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Abstract 
 

Non-coding RNAs (ncRNAs) that are not translated into proteins were formerly considered as junk 

regions. However, various functions have been revealed in recent years ranging from development 

and cell differentiation processes to cause of diseases. Elucidation of ncRNA structural information is 

an indispensable step for understanding the function of ncRNA through RNA informatics, which is 

information science for RNA molecules. However, existing methods to obtain structural information 

of RNAs are not accurate, and the development of better methods is an active field of study. In this 

dissertation, I set out to develop more accurate methods for two different use cases: RNA secondary 

structure prediction and RNA sequence embedding. The background necessary for the explanation of 

these methods is given in Chapter 1. 

The first method in this dissertation focuses on the development of a highly accurate RNA 

secondary structure prediction algorithm. Since the functions of ncRNAs are believed to be closely 

related to the structures of ncRNAs, it is possible to infer their biological functions from their 

structures. A popular approach for predicting RNA secondary structure is the thermodynamic nearest-

neighbor model that finds a thermodynamically most stable secondary structure with minimum free 

energy (MFE). An alternative approach based on machine learning has been developed that can 

employ a fine-grained model that includes much richer feature representations. Rich feature 

representation is achieved by modeling more detailed substructures for RNA secondary structure. 

Although the machine learning-based fine-grained model achieved extremely high performance in 

prediction accuracy, the possibility of the risk of overfitting has been reported. In Chapter 2 of this 

dissertation, I propose a novel algorithm for RNA secondary structure prediction that integrates both 

the thermodynamic approach and the machine learning-based weighted approach. My benchmark 

showed that my algorithm achieved the best prediction accuracy compared with existing methods and 

resolved heavy overfitting.  

"Embedding" is a popular technique that vectorizes DNA sequences and amino acid sequences, and 

is known to be useful for detecting DNA sequence motifs and predicting protein functions but 

embedding for RNA sequences has not been developed so far. In Chapter 3 of the dissertation, I 

showcase the development of a pre-training algorithm with the aim of acquiring an embedded vector 

of an RNA sequence that contains abundant structural information and sequence context information. 

Finally, to verify the quality of embedding, I performed two basic RNA informatics tasks (structural 

alignment and gene clustering), and in the process, achieved greater accuracy than existing state-of-

the-art methods. 

To conclude, I have succeeded in obtaining effective analytical methods of ncRNA using two 

approaches: RNA secondary structure prediction and RNA sequence vectorization. Each approach 

can be applied to analysis in all fields of RNA informatics including RNA-protein interaction and 

RNA-RNA interaction and can be expected to have a large spillover effect. In Chapter 4, the 

conclusions of this dissertation and the ripple effects are described in detail. 
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Chapter 1 Introduction 

 
Non-coding RNA (ncRNA) is RNA that is not translated into protein. The major non-coding 

RNAs include ribosomal RNA, transfer RNA, microRNA, snoRNA, snRNA, and piRNA. In 

recent years, these non-coding RNAs were revealed to have functions in cells, such as 

translation control and methylation of genes (Flanagan and Wild, 2007). Transfer RNA and 

ribosomal RNA are involved in translation events, transporting amino acids and synthesizing 

proteins. Both snoRNA and snRNA function in the nucleus, and are involved in regulating 

chemical modifications such as methylation of ribosomal RNA and mRNA splicing. Micro-

RNA is 18 to 24 bases long and is causally implicated in various diseases by suppressing 

gene expression. 

Next-generation sequencers have made it possible to acquire large amounts of RNA-related 

data. However, it is difficult to extract biological meanings from a large number of sequences, 

so information analysis is essential.  RNA informatics is a field that aims to reveal RNA-

related biological phenomena using algorithms from information science and statistics. RNA 

informatics includes RNA structure prediction (Do et al., 2006; Lorenz et al., 2011), RNA 

alignment (Sato et al., 2012; Will et al., 2007), RNA family classification (Morita et al., 

2009; Sato et al., 2008), and prediction of interactions with other molecules (Kato et al., 

2010; Pan et al., 2018). RNA structure is a key element in many of the topics in RNA 

informatics because the function of RNA molecules is related to their structure (Hirose and 

Tomari, 2016). In recent years, the development of RNA informatics and RNA interaction 

analysis has elucidated how RNA structures work in the formation of complexes with 

proteins and other molecules (Moore and ’t Hoen, 2019). RNA expresses its function by 

forming a three-dimensional structure analogous to a protein. RNA forms secondary structure 

consisting of base pairing and tertiary structure resulting from steric interaction. While DNA 

exists as a perfectly paired double helix, most RNA is single-stranded and therefore forms 

base pairs by hydrogen bonds within the RNA molecule. Since ribose has one more hydroxyl 

group than deoxyribose, RNA has a higher ability to form hydrogen bonds than DNA. For 

this reason, RNA forms complex base pair interactions in its secondary structure. The 

structural units that form these higher-order structures are called RNA structural motifs 

(Hendrix et al., 2005). Unlike RNA sequence motifs found in primary sequences, RNA 
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structural motifs are defined by higher-order structures. For this reason, primary sequences 

that appear to be irrelevant may have the same RNA structural motif. RNA structural motifs 

often play an essential role as functional RNA. For example, one of the RNA tertiary 

structural motifs, kissing stem-loop, is formed by the intramolecular interaction of two loops 

and is involved in recombination (Balakrishnan et al., 2001). Since these RNA structural 

motifs control various biological phenomena, the identification of RNA structures lead to the 

inference of their functions. 

 Hundreds of thousands of ncRNAs have been discovered with the help of high-throughput 

RNA sequencing. However, due to the vast amount of ncRNA data and limitations in 

experimental designs, finding the function of ncRNA remains a difficult task. Extraction of 

ncRNA structural information is an indispensable step for understanding the functions of 

ncRNAs in RNA informatics. In this dissertation, I explore effective analytical methods for 

ncRNA by two different approaches: RNA secondary structure prediction and RNA sequence 

embedding.  

This dissertation is organized in the following manner. This chapter describes the basics of 

RNA secondary structure prediction and sequence embedding vectorization techniques, as 

well as the basic tasks of RNA informatics. In Chapter 2, I describe the results of the novel 

RNA secondary structure prediction algorithm.  In Chapter 3, I describe the results of RNA 

structural alignment and clustering with informative RNA base embedding using deep 

representation learning. Finally, Chapter 4 presents the conclusions and future perspectives of 

this study. 
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1.1 Non-coding RNA 

 
Untranslated regions are genomic regions that are transcribed into RNA but are not translated 

into proteins. In the human genome, 98% of the transcribed regions are untranslated regions 

(Nakamura, 2003). The percentage of untranslated regions in the entire genome for each 

species is 1 % for E. coli, 10 % for yeast, 30 % for C. elegans, and 43 % for human 

(Nakamura and Siomi, 2004). These facts suggest that there could be some correlation 

between the complexity of an organism and the size of its untranslated region. NcRNA genes, 

which are abundant in untranslated regions, are thought to explain this relationship. NcRNAs 

are known to have various functions such as catalyzing RNA processing and repressing 

mRNA translation. However, the loci and mechanisms of ncRNAs are still largely unknown, 

and have been the subject of extensive research in recent years.  

 

1.1.1 RNA secondary structure 

 
NcRNAs exert their functions by forming various RNA secondary structures. RNA 

secondary structures are folded structures formed by hydrogen bonds between bases based on 

Watson-Crick complementarity, such as "A" and "U", "G" and "C", and "G" and "U" in the 

molecule. The formation of these base pairs gives the RNA molecule its stability. RNA 

molecules can be divided into characteristic substructures, like protein domains. The double-

stranded structure formed by the stacking of adjacent base pairs is called the stem. The 

single-stranded region sandwiched between the base pairs is called a loop. The loop at the 

end of the stem is called a hairpin loop. The unpaired nucleotides of the bulge loop appear on 

one side of the base pair. The internal loop occurs in the middle of the elongation of the 

double-stranded RNA. A loop that branches into three or more stems is called a multi-

branched loop (Durbin et al., 1998). In most RNA secondary structures, base pairs form a 

nested structure, while secondary structures that contain base pairs that are not nested are 

called pseudoknots. 

 

1.1.2 RNA family 
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RNAs are classified into RNA families according to their functions. In addition to protein-

coding RNA, there are various ncRNA families (Fig. 1). In this section, I introduce the 

representative ncRNA families. 

 

 
Fig. 1. RNA families 
 

transfer RNA 

Transfer RNA (tRNA) transports amino acids corresponding to codons of mRNA to the 

elongating polypeptide chain in translation. This function can be interpreted as the 

conversion of nucleic acid sequence information (codon) into amino acid residue information 

(protein). The tRNA has a cloverleaf-shaped higher-order structure with a region called an 

anticodon at one of its four edges. Anticodons bind to mRNA codons by nucleotide 

complementarity. The mapping between tRNA and amino acids is performed by an enzyme 

called aminoacyl-tRNA synthetase. Aminoacyl-tRNA synthetases are prepared for each type 

of amino acid, and bind tRNA and amino acid in the correct combination (Lodish et al., 

2019).  

 

ribosomal RNA 

Ribosomal RNA (rRNA) constitutes the ribosome, a large molecule that plays a central role 

in translation. The ribosome is composed of a large subunit and a small subunit, each of 

which is a complex consisting of rRNA and protein. When the two units bind to mRNA, the 

polymerization of amino acids proceeds and proteins are synthesized. There are three binding 

sites: A, P, and E. The A-site is the site where aminoacyl-tRNAs are most abundant; the P-

site is the site where tRNAs that carry the elongating peptide chain are located; and the E-site 
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is the site where tRNAs that are ejected from the ribosome are located. 

 

small nuclear RNA 

Small nuclear RNAs (snRNAs) are small RNAs that are localized in the nucleoplasm of 

eukaryotes. The primary function of snRNAs is the processing of mRNA precursors (pre-

mRNA) in the nucleus. snRNAs always form complexes with a set of corresponding proteins 

(snRNPs). These complexes include U1 snRNP, U2 snRNP, U4 snRNP, U5 snRNP, and U6 

snRNP. These complexes are called spliceosomes, and they jointly catalyze splicing of 

mRNAs (Lodish et al., 2019). 

 

Small nucleolar RNA 

Small nucleolar RNA (snoRNA) is a small RNA localized in the eukaryotic nucleolus. 

snoRNAs are involved in the maturation of rRNAs and small-nuclear RNAs (snRNAs) by 

catalyzing their methylation and pseudouridination. These chemical modifications are 

thought to enhance the function of RNA. Unlike snRNAs, of which there are only a few 

types in eukaryotes, snoRNAs are thought to exist in about 150,200 types. The complex 

formed by snoRNAs and proteins (snoRNPs) catalyzes the modification of RNA molecules. 

The snoRNAs bind complementarily to the sequence of the target RNA molecule. This 

binding leads the snoRNP to the target site. 

 

microRNA 

MicroRNAs (miRNAs) are small RNAs that do not form base pairs and are involved in the 

regulation of gene expression in eukaryotes. It is thought that more than 1000 miRNAs are 

encoded in the human genome. MicroRNAs bind to mRNAs that have complementary 

sequences to their own and degrade them, thereby suppressing the expression of specific 

genes. It has been reported that the expression levels of microRNAs are abnormal in various 

human cancers. Therefore, it is thought that microRNAs may be deeply involved in the 

development of cancer (Bushati and Cohen, 2007; Chang and Mendell, 2007).  

 

1.2 Structure and Function of RNA 
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In this section, I will introduce the intracellular events related to RNA structure. This section 

was written based on a technical book (Hirose and Tomari, 2016).  

Riboswitches are functional RNAs found in the 5′-untranslated region (UTR) of mRNAs 

that exert transcriptional control through direct binding to small molecule ligands. The 

typical riboswitch consists of an "aptamer motif" that binds to a specific ligand and an 

"expression control motif". In mRNAs with a riboswitch in the 5'UTR, the target ligand binds 

to the aptamer motif. This binding induces structural changes in the aptamer motif and the 

expression control motif, and regulates the expression of the genes. As with proteins, these 

RNA receptors facilitate the proper reaction by identifying chemically related metabolites 

with high selectivity. For example, in the S-adenosylmethionine-type riboswitch, the binding 

of SAM to the aptamer motif induces structural changes in RNA, followed by the formation 

of a transcription terminator that induces transcriptional repression (Fig. 2). SAM 

riboswitches are located upstream of genes encoding proteins involved in the biosynthesis of 

methionine and cysteine in Gram-positive bacteria, and repress the expression of these genes 

by forming transcription terminators.  While SAM riboswitch is a riboswitch that suppresses 

gene expression, some have been found to promote gene expression (Serganov and Nudler, 

2013). In order to bind specifically to the various molecules, riboswitches have different 

structures depending on the molecules to which they bind. Recently, research has been 

conducted to target riboswitches as a target for antibiotics, because riboswitches do not exist 

in humans and thus there is little concern about side effects. In fact, recent studies have 

revealed that some antibiotics, whose mechanisms have long been unknown, target the 

riboswitch (Howe et al., 2015). 

