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Abstract

Heartbeat is one of the essential biological signals, and the continuous monitoring of cardiac ac-

tivity such as the heart rate (HR) enables detecting disease in humans. As a typical method to

detect heartbeat, wearable sensors such as Electrocardiogram (ECG) have been used in the past.

However, device attachment is sometimes unsuitable for long-term HR monitoring. In contrast, a

Doppler radar could be a key device to enable remote sensing of heartbeat without privacy inva-

sion, and various Doppler radar-based heartbeat detection methods have been investigated. How-

ever, it is challenging to exploit heartbeat components from received signals of a Doppler radar

because the signal-to-noise ratio (SNR) of heartbeat components is lower than those of breathing

and body movements.

To deal with this issue, this thesis first proposes a Doppler radar-based heartbeat detection

method by using heartbeat signal reconstruction with a deep learning technique, achieving more

accurate heartbeat detection. In addition, to obtain more detailed information on cardiac activity,

we propose an ECG signal reconstruction method from a Doppler radar signal.

Chapter 1 introduces the background of cardiac activity sensing using a Doppler radar, in-

cluding some typical methods and these limitations. We also explain the fundamental principle of

cardiac activity sensing using a Doppler radar for a better understanding of our proposed methods.

We then explain the conventional Doppler radar-based heartbeat detection methods, the motiva-

tions and positioning of our research. We then give a brief explanation about the proposed method.

We finally describe the contributions of the proposed methods and the outline of this dissertation.
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In Chapter 2, we describe related work, including the conventional heartbeat detection meth-

ods using a Doppler radar, the existing ECG signal reconstruction methods, and deep learning

techniques related to our proposed methods.

In Chapter 3, we present a heartbeat detection method based on heartbeat signal reconstruction

with deep learning, for accurate heartbeat detection with robustness to the degradation of the SNR

of heartbeat components. Specifically, we first explain the idea of our proposed method, and then

we present the proposed algorithm in terms of (i) noise-robust heartbeat component extraction and

(ii) heartbeat signal reconstruction based on deep learning. Through the experimental evaluation,

we show that our proposed method can detect heartbeat even in the condition where the SNR of

heartbeat components is low.

In Chapter 4, we propose an ECG signal reconstruction method based on deep learning via

a Doppler radar. We first explain the idea of our proposed method, and then we describe the

proposed algorithm based on the results of heartbeat detection. Through some experiments, we

show that the proposed method can reconstruct an ECG signal from a Doppler radar signal even

without any wearable devices.

Finally, we conclude this dissertation and discuss future work in Chapter 5.
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Chapter 1

Introduction

This dissertation presents two main topics related to remote sensing of cardiac activity. The first

one is heartbeat detection via a Doppler radar. The second one is Electrocardiogram (ECG) signal

reconstruction from Doppler radar signal.

1.1 Background

Heartbeat is one of the most critical biological signals to grasp our health condition. Thus, the

technique of heartbeat detection has been required in various fields, e.g., the medical field [1][2],

the health care field [3][4], and the smart home field [5][6]. As a traditional method to detect the

heartbeat, ECG and Photoplethysmography (PPG) have been used broadly.

1.1.1 Cardiac Sensing via ECG

Fig 1.1 shows an example of an ECG sensor. ECG is a device to monitor cardiac activity in detail

and has been used widely in the medical field. Fig 1.2 shows an example of an ECG signal.

Once the atrial activation starts, a P-wave appears, and subsequently, an R-peak appears due to

the ventricular activation. As the ventricle gets relaxed, a T-wave finally appears. The interval

between two adjacent R peaks is typically called R-R Interval (RRI), and it is possible to obtain

biological information such as heart disease and autonomic activity by monitoring the variability

of the RRI and the heart rate (HR). Also, by analyzing the ECG signal, such as the timing of the

P-wave, the T-wave, and the R-peak, various heart diseases can be detected [7]-[9].

13



14 CHAPTER 1. INTRODUCTION

Figure 1.1: ECG sensor. https://www.checkme.jp/ecg/
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Figure 1.2: (a) The illustration of a heart and (b) an ECG signal. (i) A P-wave appears due to the
atrial activation, (ii) an R-peak does due to the ventricular activation, and (iii) a T-wave does due
to the ventricular relaxation.
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1.1.2 Cardiac Sensing via PPG

Fig 1.3 shows an example of an PPG sensor. PPG is also a device that has the potential for

heartbeat detection, and it has been mounted on a smartwatch in recent years. PPG emits light on

the skin and observes intensity changes of the reflected light. The changes of intensity are caused

by heart activity such as heart systole and diastole. By detecting features such as peaks over a

PPG signal through some signal processing such as a filter and frequency analysis, it is possible to

detect heartbeat.

1.1.3 Advantages and disadvantages of ECG and PPG

Thanks to high-accuracy sensing of heart activity, ECG and PPG have been used in various medical

applications, as we mentioned above. In particular, ECG is somewhat robust to noise such as

breathing and body fluctuation of a subject his/herself. However, to detect the ECG signal, it is

necessary to attach electrodes to a body, and PPG is also a wearable device, which is sometimes

unsuitable for some situations, such as long-term monitoring.

1.1.4 Doppler radar

A Doppler radar could be a key device to enable non-contact heartbeat detection. A Doppler radar

transmits microwaves toward an object and then receives the microwaves reflected by the object.

At the same time when the object reflects the transmitted microwaves, the phase of the microwaves

is Doppler-shifted when the object moves. Thus, it is possible to capture the object’s motion, such

as its velocity and direction, by analyzing the reflected signal. Here, note that the more detailed

explanations are given in Chapter 2. Based on this principle, a Doppler radar has been applied in

the field such as

• Heartbeat detection [10]-[33]

• Respiration detection [34]-[36]

• Activity recognition [37]-[39]
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introduces the system model of our method. In Section III the
proposed method is presented and described in detail. Exper-
imental specifications and results are discussed in Section IV.
Finally, Section V concludes the whole paper.

II. SYSTEM MODEL

In this paper, we use a wrist-worn PPG sensor as shown in
Fig. 1 [8]. This sensor irradiates green light with a wavelength
of 530 nm towards the skin, and detects the reflected light
that has not been absorbed into the skin. The reason why we
selected green light for experiments is because most wrist-
worn smart devices on market contain PPG sensor using green
light LED. Green light is suitable for measuring the pulse rate
[9].

Fig. 1. Wrist-worn PPG sensor [8].

In our proposed method a person flicks his/her wrist in
the direction of their palm (see Fig. 2). We selected this
gesture from several reasons. Considering the fact that our
motivation of this work is to authenticate individuals without
bothering the user, the gestures have to be easy enough, both
in remembering and actually moving the arm. Also gestures
have to be small enough to be done without a large space.
Preliminary experiments were conducted to find out which
gestures were appropriate in our proposed method. The subject
sat down and put their elbow on the desk in front of the
body, and conducted two types of movements with their hands
closed. Fig. 3 describes the waveform of when the subject
was asked to flick their wrist in the direction of the palm (the
gesture which was adopted in our proposed method), Fig. 4
is the waveform of when the subject was asked to flick their
wrist in the direction of the back of the hand.

Fig. 2. Hand movement.

Fig. 3. Flicking the wrist in the direction of the palm.

Fig. 4. Flicking the wrist in the direction of the back of the hand.

In the first five seconds, the subjects were asked to stay still,
so you can see small periodic waves. These waves correspond
to the pulse. Then you can see the wave amplitude increasing,
and decreasing in an almost equal period. A single period
corresponds to a flick of the wrist. The subject flicked their
wrist for twenty times, thus you can see twenty periods, each
corresponding to the motion. On the other hand, in Fig. 4, the
subject was asked to flick the wrist for twenty times as well,
but in the direction of the back of the hand instead. You can
see that it is difficult to figure out which peak was occurred
from the wrist movement. As will be mentioned later in the
paper, it is important that we are able to distinguish one period
from the other, correctly corresponding to the movement. So
flicking the wrist in the direction of the palm was adopted as
a gesture for our authentication method.

2016 IEEE 27th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Services Applications
and Business

Authorized licensed use limited to: Keio University. Downloaded on July 17,2021 at 01:26:54 UTC from IEEE Xplore.  Restrictions apply. 

Figure 1.3: PPG sensor. http://www.svtronics.com/AFE4403-HREVM

In respiration detection, the respiration rate is typically estimated by applying signal processing to

a received signal of a Doppler radar. Some researches have focused on respiration pattern recog-

nition [35][36]. In recent years, respiration pattern recognition has been based on machine learn-

ing [36]. Also, most of the researches related to activity recognition have investigated to classify

abnormal activity, e.g., falling, and normal activity, e.g., walking and sitting. The Doppler-shift

is different from one activity to another. Based on this fact, the conventional methods typically

extract features from the received signal and then classify activity based on the extracted features

with machine learning [37]-[39].

1.2 Cardiac sensing via Doppler radar

In addition to the non-contact feature, the Doppler radar-based heartbeat detection does not re-

quire a subject to take off his/her clothing since the microwaves can penetrate the clothing. Also,

the cardiac sensing via a Doppler radar does not suffer from the issues related to performance

degradation due to the level of brightness and the temperature. Fig. 1.4 shows an example of the

Doppler radar used in this research. The size of the radar module for heartbeat detection is not

very large, e.g., 12 mm × 7 mm × 1 mm of the Doppler radar used in our research. Thus, a
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Figure 1.4: An example of the Doppler radar used in this research.

Doppler radar is applicable for heartbeat detection in real applications. Fig. 1.5 shows an exam-

ple of the application of the Doppler radar-based heartbeat detection: smart home system. This

system assumes that it detects humans first and then estimates the location of the human when the

human exists. Based on the estimated location, the beam direction of a Doppler radar is adjusted to

transmit microwaves toward the human. If the RRI and the HR estimated by Doppler radar-based

heartbeat detection are abnormal, the notification representing anomaly will be sent to others.

Also, the Doppler radar-based heartbeat detection can be acceptable for those who cannot wear a

device. Thus, in addition to such smart home, the Doppler radar-based heartbeat detection can be

applied for monitoring a burn patient and an infant who does not prefer device attachment. From a

viewpoint of usability, Doppler radar-based heartbeat detection is demanded in these applications,

compared to wearable device-based heartbeat detection.

1.2.1 Fundamental principle of cardiac sensing via Doppler radar

In this section, we describe the system model of heartbeat detection with a Doppler radar. The fun-

damental principle of a Doppler radar is to measure the frequency change caused by the Doppler

effect. Fig. 1.6 shows the system model of cardiac sensing with a Doppler radar. Microwaves are

transmitted from a Doppler radar toward a subject’ chest. When the chest reflects the microwaves,

the phase of the microwaves is Doppler-shifted by the chest’s displacements due to the subject’s
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1. Human detection
u Illuminance sensor
u Infrared sensor

2. Location estimation
u Infrared sensor

3. Heartbeat detection
u Doppler radar

4. Anomaly notification

Smart home system

If the RRI and the HR are abnormal, the 
anomaly notification will be sent to others.

Figure 1.5: An example of the application of the Doppler radar-based heartbeat detection: smart
home system. https : //thumb.photo− ac.com/

heartbeat. The Doppler-shift due to the heartbeat, fDoppler, can be expressed as follows.

fDoppler = ±4πvt

λ
× 1

2πt
= ±2v

λ
, (1.1)

where v denotes the speed of the chest displacement. When the chest moves away from the

Doppler radar, the minus symbol can be adapted, and vice versa. The Doppler radar then receives

the reflected microwaves. The received signal is passed through the low noise amplifier (LNA)

and down-converted into the baseband signal B(t). When the chest is a distance d from the

Doppler radar, the baseband signal B(t) can be expressed by the wavelength of the carrier λ as

the following equation.

B(t) = cos

(
θ +

4πxh(t)

λ
+∆Φ(t)

)
, (1.2)

where θ is the constant phase that is dependent on d and the carrier frequency f . Additionally,

xh(t) is the chest displacement caused by the heartbeat, and∆Φ(t) is the total residual phase noise

through the circuit and the transmission path. Subsequently, B(t) is demodulated by a quadrature

mixer, and two signals, namely, I(t) and Q(t), which are called in-phase and quadrature signals,
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Figure 1.6: The system model of cardiac sensing with a Doppler radar.

respectively, are obtained as follows.

I(t) = cos

(
θ +

π

4
+

4πxh(t)

λ
+∆Φ(t)

)
, (1.3)

Q(t) = cos

(
θ − π

4
+

4πxh(t)

λ
+∆Φ(t)

)
. (1.4)

I(t) andQ(t) are then amplified by the operational amplifier (OP-AMP). Fig. 1.7 shows examples

of I(t) and Q(t) obtained from a subject sitting still. In this figure, we can see five cycles of

the I(t) and Q(t). Each cycle is associated with one breathing. As we can see from this figure,

the received signals contains not only heartbeat components but also non-heartbeat components.

Therefore, after the data acquisition (DAQ), it is necessary to apply signal processing to the digi-

tized I(t) and Q(t) in the digital signal processing (DSP), for extracting heartbeat components.

To detect heartbeat via a Doppler radar, various Doppler radar-based heartbeat detection meth-

ods that analyze a received signal of a Doppler radar have been investigated. Fig. 2.1 shows the

summary of the conventional heartbeat detection via a Doppler radar. The Doppler radar-based

heartbeat detection methods are typically categorized into two groups: (i) HR estimation [10]-[22]

and RRI estimation [23]-[32].
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Figure 1.7: Examples of I(t) and Q(t) obtained from a subject sitting still.

