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Abstract

The automatic capture of human motion has attracted much attention in

computer vision and biomechanics communities. The research in this area

has aimed to obtain indicators that represent human movements, such as 3D

human pose, joint torques, and the body center of mass (CoM). This thesis

focuses on motion capture in real-world environments. An RGB camera is

one of the most commonly used sensors for full-body motion capture since

the visual sensor captures the kinematic and shape information of people

in the image. Besides the RGB camera, inertial measurement units (IMUs)

have become a prominent option for analyzing human motion in the last few

years. Body-worn IMUs measure the movement of a person over a wide area

without being disturbed by occlusions.

Exploiting and combining the benefits of these sensors, this thesis ad-

dresses motion capture under scenarios where a subject cannot wear the

devices and can wear the sensors, respectively. For the former scene, this

thesis proposes a multi-view image-based motion capture method. It recon-

structs the human body by back-projecting 2D body keypoints (joints and

face landmarks) and silhouettes into a 3D space. In the experiment, the tra-

jectories of the CoM position during a baseball swing were estimated as an

application to verify the effectiveness of the proposed method. For the latter

scene, this thesis presents a method for 3D human pose estimation using

a single camera and multiple body-worn IMUs. Unlike the existing visual-

inertial motion capture approaches that require multi-view cameras to locate

the body parts, the proposed method localizes the body by constraining the

foot-ground contact positions with a single camera. The single-view setting

expands the measurement range. The experiments on a standard benchmark

dataset demonstrated that the proposed approach reduced mean joint posi-

tion errors by 68.8% and 80.9% compared to the image-based and IMU-based

methods, respectively. As with conventional IMU-based motion capture sys-

tems, the proposed visual-inertial motion capture requires complicated pre-

processes to measure movements. To relax this limitation, this thesis lastly

presents a framework to automate the preprocessing of IMU-based human

motion measurements, which can be applied to a wide range of applications

that attach multiple IMUs to the body segments. A deep neural network
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model is proposed to predict the segment to which each IMU is attached and

the relative IMU-to-segment pose from the IMU signals during a few seconds

of walking. The experiments on publicly available datasets showed that the

proposed method improved the accuracy of identifying the segment on which

each IMU is mounted by 8.5% compared with the state-of-the-art method.

Overall, the thesis proposed two motion capture methods and an IMU

calibration framework for measuring human motion in real-world settings.

The thesis includes the future potential applications and the impact on the

corresponding research communities.
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Chapter 1

Introduction

1.1 Overview

The automatic capture of human motion has been actively studied for many

years due both to the number of potential applications and its inherent com-

plexity. The research in this area aims to locate the human body in three

dimensions and obtain full-body motion indicators, which include 3D hu-

man pose, joint torques, and the body center of mass (CoM). This thesis

focuses on motion capture in real-world environments where measurers con-

struct a motion measurement system. Many researchers and practitioners in

the biomechanics community collect motion data in this setting [80,85,120].

Since the real-world measurements allow subjects to move in their living

space, the data of motion in context can be obtained [60, 66]. Further, real-

world motion measurements provide various data because subjects interact

with the environment in practice [92].

For human motion capture in real-world environments, an RGB camera

is one of the most commonly used sensors due to its portability and ability

1
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to capture the entire body with a single unit. The visual sensor captures

the kinematic and shape information of people in the image. Furthermore,

image-based measurement systems are applicable for motion capture under

environments where the subject cannot wear devices, such as during sports

games. The recent developments of deep learning techniques have brought

remarkable breakthroughs in this field [10,17,56,94]. Many researchers have

significantly improved 2D pose estimators using convolutional neural net-

works (CNNs) and extended their works to 3D human pose estimation meth-

ods [64,72,76,108]. However, capturing a 3D human pose from a single view

still remains as a challenging task due to the depth ambiguity. The liter-

ature reported that the developed 3D pose estimators are typically trained

and evaluated on 3D datasets recorded in well-controlled environments, and

their performance degrades when applied to in-the-wild data [4, 121].

Inertial measurement units (IMUs), which measure 3D acceleration, an-

gular velocity, and magnetic field, have become a prominent option for an-

alyzing real-world human motion. Body-worn IMUs provide 3D rotational

and, sometimes, translational motion of the attached body segments. IMU-

based measurement systems perform well in outdoor recordings and scenarios

with occlusions. These benefits have led many researchers to extract motion-

related features from IMUs attached to the body parts for estimating 3D hu-

man pose [41,65,103] and other motion indicators (e.g., human velocities [112]

and gait phases [53]). However, IMUs have 3D position ambiguities as well

as a monocular camera because IMUs suffer from measuring translational

motion due to the integration-drift problem. The position error accumulates

in time to reach a remarkable value if it is not reset or compensated.
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Exploiting and combining the benefits of these visual and inertial sen-

sors, this thesis addresses motion capture in the real world under scenarios

where a subject cannot wear the devices (e.g., during sports games) and can

wear the sensors (e.g., daily-life movement), respectively. The two proposed

methods for human motion capture resolve the 3D position ambiguity based

on geometric consistency using multiple visual and inertial sensors.

This thesis first presents a non-invasive motion capture method using

multi-view cameras that localizes the subject by making full use of the cross-

view geometric constraints. Since many motion analysis applications for

sports and medicine require not only human pose but also purpose-oriented

motion indicators, this work focuses on the body CoM. The trajectories of

the CoM represent the global movement of the subject and can be a key

to analyzing the subject’s motion (e.g., risk assessment of injuries and opti-

mization of athletes’ performance, such as the swing of a baseball bat and a

golf club [32,79,105]). The presented method exploits the benefit that body

kinematic and shape information can be extracted from the images, which

enables CoM estimation based on the intrinsic weight of each body segment.

The secondly proposed method captures human motion fusing a single

camera and body-worn IMUs. This method can be used in a measurement

system constructed in a living field where people perform their daily activi-

ties. The center panel of Figure 1.1 illustrates this sensor configuration, and

the left panel depicts the multi-view setting. The single-view setup expands

the measurement area. The proposed method reconstructs the 3D human

pose, localizing the global position of the subject by constraining and opti-

mizing the foot-ground contact points.
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RGB camera

Chapter 3: Multi-view image-based MoCap

Expert operator

IMU

Chapter 4: Single-view & multi-IMU MoCap

Non-expert operator

Chapter 5: IMU calibration for MoCap

Figure 1.1: Motion capture environments in this thesis.

As with the conventional IMU-based motion measurements, the secondly

proposed method requires complicated preprocessing to measure movement

using IMUs. The preprocessing includes assigning each IMU to the body seg-

ment and calculating the relative orientation of the IMUs to the attached seg-

ments. These two preprocesses are collectively referred to as IMU calibration

in this thesis. To improve the usability of the IMUs to motion capture, this

thesis lastly presents a framework for automatic IMU calibration. Whereas

the vision-based methods have well-established camera calibration techniques

for multi-view configurations [117], the motion measurements based on mul-

tiple body-worn IMUs require special skills to build an appropriate setup.

The proposed framework simplifies the operation of the IMU calibration and

allows a non-expert to operate the calibration, as illustrated in the right

panel of Figure 1.1. Specifically, the proposed framework allows the mea-

surement operator to mount IMUs on arbitrary body segments, and to start

measurements without making a subject take a calibration pose. The pro-

posed calibration framework is applicable to general motion capture systems

using multiple body-mounted IMUs. To extract the features for the sensor

calibration, a network architecture that learns the global body motion and
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Table 1.1: Comparison of the proposed approaches and related studies.
Method Camera IMU Reconstruction Localization

Monocular [64,76, 108] Single - Kinematics/Model Depth inference
Multi-view [43,83,119] Multiple - Kinematics/Model Cross-view consistency
Chapter 3 Multiple - Weighted volume Cross-view consistency
DIP [41] - 6 Model -
SIP [103] - 6 Model Offline optimization
Zhang et al. [118] Multiple 6-15 Model Cross-view consistency
von Marcard et al. [101] Single 13 Model Offline optimization
Chapter 4 Single 6-13 Model Foot-ground contact

the interdependencies of the sensors is proposed.

As shown in Figure 1.1, this thesis proposes two 3D motion capture meth-

ods and an IMU calibration framework for the real-world motion measure-

ments. Table 1.1 summarizes the two proposed motion capture methods

and the related representative approaches using visual and inertial sensors

in terms of sensor configuration, reconstruction form, and localization tech-

nique. To the best of our knowledge, the work introduced in Chapter 3 is

the first attempt for multi-view body CoM estimation. Further, the 3D pose

estimation proposed in Chapter 4, is also the world-first online approach

for motion capture that combines a single camera and multiple IMUs. This

thesis also presents a framework for automatic IMU calibration, which can

be used for extensive IMU-based human body measurements including the

proposed visual-inertial human pose estimation. These works contribute to

both researchers and practitioners since the problem settings in this thesis

are important in practical view.
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1.2 Thesis Outline

This thesis investigates 3D human motion capture in settings where previ-

ous research has not addressed but that are desired in real-world scenarios.

Specifically, motion capture in terms of 3D CoM estimation with multi-view

cameras is presented in Chapter 3, and a method for 3D human pose estima-

tion from a monocular camera and multiple IMUs is proposed in Chapter 4.

Subsequently, Chapter 5 provides a calibration framework of inertial sensors

that can be used in extensive IMU-based human motion measurements. The

remainder of this thesis is organized as follows:

Chapter 2 reviews related works in human motion capturing. It starts

with 2D human pose estimation, followed by image-based, IMU-based, and

sensor-fusion approaches for motion capture.

Chapter 3 proposes a method to capture 3D human motion using a multi-

view set of RGB cameras. This chapter focuses on the body CoM, consid-

ering that the position or trajectory of the CoM is often a parameter of

interest when studying posture or movement. Different from conventional

approaches that require large-scale measuring systems or attaching sensors

to the subjects, the present study takes a multi-view vision-based approach,

assuming the use in a situation where the sensors cannot be attached to the

body. The proposed method first reconstructs subjects’ body with voxels

by back-projecting the body silhouettes and obtaining the intersection of all

back-projection cones of the multi-view frames, also known as visual hull.

Then, the method weights each voxel with body part-dependent weights to

calculate a CoM. The content of this chapter is based primarily on [48].
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Chapter 4 presents a novel 3D human pose estimation approach using a

single RGB camera and a set of body-worn IMUs. In order to resolve the

depth ambiguity of the single-camera configuration and localize the global

position of the subject, this work presents an objective function that opti-

mizes the foot-ground contact points. The timing and 3D positions of the

ground contact are calculated from the acceleration of IMUs on the feet and

geometric transformation of foot position detected on the image, respectively.

Given that the results of the 3D pose estimation are greatly affected by the

failure of the 2D joint detection, the image-based constraint is designed to

handle outliers of the positional estimates of the 2D joints. The content of

this chapter is based primarily on [46].

Chapter 5 provides a framework to automate the preprocessing of the

IMU-based human motion measurements that attach multiple sensors to

body segments. In the preprocessing, each IMU has to be attached to a

predefined body segment, and the subject has to take a predetermined pose

named calibration pose (e.g., T-pose: standing upright with hands open at

the sides) to calculate the relative orientation from the sensor to the attached

joint. The presented framework enables the user to attach sensors to arbi-

trary segments and start measuring motion without making the subject take

the calibration pose. A novel end-to-end learning model that identifies the

body segment on which each IMU is mounted is proposed. The model incor-

porates a global feature generation module and an attention-based mecha-

nism. The former extracts the feature representing the motion of all attached

IMUs, and the latter enables the model to learn the dependency relationships

between the IMUs. The proposed model thus identifies the IMU placement



Chapter 1. Introduction 8

based on the features from global motion and relevant IMUs. The experi-

mental results have shown that this IMU-to-segment assignment model can

be extended to an IMU-to-segment orientation alignment model that predicts

the relative orientation from the IMU to the attached joint. The content of

this chapter is based primarily on [47].

Finally, Chapter 6 summarizes this thesis and provides some suggestions

for future work.



Chapter 2

Related Work

This section reviews previous works related to the focus of this study. This

section first reviews prior attempts for 2D human pose estimation, including

concurrent and recent efforts, since the proposed methods are built on those

recent techniques. Then, single- and multi-view image-based approaches aim-

ing to obtain 3D human motion, including body pose and other motion indi-

cators, are introduced. Subsequently, IMU-based motion capture approaches

are reviewed, followed by a survey of the IMU calibration. Lastly, visual

and inertial sensor-fusion approaches for full-body pose estimation are intro-

duced.

