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Chapter 1

Introduction

1.1 Background of This Dissertation

Labor shortage is a serious issue in recent society, especially in Japan. Robots are expected to be

a solution to the labor shortage. Application of robots is being developed continuously [1]. Although

an automatic guided vehicle (AGV) [2–4] is already applied to the logistics industry, robots are being

applied to other fields: a service robot [5], a security robot [6, 7], a disinfection robot [8], etc. While

wheel-type robots are popular in industry applications, legged robots are being applied to industries such

as Spot [9] and DIGIT [10]. One advantage of legged robots is the ability to move on uneven ground like

steps or stairs. Another advantage of a biped robot is that biped locomotion has an affinity to a human.

Human living space is often designed based on biped locomotion. Pedaling tasks and riding a Segway

also become available if the leg structure of the robot is biped [11, 12]. A biped robot contribudes to

realistic sensations in tele-existance [13, 14] in tems of the leg motion [15–17]. Also, research of legged

robot control gives insights to verify the principle of legged locomotion. For example, biped robots can

help to demonstrate and prove concepts of human locomotion [18].

The energy efficiency of a robot is one of the important issues [19]. Energy saving is important in terms

of the limitation of battery capacitance. In general, a legged robot mounts a battery as an energy source.

Because the size and the weight of the battery are limited, the battery capacity is also limited. In order to

operate a legged robot for a long time with a limited battery, energy efficiency is important. From these

backgrounds, the focused technical issue of this dissertation is to attain legged functions with energy

efficiency. The main function of legged motion control is locomotion. The represented locomotion is
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walking. Moreover, it is also considered that a legged robot will need to get over stepping stones or a

small stream for such as delivery to a mountainous area. In such applications, vertical hopping control is

the basic problem. This dissertation considers legged hopping motion control as well as walking control.

1.1.1 Energy/Phase Control as a Motion Oscillator

Control engineering has often dealt with stability, tracking performance, robustness against parameter

variation, disturbance response, etc. On the other hand, energy efficiency has not been dealt much with.

Classical control theory is systemized using Laplace transformation and a transfer function. An input-

output transfer function can analyze the tracking performance without disturbance. Transfer functions

also enable to analyze the disturbance response and the robustness against parameter variation.

Energy efficiency is also being an important issue for control problems in industries. A quadratic

optimal regulator in modern control engineering can design the input to decrease the energy consumption

(concretely the quadratic form of the input vector) [20,21]. However, it is difficult for the optimal control

method to tune the energy efficiency directly.

Power factor is an index of efficiency for power transmission in electrical engineering. Mizoguchi et

al. extended the concept of the power factor into a mechanical system, and proposed mechanical power

factor [22, 23]. In the previous researches about the mechanical power factor, the mechanical power

factor is mainly used for analysis [22–24]. Few kinds of research explicitly applied the mechanical

power factor to the design of the control.

As one research related to utilizing power factor to control, De et al. [25, 26] proposed an efficient

hopping control “energy pumping.” A spring-mass system is oscillated by synchronizing the actuation

phase to the vibration phase. However, it is difficult for energy pumping to control the hopping height

(or the mechanical energy) directly.

As related researches considering both energy and phase, Kusaka [27–29] and Kajiwara employed

periodic input control. A redundant degree of freedom is required for periodic input control. The phase

in periodic input control is the phase difference between the two degrees of freedom. Kajiwara et al.

conducted hopping-height control by controlling the phase difference between the body and the arms

[30]. Kusaka et al. conducted skill-assist control by controlling the phase difference between the human

handle and the actuator [30]. A difficulty of periodic input control is that a redundant degree of motion

is required. Also, because the phase in periodic input control does not mean power factor, the energy-

efficient oscillation like energy pumping is not discussed.
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1.1.2 Nominalization Control

As for compensation control for nominalization to simple dynamics, there are some popular methods.

Feedback linearization is a popular approach that is often used in theoretical research [31]. The computed

torque method is also popular in industrial applications. However, it is necessary for these methods to

identify the nonlinear terms precisely. The identification is often difficult in the real world.

Disturbance observer is a popular method for the nominalization of dynamics in motion control

[32–34]. A typical disturbance observer nominalizes the actuator inertia as constant. As a disturbance

observer for nominalizing the mass in the workspace as constant, a joint space observer and a workspace

observer are previously researched [35]. A joint space observer changes the nominal inertia to make

the mass in the workspace constant. A workspace observer is a disturbance observer constructed in the

dimension of the workspace. In the control system of workspace, there are two options for the trans-

formation of the controller output from workspace to joint space [35]. The first option is the inverse of

the Jacobian matrix, which is induced by kinematics. The second option is the transpose of the Jacobian

matrix, which is induced from torque-force relation in static mechanics. A disadvantage of the first op-

tion is that the robot tends to become out of control near a singular posture because of the calculation of

the inverse matrix. Parameter design of the mass in the workspace observer is also researched [36, 37].

Generalized Nyquist stability criterion [38] is used for the analyses of the multi-input and multi-output

systems.

As well as realizing the desired mass, there are cases that the virtual spring force is required. Impedance

control [39–41] adds a virtual spring-damper force in a control system. Compliance control [42, 43] is

also another method to give a virtual spring-damper force. In general, impedance control calculates the

virtual force from the position displacement and the velocity. Compliance control calculates the com-

pensation position and velocity from the force response. From these characteristics, compliance control

is often applied to the position control system. Impedance control is easy to use in the case that the

compensation force should be calculated.

1.1.3 Hopping Robot and Hopping-Height Control

A hopping robot has been researched by many researchers [44]. The initial researches of a hopping

robot are conducted by Matsuoka et al. [45] and Raibert et al. [46, 47]. Many kinds of research of a

hopping robot utilize the spring-mass dynamics. It is shown that hopping and running motions can be
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modeled as a simple spring-mass model [48]. The advantage of employing a mechanical spring is to

supply additional power from the potential energy. This advantage is significant because actuator power

is often low compared to the required power for hopping. The hopping robot in Raibert [47] utilizes an

air spring. Okubo et al. [49] use a mechanical spring for a vertical hopping robot. The total mechanical

energy is amplified by utilizing the stored potential energy of the mechanical spring. “Kenken” by Hyon

et al. is a famous articulated hopping robot that employs a mechanical spring and tendon drive inspired

by the biomechanics of a kangaroo [50]. A monopod “Thumper” is developed by Hurst et al. in order

to realize a simple spring-mass hopper utilizing a plate spring, pulley, and differential gears [51]. The

monopod is extended to the biped robot named as “MABEL” [52], and MABEL attains high-speed

running [53]. Reis et al. [54] realize energy-efficient hopping utilizing free vibration of a curved beam

and a rotating mass.

As for control of a hopping robot, Raibert proposed the three decomposed hopping controls: the

hopping-height control, the forward velocity control, and the attitude control. The hopping height is

controlled by specifying the thrust force. The forward velocity is tuned by changing the position of the

foot placement. The body is maintained in an upright attitude by servoing the hip during the stance. The

extensibility of Raibert’s hopping strategy is also shown. 3D-running is also available using the hopping

strategy [55]. The strategy is also applicable to a multi-leg robot [47, 56].

Hopping-height control is one of the difficult problems in terms of motion control. Hopping motion

requires high energy, and the duration of energy injection is short. Under the difficult conditions, it is

necessary to control the hopping height. Control of energy is a popular approach for hopping-height

control in the case of a legged robot with a spring. This approach is simple and practical because the

control goal in the stance phase becomes the constant value induced from the desired hopping height.

Raibert et al. controlled hopping height by tuning the compression of the leg spring to attain the desired

energy, or the desired height [46]. Ahmadi et al., Ishikawa et al., and Hyon et al. also dealt with

hopping height control by controlling the energy [57–59]. On the other hand, hopping control based

on phase attracts attention recently. Kajiwara et al. conducted hopping-height control by controlling

the phase difference between the body and the arms [30]. De et al. [25, 26] proposed a phase control

“energy pumping.” In the conventional phase control [25, 26], the spring-mass system is oscillated by

synchronizing the actuation phase to the vibration phase. Energy-efficient oscillation becomes available

by the conventional phase control. However, it is difficult for the conventional phase control to control the

desired hopping height directly. The actuation amplitude of the conventional phase control is constant,
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and its design method is not discussed in detail.

1.1.4 Biped Robot and Walking Control

A biped robot has also been researched by many researchers. The textbook by Kajita et al. summarizes

the history of humanoid researches [60]. WABOT-1 and 2 by Kato are ones of the initial researches of

a biped robot [61, 62]. Hirose et al. in Honda R&D Corp. developed a biped robot named P2 [63].

The biped robot is autonomous and attains biped walking stably. The robot is improved moreover,

and the next developed biped robot is ASIMO [64]. The improved points are lightweight, small-size,

and perception with a vision system, etc. ASIMO is a famous humanoid robot in the world as well

as in Japan, and has been improved continuously. The improvement is summarized totally in 2009

[65–68], and the history of the development is summarized in 2018 [69]. AIST (The National Institute

of Advanced Industrial Science and Technology) developed humanoid robots HRP-2 [70]. The robot

was improved as HRP-3 [71], HRP-4, and HRP-5 [72]. JAXON is also a famous biped robot, and was

recently improved in terms of output power [73–75]. Many popular biped robots have been developed

and improved in Japan. In Korea, HUBO and DRC-HUBO are famous biped robots developed by KAIST

(Korea Advanced Institute of Science and Technology) [76–78].

Since the 2010s, some popular biped robots have been developed in USA. A biped robot Petman

was developed by Boston Dynamics [79]. Boston dynamics is founded by Raibert, and also developed

quadrupedal robots Bigdog [80] and Spot [9]. Atlas [9, 81] is the recent improved biped robot. MABEL

[52, 82] is a biped robot with a plate spring and differential mechanism for fast walking and running.

ATRIAS [83, 84] is a parallel-link biped robot with a heavy torso. Cassie is a biped robot with a light-

weight torso [85–87]. Ames et al. developed a biped robot AMBER for a light-weight 2D biped walking

robot based on hybrid zero dynamics: with point feet [88, 89] and with feet [90]. DURUS was also

developed for 3D biped walking [91]. Martin et al. [92, 93] constructed an experimental setup of HZD

(hybrid zero dynamics) walking with curved feet.

The control architecture of the representative biped walking robots is as follows. The sub controls

of ATRIAS are the torso balance, the stride trajectory and, the energy injection [94]. The torso balance

block conducts the control of the torso angle. The stride trajectory block generates the toe trajectory.

The energy injection block outputs the extension force of leg length in response to the desired velocity.

The control architecture of HRP-4C is composed of the three blocks: the walking pattern generator, the

COG-ZMP feedback, and the abstracted robot [60]. The COG trajectory is designed at the upper layer,
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which corresponds to the walking pattern generator. The concrete stabilization control and the low-level

control are implemented at the lower layers, which corresponds to the COG-ZMP feedback and the

abstracted robot. The common thing of the biped control architecture in general is that a hierarchical

control structure is employed. In the control architecture, the walking pattern generator (upper layer)

and the stabilization control (lower layer) are separated.

As for the stabilization control, many kinds of research have been conducted. HRP-4C [95] employs

the tracking control of the abstracted linear inverted pendulum. Kamioka et al. realized balance recovery

by combining hopping motions and changing the foot placement [96]. Hybrid zero dynamics stabilizes a

biped robot by zero dynamics [97]. For example, by determining the swing-leg trajectory in response to

the body position, the dynamics of the body are designed stable. Garofalo et al. [98] employe the COG

for the biped control based on hybrid zero dynamics. There is an approach to apply model predictive

control to biped walking [99–101]. Stability analysis based on phase diagram is also recently popular

[102].

As for the upper-layer walking pattern generator, a popular method is to utilize a general solution

of a linear inverted pendulum [103, 104]. The method is applicable to a 3D linear inverted pendulum

as well as 2D. As an energy-efficient walking pattern generator, Kormushev et al. [105] generates the

energy-efficient COG trajectory by reinforced learning. In the work by Ding et al. [106], the energy-

efficient COG trajectory is generated by optimization based on the COG acceleration of a linear inverted

pendulum. Shin et al. [107] generate the energy-efficient walking gait by optimizing the gate parameter

which determines the trajectories of the body and the swing foot. However, it is necessary for these

methods to calculate the solution of the trajectory mathematically beforehand.

1.2 Motivation of This Dissertation

As the discussion of the background, the main function of legged motion control is locomotion. The

main horizontal locomotion is walking, and the main vertical locomotion is hopping. An important value

of hopping for vertical locomotion is hopping height. The dynamics of hopping are often modeled as a

harmonic oscillator. The hopping height corresponds to the mechanical energy of a harmonic oscillator.

An important value of walking for horizontal locomotion is walking speed. The dynamics of biped

walking are often modeled as a linear inverted pendulum. Walking speed corresponds to the energy of

a linear inverted pendulum. From above, both the hopping height control and the walking speed control
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Energy,
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(Chapter 2, core of this dissertation)

Control of energy with efficiency

Energy/phase controlPosition or velocity control

command

Energy

command

Position or velocity

Fig. 1-1: Control schemes of the conventional motion control and the proposal.

can be transformed as the problem of the energy control. The technical problem of this dissertation can

be generalized as control of energy with efficiency.

Motion control is a popular control scheme for control of robots. In motion control, acceleration

control based on disturbance observer is the foundation. The acceleration control compensates the mod-

eling error and the disturbance, which realizes the desired dynamics of a mass. On the foundation of the

acceleration control, position control or velocity control are often constructed in the outer loop. In the

conventional scheme, position or velocity are controlled directly. To design energy-efficient motion in

the conventional control scheme, it is necessary to calculate trajectory beforehand.

On the other hand, the proposed control scheme aims at direct control of energy and efficiency. Fig.

1-1 shows the correlation of the conventional control scheme and the proposed control scheme. Although

it is common that the foundation is the acceleration control, the proposed scheme controls energy and

phase directly in the outer loop. The energy and the phase correspond to the polar display of the state

space (scaled position and velocity) as Fig. 1-2. In Fig. 1-2, x, ẋ, and ω are the position, the velocity, and

the resonant angular frequency. E and ϕ are the energy per unit mass and the phase. This research gives

functions to the energy and the phase. As for the energy, a function to control the energy is implemented.

As for the phase, a function of efficient oscillation is implemented. The phase control in the dissertation is

to synchronize the actuation phase to the phase of the state. By adding the functions to the two variables
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Energy per unit mass

Polar display

Fig. 1-2: Energy and phase of harmonic oscillator.

respectively, the proposed method attains both the energy efficiency and the energy control.

The core of this dissertation is not only for a general control method in control engineering, but also

for a method of hopping height control and a method of walking velocity control. The following is the

positioning of the proposal compared to the respective conventional methods.

In terms of a general control method related to energy efficiency in control engineering, few kinds

of research attain both energy efficiency and energy control. Moreover, although some related methods

assume the redundant system with multi-input, the proposed method requires only one input. The struc-

ture multiplying the input amplitude by the input phase enables the proposed method to attain the two

requirements in one input.

As for hopping control, few kinds of research realize both hopping height control and energy-efficient

hopping. Although hopping height control is often attained by energy control, there are few methods

with energy efficiency. The conventional method by De et al. [25,26] has difficulty in control of hopping

height while the conventional method by De et al. enables energy-efficient hopping. In the conventional

method by De et al., it is necessary for realizing constant hopping height to add a damping term and to

tune the damping coefficient by trial and error. On the other hand, fine parameter tuning is not necessary

for the proposed energy/phase control. This is because the feedback stabilization structure of energy

control is included in the energy/phase control. Because the phase control exists in the inner loop of the

energy/phase control, energy efficiency as well as the energy stabilization is guaranteed.

As for walking control, the conventional control schemes are composed of the upper-layer walk-

ing pattern generator and the lower-layer stabilization control. Motions become energy-efficient when
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Fig. 1-3: Framework of this dissertation.

the dynamics are utilized adequately. Because biped walking can be approximated as a linear inverted

pendulum, trajectory generation in the upper layer is often described using hyperbolic functions. The

difficulty of the conventional method is the necessity to calculate the trajectory beforehand mathemati-

cally. Because the approach of the proposed energy/phase control is to oscillate the plant dynamics, it is

not necessary to calculate the trajectory beforehand.

1.3 Organization of This Dissertation

Figs. 1-3 and 1-4 show the framework and the organization of this dissertation. The framework of Fig.

1-3 is based on the structure of hierarchical controls [108, 109]. The upper layer denotes the outermost

loop, the intermediate layer is the middle outer loop, and the lower layer is the innermost loop. The

motion bandwidth becomes higher in response to going down the layers. In terms of functions, the

upper layer takes on the role of the command generation, the intermediate layer deals with the efficient

oscillation, and the lower layer realizes the robustness. In the middle layer and the lower layer, the trade

off between the energy efficiency and the robustness is designed.

In Chapter 2, the energy/phase control, which is the core of this dissertation, is described. The gener-

alized theory for a harmonic oscillator is discussed. The proposed method enables both energy efficiency
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【Chapter 3】

Nominalized Legged System for

Energy/Phase Control

【Chapter 4】

Hopping-Height Control Based on

Energy/Phase Control

【Chapter 5】

Biped Walking Control Based on

Energy/Phase Control

【Chapter 6】

Conclusion

【Chapter 1】

Introduction

【Chapter 2】

Energy/Phase Control

Fig. 1-4: Chapters constructed in this dissertation.

and control of energy. Analysis and comparative simulations under the dynamics of a harmonic oscillator

are also conducted. Chapter 2 is located at the intermediate layer of the proposed control scheme in Fig.

1-3.
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In Chapter 3, the system design of a legged robot for nominalization is discussed in order to extend

the application of the energy/phase control to a multi-degree-of-freedom leg robot. In order to extend

the energy/phase control for a harmonic oscillator to a legged robot, the design of the mechanics and the

control are discussed. Analysis and comparative simulations under the dynamics of the legged robot are

also conducted. Chapter 3 is located at the lower layer of the proposed control scheme in Fig. 1-3.

In Chapter 4, the hopping height control based on the energy/phase control is explained. The proposed

energy/phase control and the legged robot system in Chapters 2 and 3 are applied to a vertical hopping

motion. Because the hopping height is proportional to the vertical mechanical energy, the proposed

method is easily applied. The hopping height is controlled energy efficiently. Chapter 4 corresponds to

the center column of Fig. 1-3.