1.2.2 HR estimation via Doppler radar

In general, the HR is estimated mainly based on frequency analysis such as

• Fast Fourier Transform (FFT) [10]-[13]

• Wavelet Transform (WT) [14]-[17]

• Multiple Signal Classification (MUSIC) [18]-[21]

• Discrete Cosine Transform (DCT) [22]

Fig. 1.9 shows the typicalHR estimation method with frequency analysis. The HR estimation

method prepares a time window, slides the time window by a specific step size, and performs

frequency analysis for each time window. To obtain the frequency corresponding to the HR from a

received signal of a Doppler radar, it is necessary to set a time window with a frequency resolution

that is enough to observe the HR. Thus, the time window longer than 8 s is generally required

to achieve a high-frequency resolution. However, the HR could change within the time window

and the fast acquisition of the HR is challenging, meaning that it is not possible to track short-

term HR changes. Fig. 1.10 shows the HR estimation results of HR estimation methods with
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Heartbeat Detection

HR Estimation

RRI Estimation

WT (Wavelet Transform)
[15]-[19]

FFT (Fast Fourier Transform)
[10]-[14]

MUSIC (Multiple Signal Classification)
[20]-[23]

DCT (Discrete Cosine Transform)
[24]

Template Matching
[26]-[29]

Feature Detection
[30]-[43]

Limitations :

Fast HR estimation  is challenging due to long time window 
that guarantees frequency resolution.

The HR estimation accuracy tends to degrade due to 
respiration and body movements.

Limitations :

The RRI estimation accuracy tends to degrade due to the 
distortion of heartbeat components. 

Figure 1.8: The summary of the conventional heartbeat detection methods via a Doppler radar.
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Figure 1.9: The typical HR estimation method with frequency analysis.

different time windows. From this figure, we can see that the method with a long time window

does not track short-term HR changes, e.g., around 25 s, while the method with a short time

window provides accurate HRs including short-term HR changes. Thus, some researches have

attempted to realize the HR estimation methods with a shorter time window [13][17][20]-[22].

However, the conventional HR estimation methods, including the ones with a short time window,

suffer from the issues related to performance degradation due to respiration and body movements.

1.2.3 RRI estimation via Doppler radar

The RRI estimation methods can be classified into two group:

• Template matching-based method [24][25]

• Feature extraction-based method [26]-[32]

Fig. 1.11 show the typical RRI estimation method based on (i) template matching algorithm and

(ii) feature detection. Some conventional RRI estimation methods prepares a template of a heart-

beat signal waveform in advance, and detect heartbeat by comparing the template to the received

signal [24][25]. However, the signal-to-noise ratio (SNR) of heartbeat components is low com-

pared to respiration and slight body movements. Therefore, the heartbeat waveform could be

easily distorted by such noise, and the heartbeat detection accuracy of template matching-based
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Figure 1.10: The HR estimation results of HR estimation methods with different time windows.

method is likely to degrade. For more accurate RRI estimation, the conventional methods [26]-

[32] estimates the RRI by detecting features due to heartbeat, e.g., a peak and zero-crossings, over

the signal obtained through some advanced signal processing such as WT and Ensemble Empiri-

cal Mode Decomposition (EEMD). Through some experiments, these conventional methods have

been shown to provide accurate RRIs in a short-range observation, e.g., a range shorter than 1.0 m.

However, as the detection range gets long, the SNR of heartbeat components gets lower [30][33],

in general. Thus, for a longer-range observation that is more applicable in real applications, it is

still challenging to extract heartbeat components even after signal processing in the conventional

methods.

1.2.4 Limitations of conventional heartbeat detection via Doppler radar

As aforementioned, the HR estimation methods have some issues related to fast HR estimation,

that is the estimation of short-term HR changes. In addition, the performance of the HR and RRI

estimation methods tends to degrade because of respiration and body movements. Furthermore,

when the SNR of heartbeat components gets low, the effect of noise components gets higher over a

received signal of a Doppler radar, that is, more noise components occur over the received signal.
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Figure 1.11: The typical RRI estimation method based on (i) template matching algorithm and (ii)
feature detection.

Thus, in particular for a subject with low HR, e.g., lower than 50 beat per minute (bpm), the

conventional HR estimation methods are likely to estimate the HR higher than the actual HR. In

contrast, the conventional RRI estimation methods are likely to estimate the RRI shorter than the

actual RRI, in particular for a subject with low HR.

Also, none of the conventional methods have extracted the components corresponding to the

P-wave, the T-wave, and the R-peak, though various heart diseases can be identified by analyzing

the timings when such waves appear. Detecting the components corresponding to the P-wave and

the T-wave is more difficult than detecting the only heartbeat.

1.3 Motivations of our research

From the viewpoint of the limitations of the traditional and the Doppler radar-based cardiac ac-

tivity sensing methods, we first propose a heartbeat detection method based on heartbeat signal

reconstruction with deep learning, for more accurate heartbeat detection. Here, note that our pro-

posed method is a kind of RRI estimation methods, though we show the HR estimation accuracy of
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our method through some experiments. The conventional methods estimate the HR and the RRI by

signal processing over the frequency-domain, e.g., FFT and MUSIC, and the time-domain, e.g.,

EEMD and WT. However, these conventional methods are not robust to the degradation of the

SNR of heartbeat components. To deal with this issue, we introduce spectrogram-based heartbeat

component extraction with more noise-robustness. To further improve the heartbeat detection ac-

curacy against the degradation of the SNR of heartbeat components, we introduce heartbeat signal

reconstruction with deep learning based on the extracted heartbeat components. Here, it is worth

mentioning that a heartbeat signal represents a signal that heartbeat can be easily detected, e.g., an

ECG signal.

We then propose an ECG signal reconstruction method from the Doppler radar-related data

for extracting the components corresponding to the P-wave and the T-wave. In contrast to the

conventional methods that just estimate the HR and the RRI, we attempt to detect the components

corresponding to the P-wave and the T-wave from Doppler radar-related data. The proposed ECG

signal reconstruction could expand usage of cardiac activity sensing via a Doppler radar.

1.4 Positioning of our research

Fig. 1.12 shows the types and applications of cardiac activity sensing. Cardiac activity sens-

ing methods can be categorized into wearable device-based and non-contact ones. On the one

hand, wearable device-based cardiac activity sensing methods have been mainly realized with

ECG, PPG, and Seismocardiogram (SCG). On the other hand, non-contact cardiac activity sens-

ing methods have been mainly investigated with a camera and a Doppler radar. Conventionally,

cardiac activity sensing with these devices have realized:

• Blood pressure estimation

• RRI and HR estimation

• ECG signal reconstruction

Blood pressure estimation has been investigated with ECG [55]-[42], PPG [43]-[47] and a Doppler

radar [48]-[50]. Also, RRI and HR estimation have been realized with all the devices. ECG signal
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Figure 1.12: The types and applications of cardiac activity sensing.
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reconstruction has been realized with PPG [66] and SCG [67]. These three techniques could

enable some applications such as life detection and heart disease detection.

In our research, we mainly tackle two targets:

• Doppler radar-based RRI and HR estimation

• Doppler radar-based ECG signal reconstruction

As we mentioned before, RRI and HR estimation using a Doppler radar has been studied exten-

sively in previous researches [10]-[33]. However, there is no conventional methods that exploit

the more detailed cardiac activity such as the P-wave and the T-wave from Doppler radar signal.

1.5 Proposed Methods

In this dissertation, we present a heartbeat detection and ECG signal reconstruction methods based

on signal reconstruction with deep learning. Fig. 1.13 shows the summary of our proposal. The

objective of our proposed heartbeat detection is to extract heartbeat components from a received

signal of a Doppler radar, for estimating RRI and HR, which can be done by capturing signal’s

periodicity. In other words, the proposed heartbeat detection method estimates the timing of each

heartbeat. In contrast, the objective of the proposed ECG signal reconstruction is to capture more

detailed information on cardiac activity such as a P wave, an R wave, and a T wave, and is different

from the objective in the heartbeat detection. The proposed ECG signal reconstruction method

estimates an ECG signal corresponding to the Doppler radar signal around the detected heartbeat

timing, meaning that one ECG signal is reconstructed one beat by one beat.

1.5.1 Heartbeat detection

Heartbeat component extraction

The conventional heartbeat detection methods mainly use the frequency range from 0.5 Hz to

2.0 Hz corresponding to 30 bpm and 120 bpm to extract heartbeat components. Fig. 1.14 show

an example of a received signal corresponding to such frequency. As we can see from this fig-

ure, a heartbeat signal with frequency components of 0.5 Hz and 2.0 Hz tends to be distorted by

respiration and body movements. This is because the components related to respiration and body
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Heartbeat detection

• Purpose
• Improve the heartbeat detection accuracy against the 

degradation of the SNR related to  heartbeat 
components

• Improve the heartbeat detection accuracy, particularly 
for the subject with low HR
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• Based on a spectrogram

• With noise-robustness

• Heartbeat signal reconstruction
• Based on deep learning

• Convolutional LSTM

• Reconstruction considering
• Periodicity of heartbeat 

• Spectrum peculiar to just one heartbeat

ECG signal 
reconstruction

• Purpose
• Extraction of detailed information on heart activity

• Based on CNN and LSTM
• CNN to extract spatial features

• LSTM to extract temporal features

Figure 1.13: The summary of our proposal.
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Figure 1.14: An example of a received signal with low-frequency components.

movements are also distributed from 0.5 Hz to 2.0 Hz. The heartbeat detection accuracy is thus

likely to degrade over such a frequency range. To reduce the effect of such non-heartbeat com-

ponents, we first propose a method to extract heartbeat components over a high-frequency range

using a spectrogram, compared to the frequency range used in the conventional methods. Unlike

the frequency range corresponding to the HR, the high-frequency range contains components due

to just one heartbeat. By taking advantage of such a high-frequency range, it is possible to extract

heartbeat components with less noise, such as respiration and body movements.

Heartbeat signal reconstruction

Thanks to using the high-frequency range related to just one heartbeat, heartbeat component ex-

traction is more noise-robust. However, when the signal power due to the heartbeat itself gets

small, it is more challenging to extract heartbeat components even using the high-frequency range.

To further improve the heartbeat detection accuracy, the proposed method reconstructs a heartbeat

signal from the spectrogram based on deep learning. The heartbeat components over the spectro-

gram have two types of features:

• The periodicity of heartbeat, which is peculiar to several heartbeat.
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• The spectrum distribution, which is peculiar to one heartbeat.

Inspired by this fact, we use Convolutional Long Short Term Memory (LSTM) as a deep learning

model. Convolutional LSTM is one of the deep learning techniques and combines LSTM with

the convolutional operation used in Convolutional Neural Network (CNN) [68]. LSTM is a deep

learning technique that is useful to extract temporal features of time sequence data [69], and it has

been successfully applied to the signal classification [55][56] and prediction [57]. Also, CNN is a

deep learning technique that is useful to extract spatial features from image data [73], and it has

been successful in image recognition [59]-[61]. The convolutional operation is used in CNN to

extract detailed features from image data. Based on the advantages of LSTM and the convolutional

operation, convolutional LSTM can extract features from the successive image data. Thus, it is

useful for feature extraction for object recognition and frame prediction over movie data [62]-

[64]. Based on the above, by inputting the successive spectrograms into convolutional LSTM, it

is expected to reconstruct a heartbeat signal well considering the periodicity of heartbeat and the

spectrum distribution peculiar to heartbeat.

1.5.2 ECG signal reconstruction

After the heartbeat detection, we introduce an ECG signal reconstruction method to capture the

components corresponding to the P-wave and the T-wave from the Doppler radar-related data. As

mentioned above, heartbeat components obtained by a Doppler radar tend to be distorted by noise

such as respiration and body movements. This means that there exist numerous types of heartbeat

signal waveforms. Fig. 1.15 shows an example of a received signal of a Doppler radar. In this

figure, the corresponding ECG signal is also shown, and the amplitudes of these two signal are

adjusted for a better comparison. As we can see from this figure, the components corresponding to

one heartbeat are different from one heartbeat to another, which is mainly due to noise. Therefore,

we use deep learning techniques to automatically extract deep features that are useful for the ECG

signal reconstruction, even from numerous types of heartbeat signal waveforms. To transform the

heartbeat signal to the ECG signal, temporal features of the heartbeat signal are essential. Hence,

we use LSTM to extract the temporal features, e.g., the P-wave, the T-wave, and the R-peak

appear successively. However, as aforementioned, a heartbeat signal is likely to be deformed due
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Figure 1.15: Examples of a received signal of a Doppler radar and the corresponding ECG signal.

to noise. To make the model robust to this type of deformation, we first extract spatial features

by CNN. After the spatial feature extraction, we extract temporal features by applying LSTM to

the output of the CNN. An ECG signal is reconstructed based on the features extracted by the

CNN and LSTM. Although the use of only CNN or LSTM might also enable the transformation

of the heartbeat signal to the ECG signal, both CNN and LSTMmake the model robust against the

diversity of the heartbeat signal.



32 CHAPTER 1. INTRODUCTION

1.6 Contributions of this dissertation

1.6.1 Heartbeat detection in Chapters 3

Figs. 1.16 shows the summary of Chapters 3. This dissertation first introduces a Doppler radar-

based heartbeat detection method based on signal reconstruction with deep learning in Chapter 3.

In contrast to the most conventional heartbeat detection method using a Doppler radar, the pro-

posed method achieves robust heartbeat detection to the degradation of the SNR of heartbeat com-

ponents by reconstructing a heartbeat signal based on two features: (i) the periodicity of heartbeat

and (ii) the spectrum distribution peculiar to one heartbeat. Through some experiments, we show

our proposed method can detect heartbeat in a situation where the distance between a subject and

a Doppler radar is long. Also, we show that our proposal has the ability to detect heartbeat, espe-

cially for the subjects with low HR, though the heartbeat detection accuracies of the conventional

methods tend to degrade for such subjects.