2.1 2D Pose Estimation

As one of the fundamental computer vision tasks, 2D human pose estima-

tion has been actively studied for many years. Deep learning has shown

great performance on many tasks, such as image classification [37], object

detection [57], and semantic segmentation [86]. 2D human pose estimation

9
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also achieves rapid progress by employing deep learning technology, partic-

ularly convolutional neural networks (CNNs) [10, 17, 59, 94]. The progress

directly contributes to improving the accuracy of a number of applications

that employ off-the-shelf 2D pose detectors (e.g., action recognition [69], hu-

man tracking [28], and video surveillance [71]).

Deep learning-based 2D pose estimation methods can be divided into two

categories: top-down and the bottom-up approaches. Top-down methods

first detect humans in the image and then apply single-person pose estimators

to each person box [27, 94]. Bottom-up methods first locate all the body

keypoints (joints and face landmarks) in the input image and then group

them to the corresponding subjects [10, 45]. Bottom-up methods usually

have constant computation time, since they do not need to predict the pose

for each person separately. OpenPose [10], AlphaPose [27], Cascade Pyramid

Network [17], High-Resolution Net [94], and Multi-Stage Pose Net [56] have

been extensively used as 2D pose detectors in a wide range of tasks, given

that they have been maintained and updated regularly. In this thesis, the

proposed methods are built on OpenPose [10], the pioneering work of the

open-source 2D pose detector constructed with bottom-up framework, due

to its usability and stable computation time.

2.2 Image-based Motion Capture

2.2.1 Monocular 3D Human Pose Estimation

Improvements of deep neural networks have gained the attention of many re-

searchers in human motion capture using a single RGB camera [64,72,76,108].
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A recent data-driven method that estimates 3D human configuration from

an image can be roughly classified into keypoint regression and model-based

approaches. The former estimates the 3D position of the body keypoints,

and the latter infers the pose parameters of a pre-defined human model.

In the keypoint regression methods (e.g., [64, 72, 76]), 2D-to-3D lifting

approaches that infer the 3D human pose from the intermediate represen-

tations of the estimated 2D human pose generally outperform approaches

that directly regress the 3D pose because of the great performance of the 2D

keypoint detectors [121]. Most 2D-to-3D approaches employ state-of-the-art

2D pose estimation networks, such as those exemplified in Section 2.1, and

the second networks take the estimated 2D pose representation as an input,

which finally regress the 3D pose. The better performance of the 2D-to-3D

approaches than direct regressions suggests the effectiveness of incorporating

off-the-shelf 2D joint detectors for 3D motion estimation. In this thesis, the

proposed motion capture approaches reconstruct the human body using the

2D pose on the images estimated by the off-the-shelf 2D joint detector.

The model-based approach estimates the full-body posture by inferring

the parameters that represent the pose and shape of the parametric hu-

man model [54, 77, 108]. Many researchers have been appreciably interested

in incorporating the human model into the motion estimation because the

model-based methods allow poses to be explicitly constrained based on prior

knowledge about the kinematic model, such as range of joint motion, fixed

bone length, and skeletal joint connectivity information. In this thesis, a

3D pose estimation method presented in Chapter 4 adopts this model-based

approach.
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3D human pose datasets are usually established using optical motion

capture systems (e.g., Vicon) in controlled environments to obtain 3D pose

annotations [42, 93, 97]. The conventional monocular 3D pose estimation

methods train and evaluate their models on these datasets; thus, the liter-

ature reports that their performance degrades when applied to in-the-wild

data [4, 121].

2.2.2 Multi-view Motion Capture

Many existing studies for 3D human pose estimation using multi-view images

take a simple two-step approach similar to 2D-to-3D lifting methods of the

single-view motion capture: the backbone network extracts pose features

from each image, merges them, and reconstructs the human pose through

another network. Iskakov et al. merges 2D joint positions and their confidence

scores to regress 3D joint positions [43]. Some studies fuse heatmaps from a

2D pose estimator and predict 3D poses [83, 119]. These methods designed

their objective function based on cross-view consistency constraints, which

impose the reprojection of the reconstructed model joints to be close to the

detected keypoints on the 2D images.

Besides full-body pose estimation, conventional image-based studies for

analyzing human motion address head pose estimation [5], facial feature de-

tection [90], and hand pose estimation [70], which predict the movement of

a part of the body. Other works for capturing full-body movement include

the investigation of trajectories of movements [58], human-object interac-

tion [124], and gait analysis [14]. To our knowledge, no study has esti-

mated the CoM of a human body using RGB cameras, although the body
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CoM can be a key to analyzing the human motion, especially in the sports

scene [32,79,105].

2.3 IMU-based Motion Capture

2.3.1 Human Pose Estimation Methods

Many approaches for IMU-based 3D pose estimation have been proposed over

the last decade. Huang et al. regressed the pose parameter of the human

model from a small set of IMUs and achieved semi-realtime human pose

estimation [41]. However, their method does not provide the global position

of the solved human model. Although IMU provides accurate orientation in

a high frame rate, it is susceptible to drift in the global position. A survey

reported that a commercial marker-less motion capture suit composed of 17

IMUs suffers from large positional error [33].

To handle this potential hurdle, von Marcard et al. reconstructed human

motion using global optimization [103]. Since their method optimizes the

pose in all frames simultaneously, it is offline. Another approach focused on

human–object contact, which constrains one or more positions the subject

touches [65]. This method achieves good performance when the contact posi-

tions are predefined (e.g., contact between the hip and the plane of a chair).

However, it accumulates the positional error when the contact positions are

determined online. Inspired by the contact constraints on the body localiza-

tion, the method proposed in Chapter 4 utilizes RGB images to compensate

for the contact’s position ambiguity.
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2.3.2 IMU Calibration for Motion Capture

Human motion capture using IMUs requires two complicated procedures be-

fore starting measurements: IMU-to-segment (I2S) assignment and orienta-

tion alignment [123]. I2S assignment represents a process to map the seg-

ments on which each IMU is mounted. I2S orientation alignment denotes

a procedure for calculating the relative orientation of the IMUs to the cor-

responding (attached) segments. A line of research on the I2S assignment

has aimed to define effective feature representations based on signals from

IMUs. The early work applied hand-crafted feature descriptors, such as root

mean square and amplitudes of accelerations and classical classification algo-

rithms, including support vector machines and decision trees [3,55,104]. The

feature descriptors of these approaches are designed based on the intuition

and experience of the researchers, with no agreement regarding the most

suitable features for I2S assignments. A recent study proposed an approach

that combines CNNs and recurrent networks [123] that were trained in an

end-to-end manner without the need to manually design features. Their net-

work provides both I2S assignment and orientation alignment predictions.

However, this approach assumes that IMUs are attached to the lower limbs

and assigns IMUs one by one, ignoring the signals from other IMUs. In this

thesis, the models for I2S assignment and orientation alignment presented in

Chapter 5 extract discriminative features by learning the interdependencies

of the IMUs.
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2.4 Visual and Inertial Sensor Fusion for 3D

Human Pose Estimation

A line of research on combining visual and inertial information has aimed

to achieve full-body motion capture free from positional drift. Images from

multi-view cameras are utilized to constrain the subject’s position three-

dimensionally [61, 81, 97, 102, 118]. The posture and the global position of

the subject are optimized by minimizing the difference between the human

silhouettes on the images and the solved human model projected onto the

images [102]. Other studies have shown that joint positions on 2D images

obtained by a CNN-based keypoints detector improve the performance of

3D human pose estimation [39, 61, 97, 118]. Although these approaches are

appealing because of their stability and accuracy, at least two viewpoints are

required to resolve the depth ambiguity and localize the subject.

Researchers have addressed pose estimation by combining IMUs and a sin-

gle view. Some studies have performed 3D human tracking with IMUs and

a single depth sensor, such as Kinect [49, 122]. However, the measurement

accuracy of Kinect decreases outdoors. The only study that has addressed

3D motion capture with IMUs and a single RGB camera simultaneously opti-

mizes human pose for a certain period of frames, and the global optimization

is processed offline [101]. An offline method uses all frames in a sequence to

optimize the human pose of a certain frame. To the best of our knowledge,

the proposed method introduced in Chapter 4 is the first attempt for online

3D pose estimation using IMUs and a single RGB camera.



Chapter 3

Motion Capture with
Multi-view Cameras

3.1 Introduction

This chapter presents an approach for capturing human motion using multi-

view images. This work focuses on estimating the position of the human CoM

because the trajectory of the CoM indicates the global motion of the subject,

and it plays a key role in many healthcare and sports applications [32,79,105].

While many approaches for 3D human pose estimation have been developed,

this work is the first attempt for image-based human CoM estimation.

Many researchers have attempted to develop methods to estimate 3D

CoM, but most of them have relied on the hardware in the laboratory envi-

ronment. For example, classical methods have used optical motion capture

systems and force plates to measure the human body’s CoM [13, 62]. These

systems are designed only for special environments, such as research labs

and studios, and markers are attached to subjects. Although such systems

are reliable and accurate, measuring CoM under limited hardware resources

16
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has been of great interest. González et al. proposed the use of Kinect and

Wii balance board together [30], and Najafi et al. adopted wearable inertial

sensors to track the CoM [74]. However, many studies for casual CoM esti-

mation require prior measurements for personalizing the weight of the body

segments [13,62].

This work addresses the 3D CoM estimation that only relies on a set of

multi-view cameras. The multi-camera setting is motivated by many existing

image-based approaches that analyze motion in real-world scenarios and in

situations where mounting devices on the subjects’ body is difficult [9,91,114].

The proposed method satisfies the following three conditions: it works in (1)

outside scenarios, (2) with no wearable devices attached, and (3) with no

prior personalization.

The proposed method first reconstructs the subject’s body with voxels

using multi-view RGB images. The 3D voxel model is divided into nine

body parts, and weights, which depend on the body parts, are assigned to

each part. Then, the weighted average of the parts is used to calculate

the whole body’s CoM. Since the proposed method uses only RGB images,

outdoor CoM estimation is achieved (condition 1), and wearable devices are

not necessary (condition 2). Moreover, the 3D shape reconstruction of the

subject’s body handles the differences in individuals’ figures when calculating

the CoM (condition 3). The proposed approach is the first attempt toward

an end-to-end automated process for 3D CoM estimation using image inputs

only, taking the volumetric properties into account.

The method was quantitatively and qualitatively evaluated through ex-

tensive experiments. The accuracy of the CoM estimation in static poses was
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Figure 3.1: Overview of the proposed CoM estimation.

evaluated, and the effects of the number of cameras on the CoM estimation

were discussed. The qualitative evaluation demonstrated the applicability of

the proposed method utilizing the cooperation of professional and amateur

baseball batters assuming a setup of an actual game.

3.2 Method

3.2.1 Overview

The proposed method estimates the CoM of a person in a process using N

calibrated cameras (N ≥ 2). A global summary of the proposed process

is shown in Figure 3.1. The input consists of only RGB images taken from

multiple viewpoints. Those images are used for 3D reconstruction of the body

shape and a 3D kinematic structure estimation of the human body. Based

on the joint positions obtained via the estimation of the body structure, the

human body model is segmented into nine parts. Then, the CoM is obtained

by assigning a weight to each part of the human body, as reported by [22].
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3.2.2 3D Reconstruction of the Human Body

The 3D human body is reconstructed using Martin’s method [63], which

extracts the subject’s 2D silhouette from the input images (e.g., using [98])

and reprojects the silhouettes into a 3D world. The common parts of the

reprojected silhouette are the 3D shape of the body V(∋ vj). V denotes a

set of voxels, where each voxel element vj contains 3D positional information.

In the case that the subject holds tools, users have a choice of whether to

include or exclude the tools from the following CoM calculation. To retrieve

a precise 3D model, cameras need to be arranged to observe the voxel space

from various angles [73]. By reconstructing the 3D shape of the subject’s

body, an individual’s unique figure can be reflected.

3.2.3 Human Kinematic Structure Estimation

If the frame of reference is at the body CoM, the CoM is the unique position at

which the weighted position vectors of all the parts of a system add up to zero.