 
 

Fig. 2. Gene regulation by SAM riboswitch.  
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RNA rarely expresses its function by itself. RNA often controls intracellular events by 

interacting with other RNAs and proteins. RNA structure is also important in RNA-protein 

interactions. LIN28 is an RNA-binding protein with CSD (cold shock domain) and ZKD (Zn 

knuckle domain), and is involved in the maintenance of pluripotency of ES cells (embryonic 

stem cells) (Mayr and Heinemann, 2013). Lin28 binds to specific sequences present in the 

loop structure of pre-miRNAs (precursor miRNAs) belonging to the let-7 family, which 

consists of 12 types of miRNAs (Fig. 3). Let-7 is one of the first miRNAs to be discovered 

and is a very important gene in tumor suppressor function and development. This binding 

inhibits miRNA production by preventing Dicer from cleaving pre-miRNA. At this time, the 

recognition of LIN28 relies on cooperative targeting by both ZKD, which binds to the GGAG 

sequence motif in the internal loop structure, and CSD, which binds to the GNGAY sequence 

motif in the hairpin loop structure (N for one of the AUCG base and Y for one of the CU 

bases). The presence of these sequences on a particular structure is required for the 

interaction of Lin28 and pre-miRNA. In fact, altering the structure of the RNA loop region 

weakens binding to Lin28. Thus, not only the primary sequence but also the structural 

background is an important factor for RNA-protein interaction. 

 

 
Fig. 3. The binding of lin28 prevents the maturation (production) of the let-7 gene by Dicer. 
This binding occurs in undifferentiated cells because let-7 is a gene that represses 
developmental processes. 
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1.3 RNA secondary structure prediction 

 
RNA secondary structure prediction is defined as determining the secondary structure of x 

when any input of RNA base sequence 𝑥	 = 	 𝑥$𝑥%. . . 𝑥'  is given. The RNA secondary 

structure prediction algorithm can be decomposed into four elements, “architecture”, 

“scoring scheme”, “parameterization”, and “folding algorithms” (Rivas, 2013).  The 

architecture determines the units of the substructure parameters that form the secondary 

structure. The architecture depends on how detailed the modeling of the parameters is. A 

scoring scheme is a way of scoring a secondary structure using parameters. The 

parameterization depends on how the parameter values are determined. Different 

parameterizations are possible even for the same scoring scheme. There are several folding 

algorithms that predict the secondary structure using the parameters obtained from the above 

three factors. Below, I explain the four components in detail according to the paper by Rivas 

(Rivas, 2013). 

 

Architecture 
The RNA secondary structure can be represented using context-free grammar (CFG). CFG is 

a system for generating character strings, consisting of the rules and symbols shown below.: 

 

l terminal symbol: collection of characters that cannot be rewritten. The final sequence 

generated by the rule consists only of terminal symbols. 

l nonterminal symbol: the grammar symbols for rule applications. Nonterminal symbols 

are taken part in the generation of sentences but are not components of the sentence. 

l productions: rules for replacing non-terminal symbols with a combination of non-

terminal symbols and terminal symbols. 

l start symbol: special non-terminal symbol that begins a string generation by the grammar. 

 

For example, the production rule for base pair formation can be represented as (𝐴 → 𝑥𝐴𝑥)). 

Here, 𝐴 is the non-terminating symbol and 𝑥 and 𝑥) are the terminating symbols for the two 

paired bases. The production rule is expressed as "non-terminal symbol → symbol sequence 

of non-terminal and terminal symbols". For example, when the production rule (𝐴 → 𝑥𝐴𝑥)) is 
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applied to the symbol string (𝑥𝐴), the symbol string (𝑥𝐴 ⇒ 𝑥𝑥𝐴𝑥)) is generated. In this case, 

one unpair base and one base pair is generated on the right side. One of the most famous 

grammars, the Nussinov grammar (Nussinov and Jacobson, 1980) for generating RNA 

sequences, is defined as follows. 

 

𝐴 → 𝐴𝑥|𝐴𝑥𝐴𝑥)|end 

In addition to Nussinov grammar, the g6 grammar introduced three non-terminal as follows. 

 

1. 𝐴 → 𝐵𝐶|𝐵|end 

2. 𝐵 → 𝑥𝐶𝑥)|𝑥 

3. 𝐶 → 𝑥𝐶𝑥)|𝐵𝐴 

 

Modeling of secondary structures with g6 grammar achieves better prediction accuracy than 

nussinov grammar. More detailed modeling of these basic grammars is currently used in 

thermodynamic or probabilistic or weight schemes. The representative grammar adopted by 

various methods is shown below. 

l Base helix (𝐴44) → 𝑥𝐴55)𝑥)) 

Contiguous structure of base-pairs. A base-pair 𝑥𝑥)  is  developed next to the base-pair 𝑦𝑦). 

l Dangles (𝐵44) → 𝑥𝐶|𝐶𝑥) 

Represents a single base adjacent to a base-pair 𝑦𝑦) . 𝐵44)  is a non-terminal symbol 

representing a base pair. That is, the terminal symbol 𝑥 generated by this rule is adjacent to 

the base pair 𝑦𝑦). C can be converted to any non-terminal symbol. 

l Hairpin loops (B → x1, x2, x3, …, xn) 

A series of single stranded bases of length n closed by a base-pair. In contrast to 𝐵44) , which 

represents a specific base pair, B is a non-terminal symbol that represents all base pairs.  

l Internal loops (B →  (x1, x2, x3, …, xn)C(x1, x2, x3, …, xm) ) 

Internal loops occur in middle of a stretch of double stranded RNA. As shown in Fig. 4, two 

single strands are sandwiched between base pairs. The length of each single strand is n and m. 

l Bulge loops (B → (x1, x2, x3, …, xn )C | C (x1, x2, x3, …, xn )) 

The unpaired bases appear on one side of the base-pair. Depending on where the loop exists, 

there are two types of bulge loops: 5' bulge loops and 3' bulge loops. 
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Fig. 4. Examples of substructures defined in the standard nearest neighbor model
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Scoring Scheme, Parameterization 
There are three methods for scoring the RNA secondary structure based on the parameters 

defined in the previous section. Each scoring method is closely related to the method of 

determining the values of the parameters. 

 

l Models based on Thermodynamic scheme 

In the thermodynamic approach, Gibbs free energy is assigned to the parameter as a score. 

Measurable parameters including loops and stacking are obtained by finding the equilibrium 

constant before and after melting (Schroeder and Turner, 2009). At higher temperatures, the 

hydrogen bonds of double-stranded RNA are broken and it becomes single-stranded. The 

melting temperature, at which the ratio of double-stranded to single-stranded RNA is equal, 

is an indicator of the thermal stability of nucleic acids. By measuring the melting temperature 

at various concentrations, a van't Hoff plot can be drawn. In the van't Hoff plot, the y-axis is 

the reciprocal of the melting temperature and the x-axis is the logarithm of the concentration. 

The enthalpy change can be obtained from the slope of the van't Hoff plot. The entropy 

change can be obtained from the y-intercept. The free energy and the equilibrium constant 

can be calculated using the enthalpy change and the entropy change. The free energy is 

calculated for each substructure. The energy of the whole RNA molecule is the sum of the 

free energies of the substructures. 

 

l Models based on Probabilistic parameters 

In the stochastic scheme, the probability that each base forms a base-pair is estimated. In 

many ways, these probabilities are empirically calculated from the known secondary 

structure. In the stochastic schemes, stochastic CFGs (SCFGs) is applied to model RNA 

secondary structure. SCFG (Stochastic context-free grammar) is a context-free grammar 

whose probability is assigned to each production rule. The probability of parse is expressed 

as the product of probabilities of production rules used in the derivation. The parameters for 

generating the desired secondary structure can be calculated by maximizing the joint 

probability of the sequence and its secondary structure. 

 

l Models based on weights 

In the weight scheme, instead of the probability, the weight taken by each base-pair is 
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calculated. In the simplest weight scheme, the secondary structure is estimated where the 

number of base-pairs increases as much as possible by setting the canonical base-pair weight 

to ”1” and the rest to ”0”. In many methods, weights are obtained by learning from large 

amounts of data. In the weighted scheme, unlike the stochastic scheme, the parameters are 

real values. Therefore, the conditional probability of the secondary structure given the 

sequence is calculated instead of the joint probability. Algorithms that use machine learning 

to determine weights search for parameter values that maximize this conditional probability. 

Although models based on probabilistic parameters or weights achieved high performance 

in prediction accuracy, a possibility of the risk of overfitting for such models has been 

reported. In Chapter 2, I propose an algorithm for RNA secondary structure prediction that 

integrates the thermodynamic approach and the machine learning-based weighted approach. 

If RNA secondary structure prediction can be performed with high accuracy, RNA structural 

motifs can be detected more easily. As shown in Chapter 1.2, not only the primary sequence 

but also the secondary structure is important for RNA function, so the development of an 

accurate secondary structure prediction algorithm is useful for function estimation. 

 

Folding Algorithms 
Between scoring schemes, the folding algorithm used for secondary structure determination 

is essentially identical. Dynamic programming (DP) algorithms are frequently used as the 

folding algorithms. Here, I introduce two policies for RNAfolding and a dynamic 

programming method for their derivation. 

 

l Minimum free-energy (MFE) structure 

The optimal secondary structure is returned by performing score calculation using DP 

algorithms. In thermodynamic method, DP algorithms calculate the MFE structure. In 

probabilistic method, DP algorithms calculate the structure that takes the highest probability, 

known as the CKY algorithm. 

 

l Maximal expected accuracy (MEA) structure 

The MEA structure is an RNA secondary structure in which the sum of the posterior 

probabilities of base pairs is maximized. To calculate the posterior probability of a base pair, 

it is necessary to obtain a partition function. The sum of possible secondary structure scores 
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for an RNA sequence is defined as the partition function. The partition function is the sum of 

the Boltzmann factors of all structures (See Chapter 2.2.4). Thermodynamic Partition 

function is calculated efficiently using the McCaskill algorithm which is a DP algorithm. The 

McCaskill algorithm derives the distribution of the energies of all possible structures, not the 

energies of individual structures. For details of the McCaskill Algorithm, please refer to the 

original paper (McCaskill, 1990). In probabilistic method, the partition function is the sum of 

probabilities of all the structures. Probabilistic partition function is calculated using the 

inside-outside algorithm which is very similar to McCaskill algorithm. 

Base-pairing probability (Posterior probabilities) can be calculated by using the inside-

outside algorithm and the partition function. By obtaining the posterior distribution, it is 

possible not only to predict the secondary structure but also to sample the structures. 

After calculating the posterior probabilities for each base-pair, MEA structure is calculated 

by dynamic programming. In exchange for the computation time, the MEA structure 

provides more accurate secondary structure prediction than the MFE structure. In addition, 

the trade-off between sensitivity and PPV can be controlled by introducing a parameter for 

the degree of base pair formation. 
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1.4 Word embeddings for natural language processing and 

bioinformatics 

 
Because bioinformatics and natural language processing (NLP) have much in common, there 

are techniques and algorithms that can be transferred between the two fields. Research is 

being actively conducted to obtain effective representation of DNA sequences, RNA 

sequences, and amino acid sequences by using deep learning, especially utilizing techniques 

developed in the field of natural language processing. These studies are based on the idea that 

nucleotide composition and sequence structure determine the motif and function of a gene 

sequence, just as the complex grammatical structure of natural language determines the 

meaning of a sentence. 

 Word embedding is a technique developed in the field of natural language processing that 

embeds words in a low-dimensional continuous vector space. Different from one-hot 

expression, which is the simplest word vectorization method, word embedding can obtain a 

distributed representation. The one-hot expression first obtains a list of words to be used and 

prepares a vector with a predetermined index corresponding to each word. Each word 

expression is obtained by setting the element of vector index corresponding to a specific 

word to 1 and setting the other dimensions to 0. 

 There are studies in which ncRNA features are extracted using deep learning techniques 

after applying one hot encoding to RNA sequences (Baek et al., 2018; Aoki and Sakakibara, 

2018). However, one-hot expressions have drawbacks such as being vulnerable to the curse 

of dimensionality and not being able to reflect the interrelationships between words. To make 

matters worse, the distance between any pair of one-hot vectors is equidistant. 

 How are word-to-word similarities in word embedding defined? The most common way to 

measure similarity is to use word co-occurrence. This presupposes the hypothesis that words 

with similar meanings will appear in similar contexts. Methods developed based on this 

hypothesis include count-based and predictive methods. The count-based method calculates 

the frequency of words that appear in various contexts and creates a co-occurrence matrix. 

The predictive method is a method of learning a word vector by predicting a target word 

from the words before and after in the context. In these methods, words are mapped into a 

space of latent variables compressed to any predefined number of dimensions. One-hot 
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expressions are expressions in which one dimension corresponds to one word, while word 

embedding shares multiple concepts in multiple dimensions. 

 Word2vec is one of the most famous predictive word embedding techniques (Mikolov et al., 

2013). Word2vec is a method of vectorizing the meaning of a word using a large amount of 

text data. Since the distributed representations of words are related to each other, it is 

possible to perform operations between different word vectors. Word2vec uses one of two 

different tasks, CBOW (Continuous Bag of Words) and Skip-Gram, to get word embedding. 

