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Abstract

Since the emergence of interactive computers, a large number of human-computer interac-
tion methods have been developed. Generally, humans interact with computers by inputting
to and receiving feedback from computers. A typical computer has a keyboard, mouse,
display, and speakers as input/output devices. With the development of computers, body
gesture-based input methods have been introduced in consumer devices, like smartphones.
The display technology has also developed as well as the input technology, thereby leading to
the emergence of consumer head-mounted displays (HMDs). HMDs occlude the user’s eyes
with the display, and, thus, the conventional interfaces are difficult to use for VR users. In
addition, in terms of the feedback, appropriate integration of multi-modalities improves the
virtual experience. Most HMDs have high-quality visual and audio systems, but their haptic
modality is not rich. To enable suitable input and rich interaction, the body is employed as
an interface. In particular, the face can be controlled in minutes detail and is one of the most
sensitive parts of the entire body. Therefore, the face is useful for interaction in a virtual envi-
ronment. This dissertation presents two systems that are required for face-based interaction;
one is the mouth shape recognition using mouth shape recognition embedded into an HMD;
the other is the spatial directional guidance technique using robotic arms attached to an HMD.

First, an embedded optical sensor-based mouth shape recognition technique is proposed.
This technique classifies mouth shapes into six classes using optical sensors embedded in an
HMD. Moreover, this technique automatically gives labels to the training dataset by vowel
recognition. In the experiments, with five participants, the classification accuracy of our
method were compared for six mouth shapes in manual and automated labeling conditions.
The results reveal that our method achieves an average classification accuracy of 99.9% and
96.3% under the manual and automated labeling conditions, respectively. These findings
indicate that automated labeling is competitive relative to manual labeling, although the
classification accuracy of the former is slightly higher than that of the latter. Furthermore,
using the mouth shape recognition technique, a mouth expression transfer application was



also developed. This application blends six mouth shapes and then applies the blended mouth
shapes to avatars.

Thereafter, Virtual Whiskers, a spatial directional guidance technique by cheek haptic
stimulation using tiny robot arms attached to an HMD is presented. The tip of the robotic arm
has photo reflective sensors to detect the distance between the tip and the cheek surface. The
robot arms stimulate a point on the cheek obtained by calculating an intersection between the
cheek surface and the target direction. In the directional guidance experiment, it is investigated
how accurately participants identify the target direction provided by our guidance method.
The difference between the actual target direction and the direction pointed by the participant
was evaluated. The experimental result reveals that our method achieves the average absolute
directional error of 2.54 degrees in the azimuthal plane and 6.54 degrees in the elevation
plane. Moreover, a spatial guidance experiment to evaluate task performance in a target
search task were conducted. In the evaluation, task completion time, system usability scale
(SUS) score, and NASA-TLX score were compared in three conditions-visual, visual+audio,
and visual+haptic conditions. The averages of task completion time were M=6.39 s, SD=3.34
s in the visual condition; M=5.62 s, SD=3.12 s in the visual+audio condition; and M=4.35 s,
SD=2.26 s, in the visual+haptic condition. The SUS score was M=55.83, SD=20.40 in the
visual condition; M=47.78, SD=20.09 in the visual+audio condition; and M=80.42, SD=10.99
in the visual+haptic condition. The NASA-TLX score was M=75.81, SD=16.89 in the visual
condition; M=67.57, SD=14.96 in the visual+audio condition; and M=38.83, SD=18.52 in the
visual+haptic condition. Statistical tests revealed significant differences in task completion
time, SUS score, and NASA-TLX score between the visual and the visual+haptic conditions
and the visual+audio and the visual+haptic conditions.
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Chapter 1 Introduction

1.1 The Body as a User Interface

With the incredible evolution of electronic computers, they have become essential for our
activities in human society. In the course of their development, there has been significant
change in their operation methods. In operating computers, we input instructions into the
system with our body and receive feedback triggered by our actions. During the operation,
we access user interfaces, such as a keyboard, mouse, headphone, and display. For example,
we use the touchpad on a laptop computer to click an application icon and see the display
to receive visual feedback. In other words, it is essential for computer interaction to sense
input from users and present stimuli according to the input, which is essential for human-
computer interaction. Since the invention of the mouse and Sketchpad [2], various types
of user interfaces have been developed. For a long time, computer systems have adopted
characters and graphics in the form of character user interface and graphic user interface.
These interfaces enable users to manipulate computer systems with metaphors that abstract
instructions, while users have to memorize how to use various devices, like keyboards.
However, the development of sensing and display technology enables intuitive interaction
such as touches and gestures. Such techniques have been introduced in our daily life. For
example, a smartphone, a portable device with a telephone and computing functions, has a
touch interface. In addition, tangible user interfaces have emerged [3]. The tangible user
interface enables interaction with digital world with physical objects. Moreover, there is an
attempt to use our own body as an input/output interface, which is called on-body interaction.
Such interfaces bring us closer to computers by merging operating and perceptional space,
which makes the manipulation intuitive. In particular, since on-body interaction requires our
body as an interface, it required less effort to learn how to use the device on users than physical
instruments.

Advances in computing have driven virtual reality (VR) as well as the user interface. VR
offers artificially reproduced stimulation, such as vision, audio, haptic, smell, and taste, to
users. In VR, head-mounted displays (HMDs) are popular and have been developed since The
Sword of Damocles [4]. The HMD displays computer graphics according to the head posture
through the displays located in front of each eye to immerse users in a virtual environment.
Moreover, most HMDs have audio interfaces and a pair of handheld controllers to integrate

– 2 –



Chapter 1 Introduction

audio-visual-haptic modalities since multi-modal stimulation makes for better immersion.
The advent of a low-cost and VR-ready HMD released by Oculus Rift [5] has made it easier
for individuals to have HMDs. After the emergence of Oculus Rift, more VR applications
have appeared than ever before and the market has expanded rapidly. Moreover, a metaverse
has fascinated people since the late 2010s. The metaverse includes technologies and services
that enable social interaction in the virtual world. In particular, owing to the widespread use
of HMDs and the advances of network technologies, there has been remarkable improvement
in the quality of virtual experience, which boosts the development of the metaverse. The
metaverse is expected to expand interactions and business in our society and numerous
companies have begun to invest substantial amounts of money in this field. Facebook, a
famous social networking service company, has invested heavily in the metaverse, and has
changed its name to Meta *1. Further, one of the most popular VR applications is VRChat [6].
In VRChat, users can interact with objects and even communicate with others via an avatar
in a virtual environment. In addition, due to the COVID-19 pandemic, there has been a
strong impetus to the use of VR, as it is deemed to be rather helpful in supporting social
activities. However, VR systems have difficulty with regard to user interaction. It is difficult
for HMD users to see the physical environment due to occlusion by the display. Most HMD-
based systems adopt handheld controllers to manipulate the virtual environment, while the
controllers limit the interaction because most activities need our hands. Therefore, VR needs
hands-free and intuitive interfaces. On-body interaction is a solution for this, which allows
the users to input/output through the body.

Although on-body interaction enables users to understand operation intuitively, the appro-
priate integration of multi-modality is important to convey accurate information. In on-body
interaction, the body is used as an input/output interface. The hands are one of the most
sensitive parts to mechanical stimuli and have a high degree of freedom. Therefore, since the
early days of VR, many hand-worn devices have been developed. Such devices detect hand
movements [7–11] and provide haptic feedback [12–15]. Apart from the hand, the torso has
also been used for interaction. Suit-type devices are often leveraged to track body movements
and stimulate a specific point on the torso. However, the information from the environment is
encoded into the head-centered frames [16], which causes a shift in the perceived stimulation
position. To avoid such issues, the face is employed as the other highly sensitive and highly

*1 https://about.fb.com/news/2021/10/facebook-company-is-now-meta/
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Chapter 1 Introduction

Figure 1.1: Cortical Homunculus [1]. (Left) Cortical Sensory Homunculus. (Right) Cortical
Motor Homunculus.

controllable part, as indicated in Penfield’s Cortical Homunculus (Fig. 1.1).
The face is a rather important channel for input/output in human-computer interaction. The

face includes much information—such as sex, age, and nationality—to identify individuals.
In addition, Penfield’s cortical homunculus indicates that the face occupies a large part of
the sensory and motor brain areas. We can identify the stimulation position precisely within
the 2.0mm-4.0mm error. In the motor function, the face is activated by 20 kinds of facial
muscles and four kinds of mastication muscles to convey complex information through facial
expressions. Face recognition technology has been explored for many years. The most popular
approach is the computer vision-based approach. In particular, the great advance of machine
learning caused by deep learning has powerfully driven the image-based face recognition
technique. Subsequently, face recognition systems were introduced at airports and the 2020
Summer Olympics. However, the face is susceptible to damage because most sensory organs-
such as the eyes, lips, and ears-are located in specific positions on the face, and the facial skin
is sensitive to stimuli. In particular, the skin of the lips is rather thin, thereby making them
vulnerable to even small force. In addition, owing to the large number of muscles distributed
on the head, the face can be formed with complex and fine geometry. Therefore, to exploit the
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Chapter 1 Introduction

potential of the face as an interface, it is important to detect the facial surface and stimulate it
in a safe manner.

To interact with a facial surface in an immersive environment, trials were conducted to
recognize facial expressions and provide feedback on the face [17, 18]. In terms of sensing
facial movements, embedded cameras [19–21] and contact sensors [22, 23] were leveraged.
When we move the face, the facial muscles are activated, the facial geometry deforms,
and the facial appearance changes. In embedded camera-based approaches, the appearance
of specific facial parts changes, such as the eyes and the mouth, and these are captured
with color or infrared information to recognize facial expressions and reconstruct facial
geometry. In particular, recently, image sensors were integrated with high-performance
HMDs to obtain biometric information, such as gaze and mouth movements [24–26]. The
camera-based methods enable robust sensing, while they require high computing power due
to the processing of much information contained in the images. As one of the approaches
with a low processing cost, contact sensors-such as electromyography (EMG) sensors and
strain gauges-were adopted. The contact sensors were arranged around specific parts, like
the eyes, to detect facial muscle movements or geometrical changes. In addition, the EMG-
based sensing attachment for the HMDs was released [27]. The EMG-based sensing methods
indicated that even low-dimensional data from the contact sensors was sufficient to reconstruct
facial geometry. However, the sensing performance is affected by the contact states, and the
contact sensors encounter difficulty in long-term use. In terms of haptic feedback on the face,
haptic actuators were attached to certain portions of the HMD, like the bottom side, the front
side, and a facial interface [28–31]. Moreover, to enable tangible interaction on the face,
Tseng et al. installed several widgets on the front side [32]. Such attempts translated cues
from virtual environments, like spatial information, into vibrotactile or thermal stimulation.
However, vibrotactile stimulation conveys little information, and the tactors were arranged in
a sparse layout. In addition, the tangible systems provided the stimulation indirectly through
the HMDs and were not able to provide localizable stimulation. In short, the sensing methods
encounter difficulty in computational cost costs due to the rich information of images and the
contact states; on the other hand, the stimulation techniques have limited presentable haptic
information due to the device configuration and the sparse layout of the actuators.
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1.2 Goal

This dissertation presents facial surface sensing and stimulation techniques with embedded
approaches to enable facial surface interaction in a virtual environment. Facial surface
interaction requires recognition of targets and provision of stimulation based on the recognized
states. This dissertation targets the bottom portion of the face, the mouth and the cheek, as
Penfield’s cortical sensory and motor homunculus indicates that the mouth and the cheek
occupy a wide area among all the facial parts. To detect the facial skin surface, multiple
proximity sensors are attached to an HMD. As the proximity sensor, optical sensors are
employed. The optical sensors detect the distance between the sensors and the skin surface by
measuring the light intensity reflected from the target. The sensors measure the skin surface
around the mouth. The sensor data is low-dimensional, thereby enabling it to be processed
quickly. In addition, as the optical sensors are unaffected by the contact states, it is considered
that the optical sensors are suitable for long-term use. To stimulate the facial surface, robotic
arms are integrated into an HMD. The robotic arms can move to a specific position so that
they stimulate localizable stimulation on the cheek. This dissertation proposes two systems
related to the facial surface-one is a system to recognize mouth shape with optical sensors;
the other is a spatial directional guidance using cheek haptics.

In mouth shape recognition, the system detects the mouth shape of the user, which is the
deformation of the skin surface around the mouth, with embedded optical sensors. Two types
of optical sensors, namely, photoreflectors and position sensitive detector (PSD) distance
sensors, are attached on the bottom of the HMD to measure the deformation around the
mouth. By attaching the optical sensors to an HMD, a prototype is created to detect the mouth
shape. A machine learning approach is used to recognize mouth shapes. A mouth shape
classifier is constructed by learning sensor data with a support vector machine (SVM). In
addition, the procedure of collecting training data is automated by recognizing vowels from
the user’s voice and giving them as labels to sensor data. With our system, an application is
built to transfer the user’s various mouth shapes on avatars by blending several templates of
the mouth shape.

In the spatial directional guidance system, spatial directional cues are presented on the
cheek using robot arms integrated into an HMD. An HMD-based facial haptics system that
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offers stimulation to the cheek is developed. The device consists of two robotic arms attached
to the bottom of an HMD with proximity sensors. In advance of stimulation, the cheek surface
is estimated using proximity sensors attached to the end effector of the robotic arm. Based
on the estimated cheek surface, spatial directional information is encoded into a point on the
cheek and touch it with the robotic arms to provide directional cues.

1.3 Organization

This dissertation investigate the HMD-based facial surface sensing and stimulation tech-
nique for facial surface interaction. Chapter 2 reviews related work to clarify the position
of this dissertation. The chapter discusses interaction techniques using various body parts,
including a face and user interface for VR systems. Chapter 3 introduces the facial surface
interaction. Chapter 3 show the effectiveness of the facial surface as an interface in virtual
environments. Chapters 4 and 5 describe our research projects. Chapter 4 presents the
mouth shape recognition techniques [33]. Chapter 5 presents the spatial directional guidance
technique using cheek haptics [34]. Chapter 6 concludes this dissertation.

– 7 –



Chapter 2

Related Work



Chapter 2 Related Work

This chapter reviews interaction techniques using various body parts and VR interfaces.
The first section describes methods to sense and stimulate the body and applications using
body interaction (Section 2.1). The second section (Section 2.2) focuses on face-related
interaction technologies. The above two sections focus mainly on the interfaces in the physical
environment. The third section (Section 2.3) presents the interactive systems for VR. The last
section (Section 2.4) discusses the standpoint of this dissertation.

2.1 Body-based Interaction

Numerous researchers have attempted to leverage the body for interaction. Measuring and
stimulating body parts, such as hands, arms, feet, legs, and a torso, enables interaction. This
section reviews the measurement and stimulation methods, respectively.

2.1.1 Sensing Body

Basically, the actions of various body parts are often leveraged as an input method. For
body sensing, camera-based approaches are popular for detecting body pose estimation [35],
activity recognition [36], and hand gesture recognition [37]. In particular, the emergence of
low-cost depth cameras [38–41] has driven image-based human sensing techniques [42, 43].
With the advance of camera technology, cameras have become smaller and higher resolution,
thereby making them wearable. In several studies, wearable cameras were placed on a user’s
chest to recognize the user’s bodily gestures [44] and capture the user’s pose and motion [45].
Lin et al. mounted cameras on the back of a hand to capture hand gestures [46]. The image-
based method enables accurate and robust body sensing, while it has difficulties in terms of
limited field of view and high processing cost.

To avoid such issues, embedded sensor-based approaches have been proposed. In the
embedded sensor-based approach, wearable devices with integrated sensors are installed
on the body and are able to detect various activities of the user. The embedded sensing
approach has frequently been adopted for the recognition of hand gestures and various sensors
have been used, for example, myoelectric (EMG) sensors [7], strain sensors [47], bend
sensors [10], optical sensors [8, 48], capacitive sensors [49], ultrasonic sensors [9, 50], and
inertial measurement units (IMU) [51, 52]. In other body parts, there were attempts of
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pressure sensor-based foot gesture recognition [53], IMU-based gait classification [54], etc.
Such embedded sensors have the advantages of less spatial limitation and low dimensional
data, which leads to the lower computational intensity and battery power. Moreover, owing to
the tremendous development in machine learning, even a sparse layout of stretch sensors was
sufficient to estimate a hand pose [11]. The embedded approach is effective in recognizing
the activities of specific body parts quickly with low-dimensional data.

Not only body gestures but skin gestures have also been adopted for input. The skin gesture
is a deformation caused by the user’s action, such as pinching, pushing, and stretching the
skin. Since skin gestures are smaller than body gestures, it is difficult for cameras to capture
the deformation. Therefore, typically, sensitive sensors have been deployed. Harrison et
al. proposed Skinput, an armband-type device to detect touch with acoustic signals on the
skin [55]. In their study, they detected touch on the forearm using acoustic signals and
integrated the sensing method into an on-body projection system. Furthermore, Weigel et
al. found that, in terms of skin input for mobile computers, on-skin gestures extended the
conventional touch interfaces, and users are likely to use the forearm and hands [56]. Ogata et
al. embedded photo reflective sensors into wearable devices to recognize finger gestures [57]
and forearm skin deformation [58]. As in other methods, capacitive sensing [59] and acoustic
sensing [60] were also attempted. The on-skin input detects subtle skin deformation with
various modalities. In particular, the optical sensors measure the distance between the sensor
and skin in order to capture spatial geometrical changes. Therefore, optical sensors are suitable
for recognizing facial geometry.