Because each body part has a different density [7], assigning the appropriate

weight to each part will lead to a more accurate CoM estimation. As shown

in Figure 3.2, the 3D model reconstructed in Section 3.2.2 is divided into

nine parts: head, body, shoulder, back arm, forearm, hand, thigh, calf, and

foot. To this end, 2D keypoints, which represent the joints and the face of

an individual, are obtained from the input images by applying the method of

Cao et al. [10]. By applying the direct linear transform to each 2D keypoint

q to triangulate them, the 3D position p of each q is obtained.

As shown in Figure 3.2, the 3D model V is segmented into Vi (0 ≤
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Figure 3.2: Variables in a segmented part.

i < 9) based on the distance between the line segments Li connecting the

adjacent keypoints p and each voxel vj. Algorithm 1 shows the segmentation

procedure. A voxel vj, which exists within a distance λi from Li, is classified

as Vi. A voxel vj located in the common area of two or more body parts is

classified as the part with the smaller distance. All voxels vj that are not

classified as any body part are removed. The threshold λi is manually set

to be large to not remove the body parts. The segmented model is weighted

based on the weight of each part of the human body, as reported by de

Leva [22]. The overall CoM of the human body C is computed via

C =
1

M

M∑
i=1

wivi (3.1)

where M denotes the total number of voxels, and wi represents the weight

assigned to Vi.
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Algorithm 1: Proposed segmentation procedures

Vi: A part of 3D human body model V
vj : A voxel costituting the 3D model V
pi, p

′
i: Keypoints that divide V into Vi

Li(pi,p
′
i): Line segment between pi and p′

i

1 foreach vj do

2 foreach Li(pi,p
′
i) do

3 Di ← CalculateDistance(vj,Li)

4 end

5 if Min(Di) < λi then
6 stock vj to Vi

7 else
8 remove vj

9 end

10 end

3.3 Experiments

This section provides two performance evaluations of the proposed method

using real data. First, the proposed method and two baselines are com-

pared concerning accuracy in terms of the center of pressure (CoP) error

metric [113]. Second, the sequences of tracked CoM is visualized in 3D

space, which is compared with CoMs measured using the wearable sensors. It

demonstrates that the proposed method has the ability to provide meaningful

3D data for sports performance analysis.

3.3.1 CoM Estimation for Static Scenes

Setup. As shown in Figure 3.3, a force plate (TF-6090) and five cameras

(GoPro, 30 frames per second (fps), 1920×1080 resolutions) were utilized

in this evaluation. Internal and external camera parameters were obtained
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Figure 3.3: Experimental setup of a static scene.

through offline calibration with [117]. These cameras were placed to sur-

round the force plate at 0◦, 45◦, 100◦, 260◦, and 300◦ respectively, where 0◦

represents a face-on view of the subject, capturing the subject standing on

the force plate. Three subjects (two males and one female) each stood on

the force plate in four static postures: upright standing, single-leg standing,

squatting, and bending forward. The human regions are extracted using a

semi-automated manner implemented using GIMP2 [1] in this experiment,

to confirm the pixel mask.

To validate the performance of the proposed approach, the following two

baseline methods were developed:

Uniform: Voxels with a uniform weight

This method estimates the CoM as the center of a reconstructed 3D

model, in which all parts are assigned a uniform weight. The CoM is

computed using Equation 3.1 with all wi = 1.
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Articulated: Articulated joints model

This method estimates the CoM as the center of the weighted articu-

lated joint model. The CoM is computed by

C =
1

M ′

M ′∑
i=1

wiji, (3.2)

where ji represents the 3D positions of the mid-points between two

connected joints (e.g., the CoM of a left lower arm is defined as a mid-

point between a hand joint and an elbow joint), and M ′ denotes the

number of the mid-points. The 3D joint positions are computed by

triangulation with the 2D joints detected by [10].

A comparison with the Uniform method clarifies the effectiveness of the pro-

posed method for considering the weight of each part. A comparison with

the Articulated method reveals the influence of the volume of the human

body on the CoM estimation accuracy.

In these evaluations, the CoM estimation error of each method was eval-

uated as the Euclidean distance of the 2D coordinates of the CoP g, which

represents the vertical projection of the estimated CoM as

ECOP = ∥g − gf∥2, (3.3)

where gf denotes the CoP estimated from the force plate.

Results. Figure 3.4 shows the input images from one view (first row); the

reconstructed 3D model, showing the joint positions (second row); and the

labeled 3D model, which is based on the joint positions and estimated CoM

(third row). The results in the second and third row show that the estimated
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Figure 3.4: Experimental results regarding static posture.
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Figure 3.5: Distance between the CoP and the vertically projected CoM in
four postures.

3D joint positions were sufficient to assign each voxel to the appropriate body

parts. The average estimation errors of each method are shown in Figure 3.5.
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Figure 3.6: Visualization of the CoP and vertically projected CoMs in
“Single-leg standing”, “Squatting”, and “Bending forward”.

It shows that the proposed method outperformed the baseline methods and

robustly estimated the CoM with errors of approximately 10 mm for the CoP

in all postures.

In the case of standing upright, the precision of all methods was similar

because of the symmetry of the posture. The precision of all methods was

greater in the case of single-leg standing than in squatting and bending for-

ward. This would be caused by self-occlusions affecting the precision of both

the reconstructed 3D model and the estimation of the joint positions. For

example, the chest portion of the bending forward 3D model appeared to be

thicker than the subject’s chest. This would be because the five cameras were

placed at the same height, as depicted in Figure 3.3, and no cameras were

able to observe under the chest. Mundermann et al. [73] found that cameras

positioned in a geodesic dome configuration produce the best results to build

a visual hull model of the human body. Figure 3.6 visualizes the CoP mea-
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sured with the force plate and vertically projected CoMs estimated by the

proposed and baseline methods. The CoMs estimated by Articulated tend

to be plotted in the direction of the subject’s upper body including the head.

It suggests that the CoM position of the upper body segment defined in the

Articulated method reduces the accuracy.

3.3.2 CoM Estimation for Dynamic Motion

Compared with the 2D CoP estimation approaches, utilizing a force plate,

the vision-based approach including the proposed method could estimate

3D positions of the CoM, which is an important advantage for analyzing a

player’s performance in a sports scene. In particular, CoP estimated with

a force plate does not match the CoM projections when the subject is in

motion [106]. Here, the results suggest that the proposed method could

estimate the 3D positions of CoM in such a challenging situation.

Setups. As illustrated in Figure 3.7, the four cameras (three 640×360 res-

olution cameras and one 640×480 resolution camera) are placed outside the

baseball field, assuming that the proposed method would be used to observe

a baseball batter. The camera position and example images taken with each

camera are shown in Figure 3.7. All cameras were fixed and pre-calibrated

with [117]. The 48 frames are extracted during each swing from 30 fps videos.

The two subjects, an expert baseball batter and an amateur batter, swung

a bat twice without batting a ball, assuming (a) an inside pitch and (b) an

outside pitch. the subjects’ regions are extracted in the same manner as in

Section 3.3.1 (i.e., the bat held by the subject was excluded by masking it

out). The estimated time-sequential trajectories of the CoM were compared
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Figure 3.7: Experimental setup for the CoM estimation in a dynamic scene.

with those calculated by a set of wearable sensors.

Results. Figure 3.8 illustrates the 3D trajectories of the estimated CoM.

The expert (two left graphs of Figure 3.8) and the amateur (two right graphs)

swung a bat twice. The graphs on the upper left and lower left represent the

same swing, but are visualized from different perspectives. The same applies

to the right graphs. The red and blue trajectories correspond to the cases of

(a) inside and (b) outside pitch, respectively. The CoM sequences are plotted

on the graphs so that the sum of the distance of each CoM is minimized

because calibrating the coordinates of the proposed method’s CoM and the

coordinates of the CoM measured with IMUs is difficult. The subjects were

right-handed batters and assumed that a ball was coming from a negative to
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Figure 3.8: Predicted trajectories of the body CoM in dynamic scenes.

a positive direction along the X-axis.

In both the expert and amateur swings, the CoM transitions of the pro-

posed method drew almost the same trajectories as the CoM of the wearable

sensor in the pulling arm phase and the swing phase. The mean absolute dis-

tance between the two CoM sequences was 25.2 mm. The trajectories against

the inside and outside balls were almost the same when the arms were pulled

back and gradually split in the swing phase. The lower graphs show the dif-

ferences in the swings between the expert and amateur. The height (Z-axis)

of the CoMs during the expert’s swing against the inside pitch was almost

the same as that of the outside pitch, while the CoM of the amateur went

down during the swing against the outside pitch.
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Figure 3.9: Distance between the CoP and the vertically projected CoM,
estimated by using different number of cameras.

3.4 Discussion

When estimating the CoM using the proposed method, the number of cam-

eras affects the accuracy of both the 3D human body reconstruction and the

3D kinematic estimation. To examine the relationship between the number

of cameras and the estimated CoM accuracy, the CoMs estimated by the

proposed method were compared to the CoP positions measured by the force

plate, as in the experiment in Section 3.3.1. Since all joints must be detected

with two or more cameras, when cameras that do not satisfy the conditions

were selected, the undetected joints were complemented manually.

Figure 3.9 shows the error between the CoP and the vertically projected

CoM in each static posture when the number of cameras was changed from
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two to five. Figure 3.9 also depicts the average and standard deviations of

each possible combination of cameras. The average error increased gradually

as the number of cameras decreased from five to three, but when the CoM was

estimated using only two cameras, the CoM precision dropped dramatically.

The estimation accuracy of the CoM depends on the accuracy of the human

model created with the visual hull. The number and arrangement of cameras

in visual-hull-based human motion tracking have been explored by Corraza et

al. [20]. Modifying camera configurations by referring to their conclusion

would improve the accuracy of the CoM estimation.

3.5 Summary

This chapter proposed a novel vision-based CoM estimation algorithm based

on multi-view images for sports performance analysis. The key approach

of the proposed method was to assign an appropriate weight to each voxel,

reconstructed in a visual hull manner. Evaluations with the real data demon-

strated that the proposed method could estimate the CoM within errors of

approximately 10 mm concerning the CoP compared to the data measured

with force plates in static poses. In addition, the proposed method reason-

ably estimated the 3D trajectory of the CoM in a dynamic scene.

3.5.1 Limitations

The proposed method assumes one subject in a scene. To capture multiple

subjects’ CoMs, an extension to separate each person in a voxel space is

required. Whereas the CNN-based bone estimation [10] can handle multiple
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Figure 3.10: Comparison of the appearance between the subjects wearing
form-fitting and loose clothes.

persons in a single view, the proposed method requires the identification of

persons in multiple images, which will necessitate additional efforts.

The proposed method estimates the CoM as the gravity point of a set

of voxels. Therefore, clothes may affect the performance since the subject’s

silhouette changes. Here, additional experiments demonstrated the effects of

clothes on the proposed method. As shown in the first row of Figure 3.10,

images from subjects wearing both form-fitting and loose clothing were uti-

lized as inputs for the proposed method. The second row of Figure 3.10

demonstrates that the reconstructed 3D model with loose clothes was ex-

panded compared with the subject wearing form-fitting clothes, even when



Chapter 3. Motion Capture with Multi-view Cameras 32

the same subject stood in the same posture. The quantitative results of such

cases, utilizing the same configuration introduced in Section 3.3.1, show that

the average error when the subjects wore loose clothes was 81% larger than

in the case of wearing form-fitting clothes. These results revealed that the

proposed method’s accuracy degraded when the subject was wearing loose

clothes. Therefore, reducing the effect of loose clothing on the method’s

accuracy remains as future work.



Chapter 4

Human Pose Estimation from
IMUs and an RGB Camera

4.1 Introduction

In this chapter, an approach for 3D human pose estimation using a single

RGB camera and body-worn IMUs is proposed. RGB cameras and IMUs are

utilized for online human pose estimation in real-world settings. IMUs com-

prise accelerometers, gyroscopes, and magnetometers, which provide mea-

surements of 3D acceleration, angular velocity, and magnetic field, and cal-

culated 3D orientation. The acceleration and orientation of the IMU attached

to each body segment help infer human motion [41, 65, 103]. RGB cameras

are the most commonly used optical sensors and offer 2D visual information

of the environment. Recent image-based human pose estimation methods

detect joints of the human body on the image that offer robust 2D human

poses [10, 17, 59, 94]. Both devices are widely used in various motion analy-

sis applications; however, they have physical limitations. IMUs suffer from

measuring translational motion due to the integration-drift problem. The po-

33
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sition error accumulates in time to reach a remarkable value if it is not reset

or compensated; thus, IMUs cannot provide accurate 3D joint positions in

the global coordinates. For RGB cameras, it remains difficult to obtain a 3D

human pose in the wild using a single view due to the depth ambiguity (i.e.,

the 3D position of the points projected onto the 2D image are indefinite in

the optical axis direction).

