have message sequence ID (Seq ID) and source
rank (Src rank) in the command field; the incoming data sequence is checked with a
data sequence number of the sequence ID by the library.

The first packet (Seq ID=0) of the MPI communication is dedicated to the header
packet. This packet contains information such as the total number of data of the
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Rank 0 Rank 1

Sync request
Sync ack

Header send
Data 0
Data 1
Data 2

Data N
Error check

Fin
Fin ack

* Optional

Figure 5.4: Communication Sequence of MPI_send()

message (data count), MPI data type, MPI tag ID, request ID (an ID determining the
message is a response for which request), destination rank, source rank, and message
type.
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Figure 5.5: FiC-MPI Packet Format

Figure 5.6 shows the reordering process for an incoming packet to guarantee
incoming data order. A dedicated ordering buffer of each rank is prepared like a
mailbox, and the incoming packet is stored in the ordering buffer according to Seq
ID and source rank (Src rank). According to the consumer pointer, the library reads
out the valid packets from the target rank’s ordering buffer and waits if expecting
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incoming packet has not come yet. By this mechanism, the FiC-MPI achieves reliable
message exchange on the STDM network.
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Figure 5.6: Structure of the Packet Re-ordering Buffer

Compatibility Features

To enhance the portability of MPI applications, it also provides minimal support for
Cartesian topology functions supported by standard MPI libraries. This feature can
generate Cartesian topologies up to three dimensions to limit the number of hardware
resources. In addition, since FiC-MPI currently assumes the broadcast network as
the default network mentioned before, the mapping rank to Cartesian topology in
ascending order of node number. Thus, there is room for optimal mapping based on
the cluster’s physical topology in the future.
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5.2 Application Development with FiC-MPI

5.2.1 Debugging Multi-FPGA Application with FiC-MPI Simulator

In typical FiC and M-KUBOS application development, designers had to spend
a lot of time debugging and testing. As for the debugging environment of
FPGA applications in HLS using conventional C/C++, the C/RTL co-simulation
environment is provided by the vendor tool, but these are targeted at a single
FPGA. In particular, in a multi-FPGA application that uses multiple FPGAs,
there is no environment for functional level debugging and testing, and it is
always necessary to implement on the actual FPGA platform before debugging and
testing. For this reason, the application designer is forced to debug the FPGA
hardware design more than the debugging of the application itself, which poses
a problem in the productivity of the application. Therefore, in order to support
parallel programming on a multi-FPGA environment using HLS, FiC-MPI has
developed a simulation environment FiC-MPI Simulator that can perform application
debugging and testing at the functional level. This FiC-MPI Simulator provides an
environment for executing and simulating multi-FPGA applications developed with
HLS and FiC-MPI on a PC environment to overcome the challenges of multi-FPGA
application productivity. Using this simulation environment makes it possible to test
and debug multi-FPGA applications without implementing them on the actual FPGA,
which is expected to improve application productivity. Figure 5.7 shows multi-FPGA
application development flow with FiC-MPI. In the application development flow
with FiC-MPI, the designer first tests and debugs an application with FiC-MPI
Simulator. To test an application on FiC-MPI Simulator, compiling application
code with a standard C++ compiler (e.g., GCC, LLVM/Clang) with a FiC-MPI
simulation wrapper. In the FiC-MPI Simulator environment, the application is
implemented as a multiprocess application that communicates with IPC socket.
This simulation environment allows an application designer to debug an application
with standard application debugger tools (e.g., GDB). It is possible to improve
multi-FPGA application debuggability significantly. After testing and debugging
with the FiC-MPI Simulator environment, the application designer implements an
application with standard FPGA implementation flow.

5.2.2 Comparison between Existing Application Development Method

In conventional multi-FPGA application development on FiC and M-KUBOS
clusters, there are many hurdles application designers need to override described
in the previous section. In this section, we will discuss multi-FPGA application
development productibility, comparing the existing approach and with the FiC-MPI.
Figure 5.8 shows a comparison between the conventional multi-FPGA design flow
and the flow with the FiC-MPI. Generally, the application design flow for FiC and
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Figure 5.7: Multi-FPGA Application Development Flow with FiC-MPI

M-KUBOS’s multi-FPGA applications is the following steps: (A) Application design
and (B) FPGA implementation and test.

