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Abstract

With the spread of image technology such as computer graphics, research applying image

analysis technology to cosmetics and medical diagnosis is thriving. Traditionally, visual

evaluation and spectrophotometer have been used as useful methods. Although it is lim-

ited to surface observation visually, quantitative evaluation is possible by image analysis.

However, since the skin changes depending on disease, aging or season, conventional skin

measurement is not sufficient. In addition, various measurement methods are utilized, but

mainly single-use instruments. In dermatology treatment, it is necessary to simultane-

ously evaluate a plurality of items such as moisture, sebum amount and texture, while the

conventional single-purpose device does not perform high effectively. Therefore, estab-

lishment of an objective evaluation method of skin condition using multi-measured skin

scope and the image analysis technique aimed at this research is an extremely important

task.

In order to assess skin condition objectively and comprehensively, several properties

are involved in evaluation system, including skin hydration, skin sebum, skin micro-relief,

skin color, and skin microbiological flora. Chapter 1 introduces the fundamental knowl-

edge of skin structure and skin surface properties. Besides, an overview of existing mea-

surement of these characteristics is provided. With rapid development of image process-

ing technology, typical and classic image processing algorithms are given a presentation,

as the basis for subsequent algorithms in Chapter 2 to 6.
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Skin micro-relief has been researched by a variety of devices and methods, which

usually are expensive or complicated. On the other hand, skin micro-relief relates to quite

a few parameters, and it is hard to evaluate all of them at the same time. In chapter 2, we

propose a quantitative evaluation algorithm of skin micro-relief and extract four aspects,

including skin surface properties, skin pores, skin furrows, and the skin closed polygons.

The age-dependent changes of these parameters are also explored, which reveals that

most parameters increased as age went on with significant differences. In addition, skin

coarseness is proved to be strongly related to the skin pore area.

Skin color is one of the most obvious features of the skin. Various information can be

extracted from the analysis of skin color, including age and health, which means that an

objective and reproducible measurement of skin color would be of significant value. Ac-

cording to the CIE-L*a*b* color model, we perform a skin color measurement in Chapter

3, utilizing the individual typology angle (ITA) and hue angle, indexes that are calculated

from digital images with specific algorithms. The changes of skin color parameters by

age, anatomical sites, and geographic locations are figured out.

Propionibacterium acnes (P. acnes) is a member of the anaerobic organisms, which

is involved in the induction of skin, acne and produce porphyrins that absorb ultravio-

let light and emit red fluorescence in response. Chapter 4 develops a novel approach to

segment skin porphyrins induced by P. acnes from ultraviolet images, which has the po-

tential to predict skin conditions as an assisted tool. We also investigate the age-dependent

changes, that all parameters of porphyrins arrive at the peak at 30 years old.

Abundant hydration in the skin is quite important for skin barrier function. However,

skin hydration assessment applying image processing is rare, focusing on skin capacitive

images and near-infrared images at large, which are costly. A prior study for quantita-

tive evaluation algorithm of skin surface hydration by visible optical image processing is

proposed in Chapter 5. Skin hydration content is successfully extracted and has a heavy

correlation with the results measured by commercial instruments.

xii



The skin condition is full of changes and complexity, which results in a simplified

measurement unsatisfied with the diagnosis of the condition of the skin in practice. Chap-

ter 6 establishes a comprehensive skin condition measurement system from 5 sides by

combining the parameters extracted from Chapter 2 to 5. The measurement system is

displayed as a radar chart with 5 levels. The integrated quantitative evaluation of skin

surface characteristics has become reality so far.

Finally, Chapter 7 summarizes the conclusions and imagines the continued research

perspectives of this work in the future.
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Chapter 1

Introduction
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1.1 Skin structure

The skin is an organ that covers the entire human body and protects vital activities, which

covers 1.6 m2 of the adult body and accounts for 16% of the body weight. The skin is

also the largest organ of the human body and plays a crucial role in retaining moisture

and preventing foreign substances from entering the body. It also takes a great impact on

protecting the body from danger by feeling pain and itch, and by releasing water through

sweat when it is hot, maintaining the body temperature at an appropriate level as well. The

skin can be roughly divided into three main layers: epidermis, dermis, and subcutaneous

tissue. Within each layer is further layers and cells. Accessory organs include sweat

glands, sebaceous glands, hair, and nails. The color of the skin is determined by the blood

vessels, fat, and chromophores within these layers.

1.1.1 Epidermis

The epidermis, which is the most superficial part of the skin, plays the most important

role in maintaining the body. The thickness of the epidermis and dermis is about 0.6 3.0

mm (average about 1.4 mm). The average thickness of the epidermis is about 0.2 mm, and

95% of it is composed of keratinocytes. There are 4 layers in epidermis [5], including the

stratum basale, stratum spinosum, stratum granulosum, and stratum corneum from inside

out respectively. The stratum basale, also known as the basal layer, is the innermost layer

of the epidermis, where the main cell type is the keratinocyte that may or may not divide.

Melanocytes are present in the basal layer and consist of 5–10% of the cell population.

The stratum spinosum is formed during the process of keratinocytes moving on the stra-

tum corneum, where the Langerhans cell could be ascertained. The stratum granulosum

is constitutive of flattened cells holding abundant keratohyaline granules in their cyto-

plasm, which are responsible for further synthesis and modification of proteins involved

in keratinization [6]. The outermost layer is the stratum corneum, which is commonly

researched in dermatology and aesthetic dermatology. Keratinocytes divide continuously
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in the innermost part of the epidermis and move to the stratum corneum when they ma-

ture. Arranged in a concentric manner around the nucleus, the keratin filaments in the

cytoplasm are bound to desmosomal plates at one end and remain free at the end closer

to the nucleus [7]. When they mature, they move to the surface, and finally become ker-

atinocytes and peel off. In this way, the epidermis is kept from growing old by being

replaced by new cells one after another. This replacement of cells is called metabolism,

and it usually takes about 28 days in body skin and 14 days in facial skin.

1.1.2 Dermis

The thickness of dermis changes in different anatomical sites, which is over 5 mm on the

back while less than 1 mm on the eyelids. The dermis is delimited in the exterior by its

junction with the epidermis and in the interior by the subcutaneous fat. As conjunctive

tissue, the dermis contains cells, a ground substance and fibers. The soil substance is

composed of polysaccharide and proteins that interact to produce hygroscopic proteogly-

can macromolecules. The cells are fibroblasts that synthesize collagen and elastin fibers.

Collagen accounts for 75% of the dry weight and up to 30% of the volume of the dermis,

75% of which is made of type I collagen and another 15% is type III collagen. Elastin

fibers influence the elasticity to the skin.

1.1.3 Accessory organs

Accessory organs include sweat glands, sebaceous glands, hair, and nails. sweat glands

mainly influence the thermal regulation. Sebaceous glands secrets sebum and provide

lubrication action, which mainly locates on the face and scalp. Hair is formed from keratin

in hair follicles. The hair growth cell cycle consists of three stages: anagen, catagen, and

telogen. Fingernails is composed of the underlying nail bed and the nail plate. The

underlying nail bed contains blood vessels, nerves, and melanocytes and has parallel rete

ridges, while the nail plate is formed from matrix keratinocytes. They combine together

to provide protection to the fingertips, enhance sensation, and allow small objects to be

grasped [8].
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Figure 1.1: Illustration of the skin layers and their optical properties

1.2 Skin optical properties

Due to the multilayered skin structure and its non-flat surface, skin optical properties are

researched and overviewed. It is difficult to find a material more complex than human

skin from a tissue optics perspective, which explains the wide range of variations in skin

appearance observed in the world population. As shown in the illustration in Fig. 1.1,

the skin consists of layers with distinct functions and optical properties. When white

light shone onto the skin penetrates the superficial skin layers, some of it is reflected

back to the environment and others are absorbed or scattered to internal layers by the

specific molecules or structures, such as melanin. The stratum corneum is a protective

layer consisting of keratin-impregnated cells that varies considerably in thickness. Apart

from scattering the light, it is optically neutral. The epidermis is largely composed of

connective tissue. It also contains melanin-producing cells. Melanin is a pigment that

strongly absorbs light in the blue part of the visible spectrum. The dermis is made of

collagen fibers. Hemoglobin, present in blood vessels across the whole dermis, acts as a

selective absorber of light.
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Figure 1.2: Absorption spectra of chromophores

1.2.1 Scattering and absorption components

The average scattering properties of the skin are defined by the scattering properties of

the dermis with its big thickness (up to 4 mm) and comparable scattering coefficients of

the epidermis and the reticular dermis [9].

The distribution of blood and chromophores and pigments in skin are random and

inhomogeneous, which results in variations of average optical properties of skin layers.

Skin absorption properties are determined by summary absorption of hemoglobin and

water of skin dermis, as well as melanin and lipids of skin epidermis. Figure 1.2 illustrates

the absorption spectra of these chromophores and pigments with different wavelength.

Melanin decreases linearly with wavelength rises. Dermis is the main absorbers in visible

spectra, where the hemoglobin, carotene, and bilirubin play vital roles. The absorption

of carotene and bilirubin arrives at the peak around 460 nm. The highest absorption of

hemoglobin is around 420 nm.
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1.2.2 Detour and sieve components

Detour effect refers to the phenomenon that when light traverses a turbid medium like

human skin, refractive index differences between the structures and the surrounding ma-

terials may cause multiple external and internal reflections which increase the light optical

path length. In contrast, Sieve effect refers to the phenomenon when light traverses the

human skin and may not encounter a pigment-containing structure [1]. Detour effect has

the potential of increasing light absorption by the pigment of interest, while sieve effect

would reduce the light absorption on the contrary. The results of these two effects rely on

several factors in general, and one of the most obvious influence is the size, shape, and

distribution of skin melanosomes.

1.2.3 Fluorescence components

When electromagnetic radiation propagating at a certain wavelength is absorbed by a

material, it may excite the orbital electrons of the atoms or molecules of this material to

a higher quantum state. Upon return of these electrons to their ground state, they emit

photons of light at another wavelength, which is called fluorescence. The process has a

timescale of approximately 8-10 seconds or shorter. The excitation and emission spectra

are the pivotal properties [1].

Ultraviolet-induced fluorescence components are mainly found out within the human

skin, including porphyrins, nicotinamide adenine dinucleotide (NADH), keratin, collagen,

elastin, and so on. Porphyrins are produced by P. acnes generally, which could be seen

red visibly under ultraviolet light or wood’s lamp [10]. Collagen is located in the dermis

layer, which is also considered as the main fluorophore of human skin.
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1.3 Overview of skin surface characteristics and measure-
ment

Measuring skin is quite crucial in experimental dermatology with its quantitative evalu-

ation of the real conditions and the effect. It is bearing the brunt of the definition and

classification of skin surface characteristics.

1.3.1 Introduction of skin micro-relief and measurement

Skin is a surface consisted of pores, furrows, and closed polygons, which is the area

rounded by furrows. Therefore, skin surface is not flat even though it looks smooth. Close

observation of the micro-relief reveals that the furrow has a directional depth. There are

mainly two types of furrows, deep and wide primary furrows (20-200 µm) and superficial

secondary furrows (30-70 µm). Across the intersections of the furrows, there are pore

openings. This network of skin micro-relief has two roles: it provides the skin a protective

mechanical stretching ability in the direction of the constraints the skin sustains and it is

also useful for the evacuation and retention of sebum and sweat and to capture substances

applied to the skin.

It is known that the shape of the skin micro-relief varies from one person to another,

and that the micro-relief changes depending on the skin condition and environment, and

also changes greatly with age. In addition, the correlation between skin texture and facial

attractiveness has been studied, and they found out even and homogeneous skin was more

attractive [11].

Skin pores are easily visible on the cheeks and head of the nose. Pores on the cheeks

and head of the nose are easily visible, and the size of a pore that is noticeable to the naked

eye is said to be 0.2 mm square or larger. Skin furrows are initially short and shallow and

then become deep and longer to form the wrinkles gradually with the increase of age.