2.1.2 Stimulating Body

In stimulating the body, a variety of haptic stimulation was provided to several body parts.
Hands, which are sensitive to mechanical stimuli, are often employed for stimulation. To
stimulate the hands, hand-worn or handheld devices were developed. Günther et al. developed
a glove-type device that provided spatial information encoded with vibration patterns [13].
Chen et al. proposed a pin array-based handheld device to present spatial directional cues
on the user’s palm [12]. These studies attempted a stimulation directly on the body, while
ambient stimulation, such as air jets [14] and ultrasonic cues [15], was also employed. Ion et
al. presented a tactile display that dragged the skin [61]. In stimulating the torso, a jacket-type
force feedback device was proposed. To present stimuli to the torso, suit-type devices are
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often used, including jacket-type devices that present force sensation [62] and commercial
haptic suits [63]. In addition, stimulation of the feet has also been explored by rendering the
tactile sensation [64]. Matsuda et al. leveraged the neck as a haptic display to present spatial
awareness by providing tactile patterns on the neck [65].
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2.2 Interaction using Head

Face can be formed in complex geometry and is one of the most sensitive to mechanical
stimuli. Therefore, numerous studies have attempted to recognize facial expressions and
provide haptic feedback for human-computer interaction [66–69]. Here, previous research on
sensing and stimulating faces is discussed.

2.2.1 Facial Expression Recognition

Numerous facial recognition systems, as well as body sensing systems have been developed.
In human-computer interaction, the face is used as an input modality. Computer vision-
based techniques have been studied for a long time. In facial expression recognition, most
studies detected descriptors of facial expressions [70]. Since the emergence of convolutional
neural network (CNNs), deep learning has been used for facial expression recognition [71,
72]. Several studies have recognized facial movements from 2D images to leverage them
as input [66, 67]. Deepateep et al. recognized 3D facial movements as input for mobile
devices [73]. Yan et al. detected a frown for interrupting unexpected action from smart
speakers [74].

Furthermore, wearable devices have been deployed for sensing facial expressions. In
a remarkable method, Masai et al. embedded multiple facial expressions into glasses to
recognize facial expressions [75]. They revealed that by arranging photoreflectors in a sparse
layout considering Facial Action Coding System (FACS), high facial expression classification
could be achieved. In other studies using photoreflectors, Masai et al. detected facial skin
movements caused by rubbing the face for input [76]; Kikuchi et al. recognized ear gestures
with earphones integrated photoreflectors [77]; Hashimoto et al. detected tongue gestures
with a mouth piece embedded with several photoreflectors [78]. As with other sensing
methods, capacitive sensing is also leveraged by integrating electrodes into glasses [79] and
a mask [80]. Goel et al. proposed a tongue gesture recognition method with head-mounted
microwave motion sensors [81]. Xu et al. presented an on-face interaction method by detecting
gestures on the face using acoustic signals [82].

This section mentions several sensing methods used for facial expression recognition.
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However, to capture the surface statically, optical sensing is most appropriate, as the other
methods focus on temporal changes.

2.2.2 Facial Stimulation

The face has several parts, and each parts have different levels of sensitivity. In facial
stimulation, haptic stimulation is designed to safely convey appropriate information. Several
studies translated surrounding information into haptic stimulation around the head [83–85]. A
forehead has a wide surface and is an area that is easy to provide stimulation to. Kajimoto et al.
designed a forehead stimulation system with electro-tactile cues to convey spatial information
[69]. The cheek also has a large surface and is more sensitive than other facial parts. Sato et al.
designed an interactive cheek haptic display using an air vortex to modify the user’s stress [86]
and found that air vortex-based cheek haptics affected task performance and physiological
responses [87]. Yoshida et al. developed a glasses-type wearable device that released water
on the cheek to increase sadness [88] Gil et al. investigated the perception of ultrasonic cues
on the face and found that the cheek could detect the location of the stimulus as precisely as
the glabella and above the eyebrows [89]. Hashimoto et al. provided vibrotactile feedback
on the cheek by modulating hand gestures to waveform [68]. In addition, ears have haptic
receptors to detect haptic stimulation. Lee et al. assessed the possibilities of ear haptics in
conveying spatial-temporal information [90]. Nasser et al. investigated thermal feedback to
the skin around the ears [91]. Not only the facial surface but also the oral cavity is leveraged
as a haptic display [92]. Most facial stimulation methods used weak stimulation, such as
ultrasonic, vibration, and thermal as the face is easily injured.
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2.3 User Interface for VR

In VR systems, we interact with virtual environments through devices. For example, an
HMD shows virtual environments according to a head position and posture. In such a case, it
is important to sense users’ actions and provide feedback to users. This section discusses the
user performance sensing techniques and the methods for providing haptic stimulation.

2.3.1 User Performance Sensing

This section focuses on facial sensing. Users wear VR devices to immerse themselves in
virtual environments. The significant difference from sensing in the physical environment is
that the display occludes the user’s face. Several studies have attempted to capture the entire
body with cameras [93]. However, the sensing techniques for VR are not different from those
for the physical environment.

Facial Sensing of HMD Users
Immersive HMDs occlude most of the face by the displays, thereby making it difficult to

recognize facial expressions with conventional camera-based methods. To overcome these
issues, many studies have proposed facial sensing systems.

Although most of the HMD user’s face is hidden by the display, the mouth is exposed.
Several studies have attempted to recognize the mouth to detect mouth gestures [94] and
whole facial expressions [95]. However, it is difficult to recognize entire facial expressions
due to a lack of information around the eyes. To obtain such lacking information, Li et
al. attached multiple strain gauges on the facial interface and an RGB-D camera [22] They
attempted to reconstruct facial geometry by combining depth images of the mouth and skin
deformation caused by forming facial expressions. In addition, there were approaches to
embed tiny cameras into HMDs for capturing eye images and recognizing facial expressions.
Hickson et al. infered facial expressions by using eye images of HMD users [19]. Several
studies used several facial cameras to transfer facial expression on avatars [96] and generate a
photo realistic face [97]. However, camera-based approaches entail high computational costs
due to the rich information available from the images. This is critical to wearable HMDs
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because the HMDs spare many computational resources to process other functions.
For reducing the processing cost, embedded sensors have been employed. As the face is

occluded by the HMD, by integrating sensors into the HMD, many studies have attempted
to understand gestures. Since HMDs usually have inertial measurement units (IMUs) and
microphones, IMU-based head gesture sensing methods [98] and acoustic-based hand gesture
sensing on the HMD surface [99] were proposed. In the case of recognizing facial expressions,
additional sensors were integrated into the HMD. Several studies placed acoustic sensors [50]
and EMG sensors [27,100–102] on the facial contact area. As other methods, optical sensors,
like photoreflectors were leveraged to detect facial surfaces. Photoreflectors were placed to
measure the deformation of a specific facial location. Nakamura et al. detected changes in the
glabella with a photoreflector embedded into an HMD to control the volume of the displayed
information [103]. Li et al. detected the skin movement on both sides of the face to predict
continuous jaw motions [104]. Sakashita et al. placed a photoreflector array in front of the
user’s mouth to recognize mouth movements [105]. Yamashita et al. attached photoreflectors
on the bottom of optical see-through HMD to detect cheek surface deformation [106]. Kim et
al. embedded several couples of infrared emitter and receiver into a facial cushion of an HMD
to detect facial gestures, including head movements [107]. By measuring multiple locations
on the face, several studies attempted to capture the entire complex facial surface deformation.
Suzuki et al. installed multiple photoreflectors into the interior of the HMD to recognize facial
expressions [108]. As described above, the embedded sensor-based approaches achieved face-
related movement recognition, including specific facial parts and the entire face. In terms
of sensing the mouth, previous studies targeted simple jaw movements, while few studies
measured complex mouth shapes, even though the mouth is a more expressive part.

2.3.2 Feedback in Virtual Environment

We receive haptic feedback through interaction. Haptic feedback is provided on various
body parts. In particular, hands are popularly used for stimulation. Fang et al. rendered
haptic feedback of virtual objects using a shoulder-mounted device that retracted finger-worn
wires [109]. AI-Sada et al. leveraged wearable robotic arms to provide multiple haptic
modalities with various haptic actuators attached to the end effector [110,111]. They stroked
the face with soft brushes to provide haptic feedback [110]. Hoppe et al. leveraged quadcopters
to render haptic feedback [112]. In VR, it is essential to integrate haptic stimuli with other
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modalities in order to improve the virtual experience.

Facial Stimulation of HMD Users
The head is sensitive to mechanical stimuli, and the perception of haptic stimulation is

likely to encode a head-centered frame [16]. Therefore, the head is effective in appropriately
integrating haptic stimulation into other modalities. Since the HMDs have a contact area
to the face, most studies involve the installation of haptic actuators there. Wang et al.
presented a facial skin stretching system that installed shear actuators on an HMD’s facial
interface [113]. Oliveira et al. translated spatial direction into vibrotactile cues on an HMD’s
facial interface [28]. Kameoka et al. mapped the finger information to suction stimulation on
the face [114]. Peiris et al. installed thermal actuators on the facial contact area to explore
the ability of thermal haptic feedback to the forehead for spatial awareness [29] and enrich
the virtual experience by providing thermal feedback on the face [30]. Chang et al. proposed
a force feedback method by pushing an HMD to the face [115]. Another approach was to
mount haptic actuators on the interior or the exterior of the HMDs. Although the interior of
the HMD is small, there was an attempt to place an air jet-based tactile feedback device on
the lens [116]. On the exterior of the HMD, relatively large actuators were attached. Tsai
et al. presented a force to the head through devices, that generated impact force, attached to
the front of the HMD [31]. Peng et al. provided unobtrusive tactile feedback on the back
of the head during walking to reduce VR sickness [117]. Several studies have attempted to
place haptic actuators on the bottom and both sides of the HMD, close to the mouth and
cheek. Ranasinghe et al. attached wind and thermal actuators to the bottom of an HMD to
enhance the virtual experience [118, 119]. Liu et al. synchronized visual oscillation caused
by walking to cheek haptic stimulation to reduce VR sickness [120]. Wilberz et al. provided
spatial directional cues with multiple modalities using a single robot arm mounted on the
HMD [121]. Thus, it is evident that previous studies aimed at several localized positions for
haptic feedback, while few studies attempted to stimulate arbitrary locations on the face.
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2.4 Standpoint

This section describes the position of this dissertation. The previous sections discuss inter-
active technologies in physical/virtual environments. Those technologies leveraged various
modalities for both input and output.

In terms of the sensing, computer vision techniques were frequently introduced to interactive
systems in stationary and wearable approaches, while the processing cost is high due to
high-dimensional data (i.e., if the image is VGA, the data dimension is 640 pixels × 480
pixels × 3 channels = 921600 bytes). The previous study on camera-based mouth gesture
classification [72], which classified six mouth shapes (silence and five Japanese vowels) using
facial images of 1024 pixels (32 pixels × 32 pixels) on a mobile device, achieved an average
classification accuracy of 92.4% in an average elapsed time of 2.33 seconds. The camera-based
HMD user’s facial expression recognition [94] used a high-performance computer to classify
seven mouth gestures (neutral, mouth stretch, smile, dislike, lip puckered, left lip corner puller,
right lip corner puller) from input facial depth images (512 pixels × 424 pixels × 16 bits) with
an accuracy of 85.7% in 18 ms. To reduce the data for processing, there were contact sensor-
based attempts to enable gesture recognition. In [101], with EMG sensors attached to the facial
interface of HMD, seven mouth gestures were classified with 97% accuracy using data of 32000
bits (1 s × 250 Hz × 8 measures × 16 bits). Contact sensors are easily arranged according to
the sensing target. However, in the contact sensor-based approaches, the sensing performance
depends on the contact states. Therefore, contactless sensors, such as photo-reflective sensors,
were integrated into wearable devices. Photo reflective sensors are also to optimize the sensor
layout according to sensing locations. In particular, combining photo reflective sensor-based
sensing and a simple machine learning approach, like SVM, achieved high facial expression
classification accuracy in physical and even virtual environments [75, 108]. In the virtual
environment, most embedded facial sensing technologies target the occluded portions, such
as the eyes and the eyebrows. For mouth gesture sensing, there were several methods to
capture jaw movements using embedded sensors [104] within an error of 8.19mm, while the
complicated mouth shapes could not be detected.

In the stimulation methods, vibrotactile methods are primarily introduced to embedded
systems. Haptic stimulation translates various types of information. Penfield’s cortical
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Table 2.1: Standpoint in terms of sensing

Approach Advantages Disadvantages Data Accuracy

Cameras • Robust detection
• Accurate recognition
• Long duration use

• High-computational 
cost 

• Field of view

• 512×424×16 
bits of depth 
image (Cifti et al. 
2017.)

• Generalized mouth 
gesture classifier

• 85.7% (Cirfti et al. 2017)

Contact 
sensors

• Low computational cost
• Accurate recognition
• Easy to optimize a 

sensor layout

• Susceptible to contact 
state

• Low user-independency

• 250×8×16 bits 
(Chen et al. 
2021.)

• User-dependent mouth 
gesture classifier

• 97% (Chen et al. 2021.)

Optical 
sensors

• Low computational cost
• Long duration use
• Easy to optimize a 

sensor layout

• Not targeted mouth 
expressions

• Low user-independency

• 16×10bits 
(Suzuki et al. 
2017.)

• User-dependent facial 
expression classifier

• 88% (Suzuki et al. 2017)

The 
dissertation

• Complex mouth shapes
• Facial surface 

estimation

• Low user-independency • 8×10bits

Table 2.2: Standpoint in terms of stimulation

Approach Advantages Disadvantages

Hand haptics • Sensitive to haptic stimulation
• Easy to deploy various actuators
• Less susceptible to injury

• Inconsistency between stimuli and 
perception

Face haptics • Sensitive to haptic stimulation
• Consistency between stimuli and 

perception

• Susceptible to injury by even slight force
• Require facial geometry for safety
• Calibration by hand (Wilberz et al. 

2020.)

The dissertation • Pinpoint haptic stimulation to face
• Consistent stimulation
• Facial geometry-considered stimulation

• Weight of the device
• Difficulty in real-time facial sensing

sensory homunculus indicates the wider area of the face so that the face can perceive haptic
stimulation precisely. Moreover, the previous study on cheek stimulation [89] revealed the
participants identified the location of ultrasonic cues on the bridge between the eyes, the
eyebrows, and the cheek. In the case of VR, most studies embedded tactors into the facial
interface of the HMD. Several studies provided feedback to the region around the mouth with
winds and thermal cues [118, 119]. Most studies explored only ambient cues despite the
excellent sensitivity of the face for haptic stimuli. Wilberz et al. provided directional cues
using a robotic arm mounted on the HMD to improve the virtual experience [121]. However,
in their study, the cheek surface was roughly detected by hand, was not accurately estimated,
and an arbitrary position could not be calculated.
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Since the rise of VR, many companies have invested heavily in VR. These companies
targeted high-fidelity photo realistic rendering to transfer user on avatars [21] and high-quality
haptic rendering to provide realistic haptic stimulation [122]. Such technologies significantly
improve virtual experiences. However, for immersivity, it is not required to have photo realistic
avatars and consistent stimuli. For example, Animaze by FaceRig *1 recognizes user’s facial
movements from images to 2D and 3D avatars, including non-human avatars. However,
image-based facial expression transfer applications process much information contained in
images. Therefore, to capture facial features with low-dimensional data, photo reflective
sensors were adopted for facial expression recognition [108]. Moreover, in [108], facial
expressions could be reproduced by synthesizing several template facial expressions. In terms
of haptic stimulation, by mapping hand haptic sensation to other body parts, virtual experience
is improved. Therefore, even low-cost facial sensing and spatial inconsistency does not matter
if input/output modalities are appropriate.

From the perspective of sensing and stimulation, it is considered to be important to detect
complex facial expressions and stimulate the face with pinpointing direct cues for improving
the virtual experience. This dissertation aims to build the embedded facial surface sensing
and stimulation techniques with low dimensional data and localizable haptic sensation, which
enables facial surface interaction.

*1 https://store.steampowered.com/app/1364390/Animaze_by_FaceRig/?l=japanese
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Chapter 3 Facial Surface Interaction in Virtual Environment

This chapter describes the core concept of facial surface interaction. In the advancement
of facial surface interaction, skin surface interaction is described. Based on skin surface
interaction, the differences between skin surface interaction and facial surface interaction are
described to clarify the concept of this dissertation.

3.1 Skin Surface Interaction

We interact with physical environments through the skin. The skin deforms by our action
and detects stimuli from the environment. The skin is always present on our body so that
it is accessible anytime. Therefore, the concept of using skin surface as an interface, skin
surface interaction, has been proposed. The skin surface enables a user to communicate with
systems without external devices, such as a mouse, a keyboard, or an LCD display. Skin
surface interaction contributes to a new concept of computers, like VR.

To realize skin surface interaction, there have been attempts to use changes on the skin as
input and to use the skin as output. Especially, since Skinput presented by Harrison et al. [55],
many skin-based input techniques have been developed [123]. Such techniques measured
the changes on the skin in terms of spatial and temporal changes. To capture the changes,
there were various sensing attempts using cameras [124,125], acoustic sensors [126], inertial
sensors [127], ultrasonic sensors [128], and optical sensors [8,48,57,58,129,130]. Skin-based
input focuses typically on localized skin because the skin surface moves in a simple manner.

For feedback to the skin, visual and haptic feedback has been adopted. Basically, to project
visual stimuli, displays and projectors were employed. In such a case, the projected images
are modified according to the target geometry. For example, Xiao et al. modeled the arm
as a cone-like object to estimate the arm surface [130]. On the other hand, in terms of
haptic feedback, skin geometry has not attracted too much attention. This is because most
skin-based haptic feedback systems are directly mounted on target location and, if the systems
are a stationary setup, the systems constrain the user’s spatial location to provide feedback
in an effective manner. In the case of ambient cues, such as ultrasonic, the target position
is estimated to match stimuli to target [131], while the accurate skin position is usually not
considered.
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3.2 Facial Surface Interaction

The facial surface interaction focuses on a specified skin surface, while it is different from
the conventional skin surface interaction. When the stimulation is provided to humans, the
stimulation is likely to be encoded into head-centered reference frames [16]. Therefore, using
the facial surface as an interface enables consistent interaction between the stimulus and the
user’s perception. Moreover, Penfield’s cortical homunculus (Fig. 1.1) reveals that humans
convey and receive much information through the face as well as hands. Targeting the face
enriches interaction without using hands, which are important channels to sense and actuate
the physical world. Moreover, by interacting with additional bodies and senses through the
face, it is considered that humans augment their abilities in an effective manner. There were
attempts to augment spatial awareness by presenting the forehead, which is a sensitive part
of the entire body [69]. In other words, facial surface interaction has a potential to expand
the range of interaction without preventing conventional hand-based interaction. Therefore,
facial surface interaction contributes many research areas, such as telepresence, collaboration,
affective computing, and human augmentation.