(A) is a step for designing the multi-FPGA application kernel. In the conventional
flow, an application designer first creates the application for a single FPGA using
HLS with C/C++. After the single FPGA application is created, they test with HLS
application debug environments, such as functional simulation and co-simulation.
Once the single FPGA application is debugged, the application designer modifies the
application for multi-FPGA. In this step, the application designer must design specific
communication protocols among FPGAs to implement a multi-FPGA application
apart from the application kernel. Moreover, the application designer can not test
the multi-FPGA application at this step because there is no debugging environment
supporting multi-FPGA communication provided. By contrast, in the flow with the
FiC-MPI, the application designer can design the application as an MPI application
that supports parallel programming from the beginning. The designer can test
and debug the application with the FiC-MPI Simulator at a function level without
implementing the application into a real FPGA hardware platform.

(B) is a step for FPGA implementation with the FPGA EDA tools. The designer
implements the application with IP-based FPGA design flow and logic synthesis for
the target FPGA. Typically, the application implementation process on the FPGA
requires a long lead time. For example, logic synthesis typically takes a few ten
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minutes to hours. After the implementation process for the FPGA, the designer
deploys the application to the cluster and tests them.

FiC-MPI allows application designers to design their applications as multi-FPGA
applications with MPI from the beginning. Therefore, it is considered that the design
cost and the design time of the application can be reduced. Also, when testing
and debugging an application, FiC-MPI Simulator allows the application designer to
perform functional tests of the application without using the actual FPGA platform.
Therefore, the number of implementations required for testing and debugging on
the actual FPGA platform can be reduced. According to Google’s related research
on software productivity [78], average C/C++ developers are executing application
builds more than 200 times per month. For example, if 10% of 200 builds need
to run tests after coding, the application designer will need to repeat the FPGA
implementation more than 20 times. Without the FiC-MPI Simulator, the application
designer would need to spend an average of 40 minutes (for FiC and M-KUBOS)
or more on the FPGA implementation process (e.g., logic synthesis, etc.) for each
test. In contrast, the FiC-MPI Simulator can create the test environment in about 5
seconds using a C/C++ compiler. This significantly reduces the lead time required to
test and debug applications. Thus, FiC-MPI significantly increases the productivity
of multi-FPGA applications by more than 100 times.

(a) Conventional multi-FPGA application development with HLS and IP-based FPGA design flow

(b) Multi-FPGA application development with FiC-MPI, HLS, and IP-based FPGA design flow
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Figure 5.8: Comparison between Multi-FPGA Application Development Flow



74 Parallel Programming Environment for Multi-FPGA System

5.3 Evaluation

5.3.1 FiC-MPI Performance on M-KUBOS Cluster

This subsection describes the evaluation of the communication performance of
FiC-MPI. In this evaluation, we used a single STDM link on the six nodes M-KUBOS
cluster shown in Figure 3.8, and evaluated the communication throughput and latency
at each data transfer length. The evaluation tested the commonly used one-to-one and
collective communication patterns by MPI applications.

One-to-one communication pattern: PingPong

Rank0 Rank1
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MPI_Send() MPI_Recv()

MPI_Send()MPI_Recv()

Rank2Rank0

MPI_Send() MPI_Recv()

MPI_Send()MPI_Recv()
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data
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Figure 5.9: PingPong Communication Example

PingPong communication pattern is shown in Figure 5.9. PingPong is a
one-to-one communication pattern between two ranks, in which data is sent from one
rank by MPI_send(), received by the other rank by MPI_recv(), and then sent
back to the original rank by MPI_send(). The throughput for each data transfer
length is shown in Figure 5.10 and the latency is shown in Figure 5.11.

The throughput of one-to-one communication in FiC-MPI reaches a ceiling of
approximately 299 MB/s at a data transfer length of 1 MB, which is considered the
upper limit of the current FiC-MPI data transfer capability. The theoretical transfer
capacity per lane of the STDM network in M-KUBOS is approximately 1.1 GB/s, and
the practical data transfer throughput is 510 MB/s with two slots measured in related
work [49]. The current payload efficiency is 75% as shown in Figure 5.5, and the
estimated maximum transfer throughput is approximately 383 MB/s. Based on the
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measured throughput, the transfer efficiency of the current FiC-MPI implementation
is 78% of the estimated maximum network transfer performance.