In Chapter 5, the biped control based on the energy/phase control is explained. The proposed en-

ergy/phase control and the legged robot system in Chapters 2 and 3 are applied to a horizontal walking

motion. Biped walking dynamics are often simply modeled using a linear inverted pendulum model.

The dynamics of a linear inverted pendulum and a harmonic oscillator have duality. While a general

solution of a harmonic oscillator is expressed using trigonometric functions, a linear inverted pendulum

is expressed using hyperbolic functions. The energy/phase control for a harmonic oscillator is extended

to the one for a linear inverted pendulum. Chapter 5 corresponds to the right column of Fig. 1-3.

Finally, Chapter 6 concludes this dissertation.
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Chapter 2

Energy/Phase Control

2.1 Introduction

This chapter describes the energy/phase control, which is the core of this dissertation. The en-

ergy/phase control is explained under the dynamics of a simple harmonic oscillator. The proposed

energy/phase control can be said as a mechanical oscillator. Comparison with conventional methods

is also conducted.

In Section 2.2, conventional energy control is explained. The proposed energy/phase control is de-

scribed in Section 2.3. The energy and the phase in a harmonic oscillator are firstly defined. The phase

control is introduced to enable efficient oscillation. Under the phase control, the energy control is con-

structed to control the system energy with efficiency. The energy/phase control is simulated, and the

behavior is discussed. Section 2.4 shows the theoretical comparison of the conventional method and the

proposed method, especially in terms of energy consumption, control error, and robustness. Comparative

simulations are conducted in Section 2.5. The results are evaluated in terms of the three indices.

2.2 Conventional Methods of Oscillation

Van der Pol oscillator is a famous oscillator, which is expressed as

ẍ− µ(1− x2)ẋ+ x = 0. (2.1)

The coefficient of the velocity term is proportional to 1 minus square of the position x. µ is the constant.

It can be interpreted as the potential energy control.
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As a similar equation to Van der Pol oscillator, Reileigh equation is also famous. Reileigh equation is

written as

ẍ− µ(1− ẋ2)ẋ+ x = 0. (2.2)

The coefficient of the velocity term is proportional to 1 minus square of the velocity ẋ. It can be inter-

preted as kinetic energy control.

As a hybrid of Van der Pol oscillator and Reileigh equation, energy control is introduced by some

researches as

ẍ−Kp(E
cmd − E)ẋ+ ω2x = 0 (2.3)

E =
1

2
(ẋ2 + ω2x2). (2.4)

Kp is the proportional gain. Ecmd and E are the energy command and the energy response, respectively.

The coefficient of the velocity term is proportional to the error of the energy Ecmd − E. In the case of

the spring-mass oscillation by the enregy control, the motion equation is

ẍ+ ω2x = F ref
a (2.5)

F ref
a = Kp(E

cmd − E)ẋ. (2.6)

F ref
a is the force reference in the acceleration dimension.

2.3 Proposed Energy/Phase Control

The proposed energy/phase control is explained in this section. The energy/phase control is composed

of the energy control and the phase control. The role of the phase control is to make the oscillation

energy-efficient by synchronizing the phase of the force reference to the phase of the vibration. The role

of the energy control is to control the amplitude of the oscillation by tuning the amplitude of the force

reference.

The motion equation of the energy/phase control is expressed as

ẍ−Kp(A
cmd −A) cosϕ+ ω2x = 0 (2.7)

Acmd =
√
2Ecmd (2.8)

A =
√
2E (2.9)

ϕ = tan−1 ωx

ẋ
. (2.10)
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Fig. 2-1: Relation between ξ and the energy/phase in spring-mass oscillator

Acmd and A are the energy-equivalent variables. ϕ is the phase.

Theoretical induction of the energy/phase control is described. Firstly, the energy and the phase

are derived from the dynamics of the spring-mass oscillator. Next, the phase control is introduced for

efficient oscillation. Third, the energy control under the phase control is constructed to manipulate the

energy.

2.3.1 Energy and Phase of Spring-mass Oscillator

The motion equation of the spring-mass oscillator is expressed as

ẍ+ ω2x = F ref
a (t), (2.11)

where ω is the resonant angular frequency and F ref
a (t) is the force reference in the acceleration dimen-

sion.

For calculation of the energy and the phase, a complex variable ξ

ξ = ẋ+ jωx (2.12)

is introduced. j is the imaginary unit. As shown in Fig. 2-1, the amplitude of ξ is proportional to

the mechanical energy of the spring-mass oscillator, and the argument of ξ is equal to the phase of the

spring-mass oscillator. Using ξ, the motion equation is transformed as

ξ̇ − jωξ = F ref
a (t). (2.13)

The energy E and the vibration phase ϕ can be expressed using ξ as

E =
1

2
(ẋ2 + ω2x2) =

1

2
|ξ|2 = 1

2
A2 (2.14)

ϕ = arg(ξ) = tan−1 ωx

ẋ
, (2.15)

– 14 –



CHAPTER 2 ENERGY/PHASE CONTROL

Fig. 2-2: Dynamics from the actuation amplitude arefA to the vibration amplitude A.

where the amplitude A is defined as A = |ξ|. “tan−1” in (2.15) is implemented using “atan2” function.

The “atan2” function can output the value even if ẋ = 0. The amplitude A and the phase ϕ of the

complex variable ξ correspond to the energy and the phase of the spring-mass oscillator.

2.3.2 Phase Control

De et al. [25, 26] proposed an oscillation method based on the phase of the spring-mass oscillator.

The conventional method makes the actuation phase to be equal to the vibration phase of the spring-mass

oscillator. The phase of the oscillator is induced as (2.15). Force reference F ref
a (t) is designed in order

to synchronize with the phase of the oscillator as

F ref
a (t) = arefA cosϕ, (2.16)

where arefA is the actuation amplitude, and it is a positive constant value in the conventional method.

The advantage of the phase control is the efficiency of power transmission. Power factor indicates the

efficiency of power transmission. The power factor in mechanical systems is expressed as the cosine of

the phase difference between the actuation force and the velocity. The maximum power factor is 1. In

this case, the force and the velocity have the same phase. The phase control in (2.16) realizes the phase

synchronization, and the power factor is maximized as 1.

However, it is difficult to control the energy with efficiency by only the phase control. The previous

research [25, 26] does not formulate clearly the relation between the actuation amplitude arefA and the

desired energy.

2.3.3 Energy Control under Phase Control

This paper introduces a method to vary the constant arefA in order to attain the desired energy. Firstly,

the dynamics of the energy under the phase control are induced. Next, the energy control system is

designed based on the dynamics. By these steps, the actuation amplitude arefA is determined uniquely in

real time.
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Fig. 2-3: Block diagram of the energy controller.

The first step is to induce the dynamics under the phase control. ξ of (2.12) can be transformed as

ξ = A(t)ejωt+ϕ0 . ϕ0 is the initial phase, or the phase at touch down. ξ = A(t)ejωt+ϕ0 is substituted to

the motion equation (2.13) as

Ȧ(t) = F ref
a (t)e−j(ωt+ϕ0). (2.17)

Because the actuation phase is equal to the phase of ξ by the phase control, the force input can be

expressed as F ref
a (t) = arefA (t)ejωt+ϕ0 . The force input is substituted to the motion equation (2.17) as

Ȧ(t) = arefA (t)ej(ωt+ϕ0)e−j(ωt+ϕ0) (2.18)

= arefA (t). (2.19)

The dynamics are expressed from the actuation amplitude arefA to the amplitude A of ξ as

A(s) =
1

s
arefA (s). (2.20)

Its block diagram is shown in Fig. 2-2.

As the next step, a feedback controller is constructed based on the dynamics as Fig. 2-3. The feedback

controller is expressed as

arefA = CA(s)(A
cmd −A). (2.21)

In this paper, the feedback controller is assumed as P controller CA(s) = Kep for control of a first-order

system. The transfer function from the amplitude command Acmd to the vibration amplitude A becomes

A

Acmd
=

Kep

s+Kep
. (2.22)

The transfer function is a typical first-order lag system. (2.22) indicates that the gain Kep corresponds to

the bandwidth of the energy control. By making the gain Kep higher, it is possible to make the control

bandwidth higher.
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oscillator

Harmonic

Energy control system

Phase control system

Fig. 2-4: Total block diagram of the energy/phase control.

2.3.4 Total Structure of Energy/Phase Control

The total block diagram of the energy/phase control for implementation is summarized as Fig. 2-4.

The outer loop is the energy control. The command is transformed from the energy command Ecmd

to the amplitude command Acmd. In the dimension of the amplitude, the energy control is constructed.

The acceleration reference of the amplitude arefA is the reference of the energy control.

The inner loop is the phase control. The acceleration reference of the amplitude arefA is multiplied by

cosϕ. The calculated product is the acceleration reference ẍref(= F ref
a ) for the control input. The block

of cosϕ is the phase controller, which makes the control input energy-efficient.

The energy E and the phase ϕ in a harmonic oscillator are calculated concretely by (2.14) and (2.15).

2.3.5 Behavior of the Proposed Energy/Phase Control in Simulations

To confirm the behavior of the proposed energy/phase control, two simulations are conducted. The

first simulation is the case of constant energy command, and the second is the case of step-wise energy

command. The dynamics of the robot are modeled as a spring-mass system. The initial position is set as

x(0) = −0.05 m. The desired constant amplitude of the position is set as 0.1 m. The desired amplitude

of the position in step-wise energy command is set as 0.05, 0.10, 0.15, 0.10, 0.05 m.

Fig. 2-5 shows the simulation results of the constant energy command. The amplitude and the period

of the position response are constant. The phase response increases from −π to π periodically. The

energy amplitude follows the constant command. It is confirmed that the energy can be controlled by

the proposed method. The force reference rises sharply at the beginning, and is almost zero after the
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Fig. 2-5: Simulation results of the proposed energy/phase control with constant command.

beginning. While it is necessary to inject energy at the begininng, the energy is preserved and the

additional energy is not necessary.

Fig. 2-6 shows the simulation results of the step-wise energy command. The amplitude and the

position response changes stepwise. The phase response moves from −π to π periodically like the case

of the constant energy command. The energy amplitude follows the step-wise energy command. The

– 18 –



CHAPTER 2 ENERGY/PHASE CONTROL

-0.2

-0.1

 0

 0.1

 0.2

 0  0.5  1  1.5  2

P
o
si

ti
o
n
 [

m
]

Time [s]

-4

-2

 0

 2

 4

 0  0.5  1  1.5  2

P
h
as

e 
[r

ad
]

Time [s]

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

A
m

p
li

tu
d
e 

[m
/s

]

Time [s]

Command
Response

-400

-200

 0

 200

 400

 0  0.5  1  1.5  2

F
o
rc

e 
re

fe
re

n
ce

 [
N

]

Time [s]

Fig. 2-6: Simulation results of the proposed energy/phase control with step-wise command.

force reference rises sharply at the change point of the energy command.

2.4 Theoretical Analysis

The proposed energy/phase control and the conventional energy control are compared theoretically.

The three kinds of analyses are conducted. The first is stability analysis. The second is the analysis of
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energy efficiency. The third is the analysis of robustness against parameter variation.

2.4.1 Stability Analysis

Stability analysis of the conventional energy control is conducted based on eigenvalue of the state

matrix. The motion equation of the conventional energy control is expressed as

ẍ−Kp(E
cmd − E)ẋ+ ω2x = 0 (2.23)

E =
1

2
(ẋ2 + ω2x2). (2.24)

Trasforming the motion equation in the form of a state-space equation,

d

dt

[
x

ẋ

]
=

[
0 1

−ω2 Kp(E
cmd − E)

][
x

ẋ

]
(2.25)

ẋ = Ax (2.26)

is obtained. x is the state vector and A is the state matrix. The eigenvalue λ is derived from the state

matrix as

|λI −A| = λ2 −Kp(E
cmd − E)λ+ ω2 = 0 (2.27)

λ =
1

2

(
Kp(E

cmd − E)±
√
K2

p(E
cmd − E)2 − 4ω2

)
. (2.28)

When Ecmd − E > 0, the real part of the eigenvalue is positive and the trajectory diverges. When

Ecmd − E = 0, the real part of the eigenvalue is zero and the trajectory becomes circular. When

Ecmd − E < 0, the real part of the eigenvalue is negative and the trajectory converges.

Stability analysis of the proposed energy/phase control is considered based on eigenvalue. The motion

equation is expressed as

ẍ−Kp(A
cmd −A) cosϕ+ ω2x = 0 (2.29)

A =
√
2E (2.30)

E =
1

2
(ẋ2 + ω2x2) (2.31)

ϕ = tan−1(ωx/ẋ). (2.32)
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Because the equations are nonlinear, linearization is conducted as

ẋ1 = f1(x1, x2) (2.33)

ẋ2 = f2(x1, x2) (2.34)

A =

[
∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

]
. (2.35)

Here, x1 and x2 are position and velocity, respectively. The concrete equations are substituted as

f1(x, ẋ) = ẋ (2.36)

f2(x, ẋ) = Kp(A
cmd −A) cosϕ− ω2x (2.37)

A =

[
0 1

∂f2/∂x1 ∂f2/∂x2

]
(2.38)

|λI −A| = λ2 − (∂f2/∂x2)λ− ∂f2/∂x1 = 0 (2.39)

λ =
1

2

(
∂f2/∂x2 ±

√
(∂f2/∂x2)2 + 4∂f2/∂x1

)
. (2.40)

I is a unit matrix. From (2.40), the real part of the eigenvalue is equal to 1
2
∂f2
∂ẋ . ∂f2

∂ẋ is concretely

calculated as

∂f2
∂ẋ

= −Kp

{
∂A

∂ẋ
cosϕ+ (Acmd −A) sinϕ

∂ϕ

∂ẋ

}
(2.41)

= −Kp

{
ẋ√

ẋ2 + ω2x2
cosϕ+ (Acmd −A) sinϕ

−ωx/ẋ2

1 + (ωx/ẋ)2

}
. (2.42)

If the sign of (2.42) depends on the error of energy as the conventional energy control, it can be proved

that the proposed energy/phase control works properly.

While it is strict and ideal to show the stability from (2.42) theoretically, it is also possible to confirm

the stability through numerical calculation. Fig. 2-7 (a) and (b) show the vecotr fields of the conventional

energy control and the proposed energy control. The x axis is the velocity and the y axis is the position.

In the both figres, the vectors near the origin diverge, and the outside vectors converges to a certain

circle. It can be interpreted that the energy increases when Ecmd − E > 0, the energy decreases when

Ecmd − E < 0, and the energy is conserved when Ecmd − E = 0.
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(a)

(b)

Fig. 2-7: Vector field of the convnetional and the proposed method.

2.4.2 Analysis of Energy Efficiency

Force reference in the acceleration dimension F ref
a (t) and velocity ẋ(t) are written in the form of

Fourier series expansion as

F ref
a (t) =

∑
n

Fn sin(ωnt+ ϕn) =
∑
n

(An cosnω0t+Bn sinnω0t) (2.43)

ẋ(t) =
∑
n

Vn sin(ωnt+ ϕvn) =
∑
n

(Cn cosnω0t+Dn sinnω0t). (2.44)
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Energy increase per cycle ∆E is expressed as

∆E =

∫ T

0
F ref
a (t)ẋ(t)dt (2.45)

=

∫ T

0

∑
n

(An cosnω0t+Bn sinnω0t)
∑
n

(Cn cosnω0t+Dn sinnω0t)dt (2.46)

=

∫ T

0

∑
n

(AnCn cos
2 nω0t+BnDn sin

2 nω0t)dt (2.47)

=
∑
n

(AnCn +BnDn)
T

2
. (2.48)

T is the cycle period. When ẋ(t) = C1 cosω0t, the energy increase is transformed using Dn =

0(∀n), Cn = 0(n ≥ 2) as

∆E = A1C1
T

2
. (2.49)

Energy efficiency of the conventional energy control and the proposed energy/phase control is com-

pared. The force refernces in the acceleration dimension of the conventional energy control and the

proposed energy control F ref
a conv and F ref

a prop are written as

F ref
a conv =Kp∆eẋ (2.50)

F ref
a prop =Kp∆e cos

(
atan

ωx

ẋ

)
, (2.51)

where ∆e is the control error. Energy increase per cycle in the case of the conventional method ∆Econv

is calculated as

∆Econv =

∫ T

0
F ref
a conv(t)ẋ(t)dt (2.52)

=

∫ T

0
Kp∆eẋ · ẋ(t)dt (2.53)

=

∫ T

0
Kp∆e

∑
n

(Cn cosnω0t+Dn sinnω0t)
∑
n

(Cn cosnω0t+Dn sinnω0t)dt (2.54)

=

∫ T

0
Kp∆e

∑
n

(C2
n cos

2 nω0t+D2
n sin

2 nω0t)dt (2.55)

= Kp∆e
∑
n

(C2
n +D2

n)
T

2
. (2.56)

From (2.56), it is found out that the conventional method oscillates all the components of frequency.
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Energy increase per cycle in the case of the proposed method ∆Eprop is calculated as

∆Eprop =

∫ T

0
F ref
a prop(t)ẋ(t)dt (2.57)

=

∫ T

0
Kp∆e cos

(
tan−1 ωx

ẋ

)
· ẋ(t)dt. (2.58)

Here, it is assumed that cos
(
tan−1 ωx

ẋ

)
extracts the fundamental frequency. The energy increase is

transformed as

∆Eprop =

∫ T

0
Kp∆e(C1 cosω0t+D1 sinω0t)

∑
n

(Cn cosnω0t+Dn sinnω0t)dt (2.59)

= Kp∆e(C2
1 +D2

1)
T

2
. (2.60)

From (2.60), it is found out that the proposed method oscillates only the fundamental component of

frequency.