There were attempts to use facial expressions as input. Since humans form complex facial
expressions owing to facial muscles, facial expressions enable a wide range of input. Masai
et al. attempted facial gestures to apply to daily tasks, such as making a call, turning on a
TV, and playing music [132]. Nakao et al. presented an EMG-based facial input technique
that allows hands-free interaction [102]. Santis et al. used facial movements as input for
disabled users [133]. In addition, facial expressions were leveraged to enable hands-free
game control [134]. Mouth gestures have also been used for input [66,67]. The above studies
revealed that facial expressions were useful for human-computer interaction. To realize
interaction using faces, it is essential to accurately recognize various facial expressions.

In stimulating the facial surface, skin surface estimation is rather important unlike skin
surface interaction. In interaction, sensing and stimulation are important. However, the face
should be provided stimulation with care because the face is easy to be injured. The head has
many sensory systems, which are located on the face and are exposed. In addition, the skin
around the eyes and lips is thin, thereby making it susceptible to injury. Therefore, several
studies employed ambient stimulation, like wind [87]. The ambient cues provide the feedback
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Figure 3.1: Facial Surface Interaction

in a safe manner, even without accurate skin surface information, while the ambient cues
cannot stimulate to pinpoint despite the excellent sensitivity of the face. In another approach,
vibrotactors were integrated into head-worn devices [84]. However, vibrotactile stimulation
provides limited information. To exploit the potential of a face as an interface, it is essential
to provide localizable stimulation. In such a case, direct contact is suitable, but it can injure
the face. In addition, facial geometry and movements vary from person to person. The facial
geometry can be controlled in a fine and complex manner, owing to the many facial muscles.
Therefore, accurate surface information of each person is required to calibrate the mapping
between the stimulation and surface.

In VR scenarios, facial surface interaction has been employed. Several studies used facial
expression to control virtual third arms [17] and input to AR game [18]. Head gestures [98]
and facial gestures [107] were also employed for interaction in VR environments. For haptic
stimulation, haptic actuators, such as vibrotactors and thermal actuators, were adopted. Most
HMD-based haptic feedback studies integrated haptic actuators on the contact area to the
face [28–30, 113]. A jet-based tactile feedback device was embedded into the interior of
an HMD [116]. In other approaches, haptic actuators were attached to the exterior of an
HMD [28, 118–120]. Wilberz et al. leveraged robotic arms with soft tips on the end effector
to present direct stimulation on the cheek [28]. However, the their study needed manual
calibration. Especially, in the case of VR HMD users, the user cannot see the physical
environment, and, thus, the other person is required for calibration. Therefore, it is important
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to automate the calibration of the mapping between the stimulation and surface, which allows
users to easily interact with virtual environments.
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4.1 Introduction

VR systems allow their users to communicate via avatars in various scenarios. In such
a case, the facial expression is essential because it conveys emotions and intentions, among
others. Computer vision techniques can be used to capture facial expression in many cases;
however, facial expressions under HMD cannot be easily captured due to facial occlusions
caused by the display. Several solutions have been developed to overcome this issue. One
remarkable method is using embedded optical sensors around the eye region and adopting
machine learning techniques to recognize facial expressions [108]. However, given that the
sensors are allocated around the eye region, the system recognizes only limited movements
of the mouth. The mouth is important for understanding expressions [135], especially for
Westerners.

This study introduces a system that recognizes the mouth shape of the HMD user with
optical sensors. As the optical sensors, a photo-reflective sensor and a position sensitive
detector (PSD) were adopted in this study. These sensors measure the distances between them
and the skin surfaces surrounding the mouth. Optical sensor values are collected for each
mouth shape and then labeled the sensor values using vowels, which are detected from speech.
Classifiers are trained with these labeled sensor values. A prototype is built using the HMD
to measure the mouth shapes. Also, an application was developed to transfer the user’s mouth
shape to an avatar. This application blends mouth shapes according to belonging probabilities
for the classes. Figure 4.1 shows this application applying a blended mouth shape to an avatar.

Many studies on capturing facial performance use cameras or optical sensors. Camera-based
techniques detect facial gestures accurately, but they have difficulty integrating to HMD-based
systems because of limitations such as weight, hardware cost, and high computational cost.
Meanwhile, optical sensors are lightweight, low-cost, and capable of recognizing gestures
with low-dimensional data. Therefore, they are suitable for wearable devices, such as HMD.
In particular, integrating machine learning with sensing with optical sensors enables powerful
gesture recognition [75]. Many of such recognition requires collecting training data by hand,
making the training process explicit and time-consuming. Therefore, labels are acquired by
speech recognition to gather training data automatically. In interacting with VR systems, audio
modality is often employed. If labels can be obtained from the audio modality, the training
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HMD User An Avatar Reflected HMD 
User’s Mouth Shape

Figure 4.1: Reflecting Mouth Shape of HMD User to Avatar

process can be completed during interacting with the systems. Such an implicit training
process leads to higher usability. This study investigates a speech-based sensor data labeling
method to explore the possibility of automating the training process with audio information.

The main contribution of this study is as follows:

• This study developed a technique that recognizes mouth shapes while the user is
wearing an HMD. A mouth shape sensing device was built to be lightweight, low-cost,
and unaffected by the facial occlusion caused by HMD.

• The training data was automatically collected by speech recognition. Labels for training
data was obtained by integrating vowel recognition with a mouth shape measurement
technique.

• An application was built to project the user’s various mouth shapes on avatars by
synthesizing several bases of the mouth shape. The parameters of bases are blended
according to belonging probabilities to reproduce multiple mouth shapes.
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4.2 Related Work

This section reviews previous works on capturing facial performance and highlight wearable
systems with embedded sensors. This section describes an overview of sensing approaches,
such as audio, camera, contact sensors, and optical sensors.

4.2.1 Audio-based Approach

Speech has been used to produce an animation of lip movements. Speech consists of
phonemes, the smallest unit of speech that makes sense as a language. A mouth shape and a
tongue position determine a phoneme. A mouth shape corresponded to a lip position. There-
fore, phoneme detection leads to estimation of lip movements [136]. Oculus Lipsync [137]
recognizes the speech sounds of HMD wearers and matches the lip movements of avatars with
the speech in real time. The audio-based approach is based on the speech, and thus does not
work without any voice.

4.2.2 Camera-based Approach

One of the most popular approaches to capturing facial movement is the use of cameras.
Focusing on HMD users’ facial movement recognition, embedded camera approaches have
been explored. For example, Hickson et al. [19] classified facial expressions from images of
an eye camera embedded in HMD. Olszewski et al. [96] developed a system that reconstructs
the facial geometry of the user using an HMD with both eye cameras and a mouth camera.
However, this approach requires high computational power and expensive hardware because
it targets high-fidelity avatars.

4.2.3 Contact-based Approach

Contact sensors can detect facial movements through muscles and skin deformation. For
example, Gruebler et al. presented a wearable device to recognize positive facial expressions
from electromyography [138]. Li et al. proposed a system that reconstructs facial geometry
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from both strain gauges and an RGB-D camera attached to an HMD [22].
Contact sensors are suitable for wearable devices because of their compactness and ful-

fillment of the required contact with surfaces. However, contact-based sensing techniques
depend on the condition of the contact with a surface, and there are concerns about comfort
while the device is mounted.

4.2.4 Measurement using Optical Sensors

Optical sensors have been deployed to wearable devices because of their capability to sense
gestures. Some interfaces using optical sensors focus on the HMD wearer. Sakashita et al.
developed a mask-type interface that transmits human action to puppetry [105]. Their system
used optical sensors to detect the lower lip position and classifies three mouth states (closed,
partly open, open). Suzuki et al. built an HMD-based system that recognizes five facial
expressions of the HMD wearer [108]. Their system used machine learning to recognize
various facial expressions. In their system, optical sensors detected the deformation around
the eyes. However, this system has difficulties in measuring the mouth shape because it
focuses on the eye region.

Combining machine learning to measuring by optical sensors enables the detection of
various gestures [75] but requires a training process. To automate this process, Suzuki et
al. requested individuals to imitate the facial expressions of avatars and collected training
data [108]. However, their system can label training data incorrectly because users can make
facial expressions that differ from those of avatars.

As mentioned above, previous studies have two limitations, namely, recognition methods
of mouth shapes and labeling methods of training data. This study uses optical sensors
to measure the mouth shape and machine learning to recognize various mouth shapes. In
training, vowels are recognized to give correct labels to training data.
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4.3 Mouth Shape Recognition by Embedded Op-
tical Sensors in HMD

This section provides an overview of the mouth shape recognition system proposed in this
study. The mouth shape recognition system consists of three techniques, namely, mouth
shape classification, data labeling using vowel recognition, and mouth shape reproduction.
Optical sensors detect the distances between them and skin surfaces. Optical sensor val-
ues are labeled with vowels recognized from speech and are learned to classify the mouth
shapes. In reproducing the mouth shapes, multiple mouth shapes are blended according to the
class membership probabilities. This reproduction approach is similar to that in a previous
research [139]. Figure 4.2 shows the flow of mouth shape recognition by optical sensors
and labeling of training data by vowel recognition. Section 4.3.1 describes the mouth shape
measurement and the classification process. Section 4.3.2 describes the labeling technique of
the training data using vowel recognition. Section 4.3.3 describes the blending method for
the mouth shapes.
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4.3.1 Mouth Shape Classification by Embedded Optical
Sensors

The mouth shape recognition system of this study measures mouth shapes by an approach
similar to that in [75]. Embedded optical sensors are used to achieve an optimized sensor
allocation and low computational cost. The skin deforms as the mouth muscles move. Optical
sensors capture this deformation by detecting the distance between them and the skin surfaces.
These distances are different for each mouth shape because the movement of mouth muscles
varies depending on the mouth shape. Eight optical sensors are deployed to an HMD. The
measurement points are the upper lip, upper cheek, lower lip, and cheek. These points are on
both the left and right side.

This study adopts two kinds of optical sensors, namely, a photo reflective sensor and
position sensitive detector (PSD), which differ in sensing target and measurable range. Photo
reflective sensors detect the intensity of reflected light (Figure 4.3 Left), whereas PSDs detect
the position where reflected light is received (Figure 4.3 Right). Most photo reflective sensors
can measure from about 1 mm to 20 mm, while many PSDs can measure from approximately
10 mm to 200 mm. Hence, photo reflective sensors are suitable for measuring the upper lip
and the upper cheek, which are relatively close to the HMD. By contrast, PSDs are suitable
for measuring the lower lip and the cheek, which are relatively far from the HMD.

Light Source

Phototransistor Object

Reflected
Light 
Intensity

Light Source

PSD
Object

Received position 
of reflected light

Figure 4.3: Left: Measurement Principle of Photo Reflective Sensor. Photo reflective sensors
detect the light intensity reflected from the target object. Right: Measurement
Principle of PSD. PSDs detect the position where the reflected light reaches.
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This study applies machine learning to recognize mouth shapes. Our system uses the
multiclass classifier support vector machine (SVM) using a linear kernel, which can predict
belonging probabilities to each class. Our system learns the eight optical sensor values of
each mouth shape to train a classifier. This approach leads lower computational cost than
processing higher dimensional data such as a camera image. Given that SVM is a supervised
model, it requires the correct assignment of labels for these sensor values in the training phase.
Therefore, the optical sensor values should have correct labels.

Recognition 
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Machine

Training Data
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E
Sensor Data

input

Training

output

Figure 4.4: Learning and Classifying Mouth Shapes with Machine Learning
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4.3.2 Labeling Training Data Using Vowel Recognition

This section describes the relation between speech and mouth shape. Speech consists
of phonemes, which are the smallest units of speech. Phonemes are characterized by the
resonant frequency of air in the vocal tract. The phoneme mainly consists of consonants and
vowels. Consonants are generated by dynamic movements of mouth shape, such as changes
in expiratory flow or friction. Meanwhile, vowels are generated by stable movements of
mouth shape, such as lip circularity and jaw opening. Focusing on such stable movements,
this study uses vowels to label the optical sensor values, thereby enabling automated dataset
collection. Our previous study [108] expected users to make facial expressions accord with
an graphical instruction timely during the training process. On the other hand, this study
introduces auditory feature to label facial expression annotations to optical sensor values.
However, the dataset can contain outliers if our system recognizes vowels incorrectly.

Outliers are removed from the dataset. A sample in the dataset consists of eight optical
sensor values. For outlier removal, the Mahalanobis distance of a sample from the mean of
each class are calculated. If the Mahalanobis distance of a sample is greater than a threshold,
the sample is removed as an outlier. This removal is iterated until all samples contained in the
dataset has less than or equal to the threshold (Formula 4.1).

𝑋 = {𝑋 |𝑋 = {𝑋0, 𝑋1, ..., 𝑋𝑛}, 𝐷𝑚 (∀𝑋) <
√
𝐷𝑡ℎ𝑟 } (4.1)

𝑋 : 𝑆𝑒𝑛𝑠𝑜𝑟𝐷𝑎𝑡𝑎

𝐷𝑚 (𝑥) : 𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐷𝑡ℎ𝑟 : 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

By investigating the effect of the threshold on mouth shape classification performance, the
optimal threshold is decided. As the first step, a threshold is set to 0.0. With the threshold,
outliers are removed to obtain training data. A classifier is trained using the training data and
classifies the training data to evaluate classification accuracy. Then, the threshold is added to
1.0. The above procedure is iterated until the threshold is 150.0 to obtain the classification
accuracy for each threshold. In this study, the proper threshold is defined as the threshold that
achieved the highest classification accuracy among the set of classification accuracy. With
the proper threshold, the best training data is obtained.
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Figure 4.5: The Relation between Mouth Shapes and Vowels. There were six mouth shapes
that were the closed mouth (silence) and the five vowels of Japanese. In the line
graphs, the blue lines indicate the frequency of each vowel, and the red lines
show the spectral envelopes.
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4.3.3 Mouth Shape Reproduction

Various mouth shapes are reproduced from the optical sensors (Figure 4.7). The blending
of several mouth shapes is assumed to reproduce various mouth shapes. In the preparation of
the parameters of several mouth shapes ®𝑃𝑖 , (𝑖 = 1, 2, · · · , 𝑚), mouth shape P can be expressed
as

®𝑃 = ®𝑃0 +
𝑚∑
𝑖=1

𝑠𝑖 ( ®𝑃𝑖 − ®𝑃𝐵) (4.2)

where ®𝑃0 is the parameter of the mouth shape during silence, ®𝑆 = (𝑠1, 𝑠2, · · · , 𝑠𝑚) is the
belonging probability to each mouth shape class.

This approach is the same as that in a previous research [108], which synthesizes facial
expressions according to five facial expressions, namely, neutral, happy, angry, surprised, and
sad.
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4.4 Implementation

Our system consisted of a computer and a device that measures mouth shape and audio. The
device sent the measured sensor values and audio signals to the computer, which then learned
the sensor values and recognized the mouth shapes. In training, the computer recognized
vowels from the audio signals, labeled the sensor values, and used these labeled sensor values
to train an SVM. In recognition, the SVM recognized mouth shapes from the optical sensor
values. Section 4.4.1 describes our hardware and Section 4.4.2 is dedicated to the software.

4.4.1 Hardware

A prototype was developed by modifying an HMD to measure the mouth shape and audio
(Fig. 4.8). The prototype had four components, namely, photoreflectors (LBR-127 HLD),
optical distance measuring units (SHARP GP2Y0A21 YK), a microphone (Audio-Technica
AT9904), and a microcomputer (Akitsuki Densho AE-ATMEGA 328-MINI). The photore-
flectors and the optical distance measuring units were optical sensors attached to the bottom
of the HMD (Oculus Rift DK2 [5]). The microphone was attached to the right side of the
mounting surface and connected to the computer through an amplifier (Audio-Technica AT-
MA2). The audio signal was directly sent to the computer. Meanwhile, the microcomputer
was attached to the front of the HMD and connected to the computer with a USB cable. The
microcomputer sent the sensor values of the photoreflectors and the optical distance measuring
units. Covers for the sensors and circuits were created using a 3D molding machine.

Figure 4.9 illustrates the arrangement of the photoreflectors and the distance measuring
units. The photoreflectors (Nos. 1 to 4) measured the upper lip and the upper cheek. The
optical distance measuring units (Nos. 5 to 8) measured the lower lip and the cheek (Fig.
4.10). The sensitivity of the photoreflectors was adjusted for each group (upper mouth and
upper cheek) to detect the deformation of the parts. Figure 4.11 shows the relation between
the optical sensor values and the distance.
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4.4.2 Software

Mouth shape recognition was implemented with a machine learning technique. Our software
had two processes, namely, training and recognition. In the training process, the computer
collected training data by vowel recognition. The computer recognized vowels from the
audio signal and labeled optical sensor values with the recognized vowels. In the recognition
process, the computer recognized the mouth shape from the optical sensor values. The
computer predicted the belonging probabilities of each class and synthesized the mouth shape
using these probabilities. Section 4.4.2 and Section 4.4.2 describe the training and recognition
processes, respectively.

Training Process
The dataset was collected automatically by vowel recognition. The computer received eight

optical sensor values and audio signals. At first, the computer recognized a vowel from the
audio signals. Then, the computer labeled the eight optical sensor values with the vowel,
thereby enabling the collection of the dataset of vowels. The computer provided a waiting
period before such dataset is collected. During this period, the computer acquired the optical
sensor values, which were labeled by the computer with "silence." Thus, the dataset was
obtained.

Ourliers were removed from the dataset to obtain the training data. The computer calculated
the Mahalanobis distance of the samples for each class in the dataset and then eliminated the
samples whose Mahalanobis distances were higher than the threshold. After elimination, the
training data was obtained for training the SVM.