In CBOW, words are predicted from surrounding words in a sentence. Skip-Gram, on the 

other hand, predicts the words around a word. These are based on the hypothesis that words 

with similar meanings have similar peripheral words. Skip-Gram learns the weights of a two-

layer neural network that outputs peripheral words of an input word. dna2vec (Ng, 2017) is a 

method in which Word2vec is applied to a DNA sequence. In dna2vec, the learning 

framework of Word2vec was applied to obtain the distributed representation of k-mer. 

Context-independent techniques such as Word2Vec have problems in vectorizing 

polysemous words. For example, "book" has two meanings, "pieces of paper" and "reserve", 

but Word2Vec gives them the same distributed representation. This indicates that when 

Word2vec is applied to a DNA sequence, each k-mer has the same distributed representation 

in any context. 

 ELMo and BERT generate context-sensitive word-distributed representations (Peters et al., 

2018; Devlin et al., 2019). In these methods, the same word is assigned different distributed 

representations that depend on surrounding words. BERT is a pre-learning algorithm for 

obtaining word embedding and sentence embedding by performing multiple tasks. The 

BERT learning algorithm consists of two tasks: a mask language modeling (MLM) task and a 

next sentence prediction (NSP) task. The MLM task predicts multiple masked tokens (words) 

in a sentence. The NSP task determines if two statements are consecutive. PLUS (Min et al., 

2021) is a method of obtaining embedding of each amino acid by applying a task inspired by 

BERT to proteins. PLUS uses this embedding to achieve highly accurate homology 

prediction. Table 1 shows a comparison of each embedding method. One-hot encoding 

requires very large feature dimensions, but Word2vec, BERT, and ELMo can achieve small 

feature dimensions. In addition, BERT and ELMo allow for context-dependent embedding 

that is not possible with Word2vec. Obtaining better embedding enhances the quality of 

downstream analysis. In Chapter 3, I propose RNABERT for effective embedding of RNA 
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bases by applying BERT training to non-coding RNA. In that section, I aim to obtain an 

embedding vector of RNA bases that incorporates RNA secondary structure and primary 

sequence. As shown in Chapter 1.2, the functions of ncRNAs are correlated with RNA 

secondary structures and primary sequences. Therefore, obtaining such embedding vectors is 

useful for estimating the functions of ncRNAs. Specifically, by using the embedding vector 

of bases as an input to the function for estimating the function of ncRNAs, it becomes 

possible to estimate the function based on the secondary structure and primary sequence. 

 

Table 1 A set of models used to generate word embeddings 
Methods Memory 

saving 

Meaning-

sensitive 

Context-

sensitive 

Dimensions 

One-hot Encoding - - - ~1,000,000 

Word2Vec (Mikolov et 

al., 2013) 

Glove (Pennington et 

al., 2014) 

 

+ 

 

+ 

 

- 

 
~100 

ELMo (Peters et al., 

2018) 

BERT (Devlin et al., 

2019) 

 

+ 

 

+ 

 

+ 

 
~1,000 

Meaning-sensitive: It is possible to quantify the similarity of word meanings. 

Context-sensitive: Embedding is variable depending on the context. 

Dimensions: Dimensional order of an embedded vector 

 
1.5 RNA structural alignment 

 
The structural alignment of RNA sequences calculates the alignment of not only RNA 

sequences but also their secondary structures. Structural alignment of RNA sequences seeks 

to establish homology between two or more structures based on the RNA secondary structure. 

Structural alignment of RNA sequences allows us to identify functionally important regions 

and track the evolutionary history of related molecules. The most influential method for the 
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structural alignment of RNA sequences is the Sankoff algorithm, which simultaneously 

performs secondary structure prediction and alignment (Sankoff, 1985). However, the time 

complexity of the naive implementation of the Sankoff algorithm is O(n6) for a length n of 

input RNA sequences, and accelerating the Sankoff algorithm is an unsolved hard problem 

(Lalwani et al., 2014). While Sankoff-style algorithms such as LocARNA (Will et al., 2007) 

and Dynalign (Fu et al., 2014) calculate the alignment considering the secondary structure, a 

standard sequence-based (non-structural) alignment method such as the Needleman-Wunsch 

algorithm (Needleman and Wunsch, 1970) determines only the correspondence between each 

base position of two input sequences, and its time complexity is only O(n2) using the 

dynamic programming technique. Hence, I aim to apply the informative base embedding to 

determine the position-dependent and secondary structure-dependent score matrix in 

calculating alignments so that the structural alignment is obtained using a simple Needleman-

Wunsch algorithm instead of the computationally expensive Sankoff-style algorithm. In 

Chapter 3, I perform a pairwise alignment test using RNA base embedding with RNABERT. 

 

1.6 RNA family clustering 

 
Building an appropriate clustering algorithm for ncRNAs is an effective step towards 

unsupervised analysis of ncRNA sequences without their family labels (Heyne et al., 2012; 

Saito et al., 2011), as high-throughput sequencing continues to generate a large number of 

RNA sequences, including novel transcripts. With the recent increase in deep learning usage, 

many algorithms for ncRNA classification (supervised clustering) using convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs) have been proposed (Baek et al., 

2018; Aoki and Sakakibara, 2018). These algorithms adopt a simple embedding technique, 

one-hot encoding of RNA bases. Most of these algorithms utilize supervised learning using 

ncRNA families as labels for training. Nevertheless, since supervised learning requires the 

data to be labelled, this approach is not practical when analyzing ncRNA sequences without 

their family labels. In Chapter 3, RNA family classification is performed as a second test to 

confirm the quality of embedding. 
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Chapter 2 A max-margin training of RNA secondary structure 

prediction integrated with the thermodynamic model 

In this chapter, I show the results of A max-margin training of RNA secondary structure 

prediction integrated with the thermodynamic model. A popular approach for predicting 

RNA secondary structure is the thermodynamic nearest neighbor model that finds a 

thermodynamically most stable secondary structure with the minimum free energy (MFE). 

For further improvement, an alternative approach that is based on machine learning 

techniques has been developed. The machine learning based approach can employ a fine-

grained model that includes much richer feature representations with the ability to fit the 

training data. Although a machine learning based fine-grained model achieved extremely 

high performance in prediction accuracy, a possibility of the risk of overfitting for such 

model has been reported. Results: In this dissertation, I propose a novel algorithm for RNA 

secondary structure prediction that integrates the thermodynamic approach and the machine 

learning based weighted approach. My fine-grained model combines the experimentally 

determined thermodynamic parameters with a large number of scoring parameters for 

detailed contexts of features that were trained by the structured support vector machine 

(SSVM) with the 𝑙1 regularization to avoid overfitting. My benchmark showed that my 

algorithm achieves the best prediction accuracy compared with existing methods, and heavy 

overfitting cannot be observed. Availability: The implementation of my algorithm is 

available at https://github.com/ keio-bioinformatics/mxfold. 

 

2.1 Background 

 
NcRNAs that are not translated into proteins were formerly considered as junk regions. 

However, these various functions have been revealed in recent years ranging from the 

process of development and cell differentiation to the cause of disease. Since the functions of 

ncRNAs are believed to be closely related to the structures of ncRNAs, it is possible to infer 

their biological functions from their structures. RNA tertiary structures can be determined by 

experimental assays including X-ray crystal structure analysis and nuclear magnetic 
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resonance (NMR). However, there are severe difficulties of these experimental assays such 

as high experimental cost and low throughput. In addition, the computational techniques to 

predict RNA tertiary structures have still been immature. Therefore, the computational 

prediction of RNA secondary structures, which can be easily modeled by a set of hydrogen 

bonds between nucleotides, has frequently been used instead.  

As shown in Chapter 1, RNA secondary structure prediction methods are roughly classified 

into three approaches from the viewpoint of the scoring scheme: a thermodynamic approach, 

a probabilistic approach, and a weighted approach (Rivas, 2013). The thermodynamic 

approach has been the most popular approach that finds a thermodynamically most stable 

secondary structure with the minimum free energy (MFE) and has been utilized by a number 

of tools including UNAfold (Zuker, 1989), RNAfold (Lorenz et al., 2011), and RNAstructure 

(Reuter and Mathews, 2010). RNA secondary structures can be decomposed into 

characteristic substructures such as hairpin loops and base-pair stacking according to the 

nearest neighbor model (Zuker and Stiegler, 1981). Free energy of each substructure was 

determined by experimental methods such as the optical melting experiment (Schroeder and 

Turner, 2009). The free energy of the secondary structure is calculated by summing up the 

free energy of each substructure in the secondary structure. The dynamic programming 

technique enables us to efficiently find the MFE structure from all possible secondary 

structures for a given RNA sequence. 

 The probabilistic approach has employed generative models including stochastic context-

free grammars (SCFGs) for modeling RNA secondary structures. SCFGs are defined by a set 

of derivation rules, or grammar, whose probabilities are trained by the maximum likelihood 

(ML) estimation from the training data, and were applied to RNA secondary structure 

prediction (Sakakibara et al., 1994; Eddy and Durbin, 1994; Knudsen and Hein, 1999; 

Dowell and Eddy, 2004). Sato et al. proposed a non-parametric Bayesian extension of SCFGs 

with the hierarchical Dirichlet process that can find an optimal RNA grammar from the 

training data (Sato et al., 2010). Rivas et al. developed a framework called TORNADO for 

flexibly describing RNA grammars, and showed that a complex RNA grammar that simulates 

the nearest neighbor model can achieve as accurate predictions as the weighted models can 

(Rivas et al., 2012). 

 The weighted approach has utilized machine learning techniques instead of the 

experimental techniques in order to determine weights for decomposed substructures, i.e., 
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scoring parameters. CONTRAfold was developed based on the conditional log-linear models 

(CLLMs) that find scoring parameters that can most probably discriminate between correct 

structures and incorrect structures (Do et al., 2006). Simfold implemented Boltzmann 

likelihood algorithm with feature relationships between parameters (BL-FR), which is similar 

to CLLMs, but incorporated free energy parameters (Andronescu et al., 2010). ContextFold 

employed a fine-grained model that includes much richer contexts of features with the ability 

to fit the training data, combined with a machine learning algorithm (Zakov et al., 2011). 

Although ContextFold achieved extremely high performance in prediction accuracy, Rivas et 

al. reported a possibility of the risk of overfitting for ContextFold (Rivas, 2013). From this 

observation, I can see that an important issue for further improving prediction accuracy is to 

effectively learn a large number of scoring parameters for a fine-grained model without 

overfitting. 

 In this dissertation, I propose a novel algorithm for RNA secondary structure prediction 

that integrates the thermodynamic approach and the machine learning based weighted 

approach. My fine-grained model combines the experimentally-determined thermodynamic 

parameters with a large number of scoring parameters for detailed contexts of features. In 

order to train the scoring parameters of the fine-grained model, I employed the structured 

support vector machine (SSVM) (Tsochantaridis et al., 2005) with the L1 regularization to 

avoid overfitting. My benchmark showed that my algorithm achieves the best prediction 

accuracy compared with existing methods, and heavy overfitting as shown in ContextFold 

cannot be observed.  

The major advantages of my work are summarized as follows: (i) The max-margin based 

training algorithm learns my fine-grained model that can perform accurate secondary 

structure prediction, and (ii) my scoring model that integrates the thermodynamic and 

machine learning based model enables accurate and robust structure prediction even for 

unobserved substructures in the training dataset. 

 

2.2 Materials and Methods 

 
2.2.1 Preliminaries 
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Let Σ	 = 	 {A, C, G, U}	and Σ∗ denote the set of all finite RNA sequences consisting of bases in 

Σ. For a sequence x	 = 	 𝑥$𝑥% ·	·	· 	 𝑥' ∈ Σ∗, let |x| denote the number of symbols appearing in 

𝑥, which is called the length of 𝑥. Let 𝑆(𝑥) be a set of all possible secondary structures of 𝑥. 

A secondary structure 𝑦	 ∈ 𝑆(𝑥) is represented as a |x| × |x| binary-valued triangular matrix 

𝑦 = (𝑦HI)JKL	, where 𝑦HI = 1 if and only if bases 𝑥H and 𝑥I form a base-pair composed by 

hydrogen bonds including the Watson-Crick base-pairs (A-U and G-C), the Wobble base-

pairs (G-U). 

 

2.2.2 Scoring model 

 
A scoring model 𝑓(𝑥, 𝑦) is a function that assigns real-valued scores to an RNA secondary 

structure 𝑦	 ∈ 	𝑆(𝑥)	for an RNA sequence 𝑥 ∈ 𝛴∗. My aim is to find a secondary structure 

𝑦	 ∈ 	𝑆(𝑥)	 that maximizes the scoring function 𝑓(𝑥, 𝑦) for a given RNA sequence 𝑥 ∈ 𝛴∗.  

RNA secondary structures can be decomposed into characteristic substructures, or features, 

such as hairpin loops and base-pair stacking. I denote by Φ(𝑥, 𝑦) the feature representation 

vector of (𝑥, 𝑦), which consists of the number of occurrence of every feature in (𝑥, 𝑦). Each 

feature in Φ is associated with a corresponding score or weight. I assume a linear scoring 

model of RNA secondary structures as: 

 

𝑓(𝑥, 𝑦) = 	𝝀QΦ(𝑥, 𝑦), (1)	

 

where 𝝀 is a weight vector in which 𝜆H is the weight of the i-th feature in Φ. 