Skin closed polygons varies towards the irregular shape with age.
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Figure 1.3: Replica example

Skin micro-relief measurement has large application perspectives both in clinical and

aesthetic research. In contrast to other skin characteristics, the measurement of skin sur-

face micro-relief is more complicated since the structure is three dimensional. Some

popular measurement is concluded in Table 1.1 [1]. Mechanical profilometry is the earli-

est method developed to measure skin surface, which needs replica to get the skin surface

information, as shown in Fig. 1.3. With progress of technology, different profilometry

methods are developed with higher accuracy, since the contact between the instrument

and the human skin is avoided. Recently, researchers utilize image processing methods to

extract the features of skin wrinkles, and other parameters.

1.3.2 Introduction of skin color and measurement

Pigments such as hemoglobin in blood, melanin in skin tissue, and carotenoids exist in

the translucent skin tissue are determined by the absorption and reflection of light in these

complex tissues. Skin color is not always uniform, and there are brown spots and freckles

where melanin is unevenly distributed. In addition to the concept of pigmentation, skin

color is a complex phenomenon that differs depending on the sebum and sweat secreted

from the skin surface, as well as the surface morphology such as hair growth, scaling,

pores and wrinkles. In general, skin color is measured by a spectrum-Reflectometer. The
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Table 1.1: Comparison of skin micro-relief measurement [1]

measurement principles instrument example

(In vivo)
Mechanical
profilometry

Based on a touch sensor to
measure the 2D profile or
3D surface, and use the
inductive sensor to
transform relief variations
into signal.

Silicon replica
(Silflo, Japan)

(In vivo)
2D optical images

Use image processing to
extract related features,
such as GLCM.

(In vivo)
Laser profilometry

Based on dynamic
focalisation or (simple
or double) triangulation,
uses the movement
of a mobile lens or a
spotlight reflected on
a sensor to measure the
height at each
point of a sample surface.

(In vivo)
3D reconstruction
by optical profilometry

Detect the contrast
formed by the wrinkle
and the adjacent skin

Primos
(GFM in Germany)

(In vitro)
Pofilometry
by transmission

Measure the variation of
intensity of light
shining through a replica.
Applying the Beer-Lambert
law, the absorption of light
is linked to the transparency
and therefore the thickness
of the replica.

Silicon replica
(Silflo, Japan)

(In vivo)
Fringe projection

Project structured light onto
the investigated surface.
Fringes are deformed
(modulated)by the relief.
Several acquisitions with different
phases of the projected
network are recorded by a camera;
after processing by a dedicated
software, the tridimensional
profile of the studied area is
reconstructed within a few seconds.

DermaTop Blue
(Eotech in France)
Primos
(GFM in Germany)
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components in the skin that determine skin color include melanin, hemoglobin, bilirubin,

and carotene. Among these, melanin and hemoglobin are most strongly involved.

The skin color of humans and other mammals is produced by a complex interplay

of various factors, including hemoglobin in the blood, surface conditions of the skin,

moisturizes, and pigment. The melanin pigment is the largest of these, and its role is to

mitigate the skin damage caused by ultraviolet rays. The melanin pigment in the skin

is produced by melanocytes (pigment cells) in the basal layer of the epidermis. When

the skin is exposed to ultraviolet rays, the melanin synthesis switch is turned on and the

skin darkens, but the switch is turned off with the passage of time and the skin returns to

its normal color. However, even if the skin is not exposed to ultraviolet rays, the switch

remains on and does not return to its original state, resulting in excessive production of

melanin pigment and deposition of brown pigment in the skin (hyperpigmentation). This

condition is called “spotting” or “freckling”. Spots are large to some extent, while freckles

are generally small dots.

The distribution of melanocytes varies considerably depending on the part of the body,

which may be due to the effect of ultraviolet rays. The number of melanocytes in the

exposed area (face) is more than twice as large as that in the clothed area (upper limbs).

There is no significant difference in the number of melanin depending on race or sex,

but the number decreases with age, and by the age of 50 to 60, it is said to be about

half of what it was in childhood. The synthesis of melanin is carried out by intracellular

organelles called melanosomes in melanocytes. The size, morphology, and distribution

of melanosomes vary by race. Comparing Caucasians and blacks, the amount of melanin

synthesized by Caucasians is obviously lower than that by blacks, and that by Japanese is

in between.

Pigmentation appearing on the face and other parts of the body is often referred to

as “blemishes” in general. These include chloasma, freckles, and post-inflammatory pig-

mentation, but senile pigmentation increases with age in both men and women. Senile

pigmented macules are round, brown to black pigmented spots with clear borders, and
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are especially common in sun-exposed areas. Pigmentation, such as spots and freckles,

is caused by abnormal melanin production by keratinocytes, which is most strongly in-

fluenced by ultraviolet rays, but female hormones and stress are also said to be involved.

The mechanism of late-onset pigmentation, such as senile pigmentation, is also due to

abnormal melanin production by keratinocytes, but it is unclear why pigmentation occurs

only in localized areas. The increase of melanin pigmentation with aging has also been

suggested as one of the factors of dullness in aging skin.

1.3.3 Introduction of skin barrier function and measurement

Skin hydration

Water is regarded as the ultimate moisturizer that improves subjective perception of the

mechanical properties of human skin. The keratin proteins and filaggrin proteins in the

stratum corneum act as a barrier to prevent the evaporation of water and external stimulus.

Since the skin has a multilayered structure, the amount of moisture contained in each area

varies. The average SC hydration content is expected to be about 30% in the cheek site.

Skin hydration measurement is summarized in Table 1.2 and Skicon® and Corneometer®

are the most commonly used for measurement as commercial instruments [2].

Table 1.2: Comparison of skin hydration measurement [2]

measurement principles instrument example

Electrical measurement
Electrical capacitance Corneometer CM825
electrical conductance Skicon-200
Electrical capacitance
image analysis

Moisuture Map MM100
(Courage+ Khazaka)

bioimpedance bioimpedance
Thermal measurement Differential scanning calorimetry
Photothermal and
photoacoustic
measurement

Pulse raddiometry
Photoacoustic spectrometry

Optical measurement
Near infrared spectroscopy
Confocal Raman
Microspectroscopy
D-Squames and image analysis
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Skin transepidermal water loss (TEWL)

Skin transepidermal water loss is one of the important indexes representing skin barrier

function. TEWL decrease during the aging process. Therefore, the objective measure-

ment of skin TEWL is quite important. The summary of TEWL measurement is shown

in Table 1.3. three main methods are introduced, and the biggest difference among them

is if the instrument could avoid the influence of humidity in the environment.

Table 1.3: Comparison of skin TEWL measurement [2]

measurement principles instrument example

Open-chamber
system

The 11 mm probe chamber has
2 sensors mounted 3 and 6 mm
above the skin surface.
The probe is held against the
skin and thus operates in the
approximately 10 mm high
water vapor gradient surrounding
the skin as an invisible water
vapor mantel. This water vapor
layer over the visible skin surface
is an important part of the
physiological water barrier
of the skin. From recording of
humidity change between the
2 sensors, the flux of water over
the stratum corneum water
barrier into the chamber and to
the open air is estimated.

Evaporimeter EP1
(Servomed AB,
Stockholm, Sweden)

Semiopen system

A grid serving as a semiopen
windshield has been incorporated
directly in the top of the open
probe of this instrument, which
could protect the sensor against
ambient air convections.

Dermalab
(Cortex Technology,
Hadsund, Denmark)

Closed-chamber
system

a humidity sensor in the closed
chamber measures the gradual
build-up of humidity.

VapoMeter
(Delfin Technologies Ltd,
Kuopio, Finland)

Skin sebum

Skin surface lipid is composed of lipids derived from the skin and the sebaceous glands.

Keratinocytes synthesise the lipids present in the cell in the form of odd terrestrial bodies

12



and between the cells in the form of intercellular bilayers important for the function of

barrier. As a holocrine excrete, sebum produced by the sebaceous gland is an oily mix-

ture of lipids, keratin, and cellular membrane. The dominating lipids of sebum include

triacylglycerol (triacylglyceride), fatty acid, cholesterol, ceramides, phosphoric acid, and

other mixtures of lipids. Several measurement has been researched since the absorbent

paper was invented in 1886. The introduction of widespread skin sebum measurement is

shown in Table 1.4. Sebutapes can be evaluated by image processing methods to obtain

the sebum content quantitatively, which also has the merit of mapping sebum distribu-

tion visually. In addition, opalescent film imprint method applies fat changing the light

transmission to measure sebum content, with the merit that it can get the certain value

immediately.

Table 1.4: Comparison of skin sebum measurement [2]

measurement principles
instrument
example

Sebum-absorbent tapes
a reliable morphologic method

Sebutapes
with which not only the sebum excretion
rate in general, but also the output of
individual follicles can be monitored

Opalescent film imprint
the correlation of the change in light
scattered by a frosted plastic film after
it has been pressed against the skin surface.

sebumeter

Gravimetric analysis
weighing the amount of sebum accumulated
in various absorbent papers.

Fluorescence photography
According to the porphyrin fluorescence
related to sebum, and use image
processing method.

Skin pH value

Skin surface pH is a key index and the regulator of the SC barrier function. The opti-

mum SC pH value is a precondition for activating lipid hydrolases in the cornea layer. It

is responsible for the post-secretory treatment of lamellar bodies, which is an important

step in the development of the cutaneous barrier. Maintaining SC pH value acidulously is

helpful for skin health. Normal skin pH value is at the range of 4.0-7.0. pH is measured

by flat glass electrode at the skin surface with a hydrated skin–electrode interface [12].
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Recently, more complex high-resolution methods have also been invented, like the fluo-

rescence lifetime imaging microscopy (FLIM).

1.3.4 Introduction of skin microbiological flora and measurement

Human skin is colonized by microbiological flora, including bacteria, fungi, and bacte-

riophages. Most of them are unharmful, and some may turn into pathogenic due to the

change of skin condition. Therefore, the measurement of skin flora is necessary. In clin-

ical research, it is already realized to measure skin flora status directly using comedone

extractor and cyanoacrylate glue.

1.4 Effect of light source on images

Even for the same object, with the variation of illumination type, the spectral distribution

of the reflected light changes and the color appears different. This phenomenon, in which

the color of an object differs depending on the type of illumination, is called color render-

ing property. Methods for evaluating the color rendering properties of light sources are

specified by the International Commission on Illumination (Commission Internationale

de l’Eclairage, CIE) and the Japanese Industrial Standards (JIS). Table 1.5 shows the test

colors used in the calculation.

14



Table 1.5: Calculation result of color rendering index of white LED lamp

No. Munsell notation Color image Color rendering index

1 7.5R6/4 64.5

2 5Y6/4 81.8

3 5GY6/8 92

4 2.5G6/6 62.1

5 10BG6/4 65.5

6 5PB6/8 75.8

7 2.5P6/8 81.6

8 10P6/8 48.3

9 4.5R4/13 -58.4

10 5Y8/10 57.9

11 4.5G5/8 57.8

12 3PB3/11 39.8

13
5YR8/4

69.3
European skin color

14 5GY4/4 94.9

15
1YR6/4

53.7
Japanese skin color

White LED lamps are used not only for indoor lighting, but also for measurement

technology and efficiency improvement. There are two main methods to obtain white

light: (a) Red LED + Green LED + Blue LED; (b) Blue LED + yellow phosphor. The
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Figure 1.4: Classification of ultraviolet, visible, and infrared light

method (a) has the advantage of good color rendering, but is not commonly used due to

its low efficiency. The method (b), which has high efficiency, is generally used. However,

method (b) has the disadvantage of inferior color rendering compared to method (a) due

to the lack of red component.

Ultraviolet (UV) radiation is an electromagnetic wave with a wavelength between 100

and 400 nm, which is shorter than that of visible light (violet) and longer than that of

X-rays. The classification of ultraviolet, visible and infrared lights is shown in Fig. 1.3.

There are three main types of UV lights, UVC, UVB, and UVA, which have different

effect on human skin. The wavelength of UVC is the shortest, most of which would be

absorbed by ozone sphere and cannot reach the earth surface. The wavelength of UVB is

290 to 320 nm, which could reach the epidermis of skin and cause sunburn with erythema.

UVA has the longest wavelength of UV radiation and it has the ability to reach the dermis

that would increase skin melanin content and cause other damage like skin aging.