2.4.3 Analysis of Robustness

Dynamic sensitivity is able to analyze the effect of parameter variation in a dynamical system [110–

112]. Dynamic sensitivity S(t) is defined as

S(t) :=
∂x(t)

∂w
, (2.61)

where x is the state vector and w is the parameter vector. Trajectory variation ∆x(t) is expressed using

the dynamic sensitivity S(t) as

∆x(t) ≃ S(t)∆w. (2.62)

The dynamic sensitivity S(t) satisfies

dS

dt
=

∂f

∂x
S +

∂f

∂w
. (2.63)

The determinant of ∂f
∂x is induced as ∣∣∣∣∂f∂x

∣∣∣∣ =
∣∣∣∣∣
[

0 1
∂f2
∂x

∂f2
∂ẋ

]∣∣∣∣∣ (2.64)

=
∂f2
∂x

. (2.65)
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Fig. 2-8: Comparison of the dynamic sensitivity.

In the case of the conventional energy control, the dynamic sensitivity is derived as

∂f2
∂x

=
∂

∂x

[
Kp

{
Ecmd − 1

2
(ẋ2 + ω2x2)

}
ẋ− ω2x

]
(2.66)

= −ω −Kpω
2xẋ. (2.67)

In the case of the proposed energy/phase control, the dynamic sensitivity is derived as

∂f2
∂x

=
∂

∂x

[
Kp

{
Acmd −

√
ẋ2 + ω2x2

}
cos
(
tan−1 ωx

ẋ

)
− ω2x

]
(2.68)

=− ω2 − Kpω
2x√

ẋ2 + ω2x2
cos
(
tan−1 ωx

ẋ

)
+Kp

√
ẋ2 + ω2x2 sin

(
tan−1 ωx

ẋ

) x/ẋ

1 + (ωx/ẋ)2
. (2.69)

As a reference trajectory, x = A sinωt and ẋ = ωA cosωt, or the resonance of the plant is assumed.

Under the reference trajectory, the dynamic sensitivity is calculated and compared as Fig. 2-8. In Fig. 2-

8, the maximum value of the dynamic sensitivity in the proposed method is higher than the conventional

method. It can be said that the conventional method is more robust to the small change of the parameter.

2.5 Comparative Simulations

The validity of the proposed energy/phase control is confirmed through simulations comparing with

conventional methods. It is ideal to reduce the control error, the robust variation, and the energy con-

sumption. There is a trade-off in the design of the control system as Fig. 2-9. While increasing gains
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Energy consumption

Control error Robust variation

(Simulations 2 and 3)

Trade-off

(Simulations 1)

Trade-off

Fig. 2-9: Three axes of the numerical analysis and the gain design.

Table 2.1: Parameters of the comparative simulations.
Description Parameter Value
Body mass M 5.0 kg

Stiffness of the leg spring k 1000 N/m
Sampling time of control Ts 0.100 ms
Nominal torque constant Ktn 0.091 N/A

Maximum force reference umax 500 N

leads to improvement of control performance, increasing gains leads to an increase in energy consump-

tion. While it is possible to increase robustness against the parameter variation, increasing robustness

leads to an increase in energy consumption. This section deals with the determination of a control method

and its gains to satisfy the specifications.

Three types of simulations are conducted as Fig. 2-9. Simulations 2-1 focus on the trade-off between

the control error and the energy consumption. Each control method is compared in terms of the control

error and the energy consumption. Simulations 2-2 focus on the trade-off between the robustness and the

energy consumption. As for the robustness, a parameter (concretely the stiffness of the plant) is varied,

and the variation of the trajectory is evaluated. Simulations 2-3 deal with increasing the robustness by

adding a disturbance observer.

The simulation parameters are shown in Table 2.1.

2.5.1 Simulations 2-1: Energy Consumption versus Control Error

Firstly, the trade-off of the control error and the energy consumption is visualized in the case of the

respective control method (the energy/phase control, the energy control, and the position contorl). The
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Fig. 2-10: Position command and response of the position control in each gain.

indices of the control error and the energy consumption are defined as follows.

The indices of the control error are root squared control error of amplitude and period RMSEcon
A ,RMSEcon

T .

They are defined as

RMSEcon
A =

√√√√ n∑
i=1

(Ades
mp −Ampi)2/n (2.70)

RMSEcon
T =

√√√√ n∑
i=1

(T des − Ti)2/n (2.71)

where Ampi is the amplitude of the i th peak, and Ades
mpi is the desired amplitude of of the i th peak. n

is the number of the peaks in the simulation periods. Ti is the period from the i th peak to the (i + 1)

th peak, and T des
i is the desired period from the i th to the (i + 1) th peak. The total error is defined by

averaging the two RMSEs in terms of nondimensional rate as

TotalError =

(
RMSEcon

A

Ades
mp

+
RMSEcon

T

T des

)
/2. (2.72)

As the index of efficiency, energy consumption is adopted. The energy consumption EC is calculated

as

EC =

∫
F ref ẋdt, (2.73)

where F ref is the force reference, and ẋ is the velocity of the body mass.
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Fig. 2-11: Summary results of simulations 2-1: the best results of the respective methods.

The proposed energy/phase control is compared with the conventional energy control and position

control in the case of a simple P controller. The initial position is set as -0.05 m, and the initial velocity

is zero. From the initial condition, each control is implemented. The amplitude command Acmd is set

as 0.10 m. Simulations 2-1 change the the controller gains. In the case of the energy-based controls and

the velocity control, the proportional gain is varied. In the case of the position control, the position gain

is set as Kp = K2
v/4, where Kv is the velocity gain. Due to the response in Fig. 2-10, it is necessary

to set the high gain in the position control for tracking the command. The patterns of the velocity gain

Kv are 200, 1000, and 2000. gdis in Fig. 2-10 is the cut-off frequency of the DOB. The control error

and the energy consumption are evaluated in the simulations. The control error are calculated using the

amplitude, the period, and (2.72). The amplitude and the period are calculated from the peak values. The

peak values are detected from the time-series position response. The energy consumption is calculated

using (2.73).

Fig. 2-11 and Table 2-11 show the comparison in terms of the control error and the energy con-

sumption. Although the position control attains the lowest control error as TotalError=0.0000 % when

Kv = 2000, the energy consumption is the highest as 10.536 J. The control errors of the energy/phase

control and the energy control are equal to 0.0113 %. The energy consumption of the energy/phase

control and the energy control is around 4.2 J. While the position control has an advantage in terms of

the control error, the energy-based controls have an advantage in terms of the energy consumption. The
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Table 2.2: Results of simulations 2-1: energy consumption and control error.
Controller Control error Energy consumption
Control method Gain TotalError [%] EC [J]
Energy/phase control Kp = 50 0.0113 4.197

Kp = 100 0.0113 4.235
Kp = 200 0.0113 4.251

Energy control Kp = 50 0.0113 4.228
Kp = 100 0.0113 4.244
Kp = 200 0.0113 4.256

Position control Kv = 200 1.0000 5.545
with DOB Kv = 1000 0.0500 5.583

Kv = 2000 0.0000 10.536

proposed energy/phase control has the lowest energy consumption compared to the energy control and

the position control.

2.5.2 Simulations 2-2: Energy Consumption versus Robustness when there are Parame-
ter Variation

In simulaitons 2-2, the control methods are compared in terms of the robustness when there is param-

eter variation. It is desirable to realize the same response whether the parameters have variation. In the

simulations, the stiffness of the spring is varied ±10 %.

The indices of robustness are root mean squared error of amplitude variation and period variation with

parameter variation RMSErob
A ,RMSErob

T . They are defined as

RMSErob
A =

√
(Amp(k +∆k)−Amp(k))2 + (Amp(k −∆k)−Amp(k))2

2
(2.74)

RMSErob
T =

√
(T (k +∆k)− T (k))2 + (T (k −∆k)− T (k))2

2
(2.75)

where Amp(k) is the average of the position amplitude with the stiffness k. T (k) is the average of the

vibration period with the stiffness k. k±∆k is the stiffness with paramter variation. The variation is set

as ±10 %. The total robustness is defined by averaging the two RMSEs in terms of nondimensional rate

as

TotalRobustness =

(
RMSErob

A

Ades
mp

+
RMSErob

T

T des

)
/2. (2.76)
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Fig. 2-12: Summary results of simulations 2-2: the best results of the respective methods.

Table 2.3: Results of simulations 2-2: energy consumption and robustness.
Controller Robustness Energy consumption
Control method Gain TotalRobustness [%] EC [J]
Energy/phase control Kp = 50 3.6752 13.635

Kp = 100 3.0007 17.895
Kp = 200 2.3326 20.800

Energy control Kp = 50 2.9683 17.845
Kp = 100 2.3267 20.770
Kp = 200 1.7894 22.630

Position control Kv = 200 0.0000 26.050
with DOB Kv = 1000 0.0000 27.155

Kv = 2000 0.0000 32.135

The energy consumption EC in simulation 2-2 is induced as the average of the EC when the stiffness is

+10 % and −10%.

Fig. 2-12 shows the summary results of simulations 2-2 in terms of the energy consumption and

the robustness. The results in the case of the higher gains are also shown in Table 2.3. The trade-

off of the energy consumption and the robustness is visualized from Fig. 2-12. The position control

attains that the robust variation is equal to 0.000 % while the energy consumption is the highest. The

energy/phase control attains the lowest energy consumption while the robust variation is the highest.
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Fig. 2-13: Results of simulations 2-2 when the gain increases (the size of the marker corresponds to the
magnitide of the gain in Table 2.3).

Table 2.4: Results of simulations 2-3: addition of DOB to energy/phase control.
DOB Robustness Energy consumption
Cut-off frequency TotalRobustness [%] EC [J]
gdis = 0 3.6752 13.635
(without DOB)
gdis = 50 1.1645 39.7750
gdis = 100 0.5238 26.4600
gdis = 200 0.2105 27.6000

The energy control is located between the position control and the energy/phase control. These results

are natural and consistent with the theoretical analysis. The position control is a robust control system

by a disturbance observer. The theoretical analysis showed that the energy control is more robust but

consumes more energy than the energy/phase control. The results in the case of the higher gains (Table

2.3) are also visualized as Fig. 2-13. The tendency of Fig. 2-12 is also consistent in Fig. 2-13.

2.5.3 Simulations 2-3: Addition of a Disturbance Observer for Higher Robustness

For improving the robustness of the proposed energy/phase control, Simulations 2-3 deals with the

addition of a disturbance observer. Several cut-off frequencies of the disturbance observer are simulated.

The energy consumption and the robustness are calculated as simulations 2-2.
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Fig. 2-14: Summary results of simulations 2-3: increasing the P gain and the cut-off frequency of the
DOB.

The simulation results are shown in Fig. 2-14 and Table 2.4. Fig. 2-14 compares the proposed

energy/phase control with a DOB and the position control with a DOB. By adding a disurbance observer,

the robustness is greatly improved while the energy consumption is increased. It became possible to

realize the performance between the position control and the energy-based control (without DOB).

2.6 Additional Simulations Considering Impact and Damping

In the additional simulations, impact force and damping force are considered.

Firstly, the simulations with impact force are conducted. Assuming the impact at the landing of

hopping motion, the impact force is applied when the body goes through zero from the positive to the

negative. As the impact force, five times the force of the robot weight is applied in 0.05 s. The simulation

results including impact are shown in Fig. 2-15. Although the control error of the energy is large when

the impact force is being applied, the errors are converged to zero after the impact. In the case of hopping

motions, it is sufficient that the errors are converged to zero at the timing of lift off. The convergence
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Fig. 2-15: Results of the energy/phase control simulations for a harmonic oscillator with impact.
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Fig. 2-16: Results of the energy/phase control simulations for a harmonic oscillator with damper.

speed is determined by the energy P control gain. The P gain can be tuned considering that the P gain

corresponds to the time constant of the energy control.
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Fig. 2-17: Results of the energy/phase control simulations for a harmonic oscillator with damper and the
compensation.

Next, the simulations with damping force are conducted. The tested patterns of the damping coef-

ficient are 1, 5, 10, 20, 50 Ns/m. The results of the damping simulations are shown in Fig. 2-16. In

the position responses, the amplitude decreases in response to the magnitude of the damping coefficient

while the phases are equal. In the energy responses, the damping causes the steady-state error. To the

steady-state error of the energy, two solutions are considered and tested: a PI controller and a disturbance

observer. Fig. 2-17 shows the results of the solutions. It is found that the errors approach zero in each

solution.

2.7 Summary

This chapter dealt with the energy/phase control as a mechanical oscillator. The conventional energy

control and the proposed energy/phase control are explained. The induction of the energy/phase control

is also described. As the structure, the energy control is implemented under the phase control. It was

confirmed that the energy/phase control works properly through the simulations. The conventional en-

ergy control and the proposed energy/phase control were compared through the theoretical analysis and

the numerical analysis. It was confirmed that the advantage of the energy/phase control is low energy
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consumption. It is also possible to increase the robustness of the energy/phase control by introducing a

disturbance observer in return for the energy consumption. In addition, additional simulations consid-

ering impact and damping were also conducted. It was shown that the energy P controller recovers the

control error after the impact, and that the damping can be compensated by an energy PI controller or a

disturbance observer.
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Chapter 3

Nominalized Legged System for
Energy/Phase Control

3.1 Introduction

This chapter deals with mechanism and control for nominalizing the dynamics. The mechanism is de-

signed for realizing similar dynamics to the desired. Linearization control of a multi-degree-of-freedom

(MDOF) robot is introduced for compensating the residual error of the dynamics. Several types of dis-

turbance observers are compared. Based on the system consisting of the mechanism and the control, the

energy/phase control is implemented. Numerical and analytical comparisons are conducted.

Section 3.2 presents the design philosophy of the legged mechanism. Section 3.3 describes the model

of the robot: definition of coordinate, kinematics, and dynamics. Section 3.4 introduces DOBs for an

MDOF robot. Joint-space observer and workspace observer are introduced. Section 3.5 deals with com-

parative simulations. The DOBs are compared under the legged robot and the energy/phase control. The

evaluation indices are the same as the simulations in Chapter 2: the control error, the energy consump-

tion, and the robustness.

3.2 Design Philosophy of Leged Mechanism

The desired dynamics are two patterns: a mass system and a spring-mass system. A mass system

has a mass point on the body, and has a no-weight leg. The desired spring-mass system is composed of

a mass point and a no-weight linear springy leg. From these background, two analyses are conducted
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Serial-link mechanism Parallel-link mechanismIdeal model

(Body mass)

Fig. 3-1: Illustration of the leg robot: serial-link mechanism and parallel-link mechanism.

Fig. 3-2: Block diagram of the equivalent mass.

for the desired dynamics. The first analysis evaluates which mechanism is closer to the ideal mass

system. Concretely, the serial-link mechanism and the parallel-link mechanism are compared. The

second analysis evaluates which spring realizes the closer dynamics to the ideal spring-mass system.

Concretely, a rotary spring and a linear spring are compared analytically.

3.2.1 Design of a Mass System: Serial Link Mechanism versus Parallel Link Mechanism

In order to make the dynamics of the legged robot similar to the ideal body mass model, comparative

analyses are conducted. Concretely, mass variation in response to posture change is analyzed in the

cases of the serial-link mechanism and the parallel-link mechanism. Illustrations of the serial-link and

the parallel-link leg robots are shown in Fig. 3-1. The serial link has one actuator on the hip and the other

on the knee. The two actuators of the parallel link are concentrated on the hip. The actuators are heavy

because they include the motors and the gears. The concerete mass distribution is assumed as Tables 3.1

and 3.2.
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Table 3.1: Mass parameters of the parallel link mechanism.
Description Parameter Value
Total mass m 6.50 kg

Body mass in parallel link mb 5.20 kg
Mass of bar 1 in parallel link m1 0.35 kg
Mass of bar 2 in parallel link m2 0.35 kg
Mass of bar 3 in parallel link m3 0.25 kg
Mass of bar 4 in parallel link m4 0.35 kg

Table 3.2: Mass parameters of the serial link mechanism.
Description Parameter Value
Total mass m 6.50 kg

Body mass in serial link mbs 4.00 kg
Mass of knee joint in serial link mk 1.80 kg

Mass of bar 1 in serial link m1s 0.35 kg
Mass of bar 2 in serial link m2s 0.35 kg

In the ideal body mass model, the inertia is constant regardless of the posture, and has no interference

term. This is embodied as that the diagonal elements of the inertia matrix are constant, and the non-

diagonal elements are zero. Each inertia matrix can be calculated from the block diagram of Fig. 3-2.

F ref and F ext are the forece reference and the external force. τ ref and τ ext are the torque reference and

the external torque. Jaco is the Jacobian matrix and JT
aco is the transpose of the Jacobian matrix. J−1

v

is the inverse of the inertia matrix in the joint space. q, q̇ and q̈ are the joint angle vector, the angular

velocity vector, and the acceleration vector in the joint space. x and ẋ are the position vector and the

velocity vector in the workspace. s is the Laplace operator. The concrete equations of Jaco and Jv are

different between the serial link and the parallel link.

From Fig. 3-2, the matrix of the transfer functions from the force reference to the body position is

induced as

x(F ref)−1 = s−1Jacos
−1J−1

v JT
aco, (3.1)

where s−1 =

[
1
s 0

0 1
s

]
. The equivalent mass M eq in the workspace is derived as the inverse matrix of

the transfer functions from the force reference to the body acceleration as

M eq = (ẍ(F ref)−1)−1 = J−T
acoJvJ

−1
aco. (3.2)
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Robot body

Robot leg

Fig. 3-3: Illustration of the squat simulation.
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Fig. 3-4: Analysis of mass matrices (Parallel link, serial link, and desired value).

The inertia matrix Jv is different depending on whether the mechanism is serial or parallel. This leads

to the different characteristics of the equivalent mass.

The analytical results of each equivalent mass matrix M eq are compared. The mass values in response

to the angle of the leg bending are plotted. The posture is assumed as that the center of the body is on

the vertical line from the tiptoe as Fig. 3-3. The analytical results are shown in Fig. 3-4. The 2 × 2
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Rotary spring Linear springIdeal model

(Spring-mass model)

Fig. 3-5: Illustration of the parallel-link leg robot with spring: a rotary spring and a linear spring.

figures correspond to the 2 × 2 inertia matrices. In each figure, the mass in response to the thigh angle

is plotted. The three patterns of mechanics are compared: the parallel link, the serial link, and the ideal

model. In the ideal model, the diagonal elements are constant, and the non-diagonal elements are zero.

In the results of the parallel link, the respective elements vary less than the case of the serial link. The

non-diagonal elements of the parallel link are nearer to zero than the serial link. From these results, it is

concluded that the parallel link is more adequate to make the robot dynamics similar to the ideal body

mass model.