To compensate for these limitations, researchers have developed full-body

motion capture systems that incorporate information from IMUs and RGB

cameras. 3D human posture and position are simultaneously optimized to

be consistent with the orientation of the IMUs and the silhouettes or joints

obtained through CNNs on the images. They have achieved accurate and

stable performance in motion capture, but images from multiple viewpoints

are required to localize the 3D human position [61,81,97,102,118].

This chapter presents an optimization-based method for online 3D hu-

man pose estimation that resolves the positional ambiguity of the IMU-based

posers with a single camera. Single-camera settings impose two challenges on

pose reconstruction: (1) A single-view image cannot constrain the position

of the human body in three dimensions due to depth ambiguity, and (2) the

results of pose estimation are greatly affected by the failure of image-based

constraints, such as outlier detection of the joints. For the first problem,

this work presents 3D positional constraints of foot-ground contact. The

timing of the contact is determined from the acceleration of IMUs, and the

contact position is calculated by back-projecting the 2D foot joints on the

image into the floor plane. The joints on the image are detected by a CNN-

based method [10]. The proposed objective function is designed to handle
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the outlier detection of the joint detector, which resolves the second problem.

The extensive experiments were conducted to evaluate the proposed method

using the public 3D dataset TotalCapture [97], which includes all-synchronized

videos, IMU data, and ground-truth human pose. The experiments demon-

strated that the cost terms incorporated into the proposed objective function

contributed to the accuracy and stability of pose estimation.

4.2 Methods

4.2.1 Pose Parameterization and Calibration

The subject’s pose is parameterized using a Digital HumanModel (DHM) [26]

that consists of a 48 degrees of freedom link configuration. The model pro-

vides kinematics and the body mesh when the pose including the global trans-

lation θ (∈ R51) is determined. The proposed method extends the IMU-based

motion capture method [65] for pose parameterization and optimization.

The transformation matrices among global coordinates SG, camera coor-

dinates SC , body coordinates SB, j-th joint coordinates SJ
j , and i-th IMU

local coordinates SI
i are required for fusing the sensors on motion tracking.

Figure 4.1 shows relations between the coordinates and transformation ma-

trices. The transformations between the global coordinates and the camera

coordinates TGC is determined using a checkerboard [117]. In this config-

uration, the checkerboard is placed on the floor. The Z-axis of the global

coordinates (Xw, Yw, Zw), defined by the checkerboard, points in the oppo-

site direction of gravity, and the Zw = 0 plane coincides with the floor. Note

that the checkerboard can be removed after the camera is calibrated and
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Figure 4.1: Relations among the local coordinate systems.

fixed. After the camera setup, the subject wearing IMUs takes a calibration

pose (e.g., T-pose: standing upright and keeping both arms horizontal). The

rotational transformation from each IMU to the joint coordinate is obtained

from

RIJ
i = RJ

i (θ0) · (RI
i(t0))

−1, (4.1)

where RI
i(t0) represents the i-th IMU sensor orientation in the global coor-

dinates when the subject takes the calibration pose, and RJ
i (θ0) denotes the

rotation matrix of the model joint belonging to the bone to which the IMU

is attached in the global coordinates. t0 and θ0 represent the frame and pose

parameter of the calibration pose, respectively. As illustrated in Figure 4.1,

RJ
i (θ0) can be represented by the conversion of the coordinates from the

global coordinates SG to the local coordinates of each joint SJ
j of the human

model. It can be calculated by transformation matrix TJB
j (θ0) and TBG(θ0).

TJB
j (θ0) denotes the transformation from SJ

j to the body coordinates SB. In
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the proposed method, SB is defined to correspond with the local coordinates

of the pelvis joint of the human model. The transformation TJB
j (θ0) can be

obtained from the forward kinematics of predefined link configuration of the

model. The transformation from the body coordinates to the global coordi-

nates, TBG(θ0), is determined by the position and orientation of the subject

taking the calibration pose.

For synchronizing the data from IMUs and a camera, a physical cue that

can be detected from both the camera and IMUs can be used when it is diffi-

cult to synchronize a camera and multiple IMUs with a signal synchronizing

apparatus. For example, a foot stamp is applicable because, for the camera,

the timing of the cue is obtained from the motion of the ankle joints detected

on the image, and for the IMUs, the timing can be calculated from the accel-

eration measurements of the IMU attached to the feet. The synchronization

should be performed after the calibration pose.

4.2.2 Full-Body Pose Optimization

The proposed method follows the paradigm of constraint-based motion track-

ing. More specifically, the method minimizes the following total cost function

composed of multiple cost terms on a per-frame basis.

E(θ) = EO(θ) + λRoMERoM(θ) + λPEP (θ) + λGEG(θ), (4.2)

where EO(θ) and ERoM(θ) constrain the orientation and the range of motion

of the model joints, respectively. EP (θ) and EG(θ) represent the positional

error of the joints and the foot-ground contact points, respectively. These

positional error terms are designed to stably estimate the human pose in an
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under-constrained environment. Every term is weighted by a corresponding

weight. The quasi-Newton algorithm [23] is applied to solve the optimization

problem.

IMU-Based Constraints

The orientation of the kinematic links is estimated from the measured ori-

entation of IMU sensors. The cost term is represented as the sum of the

orientation differences between IMU measured and estimated bone orienta-

tion. Here, the i-th IMU offers its orientation in each local coordinate. Using

the transformation matrix from the sensor coordinates to the joint coordi-

nates RIJ
i (Equation (4.1)), the cost EO(θ) can be expressed as

EO(θ) =

NI∑
i=1

∥RIJ
i ·RI

i −RJ
i (θ)∥2F, (4.3)

where RI
i, and RJ

i (θ) denote the sensor measurement and solved value of

bone orientation in the current frame, respectively. NI describes the number

of IMUs.

The other IMU-based constraint, ERoM(θ), adds cost when the joint angle

exceeds or falls short of the range of motion (RoM) ψ. ψ defines the minimum

and maximum joint angles, i.e., ψ ∈ {(ψmin
r , ψmin

p , ψmin
y ), (ψmax

r , ψmax
p , ψmax

y )},

where r, p, and y represent the three principal axes in the joint coordinates.

The cost for each joint is calculated according to

eRoM(ϕ(θ), ψ) =
∑

k∈{r,p,y}


ρ((ϕk(θ)− ψmin

k )2) (ϕk(θ) < ψmin
k )

ρ((ϕk(θ)− ψmax
k )2) (ϕk(θ) > ψmax

k )
0 (otherwise)

, (4.4)

where ϕk(θ) represents the estimated rotation around the k-axis of the joint.

ρ(·) is a loss function detailed in Section 4.2.2. Then, the RoM cost for the
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entire body can be computed by

ERoM(θ) =

NJ∑
j=1

eRoM(ϕ(j)(θ), ψ(j)), (4.5)

where NJ, ϕ
(j)(θ), and ψ(j) denote the number of joints whose rotation is

estimated, the j-th joint angles, and the j-th joint RoM, respectively. In

the proposed approach, the RoM defined in the commercial Digital Human

Model [26] is adopted.

Image-Based Constraints

EP (θ) constrains positional differences between keypoints on an image pC

detected by a CNN-based 2D pose estimator [10] and corresponding 3D joint

positions projected onto the image p̂C. The 3D point of the solved model in

the body coordinates P̂B can be projected to the camera coordinates by

p̂C(θ) = TGCTBG(θ0)P̂
B(θ), (4.6)

where P̂B(θ) denotes the 4D column vector, which represents the 3D joint

position in a homogeneous coordinate system. TGC and TBG(θ0) are the 4×3

translation matrices described in Section 4.2.1.

As a result that the global position of the estimated model is constrained

by visual information from only one RGB camera, the failure of the 2D

joint detector seriously compromises motion tracking accuracy. To improve

the robustness to such outlier detection of keypoints, the proposed method

extends Tukey’s biweight. Specifically, the cost term of a joint is less weighted

when the joint-position estimate is far from the model joint in the previous
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frame. The weight is calculated by

wp =

{
exp(− d2p

2s2k2p
) (dp ≤ βdskp)

0 (otherwise)
, (4.7)

where p (1 ≤ p ≤ NP ), βd, and s are the index of detected joints, a hy-

perparameter that controls the range of nonzero weight, and the scale of

distribution, respectively. Here, NP = 18, βd = 2, and s = 140 in the ex-

periments. Here, dp represents the Euclidean distance between the detector

estimate and the projected point of the corresponding joint in the previous

frame, and kp denotes the standard deviation of the weight distribution. The

distribution of keypoints detected by the data-driven 2D pose estimator de-

pends on the keypoint type. For example, the distribution of an eye must

be smaller than that of hips. The value of kp is defined by object keypoint

similarity (OKS) [88], which is used to evaluate the performance of the 2D

keypoint detectors; that is, keypoint detectors ensure accuracy in this distri-

bution. The positional cost weighted with wp is expressed as

EP (θ) =

NP∑
p=1

ρ(wpc
im
p ∥pC

p − p̂C
p (θ)∥2F), (4.8)

where cimp represents the confidence score from the keypoint detector.

In the single-camera setting, EP (θ) alone cannot localize the global po-

sition of the model due to the camera’s depth ambiguity. To optimize the

model position three dimensionally, this method presents the foot-ground

contact cost term EG(θ). The proposed method detects foot-ground con-

tact from the IMU acceleration attached to the feet, as with the conven-

tional works for IMU-based human pose estimation and pedestrian dead-

reckoning [35, 107, 111]. Fusing IMU acceleration and positional measure-
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Figure 4.2: Visualization of the ground contact constraint.

ment from the camera, EG minimizes the distance between foot position and

ground contact point.

The cost terms are defined as depicted in Figure 4.2. Let P̂B
g (θ), where

g ∈ {left foot, right foot} is the left or right ankle position of the estimated

model, and let PB
g be the intersection between the contact surface and the

line where the 2D ankle keypoint is back-projected into three dimensions.

The contact surfaces are the planes parallel to the floor plane, and each

contact surface passes through each ankle of the solved model. The floor

plane can be determined by camera calibration as described in Section 4.2.1.

The confidence score cGg that the foot is on the ground is determined from

the acceleration of the foot-attached IMU and the height of the foot. The

resulting ground contact cost is calculated according to

EG(θ) =
∑

g ρ(c
G
g wgc

im
g ∥PB

g − P̂B
g (θ)∥2F), (4.9)

where cGg = δ +

{
βG/∥ag∥2F (βG/∥ag∥2F ≤ 1)
1 (otherwise)

,

where ag and βG represent the acceleration measured by the IMU attached

to the foot g and a constant value to determine the gradient, respectively.
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For all experiments, βG = 5 and βG/∥a∥ was calculated using βG/(∥a∥+ ϵ),

ϵ = 1.0 × 10−6 to avoid zero division. A parameter δ takes 1 when the

lowest mesh of g is lower than that of the other foot, and 0 otherwise. The

weight wg is also multiplied for handling outlier detection of foot keypoints.

In the proposed method, the Cauchy loss function, ρ(x) = log(1+x), is used

as a loss function ρ(·) in the range of motion cost term ERoM , image-based

positional cost term EP , and ground contact cost term EG. The Cauchy loss

function suppresses extremely large values so that the effect of the error of

one joint on the total loss does not become too large in the process of the

optimization calculation. An example of the extremely large error is that

when the distance from the camera to the subject is large and the camera

position is relatively low, the small 2D position error of detected joints on

the image causes huge error in the 3D space.

4.3 Experiments

4.3.1 Dataset

The quantitative experiments are performed to evaluate the performance of

the proposed approach on the 3D human pose dataset TotalCapture [97].