1.5 Classic image processing algorithms

1.5.1 Color models

RGB color model

Red (R), blue (G), and green (B) are called the three primary colors of light, and there is

a principle that all colors can be created by mixing these three colors together. Actually,

it is impossible that all colors can be created by projecting and mixing the three light

colors R, G, and B. The method of defining colors from the three RGB colors is called

the RGB color system, which was adopted by CIE in 1931.The monochromatic light of
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700nm (red), 546.1nm (green), and 435.8nm (blue) corresponding to each cone is mainly

used because the cone cells of the eye respond specifically to red, green, and blue.

XYZ color model

When representing colors in the RGB color system, there are colors that can be rep-

resented only by making the RGB values negative. The XYZ color system is a three-

dimensional space. Therefore, the CIE approved the XYZ color system as a standard

color system in 1931, which uses fictitious protistimulus values based on the RGB color

system with a number transformation that does not include negative values. The XYZ

color model is more commonly used than the RGB color system in actual color represen-

tation.

In the RGB color system, negative values occur for colors between 440 nm and 545 nm

(blue-violet to yellow-green), making it impossible to accurately reproduce monochro-

matic light in this color range. The XYZ color system was conceived to mathematically

avoid this problem. We created the non-existent primary colors X, Y, and Z (imaginary

colors) to enable the representation of colors that cannot be reproduced by mixing real

color light, red (R), blue (G), and green (B). These X, Y, and Z are called the primary

stimuli, and the numerical value indicated by XYZ, which is the amount of color mixing

of the three primary stimuli X, Y, and Z, is called the tristimulus value. Y is the only stim-

ulus value that represents brightness (visual reflectance and visual transmittance) among

the primary stimuli along with the green component.

X = 100(0.3933(R/255)2.2 − 0.3651(G/255)2.2 + 0.1903(B/255)2.2) (1.1)

Y = 100(0.2133(R/255)2.2 − 0.7010(G/255)2.2 + 0.0858(B/255)2.2) (1.2)

Z = 100(0.0182(R/255)2.2 − 0.1117(G/255)2.2 + 0.9570(B/255)2.2) (1.3)

CIE-L*a*b* color model

The CIE-L*a*b* color model is a color model that can quantify human visual differences

and is used in a wide range of fields. it was standardized by the CIE in 1976 and has been
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adopted by JIS in Japan. The CIE L*a*b* color system can be thought of as a sphere,

where the vertical axis is the L* value representing lightness from 0 to 100. The larger

the L* value and the closer it is to 100, the brighter and whiter the color, and the smaller

the value and the closer it is to 0, the darker and more achromatic the color.

Hue and saturation are expressed in terms of a* and b* on the horizontal axis. a*

becomes more reddish as its absolute value increases in the positive direction, and more

greenish as its absolute value increases in the negative direction. When both a* and b* are

0, the color is achromatic. When both a* and b* are zero, the color is achromatic. a* and

b* are called “chromaticity index”. All color information consists of a* and b*, which

indicate the location along the red-to-green axis and the blue-to-yellow axis, respectively.

All color information is in the a* and b* layers, and the Euclidean distance metric is used

to measure the distance between the two colors.

The values of CIE-L*a*b* are calculated by XYZ color model and the formula is

shown as follows.

L∗ = 116(Y/Yn)1/3 − 16 (1.4)

a∗ = 500[(X/Xn)1/3 − (Y/Yn)1/3] (1.5)

b∗ = 200[(Y/Yn)1/3 − (Z/Zn)1/3] (1.6)

f(x) =

{
x

1
3

(
x >

(
6
29

)3
)
.

7.787x+ 16
116

(otherwise)
(1.7)

The reason why the expression of f(x) is divided into two parts by the domain of

definition is to prevent the gradient from going to infinity when x = 0. In addition, x0,

y0, and z0 are the tristimulus values at the reference white point, as follows.

CIE standard luminance A simulates standard household tungsten filament lighting

with a correlated color temperature of 2856 K.

x0 = 109.86 , yo = 100.00 , z0 = 35.58 (1.8)
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CIE standard luminance C simulates daylight in the average sky or northern sky at a

correlated color temperature of 6774 K.

x0 = 98.07 , yo = 100.00 , z0 = 118.22 (1.9)

CIE standard luminance D50 simulates warm daylight at sunrise or sunset with a

correlated color temperature of 5003 K.

x0 = 96.42 , yo = 100.00 , z0 = 82.51 (1.10)

CIE standard luminance D55 simulated daylight in the morning or mid-afternoon at a

correlated color temperature of 5500 K.

x0 = 95.68 , yo = 100.00 , z0 = 92.14 (1.11)

CIE standard luminance D65 simulates daylight at noon with a correlated color tem-

perature of 6504 K.

x0 = 95.04 , yo = 100.00 , z0 = 108.88 (1.12)

Grayscale color model

When color information is not required and in order to facilitate feature detection in im-

ages, the conversion of a color image into an image that include only shading information

is called grayscaling, and the resulting image is called a grayscale image. There are

various methods for grayscaling, but the most common are the NTSC weighted average

method, where each of R, G, and B is weighted and the average is taken, and the method

of simply taking the average of the three RGB values. In this study, the NTSC weighted

average method shown in equation (1.12) was used for the conversion. Grayscale model

conversion of the NTSC is based on the fact that the structure of the human eye is better

at recognizing shades of green than red or blue, the following equation with weighted

coefficients for R, G, and B colors is used. These coefficients are specified by the CCIR

(Consultative Committee on International Radio) Recommendation BT.601 (Rec. 601),
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which was enacted in 1982.

gray (x, y) = 0.2989×R + 0.5870×G+ 0.1140×B (1.13)

Table 1.6: Selection of color models

Color
model Introduction Component Merit Limitation

RGB
A method of defining colors
from the three primary colors
of light: red, blue, and green.

R(red);
G(green);
B(blue)

For digital or
computer vision.
The values are
reproducible.

Cannot separate the
lightness and color.

Not fit the human vision.

L*a*b*

It is thought of as a
sphere, consisting
of lightness, red to green
and yellow to blue.

L*(lightness);
a*(redness);
b*(yellowness)

Has been widely
applied to
evaluate human
skin color.

Only express better
in normal human color.

HSV
A nonlinear transformation
of RGB color model, often
called “hexcone model”.

H(hue);
S(saturation);
V(value)

S from HSV and HSI
is different.

HSI
A nonlinear transformation
of RGB color model, often
called “bi-hexcone model”.

H(hue);
S(saturation);
I(intensity)

Can be easily
interpretable
by humans. The formula of V and

I is different.

In conclusion, there are several color models could be chosen for image processing.

The basic instruction, merits and limitations are summarized in Table 1.6. Compared to

other color models, RGB color space is the original color space, which fits the computer

vision, but it has the limitation that it cannot separate the lightness and color. L*a*b* color

model is commonly used for skin images, especially in skin color extraction. On the other

hand, HSV and HSI have the advantage that can be easily interpretable by humans. These

color models should be selected flexibly according to the demands.

1.5.2 Fundamental morphological operations

Dilation

It is assumed that the background is set as white whose pixel value is 1, and the object

is set as black whose pixel value is 0. The dilation process generally converts the pixel

values of pixels in the 4 or 8 neighborhoods around the pixel of interest with a pixel value

of 1 to 0 in a binarized image. An example of the dilation process is shown in Figure 1.5.
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Figure 1.5: Dilation Principal Illustration

Erosion

In contrast to the dilation operation, erosion is an operation that converts the pixel values

of pixels in the 4 or 8 neighborhoods around the pixel of interest with a pixel value of 0

to 1 in a binarized image. An example of the erosion operation is shown in Fig. 1.6.

Figure 1.6: Erosion principal illustration

1.5.3 Binarization

In contrast to grayscale images, which are expressed in 256 shades from 0 to 255 with

smooth shading, a binary image is one that is expressed in white (1) and black (0) by

thresholding. This type of image is called a binary image. Binarization is one of the most

crucial methods for image segmentation, which has a small amount of information and is
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good at high-speed processing and low-cost processing. Compared to multi-level images,

the theory of binarization is more systematic.

In this study, it was partially used to detect areas such as skin pores. In general, a

certain threshold T (threshold) is set in the image, and if the pixel value of each pixel in

the grayscale image is equal to or greater than T , the pixel is converted to 1, otherwise to

0.

In this study, it was partially used to detect areas such as skin pores. In general, a

certain threshold T (threshold) is set in the image, and if the pixel value of each pixel in

the grayscale image is equal to or greater than T , the pixel is converted to 1, otherwise to

0.

Fixed Threshold Method

Based on the histogram of grayscale image and choosing the fixed threshold where the

background and aim could be classified well, refers to as fixed threshold method. The

formula is shown as follows (1.13). It is usually effective when there are not large scale

of images and the capturing environment is certain.

B(x, y) =

{
1 if I(x, y) ≥ T

0 otherwise
(1.14)

It is not sure the capturing environment in general research and adaptive threshold

method is more popular.

Percentile Method

When binarizing text materials such as books and newspapers, the area ratio of the fore-

ground (the text part) to the white background part is roughly known. One of the static

thresholding methods that can be used for such images is the percentile method. The Per-

centile Method is a method of binarizing an image by specifying the percentage (%) of

the image area to be binarized in the total image area. The area of the whole image is S,

and the area of the symmetrical figure is S0, and the ratio of the group of pixels of interest
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to the whole image is calculated as p.

p =
S0

S
(1.15)

If the pixel of interest is brighter than the background, the pixel is counted from the

one with the larger luminance value, and if the background is brighter than the pixel

of interest, the pixel is counted from the one with the smaller luminance value, and the

number of pixels is set to N0. If the number of pixels in the entire image is set to N , then

p becomes the threshold, and each pixel can be binarized.

p =
N0

N
(1.16)

Mode method

Mode method is always utilized when the histogram of grayscale image has apparent bi-

modal property. The minimum value between the two maximum values is usually chosen

as the threshold.

Discriminant analysis method

Discriminant analysis method is developed for normal images that need binarization. The

Otsu’s method is classified as a discriminant analysis method and is a method for set-

ting a threshold value that maximizes the variance ratio. It it the most successful global

thresholding method, which is effective when the difference in density between the ob-

ject and the background has a certain magnitude. In the case of dividing an image into

two classes, C1 and C2, we choose the threshold T such that the separation η(T ) is maxi-

mized as shown below, where σ2
B(T ) is the interclass variance and σ2

W (T ) is the intraclass

variance, which are given by

η(T ) =

[
σB

2(T )

σW 2(T )

]
max

(1.17)
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Intra-class variance:

σW
2 = ω1σ1

2 + ω2σ2
2 =

1

N

{∑
i∈S1

(i− µ1)2ni +
∑
i∈S2

(i− µ2)2ni

}
(1.18)

Interclass variance:

σB
2 = ω1(µ1 − µT )2 + ω2(µ2 − µT )2 =

1

N

{∑
i∈S1

(µ1 − µT )2ni +
∑
i∈S2

(µ2 − µT )2ni

}
(1.19)

And the total variance σ2
T is calculated by the formula:σ2

W + σ2
B = σ2

T , where 1and ω2

are the occurrence probabilities of classes C1 and C2 (normalized number of pixels). µ1

and µ2 and σ2
1 and σ2

2 are the mean and variance of the concentration of pixels belonging

to C1 and C2 respectively.

This method gives satisfactory results when the number of pixels in each class is close

to each other [13, 14].

1.5.4 Labeling

Labeling is the process of assigning a unique name (label) to each graphic region (con-

nected component). Normally, the labeling process assigns the same number to each pixel

in the same region, starting from 1. The pixel value of the background is 0. This process

makes it possible to treat each figure region separately and to examine the characteristics

of each figure region. In general, four-connected and eight-connected neighborhoods are

used for figure regions. Figure 1.7 shows each region. The yellow area indicates the pixel

of interest and the red area indicates the neighboring pixels.