3.2.2 Design of a Spring-Mass System: Rotary Spring versus Linear Spring in the Par-
allel Link Leg Robot

The parallel-link leg robots with a rotary spring and with a linear spring are shown in Fig. 3-5. While

a legged robot with a rotary spring is popular [51, 84], the proposed leg mechanism employs a linear

spring so that the dynamics are closer to the ideal spring-mass model. The two types of mechanisms are

compared using bode plots.

Fig. 3-6 (a) shows the block diagram of the spring-mass model with the rotary spring. KR is the

stiffness matrix and q0 is the angle vector of the natural length. τ sp is the vector of the spring torque.

By transforming the block diagram, the transfer function matrix from the force reference to the position

is induced. Fig. 3-6 (b) shows the block diagram of the spring-mass model with the linear spring. p, ṗ

are the position and the velocity in the polar coordinate. Jacp shows the Jacobian matrix in the polar

coordinate. The elastic force of the leg spring is proportional to the displacement of the length between

the body center and the tiptoe. Ksp is the stiffness matrix and F sp is the vector of the elastic force. The

transfer function matrix is induced from the block diagram of Fig. 3-6 (b).
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(a)

(b)

Fig. 3-6: Block diagram of the parallel-link leg robot with spring: (a) rotary spring, (b) linear spring.

The bode diagrams of the transfer function with the rotary spring are shown in Fig. 3-7 (a). The cases

of q1 = 30, 40, 50 deg are plotted. The most important characteristics are the responses from the vertical

force reference to the vertical position, which corresponds to the second-row, second-column figure. The

desired response is the purple line. The resonance point of each curve is different. In the case of the

rotary spring, the resonance point moves in response to the posture. The bode diagrams of the linear

spring are shown in Fig. 3-7 (b). The desired line and the other response lines almost overlap. In the

case of the linear spring, the resonance point is almost constant regardless of the change of the posture.
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Fig. 3-7: Analysis of spring-mass characteristic with the springs: (a) rotary spring, (b) linear spring.

From these results, it is concluded that the linear spring is superior for the legged robot.
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0

Vertical constraint

(a)

0

Vertical constraint

Spring

(b)

Fig. 3-8: Illustrations of the leg robot: (a) without spring, (b) with spring.

3.3 Mechanical Model

This section introduces the 2-DOF parallel link robot with the linear spring in detail.

This research employs an articulated one-leg robot which can be approximated to a spring-mass model

as Figs. 3-8 and 3-9. In Fig. 3-8, zb is the vertical body position, q1, q2 are the angles of the geared

motors, l1, l2 are the lengths of the leg bars, and [xt, zt] is the position vector of the tiptoe. In Fig.

3-9, qc and qd are the common-mode and the differential-mode angles. The detail of these angles is

explained in Subsection 3.3.3. The important features of the spring-mass are 1) a concentrated body

mass with a light-weight leg, and 2) a linear spring which is proportional to the leg length. To attain

the first point, a parallel-link mechanism is employed. In a parallel link mechanism, the heavy actuator

parts are located on the body base, and the leg parts become lightweight. The robot dynamics becomes

similar to a concentrated body mass with a lightweight leg. As for the second point, a leg spring is set

on the knee to become parallel to the line of the body and the tiptoe. By this setting, the elastic force

becomes parallel to the line length of the body and the tiptoe, or leg length. These two points realize

dynamics near spring-mass dynamics. Fig. 3-8 shows kinematic illustrations of the legged robot in the

experiments. The robot body is constrained to the vertical axis for the simplicity of experiments. The

tiptoe in the air is not constrained.
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(a) (b) (c)

Fig. 3-9: Geometric relation: (a) Leg length and leg angle, (b) Parallel spring (c) Approximation to a
spring-mass model.

3.3.1 Definitions of Coordinates

This paper uses three coordinates: the world coordinate, the base coordinate, and the polar base

coordinate. The definitions of the coordinates are as follows. The world coordinate is an orthogonal

coordinate in which the origin is the cross point of the ground and the vertical axis as Fig. 3-10. The robot

dynamics for simulation are calculated in the world coordinate. The base coordinate is an orthogonal

coordinate in which the origin is the axis of the two actuators in the sagittal plane as Fig. 3-11. The base

coordinate is used for control. The polar base coordinate is a polar coordinate in which the origin is the

axis of the two actuators in the sagittal plane. The polar base coordinate is used for calculating the elastic

force of the linear leg spring.

3.3.2 Kinematcis

Jacobian matrices are induced in the world coordinate and in the base coordinate.

From Fig. 3-8, the tiptoe position in the world coordinate xtW = [xtW, ztW] is expressed as

[xtW, ztW] = [l1 sin q1 − l2 sin q2, zb − l1 cos q1 + l2 cos q2], (3.3)

where l is link length, q = [q1, q2] is the vector of the actuator angles, and zb is height of body in the

world coordinate. Because the robot body is constrained to the vertical axis, the variables of the motion

equation in the world coordinate are qw = [zb, q1, q2]. The Jacobian matrix in the world coordinate
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Fig. 3-10: World coordinate: the origin is at the
cross point of the ground and the vertical axis.

Fig. 3-11: Base coordiante: the origin is at the center
of the body.

JacoW can be induced from partial derivative by qw as

JacoW =
∂xtW

∂qw
=

[
∂xtW
∂zb

∂xtW
∂q1

∂xtW
∂q2

∂ztW
∂zb

∂ztW
∂q1

∂ztW
∂q2

]

=

[
0 l1 cos q1 l2 cos q2

1 l1 sin q1 l2 sin q2

]
. (3.4)

The tiptoe position in the base coordinate xt = [xt, zt] is

[xt, zt] = [l1 sin q1 − l2 sin q2,−l1 cos q1 − l2 cos q2]. (3.5)

Because the variable in the base coordinate is q = [q1, q2], the Jacobian matrix in the base coordinate

Jaco is induced as

Jaco =
∂xt

∂q
=

[
∂xt
∂q1

∂xt
∂q2

∂zt
∂q1

∂zt
∂q2

]

=

[
l1 cos q1 −l2 cos q2

l1 sin q1 l2 sin q2

]
. (3.6)

3.3.3 Leg Spring

For presenting the ideal characteristics of the leg spring, “leg length” and “leg angle” are defined. The

leg length is the line length between the body and the tiptoe. The leg angle is the angle between the

vertical line which crosses the center of the body and the line of the leg length. The leg length and the
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leg angle are the variables of the polar base coordinate. The ideal characteristics of the leg spring are

that the elastic force is proportional to the leg length, and that the elastic force is not determined by the

leg angle.

Fig. 3-9 shows the geometric relation of the robot body, the spring, and the leg angle. Assuming that

the common mode and the differential mode of [q1, q2] are qc and qd, the variables [qc, qd] are defined as[
qc

qd

]
=

1

2

[
1 1

1 −1

][
q1

q2

]
. (3.7)

When l1 = l2 = l, the leg length L and the leg angle Θ are expressed using qc and qd as

L = 2l cos qc (3.8)

Θ = qd. (3.9)

From (3.8) and (3.9), the leg length and the leg angle are independent variables in terms of qc and qd.

The leg spring at the knee joint is set parallel to the line of the body and the tiptoe as Fig. 3-9 (b).

The elastic force of the leg spring can be induced from the partial derivative of the potential energy. The

potential energy of the leg spring U is calculated as

U =
1

2
Ksp

(
L

3
− l0

)2

. (3.10)

Here, l0 is the natural length of the spring. Ksp is the stiffness of the linear spring. The elastic force F k

of the leg spring in terms of [L,Θ] is induced from the partial derivative of the potential energy by [L,Θ]

as

F k =

[
∂U

∂L
,
∂U

∂Θ

]
=

[
Ksp

3

(
L

3
− l0

)
, 0

]
. (3.11)

As (3.11), the elastic force affects the leg length, and does not affect the leg angle. This is equal to

the ideal characteristics of the spring in a spring-mass hopping. Because the center of gravity of the

legged robot is set almost in the body by the parallel-link mechanism, the total dynamics become near a

spring-mass model as Fig. 3-9 (c).

3.3.4 Dynamics

The motion equation of the robot in the world coordinate is described. The motion equation in the

world coordinate is

J(qw)q̈w + g(qw, q̇w) + τ k(qw) = τ ref − τ fric + JT
acoWF e. (3.12)
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Here, J(qw) is the inertia matrix, g(qw, q̇w) is the nonlinear terms of the rigid-body dynamics, τ k(qw)

is the elastic torque of the leg spring, τ ref is the torque reference of the actuators, τ fric is the friction

torque, JacoW is Jacobian matrix of the tiptoe in the world coordinate, and F e is the external force from

the environment to the tiptoe. It is possible to induce the elastic force in the torque dimension as τ k by

partial derivative.

The elastic force of the leg spring is transformed in the torque dimension for the motion equation.

The elastic torque τ k of the leg spring in terms of the joint angles [q1, q2] is induced from the partial

derivative of the potential energy U by the joint angles [q1, q2]. Using (3.10) and that the leg lenght is

L = 2l cos q1+q2
2 , the elastic torque of the leg spring is derived as

τ k =
∂U

∂q
=

[
∂U

∂q1
,
∂U

∂q2

]
(3.13)

∂U

∂q1
=
∂U

∂q2
= −

Kspl sin
q1+q2

2

3

(
2l cos q1+q2

2

3
− l0

)
. (3.14)

The inertia matrices in the base cooridnate Jb and in the world coordinate J sp are induced. Jb is

used when the body mass does not affect the control of the leg motion (such as in the aerial phase). J sp

is used when the body mass affects the control of the leg motion (such as in the support phase). The

elements of the inertia matrix in the base cooridnate Jb can be calculated based on Fig. 3-11 as

Jb11 = m1r
2
1 +m2l

2
1 +m4r

2
4 (3.15)

Jb12 = −(m2l1r2 +m4l3r4) cos(q1 + q2) (3.16)

Jb21 = J12 (3.17)

Jb22 = m3r
2
3 +m4l

2
3 +m2r

2
2. (3.18)

Here, mi, li, and ri show the mass, the link length, and the COG position of the i th bar. The elements

of the inertia matrix in the world coordinate J sp are calculated based on Fig. 3-10 as

Jsp11 = m1r
2
1 +mbl

2
1 +m3l

2
1 +m4(l1 − r4)

2 (3.19)

Jsp12 = −(m1l2r1 +mbl1l2 +m3(l2 − r3)l1 +m4(l2 − l3)(l1 − r4)) cos(q1 + q2) (3.20)

Jsp21 = J12 (3.21)

Jsp22 = m1l
2
2 +m2r

2
2 +m3(l2 − r3)

2 +m4(l2 − l3)
2 +mbl

2
2. (3.22)

Here, mb is the mass of the base. From the comparison of Jb and J sp, it is found that the inertia matrix

is different. Because the mass of the base mb is large in general, J sp becomes larger in general.
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harmonic

Energy control system

Phase control system

(a)

acceleration control

Plant with

Nominalized harmonic oscillator

(b)

Fig. 3-12: Block diagram of energy/phase control for a multi-degree-of-freedom system: (a) total control
system, (b) nominalized harmonic oscillator.

In the simulations and the experiments in this dissertation, the desired nominal inertia Jn = JT
acoMdJaco

is employed. Here, Md =

[
Md 0

0 Md

]
is the desired inertia, and Md = M = mb+m1+m2+m3+m4.

The inertia matrix is derived as

JT
acoMdJaco = JT

aco

[
M 0

0 M

]
Jaco (3.23)

=

[
Ml21 −Ml1l2 cos(q1 + q2)

−Ml1l2 cos(q1 + q2) Ml22

]
(3.24)

(3.24) is equal to J sp with the case that the mass is concentrated on the body (namely mb = M and

m1 = m2 = m3 = m4 = 0).

– 48 –



CHAPTER 3 NOMINALIZED LEGGED SYSTEM FOR ENERGY/PHASE CONTROL

Fig. 3-13: Block diagram of joint space observer.

Fig. 3-14: Block diagram of workspace observer.

3.4 Disturbance Observers for a Multi-DOF Robot

Disturbance observers for nominalization are introduced. The total block diagram of the energy/phase

control for a multi-degree-of-freedom system is shown in Fig. 3-12 (a). ẍrefa is the acceleration reference

of the energy/phase control. The “nominalized harmonic oscillator” block is concretely shown as Fig.

3-12 (b). ẍref is the acceleration reference of the acceleration control system. Mn is the nominal mass

matrix. x0 is the position of the equilibrium point. The inner block of Fig. 3-12 (b) is the plant with

acceleration control, and the outer loop implies a virtual elastic force. The “plant with acceleration

control” block expresses the plant with a disturbance observer. Two types of disturbance observers are

considered: a joint-space observer and a workspace observer. A joint-space observer is a disturbance

observer in joint space, and a workspace observer is a disturbance observer in the workspace.

3.4.1 Joint-Space Observer

A block diagram of a joint-space observer is shown in Fig. 3-13. Jn is the nominal inertia, and Q is

a low-pass filter. Jv is the variable inertia which expresses the real dynamics. The output of the joint
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0

Vertical constraint

Spring

Fixed tiptoe

Robot body

Fig. 3-15: Simulation setup in Chapter 3.

space observer τ̂ dis is written as

τ̂ dis = Q(τ ref − Jns). (3.25)

Jv is equal to J sp when the tiptoe contacts the ground, and is equal to Jb in the air. Three patterns are

considered as the candidates of the nominal inertia Jn:

• constant inertia Jc = diag(Jv), which is often used as a simple nominal inertia

• variable inertia Jv, which expresses the real dynamics (the elements of the inertia matrix vary in

response to the posture)

• variable inertia Jp = JT
acoMnJaco, which is equivalent to constant mass in the workspace

3.4.2 Workspace Observer

A block diagram of a workspace observer is drawn as Fig. 3-14. The output of the workspace observer

F̂
dis

is the disturbance in the workspace. F̂
dis

is calculated as

F̂
dis

= Q(F ref −Mns). (3.26)

Here, Mn is the nominal mass matrix, or the desired mass matrix. The estimated disturbance in the

workspace F̂
dis

is compensated in the workspace as Fig. 3-14.
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3.5 Comparative Simulations

Simulations are conducted in order to verify the proposed energy/phase control for a multi-DOF robot

by the disturbance observers.

The four observer-based nominalization controls are compared: a joint-space observer with constant

mass (JOBc), a joint-space observer with variable mass (JOBv), a joint-space observer proposed in [113]

(JOBp), and a workspace observer (WOB). A joint-space observer nominalizes dynamics in the joint

space as Fig. 3-13, and a workspace observer nominalizes dynamics in the workspace as Fig. 3-14.

While the nominal inertia of the JOBc is constant, the nominal inertia of the JOBv is varied so that the

nominal inertia is equal to the theoretical inertia. The nominal inertia of the JOBp is varied so that the

mass in the workspace is constant. The JOBp and the WOB are common in terms of that the mass in the

workspace is set as constant.

The detail of the simulations is as follows. The simulation setup is considered as Fig. 3-15. The

robot body is constrained to the vertical motion, and the tiptoe is fixed to the ground. The robot body

is oscillated by the energy/phase control with the disturbance observers. The disturbance observers are

JOBc, JOBv, JOBp, and WOB. The energy command in the energy/phase control is set so that the desired

position amplitude in the vibration is 0.1 m. The indices are the energy consumption, the control error,

and the robust variation. An example of the times-series results is shown in Fig. 3-16. The amplitudes

and the periods are measured from the time-series results. The amplitude in the simulations is calculated

as the peak value from the equilibrium point. The period in the simulations is calculated as the peak-to-

peak time.

Two types of the simulations are conducted as Chapter 2. Simulations 3-1 deal with the trade-off

between the control error and the energy consumption. The indices of the control error and the energy

consumption are calculated and compared. The control error and the energy consumption are concretely

calculated using (2.72) and (2.73) in Subsection 2.5.1, respectively. In simulations 3-1, the simulations

are conducted with the three patterns of the observer cut-off frequency gdis = 25, 50, 100 rad/s. Simu-

lations 3-2 deal with the trade-off between the robustness and the energy consumption. Simulations 3-2

also employ the three patterns of the observer cut-off frequency gdis = 25, 50, 100 rad/s. The evaluation

index of the robustness is the trajectory variation by the stiffness variation (2.76) as Subsection 2.5.2.

The stiffness is varied ±10% in each case as Subsection 2.5.2.
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Fig. 3-16: Example of the simulation results in Chapter 3.

Table 3.3: Results of simulations 3-1: energy consumption and control error.
Controller Control error Energy consumption
Control method Gain TotalError [%] EC [J]
JOBc gdis = 25 9.10 185.29

gdis = 50 14.26 201.07
gdis = 100 18.45 211.95

JOBv gdis = 25 6.17 151.27
gdis = 50 5.74 149.42
gdis = 100 5.59 149.36

JOBp gdis = 25 8.33 162.63
gdis = 50 10.43 167.85
gdis = 100 10.89 169.12

WOB gdis = 25 16.69 706.12
gdis = 50 8.92 707.19
gdis = 100 8.54 671.14

3.5.1 Energy Consumption versus Control Error

The respective control system is compared in terms of the energy consumption and the control error.

Table 3.3 shows the result of the respective method and gain. The control error is large as a whole (more

than 5 % in all results) owing to the error of the period rather than the error of the amplitude. Fig. 3-17

shows the best results of the respective observers. In Fig. 3-17, JOBv performs the best in terms of both

the control error and the energy consumption. The control error is 5.59 %, and the energy consumption

is 149.36 J. In Fig. 3-17, JOBp shows the intermediate performance between JOBv and JOBc in terms

of both the control error and the energy consumption. The energy consumption of WOB is very high

as 671.14 J. WOB has high robustness against the parameter variation. High robustness requires high
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Fig. 3-17: Summary results of simulations 3-1: the best results of the respective observers.

Fig. 3-18: Summary results of simulations 3-2: the best results of the respective observers.

energy consumption in return. The detail is shown and discussed in Subsection 3.5.2.