 Note that the thermodynamic approach can be represented by this linear scoring model if I 

define Φ as the nearest neighbor model and the corresponding weights as the negative of 

experimentally determined free energy parameters. 

 I propose a novel scoring model that integrates the thermodynamic approach and the 

machine learning based weighted approach. I define my scoring model as: 

 

𝑓(𝑥, 𝑦) = 	𝑓S(𝑥, 𝑦) + 𝑓U(𝑥, 𝑦) (2) 

𝑓S(𝑥, 𝑦) = 𝝀SQΦS	(𝑥, 𝑦)  

𝑓U(𝑥, 𝑦) = 𝝀UQ ΦU	(𝑥, 𝑦),  
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where 𝑓S(𝑥, 𝑦)(resp. 𝑓U(𝑥, 𝑦)) is the contribution of the thermodynamic model (resp. the 

machine learning model) to my scoring model. For the thermodynamic model, I employed 

the nearest neighbor model as ΦS and the negative of the Turner free energy parameters 

(Turner and Mathews, 2010) as 𝝀S . For the machine learning model, I constructed a fine-

grained model as ΦU (see Chapter 2.2.3) and corresponding weights 𝝀U that are trainable 

from training data by using SSVM (see Chapter 2.2.5). 

 

2.2.3 Feature representations 

 
Both feature representations ΦS and ΦU are based on the nearest neighbor model (Zuker and 

Stiegler, 1981), including base helices, dangling ends, terminal mismatches, hairpin loops, 

bulge loops, internal loops, multibranch loops and external loops (Fig. 4). In order to 

calculate the free energy of RNA secondary structures more precisely, some specialized loop 

parameters have been adopted in frequently used free energy parameter sets for the standard 

nearest neighbor model. For example, the Turner 1999 and 2004 models contain several 

sequential features such as hairpin loops with 3, 4 or 6 nucleotides and internal loops with (1, 

1) nucleotides (1 nucleotide at 5’ loop and 1 nucleotide at 3’ loop), (1, 2) nucleotides and (2, 

2) nucleotides (Turner and Mathews, 2010). As the fine-grained feature representation ΦU, I 

employed much longer sequential features for hairpin loops with m nucleotides, bulge loops 

with m nucleotides and internal loops with (𝑚, 𝑛) nucleotides (𝑚	 ≤ 	𝐿	𝑎𝑛𝑑	𝑚	 + 	𝑛	 ≤ 	𝐿) 

in addition to the standard nearest neighbor model. I used L = 7 by default as described in 

Results. See Chapter 2.3.5 for more details.  
 

2.2.4 Decoding algorithm 

 
Viterbi decoding:  

Since both ΦS and ΦU are based on the nearest neighbor model, any secondary structures 

can be decomposed into the same substructures for both representations. Therefore, the most 

probable secondary structure that maximizes Eq. (2) can be obtained by the Zuker-style 

dynamic programming algorithm (Zuker and Stiegler, 1981). 
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Posterior decoding: 

The posterior probability of the secondary structure 𝑦 given RNA sequence 𝑥, 𝑝(𝑦|𝑥), under 

the scoring model	𝑓(𝑥, 𝑦)	is calculated by: 

 

𝑝(𝑦|𝑥) 	=
	exp[𝑓(𝑥, 𝑦)/𝑅𝑇]

𝑍(𝑥)  

𝑍(𝑥) 	= 	 d exp[𝑓(𝑥, 𝑦)/𝑅𝑇]
4∈e(5)	

, 

 

(3) 

 

where 𝑅 is the gas constant and 𝑇 is the absolute temperature. The basepairing probability 𝑝HI  

is the probability that the i-th and j-th nucleotides form a base-pair, which is defined as 

follows: 

 

𝑝HI = 𝐸4|5[𝐼(𝑦HI = 1)] 	= 	 d 𝐼(𝑦HI = 1)𝑝(𝑦	|	𝑥)
4∈e(5)

, (4) 

 

where 𝐼 (condition) is an indicator function which takes a value of 1 or 0 depending on 

whether the condition is true or false. The McCaskill algorithm (McCaskill, 1990) can be 

utilized to efficiently calculate the base-pairing probabilities (4) by the dynamic 

programming techniques. 

I define a gain function between a true structure y and a candidate structure 𝑦) by  

 

𝐺(𝑦, 𝑦)	) = d i𝛾𝐼(𝑦HI = 1)𝐼(𝑦)HI = 	1) 	+ 𝐼(𝑦HI = 0)𝐼(𝑦)HI = 0)l	,
$mHmIm|5|

 (5) 

 

where 𝛾 > 0 is a weight for base-pairs. The gain function (5) is equal to the weighted sum of 

the number of true positives and the number of true negatives of base-pairs. 

 The expectation of the gain function (5) with respect to an ensemble of all possible 

secondary structures under a given posterior distribution 

𝑝(𝑦|𝑥) is  
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𝐸4|5	[𝐺(𝑦, 𝑦))] = 	 d 𝐺(𝑦, 𝑦))𝑝(𝑦	|	𝑥)	
4∈e(5)

= d ((𝛾	 + 	1)	𝑝HI 	− 	1)	𝐼(𝑦)HI = 	1) 	+ 	𝐶
$mHmIm|5|

	,	 

(6) 

 

where 𝐶 is a constant independent of 𝑦).  

Then, 𝑦) that maximizes the expected gain (6) can be obtained using the recursive equations:  

 

𝑀H,I = max

⎩
⎪
⎨

⎪
⎧

𝑀Hw$,I
𝑀H,Ix$

𝑀Hw$,Ix$ + (𝛾	 + 	1)𝑝HI − 1
max
HKyKI

𝑀H,y +𝑀yw$,I	

, 

 

 

(7) 

 

and tracing back from 𝑀$,|z| .  

The trade-off between specificity and sensitivity can be contraolled by 𝛾 . I call the 

maximization of Eq. (6) the generalized centroid estimator (GCE) since this is equivalent to 

the centroid estimator (Ding et al., 2005; Carvalho and Lawrence, 2008) for 𝛾=1. The 

generalized centroid estimator is very similar to the maximum expected accuracy (MEA) 

estimator (Do et al., 2006). See (Hamada et al., 2009; Sato et al., 2009) for more details. 

 

2.2.5 Learning algorithm 

 
To optimize the feature parameter 𝝀U , I employed a max-margin framework called 

structured support vector machines (SSVM) (Tsochantaridis et al., 2005). Given a training 

dataset 𝐷 = {(𝑥(y), 𝑦(y))}y|$} ,	where 𝑥(y) is the k-th RNA sequence and 𝑦(y) ∈ 𝑆(𝑥(y)) is the 

correct secondary structure for the k-the sequence 𝑥(y), I aim to find 𝝀U that minimizes the 

objective function  

 

𝐿(𝝀U	) = d ~ max
4)∈e(5)

[𝑓(𝑥, 𝑦)) 	+	∆(𝑦, 𝑦))] − 𝑓(𝑥, 𝑦) + 𝐶‖𝝀U‖$�
(5,4)∈�

	, (8) 

 

where ‖. ‖$ is the 𝑙$ norm and 𝐶 is a weight for the 𝑙$ regularization term to avoid overfitting 

to training data (I used 𝐶 = 0.001 by default). Here, ∆(𝑦, 𝑦)) is a loss function of 𝑦) for	𝑦 
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defined as   

 

∆(𝑦, 𝑦)) = δ�� × (#	of	false	negative	base	pairs) 

																			+δ�� × (#	of	false	positive	base	pairs), 

(9) 

 

 where δ�� and δ�� are tunable hyperparameters to control the trade-off between sensitivity 

and specificity for learning the parameters. I used δ�� = 8.0 and δ�� = 1.0 by default. In this 

case, the first term of Eq. (9) can be calculated using the Zuker-style dynamic programming 

algorithm modified by the loss-augmented inference (Tsochantaridis et al., 2005). To 

minimize the objective function (8), stochastic subgradient descent (Fig. 5) or its variant can 

be applied.  

 
Fig. 5. The stochastic subgradient descent algorithm for SSVMs. sgn is the sign function. η > 

0 is the predefined learning rate 

 

2.3 Results 

 
2.3.1 Implementation  

 
My algorithm was implemented as a program called MXfold, which is short for the MaX-

margin based rna FOLDing algorithm. The source code is available at 

https://github.com/keio-bioinformatics/ mxfold. The free energy parameters 𝝀S  was 

implemented using the Vienna RNA package version 2.3.5 (Lorenz et al., 2011). 
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2.3.2 Datasets 

 
In order to evaluate my algorithm, I performed computational experiments on the four 

datasets assembled by (Rivas et al., 2012), TrainSetA/TestSetA and TrainSetB/TestSetB. 

TrainSetA and TestSetA were collected from the literature(Dowell and Eddy, 2004; Do et al., 

2006; Andronescu et al., 2007; Lu et al., 2009; Andronescu et al., 2010). TrainSetB and 

TestSetB were extracted from Rfam (Gardner et al., 2010), which contain 22 families with 

3D structures. The literature-based sets “A” and the Rfam-based sets “B” are structurally 

diverse. Furthermore, highly identical sequences were removed from all the four datasets. I 

excluded a number of sequences that contain pseudoknotted secondary structures in the 

original data sources from all the four datasets since all algorithms evaluated in this 

dissertation were designed for RNA secondary structure prediction without pseudoknots. The 

dataset is also available at https://github.com/keio-bioinformatics/mxfold. 

 

2.3.3 Evaluation measures 

 
I evaluated the accuracy of predicting RNA secondary structures through the sensitivity 

(SEN) and the positive predictive value (PPV), defined as:  

 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃, 
(10) 

 

where 𝑇𝑃 is the number of correctly predicted base-pairs (true positives), 𝐹𝑃 is the number 

of incorrectly predicted base-pairs (false positives), and 𝐹𝑁 is the number of base-pairs in the 

true structure that were not predicted (false negatives). I also used the F-value as the balanced 

measure between SEN and PPV, which is defined as their harmonic mean: 

 

𝐹 =
2 × 𝑆𝐸𝑁 × 𝑃	𝑃	𝑉
	𝑆𝐸𝑁 + 𝑃	𝑃	𝑉	 . 

(11) 
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2.3.4 Effects of scoring models  

 
In order to confirm the effects of integration of the thermodynamic model and the machine 

leaning based model, I performed computational experiments on the datasets described in 

Chapter 2.3.2. The trainable parameters of the machine learning based model were trained 

from TrainSetA. Each model was evaluated with the prediction accuracy of the Viterbi 

decoding on TestSetA and TestSetB. Table 2 shows the prediction accuracy of three models: 

the thermodynamic model (TM) that employs only 𝑓S(𝑥, 𝑦) in Eq. (2), the machine learning 

model (ML) only with 𝑓U(𝑥, 𝑦), and my model that integrates the thermodynamic model and 

the machine learning based model (TM+ML), indicating that my model (TM+ML) 

performed the most accurate prediction. On TestSetA, my models were slightly better than 

ML only model. On TestSetB that contains structurally dissimilar RNAs from TrainSetA, the 

difference of the accuracy between TM+ML and ML is larger.  

 

Table 2. The accuracy of each scoring model 
 

Model TestSetA TestSetB 
SEN PPV F1 SEN PPV F1 

TM 0.682 0.659 0.670 0.598 0.485 0.536 
ML 0.703 0.764 0.732 0.575 0.550 0.563 

TM+ML 0.715 0.761 0.737 0.617 0.565 0.590 
TM: the thermodynamic model, ML: the machine learning based model trained with 

TrainSetA, and TM+ML: the integrated model. 

 

2.3.5 Effects of feature representations 

 
I evaluated the prediction accuracy of the Viterbi decoding on TestSetA and TestSetB for 

several feature representations. Fig. 6 shows the accuracy for each feature representation with 

different context lengths 𝐿 = {0, 3, 5, 7, 10, 15, 20}. This indicates that the difference of the 

accuracy on 𝐿 ≥ 7 is negligible although longer sequential features enable more accurate 

prediction. In addition, as shown in Fig. 7 that shows the running time for each context length, 

sequential features of longer context lengths need more calculation time. Therefore, I set the 

default context length 𝐿 = 7  since shorter sequential features decrease the number of 
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trainable features reducing the risk of overfitting  

 

  

Fig. 6. The accuracy for each feature representation with different context lengths 𝑳 on 

TestSetA (left) and TestSetB (right). 

 

 
Fig. 7. The running time for each feature representation with different context lengths L 

measured on Red Hat Linux v2.6.32 with Intel Xeon E5-2680 (2.80 GHz) and 64 GB 

memory. 

 

2.3.6 Comparison with competitive methods 

 
I compared my algorithm with the competitive methods including CentroidFold version 
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0.0.15 (Hamada et al., 2009; Sato et al., 2009), CONTRAfold version 2.02 (Do et al., 2006), 

RNAfold in the Vienna RNA package version 2.3.5 (Lorenz et al., 2011) and ContextFold 

version 1.00 (Zakov et al., 2011). For the posterior decoding methods with the trade-off 

parameter γ in Eq. (6), I used 𝛾 ∈ {2'|𝑛 ∈ 𝑍, −5 ≤ 𝑛 ≤ 10}.  