TotalCapture provides 60 fps of all-synchronized IMU data, HD videos from

fixed cameras, and ground-truth human pose measured by the marker-based

optical motion capture system. A total of 13 IMUs are attached to the head,

sternum, pelvis, upper and lower limbs, and feet. The presented method

uses acceleration and orientation of IMUs and an image sequence from a

single camera. Note that the data measured with the optical motion capture
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system are not used for the proposed approach. The original ground truth of

the joint position and orientation is obtained by fitting the marker position

measured by optical motion capture system to the surface of the human

model. The human model reconstructed from the optical motion capture data

has a different definition of the link structure from that of DHM. For example,

the pelvis joint to neck joint is divided into 5 segments in the original ground-

truth, but it is divided into 3 segments in DHM. Therefore, it is not possible

to make a strict comparison of the joint position and orientation between

the estimated pose of DHM and the original ground truth. Hence, the joint

position and orientation of DHM are determined so that the Vicon 57-point

markers defined in advance on the DHM surface match the marker positions

measured by the optical motion capture [26], and used as the ground truth

in this experiment.

The proposed method was evaluated following the standard evaluation

protocol defined in [97]. In the protocol, the test set consists of 15 scenes in

total including the scenes Walking 2 (W2), Acting 3 (A3), and Freestyle 3

(F3) of Subjects S1, S2, S3, S4, and S5. However, there are several sequences

in which both feet are off the ground for several frames in a row, such as

jumping, in S2-F3, S3-F3, and S5-A3. These scenes are excluded from the

dataset and S2-ROM3 (S2-R3), S3-F1, and S5-F1 are used instead. The

limitations on the scenes where the proposed method is effective will be

mentioned in Section 4.4.1.
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4.3.2 Implementation Details

In the experiments, a human model is generated statistically from the height

and weight of the subject, which is offered by DHM software [26]. Before

starting the pose estimation, the subject took T-pose as a calibration pose.

During the calibration pose, the global coordinates (XW, YW, ZW) is defined

so that the subject stands on the plane at ZW = 0. For the model of the 2D

joint detector used in image-based constraints, the proposed method utilized

the weights of the public pretrained model [10]. No additional training or

finetuning is conducted.

The weighting parameter controls the contribution of each cost term to

the overall cost (Equation (4.2)). The algorithm based on Tree-structured

Parzen Estimator is used to seek the parameter values. Several scenes other

than the test set are used for parameter tuning and the value found are

λRoM = 0.01, λP = 5.0 × 10−4, and λG = 5.0 × 10−3. The parameters are

fixed through all experiments.

4.3.3 Contribution of the Proposed Cost Terms

Ablation studies evaluated how the proposed cost term EG(θ) and the adap-

tive biweight wp work in the constraint-based pose optimization. In this

experiment, a full set of 13 IMUs and a single camera that captures the

entire movement in the field of view were used. The position error in this

section represents the mean 3D Euclidean distance between the estimated

model and the ground truth over the 16 joints.

The graph of Figure 4.3(a) represents the per-frame mean Euclidean dis-
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Figure 4.3: Visualization of the accumulated per joint position error.

tance between the solved pose and ground-truth. Figure 4.3(b) and (c) visu-

alize the output of the 2D joint detector [10], and the human models colored

in green, red, and blue represent the 3D human pose solved by the IMU only

method [65], the proposed method, and the marker-based optical motion

capture system (ground-truth), respectively. The estimated 2D joints and

3D models in (b) and (c), respectively capture the same frame in the same

scene.

Figure 4.3(a) and the human model visualization revealed that the pro-

posed approach using a single camera prevented the accumulation of position

error. The right foot in (c) is self-occluded and the misdetection occurred;

however, the proposed approach robustly optimized the 3D full-body pose.

Focusing on the feet in (b) and (c), the foot touching the ground and fixed

(right foot in (b) and left foot in (c)) are estimated with higher accuracy in

these frames. It would be due to the proposed ground contact cost term.
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Table 4.1: 3D position error (cm) and orientation error (degrees) on Total-
Capture dataset.

S1 S2 S3 S4 S5
Scenes

W2 A3 F3 W2 A3 R3 W2 A3 F1 W2 A3 F3 W2 F1 F3
Mean

Mean position error (cm)

RGB only [68] 52.4 90.1 22.5 33.3 22.6 27.4 51.4 26.9 24.6 50.4 53.3 56.1 57.7 37.1 43.1 43.3
IMU only [65] 45.0 42.7 44.2 144 63.9 8.91 34.8 72.3 62.4 42.3 221 39.4 124 32.9 81.0 70.6
Pose constraint 54.4 41.7 29.4 142 63.3 12.2 33.0 68.8 68.5 42.8 224 39.2 124 28.2 78.1 70.0
Uni-weight 19.6 14.8 11.9 11.5 9.22 7.37 15.3 10.1 14.3 15.7 13.8 14.6 14.9 46.7 17.5 15.8
This work 20.2 15.6 12.2 12.2 10.2 7.32 15.2 12.5 11.1 16.3 12.3 14.7 16.0 10.0 16.9 13.5

Mean orientation error (degrees)

IMU only [65] 9.32 8.25 9.43 8.59 8.27 12.5 6.50 6.55 10.6 7.10 8.14 9.51 6.59 8.37 11.6 8.75
This work 9.38 8.45 9.45 8.74 8.51 12.5 6.65 6.63 10.9 7.07 8.20 9.52 6.72 8.37 11.3 8.83

Table 4.1 summarizes the quantitative results for pose estimation using

the position error metric. The state-of-the-art 3D human pose estimation

method using only a single RGB camera is referred to as RGB only [68].

A baseline method, termed Pose constraint, estimates the human pose by

minimizing the objective function of the proposed method without the foot-

ground constraint, i.e., Pose constraint minimizes the cost function composed

of EO(θ), ERoM(θ), and EP (θ). The results revealed that the foot-ground

contact cost term EG(θ) improves the positional error. Another baseline

method, termed Uni-weight, optimizes the pose by Equation (4.2), but adap-

tive weight wp is fixed to 1. Meanwhile, the proposed cost function calculates

wp according to Equation (4.7). Although the mean error of the proposed

method in the 15 scenes was smallest, Uni-weight estimated the human pose

with the highest accuracy in more than half of the test scenes. Especially

in Walking 2 (W2), Uni-weight outperformed the proposed approach in four

out of five trials. The results indicate that in the scene where the 2D joint

detector estimates the 2D pose of the subject with high accuracy, the 3D

pose reconstruction accuracy is slightly lowered by the adaptive biweight wp;

however, wp stabilizes the 3D pose estimation when there are misdetections
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Figure 4.4: (a) Mean per-joint positional error of the human motion capture
on all the test scenes. (b) Mean 3D position and orientation errors on subjects
S3-F1 and S4-F3 with 8 to 13 IMUs.

of the joints on an image due to the self-occlusion or unusual posture of the

subject (included in Freestyle 3 and Acting 3).

The mean orientation error of joints w.r.t. the pelvis joint coordinates is

shown in the bottom of Table 4.1. The error of IMU only and the proposed

method were 8.75 degrees and 8.83 degrees, respectively. Also, the mean joint

position errors w.r.t. the pelvis joint coordinates were 6.72 cm and 6.74 cm,

respectively. No significant differences in both positional and orientational

errors were observed, which suggests that the vision-based cost terms give a

small effect on posture estimation.

The effect of the ground contact cost term can be observed in Figure 4.4(a).

It represents the per-joint position error of the human model estimated by the

proposed method with a single view and 13 IMUs. Although the estimation

error of the hands and feet tends to be large because the limbs move a lot,

the positional error of the ankle is relatively small due to the 3D positional

constraints of the ground contact.

The proposed method can easily be extended to use multi-view cameras
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Table 4.2: 3D position error (cm) on the multi-camera setting.

Scenes S1-F3 S2-R3 S3-F1 S4-F3 S5-F1 Mean

Trumble et al. [97] 9.4 9.3 13.6 11.6 10.5 10.9
Malleson et al. [61] 7.4 3.9 6.7 6.4 7.0 6.3
This work (multi-view) 6.25 5.66 6.70 6.32 5.91 6.17

by adding the image-based cost function EP (θ) and EG(θ) for each cam-

era and simultaneously minimize the total cost. The experiments using 8

cameras and 13 IMUs are conducted. The state-of-the-art approach for 3D

motion capture that infers both joint position and orientation from IMUs

and multiple images [61] extracted several images from TotalCapture to test

their approach. The performance of the proposed approach was compared

with [61, 97] on the same scenes as the test set of [61], excluding the scenes

where the subject jumped.

As shown in Table 4.2, in several scenes, the present method outperformed

the conventional approaches that optimize the pose parameter to reconstruct

human motion. In the scene where the proposed approach was inferior in the

accuracy (S2-R3), the subject frequently crouched and bent forward. It ap-

pears that these motions caused self-occlusion of the ankle and the ground

contact constraint did not perform well. The experiments demonstrated that

the proposed ground contact constraint contributed to improving the accu-

racy of 3D human pose estimation in the multi-view camera settings as well

as single-camera settings when the floor plane was pre-defined and the foot

can be detected from the camera.
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4.3.4 The Number of IMUs

Wearing many IMUs takes time and hampers the subject’s range of mo-

tion. Towards the real-world use of the proposed method, the relation be-

tween the accuracy of the pose estimation and the number of IMUs were

investigated. The experiments were conducted with (1) 13 IMUs: full set

as described in Section 4.3.1, (2) 12 IMUs: full set without a head, (3) 10

IMUs: IMUs on upper arms removed from (2), and (4) 8 IMUs: IMUs on

upper legs removed from (3). 3D position and orientation errors in different

IMU configurations are shown in Figure 4.4(b).

The decrease of the IMUs largely affects the accuracy of both position

and orientation. It would be because the proposed single-camera approach

does not constrain joint positions other than the foot in three dimensions.

In the experiments on IMU only and Pose constraint, the objective function

diverged with 8 IMUs. The proposed ground contact cost term EG(θ) and

wp contributed to the convergence of pose estimation.

4.4 Summary

This chapter presented the first online approach to estimate the 3D human

pose fusing IMUs and a single camera. To constrain the position of the

solved model in three dimensions, the cost term was proposed to optimize

the timing and position of foot grounding. This work handled the outlier of

visual information by extending the biweighting algorithm. The experimental

results showed that the proposed objective function stably estimated the 3D

human pose, including the global position.
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4.4.1 Limitations

To calculate the confidence of foot grounding, Equation (4.9) assumes that

at least one of the feet is grounded. Therefore, the accuracy of the proposed

approach degrades in a sequence in which a subject lifts both feet off the

ground for a long time, such as by jumping. It is confirmed from the exper-

iment on S5-F1 which included side-skip steps that the short period of feet

takeoff does not seriously affect the accuracy. This limitation will be over-

come by inferring ground contact confidence from visual context and IMU

data.

Since the present method assumes that the subject walks on a flat floor,

it does not support pose estimation when the subject gets on a step or goes

up the stairs. This limitation should be alleviated by reconstructing a 3D

model of the environment around the subject and defining the floor surface

according to the 3D model before the measurements.



Chapter 5

Automation of IMU calibration

5.1 Introduction

IMUs are a prominent option for analyzing human motion. Body-worn IMUs

can be used to estimate rotational and, sometimes, translational motion of

the attached segment, which help estimate the required motion parameters.

As the sensors operate at a high frame rate with low latency, they can be

introduced in real-time applications for motion analysis, such as full-body

motion capture [41,61,65] and navigation [31,44]. Furthermore, recent tech-

nological advances have dramatically reduced the size and price of IMUs,

making them the most promising technology for the continuous tracking of

human movements in daily life [84, 95, 96]. Because of recent improvements

that have enabled easy configuration, non-expert (but trained) users can col-

lect motion data with IMUs. A clinic’s doctors or their assistants can use

the inertial sensors to track patients’ motions to assist in rehabilitation or

disease diagnosis [11, 67, 120]. Some studies have collected data from many

participants wearing IMUs during everyday life for an action recognition

51
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task [36,50,87].