Since the current implementation of FiC-MPI uses a broadcast on the STDM
network, the effective bandwidth that can be used per node is decreased along with
the increase of the slots number. Comparing two nodes (2 slots), four nodes (4 slots),
and six nodes (6 slots) cases, the transfer performance decreases to 55% (4 slots) and
38% (6 slots) at 1 MB data transfer length. The result shows those huge performance
penalties by increasing the number of slots. It needs to consider applying the more
sophisticated network usage instead of broadcast or using optimization techniques
to reduce the required number of slots proposed in [46]. Figure 5.11 shows that the
latency increases in proportion to the transfer length, exceeding 1 ms around 64 kB
and reaching 18 ms at 1 MB.

Figure 5.10: PingPong Throughput at a Transfer Size

Figure 5.12 shows that PingPong communication latency from Rank0 to
Rank1∼Rank5 with six nodes configuration at each transfer data length. The result
shows the communication latency increases with the number of nodes (hops). In the
0 to 5 case, where the communication passes through 4 nodes, the latency increased
by about 2 percent compared to the 0 to 1 case.
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Figure 5.11: PingPong Latency at a Transfer Size

Figure 5.12: PingPong Communication Latency at a Different Hops
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Collective communication pattern: AllReduce
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Figure 5.13: AllReduce Communication Example

AllReduce communication pattern is shown in Figure 5.13. It is a collective
communication that collects data from all ranks, performs an aggregate operation
and sends back the result to all ranks. The implementation of FiC-MPI’s
MPI_AllReduce() aggregates all rank’s data to Rank0 by MPI_Reduce()
operation, then performs the aggregate operation such as accumulations on Rank0,
and then broadcasts the results to all ranks by MPI_Bcast() (broadcasting).
Figure 5.14 shows the observed throughput and Figure 5.15 shows its latency.

Compared to communication throughput in PingPong, AllReduce achieved
similar throughput until 16 kB data length with two nodes (2 slots) communication.
However, the throughput is saturated at 215 MB/s in more than 32 kB data length
due to the AllReduce requiring additional clock cycles to a reduction operation
specified by MPI_Op argument of the MPI_AllReduce() during the data transfer.
When the number of nodes increases, the throughput decreases to 47% compared
to the two-nodes case in the six-nodes configuration. Latency was also up to 6.4x
longer in the six-nodes configuration compared to the two-nodes configuration. This
throughput degradation and longer latency are possibly caused due to an increasing
number of shared slots and required times of communication synchronization. The
current node synchronization algorithm in the FIC-MPI is being serialized, so further
design review can mitigate this communication overhead.
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Figure 5.14: AllReduce Throughput at a Transfer Size

Figure 5.15: AllReduce Latency at a Transfer Size
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5.3.2 Case study: Porting Himeno Benchmark with FiC-MPI

Himeno Benchmark

The Himeno Benchmark (Himeno-BMT) [79] is a general-purpose numerical
benchmark designed to evaluate the performance of the incompressible fluid analysis
code published by RIKEN. It measures the processing speed of the main kernel loop
when solving the Poisson equation by Jacobi’s iterative method. In this case study,
we tried to port the Himeno benchmark with FiC-MPI to the M-KUBOS cluster and
evaluate its porting work practicality, performance, and scalability.

Porting the Himeno-BMT to Multi-FPGA Application

The Himeno benchmark is written in Fortran or C with OpenMP and MPI
parallelization methods. The porting work is based on the MPI version code written
in C (cc_himenoBMTxp_mpi) and modifying the code that needed to be supported
for HLS and FiC-MPI. The original C code statically allocates the matrices for
arithmetic operations in the stack area using C arrays, so it exceeds the amount
of BRAM/URAM resources available in the FPGA and cannot be ported with
HLS. Therefore, in this implementation, these matrices are statically allocated using
DRAM instead of BRAM, and the part required for kernel calculation is loaded
on demand. In addition, MPI calls in the original code were changed to the
corresponding API of FiC-MPI. The rest of the arithmetic kernel is original, without
explicit optimization for FPGA.