1.6.2 ECG signal reconstruction in Chapter 4

Figs. 1.17 shows the summary of Chapters 4. This dissertation introduces an ECG signal recon-

struction method from the Doppler radar-related data in Chapter 4. The proposed method aims to

extract detailed heart activity information such as the P-wave and the T-wave of the ECG signal,

and our proposal is based on the result of heartbeat detection. Here, it is worth mentioning that

none of the conventional Doppler radar-based heartbeat detection methods has realized the extrac-

tion of components corresponding to the P-wave and the T-wave. Through some experiments, we

show that the proposed method has a good ability to reconstruct an ECG signal. Additionally, we

compare our ECG signal reconstruction to the ECG signal reconstruction by attaching devices.

We show the feasibility of the non-contact ECG signal reconstruction via a Doppler radar. The

experimental results could be a beneficial for expanding usage of cardiac activity sensing with a

Doppler radar.
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Existing Methods

• HR estimation method
• FFT （Fast Fourier Transform）
• WT （Wavelet Transform）
• MUSIC （Multiple Signal Classification）
• DCT （Discrete Cosine Transform）

• RRI estimation method
• Template matching
• Feature detection

Limitations of Existing 
Methods

• HR estimation method 
• Fast HR estimation is challenging due to 

long time window that guarantees frequency 
resolution. 

• The HR estimation accuracy tends to degrade 
due to respiration and body movements. 

• RRI estimation method 
• The RRI estimation accuracy tends to 

degrade due to the distortion of heartbeat 
components. 

Proposed Method

• Spectrogram-based heartbeat extraction

• Heartbeat signal reconstruction from spectrogram 
based on deep learning

Contributions

• The proposed method detects heartbeat more 
accurately in the situations where the SNR of 
heartbeat components is low. 

• The proposed method improves the heartbeat 
detection accuracy, in particular for the subjects 
with low HR. 

Figure 1.16: The summary of Chapter 3.
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Existing Methods

• PPG-based method

• SCG-based method

• None of Doppler radar-based methods

Limitations of Existing 
Methods

• PPG and SCG require the device attachment for 
data collection, which is sometimes undesired in 
some situations.

Proposed Method

• ECG signal reconstruction  based on deep learning 
from Doppler radar-related data.

• The proposed method reconstructs the ECG signal 
based on the result of heartbeat detection.

Contributions

• The proposed method can reconstruct an ECG 
signal via a Doppler radar even without device 
attachment.

• Through the performance comparison among our 
proposed and the existing methods, we show the 
feasibility of the non-contact ECG signal 
reconstruction via a Doppler sensor.

Figure 1.17: The summary of Chapter 4.
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1.7 Outline of this dissertation

Fig. 1.18 shows the organization of this dissertation. This dissertation consists of five chapters.

Chapter 2explains related work on heartbeat detection via a Doppler radar and ECG signal recon-

struction, and introduce some deep learning techniques related to our proposed methods. Chapter 3

proposes a novel heartbeat detection method via a Doppler radar. Here, the objective of our pro-

posal is to capture heartbeat from a received signal of a Doppler radar, for estimating RRI and

HR, which can be done by capturing signal’s periodicity. Chapter 4 present a novel ECG signal

reconstruction method via a Doppler radar. The objective of ECG signal reconstruction is to cap-

ture more detailed information on cardiac activity such as a P wave, an R wave, and a T wave,

and is different from the objective in the heartbeat detection in Chapter 3. Specifically, the timing

of each heartbeat is first detected by our proposed heartbeat detection method, and then an ECG

signal corresponding to each detected heartbeat is reconstructed based on the Doppler radar sig-

nal around the detected timing. These include the description of related work, the algorithm of

the proposed method, performance evaluation. Chapter 5 summarizes the overall dissertation and

shows our future work.
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Proposed Heartbeat Detection
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Proposed ECG Signal Reconstruction
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Conclusions and Future Work

Objective:
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・Algorithm of proposed method
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Objective:
To capture more detailed information on 
cardiac activity such as a P wave, an R 
wave, and a T wave

・ Idea of proposed method
・Algorithm of proposed method
・ Performance evaluation

・ Existing Doppler radar-based heartbeat detection method
・ Existing ECG signal reconstruction method
・ Deep learning techniques related to our proposed method

Figure 1.18: The organization of this dissertation



Chapter 2

Related Work

In this chapter, we describe related work. In Section 2.1, we first explain some conventional heart-

beat detection methods using a Doppler radar, including our preliminary work, and then explain

the shortcomings of the conventional methods. Afterwards, we explain some researches related to

ECG signal reconstruction in Section 2.2. For a better understanding of the proposed methods, we

introduce some deep learning techniques related to our proposed methods, i.e., LSTM, CNN, and

convolutional LSTM in Section 2.3.

2.1 Heartbeat detection via Doppler radar

In this section, we explain previous researches related to Doppler radar-based heartbeat detection.

For a better reference, we again show the category and the limitations of the existing heartbeat de-

tection methods in 2.1. In general, the Doppler radar-based heartbeat detection aims at estimating

the HR and the RRI.

2.1.1 HR estimation methods using a Doppler radar

On the one hand, the conventional methods estimate the HR leveraging the time-frequency analysis

such as

• FFT [10]-[14]

• WT [15]-[19]

• MUSIC [20]-[23]

37
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Heartbeat Detection

HR Estimation

RRI Estimation

WT (Wavelet Transform)
[15]-[19]

FFT (Fast Fourier Transform)
[10]-[14]

MUSIC (Multiple Signal Classification)
[20]-[23]

DCT (Discrete Cosine Transform)
[24]

Template Matching
[26]-[29]

Feature Detection
[30]-[43]

Limitations :

Fast HR estimation  is challenging due to long time window 
that guarantees frequency resolution.

The HR estimation accuracy tends to degrade due to 
respiration and body movements.

Limitations :

The RRI estimation accuracy tends to degrade due to the 
distortion of heartbeat components. 

Figure 2.1: The summary of the conventional heartbeat detection methods via a Doppler radar.
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• DCT [24]

Tables 2.1, 2.2, 2.3, and 2.4 show the advantages and disadvantages of the conventional FFT, WT,

MUSIC, and DCT-based HR estimation methods, respectively. FFT is a typical technique used

for analyzing the periodicity of a signal. In general, the normal respiration rate varies between

0.1 Hz and 0.3 Hz, while the normal HR ranges between 0.5 Hz and 2 Hz. Based on this fact,

by applying FFT to the received signal of a Doppler radar, the conventional methods separate

the frequency components of heartbeat from those of respiration [10]-[12]. However, the SNR of

heartbeat components is low, compared to that of respiration. Thus, extracting frequency compo-

nents of heartbeat could be challenging due to respiration harmonics. The conventional method

has introduced a method to reduce the effect of respiration harmonics [13]. However, to estimate

the heart rate, a time window longer than 8 s is generally required to achieve a high-frequency

resolution. This means that the HR can vary within a time window, and it is impossible to estimate

short-term HR changes [10]-[13], e.g., HR changes within 5 s. To deal with this issue, J. Tu et al.

have proposed HR estimation with a time window shorter than 5 s [14]. However, these conven-

tional methods still have the issue related to the degradation of the HR estimation accuracy due to

body movements.

As one of the techniques to analyze the periodicity of a signal, WT has also been used for

Doppler radar-based heart rate estimation [15]-[19]. WT analyzes the periodicity of a signal by

scaling and shifting the prototype signal called mother wavelet, and provides high time-frequency

resolution, compared to FFT. In the WT-based HR estimation method, the HR is estimated by

estimating a scale factor. The experimental results have shown that compared to the FFT-based

method, the conventional methods [15]-[18] could provide more accurate HR even with a time

window shorter than 8 s. However, to estimate short-term HR changes, the time windows used

in these conventional methods are long. To address this problem, M. Li et al. have proposed a

HR estimation method with a shorter time window that is adaptively set [19]. Basically, there

are many choices of the prototype signal, and a suitable selection of the prototype signal brings

the accurate heart rate estimation. However, non-heartbeat, e.g., respiration and body movements,

could deform heartbeat signal waveforms, which changes the suitable prototype signal to estimate

the heart rate. Also, a HR estimation accuracy tends to degrade due to body movements.
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In addition to FFT and WT, the MUSIC algorithm has also been investigated for the heart

rate estimation [20]-[23]. P. Bechet et al. have shown the feasibility of the MUSIC algorithm-

based heart rate estimation; the MUSIC algorithm provided the accurate heart rate, compared to

FFT [20]. However, to estimate the heart rate by the MUSIC algorithm, it is necessary to esti-

mate the number of the sinusoidal signals composing the analyzed signal P . Thus, J. L. Kwang et

al. have proposed the method that tracks the fundamental and harmonic frequencies of heartbeats

over the MUSIC spectrum, and then estimates the heart rate by judging whether at least one of

the MUSIC spectrum peaks in the current window appear at the frequencies with the peaks in the

previous window [21]. However, this conventional method requires a long time window, i.e., 60

s-time window, so that the MUSIC spectrum peaks appear in such a way even in the presence of

the noise. Thus, as aforementioned, it is impossible to estimate the small heart rate variability,

e.g., the variability within 5 s. To deal with this problem, the work [22] has proposed a MUSIC

algorithm-based heart rate estimation method with a 5 s-time window [15]. The experiment results

showed this method achieved the high heart rate estimation accuracy, compared with the conven-

tional one [21]. However, when the heart rate changes largely even within 5 s-time window,

several peaks due to heartbeats appear over the MUSIC spectrum, which might cause incorrect

peak detection. Such occurrence of several peaks is due to the fixed window size. Thus, in the

conventional method [23], the adaptive window size setting technique has been incorporated into

the method [22] to prevent such incorrect peak detection. However, there still is an issue related

to the degradation of the HR estimation accuracy due to body movements.

Also, the previous research [24] has investigated a HR estimation method based on DCT,

which has been used for image compression. Although the conventional method [24] has been

shown to achieve a higher HR estimation accuracy even with a short time window than the FFT-

based methods, the HR estimation accuracy is likely to degrade due to respiration and body move-

ments. In addition to these HR estimation methods, M. Nosrati et al. have introduced the Fre-

quency Time Phase Regression (FTPR) algorithm for the accurate HR estimation [25], compared

to the MUSIC-based method. However, this method requires a long time window, i.e., 10 s.

2.1.2 RRI estimation methods using a Doppler radar

On the other hand, in the Doppler radar-based RRI estimation, the RRI can be estimated by
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• The template matching algorithm [26]-[29]

• The feature detection [30]-[43]

Tables. 2.5 and 2.6 shows the advantages and disadvantages of the conventional template matching

and feature detection-based HR estimation methods, respectively. The template matching-based

methods prepare a template waveform of a heartbeat in advance and then detect heartbeats by

comparing the received signal with the prepared template waveform [26]-[29]. The conventional

methods [26]-[28] could estimate the RRI accurately by using novel peak detection algorithms

over the signal obtained through some signal processing. However, the heartbeat signal waveform

could change over time, and it is challenging to prepare ideal template waveforms. This is be-

cause heartbeat signal waveforms are likely to be distorted by noise such as respiration and body

movements. Although the conventional method [29] could estimate the RRI with the robustness

to distortion of a heartbeat signal waveform, an RRI estimation accuracy tends to degrade in the

situation where the SNR of heartbeat components is low.

In contrast, the feature detection-based RRI estimation method detects heartbeat by extracting

features due to a heartbeat from the received signal. Many conventional methods extract peaks

from the heartbeat signal waveform as a feature [30]-[36]. These conventional methods could

estimate the RRI accurately by using novel peak detection algorithms over the signal obtained

through some signal processing, such as a typical filter. However, when the SNR of heartbeat

components is low, many incorrect peaks could appear over the signal even after some processing,

which could degrade a peak detection accuracy. Furthermore, the conventional methods [37]-[40]

could extract a heartbeat signal through some advanced signal processing, e.g., WT and EEMD,

which could reduce peak candidates and bring accurate peak detection over the heartbeat signal.

Although T. Sakamoto et al. have proposed the feature-based correlation method by not only a

peak but also extreme points and inflection points of the received signal [40], the heartbeat detec-

tion accuracy is likely to degrade as well as the conventional method. Hu et al. have proposed the

method that estimates the RRI based on zero crossings of the time-domain signal obtained through

various signal processing, e.g., WT and EEMD [41]. EEMD can decompose the analyzed signal

to some components called IMF (Intrinsic Mode Function) with different frequency components.

The conventional method [41] reconstructs a heartbeat signal based on some IMFs, and detects
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heartbeat by capturing zero-crossing points of the reconstructed signal. However, it is challenging

to select appropriate IMFs for heartbeat signal reconstruction. Also, when the SNR of heartbeat

components is low, many incorrect zero-crossing points could appear over the signal even after

some processing, which could degrade a zero-crossing detection accuracy. V. L. Petrovic et al.

have proposed a heartbeat detection method that first estimates a rough HR, designs narrow Band

Pass Filter (BPF) with the estimated rough HR as the center frequency. This method then ap-

plies the narrow BPF to the signal obtained from a received signal of a Doppler radar and detects

heartbeat by the zero-crossings of the selected BPF output [42]. Although the experimental results

show that this method can provide an accurate heartbeat detection accuracy as long as the SNR of

heartbeat components is high, it is still challenging to detect heartbeat accurately with robustness

to low SNR.
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Table 2.1: The advantages and disadvantages of the conventional FFT-based HR estimation meth-
ods.