For a detailed and robust motion analysis, many IMU-based applications

derive data from multiple sensors mounted on multiple body segments. The

conventional approach to gait analysis attaches six IMUs to the upper and

lower legs and feet [89]. Some IMU-based full-body motion analyses require

more than 10 inertial sensors to track one subject [46,61]. Such configurations

are prone to errors because each sensor must be attached to a predefined body

segment. If an IMU is mounted on the wrong segment, remeasurement will

be required. After the measurement operator carefully attached the IMUs,

the relative orientation between the IMUs and the attached joints must be

calculated. Many operators use a calibration pose (e.g., T-pose: standing up-

right with hands open at the sides) to obtain the relative orientation, which

requires prior knowledge of manipulation and skills for operation. These

problems can be an obstacle for general users’ ability to measure motion with

IMUs. Hence, a technique to identify the segment to which each sensor is

attached and to calculate the relative orientation based on the sensor signals

is desired, as it would make IMU attachment easier and quicker. These iden-

tification and orientation calculation tasks are called IMU-to-segment (I2S)

assignment and I2S orientation alignment, respectively [123]. In this thesis,

these two assignment and alignment procedures are collectively referred to

as IMU calibration.

This chapter addresses both I2S assignment: the task of classifying IMU

data into classes corresponding to the body segments on which IMUs are

mounted and I2S orientation alignment: the task to obtain the relative ori-

entation between each IMU and the attached joint. When a measurement
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operator uses the IMU calibration framework proposed in this chapter, al-

though only one IMU needs to be attached to the predetermined segment,

the other IMUs can be mounted on arbitrary segments because the frame-

work automatically assigns the sensors to the segments to which they are

attached. Further, the operator does not need to make the subject take a

calibration pose because the calibration framework predicts the relative ori-

entation based solely on the sensors’ measurements during a few seconds of

walking.

The classical approaches to IMU calibration involve manually designing

features for discriminating IMU placements [3, 55, 104]. Recent work has

proposed extraction for features using deep neural networks (DNNs) [123].

Although these approaches have achieved high assignment accuracy in well-

controlled settings (e.g., the approximate angle of the sensor to the segment

in the test set is the same as those of the training set), their accuracy has

decreased in trials that did not meet these conditions.

To mitigate these limitations and robustly perform the IMU calibration,

the proposed approach merges features across all body-worn IMUs and learns

the global dependencies between these IMUs. Unlike conventional methods

that assign and align sensors one by one, the proposed approach calibrates

all body-worn IMUs at once through the DNNs. The proposed model assigns

and aligns each IMU based on a global feature that represents the motions

of all sensor-attached segments of a body. In addition, the model learns the

dependency relationships between IMUs, which enables it to perform calibra-

tion based on data from relevant IMUs (e.g., IMUs attached to the adjacent

segment). To implement this feature fusion and dependency learning, a new
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DNN architecture that incorporates a global feature generation module and

an attention-based mechanism is presented.

The proposed method was experimentally evaluated using synthetic and

real datasets in three sensor configurations. The results demonstrated that

the proposed approach significantly outperformed those of the conventional

work and baselines in assignment and alignment accuracy. The ablation

studies and attention maps generated by the intermediate layer of the pro-

posed model suggested that the present model captured the dependency re-

lationships between IMUs. The results obtained with the real IMU dataset

validated the robustness of the proposed method. The contributions of this

work are summarized as follows:

• This chapter proposes a novel IMU calibration model that generates a

global feature representing the motion of all body segments to which

IMUs are attached and learns pairwise dependencies between the IMUs.

• Ablation studies demonstrate that merging features extracted from

multiple body-worn IMUs can benefit the identification of a segment

where each IMU is mounted.

• The extensive evaluation shows that the proposed method outperforms

the conventional and baseline methods in three sensor configurations

on synthetic and real public datasets.

Note that this chapter first addresses the I2S assignment in the following

sections. Subsequently, the differences between the proposed method for I2S
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assignment and I2S orientation alignment are mentioned because these two

tasks share the core of the problem.

5.1.1 Global Feature Extraction

The proposed module to generate a global feature that represents the motion

of all segments to which IMUs are attached is inspired by a technique used

in point cloud semantic segmentation: the task of separating a point cloud

into multiple regions according to the semantic meanings of points [34]. Be-

cause a 3D point in a point cloud, which has only positional data, has little

information, recently developed approaches have successfully handled point

clouds by aggregating local features and obtaining global features [29,38,82].

The feature aggregation module incorporated in the proposed model allows

the model to use the global motion of the body segments for the assignment

of IMUs.

Pointnet [82] is the pioneering work in applying neural networks to learn

over general point sets. It takes raw point clouds as input and obtains a global

feature through a pooling layer that follows individual feature extractors

composed of a simple multi-layer-perceptron (MLP). The pooling aggregator

is widely used in various tasks against various data structures [40,52,109] due

to its simple implementation and the permutation invariance of the inputs.

The proposed assignment model generates a global feature using the pooling

aggregator to merge individual features from the IMU data that are input in

random order.
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5.1.2 Attention Mechanism

Attention-based neural networks have been successfully applied to a wide va-

riety of fields, such as natural language [24,99], image [12,25], and speech [18]

processing. The studies report that learning the dependencies among the in-

termediate features through the attention mechanism improves recognition

accuracy. The learned attention also helps interpret the reasoning behind

the machine prediction and improves the explainability of the DNN mod-

els [16,110].

Transformer is one of the most promising approaches for learning global

dependencies using the attention mechanism [99]. Transformer has been pro-

posed for use in the task of natural language processing and has been quickly

adopted for a variety of tasks, such as image classification [25] and object

detection [12]. The self-attention operator in Transformer explores the de-

pendencies of input feature vectors. The proposed method incorporates the

Transformer encoder into the presented model to obtain the dependency re-

lationships between body-worn IMUs. The attention mechanism is expected

to capture the pairwise dependencies of the sensors, which enables the as-

signment of an IMU that relies on the features extracted from the dependent

IMUs.
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5.2 Methods

5.2.1 Problem Setting

I2S assignment method identifies a segment to which each IMU is mounted

based only on the IMU signals without relying on external sensors. A DNN-

based model to learn the discriminant features and classify the IMUs into

the attached segments is constructed. In the proposed framework, a user

processes the assignment following the three steps below:

1. The user selects a root IMU from a set of IMUs to be mounted and

attaches it to the predetermined root segment of a subject.

2. The user mounts the remaining IMUs on the defined position of the

arbitrary body segments of the subject.

3. The proposed model provides assignment predictions using the data

from all body-worn IMUs while the subject walks for a few seconds.

In this work, only one sensor is placed on the predetermined segment, which

dramatically reduces the risk of misplacement and the effort required from

the user to attach the sensors. Unlike with the conventional methods [123],

the user can mount IMUs at any angle. The position of the sensors needs to

be known (e.g., an arbitrary sensor should be mounted on the middle of a

bone); however, this constraint is satisfied in most practical situations [104].

The role of the root IMU and the difference in assignment accuracy depending

on the selected segment as a root are mentioned in Sections 5.2.3 and 5.6.2,

respectively. When 15 sensors are mounted on different segments, the I2S
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Figure 5.1: Overview of the proposed I2S assignment framework.

assignment can be regarded as a task to classify the sequence data of 14 IMUs

into 14 classes associated with the segments, except for the root segment.

5.2.2 Method Overview

The proposed I2S assignment framework, as illustrated in Figure 5.1, consists

of data preprocessing, IMU-wise feature extraction, global feature generation,

and attention learning modules. The proposed model takes as input the

accelerations and angular velocities of n target IMUs to be classified and one

root IMU and provides n predicted classification scores associated with all

segments except the root. Note that the data from the root IMU is placed

at the top of the input matrix; however, the data from the n target IMUs

are stored in the input matrix in a random order to train the model for the

assignment task.

In the data preprocessing module, accelerations and angular velocities in

the sensor-local coordinates are converted to the root sensor coordinates, and

noise is added to the accelerations for data augmentation. Then, the discrim-
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inant features are extracted from the IMU signals in a one-by-one manner,

and these features are merged in the global feature generation module. In

the final step, pairwise dependencies between the IMUs are learned in the

Transformer encoder [99], and the model then provides classification scores

through a linear transformation with softmax activation.

5.2.3 Data Preprocessing

Coordinate transformation and data augmentation are performed in the data

preprocessing modules for better generalization and convergence of the pro-

posed assignment model. In this section and Figure 5.2, the accelerations,

angular velocities, and orientations refer to the values at a specific time step t

(1 ≤ t ≤ T ), where T is the window size of the IMU data; however, the no-

tation of time step t is eliminated for simplicity.

At first, the raw sensor signals w.r.t. the sensor-local coordinates F i
S

(1 ≤ i ≤ n), where n is the number of IMUs to be assigned, are trans-

formed into the root sensor coordinate frame FR. The transformation makes

the inputs invariant to the walking direction of the subject; this means the

representation of the sensor signals can be the same when the subject is

walking north and south, which facilitates the training of the model. The

transformation matrix Ri
RS that maps F i

S to FR can be obtained via

Ri
RS = RWR

TRi
WS, (5.1)

whereRWR andRi
WS represent the orientation of the root sensor and the i-th

sensor w.r.t. the world coordinate frame FW , respectively. Figure 5.2 depicts

an example of coordinate transformation when the lower back is chosen as a
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root segment. Then, 3D acceleration ai w.r.t. FR is calculated by a simple

dot product with Ri
RS and the sensor-local acceleration al

i expressed as

ai = Ri
RSa

l
i. (5.2)

Given Ri
RS and the sensor-local angular velocity, 3D angular velocity ωi

w.r.t. FR is obtained by applying the classical method [6].

Data augmentation is executed to avoid over-fitting and to stabilize the

performance of the trained model. Following the methods of successful stud-

ies that have applied DNNs to IMU data [78, 123], the sensor signals are

augmented by adding zero-mean Gaussian noise to the accelerations. The

i-th IMU data after the above data preprocessing is referred to as xi ∈ RT×6,

which stacks T frames of ai and ωi.
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5.2.4 IMU-Wise Feature Extraction and Feature Ag-
gregation

The proposed DNN-based assignment model starts with IMU-wise feature

extraction. Inspired by the conventional architectures applied to IMU accel-

erations and angular velocities [78, 123], the feature extractor is constructed

with CNN layers and a recurrent network layer.

The main difference between previous work and the proposed convolu-

tion operators is the step-by-step change in kernel size for each CNN layer.

Figure 5.3 illustrates the proposed convolution operator. The orange boxes

in the blue blocks represent the convolution kernels. The input (ax, ay, az)

and (ωx, ωy, ωz) represent the accelerations ai and angular velocities ωi, re-

spectively. The kernel size and strides of the first convolution along the

height are three. This operator explicitly extracts features from accelera-

tions and angular velocities separately, and the next convolution layer with

kernel height kh = 2 fuses both features. Another convolution layer follows

to acquire deeper merged features. This feature extraction architecture is

inspired by those in the previous literature that report high recognition ac-

curacy in multi-modal fusion tasks using multi-stream feature extraction and

fusion modules [15,51]. In the proposed model, batch normalization and non-
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linear activation follow each convolution operation. ReLU activation ρ(·) is

used for the activation function that computes ρ(x) = max(0, x).

The recurrent units are incorporated after the convolution layers. The

method adopts gated recurrent units (GRU) [19] following the results pre-

sented in the previous work that performed I2S assignments [123]. The fea-

ture map from the last CNN layer m ∈ RTL×dL is divided into TL one-

dimensional features mj ∈ RdL , where (1 ≤ j ≤ TL). The feature mj is

recurrently processed by GRU, and the output at the last time step TL is

returned. Finally, the introduced module provides the IMU-wise feature rep-

resentation ui, which is extracted from xi.

The IMU-wise features individually extracted by the CNNs and the re-

current layer are aggregated to generate a global feature that represents the

global motion of the segments to which the IMUs are attached. The archi-

tecture chosen for feature merging follows the recent success of the pooling

aggregator proposed in [82]. The aggregated feature g is described as

g(p, q) = max(ur(p, q),u1(p, q), · · · ,un(p, q)), (5.3)

where g(p, q) and ui(p, q) denote the values of g and ui at position (p, q),

respectively, and ur represents the feature extracted from the root IMU data.

The global feature g forms the same shape as ui. The features g and ui are

concatenated to describe the feature of the i-th IMU, which contains the

global feature extracted from all the body-mounted IMUs.
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5.2.5 Attention-Based Architecture

Transformer learns the dependency relationships between the feature vectors

and obtain discriminant feature representations [99]. The IMU-wise features

concatenated with the global feature (ui,g) are projected to d-dimensional

vectors through the MLP with d nodes. The (n + 1) d-dimensional features

form a matrix U ∈ R(n+1)×d, which is input to the Transformer layer, as

shown in Figure 5.4.