Fig. 8 shows PPV-SEN plots for each method, indicating that my algorithm works 

accurately on TestSetA and TestSetB. On TestSetA, ContextFold (F=0.742) is slightly better 

than MXfold with Viterbi decoding trained from TrainSetA (F=0.737). Whereas, on 

TestSetB, ContextFold (F=0.496) is much worse than MXfold with Viterbi decoding trained 

from TrainSetA (F=0.590) and others. Furthermore, MXfold with Viterbi decoding trained 

from both training datasets performed the most accurate prediction (F=0.626). 

 Fig. 9 shows the running time for each method for the lengths of input sequences in 

TestSetA, indicating that my algorithm with the Viterbi decoding is comparable with the 

other methods in the running time although my algorithm with the posterior decoding is 

much slower than the other methods. 

 

  

Fig. 8. PPV-SEN plots comparing my algorithm with the competitive methods on TestSetA 

(top) and TestSetB (bottom). 
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Fig. 9 The running time for the lengths of input sequences measured on Red Hat Linux 

v2.6.32 with Intel Xeon E5-2680 (2.80 GHz) and 64 GB memory.  

 

2.4 Discussion 

 
Table 2 compares the three models: the thermodynamic model (TM), the machine learning 

based model (ML) and the integrated model (TM+ML). Since the thermodynamic model 

𝑓S(𝑥, 𝑦) is implemented using the Vienna RNA package, the prediction result of TM is 

similar to that of RNAfold. The result on TestSetA indicates that the difference between ML 

and TM+ML is very small. I can explain that this is because the trainable parameters of ML 

and TM+ML are identical to each other, and the learning algorithm works well on both 

models. On the other hand, since the literature-based TrainSetA and the Rfam-based 

TestSetB are structurally diverse as described in Chapter 2.3.2, TestSetB includes a number 

of substructures whose scoring parameters cannot be trained from TrainSetA. TM+ML 

model can calculate scores for such “unobserved” substructures using the thermodynamic 

energy parameters although ML only model cannot. My integrated model can improve the 

prediction accuracy by complementing missing parts each other. 

 I compared the learnability of my model for several context lengths 𝐿 of sequential features 

in Fig. 6. Most existing models including RNAfold and CONTRAfold use the context length 
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3 ≤ 𝐿 ≤ 5, whose accuracy shown in Fig. 8 is close to that of my model with the same range 

of the context length. Although Fig. 6 shows that longer context length of sequential features 

enables us to improve the prediction accuracy, its effects tend to be saturated at 𝐿 = 7. The 

objective function of my algorithm contains the 𝑙$ regularization term, by which rarely used 

parameters (e.g., sequential features with 𝐿 > 7) quickly shrink toward zero at line 6 of Fig. 

5. Hereby, the risk of overfitting caused by rarely observed features can be reduced. Fig. 8 

shows that ContextFold achieved the best accuracy on TestSetA, but the worst on TestSetB. 

Similarly, the accuracy of CentroidFold on TestSetB remarkably deteriorated compared with 

that on TestSetA. The common point between ContextFold and CentroidFold is the training 

data: ContextFold and the Boltzmann likelihood (BL) parameter set used in CentroidFold 

were trained from the S-Full dataset (Andronescu et al., 2010), which is one of the datasets 

included in TrainSetA. This suggests that ContextFold and the BL parameter set fell into the 

overfitting. There is a possibility that ContextFold trained from TrainSetA+B achieves more 

accurate prediction than MXfold trained from TrainSetA+B. However, ContextFold might 

not work well for other sequences dissimilar from TrainSet A and B because of the 

overfitting. Meanwhile, I can expect that my algorithm that integrates the thermodynamic 

model still performs robust and accurate prediction without overfitting for such sequences 

due to the integrated thermodynamic model. The posterior decoding algorithms are known to 

be one of effective approaches for many combinatorial optimization problems (Carvalho and 

Lawrence, 2008). In fact, the posterior decoding with CONTRAfold (MEA) achieves much 

better accuracy than its counterpart of the Viterbi decoding as shown in Fig. 8. However, I 

can surprisingly observe no advantage for the posterior decoding for MXfold (GCE). 

CONTRAfold was trained by the conditional log-linear models (CLLMs) in which the 

expectation of the occurrence of features is used for calculating gradients of the objective 

function. The posterior decoding algorithms employ the base-pairing probabilities that are 

also calculated by the expectation of the occurrence of base-pairs. This can be interpreted that 

the optimization with CLLMs is appropriate for the posterior decoding. SSVM used by my 

algorithm considers only the optimal structure with the (loss augmented) Viterbi algorithm 

for each training step. This means that SSVM is optimized for the Viterbi decoding, but not 

for the posterior decoding that considers not only the optimal structures but also the 

distribution of all possible structures. As shown in Fig. 9, the posterior decoding algorithms 

are much time-consuming compared with their counterparts of the Viterbi and MFE 
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algorithms. Therefore, although the posterior decoding with the parameters learned by 

CLLMs is one of the best solution from the viewpoint in the prediction accuracy, the Viterbi 

algorithm with SSVM is a practical alternative. 
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Chapter 3 Informative RNA base embedding for RNA 

structural alignment and clustering by deep representation 

learning 

 

In this chapter, I propose Informative RNA base embedding by deep representation learning. 

Afterwards, I show the results of RNA structural alignment and clustering using informative 

RNA base embedding. Effective embedding is actively conducted by applying deep learning 

to biomolecular information. Obtaining better embeddings enhances the quality of 

downstream analyses, such as DNA sequence motif detection and protein function prediction. 

In this dissertation, I adopt a pre-training algorithm for the effective embedding of RNA 

bases to acquire semantically rich representations and apply this algorithm to two 

fundamental RNA sequence problems: structural alignment and clustering. By using the pre- 

training algorithm to embed the four bases of RNA in a position-dependent manner using a 

large number of RNA sequences from various RNA families, a context-sensitive embedding 

representation is obtained. As a result, not only base information but also secondary structure 

and context information of RNA sequences are embedded for each base. I call this 

“informative base embedding” and use it to achieve accuracies superior to those of the 

existing state-of-the-art methods on RNA structural alignment and RNA family clustering 

tasks. Furthermore, upon performing RNA sequence alignment by combining this 

informative base embedding with a simple Needleman-Wunsch alignment algorithm, I 

succeed in calculating structural alignments with a time complexity of O(n2) instead of the 

O(n6) time complexity of the naive implementation of Sankoff-style algorithm for the input 

RNA sequence of length n.  
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3.1 Background 

 

Unstructured data, such as biological sequences and networks, require an embedding 

operation that encodes the unstructured data into a high-dimensional numerical vector space. 

This is a necessary step for processing unstructured data in downstream analysis using 

computational models such as neural networks. In the deep learning field, embedding using 

the pre-training framework with a large set of unlabelled data has been shown to be effective 

for the downstream supervised learning task even when smaller size of labelled data is 

available. When embedding an RNA sequence, each nucleotide (A, C, G, U) is usually 

encoded to a numerical representation so that the RNA sequence is embedded into a 

numerical vector. An effective embedding method further attempts to encode contextual 

information into the numerical vector representation (Fig. 10). 

 
Fig. 10. Schematic view of the pre-training-based embedding and its downstream analysis. 

The pre-trained neural network with a large set of unlabelled data encodes input DNA 

sequences into high-dimensional numerical vectors. The embedding by pre-trained neural 

networks is effective for downstream analysis such as DNA sequence alignment and 

clustering. 
 

Recently, DNA, RNA, and amino acid sequences have been attempted to be effectively 

embedded using deep representation learning, especially techniques developed in the field of 
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natural language processing (Asgari et al., 2019; Heinzinger et al., 2019; Rives et al., 2021). 

These studies are based on the idea that nucleotide composition and sequence structure 

determine the motif and function of a gene sequence, just as the complex grammatical 

structure of natural language determines the meaning of a sentence. As a consequence, word 

embedding techniques for natural language have been applied to nucleotides for DNA 

sequences. In the dna2vec method (Ng, 2017), Word2vec is applied to a DNA sequence to 

obtain the distributed representation of k-mers (a DNA subsequence of length k). Word2vec, 

an effective word embedding technique (Mikolov et al., 2013) that vectorizes the context and 

meaning of a word using a large amount of text data, is based on the hypothesis that words 

with similar meanings have similar peripheral words. Dna2vec adopts the Word2vec 

technique by defining a k-mer as a word in the DNA sequence; however, since dna2vec 

assumes a sufficient number of different words used for embedding, the four nucleotides 

(four words) are not large enough to obtain an effective embedding when dna2vec is applied 

to base-by-base DNA sequence embedding. 

Two recently developed state-of-the-art embedding methods, namely, embeddings from 

language models (ELMo) and bidirectional encoder representations from transformers 

(BERT), are used to generate context-sensitive distributed word representations (Peters et al., 

2018; Devlin et al., 2019). In these methods, the same word is assigned to different 

distributed representations depending on the context. In particular, BERT is a pre-training 

algorithm that obtains word and sentence embeddings by performing two tasks: a masked 

language modelling (MLM) task and a next sentence prediction (NSP) task. The MLM task 

predicts multiple masked tokens (words) in a sentence, whereas the NSP task determines 

whether two statements are consecutive. UniRep (Alley et al., 2019) and PLUS (Min et al., 

2021) are representative examples of applying BERT to protein sequence representation; 

specifically, UniRep obtains the embedding of each amino acid in a protein sequence and 

uses this embedding to achieve accurate structural and functional predictions of proteins. 

In this dissertation, I propose RNABERT for the effective embedding of RNA bases by 

adopting the pre-training BERT algorithm to ncRNA. I applied informative base embedding 

to encode the characteristics of each RNA family and structure. To see whether this 

informative base embedding technique successfully captures these characteristics, I applied 

RNABERT to two basic RNA sequence analysis tasks: structural alignment and clustering. 

Then, I evaluated the quality of the informative base embedding results by structural 
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alignment of RNA sequences and by RNA family clustering. 

As shown in Chapter 1, the current RNA structure alignment requires a long calculation 

time, and a deep learning method for unsupervised RNA family classification has not been 

developed. For my goals of RNA structural alignment of lower computational complexity 

and accurate RNA family clustering, I constructed an informative base embedding method, 

RNABERT, for RNA sequences that takes into account the context and secondary structure 

of RNA sequences through two training tasks: MLM and structural alignment learning (SAL). 

In RNABERT, pre-training was performed using a large number of unlabeled ncRNA 

sequences. RNABERT introduces a novel pre-training task, SAL, in addition to the usual 

MLM task to more explicitly incorporate RNA secondary structure information into the base 

embedding for structural alignments. The SAL task employs pre-training using seed 

alignments obtained from the Rfam database (Kalvari et al., 2018) so that the bases aligned 

in the seed structural alignment are expected to have more similar embeddings. By 

alternately training the MLM and SAL tasks, RNA base embedding can be expected to 

adequately capture the structural differences among RNA families. I compared the accuracy 

and computational complexity of the structural alignment of RNA sequences between my 

method and the state-of-the-art methods. Furthermore, I demonstrate that my clustering 

method is more accurate than the existing state-of-the-art methods in the clustering of RNA 

families. 

 

3.2 Materials and Methods 

 
3.2.1 The architecture of the RNABERT model 

 
The architecture of the RNABERT model (Fig. 11) consists of three components: token and 

position embedding, a transformer layer, and pre-training tasks. The input to RNABERT is 

an RNA sequence. First, the token embedding randomly generates a 120-dimensional 

numerical vector that encodes four RNA bases (A, C, G, U) and assigns the same vector to 

each base in the input RNA sequence. Second, the position embedding generates a 120-

dimensional vector that encodes the position information of each base in the input RNA 

sequence. Third, the element-wise sum of token embedding and position embedding for each 
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base in the input RNA sequence is fed to the transformer layer. The transformer layer 

component consists of a stack of 6 transformer layers, each of which is composed of a multi-

head self-attention mechanism followed by a feedforward neural network. The final output 

from the transformer layer is an informative base embedding, denoted 𝑍 . The weight 

parameters of the transformer layer are trained by alternately training two different tasks 

(MLM and SAL) on top of the output of the transformer layer. 

The self-attention mechanism (Vaswani et al., 2017) is a central component of the 

transformer layer. For the transformer layer that takes the output of the previous layer 𝑋 =

[𝑥$, . . . , 𝑥'] as input, the multi-head self-attention mechanism with 𝐻 heads compute the 

output sequence 𝐶 = [𝑐$, . . . , 𝑐'] with the following formula: 

 

𝐶 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑$,… , ℎ𝑒𝑎𝑑¤)𝑊¦		,  

ℎ𝑒𝑎𝑑H = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ¨
(𝑄H)(𝐾H)Q

√𝐷
¬𝑉H	, 

where 

𝑄H = 𝑋𝑊H
­,𝐾H = 𝑋𝑊H

}, 𝑉H = 𝑋𝑊H
®. 