Recognition Process
The mouth shapes were recognized with eight optical sensor values. The computer inputted

the eight optical sensor values it received to SVM, which then predicted the belonging
probabilities to each mouth shape class. The computer detected the class that had the highest
probability of these classes. The computer then regarded this class as the recognition result.
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4.5 Experiment

Experiment 1 evaluated the recognition accuracy of six mouth shapes by the embedded
optical sensors. Five of six mouth shapes were of mouths speaking five Japanese vowels. The
remaining shape was one during silence. Training data was collected manually and called
the method of learning mouth shapes in this experiment "manual learning." Experiment
2 evaluated the recognition accuracy of mouth shapes by automated labeling using vowel
recognition. In particular, the effect of automated labeling method on the recognition accuracy
was examined. The recognition accuracy of six mouth shapes was compared with the results
of Experiment 1. Then, training data was collected automatically using vowel recognition
and called this method of learning mouth shapes "automatic learning." In Experiment 3, user-
independent classification accuracy was evaluated to investigate the possibility of building
a generalized classifier. The inter-participant classification accuracy was compared with
intra-participant one.
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4.5.1 Experiment 1: Mouth Shape Recognition by Manual
Learning

This experiment investigated the recognition accuracy of the following mouth shapes by the
embedded optical sensors: "silence," "a", "i", "u", "e", and "o". "Silence" had a closed mouth
and no facial expression. "a", "i", "u", "e", and "o" were the mouth shapes for five Japanese
vowels. The subjects of the experiment were five Japanese males in their twenties, none of
whom had speech disorders or abnormalities in peripheral shapes, including the mouth. The
experimental procedures were as follows.

1. The experimenter explained the six mouth shapes ("silence," "a", "i", "u", "e", and "o")
to the subjects. After the explanation, the experimenter instructed the subjects to wear
our prototype.

2. The experimenter instructed the subjects to make the six mouth shapes and to hold
them until the experimenter provided next instruction. The order of instruction was as
follows: "silence," "a", "i", "u", "e", and "o". The experimenter manually operated the
keyboard to collect 50 samples for each mouth shape.

3. The experimenter iterated Step 2 three times.
4. The experimenter instructed the subjects to make the six mouth shapes again and to

hold them until the experimenter gave additional instruction. The order of instruction
was the same as in Step 2. The experimenter manually operated the keyboard to collect
200 samples for each mouth shape.

For the training, 900 samples (50 samples * 6 mouth shapes * 3 iterations) were collected
in Step 2. For the test, 1200 samples (200 samples * 6 mouth shapes * 1 iteration) were
collected in Step 4.
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4.5.2 Result of Experiment 1

Table 4.1 shows the result of Experiment 1. The average recognition accuracy of five
subjects was approximately 99.9%. Therefore, our method recognized the six mouth shapes
with high accuracy.

Table 4.1: Result of Mouth Recognition Accuracy using Optical Sensors

Subject A B C D E
Recognition
Accuracy

100.0 % 99.3 % 100.0 % 100.0 % 100.0 %

Compared with a previous study on facial expression recognition [108], our system achieved
higher recognition accuracy. It is considered that this is because the deformation around the
mouth is larger than that around the eyes. This large deformation leads to a wide variance in
sensor values, which enables the accurate classification of mouth shapes.
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4.5.3 Experiment 2: Mouth Shape Recognition by Auto-
matic Learning

This experiment investigated the influence of the automated labeling method on recognition
accuracy. The dataset was collected by combining vowel recognition and mouth shape
measurement. Then, to obtain the best training data, this dataset was analyzed. In the
analysis, the Mahalanobis Distance of sensor data in the dataset was calculated, and an
optimal threshold of Mahalanobis Distance was decided for outlier removal. This optimal
threshold was leveraged to obtain the training data, which was then used to evaluate the
recognition accuracy of mouth shapes. Finally, the results of this experiment were compared
with those of manual learning.

Experiment 2a: Decision of Optimal Threshold
This experiment investigated the optimal threshold of Mahalanobis Distance for outlier

removal. The recognition accuracy of mouth shapes was evaluated under the threshold values
of 1.0-150.0, with 1.0 change interval. The subjects were the same as those in Experiment 1.

Instruction

Complete 
Line

Gauges 
Corresponding 

to Each 
Vowels

Figure 4.12: Interface to Collect Dataset Automatically
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A dataset labeled by using vowel recognition was collected for each subject. The following is
the procedure for collecting the dataset.

1. The experimenter explained six mouth shapes ("silence," "a", "i", "u", "e", and "o") and
a user interface for automatic dataset collection displayed on the HMD to the subjects.
The experimenter asked the subjects to speak the five Japanese vowels clearly during
this experiment. Then the experimenter instructed the subjects to wear our prototype.

2. The experimenter displayed the user interface for learning mouth shapes through the
HMD and used it to instruct the subjects to wait. During this time, the experimenter
collected 50 samples for "silence."

3. Our system instructed the subjects to speak vowels through the user interface. Speaking
instructions and gauges were displayed on the user interface. During this period, The
experimenter gathered 50 samples for the five classes ("a", "i", "u", "e", and "o"). The
order of speaking the vowels was arbitrary for the subjects.

4. Our system provided a 3 s break to the subjects by displaying a "waiting" instruction.
5. Our system iterated thrice from Step 2 to Step 4.

900 samples (50 samples * 6 mouth shapes * 3 iterations) were collected in Step 2 and Step
3.

Figure 4.12 shows the interface for automatic data collection. The user interface had three
components, namely, gauges, an instruction, and a completion line. The upper part of the
interface displayed instructions, such as waiting and speaking. The completion line was on
the right side of the interface. Arrival of the gauges at this line indicated the completion of
sample collection. The center of the interface had the gauges, which indicated the number
of sensor data collected for each mouth shape. As the sensor data increased, these gauges
extended to the right and eventually reached the completion line. The color of these gauges
indicated whether our system completed sample collection: blue meant unfinished, and red
meant finished.

The dataset was analyzed to remove only outliers. In the analysis, the threshold of Maha-
lanobis Distance was explored to separate outliers.

The following is the procedure of analyzing the dataset.

1. Our system set the threshold to 1.0.
2. Our system obtained the dataset filtered with the threshold using formula 4.1.
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3. The filtered dataset was divided into training and test data (even and odd).
4. Our system evaluated the recognition accuracy of the threshold. Our system learned

training data and calculated classification accuracy on test data.
5. If the threshold was lower than or equal to 150.0, our system added the threshold to

1.0 and return to Step 1. If not, our system finished the analysis.

Thus, the recognition accuracy of each threshold, which was 1.0-150.0 with 1.0 change
interval, was calculated. Among this set of recognition accuracy, our system detected the
threshold which achieved the highest recognition accuracy.
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Result of Experiment 2a
Figure 4.13 shows the experiment results where the recognition accuracy was 80%-100%

and the threshold was 0.0-60.0. The recognition accuracy for classes without samples was
0.0%, as our system could not recognize the mouth shape. Table 4.2 shows that several
thresholds approximately between 10.0 and 25.0 achieved the highest accuracy.
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Figure 4.13: Variance in Classification Accuracy of Mouth Shape at Each Threshold

Table 4.2: Maximum Recognition Accuracy and Thresholds of Each Subjects

Subject
The Highest

Recognition Accuracy
Threshold

A 100.0 % 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 17.0, 19.0, 22.0
B 100.0 % 10.0, 11.0
C 100.0 % 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0
D 100.0 % 6.0, 9.0, 10.0, 11.0
E 100.0 % 8.0, 10.0, 11.0, 12.0, 13.0, 17.0, 19.0, 21.0
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Figure 4.14 shows the graph of the threshold and the number of datasets after outlier
removal. Figure 4.15 is the graph of the number of datasets after outlier removal where the
recognition accuracy was 80%-100%.
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Figure 4.14: Threshold and Number of Dataset

Figure 4.14 reveals that the number of datasets significantly fluctuated between approxi-
mately 100 and about 800 when the threshold was between 10 and 25. According to Fig. 4.15,
the recognition accuracy decreased when the number of the dataset was out of the 100-700
range. This finding implies that the shortage of the dataset and insufficient removal of outliers
resulted in the decreased recognition accuracy. Therefore, it is considered that the optimal
threshold was the maximum value among Table 4.2. For example, the optimal threshold for
subject A was 22.0.
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Figure 4.15: Number of Dataset and Recognition Accuracy
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Experiment 2b: Mouth Shape Recognition in Automatic Learning
This experiment evaluated the recognition accuracy by the automated labeling method by

comparing the recognition accuracy in this experiment with those of Experiment 1. This
experiment was conducted after Experiment 2a without removing the HMD, and the subjects
were the same as those in Experiment 1.

Outliers were removed from the dataset to obtain the training data. The maximum threshold
in Table 4.2 was used and 1,200 samples (200 samples * 6 mouth shapes * 1 iteration) were
collected as the test data for each subject. The procedure of data collection was the same as
in Step 4 of Experiment 1.

– 51 –



Chapter 4 Mouth Shape Recognition with Embedded Optical Sensors

Result of Experiment 2b
Table 4.3 shows the result of Experiment 2b. The average recognition accuracy of the

five subjects was approximately 96.3%. Figure 4.16 indicates the comparison of the result
of Experiment 2b with that of Experiment 1. According to the 4.16, compared with the
recognition accuracy in manual learning, that in automatic learning decreased by about 3.6%.
Nonetheless, our automatic labeling method classified the six mouth shapes accurately.

Table 4.3: Result of Mouth Recognition Accuracy using Optical Sensors in Automated La-
beling Condition

Subject A B C D E

Recognition Accuracy 100.0 % 95.7 % 86.1 % 100.0 % 100.0 %

The recognition accuracy of subject C decreased significantly compared with that in Ex-
periment 1. For analysis of this result, subject C’s training data was visualized with principal
component analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) in Fig.
4.17 and Fig. 4.18, respectively. Also Table 4.4 shows the subject C’s confusion matrix of
mouth shape recognition. According to Fig. 4.17 and Fig. 4.18, several samples of "e" were
close to clusters of "i" and "o". This implies that, in collecting the dataset, his mouth shape of
"e" differed at each trial. Therefore, outliers of subject C’s "e" increased. This large number
of outliers led to an increase in the Mahalanobis distances of all samples and thus insufficient
outlier removal. Table 4.4 indicated that our system mispredicted 53.5% of "i" as "e" and
mispredicted 30.0% of "e" as "o". These findings suggest that our mouth shape recognition
accuracy depended on the stability of the reproduction of the user’s mouth shape.
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Figure 4.16: Comparison of the mouth shape recognition accuracy between Experiment 1
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Figure 4.18: t-SNE Result of Subject C’s Training Data
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Table 4.4: Subject C’s Confusion Matrix of Mouth Shape Recognition

Predicted Label

Silence A I U E O

C
o
rr

e
c
t 

L
a
b
e
l

Silence 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

A 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 

I 0.0% 0.0% 46.5% 0.0% 53.5% 0.0% 

U 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 

E 0.0% 0.0% 0.0% 0.0% 70.0% 30.0%

O 0.0% 0.0% 0.0% 0.0% 0.0% 100%
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4.5.4 Experiment 3: User-Independent Accuracy

This experiment investigated the user-independent classification performance of our mouth
shape recognition method. In photo reflective sensor-based facial expression classification,
there was high user-dependency [140]. This experiment compared inter-participant classifi-
cation accuracy with intra-participant one to evaluate the user-dependency of our recognition
method. There were ten participants (8 males, 2 females, in their twenties).

A dataset was collected as follows.

1. The experimenter explained the six mouth shapes ("silence", "a", "i", "u", "e", "o"),
which were classification targets. Then, the experimenter instructed the participants to
sit on a chair and wear the mouth shape recognition device tightly fixed to their heads.
At that time, the experimenter showed no visual images on display.

2. The experimenter instructed the participants to form the "silence" mouth shape exag-
geratedly and keep it. While the participant kept the shape, the experimenter collected
200 samples by hand.

3. The experimenter instructed to make the other five mouth shape ("a", "i", "u", "e", "o")
with step 2. The instruction order was "a", "i", "u", "e", and "o".

4. The experimenter iterated the steps from 1. to 3. three times.

Through the above procedure, 3600 samples (200 samples * 6 mouth shapes * 3 iterations)
were collected as the dataset for each participant. A classifier was trained with the dataset
of one of the participants and, by using the trained classifier, classified the dataset of each
participant to evaluate mouth shape classification accuracy.

4.5.5 Result of Experiment 3

The result is shown in Table 4.5.
The user-dependent average classification accuracy was 99.4%, while the user-independent

average classification accuracy was 30.7%. Since the highest user-independent accuracy was
88.1%, several participants had similar mouth shapes. However, most of the user-independent
accuracy was very low. This suggests that our current mouth shape recognition algorithm has
high user-dependency as well as the previous study [140]. Therefore, in our current system,
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Table 4.5: Cross-Participant Classification Accuracy Matrix

Training data

Participant A B C D E F G H I J

T
e
s
t 

d
a
ta

A 100.0% 16.7% 24.8% 60.6% 40.5% 48.4% 39.4% 16.7% 52.9% 56.6%

B 25.0% 99.9% 16.7% 17.8% 17.1% 16.7% 16.7% 34.1% 31.8% 23.2%

C 33.1% 20.2% 95.9% 18.5% 16.7% 16.8% 16.7% 29.9% 24.8% 17.5%

D 50.1% 28.1% 21.6% 100.0% 32.9% 42.3% 49.9% 22.7% 45.9% 88.1%

E 38.9% 44.9% 37.8% 22.2% 100.0% 16.7% 16.8% 40.7% 16.9% 17.4%

F 32.8% 16.7% 16.8% 33.8% 16.7% 100.0% 63.1% 16.7% 53.8% 68.3%

G 16.7% 16.7% 16.7% 25.0% 16.7% 68.9% 100.0% 16.7% 38.6% 52.1%

H 19.6% 49.1% 33.4% 29.0% 16.7% 22.7% 16.7% 100.0% 16.7% 16.7%

I 37.7% 17.2% 33.3% 33.3% 16.7% 55.6% 33.3% 22.1% 99.6% 33.3%

J 32.4% 16.7% 16.7% 66.8% 16.7% 40.3% 50.0% 16.7% 37.4% 100.0%

it is required to train the classifier individually.
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4.6 Application: Reflecting Mouth Shape on
Avatar

An application that transferred the HMD user’s mouth shape to an avatar was developed
(Fig. 4.19). This application blended the parameter of the six mouth shapes ("silence," "a",
"i", "u", "e", and "o") to reproduce the mouth shapes.

The procedure by which this application reflected the mouth shape on the avatar is described.
Our system predicted the probabilities of each mouth shape from the optical sensor values. By
using these probabilities, the application calculated the parameter of the mouth shape blended
on the basis of Formula 2 and then applied this parameter to the avatar. Figure 4.20 shows
that the avatar reflected the blended mouth shape. This technique enabled the reflection of the
various movements around the mouth, which were not limited to six states.

Silence

A

I

U

E

O

Belonging Probabilities of 
each class Camera Image

Each Sensor Value
Avatar

Figure 4.19: Application Reflecting User’s Mouth Shape on Avatar
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Figure 4.20: Reflecting Animation of User’s Various Mouth Shape to Avatar
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4.7 Limitation

Although our system reproduced mouth shapes based on six template mouth shapes of
silence and Japanese vowels, there were difficulties in reproducing specific mouth shapes
(e.g., lip biting, cheek swelling) that were not formed in speaking. This study focused on the
mouth deformation that occurred with speaking Japanese vowels. Our current implementation
was trained with mouth shapes without considering temporal information. However, when
humans speak, mouth shapes continuously deform. Consonants are produced by dynamic
mouth shape changes. By taking into account the dynamics of mouth expressions, our system
can reproduce more various mouth shapes.

Although various mouth shapes were reproduced by blending six mouth shapes, it is not
discussed whether the class membership probabilities is suitable as weights of blending or not.
Therefore, the system may not have blended the mouth shape accurately. In the future, the
suitable blending method will be explored by analyzing the geometry deformation of mouth
shapes.

The result of Experiment 3 showed that our current system failed to construct a cross-
user classifier. Since the previous study on photoreflector-based facial expression classifica-
tion [140] also failed to build a cross-user classifier, it is difficult to achieve a generalized
classifier by classifying sensor values with a traditional SVM. Therefore, to build a generalized
classifier, preprocessing method of sensor data and machine learning models, such as deep
learning, should be investigated.

This study used only optical sensor values for recognizing mouth shapes after the training
process. Auditory information may be used as an additional feature to recognize mouth shapes
more robustly.

This study employed young Japanese participants in the experiments and most of the
participants were males. The experiments aimed to investigate how accurately our technique
recognized the mouth shapes of each participant. The experimental result showed that our
method accurately classified the mouth shapes for each participant. In terms of gender bias,
there were two female participants in Experiment 3. Therefore, to investigate the gender
effect on our method further, additional female participants should be recruited. Since this
study targeted facial skin movements caused by speaking Japanese vowels, our system was
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designed for Japanese speakers. However, the participants were recruited within a limited age
group and races. Facial muscles decline by aging. In addition, facial movements vary from
language to language when speaking. However, our system collected training data for each
user and used an SVM, which is a supervised learning model. Therefore, our method will be
applicable to elderly people. In the case of languages other than Japanese, our system will
work by taking into account vowels for labeling.
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4.8 Conclusion

This study proposed a system that recognizes the mouth shapes of HMD users with optical
sensors. An HMD-based prototype were developed with four photoreflectors, four optical
distance measuring units, a microphone, and a microcomputer. This prototype measured
mouth shape and audio signals. The photoreflectors and optical distance measuring units
detected the movement of eight points (upper lip, upper cheek, lower lip, and cheek). The
microphone acquired audio signals. Meanwhile, our system detected the vowels from audio
and used them to label the optical sensor values.

From the manual learning experiment, our system achieved an average accuracy of approx-
imately 99.9% for the five subjects. The automated labeling method achieved an average
accuracy of about 96.3% for all subjects. The recognition accuracy of automatic learning
was lower by about 3.6% than that of manual learning. Nonetheless, it is considered that our
system could label training data properly through our experiments. In addition, the result of
Experiment 3 indicated that our method achieved the user-independent classification accuracy
of 30.7%, which was lower by 68.7% than the user-dependent one. Therefore, our current
system has difficulty building a generalized classifier.