Debugging in this porting work was done using the FiC-MPI simulator. We first
build the HLS kernel code with the FiC-MPI simulator for the PC application. Then,
we checked the HLS code correctness by comparing the original MPI code results.
After that, we implemented the HLS kernel for the real M-KUBOS cluster system and
checked the calculation correctness. This method reduced the debugging times on the
real M-KUBOS cluster hardware and eliminated the burden on the application porting
process. In this porting, we use Xilinx Vivado HLS 2020.1 for HLS and Xilinx
Vivado 2020.1 for FPGA logic synthesis. The FPGA design is based on M-KUBOS’s
fully embedded (F) Shell design described in Section 3, and we obtained the FPGA
design running at 100 MHz.
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Performance and Scalability

Figure 5.16: Himeno benchmark performance on M-KUBOS cluster

The problem size in the Himeno benchmark used in the evaluation is M
(128x128x256), and the number of rotation loops (nn) is nn=50, which is stable in
performance. The floating-point precision is 32bit which was originally used in the
Himeno Benchmark. Figure 5.16 shows the performance measured by the number
of nodes from one to six. The bar graph shows the performance values of MFLOPS,
and the line graph shows the performance increase rate based on one node. The
horizontal axis is the number of execution nodes. A single M-KUBOS node achieved
178.7 MFLOPS. This performance is 2.2 times greater than the 82.84 MFLOPS, a
reference performance value with the Himeno Benchmark on Intel Pentium III 600
MHz, and 1.2 times greater than 148.5 MFLOPS, a performance value on the PS
(ARM Cortex-A53 1.2 GHz with gcc 7.3.0 -O3 optimization).

This result is no surprise due to the following reasons: 1) M-KUBOS runs at
only 100 MHz, which is x10∼x20 times lower operation frequency than state-of-art
CPUs. 2) The application kernel is not well optimized for FPGA architecture for
highly parallelized. In fact, the design used only 4% DSPs and 18% LUTs compared
to occupying 84% of BRAMs. The low DSP/LUT resource utilization indicates
room for improvement in implementation efficiency. 3) The Himeno Benchmark
is a memory performance-intensive benchmark.

Therefore, we believe that performance can be dramatically improved by
optimizing the HLS design to take full advantage of its parallelism, by using such
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as an optimized 3D array computation [80], and arbitrary precision fixed-point data
types. We observed the cluster performance increment according to the increase
of M-KUBOS nodes. With four nodes, the performance was 643.7 MFLOPS (3.6x
compared to a single node) instead of 531.4 MFLOPS (3.5x compared to single-core)
using Open MPI v2.1.1 on four cores Cortex-A53 of the PS. The result shows
that the FiC-MPI achieved similar performance scalability to conventional MPI
implementation. The maximum performance was 896.9 MFLOPS with six nodes,
and the performance increment was 5.0x.

Processing Time Breakdown

Figure 5.17: Processing time breakdown of the Himeno Benchmark

Figure 5.17 shows the breakdown of kernel processing time and communication
processing by MPI when running the Himeno Benchmark on each number of
nodes. The processing time measuring the arithmetic kernel (Jacobi iteration method)
and the MPI processing part was obtained by the AXI Timer IP in the PL that
synchronized with the operating frequency (100 MHz). Figure 5.17 shows that the
processing time of the MPI part increases along with the number of nodes increases.
The communication delay of the STDM causes this processing time to increase
network along with an increasing number of nodes, and it increases the latency of
the node synchronization process performed by FiC-MPI. The percentage of MPI
processing time is approximately 16% at six nodes.

This result suggests that the performance scalability of the M-KUBOS cluster
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is limited due to communication delays caused by the increase in the number of
slots on the STDM network. This limitation can be managed by applying network
optimization, such as optimizing the required number of slots according to the
application and reducing the number of slots between nodes that do not need to
communicate. Although the performance and scalability obtained from the Himeno
Benchmark are not high, the case study shows that even applications written for
CPUs can be ported and executed as applications for a multi-FPGA cluster like the
M-KUBOS easily by using FiC-MPI.

5.4 Related Work

Today, a typical example of a parallel programming environment for multi-FPGAs
is OpenCL [51]. OpenCL is a specification for parallel computing developed by
the Khronos Group that supports heterogeneous environments combining CPUs with
GPUs and FPGAs. For FPGAs, OpenCL is supported by Xilinx’s SDAccel (Vitis
unified software platform) [52] and Intel’s FPGA SDK for OpenCL [53]. They target
CPU-centric multi-FPGA environments with x86-based CPUs, and FPGA cards are
connected via PCIe.