(a) 4 near neighbor-
hood

(b) 8 near neighbor-
hood

Figure 1.7: Illustration of usual connected compononent
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Labeling algorithms can be roughly classified into those using recursion and those

using lookup tables, and in this study we used the lookup table method. The principle of

the method is described below. In the method using the lookup table (LUT), the image

is raster scanned twice. First, in the first scan (1-pass), a tentative label is assigned, and

if different tentative labels are assigned in the same connected region, the connection

between them is recorded in the LUT. Then, in the second scan (2-pass), we refer to the

LUT and update it so that the labels in the same connected region become one. The

specific procedure is described below.

Step 1

Find an unlabeled pixel in the raster scan as an attention pixel, give a new label number

to f0, and move to the next attention pixel.

Figure 1.8: Example of usual connected compononent in labeling

Step 2

If all of fi (f1, f2 for 4-connected pixels, f1 f4 for 8-connected pixels) in Fig. 1.8 are

0 (background pixels), give a new label to f0. If there is one label number other than 0, the

same label number is given to f0. If there are two or more label numbers, give the smallest

label number to f0, and record the fact that they are the same connected components in

the LUT. We move on to the next pixel of interest.
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Step 3

Repeat Step 2 (1-pass), and after the last scan, remove the unused label numbers that

are integrated as the same connected region in the LUT, and update the label numbers so

that there are no empty numbers.

Step 4

The second scan is performed from the top-left corner, and the label numbers are

reassigned so that each connected component has the same label in the LUT (2-pass).

1.5.5 Texture processing

Texture refers to a pattern of regular fine shading. Based on textures, objects can be

identified in an image and three-dimensional spatial perception (e.g., perspective) would

be obtained. Therefore, attempts have been made to classify and divide regions based on

textures in image processing. In such cases, some quantification that characterizes the

texture is necessary, called texture features.

The obtained texture features can be treated as image features to be used in classifi-

cation and region segmentation. For example, if the texture features of two regions in an

image are the same, then the two regions are considered to have the same texture.
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Chapter 2

Quantitative Evaluation of Skin
Micro-relief
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2.1 Introduction of skin Micro-relief

Human skin is the biggest organ in the body, which has a lot of characteristics and fun-

damental functions. On one hand, skin directly contacts the environment and can be

influenced by chronological ages and environment changes, like humidity and tempera-

ture. On the other hand, skin can protect from Ultraviolet light. Skin is smooth, while the

surface is not even due to the skin micro-relief, which is a pattern of the network consist-

ing of furrows, polygonal forms, and pores. (Fig. 2.1). Skin micro-relief is one of the

most important parameters of skin when mentioned to skin condition assessment and skin

detection.

Figure 2.1: Skin micro-relief illustration

According to previous research, there are two main methods to evaluate skin micro-

relief, which is using replica to get a copy of skin micro-relief, or using non-invasive

devices to take the two-dimensional or three-dimensional images of skin micro-relief,

like microscopy. These methods have their own merits. The replica can get the real

and integrated topography of skin micro-relief, but it needs to cover the material over

the assessment position, which is inconvenient and not easy to operate. M. Akimoto

et al [15] used skin replica to get the copy of skin micro-relief, and then applied the

image analysis method to measure the triangle area of the skin. Y. Masuda et al [16]

also used skin replica, however, they measured skin micro-relief according to the result of

Confocal laser scanning microscopy. Commonly, three-dimensional images gotten needs

professional and expensive equipment, like the DermaTOPr [17]. Some two-dimensional

images also need high resolution of the equipment, like skin microscopy. P. M. Maia

Campos et al [18] explored the skin properties of oily skin, including skin micro-relief,
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in which skin pores are counted with Visiofacer equipment which could obtain high-

resolution images. Y. Zou et al [19] proposed a method to evaluate skin micro-relief by

segmenting skin closed polygons and calculating their average area from two-dimensional

images. C. Bontozoglou et al [20] analyzed skin closed polygons and wrinkle length by

skin capacitive images. C. I. Moon et al [21] developed a method to analyze skin micro-

relief using the images taken by smartphone’s camera, which has the weakness of low

resolution and unstable environment influence. These methods are either complicated

or need high resolution and expensive equipment. On the other hand, image processing

algorithm development depends on the image type and resolution.

Skin micro-relief belongs to one series of texture. For the purpose of texture fea-

ture extraction from two-dimensional static images, analysis methods are categorized

into seven classes: statistical way, structural way, transform-based way, model-based

way, graph-based way, learning-based way, and entropy-based way [22]. Commonly

used image analysis methods in skin micro-relief include grey level co-occurrence matrix

(GLCM) [23–25], local binary pattern and variants(LBP) [26] which all belong to sta-

tistical way, and transform-based way comprising filter banks, Fourier transform, Gabor

transform and so on. However, there’s a common drawback among these methods, which

has a shortage of relationship between processed results and visual results. Therefore, in

this study, Tamura features algorithm is used as the skin surface analysis method, which

is first proposed by H. Tamura et al [27] in 1978 and corresponded to visual perception. P.

Howarth et al [28] compared the evaluation using GLCM, the Tamura features and Gabor

filters, and it turned out Tamura features had a better visually meaningful result.

The related work is summarized in the Table 2.1. There are mainly two types for

skin micro-relief evaluation by image processing, 2-dimensional image analysis (2DIA)

and 3-dimensional image analysis (3DIA). By concluding the related works, it can be

found out that for 2DIA, most researches only extract a few parameters related to micro-

relief. While it has the advantage for 3DIA to extract the surface roughness, depth of

pores and furrows. However, it is a big limitation for 3DIA to be used for normal people,
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which usually needs huge and expensive devices and complicated operation. Therefore, a

quantitative evaluation of skin micro-relief from 2D skin images is important.

Table 2.1: Related work of skin micro-relief evaluation

Approach
Image capture

device Image data Algorithm Extracted features

VisioFacer
Full face photos
with high resolution

Built-in algorithm
with device

Pores [18],
wrinkles,
texture

Handheld skin
detector
with LED
and CCD

Partial skin image
(6×8 mm)

SPm [19]
(average area
of closed polygons)

Smartphone’s
camera Partial skin image

Morphology transformation
+Watershed transform [19, 21] Wrinkle length,

polygon number,
and average area [21]

Dermoscopy Partial skin image
CNN+
Watershed transform [29]

Wrinkle length,
width,
polygon number,
and area [29]

2DIA

Epsilon E100
capacitive
imaging system

Capacitive partial
skin image

Grey-Level Co-occurrence
Matrix(GLCM) [23, 30]

Vincent & Soille
segmentation algorithm [30]

Skin furrow
orientation;
skin polygon number
and surface area

Replica+
confocal laser
scanning microscopy

Partial skin image
ISO 25178;
Gaussian filter [16]

Surface roughness
and area,
Furrow length, width,
and depth
Pore area, and
polygon number [16]

3DIA

DermaTOPr Partial skin image
Built-in algorithm
with device

Roughness,
wrinkle depth,
pore depth

This study aims to evaluate skin condition using skin micro-relief images quantita-

tively and comprehensively. We establish an image analysis method to extract the skin

micro-relief related parameters, assess the most essential parameter among them and cal-

culate the relationship. Also, we apply the method in researching age-related change.

2.2 Methods and materials

2.2.1 Image capture device

The skin micro-relief image is captured at the cheek by the microscope called SmartSkin-

Care® (IT Access Co., Ltd, Yokohama, Japan), with a camera, white LED lamps and

UV-LED lamps (Fig. 2.2). The operation consists of four steps. First of all, the micro-

scope should connect the application in the smartphone or tablet and connect the Wi-Fi to
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use the cloud service. Secondly, make sure the light source and capture mode are appro-

priate since it has 4 modes to measure skin conditions, including skin micro-relief, color,

porphyrins and sebum. After all the preparation been checked, the microscope should

contact the skin vertically and softly so that the micro-relief image could be taken suc-

cessfully. At last, captured image could be displayed and exported. The area evaluated is

12 mm × 9 mm and the resolution of the image taken is 1280 × 960 pixels, with 23.7×

magnification.

Figure 2.2: Skin image capture operation [3]

2.2.2 Skin micro-relief image analysis methods

pre-processing

Before image analysis, it is essential to pre-process the image avoiding the influence of

noise and light, since two-dimensional skin micro-relief images are taken by the micro-

scope, which is easily affected by the surrounding environment.

In the pre-processing step, the region of interest (ROI) is chosen as the center part of

the original image, whose size is 800 × 800 pixels. Then B component image from RGB

matrix is extracted as the basic image due to its sharpness. Light uniform algorithm was
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applied according to the method proposed by Q. Zhang et al [31], which has 4 steps, (a)

calculate the global average luminance (Lumg) of the grayscale image; (b) separate the

grayscale image into sub-blocks and calculate their average luminance (Luml) and gain

the luminance difference matrix D, which is calculated by the formula:

∆lum = Luml − Lumg (2.1)

(c) Interpolation algorithm for matrix D until element numbers equal to 800×800; (d)

Merge matrix D and grayscale image into a new image, whose size is 800 × 800 pixels.

Finally, the uniformed grayscale ROI is gotten (Fig. 2.3).

(a) original image (b) B component image (c) light uniformed image

Figure 2.3: Pre-processing illustration

2.2.3 Skin parameters extraction and calculation

As shown in Fig. 2.4, 4 aspects and 11 skin parameters are separated from the origi-

nal image with different image processing algorithms according to the properties of skin

micro-relief, which are skin surface (coarseness, contrast and directionality), skin pores

(number, area and average area), skin furrows (length and width) and skin closed poly-

gons (number, area and average area). The details of processing algorithms are shown in

the results part.

2.2.4 Study population and design

In this chapter, a total of 163 healthy Japanese female volunteers between 0 and 70 years

old were enrolled. These females were divided into 6 groups: (a)0-10 years old, (b)20-30
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Figure 2.4: Skin micro-relief evaluation flowchart

years old, (c)30-40 years old, (d)40-50 years old, (e)50-60 years old, and (f)60-70 years

old. The Subjects number and mean age of each group are shown in Table 2.2. The

study was conducted according to the principles of the Declaration of Helsinki. Informed

consent was obtained from all the subjects after the subjects were provided a complete

explanation of the protocol. In the case of the child group, informed consent was obtained

from their parents. Images were captured on the cheek of volunteers without any makeup.

Table 2.2: Subject information for skin micro-relief evaluation

Age group 0s 20s 30s 40s 50s 60s Sum
Number 21 31 29 29 32 21 163

Mean age
5.10±
0.62

24.90±
1.19

34.86±
0.58

44.86±
0.74

53.69±
1.75

64.86±
1.15

2.2.5 Statistical Analysis

SPSS 21.0 (SPSS Science, Chicago, IL) software was used for all statistical analyses.

All data were expressed as the mean ± SD (standard deviation). Pearson correlation

coefficients were assessed between the age and all parameters. The linear fitting model

was applied to analyze the trends of parameters with age. The correlation among all
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parameters was calculated by Pearson correlation coefficients, in which lower than 0.3

representing weak correlation, 0.4-0.6 representing mediate correlation and higher than

0.6 representing high correlation. Pearson correlation coefficients was two-tailed with the

following significance levels: p<0.05 and p<0.01.

2.3 Quantitative evaluation results of skin micro-relief

2.3.1 Skin micro-relief features extraction

Two-dimensional skin micro-relief image was preprocessed first in order to analyze skin

surface features and extract pores, furrows and closed polygons of the skin surface.

Skin surface

The flowchart of skin surface extraction is shown in Fig. 2.5. It’s worth noting that for the

purpose of evaluating the skin surface, Tamura features algorithm was applied to extract

skin surface features, including coarseness, contrast and directionality, which are the most

commonly used features calculated by Tamura features algorithm.

Figure 2.5: Flowchart of skin surface extraction

Tamura features algorithm is proposed by H. Tamura et al [27] to correspond to visual

perception. For an image f with size m× n, and the pixel at location x and y as f(x, y).
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(a)Coarseness: The bigger its element size and/or the less its elements are repeated,

the coarser it is felt.

STEP 1. take averages of every point over neighborhoods, the size is 2k.

Ak(x, y) =
x+2k−1−1∑
i=x−2k−1

y+2k−1−1∑
j=y−2k−1

f(i, j)/22k (2.2)

STEP 2. take differences of horizontal and vertical sides for each point.