An application that projected the mouth shapes to an avatar were developed. The application
predicted the class membership probabilities to each mouth shape class, and blended each
mouth shape on the basis of the class membership probabilities to reproduce various mouth
shapes. This application showed that our system could reflect various mouth shapes on the
avatar.
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Chapter 5 Cheek Haptic-Based Spatial Directional Guidance

5.1 Introduction

This study presents Virtual Whiskers, a spatial directional guidance system attached to a
Head-Mounted Display (HMD) with facial haptic stimuli to cheeks.

Spatial guidance cues are essentials in Virtual Reality (VR) applications. Most of them rely
solely on visual perception, but VR already has a lot of visual information to process (arguably,
more than in real-life), and too much visual information can cause visual overload [141]. Some
rely instead on audio-visual perception to reduce the visual workload, but they also have an
effect on the workload since both the visual/audio coordinates need to be transformed to the
body coordinate [142] and the head/eyes typically need to look at the visual/audio target.
Another approach is to use haptic cues [143], which are less likely to be overloaded, are
already mapped to the body coordinate, and do not require to look at the target.

Previous works already used haptic-based guidance successfully [12,13], mostly by relying
on vibrotactile stimulation. A vibrotactile system is easy to use but needs to be placed over
the targeted zone and provide limited information.

Moreover, in a haptic-based guidance task, where precision matters, not only the type of
stimulation (vibration, pressure, wind, etc.), but also the positioning of the stimuli need to
be considered. Indeed, if the head is stationary, the position of haptic stimuli tends to be
perceived relatively to a body-centered reference frame [144] (i.e., the body midline); else if
the head is not stationary (like in a VR application), the stimuli tend to be perceived relatively
to an eye-centered reference [145]. If the haptic stimuli are on the torso when the head moves,
there is a shift of the perceived position of the stimulation [16].

With facial haptic stimuli at the eye-level, humans can avoid having two reference frames
when the head is non-stationary. A previous study on facial haptics revealed that checks’
facial haptic was better in localization perception compared to the forehead and to above the
eye-brow [89]. Several facial-based systems have been developed, such as winds [121] and
ultrasounds [89].

With the advent of consumer VR Head Mounted Display (HMD), consumer VR Haptic
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devices have been released to the market *1 *2. Those devices typically stimulate hands
(e.g., haptic gloves), waist (e.g., haptic belt), or the body (arms, legs, chest, etc.; e.g., haptic
suit). Nevertheless, there are not many devices targeting the user’s face, despite the excellent
sensitivity of the facial region [146].

This study proposes an HMD-based facial haptic system that provides stimulus to the cheeks.
It consists of two robotic arms attached to the bottom side of an HMD (c.f., Fig. 5.5) with
proximity sensors. This study investigates how haptic cues on the cheek provide directional
information; and how facial haptic cues allow spatial guidance in a Virtual Environment (VE).
Our contributions are as follow:

• Cheek stimulation by robot arms integrated with HMD to provide spatial navigation.
The robot arms are moved with proximity sensing to control contact with our cheek
surface;

• Investigating how cheek stimulation affects directional guidance. Our experiment on
directional guidance showed that haptic cues on the cheek provided accurate direction
two cues in VR space, but that azimuthal angular accuracy was better than elevational
one.

• Investigating how cheek stimulation guide users; The experiment investigated how
haptic cues on the cheek improve task performance. In the target searching task, our
guidance technique shortens task completion time than only visual information and
enhanced spatial directional perception.

*1 bhaptics, https://www.bhaptics.com/tactsuit/
*2 HaptX | Haptic gloves for VR training, simulation, and design, https://haptx.com/
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𝜑

𝜃

Real Environment

Target
Target 

Direction

VR Environment Position Corresponded 
to Target Direction

Touch

Figure 5.1: Spatial directional guidance with cheek haptic stimulation. Left: The target (red
sphere) is located in a virtual space. The direction of the target is represented
by the azimuthal angle 𝜑 and the elevation angle 𝜃 in spherical coordinate.
Center: The azimuthal and angle (𝜃, 𝜑) are mapped to a point on a cheek surface
(𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠). The spatial direction in the virtual space is mapped to a cheek
position in real space. Right: The robot arm moves to the point on the cheek and
touches to cheek surface. Thus our system presents the direction of the target in
virtual space to a user.
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5.2 Related Work

Haptic feedback plays an important role in VR and computer-human interaction. Haptic
receptors are distributed throughout the body, while receptors for other major senses: vision,
audio, taste, and smell are located in specific facial location. Haptics includes senses for
various type of stimuli, such as touch, temperature, and pressure. In previous studies, haptic
stimulation has been leveraged to stimulate various body parts and has been integrated other
modalities such as visual and audio cues in order to enhance VR experiences as a multi-/cross-
modal stimulation.

Our torso has a large surface area. As such, numerous previous studies presented haptic
stimuli on this area. Delazio et al. developed a force feedback device that used airbags located
on the side of a vest to improve the VR experience [62]. Our hands can be considered as one
of the most sensitive regions for haptic stimuli. Günther et al. used a tactile glove that had
multiple embedded tactors to navigate 3D space by encoding spatial information into vibration
patterns [13]. Chen et al. developed a handheld pin-array haptic display to present a direction
to the palm [12]. Ion et al. presented an arm-worn skin drag display to let users recognize
a tactile shape [61]. A quadcopter was utilized as a haptic display in 3D space to render a
touchable surface [112]. One remarkable system is the wearable robotic arm approach. Shen
et al. designed a neck augmentation system using a robotic arm attached to the top of the
user’s head [147]. AI-Sada et al. developed a wearable robotic arm that provided haptic
feedback to a VR user [110]. They attached multiple haptic actuators to the end effector of
the arm to enhance the VR experience. However, it was reported that, when the head was not
stationary, haptic stimuli to the body were encoded in an eye-centered reference frame [145].
The superiority of the eye-centered frame in directional perception has been reported.

Equally important, our head is another of the most sensitive parts capable of being used for
haptic stimuli as indicated in Penfield’s cortical sensory homunculus. So, various interactive
haptic devices for the head region have been proposed in previous studies. Tseng et al.
attached physical widgets to the HMD to enable tangible interaction [32]. By controlling
the widgets physically, they interacted with the virtual environment. Cassinelli et al. built a
prototype to detect the surroundings and provide haptic feedback to the head [83]. Berning
et al. encoded distance information about the user’s surrounding objects into pressure values
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and presented it to the head, allowing the user to perceive spatial information [85]. Not
only 2D- but also 3D- directional interaction techniques have also been proposed. Tsai et al.
presented a 2.5D instant impact on an HMD using the impact devices attached to the front
side of the HMD [31]. Matsuda et al. developed a necklace-type device to indicate directions
via vibration patterns for remote collaboration [65]. Beren et al. placed multiple vibrotactile
motors around the head to guide the user even at different heights [84]. Oliveira et al. designed
a haptic guidance system with vibrotactile motors around the forehead [28]. They translated
the azimuthal direction into vibrational position and the elevational direction into vibrational
frequency. Moreover, thermal feedback was leveraged for providing spatial directional cues
to the forehead [29, 30]. As the above previous studies indicated, facial haptics is useful
for spatial interaction, such as receiving the feedback from the virtual environment, spatial
guidance, and spatial awareness.

As a part of the face, the cheek is also sensitive to haptic stimulation, but there are few
approaches that leverage it for providing feedback. In the field of brain computer interface,
cheek stimuli potential was explored [148]. The cheeks’ properties for haptic stimulation
were investigated. A previous study showed that in-air ultrasonic haptic cues on the cheek
allow users to perceive stimulus location well [89]. Liu et al. found that synchronizing haptic
stimulation to the cheek and visual oscillation by user’s footstep reduced VR sickness [120].
Theo et al. integrated visual stimulation with the cheek haptic feedback and vestibular
stimulation by the electronic current to present weight sensation [149]. The above approaches
presented haptic stimulation to specific locations on the cheek, while Wilberz et al. mounted
a robot arm to an HMD to provide haptic stimulation around the mouth in fully localizable
positions [121]. They attached some actuators to provide multiple haptic feedback and found
that users could judge directions from wind cues. They also showed the multi-modal haptic
feedback improved the overall VR experience.

Haptic systems are useful for augmenting a human’s ability. Primarily, the cheeks and mouth
are more sensitive than the other facial areas. Previous studies revealed that the cheek’s
potential of directional perception was superior to other areas and that fully localizable
stimulation improved the VR experience. Most mouth stimulation approaches presented
ambient information such as wind [121] and investigated horizontal directional cues. By
utilizing cheeks’ directional potential, this study developed a cheek haptic-based guidance
system in 3D space. Lip skin is thin and, as such, susceptible to various damage; direct
stimulation to the lips can cause discomfort. Therefore, this study explored the potential of
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haptic feedback to only the cheeks, minus the lips. This study investigated how "direct" haptic
stimulation to the cheek could guide in 3D space. Also, through our experiments, this study
investigated how vertical movements on the cheek can guide in the elevational plane. In order
to provide haptic cues on cheeks, this study developed a robot arm-based haptic stimulation
system because the robot arm can stimulate at a free point on the cheeks.
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5.3 System Design

This section describes the principle of our guidance method. This study leverages the cheeks
for presenting directional cues to an HMD user. Our face has a dense distribution of haptic
receptors as indicated in Penfield’s cortical homunculus (Fig. 1.1). Especially, the mouth and
cheeks are sensitive to mechanical stimuli, so a human can recognize the stimulation position
precisely. However, our lips are more susceptible to even slight stimulation due to their thin
skin layer. In addition, the lip engages in essential activities such as eating and speaking.
Therefore, this study avoids stimulating the lip. Strong force toward the teeth can injure the
mouth because of the teeth’s hardness. Therefore, both sides of the cheeks are touched with
weak to moderate force.

For stimulating the cheek, two robotic arms are attached to an HMD. A human can recognize
the stimulation position on the cheek, and a haptic device that can stimulate the precise position
is required. Therefore, a robotic arm with several linkages is utilized to stimulate a localizable
position on the cheek. The robot arms are attached to an HMD to present the stimulation even
while walking around. However, if only one robot arm is used, it increases the overall weight
because it requires a linkage extension and high-torque motors for the joint. Therefore, two
robot arms are employed for stimulating the left and right sides of the cheeks.

When touching the cheek with the robot arms, the surface geometry information of the cheek
is required. A camera-based approach is popular for measuring facial geometry. However, an
HMD and a robot arm can occlude the face. When a camera is mounted on the robot arm, the
sensing would be difficult because of a motion blur. Therefore, this study uses photoreflectors
as proximity sensors. A Photoreflector has a light emitting diode and a phototransistor. A light
emitting diode emits the light, and a phototransistor detects the intensity of the light reflected
from a skin surface. The light intensity varies with the distance between the photoreflector
and the object, so the phototransistor value can be converted to a distance. Photoreflectors
can detect the distance in a close range, so they are attached to the end effector of the arms.
On each four sides of the end effector, a photoreflector is arranged to detect the distance to the
skin surface so that the shape around the end effector can be obtained. Photoreflectors detect
points on the cheek surface and track the cheek surface (Fig. 5.2). Thus, the points on the
cheek surface are collected. This study assumes that this local facial part can be represented
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Figure 5.2: Cheek surface calibration. Left: Cheek surface tracking in horizontal direction.
Center: Cheek surface tracking in vertical direction. Right: Fitted quadratic
surface to 3D points on cheek surface. Blue markers were the actual points on
the cheek surface. Wireframe was estimated surface.

as a quadratic surface. The quadratic surface is fit to the points on the cheek in order to obtain
the cheek surface.

When presenting the haptic stimulation indicated a target direction, the direction is needed
to map to a point on the cheek (Fig. 5.3). The target direction (azimuthal and elevational angle)
is gotten by converting the Cartesian coordinate system to a spherical coordinate system. The
azimuthal and elevational angles are transformed into a line equation. The elevational angle is
converted to an offset of the height position, and the azimuthal angle is converted to the slope
of the line. An intersection between the quadratic cheek surface and the direction represented
as the line are calculated. This intersection is used as a stimulation point. However, the
frontal direction cannot be presented because this study avoids touching our lips, which are
located on the center of our face. Therefore, when the target positions in front of the user, two
robot arms stimulated both cheeks at the same time. Thus, a directional cue is presented by
touching on the position corresponding to the spatial information of the target.
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Figure 5.3: Haptic stimulation flow. The target position was converted to an azimuthal and an
elevational angle. These two angles were translated into a line. The intersection
between the line and the cheek surface was calculated and was mapped to the
stimulation area (transparent orange area) to obtain the stimulation position.
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5.4 Implementation

This study developed a system to provide directional cues on the cheek (Fig. 5.4). Our
system consisted of a haptic stimulation device (Fig. 5.5) and software. The device presents
haptic directional cues on the cheek using two robotic arms. Section 5.4.1 describes the details
of the device. The software controlled robot arms, detected the cheek surface, translated a
direction to a point on the cheek. Software and hardware were integrated to VE developed
with Unity. These functions were described in Section 5.4.2, Section 5.4.3, and Section 5.4.4
respectively.

Haptic Stimulation Device computer

sensor
values

servo
angles 

Inverse kinematics

Microcomputer

Photoreflector

Robot Arm Control Process VR Environment

Get target directionCalculate stimulation position

Servo motor

PWM servo driver

direction(𝜃𝑡, 𝜑𝑡)

Predict distance to skin surface

Calculate next position on cheek

Estimate cheek surface

Cheek Surface Calibration

Haptic stimulation

3D position
(𝑥, 𝑦, 𝑧)

Figure 5.4: System Configuration
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5.4.1 Haptic Stimulation Device

A haptic stimulation device was built by modifying an Oculus Rift CV1 (Fig. 5.5). Two
robotic arms and a circuit were attached. The robotic arms were attached to the left and right
sides of the bottom of the HMD so that they stimulated each side of the cheeks. The robotic
arms were fixed by using brackets created with a 3D printer. The circuit was attached to the
HMD’s head strap and mounted on the top of the HMD.

Photoreflector

Circuit

Servo Motor Servo Motor

Figure 5.5: Haptic Stimulation Device

The robotic arm was designed with 5 DoF (degree of freedom), allowing to stimulate the
cheek in 3D space. Fig 5.6 illustrates the configuration of the robot arm attached to the left
side of the HMD. The left and right robotic arms were constructed symmetrically. The 3 Dof
of the robotic arm controlled a position in the 3D space, and the rest 2 Dof controlled the
end effector posture. Controlling the end effector posture allowed the end effector to adjust
the angle approaching to the cheek and the photorefletors on the end effector to measure the
cheek within close range. Five servo motors (SG-90, Tower Pro) were used on the joints for
each robot arm and placed one at each joint. Each servo angle was 𝜃0, 𝜃1, 𝜃2, 𝜃3, 𝜃4 in Fig.
5.6. The links of the robotic arm were created by a 3D printer. The one side of the link was
fixed to a servo motor with servo horn; the other side was fixed to another servo motor with
screws. The tip of the arm was rounded to avoid hurting the cheeks. The end effector had
four photoreflectors on the right, left, up, and down sides (Fig. 5.5).
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Figure 5.6: Robotic Arm Configuration

The circuit had a microcomputer (Arduino Nano) and a pulse width modulation (PWM)
servo driver (PCA9685, NXP). The microcomputer was connected to a USB cable. The
microcomputer received instructions from the software via serial communication, rotated
servo motors, and sent sensor values of photoreflectors. The microcomputer communicated
the PWM servo driver with I2C. The servo driver control servo rotation. Servo motors
supplied the power by 5V AC adapter. The microcomputer got photoreflector values via
an analog multiplexer (TC4052BP, TOSHIBA). The microcomputer was fixed to a bracket
created by a 3D printer and attached to the top of HMD through the headset strap. The cables
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were covered by black tubes.
The robotic arm weighted 70g (SG-90 9g × 5 + link 25g). The total weight of two robotic

arms and the circuits including cables was 298g (robotic arm 70g × 2 + circuits including
cables 158g), which was lighter than the system presented in previous study [121] (405g).
Therefore, our system was light but allowed to stimulate the left and right sides of the cheek
simultaneously.

5.4.2 Robot Arm Control

Inverse kinematics was leveraged to move the end effector of the robot arms to a 3D position
(𝑥𝑔, 𝑦𝑔, 𝑧𝑔). Three servo angles, which corresponded to a 3D position of the specific arm
part, were calculated. Based on the three angles, the rest two servo angles, which controlled
the end effector posture, were calculated. By controlling five servo motors as the above, the
end effector was allowed to face a constant direction to the head. This calculation enables
the photoreflectors to detect the reflection intensity according to the distance from a constant
direction when measuring the cheek surface. First, the azimuthal angle of the end effector 𝜃𝐸
and the elevational angle of the end effector 𝜃𝐴 were used to calculate the third servo motor
position (𝑥2, 𝑦2, 𝑧2) with Equation 5.1.

©­«
𝑥2
𝑦2
𝑧2

ª®¬ = ©­«
𝑥𝑔
𝑦𝑔
𝑧𝑔

ª®¬ − (Ry (𝜃𝐸) · l3 + Rx (𝜃𝐴) · l4) (5.1)

l3, l4 was the third link length and the fourth link length, respectively. Rx (𝜃), Ry (𝜃) represent
the rotation matrices that rotate around x axis and y axis by 𝜃 degrees, respectively. The
servo angles 𝜃0, 𝜃1, 𝜃2 corresponding to the position (𝑥2, 𝑦2, 𝑧2) were computed with Inverse
Kinematics. Then, the rest two servo angles 𝜃3, 𝜃4, that controlled the end effector posture,
was calculated with Equation 5.2 and Equation 5.3.