Message Passing Interface (MPI) is a well-known parallel programming
environment for distributed memory architecture. In related research [81] proposes
a parallel programming environment in which a software processor is deployed on
an FPGA and implemented MPI on its soft CPU core. Also, in related research [36]
constructs a multi-FPGA system that can be used with MPI. This system employs
SoC-type FPGA Xilinx Zynq-7020 for the FPGA node and runs Open MPI [82] and
MPICH [83] on an embedded Linux environment running on the Zynq’s ARM core.

As a bare-metal approach to MPI implementation for multi-FPGA systems that
do not use soft-core CPUs or embedded CPUs, related researches [25][26] are
proposes a compiler-based code transpiration approach. In this method, a special
code transpiler or transformer is used to analyze MPI code to extract MPI kernel
code and interpret it for generating a synthesizable HLS code for each FPGA node.

The FiC-MPI developed in this study is a toolless and straightforward approach
compared to related research. Therefore, it is more compatible with the standard HLS
application development workflow, which allows application designers to implement
multi-FPGA applications using only a standard FPGA development toolchain.
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5.5 Summary

In this chapter, we considered the use of MPI, a parallel programming environment
commonly used in distributed memory system environments, to improve the
application development environment in stand-alone multi-FPGA systems such as
FiC and M-KUBOS. In this study, we have developed the MPI library FiC-MPI,
which can be used in the FPGA application development environment using C/C++
with standard HLS. FiC-MPI enables application designers to implement FPGA
applications with MPI parallel programming, which greatly reduces the application
design and implementation process on a stand-alone multi-FPGA environment.

In addition, the FiC-MPI Simulator environment was developed to provide an
application testing and debugging environment for the multi-FPGA environment
on FiC and M-KUBOS. The FiC-MPI Simulator environment allows application
designers to test and debug MPI applications without using actual FPGA platforms.
Compared to conventional HLS application development methods on FiC and
M-KUBOS, the FiC-MPI Simulator environment can improve the efficiency of
application debugging by more than 100 times, showing that it can significantly
improve application productivity.

To demonstrate the practicality of FiC-MPI, as a case study, we ported a
general-purpose numerical benchmark implemented by MPI, Himeno Benchmark
(himeno-BMT), as a multi-FPGA application for M-KUBOS using FiC-MPI.
Through this case study, we showed that existing MPI applications could be ported
and executed as multi-FPGA applications, demonstrating application development’s
practicality with FiC-MPI.





6
Conclusion and Future Work

6.1 Conclusion

Multi-access Edge Computing (MEC) is a new methodology of edge computing
in the 5G mobile network era that utilizes computing resources on edge. In
MEC, latency-sensitive and computing power required applications, such as artificial
intelligence (AI) and image recognition, are expected to be one of the primary tasks.
Since MEC is a power and space restricted environment, there are demands for a
compact, flexible, and power-efficient computing platform to support such various
applications.

This thesis focused on a stand-alone multi-FPGA system as a computing
platform for MEC. An FPGA achieves high flexibility and power efficiency
through reconfigurable architecture and hardware-based data processing; the latest
high-performance and feature-rich FPGAs are expected to be used as accelerators for
general-purpose computing.

The FiC project developed the FiC and its successor M-KUBOS cluster,
a stand-alone multi-FPGA system aimed at applying on MEC. A stand-alone
multi-FPGA system is constructed with directly connected FPGA nodes; it is
expected to realize a flexible and energy-efficient computing platform compared to
traditional server-based systems in power and space constrained environments. The
FiC and M-KUBOS clusters aim to prove that a multi-FPGA system delivers scalable
computing power and high energy efficiency on edge computing. To enhance the
usability of these stand-alone multi-FPGA systems in MEC applications, ensuring
the platform manageability and programmability from the various application
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platforms and programming environments is essential. Thus, this thesis contributed
to establishing a base architecture that improves the platform manageability and
programmability of the multi-FPGA systems such as FiC and M-KUBOS.