Ek,h(x, y) = |Ak(x+ 2k−1, y)− Ak(x− 2k−1, y)| (2.3)

Ek,v(x, y) = |Ak(x, y + 2k−1)− Ak(x, y − 2k−1)| (2.4)

STEP 3. At each point, pick the best size which gives the highest output value.

Sbest(x, y) = 2k;Ek = Emax = max(E1,E1,E2. . .Eh) (2.5)

STEP 4. take the average of Sbest over the image.

Fcrs =
1

mn

m∑
i

n∑
j

Sbest(i, j) (2.6)

(b)Contrast: The larger the range of gray-scale values, the higher the contrast is. Gray-

scale “histogram flattening” transformation is said to be used for the purpose of removing

the effects of unequal overall brightness and contrast in the original images.

Fcon = σ/(α
1/4
4 ) (2.7)

α4 = µ4/σ
4 (2.8)

σ2: standard variance of gray-levels; µ4: the fourth moment about the mean; α4: the

kurtosis as the index of polarization.

(c)Directionality: Directionality in an original picture usually can be preserved in

its Fourier power spectrum, but it is time-consuming. This method utilizes the fact that
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gradient is a vector, so it has both magnitude ∆G and local edge direction θ.

|∆G| = (|∆H |+ |∆V |)/2 (2.9)

θ = tan−1(∆V/∆H) + π/2 (2.10)

∆H :horizontal differences measured by 3× 3 operator 1.

∆V :vertical differences measured by 3× 3 operator 2.

HD(k) = Nθ(k)/
n−1∑
i=0

Nθ(i), k = 0, 1, . . . , n− 1 (2.11)

operator 1:

-1 0 1
-1 0 1
-1 0 1

operator 2:

1 1 1
0 0 0
-1 -1 -1

HD: the desired histogram obtained by quantizing θ and counting the points with ∆G.

Fdir =

np∑
p

∑
φ∈wp

(φ− φp)2HD(φ) (2.12)

np: the number of peaks; φp: pth peak position of HD; wp: the range of pth peak

between valleys.

Skin pores

In an attempt to calculate skin pore number and area, Otsu’s method [32] was applied

primarily to choose a threshold from the grayscale image and convert it to a binary im-

age. Then close and open morphology transforms were combined to identify skin pore

candidates using a disk-shaped structuring element, whose radius is 12. From the inverse

image of the skin pore candidates, areas smaller than 500 pixels and bigger than 8000
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pixels were eliminated and those connected to image border were also removed. Finally,

real pores were identified and features of pores were calculated, which are pore number,

area, and average area (Fig. 2.6).

Figure 2.6: Flowchart of skin pore classification

Skin furrow

The flowchart of skin furrow segmentation is shown in Fig. 2.7. Watershed transform was

used as the main algorithm to extract skin furrow. Due to the properties of the Watershed

transform, some pre-processing steps are necessary in case of over-segmentation.

Contrast limited adaptive histogram equalization (CLAHE) was used to enhance the

details of the image, which caused some noise also remarkable. Therefore, Gaussian fil-

ter as the linear smoothing filter and median filter as the non-linear smoothing filter were

applied to remove the noise. For the purpose of obtaining the huge contrast image be-

tween furrows and closed polygons, the top-hat and bottom-hat transforms were operated

orderly and the top-hat image was added into the median filtered image and the bottom-

hat image was subtracted from it. H-maxima transform, Extended maxima transform and

morphology reconstruction were applied to acquire the binary image. Distance transform

and watershed transform were used to get the furrow candidates. Identified pores were

eliminated and skeleton pruning was used to suppress the extra lines other than furrows.
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Figure 2.7: Flowchart of skin furrow extraction

Skeleton operation in morphological transform was used 5 times to get a suitable furrow

area. In the end, furrow length was calculated and furrow width was got by furrow area

dividing by furrow length (Fig. 2.8).

Figure 2.8: Skin furrow extraction illustration, (a)watershed transform result; (b)skin fur-
row extraction; (c)skin furrow area extraction without pores
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Skin closed polygon

Since skin furrow has been extracted, skin closed polygons were extracted by reversing

furrow image with labeling (Fig. 2.9). Closed polygon number, area, and average area

were calculated.

Figure 2.9: Flowchart of skin closed polygon extraction

2.3.2 Age-dependent changes with skin micro-relief

Age-dependent changes in the skin surface, pore, furrow, and closed polygon were exam-

ined and results are shown in Fig. 2.10. In the skin surface, all parameters increased with

age, especially coarseness and contrast with significant differences. Skin pore number,

area, and average area increased with age with significant differences, which indicates

that skin pores become larger and more obvious with age went on. Skin furrow length de-

creased with age, while width increased with age. Skin closed polygon number decreases
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with age, however, their area and average area increase with age. According to the co-

efficient of correlation between age and all parameters, the relevance rank is contrast >

closed polygon area > furrow length > coarseness > pore average area > furrow width

> pore area > closed polygon number > closed polygon average area > pore number >

directionality.

(a) skin surface coarseness (b) skin surface contrast

(c) skin surface directionality (d) skin pore number

(e) skin pore area (f) skin pore average area
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(g) skin furrow length (h) skin furrow width

(i) skin closed polygon number (j) skin closed polygon area

(k) skin closed polygon average area

Figure 2.10: Skin micro-relief parameters changes with age

2.3.3 Correlation among skin micro-relief related parameters

The correlation among all parameters is shown in Fig. 2.11, in which surface direction-

ality did not have any correlation with other parameters. In contrast, pore average area

and furrow width have the most correlation with others, which indicated that these two
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parameters should be improved first if people want to refine their skin micro-relief condi-

tions. In addition, the pore area and pore average area have a strong correlation with skin

coarseness, which implies the larger pore area is, the worse skin coarseness is.

Figure 2.11: Relationships among parameters with significant differences: black lines
represent the weak correlation; blue lines represent the mediate correlation; green lines
represent the high correlation

2.4 Discussion

In this study, we proposed a skin micro-relief condition evaluation method by extract-

ing skin pores, furrows, and closed polygons and analyzing the features of the two-

dimensional image taken from the cheek position by the microscope. On top of that,

we employed this method to evaluate age-related changes and explored the relationships

among parameters. All-sided indexes of skin micro-relief, including skin surface, pores,

furrows, and closed polygons, been extracted and analyzed into 11 precise quantitative

parameters from one image is a key point of skin micro-relief assessment.

As mentioned in the literature review, there are many algorithms and parameters could

be used to evaluate skin micro-relief condition. M. Uchida et al [33] used a short line
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matching method to extract skin furrows and assessed the changes as piloerection becom-

ing weak in order to estimate emotion. C. I. Moon et al [21] and Y. Zou et al [19] also

used the watershed transform to extract skin closed polygons, but they did not extract skin

pores, which could also affect skin micro-relief condition evaluation.

P. M. Arabi et al [25] compared GLCM and pixel intensity methods for skin texture

analysis, and they believed pixel intensity is more useful and accurate. While in this

research, considering about the image type and resolution, and for the purpose of fitting

human visual perception, Tamura features algorithm was applied in the study.

As we have known, the older human is, the rougher skin is. However, the concrete

mechanism is still under exploration. In the study, we found out that as pores getting

more obvious, furrow length decreasing, furrow width becoming larger, and small closed

polygons merging into large ones, the skin is seen rougher than before. H. J. Jung et

al [34] also performed that pore counts increased with age and the increment was huge

between 30s and 40s years, while there is no significant difference by gender. S. J. Lee

et al [35] reviewed the major causes of pores enlargement, which includes high sebum

excretion, decreased elasticity around pores and increased hair follicle volume. With age

increasing, skin elasticity decreases significantly, which results in pore number and area

increasing found in this study.

Skin furrow includes primary furrows (20-200µm) and finer secondary furrows (30-

70µm). these furrows construct the triangle-shaped closed polygons originally. With age

went on, especially the position exposed by sun, such as cheek, photo-aging also causes

severe changes in the skin, like the lower expression of collagen production [36]. D. H.

Kim et al [37] also found out that skin furrow width of forearm and hand increased with

age with dermoscopy and SEM. It can be understood that primary furrows become deeper

and this phenomenon reduces the number of skin closed polygons and enlarges the area

of skin closed polygons.

For the correlation among skin micro-relief related parameters, the correlation is

strong between skin coarseness and skin pore area. Therefore, it is considered that all
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parameters deteriorating caused skin roughness, however, the major factor could be at-

tributed to pores enlargement, which provides further support for the skin condition com-

parison according to age, gender or anatomic sites.

Compared to conventional methods, it has more potential to establish evaluation stan-

dards of skin surface micro-relief using the proposed method in the study. Using the same

device makes sure all images have same magnification of skin and resolution. In addition,

proposed algorithm divides skin surface micro-relief into four sections quantitatively, es-

pecially the objective and quantitative surface evaluation which was usually decided by

human vision, such as roughness.

2.5 Conclusion

This project was undertaken to design an objective and quantitative method from two-

dimensional skin images using image analysis technology to evaluate skin micro-relief

conditions comprehensively. The study confirmed skin micro-relief conditions get worse

with age increases. For skin coarseness, skin pores enlargement is the most important

factor. It has been proved the method proposed is an effective tool to evaluate skin aging.

It is possible to assist dermatologist to diagnose and assess the therapeutic progress using

the proposed method, such as eczema, which usually occurs adjoint sandpaper-like tex-

ture. In other words, this evaluation method of skin micro-relief from 2D images can be

a powerful tool for cosmetic developers assessing skincare products, especially for skin

anti-aging products. And it could also be used for customers to trace their skin changes.

The novelty of skin micro-relief includes most related features are extracted, includ-

ing not only the surface status, but also the components of micro-relief. Furthermore , the

cause of surface features is also revealed that coarseness is mostly influenced by pores.

The method we proposed is the combination of Tamura features and morphology trans-

form, which not only matches the relationship of human vision and image feature, but also

explain the primary principle of it, such as coarseness influenced by pores, and contrast

representing furrow depth.
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In the future, the results of this method should be compared with visual perceptions.

More skin parameters should be involved to evaluate skin conditions comprehensively.
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Chapter 3

Quantitative Evaluation of Skin Color
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3.1 Introduction of skin color

Skin is the largest and most easily observed organ of the human body and plays a signifi-

cant role in the assessment of human age, beauty, attractiveness, and health. In particular,

facial skin color distribution significantly influences the perception of age and attractive-

ness of female faces [38]. The major factor impacting skin color is genetic background,

and to some degree, different ethnic groups are classified on account of skin color [39].

For East Asian people, whose skin tone phenotype is yellowish, skin color that is even,

fair and glossy is perceived as beautiful and healthy. East Asian people, particularly Chi-

nese and Japanese people, advocate for white and translucent skin because brightening

products have been prominent from ancient times to modern times, as seen in the current

cosmetic industry [40]. Skin color may also differ within the same ethnic group due to

climate and geographic location, while related studies are few, and this phenomenon has

not been thoroughly investigated. Most studies have discussed facial skin color variation

according to age, gender, and anatomical site in a specific ethnic group. For this reason,

our study chose Beijing and Tokyo as the assessment locations in East Asia, both of which

are the capitals of their respective countries and are famous worldwide for their fashion

industries.

Visual assessment by dermatologist is the main method of skin color evaluation, which

depends not only on the subjective perception of color by the observer but also on the

nature of the illumination and on the geometric position of the observer in relation to the

skin position [41]. With the development of technology, several objective methods have

recently been developed for skin color assessment. Tristimulus CIE colorimetry was built

with the CIE 1976 L*a*b* color system and has been widely used for the collection of

quantitative and objective data. L*, a* and b* as well as individual typology angle (ITA)

and hue angle calculated using L*, a* and b* are efficient for detecting subtle differences

in skin color within the same ethnic group.