𝜃3 = 𝜃1 + 𝜃2 − 𝜃𝐸 (5.2)

𝜃4 = −𝜃0 + 𝜃𝐴 (5.3)

In our implementation, 𝜃𝐸 and 𝜃𝐴 were set to 0 degree and 150 degrees, respectively.
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5.4.3 Cheek Surface Detection

The mapping between real and VR space was calibrated to encode a virtual target into the
position on the cheek surface. For the cheek surface calibration, the 3D points on the cheek
surface were detected and collected. By fitting a quadratic surface to the collected 3D points,
the cheek surface was estimated. Calibration was performed for each arm because of the
asymmetry of the facial geometry. Also, only the width and height of the stimulation area
was set because the facial geometry depends on each person.

In collecting the point on the cheek surface, each robot arm traced the edge of a rectangular
area for stimulation. At first, the robot arm touched the cheek surface in a straight line from the
initial position. While the arm is moving, the photoreflectors measured the distance from the
arm tip to the cheek surface and converted the sensor values into a distance in the real world
with a linear regression model. Then, the arm moved along the cheek edge of the stimulation
area in the left, down, right, and up directions in sequence. When the arm moved to the left,
a photoreflector on the left side of the arm tip measured the distance to the cheek surface and
our system computed a point on left side of the arm tip with formula 5.4 (Fig. 5.2, left).

©­«
𝑥 ′

𝑦′

𝑧′

ª®¬ = ©­«
𝑥
𝑦
𝑧

ª®¬ + ©­«
− sin𝛼 cos𝛼 0
cos𝛼 sin𝛼 0

0 0 1

ª®¬ ©­«
𝑑𝑥
𝑑𝑦
0

ª®¬ (5.4)

𝑑𝑥 was 1.5 because the photoreflector width was about 3.0mm, and 𝛼 was 60 degree as
described in Section 5.4.1. The arm iterated to move the detected point until the arm reached
the left edge of the stimulation area. When the arm moved down, a photoreflector located
on the bottom side of the arm tip measured the distance to the cheek surface, and our system
calculated the position of a point on the lower side of the arm tip using formula 5.5 (Fig. 5.2,
center).

©­«
𝑥 ′

𝑦′

𝑧′

ª®¬ = ©­«
𝑥
𝑦
𝑧

ª®¬ + ©­«
cos 𝛽 − sin 𝛽 0
sin 𝛽 cos 𝛽 0

0 0 1

ª®¬ ©­«
0
𝑑𝑟
𝑑𝑧

ª®¬ (5.5)

𝑑𝑧 was decided to 1.5 thanks to the photoreflector width, and 𝛽 was the angle of first joint of
the arm. The arm iterated to move the detected point until the arm reached the bottom edge
of the stimulation area. A similar procedure as above was performed when the arm moved to
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the right and up direction. Thus, the arm moved on the stimulation area. By gathering the
points of the arm trajectory, 3D points of the cheek surface were acquired.

The cheek surface was estimated by fitting a quadratic surface to collected 3D points (Fig.
5.2, right). The quadratic surface was fitted to collected points to compute the parameters of
the quadratic surface with the least-square method (equation 5.6). This way, the cheek surface
was obtained as the quadratic surface. The cheek surfaces were estimated for both left and
right arms, and each side of the surface was estimated separately.

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥 + 𝑑𝑦 + 𝑒 = 𝑧 (5.6)

5.4.4 Haptic Stimulation

The haptic directional cues were presented with the robotic arm, changing the stimulation
according to the spatial information of the target (Fig. 5.3). Directional information was
obtained from the target position (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) and computed the corresponding cheek position
(𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠). Based on the cheek position (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠), the position (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) and the method
of the cheek stimulation were determined.

In calculating the point on the cheek (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠) corresponding to the target’s position
(𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ), the position information was converted into directional information in VR space.
The target’s position (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) was converted to the position from user’s view (𝑥𝑡𝑢, 𝑦𝑡𝑢, 𝑧𝑡𝑢).
By converting the position in Cartesian coordinate (𝑥𝑡𝑢, 𝑦𝑡𝑢, 𝑧𝑡𝑢) to the position in Spherical
coordinate (𝑟𝑡 , 𝜃𝑡 , 𝜑𝑡 ), an azimuthal angle 𝜑𝑡 and an elevation angle 𝜃𝑡 were calculated. The
azimuthal and elevation angle (𝜑𝑡 , 𝜃𝑡 ) was mapped to the point on a curved surface (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠).
The sine of the elevation angle 𝜃𝑡 was mapped to the height of the cheek coordinates 𝑧𝑜 𝑓 𝑓 𝑠𝑒𝑡

(formula 5.7).

𝑧𝑜 𝑓 𝑓 𝑠𝑒𝑡 =


𝑧𝑚𝑖𝑛 (𝜃𝑡 < 0)

sin 𝜃𝑡
𝑠𝑖𝑛𝜃𝑚𝑎𝑥

∗ (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) (0 ≤ 𝜃𝑡 < 𝜃𝑚𝑎𝑥)
𝑧𝑚𝑎𝑥 (𝜃𝑡 ≥ 𝜃𝑚𝑎𝑥)

(5.7)

In our implementation, 𝜃𝑚𝑎𝑥 was 45 degrees, 𝑧𝑚𝑖𝑛 was 0, and 𝑧𝑚𝑎𝑥 was 30. The azimuthal
angle 𝜑𝑡 was translated to a line representation and added the height offset 𝑧𝑜 𝑓 𝑓 𝑠𝑒𝑡 (formula
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5.8, 𝑡 is constant).

©­«
𝑥
𝑦
𝑧

ª®¬ = 𝑡
©­«
tan 𝜑𝑡

1
0

ª®¬ + ©­«
0
0

𝑧𝑜 𝑓 𝑓 𝑠𝑒𝑡

ª®¬ (5.8)

The intersection between the estimated cheek surface (formula 5.6) and the line (formula 5.8)
was computed. In this way, the cheek position (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠), that mapped to the target position
in VR space (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ), was calculated.

Since the calculated point (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠) could be out of the stimulation area, the stimulation
method and the stimulation position (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) were decided based on 𝑥𝑠 . 𝑥𝑠 was classified
into four areas; area A was 𝑥 𝑓 < 𝑥𝑠; area B was 𝑥𝑐𝑚𝑎𝑥 ≤ 𝑥𝑠 < 𝑥 𝑓 ; area C was 𝑥𝑐𝑚𝑖𝑛 ≤ 𝑥𝑠 ≤
𝑥𝑐𝑚𝑎𝑥 ; area D was 𝑥𝑠 < 𝑥𝑐𝑚𝑖𝑛 . 𝑥 𝑓 was the threshold of the facial center area. 𝑥𝑐𝑚𝑎𝑥 and 𝑥𝑐𝑚𝑖𝑛

were the maximum and minimum value of the stimulus range respectively. Based on which
area 𝑥𝑠 was, the stimulation position was calculated as follows:

(𝑥𝑐, 𝑦𝑐, 𝑧𝑐) =

(𝑥𝑐𝑚𝑎𝑥 , 𝑦𝑥𝑐𝑚𝑎𝑥 ,𝑧𝑠 , 𝑧𝑠) (𝑥𝑠 in area A or B)
(𝑥𝑠 , 𝑦𝑥𝑠 , 𝑧𝑠) (𝑥𝑠 in area C)
(𝑥𝑐𝑚𝑖𝑛 , 𝑦𝑥𝑐𝑚𝑖𝑛 ,𝑧𝑠

, 𝑧𝑠) (𝑥𝑠 in area D)
(5.9)

𝑦𝑥𝑐𝑚𝑎𝑥 ,𝑧𝑠
was the 𝑦 value in equation 5.6 when 𝑥 = 𝑥𝑐𝑚𝑎𝑥 and 𝑧 = 𝑧𝑠 . 𝑦𝑥𝑐𝑚𝑖𝑛,𝑧𝑠

was the 𝑦

value in equation 5.6 when 𝑥 = 𝑥𝑐𝑚𝑎𝑥 and 𝑧 = 𝑧𝑠 . If 𝑥𝑠 was in area A, both arms were used for
the stimulation and calculated the stimulation positions on both sides. If not, the single robot
arm was leveraged. The stimulus of azimuthal direction was discrete, but that of elevational
direction was continuous. It was expected that the continuous stimulation in the elevational
plane would help users to recognize the height information accurately. Finally, the stimulation
position (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) was decided and was touched with the robot arms.
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5.5 Experiment1: Directional Guidance

This experiment investigated how haptic cues on the cheeks provided directional information
in VR space. In this experiment, participants looked for and pointed the invisible target in
3D space with haptic cues on cheeks. The targets appeared at fifteen-degree intervals of
180 degrees in the azimuthal plane and of 90 degrees in the elevation plane, so the appeared
location was totally 91 (13 (azimuth) * 7 (elevation)). When the target appeared, the robot
arms began to stimulate the participant’s cheeks. The stimulation was provided depending
on the gap between the participant’s direction and the target direction. In the VR system, the
only head rotation was reflected, while the head position was fixed. Participants pointed the
position by turning to the target direction and by pressing a controller button. A reticle was
placed in front of participants to help them to select the target. Instruction texts were shown
to participants in the VR space. This experiment evaluated the absolute azimuthal and the
absolute elevational angular error and task completion time. There were six participants (six
males; age was M=23.5, SD=0.96), and they had no disability related to tactile organs. All
participants had experienced using VR (> 10 times), and two of them played VR less than an
hour a week and the rest of them played VR more than an hour a week.

Our experiment had two sessions, namely, a rehearsal session and an actual performance
session. In the rehearsal session, participants looked for the target with visual and haptic
feedback. The rehearsal session had 45 trials, and one target appeared in each trial. There
was a five seconds interval between each trial. Participants were instructed to look at the front
during the intervals. During the intervals, the stimulation stopped and the robot arms returned
to the initial position. When participants selected the correct target, they heard the audio
feedback for the correct answer. In the actual performance session, participants searched the
invisible target with haptic feedback. The session had 91 trials. When participants selected
the direction, they heard the audio feedback. The participants were instructed to wear earplugs
and a noise canceling headphone and let the participant hear white noise during the experiment
to reduce the noise from robot arms and to hear only the sound from the VE.
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5.5.1 Experimental Protocol

The experimenter first explained the task and the procedure of the experiment to the
participants. The experimenter instructed the participant to put on the device and earplugs and
sit him on a chair. Then, the experimenter calibrated the cheek surface of the participant. The
experimenter instructed the participant not to move during the calibration. After calibration,
the experimenter displayed a VE and presented visual and haptic information of the target
position to the participant. Here, the experimenter instructed the participant to move the
head up, down, left, and right to demonstrate haptic stimulation when the target was located
in front. After the demonstration, the experimenter put a noise canceling headphone on the
participant and the rehearsal session started. In the rehearsal session, the participant searched
for the visible target 45 times. Immediately after the rehearsal session, an actual performance
session started. In the actual performance session, the participant searched for the invisible
target 91 times. After the actual performance session, the participant removed the earplugs,
the headphone, and the device. The participants sit to the seat during the experiment.
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5.5.2 Result
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Figure 5.7: Absolute azimuthal and absolute elevational angular error in Experiment 1.

The result is shown in Fig. 5.7 and Fig. 5.8. The absolute azimuthal angular error was
M=2.76 degrees, SD=3.53 degrees. On the other hand, the absolute elevation angular error
was M=7.32 degrees, SD=8.97 degrees (Fig. 5.7). The task completion time was M=7.42
seconds, SD=7.64 seconds. Also, Fig. 5.8 shows histograms of both angular error respectively.
Fig. 5.9 indicates an example of temporal changes of the gap between the target direction and
head one. According to the histograms of both directions, almost azimuthal angular errors
were around 10 degrees. It is because both cheeks were stimulated when the target was within
10 degrees of the azimuthal angle in our implementation.

On the other hand, elevation angular error was larger than azimuthal one. It was expected the
elevation error was similar to the azimuthal one because continuous stimulation was provided
on the cheek as described in Section 5.4.4. However, it seemed to be difficult to recognize the
elevation angle as the result showed. As shown in Fig. 5.9, the participants repeatedly shook
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Figure 5.8: Left: A histogram of azimuthal angular error. A bar width indicated the four
degree. Right: A histogram of elevational angular error. A bar width indicated
the four degree.

their heads in elevational direction. After the experiment, all participants reported that they
had difficulty finding the elevational direction. Furthermore, one participant reported that he
lost the origin of height direction of haptic feedback during the experiment. It is considered
that our feedback of elevational direction has room for improvement, as the simple continuous
feedback could result in ambiguity.

After the experiment, some participants mentioned that they sometimes did not feel the
haptic feedback. This was caused by a slight change in the position of the device as the
participant moved the head. In our system, the robot arms were fixed to the HMD, so when
the HMD moved, the distance to the cheek also changed. When the participants looked down,
the HMD could move due to the effect of gravity. Therefore, a method to adaptively estimate
the cheek surface is required.
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Figure 5.9: Example of temporal change of azimuthal and elevation angular gap between the
center point of a participant view and target position in Experiment 1. These
contained 91 trials. The red line indicated a median of task completion time.
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5.6 Experiment 2: Spatial Guidance

This experiment investigated how our spatial guidance technique was effective in VR space.
Participants had to look for and touch the visible target in 3D space. This experiment compared
task completion time in visual + haptic condition with in visual condition. In visual condition,
participants searched the target with only visual information. In the visual + haptic condition,
participants detected the target with visual information and haptic feedback to cheeks. There
were six participants (six males; age was M=23.5, SD=0.96), and they had no disability related
to tactile organs and vision. All participants had experienced using VR (> 10 times), and two
of them played VR less than an hour a week and the rest of them played VR more than an
hour a week.

Participants searched for and found targets of a specific color among several spheres.
Participants performed 80 trials and took a break after every 20 trials. Each target ball was
placed in a room (3 m x 3 m x 2 m) with 50 balls in it. The target positions were placed in
randomly chosen positions. The target positions were used to generate 40 random locations
and then randomly sorted to generate a set of counterbalanced positions totaling 80 points.
The other 49 fakes were randomly placed at the beginning of each trial. In this case, each ball
was placed so that they did not overlap. The colors of the targets and fakes were randomly set
when the trial started. The color of each ball was set so that the distance between its colors in
HSV space was greater than 0.25. When the balls appeared, the robot arms began to stimulate
the participant’s cheeks. The stimulation was provided depending on the gap between the
participant’s direction and the target direction. In this experiment, the position and rotation of
the head were reflected in the VR environment. The example of the room for the experimfent
is shown in Fig 5.10.

5.6.1 Experiment Protocol

Our experiment had two sessions, namely, a rehearsal session, an actual performance
session. Before the actual performance session, the experimenter let participants train to find
the target in each condition. In the rehearsal session, participants looked for the target with
each condition. The session had 20 trials and one target appeared in each trial. There was

– 85 –



Chapter 5 Cheek Haptic-Based Spatial Directional Guidance

a 5 seconds interval between each trial. During the interval, the cheek stimulation stopped
and the robot arms returned to their initial position. Participants were instructed to look in
front of them while waiting for the next trial. When participants selected the correct target,
they heard the audio feedback for the correct answer. In the actual performance session,
participants searched the visible target with haptic feedback. The session had 80 trials and
the participants took a break after every 20 trials. The experimenter instructed the procedure
to the participants before the experiment.

This experiment flow is shown below:

1. The participant was instructed to go to the center of the room. The center was indicated
as a circle.

2. The participant was shown the target to find and was heard a sound.
3. The participant looked for the target. The target to find was located in the front of

participants.
4. When the participant touched the target, the trial was finished.

Instruction board Fake targets

Target to find

Center of room

Figure 5.10: Virtual Environment of Experiment 2
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5.6.2 Result

The overall average result is shown in Fig. 5.18 and the individual results are shown in Fig.
5.12. The task completion time in visual condition was M=12.45 s, SD = 14.51 s. The task
completion time in visual and haptic condition was M = 6.91 s, 5.48 s. Friedman test revealed
that there was a significant difference (p=0.014) between visual condition and visual+haptic
condition in terms of the task completion time.

*

Figure 5.11: Box Plot of Task Completion Time in Visual and Visual+Haptic condition

Looking at the participants’ behavior during the experiment, the Visual+Haptic condition
resulted in faster behavior when exploring. However, the search took longer when the target
was at the foot of or above the target. In the Visual + Haptic condition, participants searched
horizontally from their field of view first, and therefore could not locate the target located
under their feet. They acted like he was looking around, so they were able to find them quickly.
This is because the azimuthal direction was the easiest to find in our direction presentation.
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Figure 5.12: Box plot of Task Completion Time in Each Condition for Each Participant

Also, participants were confused when the targets were hidden by fakes from the participant
view. Since our system does not present information about the depth direction, this may be
because of an inconsistency between the visual and haptic information when occlusion occurs.

After the experiment, some participants reported that they changed their behavior in the
Visual and Visual+Haptic conditions. In the Visual condition, the participants learned the
target’s color without making mistakes, but in the Visual+Haptic condition, they learned the
rough color of the target and looked for it by haptic stimulation. This is because the Visual
condition provided no directional information and some colors were difficult to identify, while
the Visual+Haptic condition provided directional cues. Also, in the Visual+Haptic condition,
some participants did not feel the stimulation when they changed their facial expressions after
successfully locating the target. This is an issue with our haptic presentation method using
cheek surface estimation. The calibration was performed only once before stimulating the
cheek surface and was not do so afterwards. However, the cheeks change their facial shape,
such as when making facial expressions. Especially in the region near the lips, the haptic
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stimulation seemed to disappear because the tactile stimulus position was around there when
the target was in front.
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5.7 System Improvement

Our system was improved in terms of device, cheek surface estimation, and experimental
design to investigate the potential of cheek haptic-based spatial guidance method further.
In the device improvement, the HMD was replaced and the robotic arms was reconstructed
to increase the rigidity. As for the cheek surface estimation, the end effector posture was
controlled to face perpendicular to the cheek surface in collecting points on the cheek to
measure the surface more appropriately. Also, the protocol of the experiment on directional
guidance was modified and the evaluation of the experiment on spatial guidance was added.
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5.7.1 Improvement of Device

The cheek haptic stimulation device was improved by modifying an Oculus Quest 2 and
reconstructing robotic arms (Fig. 5.13). Oculus Quest 2 had built-in cameras to capture
physical environment. Therefore, robotic arms and circuits were attached out of the camera
view.