The first proposal of this thesis is a cloud-computing-inspired multi-FPGA
hardware platform management system called FiC-RFC. FiC-RFC enables a
multi-FPGA system to be accessible and manageable from MEC applications; it
can be supported by various resource management platforms such as FiC-RM and
applications by using RESTful APIs, a programming semantics widely used in cloud
computing. Several AI-based image recognition applications have been implemented
with FiC-RFC for the FiC and M-KUBOS clusters; they achieved 2-6 times better
energy efficiency and 1.1-12 times better performance than the state-of-art CPU
implementation.

The second proposal in this thesis is to provide a programming environment for
multi-FPGA architecture. Since FiC and M-KUBOS clusters employ a bare-metal
approach programming model, applications (an offloading kernel for FPGA) need
to design with the FPGA vendor toolchain. Such default development tool for
FPGA does not support parallel programming, which is becoming a hurdle for
application development on the stand-alone multi-FPGA architecture. In this
proposal, we focused on Message Passing Interface (MPI), which is often used
in parallel programming of distributed memory architectures, and developed a
tool-independent MPI library for HLS, called FiC-MPI, to improve application
programmability in stand-alone multi-FPGA architectures. FiC-MPI is an MPI
library that can be directly used in FPGA kernel development with C/C++ in HLS;
it eliminates the difficulty of implementing parallel programming applications using
multi-FPGA architecture. Moreover, the FiC-MPI simulator environment provides
a test and debug environment for multi-FPGA applications. This environment
eliminates the FPGA implementation process for testing and debugging using the
real FPGA platform and improves the productivity of the multi-FPGA application.
FiC-MPI library provides compatible APIs in standard MPI implementations and
allows for porting existing MPI-based applications to the multi-FPGA architecture.
To demonstrate the feasibility of the FIC-MPI, ported the Himeno Benchmark, a
general-purpose numerical benchmark application written in MPI, to the M-KUBOS
system with FiC-MPI as a case study.

The proposed multi-FPGA platform management system and application
programming environment enhance the feasibility of multi-FPGA systems adoption
on MEC, and the systems support the deployment of many services and expand the
use cases of MEC.
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6.2 Directions for Future Work

Future work includes the following considerations:

6.2.1 Improvement for FiC-RFC architecture

Support for real-time application control model

RESTful is non-interactive communication with HTTP requests such as POST and
GET method. Therefore, it isn’t easy to use for realtime-ness applications such
as drone control and autonomous drive control. These applications are expected
to do real-time data camera image analysis with FPGAs, and support for real-time
communication is essential. For the supporting realtime-ness communication with
the HTTP request, employing the Websocket for the ficwww is considered.

Support for remote debugging via HTTP

In the current FiC-RFC system, RESTful communication is not fully supported
for FPGA debugging. Employing Websocket communication via HTTP, it can
encapsulate XVC communication between JTAG and hardware server in the remote
location, which enhances the usability of debugging the system.

6.2.2 Improvement for FiC-MPI

Improvement of payload efficiency of FiC-MPI

The current packet format payload used by FiC-MPI is approximately 75%, and this
payload efficiency can be improved by reviewing the design.

Optimizing communication flow of FiC-MPI

The current FiC-MPI communication control is not fully optimized, resulting in a
significant decrease in data transfer throughput when the number of nodes increases
　 in group communication. Therefore, optimizing communication control flow, such
as synchronization between nodes, is necessary.

Communication performance improvement

The current FiC-MPI communicates using only one lane, so the hardware
performance is not fully utilized. Therefore, there is still room for increasing
communication performance with supporting lane aggregation, which uses multiple
lanes simultaneously.
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Machinery, 2019, 262âĂŞ271, ISBN: 9781450361378. DOI: 10.1145/3289602.
3293909. [Online]. Available: https://doi.org/10.1145/3289602.3293909.

[26] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey,
“Programming Reconfigurable Heterogeneous Computing Clusters Using
MPI With Transpiration”, in 2020 IEEE/ACM International Workshop on
Heterogeneous High-performance Reconfigurable Computing (H2RC), 2020,
pp. 1–9. DOI: 10.1109/H2RC51942.2020.00006.

[27] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J.
Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services”, in Proceeding of the
41st Annual International Symposium on Computer Architecture, ser. ISCA
’14, Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 13–24, ISBN:
978-1-4799-4394-4.

[28] Intel Corporation, Serial Lite III Streaming IntelÂő FPGA IP User Guide.
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