Regarding the age-related variation in facial skin color, L. Machkova et al [42] ob-

served that there is a significant negative correlation between age and ITA, while erythema
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levels increase with age up to 50 years old in Caucasian women, and when menopause

takes place, these levels decrease. J. de Rigar et al [43] compared age-based skin color

changes in four ethnic groups and reported that a clear, significant darkening of the skin

with age was found in four ethnic groups, while skin yellowing was shown in Chinese

females. Chinese and Japanese people belong to the same Asian ethnicity, and they show

similar skin color characteristics but differ in their living conditions. Plenty of reports

focus on the skin color in these populations; however, a thorough investigation of these

skin color differences has not been conducted. Moreover, skin whitening and anti-aging

are the top issues for East Asians and related cosmetic products are best-sellers in this

region.

The most studied field in conventional skin color measurement is color assessment,

which is achieved either by reflectance spectrophotometry of the optical spectrum of vis-

ible light reflected by the skin or by a reflectance tristimulus colorimeter, which is in line

with the CIE recommendations. These methods provide quantitative information on the

skin color but their application is limited to a small surface area. The contact pressure,

size of the measured field and measurement geometry can affect the results. The use of

these devices involves contact between the aperture of the probe and the examination area,

which eliminates the influence of background illumination on the measured color of the

area. This contact is the source of several potential errors and limitations.

To avoid these constraints, we studied the development of several applications and

performed an imaging analysis, as is commonly applied in aesthetic dermatology to assist

in the diagnosis of erythema and pigmented skin treatment. This technique allowed us

to study skin areas of various sizes and to take measurements without any contact with

the skin. We would also like to contribute to the development of a skin color diagnostic

support technology in cosmetic dermatology.

In this study, we investigated 5 skin color parameters of the cheek and compared the

skin color in East Asian populations aged 18 to 50 (Fig. 3.1). The aim of the investiga-

tion was revealing baseline data for East Asians and to obtain skin color trends with age
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to provide useful advice for both cosmetic companies and consumers. In addition, we

proposed how the understanding of the process of image formation enables the derivation

of diagnostically important facts about skin color from images. This information is used

for the clinical diagnosis of erythema and pigmented skin. The algorithms were used to

quantify the hue angle and individual typology angle (ITA).

Figure 3.1: Flowchart of skin color measurement

3.2 Methods and materials

3.2.1 Study population

In this study, a total of 445 healthy female subjects between 18 and 50 years old were en-

rolled, including 362 Chinese women from Beijing, China and 83 Japanese women from

Tokyo, Japan. These females were divided into two groups: 18-29 years old and 30-50

years old. Subjects who met the following criteria were excluded: (a) those with skin

disease, (b) those who were pregnant, (c) those with sensitivity to sunlight, (d) those ad-

ministered anti-immunologic medicines within the last 3 months, (e) those who received

any forms of phototherapy within the last 6 months, (f) and those with skin lesions at the
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measurement sites. The study was conducted according to the principles of the Declara-

tion of Helsinki. Informed consent was obtained from all the subjects after the subjects

were providing a complete explanation of the protocol.

For exploring skin color measurement, 91 healthy Japanese female volunteers of 18-

60 years of age were included in the present study. The skin color of the forehead, cheek,

and jaw was collected. Subjects undergoing either local or systemic treatment were not

admitted. The subjects were informed of the details of the experimental process and their

consent was obtained before the measurements were obtained. The study was performed

at Tokyo University of Technology in Hachioji-city, Tokyo (Japan).

3.2.2 Design of study population

Chinese subjects lived in Beijing (north latitude 39◦56′, east longitude 116◦20′) for at least

1 year. Japanese subjects lived in Tokyo (north latitude 35◦63′, east longitude 139◦34′) for

at least 1 year. The measurements were performed in autumn to eliminate the influence

of seasons and climates. Volunteers were required to remove their makeup and wait up

for 20 minutes before the measurements. Skin color parameters were measured at the left

cheek.

3.2.3 Skin color measurement

Skin color parameters were measured according to the CIE-L*a*b* color system, which

includes brightness L*, redness a*, yellowness b*, individual typology angle ITA, and

hue angle. In Beijing, the parameters were measured by a Colorimeter CL400 (Courage

Khazaka Electronic GmbH, Cologne, Germany), and in Tokyo, the parameters were mea-

sured by a CR-13 (Minolta, Osaka, Japan). During the measurements, the device was

placed gently and fully on the measured area to avoid any pressure or outside light. The

data for all parameters were repeated three times, and the mean values represented the

facial skin color of each subject.

On the other hand, the re-Beau® (JMEC Co., LTD, Tokyo, Japan) imaging system

consists of white LED lamps to illuminate the surface and a digital single-lens reflex
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camera. The camera contains 4752 (horizontal) × 3168 (vertical) effective picture ele-

ments (pixels). Basic operations, such as capturing are performed on a tablet PC via a

Wi-Fi connection. A fiber input multichannel spectrometer (USB2000+, Ocean Optics,

U.S) is used to measure the spectral characteristics of the white LED lamp built into the

re-Beau®. The spectral intensity is measured at intervals of 5 nm in the measurement

wavelength range from 380 nm to 780 nm. A Color Reader CR-13 (Minolta, Osaka,

Japan) was used for comparison. The optical system of the CR-13 consists of a tungsten

halogen lamp, which is used to illuminate the surface, and six photodiodes.

3.2.4 skin color measurement from digital images

The quantitative assessment of properties in an imaging analysis requires the subject to

be in a steady position in relation to the camera and lighting during image acquisition.

We used an ophthalmic table to fix the subject’s face, in order to avoid any vertical or

horizontal displacement. The camera was placed in the frontal position. On the image,

we defined some guide marks composed of horizontal and vertical lines. These guide

marks are linked to the initial image and are recalled for every new acquisition of the

same subject.

The procedure of the experiment is as shown in the flowchart of Fig. 3.2. Images of

faces were captured and saved in RGB format.

The conversion of RGB image pixel values to CIE XYZ tristimulus values of the

color displayed on the monitor can be achieved using the next process. The images are

displayed on a monitor that conforms to sRGB and which is controlled by the computer.

The sRGB color space has been characterized by the International Electrotechnical Com-

mission (IEC 61966-2.1). In the display, the relationship between the input value (digital

value of RGB) and the output value (luminance of the image) is a nonlinear character-

istic. Correction from nonlinear characteristics to linear characteristics is called gamma

(γ) correction. In general, the gamma correction of a Windows PC is set to = 2.2. The
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Figure 3.2: Overview of image processing for skin color measurement

formulae for converting between sRGB and XYZ tristimulus values for D65 white point

are as follows:

 X

Y

Z

 =

 0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505

 R

G

B

 (3.1)

The next step transforms the values into the values of the CIE-L*a*b* color system.

It is organized in a cube form. L* indicates lightness. The maximum value for L* is 100,

which indicates the white level; the minimum value is 0, which represents black. The a*

and b* axes do not have specific numerical limits. The a* axis represents red to green,

with positive values indicating increased redness and negative values indicating increased

greenness. The b* axis represents yellow to blue, with positive values indicating increased

yellowness and negative values indicating increased blueness. In the study of skin color,

only the positive sides of the a* and b* parameters are considered. The expression method

of skin color is important for evaluating pigmentation and detecting erythema. The CIE

L*a*b* system has been widely used in the study of skin color, due in part to its ease of

use and the availability of instruments that can measure these parameters. For example,
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increases in skin pigmentation can be graphed as a shift on the L*-b* plane, whereas skin

reddening (erythema) is represented as a shift on the L*-a* plane.

3.2.5 Individual typology angle

The individual typology angle was proposed by Chardon in 1991 [44] as the degree of

skin pigmentation as shown in the vector direction in the L*-b* plane, and the formula is

as follows:

Individual typology angle(ITA) = [tan−1(
L∗ − 50

b∗
)]× 180

π
(3.2)

where ITA is given in degrees. It needs to be noted that ITA values are inversely

related to skin pigmentation. The concept and angle range of ITA are shown in Fig. 3.3.

The ITA values are inversely related to skin pigmentation. The ITA values allow skin

color to be classified into six groups from very light to dark skin (Fig. 3.3). The ITA

values are inversely related to skin pigmentation.

Figure 3.3: Skin color categories: Individual typology angle
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3.2.6 Hue angle

The hue angle was defined according to the CIE-L*a*b* color space as the degree of

erythema calculated using redness (a*) and yellowness (b*) with the formula:

hue angle(h∗ab) = [tan−1(
b∗

a∗
)]× 180

π
(3.3)

where h∗ab is given in degrees. The hue angle is measured in degrees starting with h∗ab

= 0 in the +a∗ axis direction and increasing counterclockwise. The concept and the angle

range of hue angles are shown in Fig. 3.4. When expressing skin color, erythema can be

detected by the hue angle, which is approximately correlated with a change in hue. It is

thought that skin color mainly exists in the range of 0 to 90 degrees. The hue angle is

shown in Fig. 3.4. It is thought that skin color mainly exists in the range of 0° to 90°. The

hue angle values are inversely related to skin erythema.

Figure 3.4: Skin color categories: hue angle

3.2.7 Statistical analysis

SPSS 21.0 (SPSS Science, Chicago, IL) software was used for all statistical analyses.

All data were expressed as the mean ± SD (standard deviation). Pearson correlation

coefficients were assessed between the Beijing and Tokyo subjects. Multiple regression
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analysis was applied to determine the relationships between age and skin color parameters

in east Asia. The biophysical properties of the skin at anatomical sites were compared

using an independent sample t-test. The statistical tests were two-tailed with the following

significance levels: p<0.05 and p<0.01.

3.3 Results of quantitative skin color measurement

3.3.1 Subject population

Outlier screening was used before data analysis, and two outliers were deleted. All data

from 443 people were analyzed, 360 of which were females from Beijing and 83 of which

were females from Tokyo. Descriptive characteristics were calculated by descriptive anal-

ysis. The mean age of all subjects was 32.8±10.48 years. The mean age of all subjects

in Beijing was 34.03±9.93 years, and that in Tokyo was 27.43±11.14 years old. Two age

groups were created for the Beijing and Tokyo groups (Table 3.1). The mean age in the

18- to 29-year-old group was 20.74 in Beijing and 20.58 in Tokyo, while the mean age in

the 30- to 50-year-old group was 39.73 in Beijing and 44.29 in Tokyo.

Table 3.1: Age distribution of study subjects for skin color measurement

Geographic location 18-29 years old 30-50 years old

Number
Mean
(mean±SD) Number

Mean
(mean±SD)

Beijing 108 20.74±3.6 252 39.73±5.2
Tokyo 59 20.58±1.07 24 44.29±4.7
Total 167 20.68±2.96 276 40.12±5.31

3.3.2 Spectral characteristics of the white LED lamp

The spectral characteristics of the built-in white LED lamp of the re-Beau® device are

shown in Fig. 3.5. Generally, white LED light is obtained by mixing RGB LEDs or

by using blue LEDs + yellow phosphor (Narendra et al., 2001). The white LED lamp

incorporated in this device produces white light using blue LEDs + yellow phosphor. The

calculation of the relative color temperature Tcp from the measured values of the spectral

distribution yielded Tcp=6136 K.
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Figure 3.5: spectroscopic characteristics of the built-in white LED lamp of the image
capturing device

3.3.3 Evaluation of skin color in different skin anatomical sites

The skin color of the subjects, in terms of the CIE L*a*b* color parameters, ITA and

hue angle are shown. Changes in the ITA values of the forehead, cheek, and jaw of 91

female subjects are shown in Fig. 3.6. The vertical L* axis indicates the luminance of the

skin and the b* axis indicates the yellow component of the skin. The skin color areas are

defined by dividing the skin color volume L*-b* projection into areas limited by the ITA.

A comparison of the ITA values of the forehead, cheek, and jaw is shown in Fig.

3.7(a). In each case, difference between two sites were compared using t-tests. Signif-

icant differences were observed between the forehead and cheek and between the cheek

and chin. The skin color measurement result obtained from the image was found to well

express the difference of each part of the forehead, cheek, and jaw. The difference in

the hue angle is shown in Fig. 3.7(b). The hue angle was defined according to the rec-

ommendation of the CIE as the psychometric correlate of the visually perceived hue. A
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Figure 3.6: The ITA values of 91 subjects

significant difference was found between the forehead and cheek and between the cheek

and chin, as was observed in the ITA (p<0.01).