3.5.2 Energy Consumption versus Robustness to Parameter Variation

The results of simulations 3-2 are shown in Table 3.4. The best results of the respective observers are

summarized in Fig. 3-18. WOB shows the high robustness. The error against the parameter variation is

around 1.5 %. Instead of the high robustness, the high energy consumption is shown as around 700 J.
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Table 3.4: Results of simulations 3-2: energy consumption and robustness.
Controller Robustness Energy consumption
Control method Gain TotalRobustness [%] EC [J]
JOBc gdis = 25 6.12 204.20

gdis = 50 5.86 220.93
gdis = 100 5.79 236.77

JOBv gdis = 25 5.63 173.51
gdis = 50 5.32 173.01
gdis = 100 5.20 173.14

JOBp gdis = 25 4.57 187.32
gdis = 50 4.28 190.44
gdis = 100 4.32 190.51

WOB gdis = 25 1.48 707.61
gdis = 50 1.60 700.33
gdis = 100 1.54 696.73

The structure of WOB shows that the system is nominalized as the desired dynamics by one more outer

loop compared to JOB. JOBp shows the best robustness among JOBc, JOBv, and JOBp as 4.28 %. The

energy consumption of JOBp is 190 J, and is between JOBv and JOBc as Fig. 3-18. The method of the

minimum energy consumption is JOBv as 173 J. The robustness of JOBv is 5.32 %, and is worse than

JOBp. The robustness and the control error have a trade-off.

In summary, the three indices (the energy consumption, the control error, and the robustness) have

trade-off each other. In terms of the energy consumption and the control error, JOBv shows the best

performance. JOBv employs the inertia of the real dynamics. Instead, the robustness of JOBv is not

superior. In terms of only the robustness, WOB shows the best performance. In the structure of WOB,

the dynamics are nominalized by one more outer loop. On the other hand, the energy consumption of

WOB becomes very high. JOBp shows the intermediate performance between JOBv and WOB. While

the nominal inertia of JOBp is set as the mass on the body as WOB, the control structure of JOBp is the

same as JOBv. It is desirable that the observer is selected according to the specifications. In Chapters 4

and 5, JOBp is employed owing to the balanced performance.
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3.6 Summary

This chapter described the mechanism and the control for applying the energy/phase control to a

legged robot. The design philosophy of the mechanism is to make the dynamics similar to a spring-mass

system. To realize a mass point at the body as much as possible, the parallel-link mechanism is employed.

To realize a linear leg spring, the linear spring is set so that the spring is parallel to the leg length. The

residual error of the dynamics is compensated by a disturbance observer. Four disturbance observers

(JOBc, JOBv, JOBp, and WOB) were compared through the simulations under the legged mechanism.

The comparison was conducted in terms of the three indices as Chapter2: the energy consumption, the

control error, and the robustness. JOBv showed the best performance in terms of the energy consumption

and the control error. WOB showed the best performance in the robustness. JOBp showed the balanced

and intermediate performance between JOBv and WOB.

– 55 –



Chapter 4

Hopping-Height Control Based on
Energy/Phase Control

4.1 Introduction

A hopping motion requires high power while the actuation power of motors is limited. It is desirable

that the potential energy of a mechanical spring is utilized efficiently. The target problem of this chapter

is energy-efficient hopping-height control of a one-leg hopping robot, especially utilizing the resonance

of mechanical spring.

This section approaches the problem by applying the energy/phase control in Chapter 2 and the nomi-

nalizing method in Chapter 3. The nominalizing control in Chapter 3 enables to make the dynamics of a

nonlinear legged robot as the dynamics of a linear simple harmonic oscillator. The energy/phase control

in Chapter 2 enables the control of the mechanical energy utilizing the resonance of a harmonic oscillator.

Section 4.2 discusses concretely applying the energy/phase control to the hopping height control. Section

4.3 deals with the compensation control for a hopping robot looking back on Chapter 3. In Section 4.4,

simulations using a simple spring-mass hopping robot are conducted. In Section 4.5, experiments using

a one-leg hopping robot with a mechanical spring are conducted. Section 4.6 concludes this chapter.

4.2 Hopping-Height Control by Energy/Phase Control

Fig. 4-1 shows the procedure in the stance phase of the hopping motion. zb is the height of the body

mass. A new phase variable θ is introduced for clear presentation of the phase in the hopping control.
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BottomTouch-down Lift-off

0

Fig. 4-1: Flow of hopping in stance phase.

The variable θ is defined as

θ = ϕ− π. (4.1)

The phase variable θ moves from 0 to π in the stance phase while ϕ moves from π to 2π. θ is more

clear to understand because the phase starts from 0 and ends at π. There are three main events in the

stance phase as Fig. 4-1: touch down, bottom, and lift off. Touch down is the moment when the robot

in the air touches the ground. At this moment, θ is near zero. From (2.16) and (4.1), the force reference

becomes the negative maximum value at the touch down. The bottom is when the spring is compressed

maximum and the mass velocity becomes zero. At this time, θ becomes π
2 . From (2.16) and (4.1), the

force reference is zero in this case. Liftoff is the moment when the robot flies from the ground. At liftoff,

the velocity of the robot body becomes the maximum. At this moment, θ becomes π. From (2.16) and

(4.1), the cosine becomes the positive maximum value at liftoff.

Energy/phase control for the hopping-height control is explained. The periodic flow of the control is

shown in Fig. 4-2. Two control states are introduced: the stance phase and the flight phase. The stance
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Fig. 4-2: State transition of the z-axis control in the hopping-height control.

phase is the phase on the ground, and the flight phase is the phase in the air. Fig. 4-3 shows the block

diagrams of the control system for the hopping height control. Because the body has only vertical motion

in this paper, the x-axis position of the tiptoe is always controlled as zero by position control in Fig. 4-3

(a). In Fig. 4-3 (a), xt denotes the position of the tiptoe. The “nominalized one mass system” block in

Fig. 4-3 (a) is equal to the block that eliminates the virtual elastic force from the nominalized harmonic

oscillator of Fig. 4-4. As for z axis, energy/phase control is implemented in the stance phase as Fig.

4-3 (b). The transition from the stance phase to the flight phase occurs when θ ≥ π. This means that

the body height is higher than the initial height, which is the lift-off height. In the flight phase, position

control is implemented to the x-axis and the z-axis as Fig. 4-3 (a). The position command is the initial

posture of the legged robot. By this approach, the COG velocity is preserved, and the relative vibration

between the body and the leg is not induced. When the contact to the ground is detected, the flight phase

changes to the stance phase. In this experimental setup, contact detection is implemented using the body

height. As mentioned above, the states and the controls are switched periodically.

The total block diagram of the hopping control at the stance phase is shown in Fig. 4-3. Fig. 4-3 (a)

shows the control system of the x direction, which is the typical position control. xcmd
t is the position
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Direct kinematicsNominalized one-mass system

(a)

oscillator

Nominalized

harmonic

Energy control system

Phase control system

(b)

Fig. 4-3: Block diagram of the control systems: (a) position control, (b) energy/phase control.

command of the tiptoe in the base coordinate. Fig. 4-3 (b) shows the control system of the z direction,

which is the block diagram of the energy/phase control. zb is the height of the body, and z̈refb is the

acceleration reference of the body in the z direction. The desired hopping height Hdes is defined as the

desired height from the balance of the position. The origin of the height for calculation of the energy is

the balanced position. Because the robot lifts off at the balanced position, the potential energy at liftoff

is zero. For the desired top height, the total desired energy is equal to the gravitational potential energy

of Hdes. The mechanical energy command per unit mass Ecmd is calculated using Hdes as

Ecmd = gHdes, (4.2)

where g is gravitational acceleration. From the Ecmd and (2.14), the amplitude command Acmd is in-

duced as

Acmd =
√
2Ecmd. (4.3)
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Robot

observer
Joint space

Direct kinematics

Fig. 4-4: Block diagram of a nominalized harmonic oscillator.

The mechanical energy per unit mass E and the amplitue A are derived respectively as

E =
1

2
(ż2b + ω2z2b) (4.4)

A =
√
2E (4.5)

The amplitude of the acceleration reference is derived by the equivalent energy controller as

arefA = CA(A
cmd −A). (4.6)

The acceleration reference is induced as the product of the amplitude and the phase. The force refer-

ence is calculated by multiplying the mass by the acceleration reference. The acceleration reference z̈refb

and the force reference F ref
z are expressed as

z̈refb = arefA cosϕ (4.7)

F ref
z = Mnz̈

ref
b . (4.8)

The phase ϕ is calculated from the complex number ξ.

4.3 Compensation Control for Nominalization to a Spring-Mass System

This section explains compensation control to nominalize the robot dynamics as the desired spring-

mass system. In order to realize the ideal spring-mass characteristics, disturbance rejection including the

mechanical spring is implemented firstly by using a joint space observer. The dynamics are expressed

as a simple motion equation with the nominalized mass particle and the force reference. Second, nom-

inalization to the desired spring-mass system is implemented by adding the desired elastic force. These
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Robot

Fig. 4-5: Block diagram of a disturbance observer in joint space.

two steps can compensate the stiffness error and the damping of the mechanical spring, as well as the

nonlinear terms.

4.3.1 Step 1: Disturbance Rejection and Nominalization to a One-Mass System

For the realization of the desired dynamics, the disturbance terms including the mechanical elastic

force are rejected by a joint space observer firstly. The induced simple dynamics in the first step are

composed of the nominalized mass particle and the force reference.

A joint space observer varies the inertia in joint space in order to make the mass in the workspace as

the desired constant mass Mn. The variable inertia in joint space is calculated as

Jv = JT
acoMnJaco. (4.9)

A block diagram of the joint space observer is shown in Fig. 4-5. gdis is the cut-off frequency of the joint

space observer, τ ext is the external torque, τ̂ dis is the output torque of the joint space observer, and τ ref
0

is the torque reference before adding τ̂ dis. The output of the joint space observer is calculated as

τ̂ dis =
gdis

s+ gdis
(τ ref + gdisJvq̇)− gdisJvq̇. (4.10)

The dynamics under the joint space observer are induced. Firstly, the motion equation in joint space

is transformed into the motion equation in the workspace. This paper assumes ẍ ≃ Jacoq̈ and that the

torque terms and the force terms satisfy the relation of statics as F = J−T
acoτ . The motion equation in

the workspace is

M(q)ẍ+ J−T
acog(q, q̇) + J−T

acoτ k(q) = J−T
acoτ

ref − J−T
acoτ

fric + F e, (4.11)
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where M(q) is the equivalent mass matrix as

M(q) = J−T
aco(q)J(q)J

−1
aco(q). (4.12)

x = [xb, zb] is the position of the body in the world coordinate at the stance phase. Because the body

motion is constrained to the vertical axis, x is induced as x = [0,−xt]. The dynamics under the joint

space observer is derived using (4.11) as

Mnẍ =F ref − F dis + F̂
dis

(4.13)

F ref =J−T
acoτ

ref (4.14)

F dis =(M −Mn)ẍ+ J−T
acog(q, q̇) + J−T

acoτ
fric + fk(q) + F e. (4.15)

F̂
dis

=
gdis

s+ gdis
F dis. (4.16)

Here, fk(q) is J−T
acoτ k(q). F̂

dis
= J−T

aco τ̂
dis is the estimated disturbance in the workspace.Because

F̂
dis

= F dis is satified in the passband bandwidth, the dynamics under the passband bandwidth becomes

Mnẍ =F ref . (4.17)

The disturbance terms are rejected, and the dynamics become a simple motion equation composed of the

nominalized mass and the force reference.

4.3.2 Step 2: Nominalization to a Spring-Mass System

The dynamics are nominalized as the desired spring-mass system by adding the desired virtual elastic

force F sp
v to the force reference F ref in (4.17). The error of stiffness between the real and the desired

spring can be compensated. The damping of the mechanical spring is also compensated. If there is no

spring on the legged robot, the actuators have to generate the total additional input F sp
v in the workspace.

By introducing the mechanical spring, the additional input becomes the compensation value of the spring:

the stiffness error and the mechanical damping.

The motion equation with the additional virtual elastic force becomes

Mnẍ =F ref − F sp
v . (4.18)

Assuming that the x-axis position of the tiptoe is zero, the z-axis equation of (4.18) is

Mnz̈b = F ref
z −Kspz, (4.19)
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where z is the z-axis displacement from the equilibrium point, or the initial posture. F ref
z is the z-axis

force reference. The dynamics are nominalized as the desired spring-mass system. Fig. 4-4 shows the

total block diagram of the nominalization control to a spring-mass system.

The additional control input for the virtual elastic force is saved by introducing the mechanical spring.

The additional required force in the z-axis comparing to the case without a spring ∆F req
z is concretely

expressed as

∆F req
z = (Kreal

sp z +Dreal
sp ż)−Kspz = ∆Kspz +Dreal

sp ż, (4.20)

where ∆Ksp is Kreal
sp −Ksp. If there is not the mechanical spring, the all of virtual elastic force becomes

the required additional force reference. By introducing the mechanical spring, the required additional

force becomes the sum of the stiffness error term and the damping term.

4.4 Simulations Using a Spring-Mass Hopping Robot

The simulations in the case of the desired spring-mass dynamics are conducted to compare with the

experiments. The parameters are set as the experimental condition to realize the similar condition to

the experiments. The dynamic model in the simulations assumes a simplified mass-spring model using

the experimental parameters. Compensation control is not necessary for the simulations because the

dynamics are the desired ones. Two simulations are conducted. The first is the energy/phase control

with the constant energy command. The hopping height command is 0.10 m from the initial height. The

second is the energy/phase control with the variable energy command. The hopping height command

is varied in each hopping as 0.05, 0.10, 0.15, 0.10, 0.05, and 0 m from the initial height. Like the

experiments, the energy/phase control starts after t=2.5 s.

Figs. 4-6 (a) and (b) show the simulation results of the energy/phase control with the constant energy

command. From the position response in Fig. 4-6 (a), the constant hopping with the desired height

is observed. As shown in the plots of the amplitude, the amplitude response follows the amplitude

command. Fig. 4-6 (b) shows the phase diagram. The magnitude in the stance phase is constant, and the

periodic orbit is observed. This implies that the constant hopping height is attained repeatedly.

Figs. 4-7 (a) and (b) show the simulation results of the energy/phase control with the variable energy

command. In the same way as the first simulations, the control of the energy is attained, the desired

hopping height is realized in each step. The variable hopping height is realized using the proposed

method. The phase diagram of Fig. 4-7 (b) shows the layered trajectory as the desired.
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Fig. 4-6: Simulation results 1: energy/phase control with constant energy command.

4.5 Experiments

This section describes the experimental results of the proposed method. Firstly compensation controls

are compared in free motions. Second, the experimental results of the proposed energy/phase control

system are presented.

The experimental setup is shown in Fig. 4-8. The legged robot employs a parallel-link mechanism

– 64 –



CHAPTER 4 HOPPING-HEIGHT CONTROL BASED ON ENERGY/PHASE CONTROL

Command
Response

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

 2  2.5  3  3.5  4  4.5  5  5.5  6

P
o
si

ti
o
n
 [

m
]

Time [s]

Height command
Body

 0
 1
 2
 3
 4

 2  2.5  3  3.5  4  4.5  5  5.5  6A
m

p
li

tu
d
e 

[m
/s

]

Time [s]

(a)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

P
o

si
ti

o
n

 [
m

]

Velocity [m/s]

(b)

Fig. 4-7: Simulation results 2: energy/phase control with variable energy command.

with a linear leg spring. The model number of the spring is TY-21. The two actuators are placed opposite

to each other. The model number of the motors is EC-i 40, 100W, 488607. As the option of the motors,

the planetary gear head 6:1 is attached to each motor. The model number of the motor drivers is EPOS2

50/5. The output of the planetary gear head is connected to the harmonic gear head 21:1. The model

number of the harmonic gear heads is HPG-14-21A. The total gear ratio from the motors to the output

becomes 126:1. Although the total gear ratio Gr becomes high, the effect of the enlarged inertia is small
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Table 4.1: Parameters of the experiments and the simulations for the hopping control.
Description Parameter Value
Total mass m 6.40 kg

Stiffness of knee spring Ksp 2535 N/m
Sampling time of control Ts 0.150 ms
Balance height of body L0 0.733 m

Length of thigh and shin l 0.45 m
Nominal torque constant Ktn 0.091 Nm/A
Gear ratio of the motors G 126
P gain of energy control Kp 100

Angular frequency ω 44.0 rad/s
of phase control

Cut-off frequency of gdis 50.0 rad/s
joint space observer

because of the low motor inertia Jm. The enlarged inertia is JmG2
r = 0.07 kgm2. On the other hand, the

equivalent inertia of the nominal mass is Mnl
2 = 1.3 kgm2. Because the effect of the inertia is small, the

modeling error is compensated without destabilization. The encoders are attached to the motor side of

the motors. The joint angles q1 and q2 are calculated by dividing the measured encoder angles by the gear

ratio. The model number of the encoders is MES-20-1024PE. The resolution is 1024 pulse/rotation. The

encoder is also used for the measurement of the body height zb. The encoder for the height measurement

is attached to the top of the body. The body height zb is calculated through zb = zb0 + 2l0 sin q3, where

zb0 is the height of the top link for the measurement, l0 is the link length for the measurement, q3 is the

joint angle of the encoder for the measurement. The controller is implemented using a PC with RTAI

(Real Time Application Interface). The control period is 150 microseconds. The counter board is PCI-

6201, and the DA board is PCI-3340. The resolution of the DA converter is 16 bit. The parameters of the

experiments are shown in Table 4.1. The P gain of the energy control is tuned by observing the energy

response compared to the energy command.

4.5.1 Experimental Results of Free Motion under the Compensation Controls

For experimental comparison of the compensation control, the free motions under the conventional

and the proposed compensation controls are compared. After bending the leg, the acceleration reference

is set at zero, and the free motion is tested. After the body position returns to the initial in the free
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Fig. 4-8: Experimental setup: (a) photo, (b) illustration of the robot.

motion, the leg is fixed by position control as the aerial phase of the hopping strategy. The four methods

are tested for comparison. The first is setting zero current. The test of zero current implies the behavior

without compensation control. The second is the proposed joint space observer with constant mass in

the workspace (JOBp). The third is the conventional joint space observer with constant inertia (JOBc).

The fourth is the conventional workspace observer (WOB).