Method Advantages Disadvantages 

[10][11][12] 

¨ The methods could separate frequency 

components of heartbeat from those of 

respiration over the FFT spectrum. 

¨ The methods require a long-time window 

for achieving a high-frequency resolution. 

¨ Several peaks corresponding to the HR 

could appear over the FFT spectrum, which 

could bring incorrect peak detection. 

¨ The HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 

[13] 
¨ The method suppresses the effect of 

respiration harmonics. 

¨ The methods require a long-time window 

for achieving a high-frequency resolution. 

¨ Several peaks corresponding to the HR 

could appear over the FFT spectrum, which 

could bring incorrect peak detection. 

¨ The HR estimation accuracy tends to 

degrade due to body movements. 

[14] 

¨ The method estimates the HR with a 

short time window and suppresses the 

effect of respiration harmonics 

¨ A HR estimation accuracy tends to degrade 

due to body movements. 

 

Method Advantages Disadvantages 

[15][16] 

[17][18] 

¨ The methods could provide more 

accurate HR than the FFT-based methods. 

¨ Compared to the FFT-based method, the 

methods could estimate the HR with a 

short time window, e.g., shorter than 8 s. 

¨ Appropriate prototype signals can change 

over time, because a heartbeat signal tends 

to be distorted by respiration and body 

movements. 

¨ The HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 

[19] 

¨ The method could provide more accurate 

HR than the FFT-based methods. 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 s. 

¨ The method suppresses the effect of 

respiration harmonics. 

¨ The HR estimation accuracy tends to 

degrade due to body movements. 

 

 

 

 

 

 

 

 

Table 2.2: The advantages and disadvantages of the conventional WT-based HR estimation meth-
ods.

Method Advantages Disadvantages 

[10][11][12] 

¨ The methods could separate frequency 

components of heartbeat from those of 

respiration over the FFT spectrum. 

¨ The methods require a long-time window 

for achieving a high-frequency resolution. 

¨ Several peaks corresponding to the HR 

could appear over the FFT spectrum, which 

could bring incorrect peak detection. 

¨ The HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 

[13] 
¨ The method suppresses the effect of 

respiration harmonics. 

¨ The methods require a long-time window 

for achieving a high-frequency resolution. 

¨ Several peaks corresponding to the HR 

could appear over the FFT spectrum, which 

could bring incorrect peak detection. 

¨ The HR estimation accuracy tends to 

degrade due to body movements. 

[14] 

¨ The method estimates the HR with a 

short time window and suppresses the 

effect of respiration harmonics 

¨ A HR estimation accuracy tends to degrade 

due to body movements. 

 

Method Advantages Disadvantages 

[15][16] 

[17][18] 

¨ The methods could provide more 

accurate HR than the FFT-based methods. 

¨ Compared to the FFT-based method, the 

methods could estimate the HR with a 

short time window, e.g., shorter than 8 s. 

¨ Appropriate prototype signals can change 

over time, because a heartbeat signal tends 

to be distorted by respiration and body 

movements. 

¨ The HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 

[19] 

¨ The method could provide more accurate 

HR than the FFT-based methods. 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 s. 

¨ The method suppresses the effect of 

respiration harmonics. 

¨ The HR estimation accuracy tends to 

degrade due to body movements. 
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Table 2.3: The advantages and disadvantages of the conventional MUSIC-based HR estimation
methods.

 

 

 

 

 

Method Advantages Disadvantages 

[20] 
¨ The method could provide more accurate 

HR than the FFT-based methods. 

¨ The HR estimation accuracy depends on the 

parameter P. 

¨ Several peaks corresponding to the HR could 

appear over the MUSIC spectrum, which 

could bring incorrect peak detection. 

[21] 

¨ The method could provide more accurate 

HR than the FFT-based methods. 

¨ The method can estimate the HR without 

parameter P. 

¨ The method requires a long-time window, 

e.g., 60 s. 

¨ Several peaks corresponding to the HR could 

appear over the MUSIC spectrum, which 

could bring incorrect peak detection. 

[22] 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 s. 

¨ The HR estimation accuracy does not 

depend on parameter P. 

¨ Several peaks corresponding to the HR could 

appear over the MUSIC spectrum, which 

could bring incorrect peak detection. 

¨ The HR estimation accuracy tends to 

degrade due to body movements. 

[23] 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 s. 

¨ The HR estimation accuracy does not 

depend on parameter P. 

¨ The method could prevent wrong peak 

detection due to several peaks 

corresponding to the HR. 

¨ The HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Advantages Disadvantages 

[24] 

¨ The methods could provide more 

accurate HR than the FFT-based methods. 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 

¨ The  HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 
Table 2.4: The advantages and disadvantages of the conventional DCT-based HR estimation
method.

 

 

 

 

 

Method Advantages Disadvantages 

[20] 
¨ The method could provide more accurate 

HR than the FFT-based methods. 

¨ The HR estimation accuracy depends on the 

parameter P. 

¨ Several peaks corresponding to the HR could 

appear over the MUSIC spectrum, which 

could bring incorrect peak detection. 

[21] 

¨ The method could provide more accurate 

HR than the FFT-based methods. 

¨ The method can estimate the HR without 

parameter P. 

¨ The method requires a long-time window, 

e.g., 60 s. 

¨ Several peaks corresponding to the HR could 

appear over the MUSIC spectrum, which 

could bring incorrect peak detection. 

[22] 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 s. 

¨ The HR estimation accuracy does not 

depend on parameter P. 

¨ Several peaks corresponding to the HR could 

appear over the MUSIC spectrum, which 

could bring incorrect peak detection. 

¨ The HR estimation accuracy tends to 

degrade due to body movements. 

[23] 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 s. 

¨ The HR estimation accuracy does not 

depend on parameter P. 

¨ The method could prevent wrong peak 

detection due to several peaks 

corresponding to the HR. 

¨ The HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Advantages Disadvantages 

[24] 

¨ The methods could provide more 

accurate HR than the FFT-based methods. 

¨ The method realizes fast HR estimation, 

i.e., with a time window shorter than 5 

¨ The  HR estimation accuracy tends to 

degrade due to respiration and body 

movements. 
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Table 2.5: The advantages and disadvantages of the conventional template matching-based RRI
estimation methods.
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Method Advantages Disadvantages 

[26][27][28] 

¨ The methods could estimate the RRI with 

a template of a heartbeat signal waveform 

in the situation where the SNR of 

heartbeat components is high. 

¨ Heartbeat signal waveforms tend to be 

distorted by respiration and body 

movements, which degrade a heartbeat 

detection accuracy. 

[29] 

¨ The method could estimate the RRI with 

the robustness to distortion of a heartbeat 

signal waveform. 

¨ In the situation where the SNR of heartbeat 

components is low, an RRI estimation 

accuracy tends to degrade. 

Method Advantages Disadvantages 

[30]-[36] 

¨ The methods could estimate the RRI 

accurately by using novel peak detection 

algorithm over the signal obtained 

through some signal processing. 

¨ In the situation where the SNR of heartbeat 

components is low, many incorrect peaks 

could appear over the signal even after some 

processing, which could degrade a peak 

detection accuracy. 

[37]-[40] 

¨ The methods could extract a heartbeat 

signal through some advanced signal 

processing, e.g., WT and EEMD, which 

could bring accurate peak detection over 

the heartbeat signal. 

¨ In the situation where the SNR of heartbeat 

components is low, many incorrect peaks 

could appear over the signal even after some 

processing, which could degrade a peak 

detection accuracy. 

[41] 

¨ The method could estimate the RRI by 

extracting not only peaks but also other 

features peculiar to heartbeat, e.g., 

inflection points. 

¨ Heartbeat signal waveforms tend to be 

distorted by respiration and body movements, 

which could degrade a feature detection 

accuracy. 

[42][43] 

¨ The methods could extract a heartbeat 

signal through some advanced signal 

processing, e.g., WT and EEMD. 

¨ The methods which could estimate the 

RRI accurately by detecting zero-

crossing points. 

¨ In the situation where the SNR of heartbeat 

components is low, many incorrect zero-

crossing points could appear over the signal 

even after some processing, which could 

degrade a zero-crossing detection accuracy. 

Table 2.6: The advantages and disadvantages of the conventional feature detection-based RRI
estimation methods.
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Method Advantages Disadvantages 

[26][27][28] 

¨ The methods could estimate the RRI with 

a template of a heartbeat signal waveform 

in the situation where the SNR of 

heartbeat components is high. 

¨ Heartbeat signal waveforms tend to be 

distorted by respiration and body 

movements, which degrade a heartbeat 

detection accuracy. 

[29] 

¨ The method could estimate the RRI with 

the robustness to distortion of a heartbeat 

signal waveform. 

¨ In the situation where the SNR of heartbeat 

components is low, an RRI estimation 

accuracy tends to degrade. 

Method Advantages Disadvantages 

[30]-[36] 

¨ The methods could estimate the RRI 

accurately by using novel peak detection 

algorithm over the signal obtained 

through some signal processing. 

¨ In the situation where the SNR of heartbeat 

components is low, many incorrect peaks 

could appear over the signal even after some 

processing, which could degrade a peak 

detection accuracy. 

[37]-[40] 

¨ The methods could extract a heartbeat 

signal through some advanced signal 

processing, e.g., WT and EEMD, which 

could bring accurate peak detection over 

the heartbeat signal. 

¨ In the situation where the SNR of heartbeat 

components is low, many incorrect peaks 

could appear over the signal even after some 

processing, which could degrade a peak 

detection accuracy. 

[41] 

¨ The method could estimate the RRI by 

extracting not only peaks but also other 

features peculiar to heartbeat, e.g., 

inflection points. 

¨ Heartbeat signal waveforms tend to be 

distorted by respiration and body movements, 

which could degrade a feature detection 

accuracy. 

[42][43] 

¨ The methods could extract a heartbeat 

signal through some advanced signal 

processing, e.g., WT and EEMD. 

¨ The methods which could estimate the 

RRI accurately by detecting zero-

crossing points. 

¨ In the situation where the SNR of heartbeat 

components is low, many incorrect zero-

crossing points could appear over the signal 

even after some processing, which could 

degrade a zero-crossing detection accuracy. 
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2.1.3 Our preliminary research

In our preliminary research [43], to accurately pick up peaks due to heartbeat, we have investigated

the peak selection algorithm considering several peaks just before and after the investigated peaks.

Algorithm 1 shows the RRI estimation algorithm by the peak detection. In our peak detection,

BPF is firstly applied to the analyzed signal to reduce the effect of the undesired peaks. The

way to set its cut-off frequencies fL2 and fU2 is explained later. After filtering, the peaks due to

heartbeats are detected using some peaks before and after the investigated peak. Fig. 2.2 shows

a concept of the proposed peak detection algorithm. In what follows, we explain how our peak

detection algorithm works with this figure. Although eight peaks are observed in total within a

time window in Fig. 2.2, some of them are related to heartbeats while others are due to noise. So

it is necessary to choose only heartbeat peaks. Three peaks, p1, p2 and p3 (p1 < p2 < p3) are out

of the peaks 1, 2, . . . , and 8 so that the difference among the previously estimated RRI RRIprev

and two pairs of RRI candidates is the smallest. This is because the RRI does not largely vary

between the adjacent RRIs in general. Here, we denote RRIi,j as the RRI in between peaks i and

j, where 1 ≤ i ≤ 8 and 1 ≤ j ≤ 8. In Fig. 2.2, assuming that RRIprev is estimated correctly,

the peak 1 is chosen as p1. The pairs of RRI1,k (2 < k < 8) and RRIk,m (k < m < 8) are then

generated, e.g., RRI1,2 andRRI2,5. As p1, p2 and p3 that meet the condition where the difference

among RRIprev, RRI1,k and RRIk,m is the smallest, the peaks 1, 3, and 5 are finally chosen.

Based on the fact that the RRI typically does not change largely between the adjacent RRIs, a

time window is set using the previously estimated RRI RRIprev. Now, let ∆ be the maximum

difference between the current and previous RRI. When RRI increases by ∆ twice in a row, the

current RRI RRIcurr is equal to RRIprev + ∆, and then the next RRI is equal to RRIcurr + ∆,

i.e., RRIprev + 2∆ as shown in Fig. 2.2. Therefore, the length of a time window W is set as the

following equation so that the window includes just three heartbeats.

W = 2RRIprev + 3∆, (2.1)

where ∆ is set as 150 ms in our method. In the initial observation where RRIprev is not still

estimated, the peaks due to heartbeats are detected by a simple peak detection for several seconds,

including two or three heartbeats. On the other hand, when the RRI decreases by∆ twice in a row,
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Algorithm 1 RRI estimation algorithm by the peak detection
Require: p3 > p2 > p1
Input: Sig(t) : the analyzed signal
1: function RRI ESTIMATOR(Sig(t), W , prevRRI , fL2, fU2)
2: Apply BPF with its cut-off frequencies fL2 and fU2 to Sig(t)
3: Generate some pairs of the RRI candidates within the time window with its size W
4: Find three peaks, p1, p2 and p3, so that the difference among two RRI candidates paired

and RRIprev is the smallest.
5: Estimate RRI based on p1 and p2
6: prevRRI ⇐ RRI
7: PARAMETWR TUNER(RRIprev, ∆);
8: end function
9: function PARAMETER TUNER(RRIprev, ∆)
10: W ⇐ 2RRIprev + 3∆
11: overlap ⇐ RRIprev
12: fL2 ⇐ 1

RRIprev+∆

13: fU2 ⇐ 1
RRIprev−∆

14: end function

the time window includes three or four heartbeats depending on RRIprev. For each window set in

this way, only one RRI is estimated based on the peaks pks1 and pks2 in our method. RRIprev

is updated to the estimated RRI, i.e., RRI1,3. The time window with the length W slides by

RRIprev.The overlap of a time window is then set as RRIprev. Furthermore, since the maximum

difference between the current and previous RRI is determined as ∆, the cut-off frequencies fL2

and fU2 are set using RRIprev and∆ as the following equations, which results in the reduction of

the number of the peaks due to non-heartbeats.

fL2 =
1

RRIprev +∆
, (2.2)

fU2 =
1

RRIprev −∆
. (2.3)

In the initial observation, fL2 and fU2 are initialized to be 0.5 Hz and 2 Hz corresponding to 30

bpm and 120 bpm, respectively.
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Figure 2.2: A concept of the proposed peak detection algorithm.