Circuit

Robot Arm

Photoreflector

Servo Motor

Figure 5.13: Improved Cheek Haptic Stimulation Device. Left: Device Overview. Center
Robotic Arm. Right Photoreflectors on the End Effector.

Also, the robotic arms, which attached to the HMD’s left and right sides, were reconstructed.
Although previous robotic arms (Fig. 5.6) could stimulate the cheek, the arm had issues on
the durability such as weak link supports and plastic-geared servo motors. Therefore, the
structure was strengthened and the plastic-geared servo motors were replaced to metal-geared
servo motors. Fig. 5.14 illustrates the improved robotic arm configuration and 𝜃𝑛 indicates the
rotation angle of n-1th joints (e.g. if it is 1st joint, the rotation angle is 𝜃0). Five servo motors
of two kinds of metal-geared servo motors were used. Three of five were Tower Pro MG92B
servo motors that had a high torque, the other two were PowerHD DSM44 servo motors that
were lighter than MG92B servo motor. MG92B servo motors were installed on the first,
second, and third joints, requiring high torque performance. DSM44 were installed on the
fourth and fifth joints that controlled the end effector posture in azimuthal and elevational plane
because the joints required low torque. By combining two kinds of servo motors according to
the requirements of joints, the overall weight of the robotic arm was reduced. On the arm tip,
four photoreflectors were located as well as the our previous robotic arms. The circuit was
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the same as the previous device but the bracket was remade with a 3D printer.

𝜃1

𝜃2

𝜃3

𝜃0

𝜃4

Axis

Axis

Axis

AxisAxis

■ Printed part
■ Servo motor
■ Servo horn
■ Photoreflector

𝑥

𝑧

𝑦

54.4mm

54.6mm

42.53mm

8.25mm

Figure 5.14: Improved Robotic Arm Configuration

The improved robotic arm weighted 82g (MG92B servo 14g × 3 + DSM44 servo 6g × 2
+ link 28g) and the circuit weight was 165g. So, the total weight of two robotic arms (82g ×
2) and the circuit (165g) was 329g. In providing haptic stimulation, the arm stimulated the
cheek with a weak force (around 0.4N). There was a latency of about 140 ms from the control
signal generated in the virtual environment to robotic arm actuation.
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5.7.2 Improvement of Cheek Surface Estimation Method

The distance prediction method, horizontal cheek surface tracking method, and tracking
path were modified to make the cheek surface estimation better.

Photoreflector detects the light intensity, and the sensor values correspond to the distance.
In our current implementation, a linear regression model was used in converting the values
to the distance in the physical world. This is because, within the limited range, the relation
between the values and the distance can be regarded as a linear regression. However, the
values increase or decrease nonlinearly according to the distance and the previous study [108]
showed the relation between the values and the distance can be modeled a power-law model.
Therefore, a power-law model (𝑦 = 𝑎𝑥𝑏) was adopted to translate the sensor values to the
distance.

The horizontal cheek surface tracking was improved to measure various facial geometry.
Facial geometry varies from person to person. Especially, the cheek surface has a large
curvature in a horizontal plane. In our current implementation, the end effector faces at a
constant angle during the tracing of the cheek surface, and the photoreflectors can be too far
from the cheek skin. It can cause the photoreflectors to mispredict the distance to the cheek
due to their close sensing range. Therefore, the horizontal normal direction was detected, and
turn the end effector was turned perpendicular to the cheek surface to keep the distance within
an appropriate range while tracing the cheek (Fig. 5.15).

Here, the improved collecting procedure of points on the cheek is described. In collecting
points on the cheek surface, the robot arm traced the cheek surface. At first, the robot
arm moved straight from its initial position until it touched the cheek surface. While the
arm was moving, the photoreflectors detected the distance from the arm tip to the cheek
surface by converting the sensor values into an actual distance with a power-law model
(𝑦 = 𝑎𝑥𝑏). Then, the arm moved along the cheek surface in the following order: rightward,
leftward, downward, rightward, and upward. At that time, the arm moved within a range
𝑥𝑠𝑚𝑖𝑛 < 𝑥 < 𝑥𝑠𝑚𝑎𝑥 , 𝑧𝑠𝑚𝑖𝑛 < 𝑧 < 𝑧𝑠𝑚𝑎𝑥 . When the arm moved to the right, the photoreflector on
the right side of the arm tip measured the distance to the cheek surface, and the next position
to move was computed using equation 5.4 (Fig. 5.2, left). The photoreflectors on the left and
right sides detected the distance to the cheek surface, and then the gap between the normal and
the current arm tip direction was calculated as follows: 𝜃𝑑𝑖 𝑓 𝑓 = arctan((𝑑𝑦𝑙 + 𝑑𝑦𝑟 )/2 ∗ 𝑑𝑥).
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Figure 5.15: Improved Cheek Surface Tracking in a Horizontal Direction. The robotic arm
detects the horizontal normal directions and faces to the cheek to measure the
distance between the photoreflectors and cheek skin accurately.

The tip of the arm was rotated by the difference from the horizontal normal direction of the
face. Then, the arm moved to the next position. The arm iterated the above procedure until
the arm’s position 𝑥 reached the right edge of the stimulation area (𝑥𝑠𝑚𝑎𝑥 ). Next, in case that
the arm moved to the left direction, a similar procedure as described above was performed
until the arm’s position 𝑥 reached the left edge of the stimulation area (𝑥𝑠𝑚𝑖𝑛 ). When the arm
moved downward, the photoreflector located on the bottom side of the arm tip measured the
distance to the cheek surface, and the next position to move was calculated using formula
5.5 (Fig. 5.2, center). The arm iterated to move the detected point until the arm’s position
𝑧 reached the bottom edge of the stimulation area (𝑧𝑠𝑚𝑖𝑛 ). A similar procedure as above was
performed when the arm moved to the right and up direction. Thus, the arm moved along the
cheek surface. By collecting the points on the arm trajectory, the points of the cheek surface
were acquired.
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5.8 Experiment 3: Directional Guidance with Im-
proved Protocol

This experiment evaluated our improved system in a similar experiment as Experiment
1 in terms of directional guidance. The rehearsal session of the experimental protocol
was changed. Although the rehearsal session in Experiment 1 showed the target visibly,
the participants might learned the relation between the visible target and the cheek haptic
stimulation. Therefore, invisible targets were shown with cheek haptic stimulation to let
participants learn the cheek haptic stimulation that was encoded the direction.

This experiment investigated how accurately haptic cues on the cheeks provided directional
information in VR space. In this experiment, participants searched and pointed invisible
targets in a virtual environment with haptic cues on cheeks. The targets appeared at fifteen-
degree intervals of 180 degrees in the azimuthal plane and of 90 degrees in the elevation
plane, for a total of 91 locations (13 (azimuth) * 7 (elevation)). When the target appeared,
the robot arms started to stimulate the participant’s cheek. The robot arms provided the
stimulation according to the participant’s head posture and the target location. In the virtual
environment, the head position was fixed, while the head rotation was reflected. Participants
turned to the target direction and pressed a controller button to point the target direction. A
reticle was placed in front of participants to help them to select the target. Instruction texts
were shown to participants in the virtual environment. This experiment evaluated the absolute
azimuthal and the absolute elevational angular error and task completion time. There were
18 participants (16 males, 2 females; age was M=24.28, SD=2.68), and they had no disability
related to tactile organs. The participants were recruited from the students of the Faculty of
Science and Technology of our university. Out of 18 participants, 14 had experienced using
VR (>10 times), and the others had experienced using VR (>once). Nine of 18 participants
played VR less than an hour a week, and the rest of them played VR more than an hour a
week. The participants provided written consent form before the experiment.

Our experiment had two sessions, namely, a rehearsal session and an actual performance
session. In the rehearsal session, participants looked for the invisible target with the help of
haptic stimulation. The rehearsal session consisted of 45 trials, and one target appeared in each
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trial. There was a five seconds interval between each trial. During the interval, participants
were instructed to gaze at the front, and the robot arms stopped stimulating. Participants
selected the direction until they selected the correct one. If the error between the selected
direction and the actual target direction was within 10 degrees in azimuthal and elevational
angles, it was regarded as correct. When participants selected the correct target, they heard
the audio feedback for the correct answer and showed the actual target for three seconds.
Then, the trail moved on the next. In the actual performance session, participants looked
for the invisible target by relying on the haptic stimulation as in the rehearsal session. The
actual performance session consisted of 91 trials. When participants selected the direction,
they heard the audio feedback, and the trial moved on to the next. The participants were
instructed to wear the haptic stimulation device, earplugs, and a noise canceling headphone.
During the experiment, white noise was played through the headphone to reduce the noise
from the robot arms so that participants hear only the sound from the VE. This experiment
followed the guideline provided by the research ethics committee at the Faculty of Science
and Technology, Keio University.

5.8.1 Experimental Protocol

First, the participants were explained the task and the procedure of the experiment. The
participant were instructed to put on the haptic stimulation device and earplugs and sit him on a
chair. Then, the cheek surface of the participants were estimated. At that time, the participants
were instructed not to move during the calibration. After the cheek surface estimation, the
participants were shown the virtual environment and were demonstrated visual and cheek
haptic information of the target position. Here, the participants were instructed to move the
head up, down, left, and right to present haptic stimulation when the target was located in
front. After the demonstration, the participants were put a noise canceling headphone. Then,
the rehearsal session was performed. In the rehearsal session, the participant searched for
the invisible target 45 times. Immediately after the rehearsal session, an actual performance
session was performed. In the actual performance session, the participant searched for the
invisible target 91 times. After the actual performance session, the participant removed
the earplugs, the headphone, and the device. The participants sit to the chair during the
experiment. This experiment took about an hour.
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5.8.2 Result

The result is shown in Fig. 5.16. Some participants made unintended selections by
touching the button. There were three such mistakes, and they were removed. The absolute
azimuthal angular error was M=2.54 degrees, SD=2.19 degrees. On the other hand, the
absolute elevation angular error was M=6.54 degrees, SD=9.34 degrees (Fig. 5.16 Left).
The histograms of both angular errors respectively in Fig. 5.16 Center, Right. The task
completion time was M=13.01 seconds, SD=6.78 seconds. An example of temporal changes
of the azimuthal and elevational angular gap between the target direction and head one is
shown in Fig. 5.17. Compared with Experiment 1, the absolute elevational angular error
was less. This improvement was brought by the modification of the rehearsal session. The
histograms of both directions indicate that almost azimuthal and elevation angular errors were
within 10 degrees. It is considered because, in the rehearsal session, the gap within 10 degrees
of both angles was defined as the correct answer.
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Figure 5.16: The result of directional guidance pointing accuracy. Left: absolute azimuthal
and absolute elevational angular error. Center: a histogram of azimuthal angular
error. A bar width indicated 2.5 degrees. Right: a histogram of elevational
angular error. A bar width indicated 2.5 degrees.

Despite of the improvement of the absolute elevational angular error, similarly as the
Experiment 1, the standard deviation of elevational angular error was larger than the azimuthal
one. Also, according to Fig. 5.17, the participant, it seemed to be difficult to recognize the
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Figure 5.17: Example of temporal changes of azimuthal and elevation angular gaps between
the participant’s front and target direction in Experiment 1. 91 trials were
plotted. Left: The temporal changes of the azimuthal angular gap. Right: The
temporal changes of the elevational angular gap.

elevation angle intuitively. Fig. 5.17 Right indicates that the participants found the azimuthal
direction soon. On the other hand, Fig. 5.17 Right shows that the participants repeatedly
shook their heads in the elevational direction to find the accurate target direction. After the
experiment, all participants reported that they had difficulty finding the elevational direction.
Furthermore, one out of the participants reported that he could not recognize the base of the
height of the stimulation, so he judged whether the stimulation stopped or not. Therefore, our
haptic stimulation in elevational angle has room for improvement, as the simple continuous
stimulation could result in unclearness.
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5.9 Experiment 4: Spatial Guidance with Addi-
tional Evaluation

To evaluate our spatial guidance technique further, this experiment investigated how our
technique affected the task performance, usability, and workload of spatial guidance in VR
space. Participants had to look for and touch the visible target in virtual space. This
experiment compared task completion time, System Usability Scale (SUS), and NASA-TLX
score in visual+haptic condition with those in visual condition and visual+audio condition. In
the visual condition, participants searched the target with only visual information (color). In
the visual+audio condition, participants looked for the target with visual and audio cues. This
experiment used a 440 Hz tone as the basis for the audio cues. The azimuthal and elevational
angles were encoded into the difference between left and right sound and the sound frequency,
respectively, since several studies modulated elevational angular information into auditory
spectral cues to let users localize directions [150]. The sound frequency was transformed
based on the difference between the target direction and the participant’s frontal direction
as follows: 𝑓𝑡 = −440 ∗ 𝑎𝑏𝑠(𝜃𝑑𝑖 𝑓 𝑓𝑒 )/90 + 440, where 𝑓𝑡 was sound frequency, 𝜃𝑑𝑖 𝑓 𝑓𝑒 was
the elevational angular difference between the target direction and the participant’s frontal
direction. In the visual+haptic condition, participants found the target with visual information
and haptic stimulation to cheeks. There were 18 participants (16 males, 2 females; age was
M=24.28, SD=2.68) who had no disability related to tactile organs. The participants were
recruited from students of the Faculty of Science and Technology of our university. The
participants were the same at those who took part in Experiment 1. Of 18 participants, 14 had
experienced VR more than ten times, and the rest had experienced VR more than once. Of
the 18 participants, nine played VR less than an hour a week, and the others played VR more
than an hour a week. In advance of the experiment, consent was gotten from the participants.

Participants looked for and detected targets of a specific color among many spheres (Fig.
5.10). Participants performed 80 trials and took a break after every 20 trials. In each trial, 50
spheres, including a target and 49 fakes, appeared in a room (3 m x 3 m x 2 m). The targets
were placed in randomly chosen positions. 40 random positions were generated, and the
position components (x, y, z) were sorted randomly to obtain 80 counterbalanced positions.
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The other 49 fakes randomly appeared at the beginning of the trial. At that time, each sphere
was placed without overlap. The sphere colors were chosen randomly so that the distance
between each color was greater than 0.25 in HSV space when the trial started. When the
spheres appeared, the robot arms started to stimulate the participant’s cheeks. The robot arms
provided the stimulation according to the participant’s head posture and the target location.
The head movements, including the position and posture, and the hand movements were
reflected in the virtual environment. An protocol of this experiment followed the guideline
provided by the research ethics committee at the Faculty of Science and Technology, Keio
University.

5.9.1 Experiment Protocol

The experiment had two sessions, namely, a rehearsal session and an actual performance
session. First, the rehearsal session was conducted to let participants train to find the target.
In the rehearsal session, participants searched a target with each condition’s cues. The session
consisted of 20 trials, and a target appeared in each trial. There was a five seconds interval
between each trial. During the interval, participants were instructed to look at the front, and
the robot arms stopped stimulating. When participants selected the correct target, they heard
the audio feedback. In the actual performance session, participants looked for the target with
each condition’s cues. The session had 80 trials, and there was a break after every 20 trials.

This experiment flow was shown as follows:

1. The participant was instructed to go to the center of the room. The center was indicated
as a circle on the floor.

2. The participant was shown the target to find on the instruction board and was heard a
sound.

3. The participant looked for the target. The target to find was shown on the instruction
board.

4. When the participant touched the target, the trial was finished.

After each condition, the participants answered the SUS and the NASA-TLX questionnaires.
At first, the participants answered ten questions about the SUS by rating a 5-point Likert scale,
from 1 "Strongly Disagree" to 5 "Strongly Agree." Next, the participants rated six subjective
subscales about the NASA-TLX scores, namely, "Physical Demand," "Mental Demand,"
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"Temporal Demand," "Performance," "Effort," "Frustration." And then, for every pair of six
subjective subscales (15 pairs), the participants answered which subscale was important for
them in the task. Each condition was randomly conducted for each participant.

When this experiment was conducted, the order of the conditions was randomized for each
participant to take a counterbalance of the condition order. The experimental procedure took
about one and half hours.
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5.9.2 Result
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Figure 5.18: Box plots of task completion time in visual, visual+audio, and visual+haptic
condition. * and ** indicates p < 0.05 and p < 0.01, respectively.