Fig. 4-9 shows the experimental comparison of each method. In the case of the zero current, the body

position does not reach the initial position. It is found out that the real leg stiffness of the robot has high

friction. Compared to the real dynamics, the position responses of the compensation controls reach the

initial position, and hopping motions are realized. The theoretical hopping height is 0.129 m from the

initial height. Because the initial height is 0.743 m, the nearest response to the theory is the case of JOBp.

4.5.2 Experimental Results of Hopping Height Control

Two experiments are conducted in this subsection. The first is the energy/phase control with the

constant energy command, or the constant hopping-height command. The hopping height command is

0.10 m from the initial height. The second is the energy/phase control with the variable energy command,

or the variable hopping-height command. The hopping height command is varied in each hopping as

0.05, 0.10, 0.15, 0.10, 0.05, and 0 m from the initial height. At the initial period of the experiments
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Fig. 4-9: Experimental results of free motion under the compensation controls.

(t=0–2.5 s), the leg is bent by the position control to store the energy and to make cosϕ as zero. After

t=2.5 s, each control starts. In the experiments, the vibration amplitude response during the aerial phase

is set held. The cut-off frequency of disturbance observer in the lower layer is tuned firstly observing

the stability of the response. It is necessary that the cut-off frequency exceeds the resonance frequency

to realize the nominal harmonic oscillator. The P gain of the energy control in the intermediate layer is

tuned next observing the energy response compared to the energy command.

The experimental results of the energy/phase control with the constant energy command are expressed

as Fig. 4-10 (a) and (b). The motion before 2.5 s is in the initial period: the body position goes down

by bending the leg, and the potential energy of the spring is stored. After 2.5 s, the energy/phase control

starts. The hopping height reaches the hopping command although the first hopping exceeds the desired

height. The amplitude response also follows the amplitude command. The output of the proposed joint

space observer becomes high around the touchdown and the liftoff. The phase diagram is drawn as

Fig. 4-10 (b). Low pass filters (20 rad/s) are used to the position and the velocity responses for the

clear interpretation. Fig. 4-10 (b) shows that the state repeats a certain trajectory. This implies that the

constant hopping-height control is attained repeatedly by the constant-command energy/phase control.

The experimental results of the energy/phase control with variable energy command are expressed as
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Fig. 4-10: Experimental results 1: energy/phase control with constant energy command.

Fig. 4-11 (a) and (b). The second hopping and later attain the hopping height near the height command

while the height of the first hopping exceeds the command. The amplitude response follows the variable

amplitude command. In the phase diagram as Fig. 4-11 (b), the layered trajectory is observed. This
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Fig. 4-11: Experimental results 2: energy/phase control with variable energy command.

result is reasonable because the step-wise energy command realizes the different one-cycle trajectories

with different amplitude, or energy.

Compared to the ideal simulations, the trajectories in the phase diagrams are not smooth. The ex-
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Fig. 4-12: Several results of experiments 1: position response of the constant hopping-height control.
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Fig. 4-13: Several results of experiments 2: position response of the variable hopping-height control.

periments have modeling errors and unknown disturbances such as friction. The proposed control has

limitations. First, the disturbance observer works properly only under the bandwidth. Second, the dis-

turbance to the body in the aerial phase cannot be compensated because the control at the aerial phase is

the position control as the initial posture.

The several trials of the experimental results are compared. Figs. 4-12 and 4-13 show the several

experimental results of the constant hopping and the variable hopping, respectively. It can be seen that

the hopping heights are almost uniform in the respective results. While the small phase shifts of the

position response are observed, the difference of the hopping heights is one factor. Because the higher

hopping takes more time to land, the periods shift differently.
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4.6 Summary

This chapter described extending the application of the energy/phase control to hopping-height control

with a one-leg robot. This chapter firstly discussed the hopping-height control with a simple spring-

mass robot applying the energy/phase control. The energy is controlled in the stance phase so that the

mechanical energy becomes the potential energy at the desired height. The simulations with a simple

spring-mass robot were conducted. The constant height hopping and the variable height hopping were

realized. Applying the nominalizing control in Chapter 3, the experiments using a one-leg robot with a

mechanical spring were also conducted. The constant height hopping and the variable height hopping

were confirmed experimentally.
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Chapter 5

Biped Walking Control Based on
Energy/Phase Control

5.1 Introduction

Energy-efficient biped walking is an important problem because a battery on the robot has a limitation

of energy. Even if the difference in energy efficiency per one step is small, the energy consumption of

the total steps makes a large difference. This chapter deals with energy-efficient biped walking control.

The approach of this chapter is the oscillation of a linear inverted pendulum by the energy/phase

control. Biped walking control often employs a linear inverted pendulum model. The energy/phase

control enables an energy-efficient oscillation. The energy/phase control for a linear inverted pendulum

is induced using the duality of trigonometric functions and hyperbolic functions. Section 5.2 describes

the model of the biped robot. In Section 5.3, the control system of the biped robot is explained. In Section

5.4, energy/phase control of a linear inverted pendulum is proposed. Section 5.5 deals with the induction

of feasible walking commands. Simulations and experiments are conducted and shown in Sections 5.6

and 5.7, respectively. Finally, Section 5.8 concludes this chapter.

5.2 Energy/Phase Control of a Linear Inverted Pendulum

A linear inverted pendulum model is often used for biped walking control as Fig. 5-1. S is the stride

of the walking. This section describes the proposed energy/phase control for a linear inverted pendulum.

Energy and phase of the linear inverted pendulum are induced in Subsection 5.2.1. The motion equation
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Abstraction to 1-DOF motion

W alking control

Fig. 5-1: Abstracted one-degree-of-freedom model of a biped walking robot.

of the linear inverted pendulum is transformed using the energy and the phase in Subsection 5.2.2. In

Subsection 5.2.3, the energy/phase control is explained. Based on the motion equation of energy and

phase, the dynamics under the energy/phase control is induced. Subsection 5.2.4 explains the simulations

using the simple linear inverted pendulum.

5.2.1 Energy and Phase of Linear Inverted Pendulum

A linear inverted pendulum is often used as a simplified model of a biped walking robot. Energy and

phase of the linear inverted pendulum are defined based on the motion equation. Especially, the energy

of the linear inverted pendulum is called as “orbital energy” in biped walking.

The motion equation of the linear inverted pendulum is written using the body-mass position x, the

body-mass height z, the control input in the acceleration dimension F , and the gravitational acceleration

g as

ẍ− ω2
cx = F, (5.1)

ωc =
√
g/z. (5.2)

Here, ωc is the equivalnet angular frequency of the linear inverted pendulum. Orbital energy is popularly

used for a linear inverted pendulum model of a biped walking robot [103]. The orbital energy E is
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Fig. 5-2: Phase diagram of a linear inverted pendulum.

expressed using the angular frequency as

E =
1

2
ẋ2 − 1

2
ω2
cx

2. (5.3)

Different from the mechanical energy of a harmonic oscillator, the sign of the potential energy term in

the orbital energy is negative. Referring the work by Kajita et al. [114], E > 0 is necessary for that the

biped body goes through the point x = 0. E = 0 reporesents the equilibrium state (x = 0 and ẋ = 0).

When E < 0, the biped body cannot pass the point x = 0. The equation of the orbital energy (5.3) can

be transformed to a normal form of a hyperbolic function as

ẋ2

2E
− (ωcx)

2

2E
= 1. (5.4)

Using characteristic of the normal form of a hyperbolic function, ẋ and ωcx can be expressed in terms of

the parametric representation. The parametric reprensentation of (ẋ, ωcx) is written using phase param-

eter ϕ as

(ẋ, ωcx) = (
√
2E coshϕ,

√
2E sinhϕ). (5.5)

In order to use the phase for control, it is necessary to calculate the value of the phase. The phase ϕ can

be calculated using (ẋ, ωcx) as

ϕ = atanh(tanhϕ) = atanh

(
sinhϕ

coshϕ

)
= atanh

(ωcx

ẋ

)
. (5.6)

5.2.2 Dynamics in terms of Energy and Phass

The motion equation of a linear inverted pendulum is transformed using the energy E and the phase

ϕ.
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Linear inverted

pendulum

Energy/phase control

Phase control

Fig. 5-3: Block diagram of the energy/phase control for a linear inverted pendulum.

The motion equation (5.1) is transformed using ξ = ẋ+ jωx and ξ∗ = ẋ− jωx as

d

dt

(
ξ + ξ∗

2

)
− ω

ξ − ξ∗

2j
= F. (5.7)

The motion equation is expressed based on (ξ, ξ∗) from (ẋ, ωcx). The relation between (ξ, ξ∗) and

(E, ϕ) is induced using (5.5) as

ξ = ẋ+ jωx =
√
2E(coshϕ+ j sinhϕ) (5.8)

ξ∗ = ẋ− jωx =
√
2E(coshϕ− j sinhϕ), (5.9)

Substituting the relation (5.8) and (5.9) to the transformed motion equation (5.7), the motion equation in

terms of energy and phase is obtained as

d

dt

(√
2E coshϕ

)
− ω

√
2E sinhϕ = F. (5.10)

5.2.3 Energy/Phass Control

This subsection describes the proposed energy/phase control for hyperbolic oscillation. The en-

ergy/phase control is composed of the energy control and the phase control. The total block diagram

is shown in Fig. 5-3. The energy control is in the outer loop, and the phase control is in the inner loop.

First, the dynamics under the phase control are induced. Next, the whole energy/phase control system is

described.

Dynamics under Phase Control

The phase control oscillates a linear inverted pendulum in response to the phase of the body. Con-

cretely, the phase of the hyperbolic control input is determined so as to synchronize with the phase of the
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Fig. 5-4: Block diagram of energy control for a linear inverted pendulum.

body. The control input of the phase control is expressed in the form of an equation as

F = arefA coshϕ. (5.11)

arefA is the actuation amplitude of the energy/phase control. For a simple expression of the dynamics, an

energy equivalent variable A(t) is introduced as

A(t) =
√
2E(t). (5.12)

Also, the phase ϕ can be expressed as

ϕ = ωct+ ϕ0, (5.13)

where ϕ0 is the initial phase.

Substituting these variables F , A, and ϕ ((5.11), (5.12) and (5.13)) to the dynamics of (5.1), the

dynamics under the phase control is expressed as

d

dt
(A(t) cosh(ωct+ ϕ0))− ωA(t) sinh(ωct+ ϕ0)

= arefA cosh(ωct+ ϕ0). (5.14)

Trasforming (5.14), the dynamics under the phase control is simplified as

Ȧ(t) = arefA . (5.15)

The derivative of the energy equivalent variable is equal to the amplitude of the control input. The

dynamics under the phase control are expressed as a simple equation.

Energy/Phase Control System

In the outer loop of the energy/energy control, the energy is controlled by tuning the amplitude of the

control input arefA . Even if arefA is time-variant, the dynamics (5.15) can be induced in the same manner.
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The dynamics of energy control can be expressed in Laplace space as

A(s) =
1

s
arefA (s). (5.16)

Based on the dynamics (5.16), a feedback control system is designed. The block diagram of the energy

control is drawn in Fig. 5-4. When P controller with gain Kp is assumed as

arefA = Kp(A
cmd −A), (5.17)

the input in implementation is expressed as

ẍref = Kp(A
cmd −A) cosϕ. (5.18)

The transfer function from the energy-equivalent command Acmd to the output A becomes a first-order

lag system as

A

Acmd
=

Kp

s+Kp
. (5.19)

From the transfer function, it can be said that the cut-off frequency of the response is equal to the pro-

portional gain Kp. The higher the gain Kp is, the higher cut-off frequency the energy control can attain.

Table 5.1 summarizes the energy/phase control for a linear inverted pendulum in this Chapter and the

energy/phase control for a harmonic oscillator in Chapter 2. Although the respective motion equation

is different, especially the sign of the coefficient of x, the dynamics of energy become equal under the

phase control.

The negative energy exists in the case of a linear inverted pendulum, different from a harmonic oscil-

lator. The negative energy implies that the biped body cannot pass the point x = 0. Keeping the negative

energy means that the body diverges to the netgative direction. Because the energy immediately after

switching the stance leg is negative, it is desirable to increase the energy to more than zero as soon as

possible. From this viewpoint, it is desirable to increase the energy gain. On the other hand, the higher

gain tends to make the control system unstable owing to the limitation of the hardware. It is necessary to

tune the adequate gain.

5.2.4 Phase Diagram

The energy/phase control is developed from the viewpoint of phase diagram. The phase diagram

shows the motion in terms of the coordinate whose axes are the position and the velocity. Dynamics
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Table 5.1: Duality of energy/phase control for a harmonic oscillator and a linear inverted pendulum.
Description Harmonic oscillator Linear inverted pendulum

Motion equation ẍ+ ω2x = F ẍ− ω2
cx = F

Angular frequency ω =
√
k/m ωc =

√
g/z

Energy E = 1
2(ẋ

2 + ω2x2) E = 1
2(ẋ

2 − ω2
cx

2)

Constant-energy surface ẋ2 + ω2x2 = 2E ẋ2

2E − ω2
cx

2

2E = 1

(Circle) (Hyperbola)
Parameter expression (ẋ, ωx) = (ẋ, ωcx) =

of constant-energy surface (
√
2E cosϕ,

√
2E sinϕ) (

√
2E coshϕ,

√
2E sinhϕ)

Vibration phase ϕ = tan−1(ωx/ẋ) ϕ = tanh−1(ωcx/ẋ)

Vibration amplitude A =
√
2E A =

√
2E

Motion equation of d
dt

(√
2E cosϕ

)
+ ω

√
2E sinϕ d

dt

(√
2E coshϕ

)
− ωc

√
2E sinhϕ

energy and phase = F = F

Control input of F = arefA cosϕ F = arefA coshϕ

phase control
Dynamics of amplitude Ȧ = arefA Ȧ = arefA

under phase contorl
Control input of F = Kp(A

cmd −A) cosϕ F = Kp(A
cmd −A) coshϕ

energy/phase contorl

without and with the energy/phase control are visualized in terms of the position-velocity coordinate.

Concretely, vector fields in the position-velocity coordinate are visualized. In the vector fields, the ve-

locity vector at each grid point is drawn. By tracing the velocity vectors, the motion can be predicted. It

is possible to judge whether the motion will stabilize or unstabilize.

Firstly, a vector field of a harmonic oscillator is discussed. The state (x, y) is defined concretely as

(x, ẋ). The velocity vector (u, v) of the state (x, y) in a harmonic oscillator is expressed as

u = y (5.20)

v = −ω2x. (5.21)

Using (5.20) and (5.21), the vector fields are drawn as Fig. 5-5. In Fig. 5-5, periodic motions are

observed from the vectors. In the case of a linear inverted pendulum, the velocity vector becomes

u = y (5.22)

v = ω2x. (5.23)
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Fig. 5-5: Phase diagram of a harmonic oscillator.

Fig. 5-6: Phase diagram of a linear inverted pendulum.

The vector fields are drawn from (5.22) and (5.23) as Fig. 5-6. Different from Fig. 5-5, the motion

diverges if there are no additional limitations such as position limit or velocity limit. In the case of biped

walking, the motion does not unstabilize because the position is limited in one walking phase.

Next, dynamics with energy/phase control is discussed. The vector fields of a harmonic oscillator with
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Fig. 5-7: Phase diagram of a harmonic oscillator with the energy/phase control.

Fig. 5-8: Phase diagram of a linear inverted pendulum with the energy/phase control.

the energy/phase control are drawn using the velocity vecotr as

u = y (5.24)

v = −ω2x+Kp(A
cmd −A) cosϕ. (5.25)

The induced vector fields are shown in Fig. 5-7. The motion trajectory converges to the circular constant-

energy surface. In the case of a linear inverted pendulum with the energy/phase control, the velocity
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Fig. 5-9: Simulation setup: simplified walking model using a linear inverted pendulum.

vector is derived as

u = y (5.26)

v = ω2x+Kp(A
cmd −A) coshϕ. (5.27)

The vector fields are shown in Fig. 5-8. In this case the motion trajectory converges to the hyperbolic

constant-energy surface. It is confirmed that the energy/phase control attracts the motion to its dynamics

with constant energy.

5.2.5 Simulations Using Simple Model

In order to confirm the appropriateness of the proposed energy/phase control, simulations using a

simple inverted linear pendulum are conducted firstly.

Fig. 5-9 shows the setup of the simulations. The simulations assume the simplified walking model

using a linear inverted pendulum. The initial position of the body mass is zero. If the body mass proceeds

S [m], the position of stance leg xsp is switched to the next step. The initial position of the stance tiptoe

is S/2, and the step width is S. Using equations, the dynamics of the simple simulations is expressed as

ẍ = ω2
c (x− xsp) + F. (5.28)

The stance tiptoe xsp changes by S when x − xsp is greater than S/2, and xsp changes by −S when

x− xsp is lower than −S/2,

Using the dynamics, two simulations are conducted. The first is constant-speed walking. The en-

ergy/phase control is implemented, and the energy command is set as a certain value. The energy com-

mand is determined so that the velocity at switching the legs is 1 m/s. The second is variable-speed
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Fig. 5-10: Constant-command simulation results of energy/phase control using the linear inverted pen-
dulum: (a) time-series responses, (b) comparison with velocity control

walking. The energy command is varied so that the velocity at switching the legs becomes 1.0, 1.2, and

1.4 m/s. The command is varied at the third, the fifth, and the seventh steps.

Fig. 5-10 shows the simulation results of energy/phase control using the simple linear inverted pendu-
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Fig. 5-11: Stepwise-command simulation results of energy/phase control using the linear inverted pen-
dulum: (a) time-series responses, (b) comparison with velocity control

lum, especially the constant-speed walking. Fig. 5-10 (a) shows the time-series results of the constant-

speed walking. The position response is the response of the body mass in the support coordinate. The

position and the velocity change periodically, which indicates that periodic constant-speed walking is

– 84 –



CHAPTER 5 BIPED WALKING CONTROL BASED ON ENERGY/PHASE CONTROL

attained. The energy response follows the energy command. Fig. 5-10 (b) shows the phase diagram

of the constant-speed walking. The trajectory converges to the one hyperbolic trajectory. This result

also denotes that periodic walking is attained. The results of the energy consumption and the current

consumptions are as follows. The energy consumptions of the conventional velocity control and the

proposed energy/phaes control are 27.24 mWh and 2.91 mWh, respectively. The current consumptions

of the velocity control and the energy/phaes control are 3.55 mAh and 0.86 mAh, respectively. The

proposed energy/phase control is more efficient in terms of both the energy consumption and the current

consumption.