(a) Comparison of ITA values by t-test (b) Comparison of hue angles by t-test

Figure 3.7: Skin color comparison of anatomical sites

3.3.4 Comparison of skin color by different instruments

The comparison of the hue angles determined based on an imaging analysis and by col-

orimeter (CR-13) is shown in Fig. 3.8. The hue angle values of the forehead and cheek
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values determined by the imaging analysis were lower than those measured with a col-

orimeter (CR-13); the average difference was almost 20, which means that the a* axis

values determined from imaging analyses may be higher than those determined using a

colorimeter.

Figure 3.8: Comparison of hue angles by different devices

3.3.5 Comparison of skin color indexes

According to the Chardon skin color classification method, the facial ITA value-based

classifications of females in Beijing and Tokyo were compared. As shown in Table 3.2,

the intermediate skin color category was the main skin color in East Asian females, and

the grade VI (dark) category was not observed in the East Asians examined in this study.

Table 3.2: Classification of female cheek skin color in East Asia

Geographic
location

ITA classification
Total

I II III IV V
Beijing 8(2.2%) 148(41.1%) 165(45.8%) 37(10.3%) 2(0.6%) 360(100%)
Tokyo 0(0%) 6(7.2%) 48(57.8%) 29(34.9%) 0(0.0%) 83(100%)
Total 8(1.8%) 154(34.8%) 213(48.1%) 66(14.9%) 2(0.5%) 443

Among the two populations, the grade III skin color was the main skin color (more

than 50%), but the most interesting aspect of the results was that the second most common

skin color levels differed. Beijing individuals had a grade II (light) (41.6%) skin color as

58



the second most common category, similar to other East Asians. Tokyo invididuals had

a grade IV (tan) (34.9%) skin color as the second most common category. In addition, a

much wider range of skin color categories was observed in Beijing than in Tokyo.

To assess skin color more objectively, 5 skin color indexes were measured and com-

pared. The mean value ± standard deviation of each index is shown in Table 3.3.

Table 3.3: Descriptive analysis of the skin color parameters of the cheek

Beijing (mean±SD) Tokyo (mean±SD) Mean (mean±SD)
L* 61.87±3.23 59.25±2.08** 61.38±3.21
a* 14.65±2.62 10.28±1.34** 13.84±2.97
b* 14.45±2.26 15.40±1.82** 14.63±2.22
ITA 38.99±9.16 31.06±7.42** 37.51±9.38
hue angle 44.73±7.87 56.2±4.11** 46.88±8.58

**p<0.01

L* represents lightness, and its values ranged from 44.92∼ 71.10 for East Asians in

general; for the Beijing and Tokyo groups these values were 44.92∼71.10 and 53.53∼63.33,

respectively. The redness, or a* values, of East Asians ranged from 7.17∼22.21, and these

values were 8.04∼22.21 in the Beijing group and 7.17∼13.00 in the Tokyo group. The

b* is yellowness, and its values ranged from 8.83∼23.12 in East Asia, and these values

were 8.83∼23.12 in the Beijing group and 11.77∼21.93 in the Tokyo group. The ITA

is the most common and comprehensive index expressing skin color, especially skin pig-

mentation. The ITA values ranged from -18.1∼63.8 in East Asia, from -18.1∼63.8 in

the Beijing group and from 11.6∼46.4 in the Tokyo group. The hue angle is often used

as the index of erythema. In this study, the hue angle ranged from 25.83∼64.62 in East

Asia, from 25.83∼64.62 in Beijing and from 43.93∼64.21 in Tokyo. The differences in

Beijing and Tokyo were compared using the independent simple t-test. Females in Tokyo

showed significant differences for all indexes (p<0.01). The table below illustrates the

main characteristics of the facial skin color of females in Tokyo, with lower lightness,

lower redness, more darkness and higher yellowness.
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3.3.6 Comparison of age-related skin color variations

ANOVA was used to discuss the skin color variations with age. The data in Fig. 3.9 show

the effect of age and geographic location on skin color. Except for the a* values that

tended to increase with age, the remaining indexes showed the same trend of decreasing

with increasing age in East Asia. There was a clear trend and strong evidence of increasing

a* values, as shown in Fig. 3.9(b), and decreasing hue angles, as shown in Fig. 3.9(e),

with significant differences (p=0.000), which indicated that skin erythema looks more

obvious with increasing age. The change in lightness also showed a significant difference

with age (p = 0.038), which revealed that the skin appears darker with age. The changes

in all of the indexes between Beijing and Tokyo were significantly different. In Beijing,

the L*, ITA and hue angle decreased, while a* increased, all with significant age-based

differences. However, the L* and ITA data in Tokyo showed different trends from those

in Beijing, and no significant differences were observed.

3.4 Discussion

Human skin color is influenced by both genetics and the environment. Usually, genetics

is the most important reason why different ethnicities exhibit a unique skin color.

When evaluating skin color, it is essential to assess pigmentation and erythema at the

same time, especially in Asian people, whose skin color is yellowish, rather than deeply

melanized. It was found that the ITA and hue angle shown in this study are extremely

useful as indexes for the evaluation of skin color.

In this study, we developed a method that measures skin color on imaging in which the

measured part could actually be seen on the monitor and the region of interest (ROI) can

be selected. The skin color is usually evaluated based on different methods of analyzing

the light reflected by skin, such as measurement by the colorimeter that we used for the

purpose of comparison in this study or the skin colorimeter CL 400 (Courage+Khazaka

Electronics, Germany). This method requires a professional operator to hold the device

against the measured sites [45]. This may cause the measurement part to become anemic
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(a) lightness (b) redness

(c) yellowness (d) ITA

(e) hue angle

Figure 3.9: Effect of geographic location and age on skin color
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due to the pressure of applying the measurement head to the measurement part, which

will cause the color to change. Thus, evaluated skin color on imaging. With this method,

the skin color can be evaluated on the screen, even if the operators differ. Anyone can use

this method and obtaining constant values does not require expert skills.

In a previous study, the individual typology angle values of the cheeks of Japanese

female subjects showed that skin types were light, intermediate and tan [46], which is

similar to the results in this study. Facial skin exhibits unique biophysical properties,

which are influenced by anatomical sites [47]. Thus, we evaluated three anatomical sites

to comprehensively assess the facial skin color of Japanese female subjects and found

that the ITA range was wider, from light to brown, because the skin color of the jaw was

darker than that of the forehead and cheek.

On the other hand, the hue angle measured on imaging was lower in comparison to

the values measured by the colorimeter. Similarly, the values were lower than the normal

values in other studies [48,49]. The usage of white LED lamps might be the reason for the

low hue angle. In recent years, white LED lamps have been used not only to improve the

efficiency of indoor lighting but also for measurement technology. There are two types

of methods for obtaining white light: (i) red LED + green LED + blue LED and (ii) blue

LED + yellow phosphor. Blue LED + yellow phosphor has been most frequently applied

due to its simple process and low cost [50]. However, this type of LED is associated with

a problem in that the red component is insufficient and the color reproduction of the skin

color is not optimal. Table 1.5 demonstrates the calculated color rendering index values

of 15 color samples of color rendering property evaluation test colors (JIS, 1990). As the

numerical value of the color rendering index becomes closer to 100, the color rendering

properties become better. However, the evaluations of red color or Japanese skin color are

considered to be poor. It is understood that the color rendering property of skin color is

low. Accordingly, we considered that the color rendering property of this white LED lamp

was the reason for the low hue angle. We considered that the use of white LED lamps

with high color rendering ability would improve this issue. Furthermore, the color gamut
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area of sRGB on the display is narrower than the NTSC television standard. However, the

use of such standards is considered advantageous because it is not necessary to consider

differences in display devices.

Based on the convenience of operation and the unique feature that the region of in-

terest (ROI) can be selected and that it does not require the application of pressure, this

method could be utilized in an aesthetic and dermatological diagnosis support system.

E. Cinotti et al. [51] used videodermoscopy to diagnose the variations of skin erythema,

yellowness, pigmentation, color variance and xerosis induced by seasonal effects. They

applied the CIE-L*a*b* color space and used the individual typology angle (ITA) of the

image as an index of pigmentation, and reported seasonal changes in erythema, pigmen-

tation, xerosis and yellowness based on the analysis of images. Specifically, erythema,

pigmentation and xerosis increased and yellowness decreased after summer. In addition,

X. Delpueyo Español [52] developed a spectral imaging system to improve the diagnosis

of skin cancer. The individual typology angle and hue angle were applied as indexes to

compute the difference between the segmented lesion and the averaged surrounding skin.

This diagnosis system attempted to detect melanomas and provided 100% sensitivity and

72.2% specificity.

Besides the diagnosis, when judging the therapeutic effect, it is easy to compare clin-

ical photographs side- by-side after the completion of treatment. However, it is necessary

to remember the previous condition for each trial and to determine the effect. Even with a

proficient dermatologist, the longer the observation period is, the harder it is to compare.

Confirming the effect based on numerical values measured by a skin color measuring

device was considered effective because it facilitates objective judgment.

This method would also become a powerful source of information that can be used to

explain the course of treatment to patients using images. It is also possible to compare

the changes of the lesion part over time or to compare individual diseases or treatments,

suggesting its possible application in dermatology and cosmetics.
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Many studies have focused on comparisons among ethnicities [39, 43, 53, 54], while

studies on skin color differences in the same ethnic group due to environmental factors

are scarce studies. This study aimed to objectively assess the subtle skin color variety in

East Asians and explore age-related color variations.

Prior studies that have noted prominent differences in skin color in the same ethnic

group as a consequence of geographic location [53, 55]. Chinese and Japanese women

showed similar proportions of individuals with skin color in the intermediate (III) ITA

category, which was also the main category. Nevertheless, the second most common

ITA category in Chinese and Japanese women was light (II) and tan (IV), respectively. In

addition, an extensive range of categories from very light (I) to brown (V) was observed in

Chinese women but not in Japanese women. This finding suggests that the main categories

are light (II), intermediate (III) and tan (IV) in East Asians, while the dark (VI) category

was not observed. Likewise, C. Cho et al [55] reported that the light and intermediate skin

color categories were the most common in both Korean and Cantonese (people living in

Guangdong, China) people.

In the current study, comparing the skin colors of Chinese and Japanese individuals

indicated that Chinese females had brighter and more reddish skin than Japanese females,

while Japanese women have a more yellowish complexion. This result may be explained

by the geographic locations, UV radiation and consumer skin care habits.

The geographical locations and climatic conditions of Beijing and Tokyo are different.

Beijing belongs to the temperate continental climate, where it is cold in winter and hot in

summer. The annual temperature difference is large, and the precipitation is concentrated.

Additionally, Beijing has four distinct seasons, and the annual rainfall is low. Relatively

speaking, Tokyo has a subtropical marine monsoon climate and is deeply affected by the

marine air mass. There is no extreme cold in winter or extreme heat in summer. The

average temperature of the coldest month is above 0 °C, and that of the hottest month is

below 22 °C. The precipitation occurs throughout the year. On the other hand, UV expo-

sure plays a significant role in skin color [56], as shown in Fig. 3.10. C. Battie et al [56]
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reviewed the relationship between skin type and UVA radiation and found that UVA ra-

diation in major East Asian cities showed the following trend: Tokyo>Seoul>Beijing.

UVA radiation is responsible for the early signs of photoaging, such as skin pigmentation.

UVB radiation is responsible for the occurrence of skin erythema. S. Shono et al [57]

studied the relationship between skin color, delayed erythema and delayed tanning (DT)

caused by exposure to UVB and proved that skin erythema was mainly caused by UVB

radiation. In addition, latitude and longitude could affect the sunshine time and sunshine

intensity, and the geographical latitude of Beijing is higher than that of Tokyo, thus the

ultraviolet radiation level is low. Therefore, Chinese people are more likely to have lighter

skin color and to develop a sunburn under ultraviolet light. C. Cho et al [55] also found a

similar conclusion by comparing the differences in skin color between Korean and Can-

tonese people, revealing that Koreans living in a higher latitude and a relatively less sunny

environment are lighter than Cantonese people who are exposed to more ultraviolet light.

Koreans are also more susceptible to sunburn.