The architecture within the attention learning layer is designed to be sim-

ilar to that of the original Transformer encoder [99]; however, there are two

differences between the original and the proposed model. One is the position

at which layer normalizations (LNs) are applied. LNs are applied before the

multi-head attention module and before MLP, following the method used by

recent works that modified the Transformer and improved its recognition ac-

curacy [25,75]. Another difference is the lack of position embeddings because

the proposed model solves an assignment problem that assumes the order of

the input is unknown.

A given input U to the attention learning module is normalized by LN.

The normalized U is projected H times into queries Qh ∈ R(n+1)×dk , keys
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Kh ∈ R(n+1)×dk , and values Vh ∈ R(n+1)×dv by three learnable matrices

Wq
h,W

k
h ∈ Rd×dk , and Wv

h ∈ Rd×dv , where 1 ≤ h ≤ H. Using Qh and Kh,

the attention matrix Ah is calculated by

Ah = softmax

(
QhKh√

dk

)
. (5.4)

The H outputs from the multi-head attention, AhVh are concatenated, lin-

early projected, and undergo LN. Then, the layer produces an output of

the same shape as the input through the IMU-wise MLP. The residual con-

nections are applied before the second LN operator and after the IMU-wise

MLP. The attention-based module is composed of a stack of N identical at-

tention learning layers. From the output of the last layer, n feature vectors

(except that of the root IMU) are linearly projected with softmax activation,

resulting in n probabilities ŷi ∈ Rn.

In the training phase, the model is trained using the cross-entropy loss

between ŷi and the one-hot true label yi ∈ Rn which is associated with

the input xi as an objective function. The proposed model is trained in an

end-to-end manner.

In the test phase, it was experimentally revealed that defining an objec-

tive function from the probability distribution ŷi and assigning the IMUs to

maximize the function improves the accuracy, rather than classifying them

directly into the segment indicated by the maximum value of ŷi. Specifically,

the prediction matrix Y ∈ Rn×n is defined by

YT = (ŷ1, ŷ2, · · · , ŷn). (5.5)

Let B ∈ Rn×n be a boolean matrix, where B(i, j) = 1 if row i is assigned

to column j. Only one of the elements in a row has 1, and the others must
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have 0. Then, the assignment algorithm seeks B̂ by solving the following

optimization:

B̂ = arg max
B

n∑
i=1

n∑
j=1

B(i, j)Y(i, j). (5.6)

The objective function is optimized using the 2D rectangle assignment al-

gorithm [21] implemented in the SciPy library [100]. In the experiments,

this optimization was applied to the proposed method and all comparison

approaches, which contributed to the improved accuracy of all methods, in-

cluding the conventional method.

5.3 Experimental Setup

5.3.1 Implementation Details

The left three blocks in Figure 5.5 illustrate the architecture and hyperpa-

rameters of the proposed model. The architecture of each block is detailed

in Section 5.2. The algorithm based on the Tree-structured Parzen Estima-

tor was used to seek the hyperparameter values, such as the learning rate,

the batch size, and the number of kernels and GRU nodes. The dataset is

divided into training, validation, and test set (see Appendix A.1 for details);

the validation set was then used for parameter tuning, and the values found

are described in Appendix A.2. The parameters are fixed through all the

experiments.
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5.3.2 Baselines

The assignment accuracy of the proposed model was compared to that of the

conventional method [123], referred to as one-by-one, which applied DNN to

identify IMU placement and infer the I2S orientation alignment of the IMU

in a one-by-one manner. Since this section focuses on the I2S assignment,

the branch layers for the alignment in one-by-one were pruned.

To validate the contribution of the feature aggregation module and the

attention-based mechanism, two baseline methods were implemented. The

two models, Global and Attention, are depicted as the right two blocks in

Figure 5.5. Global is composed of IMU-wise feature extraction and global

feature aggregation by the max-pooling layer. Global is a model made by re-

moving the attention-based learning module from the proposed architecture.

In contrast, Attention handles the features extracted from each IMU data to

learn the dependency relationships without aggregating the IMU-wise fea-

tures. The hyperparameters, the dataset division, and the coordinate frame

of the input are consistent for the proposed, conventional, and baseline mod-

els across all the experiments.
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5.3.3 Dataset

The performance of the presented approach was quantitatively evaluated on

the synthetic and real IMU datasets: CMU-MoCap [2] and TotalCapture [97].

The sensor arrangement of the CMU-MoCap is shown in Figure 5.6. Assum-

ing that the proposed framework is utilized not only for full-body motion

analysis but also for the measurement of body parts, the model was evalu-

ated on lower-, upper-, and full-body configurations. The sensor placements

are defined as follows:

• lower body (7): lower back, l-femur, r-femur, l-tibia, r-tibia, l-foot, and

r-foot

• upper body (9): head, thorax, lower back, l-humerus, r-humerus, l-

radius, r-radius, l-wrist, and r-wrist
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• full body (15): segments on both lower and upper body (lower back is

duplicated),

where l- and r- represent left and right body segments, and the figures in (·)

denote the number of the segments. Then, since the root segment is deter-

mined a priori, the I2S assignment in lower-, upper-, and full-body config-

urations can be regarded as the task of classifying the time-series signals of

the IMUs into 6, 8, and 14 classes, respectively. The segment lower back was

selected as a root segment through all experiments, excluding Section 5.6.2.

CMU-MoCap is the public human motion dataset captured with the

marker-based optical motion capture system [2]. The synthetic IMU data

was generated assuming that the IMU was attached to the segments of the

body measured in CMU-MoCap. The generation algorithm is described in

Appendix A.3. In the simulation dataset, 42 subjects performing different

walking styles are selected, which are used in [123]. The models were trained

with IMU signals from 26 subjects in the training set and 7 subjects in the

validation set, and they were tested with the remaining 9 subjects’ data

(detailed in Appendix A.1).

TotalCapture is a public dataset providing 60 fps of all-synchronized IMU

data, HD videos, and ground-truth human poses measured by the marker-

based optical motion capture system [97]. Since the proposed approach uses

only IMU signals for the I2S assignment, real IMU data were utilized for the

training and evaluation of the models. The number of IMUs was 13, and the

sensor arrangement was the same as with CMU-MoCap, with the l-wrist and

r-wrist sensors removed. TotalCapture has five subjects with a variety of
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motions measured. The walking scenes including three subjects’ data were

used for training, one subject’s data was used for validation, and the rest

was for testing. The period during which the subjects took a calibration

pose (the first and last two seconds) and walked backward were manually

removed from the dataset. TotalCapture is a challenging dataset in three

aspects. First, the number of subjects in the training data is small, which

easily causes over-fitting. Second, it contains a variety of walking styles,

including many twists and turns and slow and fast walking. Finally, the

positions and angles of the sensors attached to the body change slightly

depending on the subject because TotalCapture is not a dataset intended for

evaluating I2S assignment but for pose estimation. Through the experiments

on TotalCapture, the versatility of the proposed method was evaluated.

The window size of the input IMU data was two seconds (i.e., the number

of frames T = 120 in 60 fps input data), and the windows were always shifted

by 0.25 seconds. CMU-MoCap and TotalCapture provide 120 fps and 60 fps

IMU signals, respectively, and they are used at the original frame rate.

5.4 Results

5.4.1 Assignment Accuracy

The experimental results obtained using the setup described in Section 5.3

are shown in Table 5.1. As seen in this table, the proposed method outper-

formed the other methods on both datasets for three configurations of sensor

attachment, showing that I2S assignment training in the proposed approach

yields better feature representations to discriminate the segment to which
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Table 5.1: Assignment accuracy on the two datasets in the three configura-
tions. All figures represent percentages.

CMU-MoCap [2] TotalCapture [97]
lower upper full lower upper full

One-by-one [123] 90.0 51.7 60.2 93.6 80.2 83.1
Global 97.3 81.8 88.1 96.6 89.9 89.9
Attention 97.6 89.7 91.9 91.7 91.0 90.1
This work 97.8 93.0 93.1 96.7 93.5 91.6

each IMU is attached.

The assignment results on the CMU-MoCap [2] are visualized using con-

fusion matrices in Figure 5.7. The matrices show that the assignment errors

are caused by two main types of mistakes: left/right switch (l/r switch) and

intra-limb misassignment (intra-misassignment). The l/r switch indicates

an incorrect assignment to the opposite side of the attached segments (e.g.,

the IMU mounted on the l-wrist is classified into the r-wrist class). The

intra-misassignment denotes that the IMU attached to a part of the limb is

misclassified to another part of the same limb (e.g., the IMU mounted on

the l-wrist is assigned to the l-radius or l-humerus class). Some of the l/r

switches and intra-misassignments are highlighted in the confusion matrix at

the lower left part of Figure 5.7 with red and blue squares, respectively. The

figure shows that the proposed method reduced both mistakes and signifi-

cantly improved the assignment accuracy.
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Figure 5.7: Some results on CMU-MoCap [2] in terms of confusion matrices.
The red and blue rectangles on the lower-left confusion matrix highlight the
left/right switches and intra-limb misassignments, respectively.
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Figure 5.8: Comparison between the two baselines on the CMU-MoCap [2]
in the full-body configuration.

5.4.2 Ablation Studies

To analyze the contribution of each module in the proposed model to mitigate

the l/r switch and intra-misassignment problems, the confusion matrices of

Global and Attention are visualized in Figure 5.8 and computed the error

rate caused by each mistake. On the CMU-MoCap dataset, the average

l/r switch rates (the number of l/r switches divided by the total number of

assignments) and the intra-misassignment rates for all three configurations

were 2.2% and 5.5% for Global, and 3.1% and 2.4% for Attention. The lower

l/r switch rates of Global and the lower intra-misassignment rate of Attention

can be observed in the confusion matrices shown in Figure 5.8 as well.

The results suggest that the global feature aggregation alleviates the l/r

switch problem. This could be because the aggregation allows the network to

model the motion of all body segments and capture the motion of each IMU
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relative to the global body motion, thus enabling the model to discriminate

between left and right. The results also suggest that the attention module

reduces intra-misassignment errors. This could be because the model with

the attention learning architecture classifies the IMU data with consideration

of the information from the relevant IMUs, such as IMUs attached to adja-

cent and opposite segments. For example, as can be seen in Figure 5.11(b)

(see Section 5.1.2 for an explanation of the figure), when assigning an IMU

mounted on l-tibia, the self-attention architecture devotes much attention to

l-femur, l-foot, and r-tibia. The assignment prediction relying on the IMUs

on the segments in the same limb should prevent intra-misassignment.

5.4.3 Results on a Challenging Dataset

The results on the TotalCapture dataset [97], as presented in Table 5.1 and

Figure 5.9, revealed that the proposed approach is robust to different walking

styles and slight changes in the IMU positions depending on the subjects.

The proposed model took the same period of data as an input regardless of

the change in walking speed, but the method achieved high accuracy in all

the sensor configurations.

The accuracy in assigning the arm segments was lower than that of the

other segments for two possible reasons. One is a variety of movements not

found in a normal gait in the training dataset, such as touching a head and

face and raising clenched fists. The other is that the subject in the test set

walked without moving his arms for a few seconds. The trained model could

not distinguish between the IMU movement on the arms, head, and chest in

the scene. Specifically, the mean assignment accuracy in the three seconds
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Figure 5.9: Assignment accuracy of the proposed method on the TotalCap-
ture dataset [97] in terms of confusion matrices.

of the test scene in which the subject walked slowly without waving his arms

(from 55 to 58 seconds in S5-W2 in TotalCapture [97]) was 61.1% in the

full-body setting.

5.5 IMU-to-Segment Orientation Alignment

IMU calibration in this thesis consists of two tasks: I2S assignment and

I2S orientation alignment. I2S orientation alignment is a task to obtain the

relative orientation between the IMU and the bone to which the IMU is

attached. The estimated relative orientation is essential for human motion

capture, as is used in Equation (4.1). In this work, the I2S assignment

method proposed and evaluated in previous sections is extended to predict

the relative orientation of IMUs. The remainder of this section contains

the description of the proposed method and evaluation of I2S orientation
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Figure 5.10: Setups of IMU-to-Segment orientation alignment.

alignment.