Fig. 5-11 presents the results of the variable-speed walking. The energy command and response re-

flect the change of the desired speed and its response. The energy response follows the staircase energy

command. The velocity response also shows the staircase change. Fig. 5-11 (b) is the phase diagram

of the variable-speed walking. The three-step trajectory is observed. The respective velocity at switch-

ing shows 1.0, 1.2, and 1.4 m/s as the desired walking speed. The results of the energy consumption

and the current consumptions are as follows. The energy consumptions of the velocity control and the

energy/phaes control are 33.17 mWh and 8.46 mWh, respectively. The current consumptions of the

velocity control and the energy/phaes control are 3.87 mAh and 1.39 mAh, respectively. The variable-

speed control by the proposed energy/phase control is also more efficient in terms of both the energy

consumption and the current consumption.

Figs. 5-12 (a) and (b) show the phase diagrams of the energy/phase control of the constant-speed

walking and the variable-speed walking. Fig. 5-12 (a) shows the steady hyperbolic trajectory, and

indicates that the periodic constant-speed walking is attained. Fig. 5-12 (b) shows the layered hyperbolic

trajectory, and indicates that the variable-speed walking is attained.

5.3 Model of Biped Robot

A parallel-link biped robot is assumed for verification of the proposed method. The merit of a parallel-

link legged robot is that the weight concentrates on the body. The dynamics become similar to the one

of a linear inverted pendulum.

Fig. 5-13 shows the initial condition of the biped simulations and experiments. Although Fig. 5-13

(a) is an image of the actual COG, it is assumed that the mass is concentrated at the origin of the base

as Fig. 5-13 (b). The first reason is that the actual COG is near the body because the heavy components
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Fig. 5-12: Phase diagrams of energy/phase control using the linear inverted pendulum: (a) constant-speed
walking, (b) variable-speed walking.

are located on the body in the parallel-link mechanism. The second reason is that the control system in

Chapter 3 nominalizes the dynamics as a body-mass system, and the dynamics error is compensated. In

Fig. 5-13, the right leg is drawn using the red lines, and the left leg is drawn using the blue lines. S is

the stride length, and Zc is the height of the concentrated mass. The position of the body (xb, zb) in Fig.

5-13 (a) is determined to satisfy that

• the concentrated mass is initially located (0, Zc),

• the left tiptoe is located at (S2 , 0) and the right tiptoe is located at (−S
2 , 0).

The position of the body (xb, zb) in Fig. 5-13 (b) is induced from the kinematic relations of Fig. 5-13

(b).

Next, the kinematics and the dynamics are explained.

5.3.1 Kinematics

Fig. 5-14 illustrates the kinematics of the left leg. The degree of freedom of the motion is 2D, and the

body is located at (xb, zb) in the world coordinate. The parallel-link leg is composed of the four links.

The angle of the bar 1 is q1, and the angle of the bar 3 is q2. The tiptoe position of the left leg in the
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(a)
(b)

Fig. 5-13: Initial condition: (a) the actual COG, (b) the approximated COG.

world coordinate wxtL = (wxtL,
wztL) is calculated as

wxtL = xb + l1 sin(q1)− l2 sin(q2) (5.29)

wztL = zb − l1 cos(q1)− l2 cos(q2). (5.30)

In the same manner, the tiptoe position of the right leg wxtR can be calculated using q3 and q4. In the

case of the right leg, the angle of the bar 1 is q3, and the angle of the bar 3 is q4.

Using the generalized position vector qe = (xb, q), where xb = (xb, zb) and qb = (q1, q2, q3, q4),

the Jacobian matrix of each tiptoe in the world coordinate JacoLw and JacoRw can be calculated as

JacoLw =
∂wxtL

∂qe
(5.31)

JacoRw =
∂wxtR

∂qe
. (5.32)

5.3.2 Dynamics

The dynamics of the robot is induced from Lagrange motion equation. Assuming that L is Lagrangian,

and τ ref = (τ ref1 , τ ref2 , τ ref3 , τ ref4 ) is the vector of the torque reference, the Lagrange motion equation is

concretely written as

d

dt

(
∂L
∂q̇e

)
− ∂L

∂qe
= τ ref + JacowF

ext, (5.33)
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Fig. 5-14: Kinematics of the left leg.

where Jacow is the Jacobian matrix in the world coordinate. The induced motion equation is a floating-

base motion equation as[
Hb Hbm

Hbm Hm

][
ẍb

q̈

]
+

[
gb

gm

]
=

[
0

τ ref

]
+ JT

acoLF eL + JT
acoRF eR. (5.34)

Here, H is the inertia matrix. The subscript b means the base, the subscript m means the motor-side

angle, and the subscript bm means the interference term of the base and the motor-side angle. g is the

vector of the nonlinear term. F eL and F eR are the reaction force from the environment to the left leg

and the right leg.

5.4 Control System for Biped Robot

This section describes the control system to apply the proposed energy/phase control to a biped robot.

The control system is constructed based on the controls of the body and the swing leg.

Fig. 5-15 shows the whole block diagram based on the body and the swing leg. The detail is explained

as follows.
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Direct Kinematics

The direct kinematics in the control system is calculated based on the base coordinate. The tiptoe

position of the left leg in the base coordinate xtL = (xtL, ztL) is calculated as

xtL = l1 sin(q1)− l2 sin(q2) (5.35)

ztL = −l1 cos(q1)− l2 cos(q2). (5.36)

The tiptoe position of the right leg xtR can be calculated using q3 and q4 in the same manner. The

Jacobian matrix of each tiptoe in the base coordinate JacoL and JacoR can be calculated using the joint

angle vector q = (q1, q2, q3, q4) as

JacoL =
∂xtL

∂q
(5.37)

JacoR =
∂xtR

∂q
. (5.38)

The velocity of the tiptoes in the base coordinate is calculated using the Jacobian matrices as ẋtL =

JacoLq and ẋtR = JacoRq. The position and velocity of the support-leg tiptoe and the swing-leg tiptoe

are induced in response to the right or left stance as

[xsp, ẋsp,xsw, ẋsw] =

[xtL, ẋtL,xtR, ẋtR] (if right stance)

[xtR, ẋtR,xtL, ẋtL] (if left stance).
(5.39)

Support-Leg Control System

The energy response is induceed based on the horizontal body position and velocity in the support

coordinate spxb,
spẋb. The energy response E are calculated as

E =
1

2
(spẋ2b − ω2

c
spx2b). (5.40)

Trasforming the energy variables to the equivalent energy variables through A =
√
2E, the equivalent

energy controller is implemented using energy control gain Ce as

arefA = Ce(A
cmd −A). (5.41)

The acceleration reference of the body control input in the x axis ẍrefsp is calculated by

ẍrefsp = arefA cosh(ϕ) +
g

Zc

spxb. (5.42)
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Fig. 5-15: The whole block diagram: body and swing-leg control.
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Fig. 5-16: Trajectory of the biped walking control.

The acceleration reference of the body control input in the z axis z̈refsp is determined by the position

control as

z̈refsp = Cpz(s)(Zc − spzb), (5.43)

where the position command of the body in the z axis is Zc. Cpz(s) is the controller gain. The acceler-

ation references ẍrefsp and z̈refsp are summarized as the vector ẍref
sp . Because of law of action and reaction,

the force reference F ref
sp is expressed as

F ref
sp = −Mngẍ

ref
sp . (5.44)

Swing-Leg Control System

The swing-leg trajectory command is determined by the body position in the support coordinate spxb

as Fig. 5-16. By this trajectory generation, the horizontal body position becomes the main variable of

the biped walking control. For simplification, the sinusoidal trajectory is employed as

spxcmd
t = 2 spxb (5.45)

spzcmd
t =

Ht

2

(
1 + cos

(
2π

spxb
S

))
. (5.46)

After transforming the coordinate of the tiptoe command from the support-leg coordinate to the base

coordinate, the tiptoe position control is implemented. The acceleration reference ẍref
t as the control

output is calculated using position gain Cp(s) as

ẍref
t = Cp(s)(x

cmd
t − xt). (5.47)
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Because the mass in the workspace is set as constant Mtn by the joint-space observer, the force reference

F ref
t is expressed as

F ref
t = Mtnẍ

ref
t . (5.48)

It is possible to attain the more accurate control by considering the derivative of Jacobian matrix as

F ref
t = Mtn(ẍ

ref
t − J̇acoq̇).

Force-Torque Conversion

The relation of torque and force in statics is utilized for the conversion from the force reference to

the torque reference. The relation of the tiptoe force reference (F ref
sp ,F

ref
sw ) and the torque reference is

written as [
τ ref
sp

τ ref
sw

]
=

[
JT

spF
ref
sp

JT
swF

ref
sw

]
. (5.49)

The torque reference of each actuator is finally induced as

[τ ref
L , τ ref

R ] =

[τ ref
sp , τ

ref
sw ] (if right stance)

[τ ref
sw , τ

ref
sp ] (if left stance)

(5.50)

In the control system based on the body and the swing leg, force-torque conversion becomes simpler

because the control systems of the left leg and the right leg are independent.

5.5 Feasible Walking Command Generation Based on Walking Stability

Command generation is important as well as the control system design for realizing the function. This

section describes the feasible command generation based on analyses of walking stability.

5.5.1 Analysis of Walking Based on Phase Diagram

Conventionally, Zaytsev et al. [102] analyzed walking stability based on a phase diagram using a

simple linear inverted pendulum. The available area is induced by subtracting the unavailable area which

expresses the constraints. This section analyzes the walking stability considering the implementation

constraints of the proposed control method.

The foundation of this analysis is the vector field of the linear inverted pendulum as Fig. 5-6. The

following constraints 1 and 2 limit the area, and the feasible motion region is induced. Constraint 1 is

the actuation limitation of the body mass. Constraint 2 is the bandwidth of the swing-leg control.
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Constraint 1: Actuation Limit of the Body Mass

In the implementation, there is a limitation in the actuation force of the body mass, or the actuation

acceleration of the body mass. Because of the limitation of the actuation and the energy conservation

law, the area of the state variables (the position and the velocity) are limited.

Necessary Condition of Constraint 1: Energy Conservation in the Case of the Maximum Energy

Injection The maximum energy at the next step Emax
n+1 is realized when the maximum actuation accel-

eration |ẍref |max is input constantly. Emax
n+1 is concretely induced as

Emax
n+1 = En + |ẍref |maxS. (5.51)

Here, En is the energy at the n th step, and S is the stride of the body mass in one stance. Considering

the energy at the zero positon is E = 1
2 ẋ

2, the maximum velocity at the (n+ 1)th step is expressed as

ẋcmd,max
n+1 =

√
ẋ2n + 2|ẍref |maxS. (5.52)

Conservative Condition of Constraint 1: Actuation without Saturation It is ideal that saturation of

actuation does not occur. Because the required actuaion at the beginning the phase is the largest in case

of no large disturbance, the maximum acceptable control erorr of energy is induced as

|∆E|max =
|ẍref |max

Kp cosh |ϕ|max
, (5.53)

where ∆E is concretely expressed as

∆E = Ecmd − Eres =
1

2
(ẋcmd 2

n+1 − ẋ2n). (5.54)

Therefore, the maximum acceptable velocity command is induced using (5.53) and (5.54) as

ẋcmd,max
n+1 =

√
ẋ2n + 2|∆E|max. (5.55)

Constraint 2: Bandwidth of the Swing-Leg Control

The swing-leg position control has a limitation of bandwidth. The limitain of the control bandwidth

determines the maximum feasible velocity. For simplicity, it is assumed that velocity of the body mass

is constant. From the relation of 2π
S/Vx

= ω, the maximum feasible velocity becomes

ẋcmd
max =

ωmax
ctl S

2π
. (5.56)

Here, the bandwidth of swing-leg control ωmax
ctl is identified through experiments or analysis.
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Fig. 5-17: Controllable region in phase diagram.

Fig. 5-18: Stepped controllable region in phase diagram.

Controllable Region

From the foundational vector field and the constraints 1 and 2, the controllable region is induced as

Fig. 5-17. The green are in Fig. 5-17 shows the controllable region. The boundaries are induced from
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Table 5.2: Parameters of the simulations for the biped walking control.
Description Parameter Value
Total mass m 26.6 kg

Weight of the body mb 15.0 kg
Weight of the one leg ml 5.8 kg

Sampling time of control Ts 0.100 ms
Length of thigh and shin l 0.45 m
Nominal torque constant Ktn 0.091 Nm/A
Gear ratio of the motors G 1:126

Walking stride S 0.30 m
Maximum height of Ht 0.10 m

swing leg
COG height Zc 0.60 m

Angular frequency ω
√
g/Zc

of phase control
P gain of energy control Kep 100

P gain of position control Kp 10000
D gain of position control Kd 200

Cut-off frequency of gdis 50.0 rad/s
joint space observer
Cut-off frequency of gpd 120.0 rad/s

pseudo derivative
Environment stiffness Kenv 30000 N/m
Environment viscosity Denv 2000 Ns/m

(5.51) or (5.53). The controllable region can be categorized in terms of the necessary step number as Fig.

5-18. Ci shows the controllable region in i steps. By referring to Fig. 5-18, the necessary step number

and the command design can be shown.

5.6 Biped Simulations

Simulation of biped walking is conducted based on the proposed energy/phase control. The initial

condition is the same as the one explained in Fig. 5-13 of Section 5.3: the body is at (0, Zc), the

left tiptoe is at (S2 , 0), and the right tiptoe is at (S2 , 0). The respective velocity is zero. Constant

speed walking and variable speed walking are simulated. In the respective walking simulations, the

conventional velocity control and the proposed energy/phase control are compared. The desired velocity
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Fig. 5-19: Stick picture of the simulation results: (a) constant-speed walking, (b) variable-speed walking.

of the conventional method is set as V cmd
x 0.222 m/s (= 0.8 km/h). The desired velocity at the stance

change of the proposed method is set as Vx = 0.611 m/s. These desired velocities are induced so that the

respective periods become equal. The walking periods of the conventional method τc and the proposed

method τp are calculated

τc = S/V cmd
x (5.57)

τp = Tcln
S/2 + TcVx

−S/2 + TcVx
. (5.58)

Fig. 5-19 is the stick pictures of the simulation results. Fig. 5-19 (a) shows the results with the

constant command. The walking is attained, and the body moves with a constant width. It is revealed

that the constant walking is attained. Fig. 5-19 (b) shows the resluts with the variable command. The

walking is attained, and the body moves with different widths. It is shown that the variable walking is
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Fig. 5-20: Simulation results of the conventional velocity control with constant command.
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Fig. 5-21: Phase diagram of the conventional velocity control with constant command.

attained.

The times-series results of the constant walking simulations are shown in Figs. 5-20 and 5-22. Fig.
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Fig. 5-22: Simulation results of the proposed energy/phase control with constant command.
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Fig. 5-23: Phase diagram of the proposed energy/phase with constant command.

5-20 is the results of the conventional velocity control. The velocity response is constant as the desired

velocity. Because the velocity is constant, the orbital energy is not constant. Fig. 5-22 shows the results
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Fig. 5-24: Simulation results of the conventional velocity control with variable command.
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Fig. 5-25: Phase diagram of the conventional velocity control with variable command.

of the proposed energy/phase control. The curves of the position and the velocity are hyperbolic. The

energy response is constant as the energy command. The phase changes with constant velocity. The
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Fig. 5-26: Simulation results of the proposed energy/phase control with variable command.
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Fig. 5-27: Phase diagram of the proposed energy/phase with variable command.

energy consumption of the conventional method and the proposed method are 119.85 mWh and 77.44

mWh. The energy consumption of the proposed method is lower than the conventional method. The
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current consumption of the conventional method and the proposed method are 33.10 mAh and 19.80

mAh, respectively. The current consumption of the proposed method is also lower.

The times-series results of the variable walking simulations are shown in Figs. 5-24 and 5-26. Fig.

5-24 shows the simulation results of the conventional velocity control. The velocity command varies in

step wise. The velocity response converges to the command after each touchdown. Because the velocity

converges to the constant value, the orbital energy is not constant. Fig. 5-26 shows the results of the pro-

posed energy/phase control. The energy command is set as the step wise. The energy response converges

to the energy command in each step. The higher the energy command is, the shorter the period is. This

is reasonable because the stride is constant and the velocity is higher. The widths of the phase change

are also different while the phase changes with constant velocity. The energy consumption of the con-

ventional method and the proposed method are 367.39 mWh and 398.00 mWh. The energy consumption

of the proposed method is a little higher than the conventional method. The current consumption of the

conventional method and the proposed method are 71.73 mAh and 71.4 mAh, respectively. The current

consumption of the proposed method is a little lower.

Compared to the ideal simulations, the superiority of the proposed method in the biped simulations

becomes weakened in terms of the energy efficiency. The control in the biped simulations requires the

additional energy and current for nominalizing the dynamics. Even though, the simulation results of the

constant biped walking show the superiority of the proposed method clearly.

5.7 Additional Analyses

To confirm the applicability of the proposed method, additional simulations are conducted. The damp-

ing friction and the different mass distribution are focused. Impact force from the ground is already

considered in the biped simulations. The ground is modeled as a spring-damper system.

Also, the relation between model mismatch and the energy consumption change is analyzed.

5.7.1 Damping Friction

The biped walking considering the gear damping is conducted. The damping coefficient of the gears

is 4.3 Nm/(rad/s). The biped walking with the same damping coefficient, the twice and the three-times

damping coefficients are simulated.

Fig. 5-28 shows the simulation results of the biped walking with geared damper. In the respective
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Fig. 5-28: Results of the biped simulaitons with damper.

cases, the damping disturbances are compensated, and the desired energy is realized after the impact.

The position and the velocity responses are also consistent regardless of the damping. The biped walk-

ing control system includes a disturbance observer in the inner loop, which suppresses the damping

disturbance.

5.7.2 Mass Distribution

Three patterns of the mass distribution are considered. Case 1 is the parameters used in Section 5.6.