2.1.4 Main issues of conventional heartbeat detection methods

Although these conventional heartbeat detection methods, including our previous method [43],

have been experimentally shown to be able to detect heartbeat, the heartbeat detection accuracy

could get degraded due to respiration and slight body movements. This is because compared to

respiration and slight body movements, the SNR of heartbeat components is low, and heartbeat

components tend to be distorted by such noise. Also, even when a subject keeps still, components

due to non-heartbeat could remain within the time window even after some signal processing,

which could degrade the heartbeat detection accuracy of the conventional methods. In particular,

for the subjects with low HR, the estimated HR by the conventional heartbeat detection methods

tends to be higher than the ground truth HR. This is because when the SNR of heartbeat compo-

nents is low, more noise components tend to occur over the received signal. Also, the estimated

RRI tends to be shorter than the ground truth RRI, for the subjects with low HR. This is because

when the SNR of heartbeat components is low, more noise components tend to appear over the

received signal, which makes it challenging to pick up correct peaks due to heartbeat. Here, it is
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worth mentioning that the conventional methods have mainly focused on the heartbeat detection

against the subjects with the standard HR higher than 50 bpm. Hence, it is necessary to develop a

more accurate heartbeat detection method with more robustness to the degradation of the SNR of

heartbeat components, and for the low HR subject.

2.2 ECG signal reconstruction

In this section, we describe other existing researches related to ECG signal reconstruction. ECG

is a heartbeat detection method that has been widely used in the medical field. Features of an

ECG signal, e.g., the P-wave, the T-wave, and the R-peak, reflect the heart activity, and thus it is

possible to detect some heart diseases by analyzing an ECG signal. PPG can emit light on the skin

and observe the intensity variation of the reflected light. Since such intensity variation reflects

the heart’s activity, heartbeat can be detected by analyzing a PPG signal. Some researches have

proposed accurate heartbeat detection methods with a PPG radar mounted in wrist-type devices

such as smart-watches [65]-[67]. Additionally, Q. Zhu et al. have proposed an ECG signal recon-

struction method via a PPG signal [66]. This method extracts features, i.e., the DCT coefficients of

a heartbeat signal, from PPG and ECG signals, and then reconstructs an ECG signal by mapping

the DCT coefficients with PPG to those of ECG signals as shown in Fig. 2.3. The experimental

results have shown that this method achieves a high correlation coefficient between the estimated

and actual ECG signals, i.e., 0.96. In addition to ECG and PPG, SCG has also been used for heart-

beat detection [68]-[70]. SCG can detect heartbeat by measuring the chest vibration and capture

the aortic valve opening and closing behavior, as well as the mitral valve opening and closing be-

havior. J. Park et al. have proposed a method to transform an SCG signal itself to an ECG signal

based on a deep learning model with bidirectional-LSTM [67], as shown in Fig. 2.4. This method

has been shown to be able to reconstruct an ECG signal with a high accuracy. Although these

ECG signal reconstruction methods have been experimentally shown to be able to reconstruct the

ECG signal, PPG and SCG essentially require device attachment.
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Kohei Yamamoto, Ohtsuki Lab., Keio University 34

Existing ECG Signal Reconstruction Methods （1 / 2）

u PPG-based ECG signal reconstruction method [15]
u PPG

u Has a potential for heartbeat detection

u Emits light on the skin and observes intensity changes of the reflected light
u Can observe the intensity changes caused by heart activity

u Extracts features from both the PPG and ECG signals
u Reconstructs an ECG signal by relating the features of a PPG signal to               

those of an ECG signal

PPG signal

Feature 1

Feature 2

Feature N

Feature 1

Feature 2

Feature N

・
・
・

・
・
・

ECG signalFeatures from 
PPG signal

Features from 
PPG signal

[15] Q. Zhu, et. al., bioRxiv, 2019.Figure 2.3: The overview of the PPG-based ECG signal reconstruction [66].

Kohei Yamamoto, Ohtsuki Lab., Keio University 35

Existing ECG Signal Reconstruction Methods （2 / 2）

u SCG-based ECG signal reconstruction method [16]
u SCG 

u Can measure the chest vibration caused by heart activity such as                     
heart diastole and systole

u Transforms an SCG signal itself to ECG signal by using deep learning

u Limitation of the existing methods
u Device attachment is sometimes unsuitable in some situations                                      

such as long-term monitoring

…

…

…

Neural Network ECG signalSCG signal

[16] J. Park, et. al., in Proc. of Mobile Systems, Applications, and Services , 2019.

Figure 2.4: The overview of the SCG-based ECG signal reconstruction [67].
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2.3 LSTM, CNN, and convolutional LSTM

In this section, for a better understanding of our proposed method, we explain deep learning tech-

nique related to our method.

2.3.1 LSTM

In contrast, LSTM is one of Recurrent Neural Network (RNN) that has been broadly used to

analyze time sequence data, and it provides excellent performance of the temporal feature extrac-

tion [69]. LSTM typically consists of 4 blocks: (i) the LSTM block, (ii) the input gate, (iii) the

forget gate, and (iv) the output gate. Now, let y and h denote input data and hidden states, re-

spectively, and let W , R, p, and b denote the weight from the previous layer, the weight from the

hidden layer in the previous time, the peephole weight, and the bias, respectively. The forward-

propagation of LSTM is operated as follows.

z−t = Wzy
t +Rzh

t−1 + bz, (2.4)

zt = tanh(z−t), (2.5)

i−t = Wiy
t +Rih

t−1 + pi % ct−1 + bi, (2.6)

it = sigmoid(i−t), (2.7)

f−t = Wfy
t +Rfh

t−1 + pf % ct−1 + bf , (2.8)

f t = sigmoid(f−t), (2.9)

ct = it % zt + f t % ct−1, (2.10)
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o−t = Woy
t +Roh

t−1 + po % ct−1 + bo, (2.11)

ot = sigmoid(o−t), (2.12)

Ht = ot % tanh(ct), (2.13)

where “%” is the Hadamard product, and the subscripts “z”, “i”, “f”, and “o” denote the LSTM

block, the input gate, the forget gate, and the output gate, respectively.

2.3.2 CNN

CNN is also a deep learning technique that has the great ability of spatial feature extraction [73].

Typically, CNN has two operations: (i) the convolutional operation and (ii) the pooling operation.

Here, let xli,j and wp,q denote the elements of the feature map in the layer l and the convolutional

filter with the kernel size of P ×Q, respectively. With the stride size of the convolutional filter s,

the convolutional operation is performed as

ui,j =
P−1∑

p=0

Q−1∑

q=0

xsi+p,sj+qwp,q. (2.14)

With the activation function of Rectified Linear Units (ReLU), the enhancement of the extracted

feature ui,j is performed, and the element of the feature map in the next layer xl+1
i,j is obtained as

xl+1
i,j = ReLU(ui,j). (2.15)

The pooling operation is performed to reduce the training time by reducing the elements of the

feature map, in general. The max pooling algorithm is a typical one used to reduce the size of the

feature map and is used in our proposed model. The max pooling algorithm with the pooling area

O in the layer l is performed as

xl+1
i,j = max

(p,q)∈O

xlp,q. (2.16)
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2.3.3 Convolutional LSTM

Convolutional LSTM is a deep learning technique with both the features of LSTM and the con-

volutional operation used in CNN [68]. LSTM can extract features of time sequence data [69],

and it has been applied for signal classification [55][56] and prediction [57]. Also, CNN has

been successfully used in image recognition [59][60], and the convolutional operation is one of

the operations in CNN to extract detailed features from image data [73]. With the advantages of

LSTM and the convolutional operation, convolutional LSTM has been applied to extract features

from the successive image data in the field of object recognition and frame prediction over movie

data [62]-[64].

Now, let X and H denote input data and hidden states, respectively. Also, let W , R, p, and

b denote the weight from the previous layer, the weight from the hidden layer in the previous

time, the peephole weight, and the bias. The forward-propagation of the convolutional LSTM is

performed as follows.

z−t = Wz ∗Xt +Rz ∗Ht−1 + bz, (2.17)

zt = tanh(z−t), (2.18)

i−t = Wi ∗Xt +Ri ∗Ht−1 + pi % ct−1 + bi, (2.19)

it = sigmoid(i−t), (2.20)

f−t = Wf ∗Xt +Rf ∗Ht−1 + pf % ct−1 + bf , (2.21)

f t = sigmoid(f−t), (2.22)
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ct = it % zt + f t % ct−1, (2.23)

o−t = Wo ∗Xt +Ro ∗Ht−1 + po % ct−1 + bo, (2.24)

ot = sigmoid(o−t), (2.25)

Ht = ot % tanh(ct), (2.26)

where the subscripts “z”, “i”, “f”, and “o” denote the LSTM block, the input gate, the forget

gate, and the output gate, respectively. Also, “∗” and “%” are the convolutional operation and the

Hadamard product, respectively.



Chapter 3

Proposed Heartbeat Detection

In this chapter, we describe the proposed heartbeat detection method. In what follows, we first

explain the idea of the proposed method in Section 3.1, and then present the algorithm of our

proposed method in Section 3.2. We subsequently show the performance of our method through

some experiments in Section 3.3. Finally, we conclude this chapter in Section. 3.4

3.1 Idea of proposed method

3.1.1 Heartbeat component extraction

Heartbeat components obtained by a Doppler radar have two kinds of frequency components:

• Frequency components corresponding to the HR

• Frequency components related to just one heartbeat

As we mentioned before, noise components such as respiration and body fluctuation are distributed

over the frequency ranges related to the HR. Thus, the heartbeat components tend to be distorted

by such noise over the HR ranges. In contrast, frequency components related to just one heart-

beat is distributed over higher frequency ranges. Fig. 3.1 shows an example of the spectrogram

obtained from a subject holding his breath. In this figure, we can see that the spectrum appears

periodically. Each spectrum is caused by one heartbeat. More specifically, the spectrum in the

positive frequency domain is associated with heart diastole, while the spectrum in the negative

frequency domain is associated with heart systole. Through some preliminary experiments, we

55
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Figure 3.1: An example of a spectrogram obtained from a subject holding his breath.

confirmed that the spectrum due to one heartbeat mainly ranges from 8.0 Hz to 30 Hz and from

-30 Hz to -8.0Hz. Here, it is worth mentioning that there could be less effect of such noise over

higher frequency ranges related to just one heartbeat, compared to the HR ranges. This is be-

cause noise components are distributed over the lower frequency ranges related to the HR as we

mentioned above. Fig. 3.2(a) and (b) show examples of the integrated spectrum against a subject

sitting still when the detection range is 0.5 m and 2.0 m. Here, note that the integrated spectrum

is the time-domain signal obtained by integrating the spectrum for each time over a spectrogram.

Also, the corresponding ECG signals are shown, and the amplitudes of these signals are scaled for

a better comparison. From Fig. 3.2(a), it can be seen that it could be possible to detect heartbeat

by picking up peaks over the integrated spectrum. In contrast, many peaks due to non-heartbeat

appear over the integrated spectrum, when the detection range is 2.0 m. This is because as the

detection range get long, the SNR of heartbeat components is smaller. Thus, to realize more ac-

curate heartbeat detection based on such high frequency components of heartbeat, we introduce

heartbeat signal reconstruction from a spectrogram based on deep learning.
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Figure 3.2: Examples of the integrated spectrum against a subject sitting still.
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3.1.2 Signal reconstruction based on convolutional LSTM

To reconstruct a heartbeat signal from a spectrogram, we use convolutional LSTM as a deep learn-

ing model. As we mentioned in Chapter 2, convolutional LSTM is a deep learning technique that

has both the advantages of LSTM and convolutional LSTM, and has been successfully applied for

movie data processing such as object recognition. The motivation of using convolutional LSTM

is inspired by the characteristic spectrum distribution of heartbeat over a spectrogram. As we can

see from Fig. 4.1, heartbeat has two features about spectrum distribution:

• The periodicity of the spectrum, which is caused by several heartbeat

• The spectrum distribution caused by just one heartbeat

Based on this fact, we think that by using successive spectrogram images and convolutional LSTM,

it could be possible to consider such two features and to reconstruct a heartbeat signal well.

3.2 Algorithm of proposed method

In this section, we explain the algorithm of the proposed heartbeat detection method based on

heartbeat signal reconstruction with convolutional LSTM. Fig. 3.3 shows the flowchart of the

proposed heartbeat detection method. Our proposed method consists of two steps, i.e., (i) pre-

processing and (ii) heartbeat signal reconstruction with convolutional LSTM, and (iii) peak detec-

tion, In what follows, we explain our proposed method in terms of these three steps.