 

 

(12) 

 

The self-attention mechanism is described as mapping a query and a set of key-value pairs 

to an output sequence, where the query, key, and value are all matrices: query 𝑄H =

[𝑞$H , . . . , 𝑞'H ], key 𝐾H = [𝑘$H , . . . , 𝑘'H ] and value 𝑉H = [𝑣$H , . . . , 𝑣'H ]. These matrices are the inner 

products of 𝑋 and the weight matrices 𝑊H
­,𝑊H

}, and 𝑊H
®  of size 𝐷 × 𝐷  that are learned, 

where 𝐷 is the input and output vector dimension (𝐷=120 in this dissertation). In the scaled 

dot-product attention mechanism, each ℎ𝑒𝑎𝑑 calculates the next hidden state by computing 

the attention-weighted sum of the value vector 𝑣. An attention coefficient is the output of the 

softmax function applied to the dot product of the query and key (𝑄H)(𝐾H)Q divided by √𝐷. 

Finally, the 𝐻 ℎ𝑒𝑎𝑑 results calculated by different sets of {𝑊H
­,𝑊H

},𝑊H
®} are concatenated, 

and the inner product between this concatenated matrix and 𝑊¦ yields the output sequence	𝐶. 

After the transformer layer process including multi-head attention is performed six times, the 

informative base embedding denoted 𝑍 is obtained. (See the supplementary information and 

Supplemental Figure S1 for more detailed explanation about the self-attention mechanism.) 
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Fig. 11. Architecture of the RNABERT model. The RNABERT model consists of three 

components: token and position embedding, a transformer layer, and pre-training tasks. 

Token and position embedding randomly generates a 120-dimensional vector representing 

four RNA bases. The transformer layer component consists of a stack of 6 transformer layers, 

each of which is composed of a multi-head self-attention mechanism followed by a 

feedforward neural network. The final output from the transformer layer is an informative 

base embedding, denoted Z. The weights of the transformer layer are trained by alternately 

training two different tasks (MLM and SAL) on top of the output of the transformer layer. 
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3.2.2 Masked language modelling (MLM) 

MLM is a task that masks a part of the input RNA sequence and predicts the masked part 

using the surrounding bases. The MLM task performs a base embedding so that the masked 

part can be restored, which enables context-sensitive embedding. First, 15% of the bases are 

randomly selected in a given RNA sequence for training. Next, one of the following three 

actions is performed on the selected base in the input: 80% of the selected bases are replaced 

with a token indicating an unspecified base (denoted [mask] in Fig. 11), 10% are randomly 

substituted with one of the other three bases, and the remaining 10% of the selected bases are 

unchanged from their original base. The MLM task trains the model to maximize the 

probability of correctly predicting the selected 15% of the RNA bases at the output. In this 

training model, a classification layer is built on top of the output of the transformer layer. 

Finally, the output probability of each base is calculated using the softmax function. The 

cross-entropy function is used as the loss function. The pre-training set for the MLM task 

consists of 762,370 sequences generated from 76,237 human ncRNA sequences obtained 

from RNAcentral (The RNAcentral Consortium et al., 2017) by taking 10 copies of each 

ncRNA and applying 10 different mask patterns to each. 
 

3.2.3 Structural alignment learning (SAL)  

 
The SAL task, which performs a base embedding task to learn the relationship between two 

RNA sequences, is based on RNA structural alignment. RNA structural alignment aligns 

multiple RNA sequences by inserting gaps between bases so that the conserved secondary 

structures are aligned in the same column. The SAL task aims to obtain closer embeddings 

for bases in the same column of reference alignment and obtain secondary structure 

embeddings by training based on the RNA structural alignment. The Rfam seed alignment 

for each family is downloaded from Rfam (Kalvari et al., 2018) as the reference structural 

alignment for the SAL task. To define the loss function in the SAL task, I introduce the 𝛺 

matrix, which is defined for a pairwise alignment of two RNA sequences and is intended to 

be used as a score matrix when calculating the pairwise alignment. Let 𝑍	 = 	 [𝑧$, . . . , 𝑧'] and 

𝑍´ 	= 	 [𝑧$´ , . . . , 𝑧µ´ ] denote the embedded representations output from the transformer layer for 
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the input of two RNA sequences of length n and m. Each element 𝜔HI  in the 𝛺 matrix is 

defined to be the normalized inner product between 𝑧H and 𝑧I´: 

 

𝜔HI =
𝑧H ∙ 𝑧I´

‖𝑧H‖¸𝑧I´¸
	. 

(13) 

 

The loss function in the SAL task is defined to increase 𝜔HI  at the matched position in the 

reference alignment so that a sequence alignment algorithm such as the Needleman-Wunsch 

algorithm produces the reference alignment. 

A simple way to implement this loss function in the SAL task is to apply binary 

classification learning with respect to 𝜔HI . That is, 𝜔HI  in the aligned position is trained to 1, 

and 𝜔HI  in an unaligned position is trained to 0. However, this causes strong overfitting. To 

alleviate this problem, I apply a machine learning method called a structured support vector 

machine (Akiyama et al., 2018; Tsochantaridis et al., 2005) to the pre-training phase in the 

SAL task. Let the alignment between a pair of RNA sequences 𝑥 = 𝑥$,… , 𝑥' and 𝑥´ =

𝑥′$, … , 𝑥′µ be represented by a series of matched (aligned) positions (𝑖, 𝑗) and gap insertion 

positions (𝑖, −) or (−, 𝑗), where 1	 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 . For a given training dataset 𝐷 

consisting of triplets (𝑥, 𝑥´, 𝑦), where 𝑥 and 𝑥´ are a pair of RNA sequences and 𝑦 is the 

corresponding reference alignment between 𝑥 and 𝑥´, I aim to find a set of parameters w that 

minimize the following loss function 𝐿: 

 

𝐿 = d {𝑓(𝑥, 𝑥´, 𝑦)) +	∆(𝑦, 𝑦)) − 𝑓(𝑥, 𝑥´, 𝑦) + 	𝜆‖𝑤‖%	}	,
(5,5½,4)∈�

 (14) 

 

where 𝑓 is the function that returns the alignment score 𝑦 between 𝑥 and 𝑥´. The term 𝜆‖𝑤‖% 

in the above formula is the L2 regularization term to avoid overfitting, where 𝑤 refers to the 

parameters of the entire model, ‖𝑤‖% is the squared value of the model parameters and 𝜆 is a 

parameter that controls the strength of regularization. The alignment score is calculated as the 

sum of the 𝜔HI  value at the matched position (𝑖, 𝑗) and the gap score at the gap insertion 

positions (𝑖, −) or (−, 𝑗). 𝑦) is the predicted alignment path calculated by the Needleman–

Wunsch algorithm to maximize the sum of the alignment score 𝑓(𝑥, 𝑥´, 𝑦))and the margin 
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term ∆(𝑦, 𝑦)) . The margin term ∆(𝑦, 𝑦))  defines the difference between the reference 

alignment and the predicted alignment as follows: 

 

∆(𝑦, 𝑦)) = 	𝛿¿À × (the	number	of	positions	included	in	𝑦	but	not	in	𝑦))
																											+	𝛿¿Ä × (the	number	of	positions	included	in	𝑦)	but	not	in	𝑦). 

(15) 

 

Here, 𝛿¿À and 𝛿¿Ä are hyperparameters that control the trade-off between sensitivity and 

specificity for learning parameters. By default, I used 𝛿¿À = 0.05 and 𝛿¿Ä = 0.1, which were 

determined by the grid-search optimization in the range 0.01-0.30. Decreasing the loss 

function 𝐿 brings the predicted alignment closer to the reference alignment. 

 

3.2.4 RNA structural alignment 

 
A pairwise RNA sequence alignment based on the base embedding is calculated using the 

Needleman-Wunsch algorithm using the 𝛺 matrix as the score matrix, which is trained in the 

SAL and MLM tasks. The match score in position (𝑖, 𝑗) is 𝜔HI  in the score matrix 𝛺, and the 

gap opening score and gap extension score are set to -1 and -0.1, respectively. As the MLM 

task enables the position- and context-sensitive embedding and SAL task enables the 

structural information embedding, the Needleman-Wunsch algorithm, a simple sequence 

alignment algorithm, is expected to generate RNA structure alignments using the 𝛺 matrix 

trained in the SAL and MLM tasks. Note that the time complexity of the Needleman-Wunsch 

algorithm is O(n2) for the input RNA sequence of length n. 

 

3.2.5 RNA family clustering 

 
RNA family clustering is performed as the second evaluation test to confirm the quality of 

the informative base embedding. A similarity measure between two RNA sequences with 

respect to soft symmetric alignment (Bepler and Berger, 2019) is defined as follows. Let 𝑍	 =

	[𝑧$, . . . , 𝑧'] and 𝑍´ 	= 	 [𝑧$´ , . . . , 𝑧µ´ ] denote the embedded representations output from the 

transformer layer for the input of a pair of RNA sequences of length n and m. The similarity 

𝑠̂ between the two RNA sequences is defined to be the weighted sum of the normalized inner 
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product between all 𝑧H and 𝑧I´ pairs: 

 

𝑠̂ 	=
1
𝐴dd𝑎HI𝜔HI

µ

I|$

'

H|$

	 , 𝜔HI 	=
𝑧H ∙ 𝑧I´

‖𝑧H‖¸𝑧I´¸
	 , 𝐴	 =dd𝑎HI

µ

I|$

'

H|$

	 
(16) 

where 𝑎HI is 

𝑎HI = 𝛼HI + 𝛽HI − 𝛼HI𝛽HI	, 

𝛼HI =
𝑒𝑥𝑝È𝜔HIÉ

∑ 𝑒𝑥𝑝(𝜔Hy)µ
y|$

			, 

𝛽HI =
𝑒𝑥𝑝È𝜔HIÉ

∑ 𝑒𝑥𝑝È𝜔yIÉ'
y|$

		. 

 

The similarity 𝑠̂ is calculated for all pairs of ncRNA sequences to be clustered, and a 

classification matrix of size 𝑁 ×𝑁 is created, where 𝑁 is the number of RNA sequences in 

the test dataset. I applied spectral clustering to the rows of the classification matrix by 

considering each row of the 𝑁-dimensional vector a cluster indicator. To confirm the 

improvement in the embedding quality by the SAL task, I compared the clustering accuracy 

when using only the MLM task with that when using the two tasks together. 

 

3.2.6 Existing methods for RNA structural alignment 

 
There is a family of Sankoff-style algorithms for structural alignment that simultaneously 

predicts the optimal alignment and the consensus secondary structure. For example, Dynalign 

and Foldalign (Sundfeld et al., 2015; Fu et al., 2014) use thermodynamic models to find 

MFE consensus structures, while PARTS (Harmanci et al., 2008) uses a probabilistic model 

based on the pseudo-energy obtained from base-pairing probabilities and alignment 

probabilities to find the most likely structural alignment. While Sankoff-style algorithms 

yield a high alignment accuracy, the naive implementation is computationally expensive, 

with a time complexity of O(n6) for RNA sequences of length n. PMcomp takes base-pairing 

probability matrices generated using McCaskill's algorithm as the input and incorporates the 

energy information of each sequence into these matrices to quickly find common secondary 

structures and alignments (Hofacker et al., 2004). Although LocARNA (Will et al., 2007) is 
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based on the PMcomp model, a time complexity of O(n4) is achieved by simplifying the 

dynamic programming method utilizing the fact that the base-pairing probability matrix is 

actually sparse. SPARSE (Will et al., 2015) takes further advantage of this sparsity based on 

the conditional probabilities of bases and base pairs in the loop region of the RNA secondary 

structure, achieving a quadratic improvement in the computational time over LocARNA. 

RAF (Do et al., 2008) achieves the same time complexity as SPARSE by utilizing the 

sparseness of alignment candidates. DAFS is a state-of-the-art accurate structural alignment 

program utilizing integer programming technique (Sato et al., 2012) and its time complexity 

is O(n3). R-coffee is a multiple RNA alignment package that takes a similar strategy with my 

dissertation by utilizing an alignment-scoring scheme that incorporates secondary structure 

information  (Wilm et al., 2008) and its time complexity is O(n2). TOPAS is a network-based 

scheme for pairwise structural alignment of RNAs that can handle pseudoknots (Chen et al., 

2019) and its time complexity is O(n4) in the worst case. TOPAS employs graph data 

structures to represent the RNA secondary structure including pseudoknots and designs an 

efficient algorithm to calculate an alignment of two graph structures by matching two nodes 

in two different graphs. Finally, MAFFT v7 (Katoh and Standley, 2013), which uses 

Kimura’s two-parameter model (Kimura, 1980) as the score matrix, was adopted as the 

baseline for RNA sequence alignment. Note that MAFFT is a sequence-based alignment 

algorithm that does not take RNA structure information into account.  

 

3.2.7 Existing methods for RNA family clustering 

 
The clustering accuracies of the state-of-the-art methods GraphClust (Heyne et al., 2012), 

EnsembleClust (Saito et al., 2011), and CNNclust (Aoki and Sakakibara, 2018) were 

compared. CNNclust is a deep learning-based algorithm that performs supervised learning in 

which the RNA family class is given as a label. CNNclust can classify RNA families that are 

not used for training by calculating the similarity score matrix for all pairs of input sequences. 