Case 2 assumes that the leg bars are lighter-weight, and case 3 assumes that the leg bars are heavier. The

concrete parameters are shown in Table 5.3. Mass of the leg bar is set as 1.0 kg in case 2, and 2.0 kg in

case 3. The constant biped walking is simulated for the comparison.

The simulation results are shown in Fig. 5-29. The body position, the velocity, and the energy are
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Table 5.3: Parameters of the simulations with different mass.
Item Case1 Case2 Case3

Body mass mb 15.0 kg 15.0 kg 15.0 kg
Mass of bar 1 m1 1.5 kg 1.0 kg 2.0 kg
Mass of bar 2 m2 1.4 kg 1.0 kg 2.0 kg
Mass of bar 3 m3 1.5 kg 1.0 kg 2.0 kg
Mass of bar 4 m4 1.4 kg 1.0 kg 2.0 kg
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Fig. 5-29: Results of the biped simulaitons with different mass distribution.

plotted. The respective position and velocity response shows the similar periodic shape, and attains

periodic walking. The small shifts are observed in the position and the velocity response. The shifts are

owing to that the contact detection is implemented by a certain common threshold of the reaction force

and that the reaction force changes in response to the weight of the robot. The heavier case (case 3) has

the earlier changes of the states, and the lighter case (case 2) has the latter changes of the states.
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5.7.3 Model Mismatch and Energy Consumption Change

The relation of the model mismatch and the energy consumption change is analyzed. The motion

equation of the biped robot in the support coordinate can be expressed as

M sp(q)q̈ + gsp(q, q̇) = τ ref + τ ext, (5.59)

where M sp and gsp are the mass matrix and the other terms in the support coordinate. τ ref and τ ext are

the reference torque and the external torque by the environment.

The nominalized dynamics of the biped robot in the support coordinate can be expressed as

M sp
n (q)q̈ + gsp

n (q, q̇) = τ ref − τ cmp + τ ext
n . (5.60)

The subscript n means nominal. τ cmp is the additional torque for the compensation. Assuming the exter-

nal torque is equivalent whether the nominalization is implemented or not, the additional compensation

torque is induced using (5.59) and (5.60) as

τ cmp = (M sp(q)−M sp
n (q))q̈ + gsp(q, q̇)− gsp

n (q, q̇). (5.61)

(5.61) implies that the additonal compensation torque is equal to the torque of the dynamics error between

the real and the nominal. When P and P n are defined as the torque by the real dynamics and the nominal

dyanamics as

P = M sp(q)q̈ + gsp(q, q̇) (5.62)

P n = M sp
n (q)q̈ + gsp

n (q, q̇), (5.63)

the compensation torque becomes

τ cmp = P − P n := ∆P . (5.64)

Here, ∆P is the torque of the dynamics error between the real and the nominal. Because the energy is

the integral of the product of the torque and the velocity, the energy consumption change is induced as

∆E =

∫
τ cmp · ẋdt (5.65)

=

∫
∆P · ẋdt. (5.66)
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Table 5.4: The theoretical prediction and the simulation results of the energy consumption change.
Item Theoretical prediction Simulation results

Adding the gear damper -5.80 J -3.54 J
Adding the gear damper (x2) 15.13 J 17.71 J
Adding the gear damper (x3) 40.52 J 46.66 J

Change of mass distribution from case 1 to case 2 98.41 J 95.94 J
Change of mass distribution from case 1 to case 3 -79.80 J -80.08 J

In short, the energy consumption change is calculated as the integral of the product of the dynamics error

torque and the velocity.

Based on the theory, the energy consumption change by adding the gear damper and changing the

mass distribution is analyzed. Energy consumptions of the previous constant speed walking simulations

and each case are compared. The results of the energy consumption change are summarized in Table

5.4. It is found that the theoretical prediction and the simulation results show the close values in the

respective cases.

5.8 Experiments

5.8.1 Experimental Setup

To verify the proposed walking control, experiments are conducted. Fig. 5-30 shows the photos of the

biped robot for the experiments. The robot body is constrained so that the body can realize horizontal

and vertical motion. The parallel-link legs are realized by setting the geared motors facing each other

as the one-leg hopping robot in Section 4. The encoders are also set on the motor sides. While contact

detection is necessary for the state change, the contact detection is implemented based on the reaction

force by the disturbance observer.

Two control methods are compared using the biped robot: the conventional velocity control and the

proposed energy/phase control. Each response and energy consumption are compared.

5.8.2 Experimental Results

Fig. 5-31 shows the experimental results of the conventional velocity control. The velocity control

controls the velocity as constant. Although there are some errors at 0.5 s and at the change point of the

support leg, the velocity response converges to the desired value. Because the velocity is constant, the
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Geared motors

of left leg

Geared motors
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Fig. 5-30: Setup of the biped experiments.

Table 5.5: Parameters of the experiments for the biped walking control.
Description Parameter Value
Total mass M 17.1 kg

Sampling time of control Ts 0.100 ms
Height of body Zc 0.6 m
Stride of body S 0.3 m

Length of thigh and shin l 0.45 m
Nominal torque constant Ktn 0.231 Nm/A
Gear ratio of the motors G 50
P gain of energy control Kep 5

orbital energy is not constant.

Fig. 5-33 shows the experimental results of the proposed energy/phase control. The energy/phase

control controls the orbital energy, not the velocity. While the velocity is not constant, the energy is

controlled as constant. Although there are errors at the change of the support leg, the errors stabilize by

the proposed control. The phase proceeds at the respective support period. The upper bound and the
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Fig. 5-31: Experimental results of the conventional velocity control.
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Fig. 5-32: Phase diagram of the conventional velocity control in the experimental results.

lower bound of the phase are set for the prevention of destabilization.

Figs. 5-32 and 5-34 show the phase diagram of the velocity control and the energy/phase control.
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Fig. 5-33: Experimental results of the proposed energy/phase control.
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Fig. 5-34: Phase diagram of the proposed energy/phase in the experimental results.

In Fig. 5-32, the horizontal line is observed. This is reasonable because the velocity control keeps

the velocity constant. In Fig. 5-34, the hyperbolic curve is observed. This is reasonable because the

– 108 –



CHAPTER 5 BIPED WALKING CONTROL BASED ON ENERGY/PHASE CONTROL

-0.1

 0

 0.1

 0.2

 0  0.5  1  1.5  2  2.5  3

P
o

si
ti

o
n

 [
m

]

Time [s]

-0.4

 0

 0.4

 0.8

 0  0.5  1  1.5  2  2.5  3

V
el

o
ci

ty
 [

m
/s

]

Time [s]

-0.2
-0.1

 0
 0.1
 0.2
 0.3

 0  0.5  1  1.5  2  2.5  3

E
n

er
g

y
 [

J]

Time [s]

Trial 1 Trial 2 Trial 3

Command

Fig. 5-35: Several results of the biped walking experiments using the energy/phase control.

energy/phase control keeps the energy constant, and the trajectory becomes a hyperbolic function.

The energy consumptions of the conventional velocity control and the proposed energy/phase control

are 12.25 mWh and 9.83 mWh, respectively. The current consumptions of the velocity control and the

energy/phase control are 1.74 mAh and 1.70 mAh, repsectively. The both energy and current consump-

tions of the proposed method are superior in this trial.

The several trials of the biped walking experimental results are compared. Fig. 5-35 and Table 5.6

show the several results of the biped walking experiments using the energy/phase control. The averages

of the energy consumption of the conventional method and the proposed method are 12.19 mWh and

10.98 mWh, respectively. Although the energy consumption results of the proposed method are lower,

the values are close. Because the step change is determined by the sensorless contact force estimation

in the experiments, the step length is not equal. As an index of the energy consumption considering the
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Table 5.6: Results of the energy consumption, the step distance, and CoT in the biped walking experi-
ments.

Item Energy consumption two-step distance CoT
Conventional method, trial 1 12.27 mWh 0.49 m 0.53
Conventional method, trial 2 10.64 mWh 0.50 m 0.46
Conventional method, trial 3 13.65 mWh 0.47 m 0.63
Proposed method, trial 1 12.08 mWh 0.53 m 0.49
Proposed method, trial 2 11.17 mWh 0.55 m 0.44
Proposed method, trial 3 9.83 mWh 0.55 m 0.39

step distance, cost of transport (CoT) is popular in legged robots. CoT is calculated by E/mgd, where

E, m, g, and d are the energy consumption, the mass, the gravitational acceleration, and the distance.

CoT is proportional to the ratio the energy consumption to the walking distance. The CoT average of

the conventional method and the proposed method are 0.54 and 0.44, respectively. Low CoT implies a

low energy cost for transport. However, the performance difference in the experimental results is not

as remarkable as the simulation results. It is assumed that the dynamics error between the experimental

setup and the nominal system is larger than the simulations. Another demerit of the proposed method

is that the control system sometimes diverges to the negative direction under the environment where the

energy control gain cannot be high enough. The reason is that the energy immediately after switching

the stance leg is negative, and that the negative energy leads to divergence to the negative direction.

5.9 Summary

This chapter dealt with the biped walking control utilizing the dynamics of the linear inverted pen-

dulum. The energy/phase control was proposed as an oscillation method of an inverted pendulum. The

phase control simplifies the dynamics by synchronizing the oscillation phase to the phase of the linear

inverted pendulum. The dynamics under the phase control is simplified using the energy-equivalent vari-

ables, and the dynamics become an integral element. Energy control is constructed based on the energy

dynamics. The appropriateness of the proposed method was confirmed by the simulations using a linear

inverted pendulum.

It was also confirmed that the proposed method works properly for a biped walking robot. In the biped

control, the simultaneous control of the body and the swing leg was employed. The feasible command

generation was induced from the walking stability and the energy conservation law. The simulations and
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the experiments of a biped robot were conducted.

In the additional analyses, the simulations with the gear damping and the simulations with differ-

ent mass distributions were conducted. The relationship between the model mismatch and the energy

consumption were also inducted, and compared with the simulation results.
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Conclusions

This dissertation proposed energy/phase control for realizing both the energy-efficient oscillation and

the energy control. By utilizing the dynamics of the oscillator of the plant, efficient oscillation is realized.

The energy/phase control was induced in the following three steps. Firstly, the energy and the phase of

the oscillator were defined, and the dynamics using the energy and the phase were induced. Second,

the phase control was implemented in the inner loop for energy-efficient oscillation. The phase control

determines the actuation phase by synchronizing with the vibration phase. Third, the energy control

was constructed in the outer loop for the control of energy. The energy control determines the actuation

amplitude by feedback control of energy. The control input of the energy/phase control was determined

as the product of the actuation amplitude by the energy control and the actuation phase by the phase

control. Because the control input of the energy/phase control is determined by the product, the necessary

number of the control input is one. The one control input realizes both the energy-efficient oscillation

and the energy control.

In Chapter 2, the energy/phase control under the dynamics of a harmonic oscillator was proposed.

It was shown that the energy/phase control enables both the energy-efficient oscillation and the energy

control with the one input. The behavior of the energy/phase control under the dynamics of a harmonic

oscillator was induced theoretically. For the verification, the simulations of the energy/phase control with

the dynamics of a harmonic oscillator were conducted. The two cases were tested: the constant energy

command and the stepwise energy command. In both cases, it was confirmed that the energy/phase con-

trol attains the energy control and the oscillation adequately. The theoretical analyses were conducted

from the three viewpoints: stability, energy efficiency, and robustness. Compared to the conventional en-
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ergy control, the proposed energy/phase control has the advantage in terms of the energy efficiency. The

proposed energy/phase control oscillates only the resonant frequency component while the conventional

energy control oscillates all frequency components. In return, the conventional energy control has the

merit as for the robustness. The comparative simulations were also conducted for verification. As the

analytical results, the simulation results also showed that the advantages of the proposed energy/phase

control and the conventional energy control are the energy efficiency and the robustness, respectively. It

was also confirmed that adding a disturbance observer enables to increase the robustness of the proposed

energy/phase control.

Chapter 3 described the nominalization methods to the desired simple dynamics for applying the

energy/phase control to a legged robot. The approach is an integrated design of mechanics and control.

As for mechanics, the parallel link mechanism with the linear spring was employed to realize similar

dynamics to a harmonic oscillator. Because the parallel link mechanism concentrates the weight mainly

on the body, the dynamics become similar to the body mass. The linear spring generates the elastic force

as the desired harmonic oscillator. The merit of the proposed mechanism was confirmed analytically

compared to a serial link mechanism and a rotary spring. As for control, the nominalization control

using acceleration control based on disturbance observers was discussed. The four disturbance observers

are considered and compared: joint-space observer with constant inertia (JOBc), joint-space observer

with variable inertia (JOBv), joint-space observer with constant mass in the workspace (JOBp), and

workspace observer (WOB). The comparative simulations were conducted under the legged robot and

the energy/phase control in the outer loop. It was confirmed that JOBv has superiority in terms of the

control error and the energy consumption, and that WOB has superiority as for the robustness in return

for the energy consumption. JOBp showed the intermediate performance between JOBv and WOB.

Chapter 4 dealt with hopping height control utilizing the energy/phase control and the nominalization

method in Chapters 2 and 3. The energy/phase control under the nominalization control was implemented

at the stance phase. The control at the aerial phase is the position control to keep the leg posture. The

simulations under the ideal spring-mass hopping robot were conducted to verify the hopping strategy.

The constant height hopping was achieved by the constant energy command as the desired height. The

variable height hopping was attained by the variable energy command as desired. The experiments with

the one-leg robot were conducted. The constant-height hopping and the variable-height hopping were

realized as desired.

In Chapter 5, the energy/phase control is applied to a biped walking robot. The energy/phase control
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of a harmonic oscillator was extended to the energy/phase control of a linear inverted pendulum. The

energy and the phase of a linear inverted pendulum were newly defined, and the energy/phase control

for a linear inverted pendulum was constructed. The duality of the energy/phase control for a harmonic

oscillator and a linear inverted pendulum was also summarized. The simulations under the ideal linear

inverted pendulum were conducted to verify the energy/phase control for a linear inverted pendulum.

The constant-speed and the variable-speed walking were achieved. A biped walking control system was

constructed to apply to biped walking. The horizontal body motion was controlled by the energy/phase

control. The vertical body motion was the position control to keep the body height. The swing leg

motion was designed based on hybrid zero dynamics to realize stable walking. Feasible command gen-

eration about the energy command was also discussed. The feasible energy command was generated

based on the two constraints: the actuation limit of the body mass and the bandwidth of the swing-leg

control. The simulations with the biped robot were conducted. The constant-speed and the variable-

speed walking were achieved as the simulations with the ideal linear inverted pendulum. Compared to

the conventional constant velocity control, the proposed energy/phase control realized lower energy and

current consumption in the constant-speed walking. The biped control was implemented in the experi-

mental biped robot. The constant-speed walking experiments were conducted. The energy/phase control

attained lower energy and current consumption compared to the conventional method.

This dissertation firstly solved both realization of the energy-efficient oscillation and the energy con-

trol under a known harmonic oscillator without disturbance. While the advantage of the proposed method

is low energy consumption, the proposed method is weak against parameter variation. To the problem of

the weakness against parameter variation, it is possible to increase the robustness by introducing a dis-

turbance observer. There is a trade-off between the energy consumption and the robustness. The energy

consumption change under a disturbance observer is analyzed, and it is mainly calculated by integrating

the power of the product of the modeling error oriented torque (force) and velocity. The magnitude of the

compensation torque by a disturbance observer can be tuned by the cut-off frequency of a disturbance

observer. While low compensation torque by the low cut-off frequency can mitigate the large increase of

energy consumption, the bandwidth of the nominalized dynamics is limited.

The proposed energy/phase control is extended for a linear inverted pendulum as well as a harmonic

oscillator in order to apply the proposed method to a biped walking control. Duality of the energy/phase

control for a linear inverted pendulum and a harmonic oscillator is summarized in the form of a table. The

main difference between a linear inverted pendulum and a harmonic oscillator is that a linear inverted
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pendulum can have the negative energy, which means that the biped walking cannot go to the next step.

It is necessary to increase the energy P gain in order to realize the positive energy as soon as possible.

In addition, this dissertation dealt with the problems with damping and impact as popular disturbances

in legged robots. It was shown that damping can be suppressed by a disturbance observer or an energy

PI controller. While it is impossible to suppress the high-frequency impact by a disturbance observer,

the energy response can converge to the command value after impacts even with only a P controller. The

convergence speed is determined by the P gain, and the P gain is the time constant of the energy control.

The P gain can be tuned considering the relation of the desired convergence speed and the time constant.

There exist remaining issues to be solved as future works. Future works are described referring the

framework of this dissertation in Fig. 1-3.

The goal of the upper layer is the generation of the energy command. Although it is simple for

hopping and walking to induce the energy command, it is difficult for some motions to calculate the

energy command. It is difficult for such motions to apply the proposed energy/phase control. Integration

of the energy/phase control and other control is also a remaining issue. Also, not considering the angular

momentum is one of the limitations of the proposed method. Like Takenaka’s work [115], some biped

control methods decompose the controls of upper-body translation and rotation, respectively. If such a

decomposed control is employed, it is possible that the proposed method is applied in the translation

direction and another control is applied in the rotation direction.

The goal of the intermediate layer is the control of the energy with efficiency under an oscillator.

Although it was shown that the proposed method can deal with the damping and the short-term impact

force, it is difficult to deal with the case of adding high-frequency disturbance continuously and the case

that large unknown disturbance is added by such as soft ground. Another issue is that the proposed

method for a linear inverted pendulum has negative energy just after switching the stance leg, which

sometimes makes the walking fail in the experiments. It is also an issue to obtain the energy and the

phase with few noise components and without lag.

The goals of the lower layer are the acceleration control, the nominalization to the oscillator, and

the stabilization control. As the above discussion, the limit of the lower layer affects the intermediate

layer. Performance improvement of the nominalization control and the stabilization control contributes to

extending applications of the proposed energy/phase control. While Chapter 5 employed a simple HZD

for the stabilization control of the biped robot, another stabilization control can be applied. If a more

stable stabilization control is employed, it is expected to realize more stable walking with efficiency. It is
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necessary to consider that the new stabilization control is located in the lower layer and does not interfere

with the intermediate layer control.

Except for legged motion control, the proposed method has a possibility to be applied to other fields

such as electrical systems. This is because the core of the proposal is for a harmonic oscillator in general.
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