3.2.1 Pre-processing

In the proposed method, after the acquisition of I(t) and Q(t) with the sampling rate of 1000 Hz,

a Doppler signal S(t) is firstly calculated as

S(t) = I(t) + jQ(t). (3.1)

To reduce the effect of non-heartbeat components, e.g., due to respiration and body movements,

BPF is applied to the Doppler signal. Based on the fact that the frequency components of heartbeat

are distributed mainly within [8.0, 30]Hz [43], the cut-off frequencies of BPF are set as 8.0 Hz and



3.2. ALGORITHM OF PROPOSED METHOD 59

Doppler signal calculation

BPF

STFT

Input data transformation

Heartbeat signal reconstruction 
by convolutional LSTM

Heartbeat detection

!(#) %(#)

HR RRI

RRI approximation

Figure 3.3: The flowchart of the proposed heartbeat detection method.
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30 Hz. Short Time Fourier Transform (STFT) is subsequently applied to the filtered signal. The

time window size and step size are set as 256 ms and 25 ms, respectively, and these parameters are

short enough to analyze the spectrum due to one heartbeat. To accurately extract heartbeat compo-

nents from a spectrogram, our proposed method reconstructs a heartbeat signal from a spectrogram

based on convolutional-LSTM in the next step.

3.2.2 Heartbeat signal reconstruction with convolutional LSTM

Input data transformation

In the proposed method, to realize the fast heartbeat detection, heartbeat is detected with 5 s data,

including at least two heartbeats. Fig. 3.4 shows a concept of the input data transformation. The

spectrogram is firstly segmented by 5 s-window corresponding to 200 samples. Also, the spectrum

in [8.0, 28] Hz and [−28,−8.0] Hz is concatenated as shown in Fig. 3.4(b). The 5 s-segmented

spectrogram is then further segmented by 0.25 s time window with the step size with 0.05 s,

which results in 95 spectrograms as shown in Fig. 3.4(c). Here, 0.25 s and 0.05 s correspond

to 10 samples and 2 samples, respectively, and these parameters are short enough to capture the

spectrum distribution peculiar to heartbeat. Eventually, 95 spectrograms sorted with regard to

the time order are input to convolutional LSTM, and the size of the input data is 10 × 10 × 95.

The input data size is dependent on the step size of the window used in STFT. As the step size

gets short, the input data length gets longer, and thus the more features could be extracted by

convolutional LSTM. However, the long length of the input data makes it challenging to train the

deep learning model, depending on the number of the training data. Based on this fact, the step

size of the window is set as 25 ms through the preliminary experiments.

Model architecture

Fig. 3.5 shows the architecture of the proposed deep learning model. The proposed model is based

on five layers: (i) the input one, (ii) the convolutional LSTM one, (iii) the concatenate one, (iv) the

fully-connected one, and (v) the output one. In the proposed method, two convolutional LSTM

layers are used, and the batch normalization is performed after each convolutional LSTM layer to

reduce the training time. Here, the kernel size and the number of filters in convolutional LSTM
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Figure 3.4: A concept of the input data transformation.

are 3 × 3 and 32, respectively. These parameters should be set considering the over-learning

and the reconstruction accuracy of a heartbeat signal, and these can be adjusted depending on

the diversity and the number of training data. After the convolutional LSTM layers, to better

reconstruct a heartbeat signal, RRIprev is calculated as the average value of the RRIs estimated

from the previous output, and then RRIprev is inputted to the model by concatenating it with the

output of the convolutional LSTM layers. However, there exist numerous candidates of RRIprev,

which makes it difficult to train the deep learning model as well as the long length of the input

data. Based on this fact, in the proposed method, a set of 32 RRI candidates, i.e., 500 ms, 550 ms,

600 ms, ..., 2000 ms is defined considering the number of training data. RRIprev is approximated

to the RRI that is closest to RRIprev among 32 RRI candidates. In the initial observation where

RRIprev is not available, the model without RRIprev is used. The fully-connected layer consists

of two layers with 1,024 units. As an output of our model, the ECG signal, which is filtered by

BPF with its cut-off frequencies 0.5 Hz and 2 Hz, is used. The sampling rate of the ECG signal

is initially 200 Hz, and the sampling rate is downsampled to 40 Hz. Thus, the output data length

is 200, corresponding to 5 s. Also, to reconstruct a heartbeat signal considering the periodicity of

heartbeat, as the loss function L, the correlation coefficient between the predicted output and the
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Figure 3.5: The architecture of the proposed deep learning model.

true output, c, is used as

L = 1− c. (3.2)

3.2.3 Peak detection

After acquiring the output signal of the model, heartbeat could be detected by selecting peaks of

the output signal. However, undesired peaks sometimes appear over the output signal. To detect

heartbeat incorrectly, in the proposed method, BPF is applied to the output signal, where its cut-off
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frequencies are set as 0.5 Hz and 2.0 Hz, corresponding to 30 bpm and 120 bpm. Peaks are then

detected as heartbeat over the filtered output signal.

3.3 Performance evaluation

3.3.1 Perfomance metrics

To evaluate the heartbeat detection accuracy of the proposed method, we conducted the exper-

iments to observe heartbeat from subjects with not only normal HR but also low HR. As the

performance metric, we calculated the Root Mean Squared Error (RMSE) between the estimated

and ground-truth RRIs.

RMSE =

√√√√ 1

N

N∑

i=1

|RRIest(i)−RRIref(i)|2, (3.3)

where N denotes the number of the observed RRIs. i also denotes the time when the i th peak

appears, and RRIest and RRIref denote the estimated RRI and the ground truth value of the RRI,

respectively. In addition to the RMSE, we also calculated the Average Absolute Error (AAE)

between the estimated and ground truth HRs, and the Average Relative Error (ARE) of the HR.

AAE =
1

M

M∑

j=1

|HRest(j)− HRref(j)|, (3.4)

ARE =
1

M

M∑

j=1

|HRest(j)− HRref(j)|
HRref(i)

, (3.5)

where M denotes the number of the observed HRs, HRest(j) and HRref(j) denote the j th esti-

mated and ground truth HRs, respectively. Here, note that the HR is estimated by calculating the

reciprocal of the average value of the estimated RRIs within 5 s, which is performed by 5 s-time

window with the step size of 2 s.
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3.3.2 Experimental setup

TABLE 3.1 lists the experimental specification. In the experiments, we used a 24 GHz Doppler

radar with a sampling rate of 1000 Hz. To collect the training data, we observed heartbeat against

eight subjects sitting still for 240 s. Also, to extend the diversity of the HR variation over the

training data, we interpolated the input and output data as the following steps: (i) R-peaks were

detected over the ECG signal, (ii) the timing when heartbeat did not occur was detected based

on the results of the first step, and (iii) the input and output data were interpolated by the AR

(Autoregressive) model. We collected 10,350 training data with the HR of [30, 120] bpm through

this extension of the training data. In contrast, as the testing data, we observed heartbeat against

17 subjects with the Doppler radar attached to the ceiling. Here, it is worth mentioning that the

subjects for the testing data were different from the ones for the training data. TABLE 3.2 lists

the testing dataset. The subjects 1, 2, 3, 4, and 5 were sitting still at 1.0 m away from the Doppler

radar, and the subjects 6, 7, 8, 9, and 10 were lying up on the floor at 2.5 m away from the Doppler

radar. Also, the subjects 11, 12, 13, 14, 15, 16, and 17 were lying up on the bed, and the distance

between a subject and the Doppler radar attached on the ceiling was about 2.0 m. The observation

time is 180 s for each subject. To collect the output data of the proposed deep learning model and

to measure the ground true RRI and HR, we used ECG with the sampling rate of 200 Hz. The

optimizer to train the model was “RMSprop”, the number of epochs was 50, and the batch size

was 256.

3.3.3 Results

Performance of heartbeat signal reconstruction

Fig. 3.6 shows the training and the validation losses, where the validation rate is 10 %. As can be

seen from this figure, the training loss converges at about 0.15, i.e., the correlation coefficient c is

0.85, and the validation one does at about 0.25, i.e., c is 0.75. Fig. 3.7 shows examples of ECG

signal, the integrated spectrum, and the output signal of the proposed deep learning model with

convolutional LSTM. In Figs. 3.7(a) and (b), for the better comparison, the amplitudes of these

three signals are scaled. From these figures, it can be seen that many peaks due to non-heartbeat

appear over the integrated spectrum, which could degrade the heartbeat detection accuracy. In
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Table 3.1: Testing dataset.

Item Value

Modulation method Unmodulated continuous wave

Carrier frequency 24 GHz

Sampling rate of Doppler radar 1000 Hz

The number of subjects 17

Observation duration 180

Detection range d From 1.0 m to 2.5 m

Sampling rate of ECG 200 Hz

Optimizer to train mode RMSprop

Epochs to train model 50

Batch size to train model 256

particular, the HR estimated based on the integrated spectrum tends to be higher than the ground

truth HR because of such incorrect peak. In contrast, from these figures, it can be seen that less

peaks due to non-heartbeat appear over the output signal of the proposed model, which could bring

the improvement of the heartbeat detection accuracy.

Performance of the proposed method

Figs. 3.8 and 3.9 show examples of the RRI and HR estimation results. In these figures, our

previous heartbeat detection method [43] estimates the HR by calculating the reciprocal of the

average value of the detected peak-to-peak intervals within 5 s as well as the proposed one. As can

be seen from these figures, some estimated RRIs and HRs by our previous method are inaccurate

due to the incorrect peak detection, particularly for the subject with low HR. In contrast, the

proposed method, including the one without the input ofRRIprev improves the heartbeat detection

accuracy of our previous one, in particular for the subject with low HR. Furthermore, thanks to the
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Table 3.2: Testing dataset.

ID Sex Ave. RRI [ms] Ave. HR [bpm] d [m]

1 M 782 76.7 1.0 m

2 M 801 74.9 1.0 m

3 F 681 88.1 1.0 m

4 M 924 64.9 1.0 m

5 M 874 68.6 1.0 m

6 M 886 67.8 2.5 m

7 M 659 90.9 2.5 m

8 F 887 67.6 2.5 m

9 F 818 73.4 2.5 m

10 F 837 71.6 2.5 m

11 M 1,293 46.5 2.0 m

12 M 1,111 54.1 2.0 m

13 M 1,486 40.4 2.0 m

14 M 1,040 57.8 2.0 m

15 M 1,508 39.8 2.0 m

16 M 1,308 45.8 2.0 m

17 F 1,292 46.4 2.0 m

heartbeat signal reconstruction with the additional input to the model, i.e., RRIprev, the proposed

method reconstructs a heartbeat signal better. Thus, it provides the most accurate RRI and HR

than the other ones do. TABLE 3.3 lists the RMSEs and AAEs of our previous [43] and proposed

methods. From this table, it can be seen that the proposed method outperforms our previous ones

by the average RMSE and AAE. In particular for the subjects with the HR lower than 50 bpm,

i.e., the subjects 11, 13, 15, 16, and 17, our proposed method improves the RMSE and the AAE

of our previous one significantly, though the RMSEs and AAEs are higher than those of the other

subjects, since the HR variations of the subjects with low HR are large. As a result, our previous
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Figure 3.6: The training and validation losses. The validation rate is 10 %.

method’s average RMSE and AAE is 308 ms and 13.8 bpm, respectively, while those of our

proposal are 111 and 3.84 bpm, respectively. Considering that the HR could be lower and lower

at abnormal events such as the onset of the disease, it is worth noting that the proposed method

detects heartbeat even with low HR.

Performance comparison of the proposed and existing methods

TABLE 3.4 lists the AAEs and the AREs of the other existing fast heartbeat detection methods that

have a short time window and have been evaluated at the long detection range, e.g., at least 1.0 m.

In terms of the ARE, the conventional method [13] achieves the ARE of 3.38 % in the situation

where the detection range d ranges from 1.0 m to 1.5 m and the HR range to detect heartbeat,

R, ranges from 50 bpm to 100 bpm. In contrast, the ARE of our proposed method is 5.04 % in

the situation where d ranges from 1.0 m to 2.5 m and R ranges from 30 bpm to 120 bpm. More

specifically, the ARE of our proposal is 4.01 % in the situation where R ranges from 50 bpm

to 120 bpm, while the ARE is 6.84 % in the situation where R is lower than 50 bpm. Also, in

terms of the AAE, our method achieves the small AAE of 3.84 bpm, which is almost equal to
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Figure 3.7: Examples of the ECG signal, the integrated spectrum, and the output signal of the
proposed deep learning model.
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Figure 3.8: The RRI and HR estimation results against the subject 10 with the average HR of
71.6 bpm. The proposed method w/o RRIprev denotes the one that does not use RRIprev as an
input to the model.
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Figure 3.9: The RRI and HR estimation results against the subject 13 with the average HR of
40.4 bpm. The proposed method w/o RRIprev denotes the one that does not use RRIprev as an
input to the model.
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4.32 bpm and 3.75 bpm of the conventional ones [23] and [24], respectively. Here, note that the

conventional one [23] has been evaluated in the situation where d is 1.0 m and R ranges from

60 bpm to 120 bpm, and the one [24] has been done in the situation where d ranges 1.0 m to 1.1 m

and R ranges from 51 bpm to 120 bpm. Although the ARE by our proposed method is lower

than that of the conventional one [13], these results show that even though the detection range gets

long, e.g., 2.0 m, our method performs accurate heartbeat detection even against the subjects with

low HR.