The overall average result of task completion time is shown in Fig. 5.18 Left and the
individual results are shown in Fig. 5.18 Right. The task completion time in the visual
condition was M=6.39 s, SD=3.34 s. The task completion time in the visual+audio condition
was M=5.62 s, SD=3.12 s. The task completion time in the visual+haptic condition was
M=4.35 s, SD=2.26 s. Friedman test revealed that there was a significant difference (p =
0.0000) in three conditions in terms of the task completion time. Post-hoc tests with Bonfer-
roni correction found that there were significant differences between visual and visual+audio
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Figure 5.19: Box plots of Task Completion Time in Each Condition for Each Participant.

condition (p = 0.0300), visual and visual+haptic condition (p = 0.0000), and visual+audio
and visual+haptic condition (p = 0.0012). The SUS score is shown in Fig. 5.20. In the
visual condition, the SUS score was M=55.83, SD=20.40. In the visual+audio condition,
the SUS score was M=47.78, SD=20.09. In the visual+haptic condition, the SUS score was
M=80.42, SD=10.99. Friedman test showed a significant difference (p = 0.0002) in the three
conditions in terms of the SUS score. Post-hoc test with Bonferroni correction found siginif-
icant differneces between visual and visual+haptic condition (p = 0.0002), and visual+audio
and visual+haptic condition (p = 0.0000). The visual+haptic condition using our guidance
technique achieved the highest SUS score among all conditions, and there were statistical
significant differences between the other conditions. Also, the SUS score in visual+haptic
condition reached the highest grade according to the guideline on SUS score interpretation.
The NASA-TLX overall score is shown in Fig. 5.21, and each weighted NASA-TLX score

– 103 –



Chapter 5 Cheek Haptic-Based Spatial Directional Guidance

20 40 60 80 100
SUS score

Visual+Haptic

Visual+Audio

Visual

C
on

di
tio

n **
**

Figure 5.20: Box plots of SUS scores in each condition. ** indicates p < 0.01.
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Figure 5.21: Box plots of total NASA-TLX scores in each condition. ** indicates p < 0.01.

are shown in Fig. 5.22. In the visual condition, NASA-TLX total score was M=75.81,
SD=16.89. In the visual+audio condition, NASA-TLX total score was M=67.57, SD=14.96.
In the visual+haptic condition, NASA-TLX total score was M=38.83, SD=18.52. Friedman
test indicated a significant difference (p = 0.0000) in the three conditions regarding the work-
load. Post-hoc test with Bonferroni correction revealed significant differences between visual
and visual+haptic condition (p = 0.0000), and visual+audio and visual+haptic condition (p
= 0.0000). Mental Demand scores were M=16.07, SD=10.44 and M=19.33, SD=7.85 and
M=9.31, SD=7.14 in the visual, the visual+audio, and the visual+haptic condition. Physi-
cal Demand scores were M=13.87, SD=9.58 and M=8.13, SD=7.00 and M=11.46, SD=8.49
in the visual, the visual+audio, and the visual+haptic condition. Temporal Demand scores
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Figure 5.22: Box plots of each NASA-TLX weighted subjective subscale score in each con-
dition. * and ** indicates p < 0.05 and p < 0.01, respectively.

were M=2.76, SD=4.62 and M=1.19, SD=2.50 and M=1.70, SD=3.24 in the visual, the vi-
sual+audio, and the visual+haptic condition. Performance scores were M=8.04, SD=8.26
and M=7.07, SD=6.90 and M=3.61, SD=2.15 in the visual, the visual+audio, and the vi-
sual+haptic condition. Effort scores were M=20.22, SD=6.94 and M=17.50, SD=5.22 and
M=7.61, SD=6.82 in the visual, the visual+audio, and the visual+haptic condition. Frustra-
tion scores were M=14.85, SD=11.30 and M=14.35, SD=11.23 and M=5.13, SD=5.80 in the
visual, the visual+audio, and the visual+haptic condition. As for the Mental Demand score,
Friedman test indicated that there is a significant difference between the three conditions (p
= 0.0098). Post-hoc tests with Bonferroni correction showed a significant difference between
the visual+audio and the visual+haptic condition (p = 0.0010) in the Mental Demand score.
In the Physical Demand score, Friedman test indicated that there is a significant difference
between the three conditions (p = 0.0030). However, post-hoc tests with Bonferroni correc-
tion indicated no significant difference between any of the three conditions. As for the Effort
score, Friedman test indicated a significant difference in the three conditions (p = 0.0000).
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Post-hoc tests with Bonferroni correction revealed significant differences between the visual
and the visual+haptic condition (p = 0.0079) and the visual+audio and the visual+haptic con-
dition (p = 0.0117) in terms of Effort score. In the Frustration score, Friedman test showed
a significant difference in the three conditions (P = 0.0049). Post-hoc tests with Bonferroni
correction indicated a significant difference between the visual and the visual+haptic condi-
tions (p = 0.0117), and visual+audio and visual+haptic conditions (p = 0.0079) in terms of
Frustration score. Therefore, our spatial guidance technique achieved shorter task completion
time, higher usability, and less workload in the target searching task.

Looking at the participants’ behavior during the experiment, in the visual+haptic condition,
the participants tended to turn to the target direction more quickly when searching. On the
other hand, the participants seemed to have difficulty detecting the target around the foot or
above the head. In the visual+haptic condition, participants first were likely to search the
target horizontally from their view. Therefore, it is considered that participants had difficulty
finding the target that was located out of their view and at different heights. If the target was
around the eye-level, the participants identified the target easily and quickly. This implies that
our technique presented the azimuthal direction appropriately. Participants were confused
when fakes occluded the targets from the view of participants. Since our system does not
provide depth information, such a lack of information might cause the participants to feel an
inconsistency between the visual and haptic information when the targets were occluded by
fakes.

After the experiment, some participants reported that they changed their behavior in vi-
sual+haptic conditions. In the visual condition, the participants made a great effort to learn the
target’s color without making mistakes. In the visual+haptic condition, they learned the audio
cues, but they had difficulty learning the cues, so they eventually learned both color and audio
cues. However, in the visual+haptic condition, they took less effort to learn the target’s color
and searched it relying on haptic stimulation. This is because the visual condition offered no
directional information and the visual+audio condition made the participants learn the cues,
while the visual+haptic condition provided directional cues intuitively. The Effort score of
NASA-TLX also shows less effort of the visual+haptic condition in Fig. 5.22. In addition,
according to the Frustration score of NASA-TLX in Fig. 5.22, the visual+haptic achieved less
frustration than the other conditions. In the Mental Demand score, visual+audio condition
achieved significantly lower score (5.22). Therefore, in the visual+haptic condition, less ef-
fort, less frustration, and less mental demand brought to the higher SUS score. Also, some
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participants reported that they lost the stimulation when they changed their facial expressions
after successfully detecting the target in the visual+haptic condition. This loss of stimulation
was caused by our cheek surface estimation method. The cheek surface was estimated only
once before the stimulation. However, the cheek changes its shape, for example, when making
facial expressions. Especially near the lips, the shape deforms significantly. Our system
stimulated the region around the lips when the target was in the front, so it seems to lose the
haptic stimulation that indicated the front direction.
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5.10 Demonstration

In SIGGRAPH Asia 2021, our spatial directional guidance technique was demonstrated in
a virtual environment. In the demonstration, two applications were implemented.

1. Users found a target image among 50 icons with the help of cheek haptics. The
users were shown a target image on their right side for five seconds. Then, 50 icons
appeared around the users. The users looked for the target among 50 icons relying on
the cheek stimulation corresponding to the target direction and select the target with
the controller. This application let the users perceive the directional information while
sitting and concentrating on the cheek stimulation.

Figure 5.23: Image Finding Application. Users look for a target icon among many icons with
the help of cheek haptic stimulation.
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2. Users touched approaching targets relying on cheek haptic stimulation. A target
appeared and approaches the users. The users searched the target with the cheek haptic
stimulation and touch it. The controller position was represented as a white sphere in
the virtual environment. Through this application, the users intuitively understood the
target direction while standing and moving actively.

Figure 5.24: Target Touching Application. Users search and touch approaching targets rely-
ing on cheek haptic stimulation.

In SIGGRAPH Asia 2021, about 80 people tried our demonstration. Through the demon-
stration, it was shown that our cheek sensing and stimulation technology worked well on
various people, such as people with beards and people wearing makeup.
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5.11 Limitation

Our technique estimated the cheek surface as static to present the target direction. However,
the cheek deforms when speaking, eating, and forming facial expressions, which can cause
a robot arm not to reach the cheek. In Experiment 2, some participants mentioned that they
lost cheek cues by changing facial expressions. Especially, the geometry around the mouth
deforms complexly thanks to several facial muscles, making it difficult for the robotic arms to
reach. In addition, if an HMD position is shifted, the estimated surface also is shifted so that
the robot arm may not touch the cheek. Similar issues caused by the misalignment between the
HMD and the face have been mentioned in previous studies on photoreflector-based sensing.
Therefore, it is important to detect cheek surface in real-time to make the surface estimation
robust to the positional drift and capture the dynamic facial deformation.

However, in case of real-time sensing, servo delays significantly affect the system respon-
siveness. Our system calculated a point of cheek surface based on the distance predicted with
photoreflectors and robotic arm position. However, if our system get sensor data before arm
actuation, our system mispredicts the positions, which causes wrong cheek surface estima-
tion. Therefore, our current system waited for robot arm actuation for accurate cheek surface
sensing. However, if sensing and stimulation are tried at the same time in our current system
configuration, the stimulation is delayed by the latency of the sensing at least. In our current
implementation, the used servo motors are controlled by PWM control width of 20ms. To
actuate robotic arms more quickly, the high responsive servo motors are required.

In our spatial guidance experiment, elevational angular information were modulated into
audio frequency to compare visual condition and visual+haptic condition. The elevational
angle were translated into the pitch of audio cues. However, as the other method to mod-
ulate elevational information into frequency, head related transfer function-based methods
were adopted [151, 152]. Therefore, by employing the head related transfer function-based
approaches, the result may be changed.

There were young participants in both experiments. The sensory systems of human, such
as hearing and haptics, decline as we age. However, in the haptic sensation, tactile capability
is attenuated and, especially, in the lower limbs. Therefore, the experimental results may be
changed by elderly participants.
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Our implementation provided slight stimulation on the cheek to present spatial directional
information in a safe manner. However, it is still unclear whether the slight stimulation
is appropriate in offering spatial guidance or not. Therefore, it is important to investigate
comfortable force for using the cheek as a haptic display.

In the demonstration of SIGGRAPH Asia 2021, it is confirmed that our facial sensing and
stimulation technology worked well on most participants. However, in case of small faces,
our cheek sensing failed because the calibration area was set with constant values in our
implementation. The human face is different for each individual, and the calibration area
should be set according to the face size of each person. Therefore, by considering face size,
facial surface estimation could be applicable to more various people.

Our system employed servo motors for the robot arm. However, the angular step of the
servo motor was 1.8 degrees. In the future, it will be tested whether using a high-resolution
servo can make the stimulation more accurate.

A robotic arm with some linkages was leveraged as a stimulation device. However, the
arm with linkages requires multiple joints with servo motors, which increases the weight of
the arm. This weight increase makes the users tired. Therefore, it is necessary to construct a
lightweight robot arm.

Facial surface was measured using photoreflectors to provide slight touch on the cheek.
According to several experimental participants, provided haptic stimulation was very light.
Therefore, even our current configuration is sufficient to present safe stimulation. By intro-
ducing force probes on the tip of robotic arms, the force on the cheek can be detected the
actual force more precisely, which makes the haptic presentation safer.

The result of experiment 1 indicated that the elevational angular error was larger than the
azimuthal one. While participants seemed to have difficulty moving their heads slightly, there
is a possibility that the limitation of our robot arm-based haptic stimulation led to this result.
However, it is unclear how precisely a human can control our heads in the elevational direction
by ourselves. In the future, the controllable angle of the head by ourselves will be investigated.

Generally, continuous haptic stimulation can lose the sensation by sensory adaptation, while
the participants did not report that in our experiments. It will be investigated if such adaptation
occurs when stimulating the cheek with our method for a longer duration.
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5.12 Conclusion

This study proposed Virtual Whiskers, a spatial directional guidance system that provided
haptic cues on the cheeks with robot arms attached to an HMD. Robot arms were placed
to the left and right sides of the bottom of an HMD, allowing to offer haptic cues on both
sides of the cheek. Points on the cheeks’ surface were detected using photo reflective sensors
located on the robot arm tip and fitted a quadratic surface to the points to estimate the cheek
surface. In stimulating the cheek, the point on the estimated surface that was encoded the
targets’ azimuthal and elevational angles in the VR space were calculated and the point was
mapped to the stimulation position. According to spatial information of the target and user’s
head, the arms touched the cheeks to present directional cues.

The experiment on the directional guidance accuracy was conducted by haptic directional
cues on the cheeks and evaluated the pointing accuracy. Our method achieved the absolute
azimuthal pointing error of M=2.36 degrees, SD=1.55 degrees, and the absolute elevational
absolute pointing error of M=4.51 degrees, SD=4.74 degrees. Also, the experiment on task
performance in a spatial guidance task was conducted using our guidance technique. The
experiment compared the task completion time, SUS score, and NASA-TLX score in the target
searching task in the three conditions; only visual information was presented; visual and audio
cues were presented; visual and haptic information was presented. The result showed that the
averages of task completion time were M=6.68 s, SD=3.45 s and M=6.20 s, SD=3.30 s and
M=4.22 s, SD=2.05 s in visual and visual+audio and visual+haptic condition, respectively.
The averages of the SUS score were M=44.17, SD=21.83, and M=44.44, SD=23.24, and
M=86.11, SD=8.76 in visual and visual+audio and visual+haptic condition, respectively.
The averages of NASA-TLX scores were M=75.22, SD=22.93 and M=71.03, SD=12.13 and
M=35.00, SD=17.16 in visual and visual+audio and visual+haptic condition, respectively.
Statistical tests showed significant differences in task completion time, SUS score, and NASA-
TLX score between the visual and visual+haptic condition and visual+audio and visual+haptic
condition.

Through our experiments, this study showed the effectiveness of cheek haptics on spatial
guidance. Our technology could be applied to collaboration, extended body control, and
affective interaction. In collaboration with other people, it is important to share attention
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and interest. In such a case, our technique can indicate attention to users. In terms of
human augmentation, by mapping extended body control and feedback to facial gestures and
stimulation, the embodiment can be improved. As for affective interaction, communication
via cheek haptics enriches interaction since the cheek haptic interaction improved remote
communication quality [153], modified stress [87]. Our system is integrated into an HMD
and makes the user’s hands free. Therefore, cheek haptic-based interaction allows users to
collaborate effectively.

In our system, the robot arms were used to present a single direction by stimulating the
cheek. However, the several robot arms attached to the HMD enable tangible interaction
on a cheek for immersive HMD users. In the future, it will be explored that the potential
application and the interaction technique with virtual objects.
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𝜑 = 0°, 𝜃 = 0°

𝜑 = 45°, 𝜃 = 45°

𝜑 = −70°, 𝜃 = −20°

𝜑 = −60°, 𝜃 = 0°

𝜑 = 70°, 𝜃 = 20°

𝜑 = −10°, 𝜃 = 10°

Figure 5.25: Haptic directional cue presentation with robotic arms attached to the HMD. In
this figure, there are six example as pairs of the virtual environment (VE) and
the haptic stimulation. The image on the left side in the pair was the VE. The
3D head model was the user’s head position and the blue sphere was a target.
The image on the right side was the user that stimulated the cheek with the robot
arms attached to the HMD.
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This dissertation developed two HMD-based systems that enable interaction using a face.
In a virtual environment, mouth shape recognition with photo reflective sensors embedded
into an HMD and cheek haptic-based spatial directional guidance were presented.

In mouth shape recognition, the mouth shapes of HMD users were recognized with optical
sensors. By integrating four photoreflectors, four optical distance measuring units, a micro-
phone, and a microcomputer into an HMD, the prototype captured mouth shapes and audio
signals. The photoreflectors and optical distance measuring units detected the movement of
eight points (upper lip, upper cheek, lower lip, and cheek). A mouth shape classifier was built
by training an SVM with the sensor values for each mouth shape. Also, five Japanese vowels
were recognized from voice in order to label the sensor values and automate training data
collection.

Our experiments indicated that our mouth shape recognition method classified six mouth
shapes (the mouth shapes of five Japanese vowels and closed mouth shape) with an average
accuracy of approximately 99.9%; the classifiers trained with our automated labeling method
achieved an average classification accuracy of approximately 96.3%. In addition the exper-
iment on user-dependency indicated that the user-independent classification accuracy was
30.7%, which was lower by 68.7% than user-dependent classification accuracy. Therefore,
our current system is difficult to construct a generalized classifier. Therefore, it is difficult to
construct a generalized classifier using the current system.

In addition, an application that projected the user’s mouth shapes to an avatar was developed.
In transferring the mouth shapes, six mouth shapes were blended using class membership
probabilities for each shape as weights. The application revealed that our system could
transfer various mouth shapes on the avatar.

In spatial directional guidance using facial haptics, directional cues were provided on the
cheeks using robotic arms attached to an HMD. Robotic arms were attached to the left and
right sides of the bottom of an HMD to offer haptic cues on both sides of the cheek and
placed photo reflective sensors on the tip of the arm as proximity sensors. Points on the
cheek surface were collected using photo reflective sensors and fitted a quadratic surface to
the points to estimate the cheek surface. To stimulate the cheek, the point on the estimated
surface corresponding to the target azimuthal and elevational angles in the VR space was
calculated and the point was mapped to the stimulation area.

The experiment on directional guidance accuracy by cheek haptics resulted in the absolute
azimuthal pointing error of M=2.36 degrees, SD=1.55 degrees, and the absolute elevational
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absolute pointing error of M=4.51 degrees, SD=4.74 degrees. The experiment on spatial
guidance also conducted to investigate task performance, usability, and workload using our
guidance technique. Participants were imposed a target searching task. The experiment
compared task completion time, SUS score, and NASA-TLX score in the three conditions.
The first condition (visual condition) showed only visual information; the second condition
(visual+audio condition) provided visual and audio cues; the third condition (visual+haptic
condition) presented visual and haptic information. The result indicated that the averages
of task completion time were M=6.68 s, SD=3.45 s in the visual condition; and M=6.20
s, SD=3.30 s in the visual+audio condition; and M=4.22 s, SD=2.05 s in the visual+haptic
condition. The averages of the SUS score were M=44.17, SD=21.83 in the visual condi-
tion; and M=44.44, SD=23.24 in the visual+audio condition; and M=86.11, SD=8.76 in the
visual+haptic condition. The averages of NASA-TLX scores were M=75.22, SD=22.93 in
the visual condition; and M=71.03, SD=12.13 in the visual+audio condition; and M=35.00,
SD=17.16 in the visual+haptic condition. Statistical tests revealed significant differences in
task completion time, SUS score, and NASA-TLX score between the visual and visual+haptic
conditions and visual+audio and visual+haptic conditions.

Our system presented a single direction by stimulating the cheek using robotic arms.
However, the robot arms can provide feedback from the virtual environment and enable
tangible interaction on a cheek for immersive HMD users. In the future, the potential
application and interaction technique with virtual objects will be explored.

Through the above studies, the sensing and stimulation technologies were developed for
facial surface interaction. The region around the mouth and cheek was focused on. Our studies
revealed that embedded optical sensors detected facial surfaces and embedded robot arms
provided stimulation successfully. Especially, this facial haptic stimulation study provided
direct stimulation on the face precisely by using robotic arms. It is considered that this direct
facial stimulation method expanded the possibilities of facial haptics in virtual and physical
environments.

Our facial surface sensing and stimulation methods help to investigate the effectiveness of
facial haptics on human augmentation and avatar embodiment. Especially, our framework
is strongly beneficial in applications that provide vision, audio, and haptic cues, like VR
applications.
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