Problem Setting. The problem setting of this work follows that of I2S

assignment mentioned in Section 5.2.1; however, this task adds one constraint

to the attachment of the IMUs: each IMU is mounted on the segment so that

its sensor-local x-axis is parallel or vertical to the corresponding bone. The

z-axis of the IMU remains perpendicular to the bone. Figure 5.10(b) depicts

this setting. In this setting, I2S orientation alignment can be regarded as a

task of classifying each IMU’s orientation into four categories that indicate

the angles of its x-axis to the bone of 0◦, 90◦, 180◦, and 270◦. This assumption

improves the convergence of the model but does not significantly increase the

burden on the measurement operator.
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5.5.1 Method

In contrast to I2S assignment, the information from the sensors attached

to other segments does not help to align the orientation of an IMU, since

I2S orientation alignment predicts the relative orientation of the IMU to the

corresponding (attached) joint. Therefore, the proposed method computes

the sensor orientation one by one.

The proposed network architecture is very similar to the IMU-wise feature

extraction module of the I2S assignment network, i.e., three CNN layers are

followed by a GRU. The only difference is that the data from each modality

is convolved independently and concatenated after the convolution because

this model takes orientation matrices as the inputs and their dimensions

are different from the other modalities (acceleration and angular velocity).

The features extracted from CNNs and GRU are linearly transformed with

softmax activation, which represent the model predictions.

5.5.2 Experiments

The accuracy of the proposed I2S orientation alignment method was com-

pared with the baseline method that learns I2S assignment and alignment

simultaneously. In the baseline method, termed Simultaneous, the latent fea-

tures from the penultimate layer of the assignment model are concatenated

with the extracted feature vectors in the alignment module. The proposed

and baseline models are trained with the same hyperparameters as the I2S

assignment model described in Appendix. A.2. The experiments are per-

formed on CMU-MoCap [2] in the same dataset division as mentioned in
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Table 5.2: I2S assignment and orientation alignment accuracy on CMU-
MoCap in the three configurations. All figures represent percentages.

Lower body Upper body Full body
assign align assign align assign align

Section 5.2 97.8 - 93.0 - 93.1 -
Simultaneous 96.7 99.6 86.8 88.4 90.2 97.6
Section 5.5 - 99.6 - 97.4 - 98.6

Appendix A.1. As shown in Figure 5.10(a), the virtual IMUs are mounted

at the positions to which general IMU-based human motion measurements

attach.

As shown in Table 5.2, the proposed model that trained IMU assignment

and alignment separately achieved higher accuracy than Simultaneous, and

achieved 98.6% in full-body configuration. The baseline model degraded

the assignment accuracy as well. It suggests that Simultaneous could not

share the discriminative features that contribute to both I2S assignment and

alignment.

5.6 Discussion

5.6.1 Attention Maps Visualization

An attention mechanism can be used to improve the explainability of deep

learning models [110, 115, 116]. Explainability, in this context, refers to a

better understanding for humans of why the models behave as they do. The

explainability of a model helps users make decisions based on the model and

allows researchers to understand what input and intermediate features affect
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(a) l-foot (b) l-tibia (c) l-femur

(d) r-foot (e) r-tibia (f) r-femur

Figure 5.11: Visualization of the self-attention matrices of the proposed
model. The figures on the lines denote the attention scores.

the results of the model. The attention learning architecture used in the

proposed model can capture the pairwise relationships between the IMUs

and explain what dependencies the predicted assignments rely highly on.

To visualize the dependencies between the IMUs, the mean attention ma-

trix was computed, which represents the average of the self-attention matrix

(calculated by Equation (5.4)) from all the H heads and all the N Trans-

former encoder layers. Each row of the attention matrix represents the de-

pendencies between the IMUs associated with the columns. The pairwise de-

pendencies are separately visualized for each body segment in Figure 5.11. A

high attention score suggests high dependency. For example, Figure 5.11(a)

describes the degree of dependence on the IMU attached to each segment
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Figure 5.12: Assignment accuracy depending on the root segment in full-
body configuration. The graphs in lighter blue represent the right side of the
segment (e.g., r-humerus and r-radius).

when the model performed the assignment for the IMU mounted on l-foot.

For all the segments from (a) to (f) in Figure 5.11, it can be seen that much

attention is devoted to the adjacent segments and the opposite segments even

in the test phase, during which the model has no prior knowledge of which

segment each IMU is mounted on.

5.6.2 Root Segment Selection

The accuracy of the I2S assignment according to the root segment is shown in

Figure 5.12. The results suggest that the segments that stably and faithfully

follow the body orientation (e.g., lower back, thorax, head, and femur) are

suitable for the root. In contrast, when the segments on the arms that

have great freedom of movement during walking were chosen, the assignment

accuracy decreased significantly.
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5.7 Summary

This chapter presented an approach that identifies the segment on which

each IMU is mounted by merging the features of all the body-worn IMUs

and by learning the dependency relationships between the sensors. A pooling

aggregator was incorporated to obtain a feature that represents the global

motion of the body. In addition, a self-attention learning architecture was

implemented to allow the model to perform an IMU assignment, relying on

the signals from the relevant IMUs. The proposed model was quantitatively

evaluated on simulated and real IMU datasets, which validated our method,

showing that it accurately and robustly performed the I2S assignment and

orientation alignment. Ablation studies suggested that the global feature

fusion and attention mechanism reduced left/right switches and intra-limb

misassignments.

5.7.1 Limitations

The present I2S assignment framework assumes that the sensor configuration

is known a priori and that one of the sensors is placed on the predetermined

segment. These limitations do not significantly impair practicality; however,

further studies to relax them are needed.
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Conclusion and Outlook

This thesis proposed two approaches for motion capture using visual and

inertial sensors and an IMU calibration framework for real-world motion

measurements. This chapter restates the contributions and speculates on

promising directions for future work.

This thesis first proposed a novel multi-view motion capture approach

that reconstructs weighted voxels of the human body. The method combines

the back-projection of the 2D body keypoints and silhouettes. Focusing on

the 3D position of the body CoM, extensive experiments were performed,

which validated the effectiveness of weighting each segment. The experiment

considering the use in a sports field verified the applicability of the proposed

method for tracking CoM in dynamic postures.

Towards resolving a limitation of current visual-inertial motion capture

systems that require multi-view cameras to localize the human body, this

thesis has also contributed the world’s first method for 3D human pose es-

timation with a single-view camera and multiple body-worn IMUs, which

optimizes the position and timing of foot-ground contact. Given a synchro-

81
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nized RGB video and signals from body-worn IMUs, the proposed method

optimizes pose parameters of the human model by minimizing IMU-based

cost terms and image-based ones that penalize the discrepancy between the

foot-ground contact points of the optimized model and that of visual estima-

tion. The experiments demonstrated that the proposed method outperforms

the image-based and IMU-based 3D pose estimation methods in the joint po-

sition accuracy. The experiments further showed that the proposed method

is comparable to the state-of-the-art methods in a multi-view and multi-IMU

setting.

Lastly, this thesis proposed a framework for IMU calibration, aiming to

resolve the complexities of the preprocessing steps of the IMU-based human

motion measurements, including the secondly proposed method in this thesis.

This work contributes to extensive IMU-based motion analyses because it re-

lieves the procedures of the measurement operator. The proposed framework

identifies the body segment on which each IMU is mounted and computes

the relative orientation between the sensor and the attached bone from the

IMU signals during a few seconds of a walk. The experiment demonstrated

that the proposed approach significantly outperformed the conventional and

baseline approaches.

Future Work. This thesis proposed three approaches for motion capture in

the real world. This section describes a few interesting directions for future

research opportunities based on this thesis.

Exploiting the measured motion can be an extension of the work per-

formed in this thesis. The analyses of the captured human movements would
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lead to the development of various applications, such as surgical diagnos-

tics, rehabilitation methods, motion assist devices, and user applications

for health care, which may contribute to improving the quality of life of

many people. In addition, exploitation of the captured motion by extracting

contextual information should be explored. For example, since the second

proposed method captures human motion using a monocular camera and

body-worn IMUs, features from the estimated human pose and images would

enable fine-grained action recognition and motion forecasting.

Capturing human motion with sparse sensors is challenging but desirable.

Extending the proposed method to be used in a measurement system con-

sisting of only a few sensors is worth exploring. One approach to reducing

the sensors would be adding geometric or statistical constraints to optimize

the human motion parameters. Another solution would be to train models

using data obtained from measurements with dense sensor configurations.

For example, the data obtained with the CoM estimation approach proposed

in this thesis would be applicable to train a model that predicts the CoM po-

sition using a monocular camera. In addition to the abovementioned studies,

relaxing the limitations described in each chapter is included in future work.



Appendix A

Implementation Details of IMU
Calibration

A.1 Division of the Dataset

The data in a dataset are divided into training, validation, and test sets. In

this paper, both the synthetic dataset CMU-MoCap [2] and the real dataset

TotalCapture [97] are divided into the three sets on the basis of the subject

(i.e., all the trials (scenes) of a subject are put into one of the three sets).

The specific division of each dataset is summarized in Table A.1. In CMU-

MoCap [2], subjects performing simple “walking” and having at least 600

Table A.1: Dataset division. The figures represent the ID of the subjects.

Train Validation Test

CMU-MoCap [2]

2, 6, 7, 10, 15, 16, 32,
36, 37, 38, 39, 45, 81,
91, 93, 103, 104, 105,
114, 120, 132, 133,
139, 141, 143, 144

3, 8, 43, 69,
113, 136, 137

5, 12, 26,
27, 29, 46,
49, 55, 111

TotalCapture [97] 1, 2, 3 4 5

84
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frames in every scene are chosen as a test set.

A.2 Hyperparameters for Model Training

Figure 5.5 visualizes the architecture and parameters of the network.

In IMU-wise feature extraction, three CNNs with different kernel sizes

(3,kw), (2,kw), and (1,kw), where kw represents the kernel width, were uti-

lized in this order. The strides of these kernels were (3,1), (1,1), and (1,1),

respectively: kw varies to scale the size of the convolution operator, depending

on the input frame T . Specifically, kw was set to [T/15 + 1] in the experi-

ments. The number of nodes in GRU following the CNNs was 128. After the

max pooling and the concatenations of the vectors, MLP with the number

of nodes d = 256 mapped each feature to be the input of the Transformer

encoder layer [99]. The hyperparameters in the Transformer encoder were

as follows: The embedding dimensions of the query dk, key dk, and value dv

were 256. The number of the MLP nodes after the second LN operator was

set to 768. The number of the attention heads H and of encoder layers, N

was fixed to 4.

The presented network was trained for 1000 epochs with a batch size

of 128. Early stopping with patience 400 was performed, and the model

that achieved the lowest loss on the validation set was utilized for the test.

RMSProp with a fixed learning rate of 0.001 was applied to optimize the

model.
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A.3 Simulated Data Generation

The public human motion dataset named CMU-MoCap [2] provides much

3D kinematics data which are measured using the optical motion capture

system. The human joint position pt
WJ and orientation Rt

WJ w.r.t. the

world coordinates FW at time step t are utilized. A virtual IMU is attached

to a bone by defining a rotation matrix RJS and translation vector tJS, which

represent the orientation and position of the virtual sensor w.r.t. the joint

coordinate frame FJ . They are kept fixed in FJ during movement, assuming

that the IMU is attached to a rigid human body and its motion is perfectly

linked to the associated joint motion. In the experiments, the IMU was placed

at the midpoint of the bone, and the joint position data was preprocessed

with a zero-lag Butterworth filter [8] of order 8 and a cutoff frequency of

10 Hz, following the previous work [123]. Then, the IMU position pt
WS and

orientation Rt
WS w.r.t. FW at time step t were obtained via

pt
WS = pt

WJ +Rt
WJtJS (A.1)

Rt
WS = Rt

WJRJS. (A.2)

The angular velocity of the IMU w.r.t. FW is computed by [6] using the

sensor orientation in the current frame Rt
WS and the next frame R

(t+1)
WS . The

IMU acceleration at t time step at
WS w.r.t. FW is calculated by

at
WS =

p
(t+1)
WS − 2pt

WS + p
(t−1)
WS

∆t2
, (A.3)

where ∆t denotes the period of the time step. Since all the IMU accelerations

and angular velocities are transformed to the root sensor coordinate before

they are input to the assignment model, these values are invariant to the
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IMU orientations w.r.t. FJ . Therefore, unlike the previous work [123], this

work did not generate IMU data with various orientations relative to FJ .
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