3.4 Conclusion

In this chapter, to accurately detect heartbeat via a Doppler radar, we proposed a heartbeat detec-

tion method based on heartbeat signal reconstruction with convolutional LSTM. Specifically, we

construct a deep learning model with convolutional LSTM to reconstruct a heartbeat signal. To

reconstruct a heartbeat signal based on the periodicity of heartbeat and the spectrum distribution

peculiar to heartbeat, successive spectrograms within the frequency range that might be related

to heartbeat is input to convolutional LSTM, The experimental results showed that even in the

situation where the detection range is extended, e.g., 2.0 m, and the SNR of heartbeat components

is low, our proposed method achieved the small AAE of 3.84 bpm against 17 subjects including 5

subjects with the HR lower than 50 bpm.
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Table 3.3: RMSEs and AAEs of our previous and the proposed methods.

ID d [m]
Actual Ave.

RMSE [ms] AAE [bpm]

HR [bpm] [43]
Propsal

Propsal [43]
Propsal

Propsal
w/o RRIprev w/o RRIprev

1 1.0 76.7 92 72 73 3.49 3.75 3.56

2 1.0 74.9 109 81 75 5.35 4.48 4.32

3 1.0 88.1 84 62 51 4.29 4.01 3.54

4 1.0 64.9 113 88 81 4.82 4.28 3.91

5 1.0 68.6 81 59 60 3.89 3.77 3.50

6 2.5 67.8 162 122 104 5.13 3.05 3.15

7 2.5 90.9 201 153 129 9.02 4.81 3.02

8 2.5 67.6 145 114 97 6.26 4.48 3.95

9 2.5 73.4 182 119 107 8.22 4.55 4.08

10 2.5 71.6 167 132 109 7.34 4.04 2.79

11 2.0 46.5 623 238 156 27.5 6.08 5.13

12 2.0 54.1 592 185 134 25.2 5.72 4.29

13 2.0 40.4 572 202 139 28.1 3.46 2.77

14 2.0 57.8 368 209 123 10.3 4.23 4.34

15 2.0 39.8 732 237 182 34.7 6.71 5.33

16 2.0 45.8 539 142 122 28.5 3.95 3.84

17 2.0 46.4 481 163 149 22.3 5.10 4.79

Ave. - - 308 140 111 13.8 4.49 3.84
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Table 3.4: Performance comparison of the proposed and the conventional fast heartbeat detection
methods.

Method fc [GHz] Ns Te [s] d [m] R [bpm] Tw [s] AAE [bpm] ARE [%]

[13] 5.8 GHz 4 30 1.0 - 1.5 50 - 100 2 - 5 - 3.38

[23] 24 GHz 5 180 1.0 60 - 120 2 - 5 4.32 -

[24] 10.225 GHz 15 80 - 90 1.0 - 1.1 51 - 120 3 3.75 -

Proposal 24 GHz

12

180

1.0 - 2.5 50 - 120

5

3.62 4.01

5 2.0 Lower than 50 4.37 6.84

17 1.0 - 2.5 30 - 120 3.84 5.04

fc : Radar frequency, Ns : Number of subjects, Te : Observation duration
d : Detection range, R : HR range to detect heartbeat, Tw : Window size to detect heartbeat





Chapter 4

Proposed ECG Signal Reconstruction

In this chapter, we describe the proposed ECG signal reconstruction. We first explain the idea

of the proposed method in Section 4.1. We then explain the algorithm of our proposed method

in Section 4.2, and evaluate performance of our method in Section 4.3. We finally conclude this

chapter in Section 4.4.

4.1 Idea of proposed method

As we mentioned before, frequency components due to heartbeat can be divided into

• Components corresponding to the HR

• Components corresponding to just one heartbeat

In terms of the HR, the frequency components of heartbeat typically range from 0.5 Hz to 2.0 Hz,

corresponding to 30 bpm and 120 bpm, respectively. In contrast, the chest’s displacement due to

heartbeat, xh, can be expressed as [86].

xh(t) = ν cos{ωt+ γ sin(Ωt)} e−
(t−b)2

c , (4.1)

where ω and Ω are the parameters used to determine the peak location of a heartbeat signal, and ν

and γ are the parameters used to determine the magnitude of the peak. Additionally, b and c are the

constant parameters. Based on this model, the previous research [42] has generated the simulated

75
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heartbeat signal obtained by a Doppler radar and has shown that the frequency components due to

the heartbeat signal are distributed in the higher frequency band.

Fig. 4.1 shows an example of a spectrogram obtained from a subject holding his breath again.

This spectrogram is calculated by STFT with a 256 ms-time window and a 5 ms-step size. Also,

the sampling rate of the Doppler radar is 1000 Hz, and the number of points in FFT is 1024. From

this figure, it can be seen that the spectrum due to each heartbeat appears in the frequency band

higher than 2 Hz. As aforementioned, the frequency components due to one heartbeat are mainly

distributed from 8.0 Hz to 30 Hz. To associate features of the heartbeat signal with those of the

ECG signal, the heartbeat components in such a high-frequency band are essential. Fig. 4.2 shows

examples of raw in-phase and quadrature signals and the ones filtered by Band Pass Filter with a

passband of [8.0, 30] Hz. For a better comparison, an ECG signal is also shown in Fig. 4.2(c), and

the amplitudes of the signals are scaled in Figs. 4.2(b) and (c). From these figures, we can see the

heartbeat signal corresponding to the ECG signal over the filtered in-phase and quadrature signals.

However, we can also see that the heartbeat signal waveforms are not always the same. Hence, to

reconstruct an ECG signal from such heartbeat signal waveforms obtained by a Doppler radar, it

is necessary to consider the distortion of the heartbeat waveforms.

To deal with this, we use CNN and LSTM for ECG signal reconstruction. As we explain

in Chapter 2, CNN and LSTM have a great ability of extraction spatial and temporal features,

respectively. The spatial feature extracted by CNN could lead to the robustness to the waveform

distortion. Also, the temporal features are very essential to relate a Doppler radar signal to an ECG

signal, and the deep temporal features could be extracted by LSTM. Based on these viewpoints,

we use the CNN and LSTM for ECG signal reconstruction with robustness to diversity of heartbeat

signal waveforms.

4.2 Algorithm of proposed method

In this section, we describe the algorithm of our proposed method in terms of (i) input data seg-

mentation and (ii) ECG signal reconstruction with CNN and LSTM. Fig. 4.3 shows the flowchart

of the proposed ECG signal reconstruction. As can be seen from this flowchart, the proposed

method performs ECG signal reconstruction based on the result of heartbeat detection.
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Figure 4.1: An example of a spectrogram obtained from a subject holding his breath.

Input data segmentation

In the proposed method, after detecting heartbeat timing by a heartbeat detection method via the

Doppler radar with a sampling rate of 1000 Hz, a heartbeat signal is segmented by a 1.2 s-time

window centered at the detected timing as shown in Fig. 4.4. Here, the time window length should

be set to include at least one heartbeat, which is very important for reconstructing an ECG signal.

In fact, as the heart rate gets low, the timing when the T-wave appears is likely to be delayed.

Based on this fact, we selected a 1.2 s-time window that is long enough to meet this condition.

Although a subject who has an ECG signal longer than 1.2 s may exist, it is possible to change

the window length used in our method. More specifically, as aforementioned, the I(t) and the

Q(t) filtered by BPF with the passband of [8.0, 30] Hz are segmented as the heartbeat signal. The

segmented I(t) and Q(t) are then input into a deep learning model.

ECG signal reconstruction with CNN and LSTM

In the proposed method, an ECG signal is reconstructed by a hybrid model with CNN and LSTM.

Fig. 4.5 shows the architecture of the proposed deep learning model. In the proposed method, the

segmented I(t) andQ(t) is concatenated, which is input with the size of 2×800. First, the input is

fed into CNN to extract spatial features over the heartbeat signal. This operation makes the model
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Figure 4.2: Examples of raw in-phase and quadrature signals, and the ones filtered by BPF with
the passband of [8.0, 30] Hz.
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Figure 4.3: The flowchart of the proposed ECG signal reconstruction.
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Figure 4.4: Segmentation of input data to a deep learning model.
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robust against the deformation of the heartbeat signal. Specifically, the convolutional operation

by 8 filters with the kernel size of 2 × 50 is performed, and then the max pooling operation with

the kernel size of 1 × 2 is performed, where the convolutional filter strides by 1 sample, and the

pooling area strides without the overlap. Subsequently, the convolutional operation by 8 filters

with the kernel size of 2 × 25 is performed, and then the max pooling operation with the kernel

size of 2 × 2 is performed. Here, the strides of the convolutional filter and the pooling area are

the same as mentioned above. To relate the temporal features of the heartbeat signal to those

of the ECG signal, the extracted feature maps are then input to LSTM with 256 hidden layers.

Specifically, the output of the CNN can be regarded as the sequence data with a size of 176 × 8

(data length × dimension of features), which is an input to LSTM. Through the fully connected

layers with 1024 units, the ECG signal is finally output based on the features obtained by the CNN

and LSTM. Here, it is worth mentioning that these parameters used in the model, e.g., the number

of filters and the kernel size, should be set considering the over-learning and the reconstruction

accuracy of the ECG signal. These can also be adjusted depending on the diversity and the number

of training data. As for the number of epochs, we set it based on the convergence of the validation

loss. Fig. 4.6 shows the training and validation losses. From this figure, it can be seen that the

validation loss converges at about 0.015 after epoch 30. In contrast, the training loss decreases

slowly even after epoch 30. In fact, when the training loss continues to decrease in such a way,

which brings the over-learning. Based on this fact, we set the epoch as 40.

4.3 Performance evaluation

In this section, we first explain the specification of the experiments and then present the experi-

mental results.

4.3.1 Experimental setup

To evaluate the ECG signal reconstruction accuracy of the proposed method, we carried out ex-

periments to collect testing and training data. TABLE 4.1 lists the experimental specification. We

carried out our experiments using a 24 GHz Doppler radar with a sampling rate of 1000 Hz, which

is the same as the one mentioned in the previous chapter. We observed heartbeat of 9 subjects for



4.3. PERFORMANCE EVALUATION 81

Convolutional layer

Pooling layer

Convolutional layer

Pooling layer

LSTM layer

Filter number : 8
Kernel size : 2×50

Kernel size : 1×2

Filter number : 8
Kernel size : 2×25

Kernel size : 2×2

Number of hidden 
layers : 256

Fully connected layer Number of units : 1024

Filtered in-phase signal

Filtered quadrature signal
Input data2

800

Fully connected layer Number of units : 1024

55 55.5 56 56.5 57

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Output data

Figure 4.5: The architecture of the proposed deep learning model..
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Table 4.1: The specification of the experiment.

Item Value

Modulation method Unmodulated continuous wave

Carrier frequency 24 GHz

Sampling frequency 1000 Hz

The number of subjects 9

Observation duration 180 s

Detection range 2.5 m

Optimizer to train model Adam

The number of epochs to train model 40

Batch size to train model 128

180 s, and all the subjects were healthy and did not have abnormalities related to the heart. During

the observation, the subjects were lying up on the floor with natural breathing. The Doppler radar

was attached to the ceiling, and the distance between the Doppler radar and the subject was 2.5 m.

At the same time as the Doppler radar is used to collect the actual ECG signal, we observed the

subject’s heartbeat by an ECG with a sampling rate of 250 Hz. Also, as the loss function to train

the proposed model, we used the Mean Squared Error (MSE). The optimizer used to train the

model was “Adam”, and the number of epochs and the batch size were 40 and 128, respectively.
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4.3.2 Perfomance metrics

As the performance metric, we calculated the correlation coefficient κ between the reconstructed

and actual ECG signals as

κ =

M∑

m=1

(vm − ṽ)(rm − r̃)

√√√√
M∑

m=1

(vm − ṽ)2

√√√√
M∑

m=1

(rm − r̃)2

, (4.2)

where M denotes the number of samples over the reconstructed and actual ECG signals. vm and

rm denote the m-th samples over the reconstructed and actual ECG signals, respectively. ṽ and

r̃ denote the mean values of the reconstructed and actual ECG signals, respectively. In addition

to the correlation coefficient, for the better evaluation of the proposed method, we detected the

R-peaks based on the Pan-Tompkins algorithm [87]. This algorithm can detect the R-peak based

on an adaptive threshold determined by a signal level. Although it might be possible to detect

the R-peak by other algorithms such as the maximum peak detection algorithm, we used the Pan

Tompkins algorithm because it can detect the R-peak accurately, according to previous research

related to the SCG-based ECG signal reconstruction [45]. Considering that the P peak typically

appears within 0.3 s before the R-peak, we thus detected the P peak as the maximum one that

appeared within 0.3 s before the R-peak. We finally detected the T peak as the maximum one that

appeared after the R-peak. As the performance metric, we calculated the AAE between the timings

when such peaks appeared over the reconstructed and actual ECG signals. Precisely, against each

peak, the AAE was calculated as

AAE =
1

N

N∑

n=1

|tpred(n)− ttrue(n)|, (4.3)

whereN denotes the number of the collected ECG signals, nmeans the n th ECG signal, and tpred

and ttrue denote the predicted and ground truth timings, respectively. Furthermore, we measured

the P-peak to R-peak interval (PRI), R-peak to T-peak interval (RTI), and P-peak to T-peak inter-

val (PTI), and we calculated the RMSE between these intervals over the reconstructed and actual
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ECG signals as

RMSE =

√√√√ 1

N

N∑

n=1

|PPIpred(n)− PPItrue(n)|2, (4.4)

where PPIpred and PPItrue denote the peak intervals measured over the reconstructed and actual

ECG signals, respectively.

4.3.3 ECG signal reconstruction accuracy

TABLE 4.2 lists the dataset collected through the experiments. In the evaluation of the experi-

ments, we used the hold-out validation to evaluate our proposed method. The data from one set

of subjects were used as the testing data, while the other set of subjects were used as the training

data, which was repeated for all the subjects.