I performed experiments with CNNclust using different RNA family groups between training 

and testing. In contrast, GraphClust is an unsupervised learning algorithm that does not 

require the RNA family class to be a label and achieves alignment-free clustering with some 

exceptions. GraphClust employs a graph kernel approach to obtain feature vectors that 

contain both sequence and secondary structure information. These vectors representing RNA 
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sequences are clustered with a linear time complexity over the number of sequences using a 

hashing technique. Finally, EnsembleClust calculates the similarity between two ncRNAs 

using the expected structural alignment and then applies hierarchical clustering based on the 

similarity. 

 

3.2.8 Sequence motif detection using a self-attention mechanism 

 
I extracted the sequence motifs specific to each RNA family by focusing on the self-attention 

mechanism, which determines where to focus on the input embedding vectors 𝑋	 =

	[𝑥$, . . . , 𝑥'] of the input RNA sequence 𝑟 = 𝑟$,… , 𝑟' when generating the output sequence. 

The attention coefficient sequence 𝑀	 = 	 [𝑚$,… ,𝑚'], called attention map, that is calculated 

for the input sequence 𝑟 = 𝑟$, … , 𝑟' is defined as follows: 

 

𝑀 =dd𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ¨
È𝑞HÌÉ(𝐾Ì)Q
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The base 𝑟H at position 𝑖 with a high 𝑚H value is identified as part of the motif. Thus, the 

attention map helps discover the sequence motif since it indicates a base that is important for 

training tasks. (See Supplemental Figure S2 for more detailed explanation about RNA motif 

detection using self-attention map). 

 

3.2.9 Measures of the accuracies of alignment and clustering 

 
Structural alignment accuracy was measured using sensitivity, positive predictive value 

(PPV), and F1 score, which are calculated as follows. The number of true positives (TP) (or 

false positives (FP)) is the number of positions (𝑖, 𝑗) in the predicted alignment that belong 

(or do not belong) to the reference alignment. The sensitivity of the predicted alignment is TP 

divided by the number of positions in the reference alignment, and the PPV is TP divided by 

the number of positions in the predicted alignment. The F1 score is the harmonic mean of 

sensitivity and PPV. 

Clustering accuracy was measured with the Rfam family as the true reference class. Three 
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indices, namely, the adjusted Rand index (ARI), homogeneity, and completeness, were used 

to evaluate the clustering performance. The ARI is a measure of how well two types of 

clustering results match. ARI takes a real number from -1 to 1: if the value of ARI is -1, the 

two clustering results do not match at all, while a value of 1 indicates that they completely 

match. In this dissertation, the ARI reflects how close the predicted clustering result is to the 

true reference class composed of the Rfam family. 

The ARI is derived from the Rand index (RI), defined as follows: 

 

𝑅𝐼 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁		 

𝐸 =	
(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁) + (𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 		 

𝐴𝑅𝐼 = 	
(𝑇𝑃 + 𝑇𝑁) − 𝐸

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) − 𝐸	 

 

 

(18) 

 

where TP is the number of RNA sequences of the same Rfam family in the same predicted 

cluster, TN is the number of RNA sequences of a different Rfam family in different predicted 

clusters, FP is the number of RNA sequences of different Rfam families in the same 

predicted cluster, and FN is the number of RNA sequences of the same Rfam family in 

different predicted clusters. Homogeneity is a measure of the proportion of RNA sequences 

of a single Rfam family that belong to a single predicted cluster, and completeness measures 

the proportion of RNA sequences of a particular Rfam family that are assigned to the same 

predicted cluster. 

 

3.2.10 Datasets 

 
For the pre-training of the MLM task, 76,237 human-derived small ncRNAs with lengths 

ranging from 20 to 440 bases from RNAcentral (The RNAcentral Consortium et al., 2017) 

were utilized. 

In the training of the SAL task, two types of datasets, named TrainSet-A and TrainSet-B, 

were devised. In both datasets, the pairwise structural alignment extracted from Rfam 

alignment (Kalvari et al., 2018)  was used. TrainSet-A consists of RNA sequences sampled 

from seed RNA sequences in 36 RNA families (5.8S rRNA, 5S rRNA, Cobalamin, Entero 5 
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CRE, Entero CRE, Entero OriR, gcvT, Hammerhead 1, Hammerhead 3, HCV SLIV, HCV 

SLVII, HepC CRE, Histone3, HIV FE, HIV GSL3, HIV PBS, Intron gpII, IRES HCV, IRES 

Picorna, K chan RES, Lysine, TAR, Retroviral psi, S box, SECIS, sno 14q I II, SRP bact, 

SRP euk arch, T-box, THI, tRNA, U1, U2, U6, UnaL2, yybP-ykoY) in which all families 

were overlapped with the following structural alignment benchmark dataset. TrainSet-B 

consists of RNA sequences from all RNA families (3,983 families) in Rfam database except 

the RNA families used in the benchmark dataset BRAliBase2.1 k2 dataset (Wilm et al., 

2006), that is, the training and test datasets do not overlap with respect to the RNA family. 

For the structural alignment benchmark, I utilized the BRAliBase2.1 k2 dataset used in the 

previous study as the gold standard benchmark dataset. Sequence pairs containing unknown 

bases were eliminated. A total of 8,587 RNA sequence pairs with an average length of 

approximately 100 bases were used for the benchmark test dataset. No alignment overlapped 

between the training dataset of the SAL task and the benchmark test dataset. Note that no 

alignment overlapped between TrainSet-A and the benchmark test dataset. 

To evaluate the clustering accuracy of RNABERT, the test dataset was collected from the 

BRAliBase2.1 database. The multiple alignment of each ncRNA family provided by the 

database was treated as a true reference cluster, and each ncRNA sequence in the multiple 

alignment was treated as a member sequence. All reference clusters with a sequence identity 

of less than 40% were selected. The dataset contained 37 RNA sequences and 12 RNA 

families. The RNA sequences used in the RNA family clustering test did not overlap with 

those used for the pre-training of the SAL task. 

 

3.2.11 Implementation 

 
The RNABERT model was implemented using PyTorch for deep learning. All experiments 

were run on Red Hat Linux v4.8.5 (GPU: Tesla v100, CPU: Intel(R) Xeon(R) Gold 6148). 

Optuna (Akiba et al., 2019) was used to find the optimal hyperparameters for the MLM task. 

The hyperparameters optimized for the transformer layer were the number of attention heads, 

number of transformer layers, feature size, activation function, and training algorithms, 

including Adam, AdaGrad, and momentum stochastic gradient descent (SGD). In the MLM 

task, 5-fold cross-validation was performed, and the hyperparameters were determined to 

maximize accuracy. 
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3.3 Results and Discussion 

 
3.3.1 Pre-training of base embedding encodes properties of RNA secondary 

structure 

 
To investigate whether RNABERT acquired an informative base embedding to encode four 

RNA bases and secondary structure information, the embedded representations output from 

the transformer layer for a set of RNA sequences were projected into two-dimensional space 

using t-distributed stochastic neighbour embedding (t-SNE) (van der Maaten and Hinton, 

2008), which is a dimension reduction algorithm for mapping high-dimensional data to low 

dimensions. Fig. 12 shows the result of mapping the 120-dimensional vector of each base 

into a two-dimensional space (with the option “n_components=2”). In the dimension 

reduction by t-SNE, the distance relationship between bases embedded in the original 120-

dimensional space is projected in two dimensions so as to be preserved as much as possible. 

The embedding space adequately represents the clusters for four RNA bases (Fig. 12, left) 

and the subclusters for characteristic secondary substructures (Fig. 12, right). Fig. 12 shows 

that the RNA base embedding is globally separated by four RNA bases and locally separated 

by characteristic secondary substructures (hairpin loop, base pair in stem, and external loop) 

within each RNA base. This result clearly shows that RNABERT embedding using pre-

training with SAL and MLM tasks succeeded in encoding not only base (nucleotide) 

information but also secondary structure information. (See the Supplemental Figure S3 for t-

SNE projection of embedding for all secondary substructures.) 
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Fig. 12. Visualization of RNA base embedding. Shown is a t-SNE projection from a 120-

dimensional embedded space to a two-dimensional space. RNA base embeddings are 

visualized with colours according to the type of RNA base (left) and the type of characteristic 

secondary substructure (right). The embedding space adequately represents the clusters for 

four RNA bases (left) and the subclusters for characteristic secondary structures (right). 

 

3.3.2 RNA structural alignment result 

 
Table 3 summarizes the performance evaluation results based on the BRAliBase2.1 k2 

dataset for my RNA structural alignment method, RNABERT trained on TrainSet-A and 

TrainSet-B, and for the state-of-the-art algorithms for RNA sequence alignment. As shown in 

Table 3, RNABERT trained on TrainSet-A outperformed the existing state-of-the-art 

structural alignment algorithms in all three measures of accuracy. On the other hand, the 

performance of RNABERT trained on TrainSet-B was still sufficiently high and almost same 

as the one using TrainSet-A. This result indicates that RNABERT has the sufficient 

generalization ability when trained on a large set of RNA families. 

In terms of computation time, RNABERT was faster than the existing state-of-the-art 

algorithms and even faster than the sequence-based (non-structural) alignment algorithm 

MAFFT. The alignment computation of RNABERT consists of three sub-procedures: the 

first procedure (transformer) obtains the embedding of each base; the second procedure 

calculates the match score between the two input sequences; and the third procedure 

calculates the alignment by the Needleman-Wunsch algorithm. The first two procedures can 
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be accelerated by GPU computation, and the Needleman-Wunsch algorithm is a simple 

algorithm that requires a computation time of O(n2) for two sequences of length n. I achieved 

high-speed computation by implementing the deep learning algorithm using Python and 

PyTorch while implementing the Needleman-Wunsch algorithm in C++. Note that the 

loading time of the transformer model into the GPU was excluded from the time 

measurement of pairwise alignment by RNABERT. The typical amount of time needed to 

load the transformer model onto GPU was around 4.376 seconds. In addition, the maximum 

“CPU” memory consumption for the RNA structural alignment was around 35.2G bytes in 

RNABERT. 
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Table 3. RNA structural alignment accuracies and computational times (shown in seconds) 

of RNABERT and state-of-the-art algorithms. 

 

 Sensitivity PPV F1 Time (sec) 

RNABERT (TrainSet-A) 0.881 0.947 0.913 288 

RNABERT (TrainSet-B) 0.851 0.932 0.890 284 

LocaRNA 0.862 0.922 0.891 13,221 

SPARSE 0.848 0.931 0.888 4,216 

RAF 0.865 0.938 0.900 1,423 

PARTS 0.860 0.931 0.894 432,585 

Dyalign2 0.706 0.913 0.796 601,104 

R-coffee 0.842 0.934 0.886 878 

TOPAS 0.879 0.938 0.908 2,103 

Foldalign 0.861 0.922 0.890 451,112 

DAFS 0.862 0.936 0.897 2,210 

MAFFT 0.810 0.901 0.853 1,282 

 

Fig. 13 shows the sensitivity (denoted SEN) and PPV curves calculated for each RNA 

sequence alignment algorithm. These values were plotted by sequence identity. As shown in 

Fig. 13, RNABERT yielded very accurate structural alignment results and outperformed the 

existing state-of-the-art structural alignment algorithms where the sequence identity exceeded 

50%. At lower sequence identities, the alignment accuracy of RNABERT was slightly lower 

than those of LocARNA, SPARSE and Foldalign, which required larger computation times, 

and was higher than that of RAF, which exhibited the fastest computational time among the 

existing structural alignment algorithms. All existing Sankoff-style algorithms conduct RNA 

secondary structure predictions to calculate the distances and similarities between RNA 

sequences. On the other hand, RNABERT does not explicitly use secondary structure 

predictions, which implies that the RNA base embedding efficiently captures structural 

information. In particular, for sequences with very low sequence identities, the accuracy of 
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the sequence-based alignment MAFFT and R-coffee tend to decrease, while RNABERT and 

the existing structural alignment algorithms maintain high accuracy. 

 

  
Fig. 13. SEN and PPV score plots for pairwise RNA structural alignments using RNABERT, 

LocARNA, SPARSE, RAF, PARTS, Dynalign, Foldalign, TOPAS, DAFS, R-Coffee and a 

sequence-based alignment using MAFFT. 

 

 

3.3.3 RNA family clustering results 

 
Table 4 shows the ARI, homogeneity and completeness of my RNA clustering method, 

RNABERT, and those of the state-of-the-art tools for RNA family clustering. RNABERT  

(TrainSet-A) with the MLM and SAL tasks achieved the highest ARI and completeness 

among all state-of-the-art tools. The existing methods all utilize RNA secondary structure 

predictions to calculate the distances and similarities between RNA sequences. This implies 

that the RNABERT base embedding, which does not explicitly use secondary structure 

prediction but uses the same RNA family for SAL task, efficiently captures structural 

information. On the other hand, the performance of RNABERT (TrainSet-B) trained on 

different RNA families is less accurate compared with GraphClust and similar with 

CNNclust. This result indicates that the SAL task designed for effective structural alignment, 

but not for family clustering, is not sufficient for unknown RNA family clustering. 
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Table 4. RNA family clustering accuracy. The ARI, homogeneity and completeness are 

shown for RNABERT and the state-of-the-art tools for RNA family clustering. 
 