Fig. 4.7 shows examples of the reconstructed and actual ECG signals. In these examples, for

a better comparison, the amplitudes of these two signals are scaled. From these examples, it can

be seen that the ECG signal is reconstructed by our proposed method so that the P, R, and T peaks

could be detected. We can also say that detecting the P peak might be difficult, compared to the

R and the T peaks. This is because the SNR of the P-wave is low, which makes it challenging to

train the proposed deep learning model.

TABLE 4.3 lists the correlation coefficients κ, the AAEs, and the RMSEs of the proposed

method. As seen from this table, our proposed method reconstructs the ECG signal with an average

correlation coefficient of 0.86. In general, as the HR gets low, one period of the ECG signal grows

longer, indicating that our method can reconstruct the ECG signal, regardless of the HR. In terms

of the AAE, the average AAEs of the P, R, and T peaks are 28.3 ms, 17.8 ms, and 30.3 ms,

respectively. From these results, we can say that our method reconstructs R-peak accurately,

compared with the P and T peaks. The SNRs of the P and T-waves are typically lower than that of

the R-peak, and the P and T-wave components over the heartbeat signal by the Doppler radar are

sensitive to noise, e.g., respiration and body movements. Thus, the AAEs of the P and T peaks are

lower than that of the R-peak. When a subject has lower HR, the timing when the T-wave appears

tends to be delayed. This fact makes it difficult to reconstruct the T-wave, which could be solved

by further extending the diversity of the training data. As a result, the RMSEs of the PRI, RTI,
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Table 4.2: Dataset. N denotes the number of the collected heartbeat signals

ID Sex Ave. RRI [ms] Ave. HR [bpm] N

1 M 886 67.8 192

2 F 887 67.6 184

3 F 818 73.4 192

4 F 837 71.6 188

5 M 1159 51.8 131

6 M 1005 59.7 157

7 M 1043 57.5 144

8 M 1456 41.2 103

9 F 1325 45.3 129

and PTI are 31.6 ms, 33.9 ms, and 47.2 ms, respectively. The required accuracies of the PRI, RTI,

and PTI measurements depend on the usage of these intervals. In our future work, we will further

improve the ECG signal reconstruction accuracy according to real applications.

4.3.4 Performance comparison of the proposed and existing methods

TABLE 4.4 lists the performance comparison of the proposed and the other existing ECG sig-

nal reconstruction methods. The three methods in Table 4 use different datasets and radars, i.e.,

PPG, SCG, and a Doppler radar. Thus, the performance comparison among these methods is not

necessarily fair. However, to show the ability of the proposed non-contact ECG reconstruction

method, it would be beneficial to compare our method with the ones that use the contact radars.

The method [66] reconstructs the ECG signal by the linear transform of the DCT coefficients of

the PPG signal to those of the ECG signal. The SCG-based method [67] reconstructs the ECG

signal by associating the SCG signal to the ECG signal through bidirectional-LSTM. From this
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Figure 4.7: Examples of the reconstructed and actual ECG signals.
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Table 4.3: The correlation coefficients κ, the AAEs, and the RMSEs of the proposed method.

ID
Actual Ave.

κ

AAE [ms] RMSE [ms]

HR [bpm] P R T PRI RTI PTI

1 67.8 0.91 30.1 13.6 23.6 29.3 36.3 44.2

2 67.6 0.88 27.3 19.8 24.2 33.5 29.8 39.7

3 73.4 0.89 32.5 22.1 27.4 37.7 35.1 42.5

4 71.6 0.89 23.5 17.8 26.2 28.2 32.8 44.9

5 51.8 0.82 36.7 16.7 38.1 35.9 37.1 54.0

6 59.7 0.85 24.4 14.0 29.5 31.3 34.0 49.5

7 57.5 0.81 29.2 19.1 36.2 27.0 30.4 51.7

8 41.2 0.84 23.3 15.8 34.9 29.5 33.5 46.3

9 45.3 0.83 27.8 21.4 33.0 32.0 36.2 52.2

Ave. - 0.86 28.3 17.8 30.3 31.6 33.9 47.2

table, it can be seen that the PPG-based ECG signal reconstruction method achieves a high corre-

lation coefficient of 0.96, while our proposed method achieves the correlation coefficient of 0.86.

Additionally, the AAEs of the P, R, and T peaks by the SCG-based method are 20 ms, 13 ms, and

16 ms, respectively. In contrast, our method’s AAEs for the P, R, and T peaks are 28 ms, 17 ms,

and 30 ms, respectively. Although the ECG signal reconstruction accuracy of the conventional

methods is higher than ours, the experimental results show that our method can reconstruct the

ECG signal without device attachment even when a subject is 2.5 m away from a Doppler radar.

These results are worth noting, and in our future work, we will try to improve our method to

achieve as high an ECG signal reconstruction accuracy as the conventional ones.
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Table 4.4: The performance comparison of the proposed and the other existing ECG signal recon-
struction methods.

Method κ
AAE [ms]

P R T

PPG-based method [66] 0.96 - - -

SCG-based method [67] - 20 13 16

Proposed method 0.86 28 17 30

4.3.5 Limitations of proposed method

Our method might not consistently achieve the good performance of the ECG signal reconstruc-

tion, particularly for the types of ECG signal waveforms that are not considered for the model’s

training. When a subject has a heart disease that can affect the ECG signal waveform, it is neces-

sary to include such a type of ECG signal waveform in the training data. Thus, to make our model

further robust to the diversity of the ECG signal waveform, numerous training data are essential.

Additionally, our method can be applied after the heartbeat detection. When heartbeat is not de-

tected due to noise such as respiration and body movements, it is impossible to reconstruct the

ECG signal. Even when the heartbeat is detected, the performance of the ECG signal reconstruc-

tion could be degraded due to the large deformation of the heartbeat signal waveform. This issue

could also be solved by increasing the diversity of the training data.

4.4 Conclusion

In this chapter, we present a Doppler radar-based ECG signal reconstruction method by a hybrid

deep learning model with CNN and LSTM. As the ECG signal reconstruction method, there exist

the ones with the attaching devices, i.e., PPG and SCG. In contrast, to reconstruct an ECG signal
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without requiring device attachment, we constructed a deep learning model that outputs the ECG

signal by extracting the spatial and temporal features from a heartbeat signal obtained by a Doppler

radar. Although detecting the P-wave, the T-wave, and the R-peak with a Doppler radar is more

complicated than detecting the only heartbeat due to the low SNR of heartbeat components, we

experimentally confirmed that our proposal performed the ECG signal reconstruction well even

without device attachment.



Chapter 5

Conclusions and Future Work

5.1 Contributions

This dissertation first proposed the novel heartbeat detection method via a Doppler radar through

heartbeat signal reconstruction with deep learning. In contrast to the conventional methods that de-

tect heartbeat by frequency analysis and feature detection, the proposed method introduces noise-

robust heartbeat component extraction based on a spectrogram. Our proposed method reconstructs

a heartbeat signal from the spectrogram-related data based on deep learning for more accurate

heartbeat detection. Through some experiments, we showed our method could perform accurate

heartbeat detection even for the long detection range and achieved the small AAE of 3.84 bpm

against 17 subjects including 5 subjects with the HR lower than 50 bpm.

Furthermore, we proposed an ECG signal reconstruction method based on deep learning.

Conventionally no conventional methods have extracted the P-wave and the T-wave components

through a Doppler radar due to the low SNR of heartbeat components, though such components

can provide beneficial information on the heart’s health condition. In contrast, we introduced ECG

signal reconstruction from the Doppler radar-related data by utilizing the advantages of LSTM and

CNN. The experimental results showed that the proposed method could reconstruct an ECG signal

via a Doppler radar even without device attachment. Through the performance comparison among

our proposed and the existing methods with wearable devices, we demonstrated the feasibility of

the non-contact ECG signal reconstruction via a Doppler sensor.
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5.2 Future Work

Our work could enhance remote sensing systems of cardiac activity via a Doppler radar. In terms

of heartbeat detection, we will attempt to apply our method to real applications, such as

• Smart homes that monitor health condition through vital signs

• Burn patient monitoring

• Infant monitoring

To realize these applications, we will still have some problems: (i) a heartbeat signal reconstruc-

tion accuracy for large RRI changes, (ii) trustworthiness of heartbeat detection results. On the

one hand, when the RRIs change largely, it might be challenging to reconstruct a heartbeat signal

accurately. To reconstruct a heartbeat signal for the subject with large RRI changes, it is necessary

to train a deep learning model with data including such a case. However, the training data in our

method might not be sufficient, and should be more diversified. On the other hand, trustworthi-

ness of heartbeat detection results is very important for real applications, because main action of

applications such as anomaly notification is based on the heartbeat detection results. Although

the proposed method attempts to detect heartbeat by taking advantage of some signal processing,

it is sometimes impossible to detect heartbeat due to large effect of noise and subject’s posture.

Trustworthiness of heartbeat detection results is quite low in such a case. Thus, we will need to

introduce signal quality assessment of a Doppler radar signal for real applications.

Also, we will investigate fetal heartbeat detection via a Doppler ultrasound signal. Conven-

tionally, to realize non-invasive fetal heartbeat monitoring, a Doppler ultrasound-based heartbeat

detection method has been extensively studied [88]-[90]. This method could detect fetal heart-

beat based on the same principle of a Doppler radar-based heartbeat detection method. However,

a Doppler ultrasound signal contains noise related to maternal and fetal motions, which makes

it challenging to detect fetal heartbeat with a high accuracy. Thus, we will attempt to realize

more accurate fetal heartbeat detection via a Doppler ultrasound signal based on the knowledge

on heartbeat detection via a Doppler radar.

Regarding to ECG signal reconstruction, we will need to validate our proposed method based

on data with more diversity. Although it might be challenging to evaluate our proposed method
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with abnormal ECG data, which is essential for applying our method to real applications. The

evolve of deep learning probably leads to further improvement of cardiac sensing technology.
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tion with Viterbi Algorithm,”電子情報通信学会総合大会,早稲田大学, 2019年 3月 19

日発表済み.

11. 山本幸平, 豊田健太郎, 大槻知明,“ [招待講演] Globecom2018 における e-Health 及び
smart Homeに関する研究動向,”電子情報通信学会モバイルネットワークとアプリケー
ション研究会（MoNA）,東京大学, 2019年 3月 5日発表済み.

12. 山本幸平,豊田健太郎,大槻知明,“ドップラーセンサを用いたMUSICアルゴリズムに
基づく心拍数推定,”電子情報通信学会知的環境とセンサネットワーク研究会（ASN）,

指宿, 2019年 1月 29日発表済み.

13. 高畠航, 山本幸平, 豊田健太郎, 大槻知明, 柴田洋平, 長手厚史,“ FMCW レーダを用
いたトイレでの異常検知,”電子情報通信学会知的環境とセンサネットワーク研究会
（ASN）,指宿, 2019年 1月 29日発表済み.
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14. 廣松亮祐,豊田健太郎,大槻知明,山本幸平, ”ドップラーセンサを用いた心拍推定時の
CA-CFARによる体動起因の雑音低減,”電子情報通信学会知的環境とセンサネットワー
ク研究会（ASN）,東京電機大学, 2018年 11月 6日発表済み.

15. 山本幸平,豊田健太郎,大槻知明,“MUSICアルゴリズムに基づく非接触型心拍数推定,”

電子情報通信学会ソサイエティ大会,金沢大学, 2018年 9月 13日発表済み.

16. 山本幸平, 豊田健太郎, 大槻知明,“体動に起因する雑音の影響を考慮したドップラー
センサを用いた瞬き検出,”電子情報通信学会知的環境とセンサネットワーク研究会
（ASN）,鶴岡市先端研究産業支援センター, 2017年 11月 17日発表済み.

17. 山本幸平, 豊田健太郎, 大槻知明,“体動に起因する雑音の影響を考慮したドップラー
センサを用いた瞬き検出,”電子情報通信学会ソサイエティ大会,東京都市大学, 2017年
9月 14日発表済み.

18. 山本幸平, 豊田健太郎, 大槻知明,“ドップラーセンサを用いた瞬き長推定に関する一
検討,”電子情報通信学会知的環境とセンサネットワーク研究会（ASN）,北海道大学,

2017年 7月 21日発表済み.

A.4 Patents

1. 大槻知明, 山本幸平, 北川月子, 生体情報検出システム・プログラム・生体情報検出方
法,出願番号 2021-093563, 2021年 2月 18日出願

2. 大槻知明,山本幸平,呼吸検出システム・呼吸検出方法,出願番号 PCT/JP2020/031523,

2020年 8月 20日出願
3. 大槻知明,山本幸平,生体検出装置・生体検出方法・プログラム,出願番号 2020-140401,

2020年 8月 21日出願
4. 大槻知明, 廣松亮祐, 山本幸平, 石坂秀壮, AIを用いた信号復元システム・信号復元方
法・プログラム・信号生成システム,出願番号 2020-028681, 2020年 2月 21日出願

5. 大槻知明,山本幸平,呼吸検出システム・呼吸検出方法,出願番号 2019-152755, 2019年
8月 23日出願



112 APPENDIX A. LIST OF AUTHOR’S PUBLICATIONS AND AWARDS

6. 大槻知明,山本幸平,瞬き検出システム・瞬き検出方法,出願番号 2017-154272, 2017年
8月 9日出願.

A.5 Awards

1. 山本幸平,優秀発表賞，電子情報通信学会モバイルネットワークとアプリケーション研
究会, 2019年 4月選定, 2019年 7月授賞式.

2. 山本幸平,若手研究奨励賞，電子情報通信学会知的環境とセンサネットワーク研究会,

2017年 4月選定,2018年 5月授賞式.