 ARI Homogeneity Completeness Time (sec) 

RNABERT 
(TrainSet-A) 
(MLM + SAL) 

0.268 0.663 0.758       28.69   

RNABERT 
(TrainSet-B) 
(MLM + SAL) 

0.187 0.568 0.664       27.16   

RNABERT 
(MLM) 0.177 0.556 0.663      27.81   

CNNclust 0.189 0.612 0.642    17.45   

EnsembleClust 0.200 0.587 0.661     11.32   

GraphClust 0.243 0.746 0.666 520.22   

 

3.3.4 RNA motif 

 
Several well-known sequence motifs in the snoRNA and tRNA families were identified by 

observing the attention maps. Attention maps, which indicate the ratios of contribution to the 

MLM task, were extracted from the final transformer layer of RNABERT, and sequence 

motifs were detected from the attention maps.(See the supplementary information and 

Supplemental Figure S2 for more detailed explanation about the self-attention mechanism.) 

The "UUCGA" sequence motif shown in Fig. 14a is typical in the T loop of tRNA (Laslett 

and Canback, 2004). This motif is specifically present in TRT-AGT6-1 (tRNA gene with 

anticodon AGT), as displayed in the secondary structure in Fig. 14b. The motifs depicted in 

Fig. 14c are the typical motifs "UGAUGA" and "CUGA" present in the snoRNA C/D box 

(Ganot et al., 1997; Samarsky et al., 1998). These motifs are specifically present at 

SNORD113-7, as displayed in the secondary structure in Fig. 14d. 
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Fig. 14. Extracted sequence motifs of tRNA ((a), (b)) and snoRNA families ((c), (d)). (a) and 

(c) are visualizations of the attention map at each base. Bases with darker red backgrounds 

have higher attention map values. 
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Chapter 4 Conclusion and future work 

 
In this dissertation, I searched for an effective analytical method of ncRNA by two different 

approaches, RNA secondary structure prediction and informative base embedding. 

In the first part of the dissertation, I proposed a novel algorithm for RNA secondary 

structure prediction that integrates the thermodynamic approach and the machine learning 

based weighted approach. The fine-grained model combined the experimentally determined 

thermodynamic parameters with a large number of scoring parameters for detailed contexts 

of features that were trained by the structured support vector machine (SSVM) with the 𝑙$ 

regularization to avoid overfitting. Benchmarking analysis showed that the algorithm 

achieved the best prediction accuracy compared with existing tools, and heavy overfitting as 

seen in ContextFold cannot be observed. Accurate secondary structure prediction for long 

RNA sequences has been in demand, since the number of long non-coding RNAs (lncRNAs) 

have recently been on the rise. To respond to such demand, I would need to implement the 

sparsification technique (Backofen et al., 2011) to the proposed algorithm with the Viterbi 

decoding. As shown in Fig. 9, ContextFold that implements the sparsification technique 

enables us fast structure prediction even for long sequences. The base-pairing probabilities 

calculated from the posterior distribution are required for various applications for RNA 

informatics such as family classification (Sato et al., 2008; Morita et al., 2009), 

pseudoknotted RNA secondary structure prediction (Sato et al., 2011), RNA-RNA 

interaction prediction (Kato et al., 2010) and simultaneous aligning and folding (Sato et al., 

2012). Accurate base-pairing probabilities calculated by my algorithm can improve the 

quality of such applications. 

Next, I performed two tasks to obtain informative base embeddings. While MLM task is a 

fundamental step in the original BERT algorithm, SAL is a novel RNA sequence-specific 

task introduced in this dissertation. To determine whether these tasks effectively incorporate 

RNA secondary structure information into base embeddings, I performed two tests, RNA 

clustering and sequence alignment.  

Sankoff-style algorithm provides high structural alignment accuracy, but these algorithms 

are usually very complex in both time and space. Unlike many structural alignment 

algorithms based on the Sankoff algorithm, RNABERT does not explicitly consider RNA 
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folding and boasts a high structural alignment accuracy. This is considered to be evidence 

that the base embedding encodes the secondary structure information specific to RNAs. 

Furthermore, while RNABERT achieves the same accuracy as Sankoff-style algorithms, it is 

much faster because it uses a simple sequence-based alignment algorithm. In fact, the time 

complexity of the RNABERT algorithm is only O(n2) for two sequences of length n. 

SPARSE (Will et al., 2015) achieves a quadratic improvement in the computational time of 

Sankoff-style algorithms for simultaneous alignment and folding by assuming that RNA 

secondary structures are sparse. Similarly, RNABERT also achieves a quadratic 

computational time improvement by reducing the RNA structural alignment problem to a 

sequence alignment problem based on the pre-training of base embeddings. In this way, the 

computational time of RNABERT was an order of magnitude faster than that of SPARSE, as 

revealed in this dissertation. 

The performance evaluation was done for two types of training datasets, TrainSet-A and 

TrainSet-B. TrainSet-A contains the same RNA families as the benchmark test dataset while 

TrainSet-B has no RNA family overlap with the test dataset. When TrainSet-A was used, 

RNABERT exhibited a superior accuracy than state-of-the-art existing structural alignment 

methods. When TrainSet-B was used, the performance of RNABERT was still sufficiently 

high and almost same as the one using TrainSet-A. This result shows that RNABERT has 

succeeded in proposing a new scoring scheme for sequence-based alignment algorithms to 

accomplish RNA structural alignment, and has the sufficient generalization ability. In 

addition, with the development of high-throughput sequencing, hundreds of thousands of 

ncRNAs have been detected, but many have not been annotated. In fact, 86% (24,972,896) of 

the 28,895,596 ncRNAs present in RNAcentral do not have gene ontology (GO) annotations. 

Therefore, fast and accurate structural alignment of unknown sequences of existing RNA 

families is still practically valuable and RNABERT could contribute to the annotation of such 

novel transcripts. 

The base embeddings obtained by RNABERT are applicable to various fields in RNA 

informatics. One immediate problem is the multiple structural alignment of RNA sequences. 

RNABERT can be expected to accomplish this task by combining existing sequence-based 

multiple alignment algorithms such as MUSCLE (Edgar, 2004) and MAFFT (Katoh and 

Standley, 2013) with the score matrix 𝛺 and informative base embedding. Another area most 

likely to improve with the application of RNABERT is the prediction of RNA secondary 
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structures. Since the base embeddings contain information on secondary structures, 

RNABERT is expected to contribute to the prediction of RNA secondary structures (Sato et 

al., 2021; Edgar, 2004; Katoh and Standley, 2013). Similarly, base embeddings can be 

applied to the RNA interactome (RNA-protein interaction, RNA-RNA interaction), in which 

the RNA secondary structure acts on the interaction between molecules. In order to 

accomplish such secondary structure-related problems, it would be a better approach to 

incorporate the secondary structure prediction as another pre-training task in the pre-training 

process of RNABERT. Finally, while this dissertation has not addressed RNA modification 

(e.g., m6A, m1A), these findings may be helpful for utilizing this information for more 

precise modelling of base embeddings. 

Finally, I will illustrate the impact of this dissertation on RNA informatics with a example. 

Recently, many algorithms for RNA interaction prediction using deep learning have been 

developed. These methods use experimentally discovered RNA-protein interaction data or 

RNA-compound interaction data as training data. Although many RNA-protein interactions 

have been discovered through genome-wide exploration using CLIP-seq, the number is still 

small. On the other hand, complex functions that have been developed in the field of deep 

learning require a large amount of training data to avoid overfitting. MXfold and RNABERT 

can play a role to compensate for such a lack of training data. Since RNA-protein interactions 

are related to the structure of each molecule, accurate secondary structure prediction by 

MXfold can strongly assist in predicting the interactions. In the case of RNABERT, base 

embedding obtained by pre-training using RNA sequences that do not exist in CLIP-seq data 

can be applied to interaction prediction. iDeepS is an algorithm for predicting protein binding 

sites in RNA sequences (Pan et al., 2018). In iDeepS, protein binding sites are predicted 

using a CNN with the one-hot representation of the RNA sequence as input. The one-hot 

representation of the RNA sequence can be replaced by base embedding using RNABERT. 

Compared to the simple one-hot representation of RNA sequences, base embedding is richer 

in structural and contextual information. Therefore, simply adding pre-trained RNABERT to 

the input of iDeepS is expected to improve the accuracy of interaction prediction. Thus, the 

contribution of this dissertation to RNA informatics is based on its high versatility to other 

fields, including RNA interaction. Since vectorization of RNA sequences can be the first step 

in various areas of RNA informatics, RNABERT will enhance the quality of many studies.  
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Appendix B – Supplementary information of genome analysis 
 

Self-Attention Mechanism 
 

Figure S1 illustrates the single-head case of the self-attention mechanism. The transformer is 

an encoder-decoder type of feed-forward neural network. The self-attention function for an 

encoder-decoder neural network is a dot-product attention formulated as  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑇𝑎𝑟𝑔𝑒𝑡 ∙ 𝑆𝑜𝑢𝑟𝑐𝑒Q) ∙ 𝑆𝑜𝑢𝑟𝑐𝑒	, 

where 𝑆𝑜𝑢𝑐𝑒 represents the encoder layer and 𝑇𝑎𝑟𝑔𝑒𝑡 represents the decoder layer. The 

BERT algorithm generalized it by considering 𝑇𝑎𝑟𝑔𝑒𝑡 as (search) query 𝑄 and separating 

𝑆𝑜𝑢𝑟𝑐𝑒 into key 𝐾 and value 𝑉, formulated as:  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 ∙ 𝐾Q) ∙ 𝑉	. 

In this formulation, the attention function computes an output (attention weight) based on a 

query (𝑄) and a set of key-value pairs (𝐾, 𝑉). The key-value pairs (𝐾, 𝑉) can be considered 

as a kind of dictionary. By separating 𝑆𝑜𝑢𝑟𝑐𝑒 into key 𝐾 and value 𝑉, the dot-product 

between query 𝑄 and key 𝐾 plays a role to measure the relevance of the value 𝑉 for query 𝑄 

(how much it has an attention). These 𝑄, 𝐾 and 𝑉 are calculated by linear projection from the 

input 𝑋 with learnable parameters 𝑊­, 𝑊}  and 𝑊® , formulated as: 

𝑄 = 𝑋𝑊­, 𝐾 = 𝑋𝑊}, 𝑉 = 𝑋𝑊®. 

 

 
Supplemental Figure S1. Illustration of the single-head case of the self-attention mechanism.   
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RNA Motif Detection using Self-Attention Map 
 

The attention map calculates the inner product between the query vector of each base and the 

key vector of the other bases in the input RNA sequence, then measures the relevance of the 

base with the other bases, as illustrated in the supplemental Figure S1. The supplemental 

Figure S2 shows the strength of the relevance of each base, which is represented by the 

intensity of red. The sequence below in Figure S2 represents the relevance of the 10th base 

“G” from the left, which is surrounded by a blue frame. In the Figure S2, arrows are drawn 

for bases that are particularly relevant to the base “G”. The sum of the relevance calculated 

for each base is finally defined as an attention map. Thus, the attention map is an index 

showing how much each base contributed to the prediction of the pre-training task. Therefore, 

in the MLM task, the bases that are important for the prediction of the masked base, and in 

the SAL task, for the prediction of the structural alignment obtain high values in the attention 

map. Finally, the bases with high attention values are identified as sequence motif. 

 

 
Supplemental Figure S2. Example of RNA motif detection using self-attention map 
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Visualization of base embedding with t-SNE 
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Supplemental Figure S3. Visualization of embedding of six secondary substructures with t-

SNE; hairpin loop, base pair in stem, bulge and internal loop, multibranch loop, external loop 

at 3’, and external loop at 5’. The plot is displayed for each base. 
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Detail of RNA structural alignment tools 
Supplemental Table S1. The list of command, options, package, and link information for 

each existing method.   

Programs command Package URL 

LocARNA locarna fasta_file LocARNA 1.9.2.1 https://rna.informatik.un
i-freiburg.de/LocARNA/ 

Input.jsp 

SPARSE sparse fasta_file LocARNA 1.9.2.1 http://www.bioinf.uni-

freiburg.de/Software/S

PARSE/ 

RAF raf predict fasta_file 1.0.0 http://contra.stanford.e

du/contrafold/raf.html 

PARTS parts configuration_file RNAstructure version 6.0.1 http://rna.urmc.rochest

er.edu/RNAstructure.ht

ml 

Dyalign dynalign_ii configuration_file RNAstructure version 6.0.1 http://rna.urmc.rochest

er.edu/RNAstructure.ht

ml 

MAFFT mafft fasta_file MAFFT version 7 https://mafft.cbrc.jp/alig

nment/software/ 

Foldalign foldalign -global fasta_file Foldalign version 2.5.0 https://rth.dk/resources/

foldalign/ 

TOPAS TOPAS[fasta_file, base-pairing 

and alignment probabilities, 

default parameters] 

TOPAS version 1.3 https://github.com/bjyo

ontamu/TOPAS 

DAFS dafs fasta_file 0.0.3 https://github.com/sato

ken/dafs 

R-Coffe t_coffee fasta_file -mode rcoffee T-COFFEE 

Version_13.45.0 

http://www.tcoffee.org/

Projects/rcoffee/index.

html 

 