Figure 3.10: UVA dose received in main Asian cities
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In addition, because Beijing and Tokyo are the capitals of China and Japan, respec-

tively, many economic and cultural parameters are similar. Both locations are interna-

tional metropolises with large populations. The people generally exhibit a yellowish skin

tone and have similar genetic backgrounds and are willing to pay a certain degree of atten-

tion to skin care. Foundation makeup is generally applied, and the sunscreen ingredients

in foundation help to prevent tanning of the skin.

As an irreversible influence, age impacts facial skin color and pigmentation visibly.

Comparing the variations in skin color in the 18- to 29-year-old and 30- to 50-year-old

groups, there was a significant difference in L*, a* and hue angle. Skin color became

darker and more reddish with age. Both Chinese and Japanese women showed the same

age-related trends. On the other hand, the comparison of Chinese and Japanese women

in both age groups revealed that Chinese skin is less yellowish, much brighter and more

reddish than Japanese skin. A possible explanation for these results may be related to

intrinsic as well as photoaging. L. Wang et al [58] demonstrated skin color darkened with

age due to a decrease in the modified ITA. This study found similar findings in Chinese

women but different trends in Japanese women. This may be because of the smaller

sample size in Japan. K. Kikuchi et al [40] also found that pigmented spots in Japanese

people increased with age. F. Flament et al [59] reported that skin pigmentation was

observed with age in Caucasians. In addition, C. Cho et al [60] researched the age-related

skin color changes in the epidermal and dermal skin in Koreans and discovered that skin

transparency and brown spots showed a rapid change at the ages of the early 30s and late

50s.

In this study, skin color differences in East Asians were observed by direct comparison

under the same controlled protocol. However, these results were limited by the small

sample size, especially in Tokyo. Due to common makeup habits, it was more difficult to

persuade volunteers to remove their makeup for skin color assessment in Tokyo than in

Beijing. A further study could assess the skin color variety with more samples and more

cities in East Asia to confirm these results.
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Overall, this study strengthens the idea that East Asian facial skin color is varied, be-

coming darker and more reddish with age, and that yellowness is related to geographic

location. These results confirmed that different skin color characteristics occurred in the

same ethnic group. In addition, we presented an imaging analysis method that quantifies

the properties of skin color. The improvement of software programs and camera technol-

ogy has made imaging analysis useful for the quantitative assessment of the properties of

skin color. The ITA and hue angle were found to be extremely useful for the evaluation

of skin color. The results of the present study demonstrate the potential application of

an imaging system as a research and clinical tool. These findings have significant impli-

cations for the understanding of how to develop precision skin whitening and antiaging

products for specific consumers.

For skin color extraction, it is the first time we applied the individual typology angle

and hue angle in image processing, which inspire the consideration of color component

on human skin image processing.
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Chapter 4

Quantitative Evaluation of Skin
Porphyrins
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4.1 Skin porphyrin introduction

Skin is the largest and outermost organ of the human body, which has a pivotal role in

protecting the body from potential risks of external environmental factors. Investigating

skin conditions monitoring is a continuing concern both in dermatology and aesthetics.

For dermatologists and researchers, it would be valuable research data in the field of

exploring a pathogenesis or treatment plans targeting long-term chronic skin diseases and

confirming therapeutic effects. Besides, for ordinary consumers, who have already paid

more attention to their skin health, it could also be a guiding tool in daily skincare and

cosmetics choosing. Nevertheless, skin health conditions are quite complex and can be

influenced by many internal and external factors, such as bacteria. As we know, the

skin is an ecosystem supporting abundant microorganisms, inclusive with bacteria, fungi,

and viruses on the surface, most of which are harmless and even beneficial [61]. When

the delicate balance between the host and microorganism is stable, it is seen as healthy

skin, on the contrary, disturbing the balance on either side would lead to skin health

hazards [62], and several skin biophysical properties would be damaged, such as skin

barrier function destruction [63]. Unhealthy skin conditions have a huge impact both

physically and mentally. Propionibacterium acnes (P. acnes) is one of the commensal

bacterium covering the skin surface, which not only prevents colonization from other

harmful pathogens, but also destroy the skin health, leading to skin diseases, such as acne

vulgaris [64], the most common and chronic inflammatory follicle disorder worldwide,

or Progressive macular hypomelanosis (PMH) [65], which causes hypopigmentation in a

variety of skin types.

Previous research has established numerous objective and professional evaluation de-

vices for skin properties, such as probe types and image processing types. However, some

limitations exist, for example, most of the devices were expensive and designed to assess

a single property, the operation needed professional researchers finished training.
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As M. Shu et al. [66] reported, porphyrins are series of organic compounds and pig-

mented compounds, which play important roles in diverse process as oxygen transporta-

tion and photosynthesis. Porphyrins have the capacity on exposing red fluorescence when

exposed to long-wavelength ultraviolet light near 400 nm [10, 67]. Usually, it is believed

that P. acnes produce porphyrins and with the discovery of wood’s lamp, fluorescent por-

phyrins become visible, which can be observed as the red fluorescence on Wood’s light

excitation. Most of the prior researches focused on acne diagnosis applying the relation-

ship between porphyrins and P. acnes [68–70], which has been reported since 1967. L.

C. Luchina et al. [70] graded their observations on a fluorescence scale, grade 0 to 3 rep-

resenting acne scale none to extensive. Application in skin acne vulgaris diagnosis was

explored accordingly.

There is a growing development of fluorescent porphyrin image analysis, and a large

series of methods about porphyrin segmentation and acne classification have been pro-

posed [71–73]. Table 4.1 lists out several existed methods of porphyrin segmentation. J.

R. Balbin et al. [74] used image processing to detect acne region and map the facial fluids.

G. Peris Fajarnés et al. [71] applied a k-means algorithm to count acne lesions automat-

ically. F. S. Abas et al. [75] used discrete wavelet frames and gray-level co-occurrence

matrix to classify the acne lesion types. However, most image data consists of the whole

face, which implies that the device needed is huge and more fit for professional research

institutions, aesthetic salons, rather than usual consumers.

Table 4.1: Related work of skin porphyrin evaluation

Author Year Image data Algorithm
Extracted
features

Manita
Khongsuwan [72] 2011

Partial
fluorescence image

Adaptive histogram equalization+
extended maxima transform

Number of
P. acne points

Jessie R. Balbin [74] 2017 Whole facial image

Convert to the binary image by
automatic threshold value by
Otsu’s method
+ subjective threshold value
determination by
morphological structuring element

Porphyrin number
and region

Guillermo
Peris Fajarnes [71] 2020 Whole facial image

K-means segmentation +
fuzzy c –means algorithm Number of points
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In this chapter, we proposed a quantitative and convenient assessment of porphyrins

from fluorescence images in the cheek site taken by portable devices using image pro-

cessing and applied the algorithm in studying porphyrins characteristics changing trends

with age.

4.2 Methods and materials

4.2.1 Skin fluorescence image captured device

In this study, fluorescence images were taken by an integrated portable device, Smart

Skin Carer (IT Access Co., Ltd, Yokohama, Japan) with a UV-LED illumination system

(Fig. 4.1). A fiber input multichannel spectrometer (USB2000+, Ocean Optics, U.S) was

used to measure the spectral characteristics of the UV-LED lamps built-in Smart Skin

Carer. The spectral intensity was measured at intervals of 5 nm in the measurement

wavelength range from 340 nm to 420 nm. The relative emission intensity diagram of

UV-LED lamps was displayed in Fig. 4.2, which implied that the wavelength of these

UV-LED lamps was near 375nm, on behalf of specific UVA light. There were 8 UV-LED

lamps arranged as a circle (diameter 40mm) with 40 degrees inwards apiece, which kept

the certain 68mm distance between the lens of the device and the assessed skin area, and

which ensured the uniform irradiation with an average power of density of 44.4 mW/cm2.

A long-wavelength filter (>515nm) with a diameter of 10 mm was in the front position of

the CMOS RGB sensor to enhance the detection of fluorescence emission and to prevent

the detection of UV-LED emission at the same time. Figure 4.3 presents the fluorescence

images observed before and after using the filter.

Figure 4.1: Smart Skin Carer device illustration [3]
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Figure 4.2: UV-LED lamps’ spectrum characteristics

The CMOS RGB image sensor with a resolution of 1280 × 960 pixels was utilized

in fluorescence image attainment. Compared to the other main electronic image sensor

CCD sensor, the CMOS sensor is much faster in the readout and less power usage. The

magnification of the lens is ×23.7.

(a) captured without the filter (b) captured with the filter

Figure 4.3: Fluorescence images

4.2.2 Image processing

In-vivo skin fluorescence images of the cheek were recorded in RGB color space and

consisted of 1280 × 960 pixels with the resolution, which represent the skin surface area

with the relevant size of 12×9 mm. Image processing was enabled by the OpenCV and

Python software. The flowchart of image processing is shown in Fig. 4.4.

As we know, skin in the cheek is curved because of the cheekbone, it is easy to obtain

the image with uneven light, especially at the edges of the image. Therefore, prior to

processing the image, uniform distribution of light on all of the images is essential.

Choosing the central 800 × 800 pixels of the image as the region of interest (ROI)

is the simplest and the most effective approach. Once ROI was determined, one more

step was implemented as the preprocessing, which is noise removes. In the algorithm
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Figure 4.4: Flowchart of skin fluorescence image processing

proposed, a Gaussian filter was operated to remove the noise. Following the correction of

ROI, the RGB color model was converted to the HSV color model. The original image

was performed in RGB color space, which is more suitable for computer vision rather

than human vision. The RGB color model is an additive combination of three primary

colors, red, green, and blue. They represent three different frequency bands in the visible

spectrum, however, some properties cannot be separated from RGB color model, like the

color’s lightness. In consequence, HSV color model was selected, where the color is

defined by the dimension “hue”, “saturation”, and “value”, showed as Fig. 4.5.

Figure 4.5: HSV color model illustration
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The RGB to HSV conversion formula is as follows:

R′ =
R

255
(4.1)

G′ =
G

255
(4.2)

B′ =
B

255
(4.3)

Cmax = max (R′, G′, B′)) (4.4)

Cmin = min (R′, G′, B′) (4.5)

∆ = Cmax − Cmin (4.6)

H, S, and V represent hue, saturation, and value, respectively in the HSV color space.

The calculation formula of H, S, and V is showed as follows:

H =


0◦, if ∆ = 0

60◦ ×
(
G′−B′

∆
mod 6

)
, if Cmax = R′

60◦ ×
(
B′−R′

∆
+ 2
)
, if Cmax = G′

60◦ ×
(
R′−G′

∆
+ 4
)
, if Cmax = B′

(4.7)

S =

{
0, if Cmax = 0
∆

Cmax
, if Cmax 6= 0

(4.8)

V = Cmax (4.9)

On one hand, porphyrins showed fluorescent orange-red spots visibly under the UVA

lights, H dimension was picked as one index, on the other hand, the edges of fluorescent

spots are compulsory, V dimension was chosen as the other index to classify and segment

the fluorescence. The mouse click programming was used to measure the HSV values

of fluorescence images 10 times randomly and the resultant range of H and V values we

got were 11-34 and 230-255, respectively. Since S does not matter with fluorescence, its

range is 0-255. Finally, the contours of fluorescence were certified and extracted, except

for those less than 20 pixels in case of being over-segmentation.
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For skin condition analysis, three series of parameters were adopted, the number of

fluorescent porphyrins, the area of fluorescent porphyrins, and the mean intensity of fluo-

rescent porphyrins. The following expression was applied:

mean intensity = area of fluorescent porphyrins / (800 x 800)

4.2.3 Age-dependent changes in cheek porphyrins

There are 3595 healthy Japanese aged 16-85 years enrolled in the study. The people who

were diagnosed as acne or other dermatitis in the last 6 months were not included. They

were divided into 8 groups and per 10 years were a group (Table 4.2). Fluorescence

images were collected from the cheek anatomical site and processed using the algorithm

performed. The study was conducted according to the principles of the Declaration of

Helsinki. Statistical analysis was carried out using SPSS 21.0 software (SPSS Science).

The one-way analysis of variance (ANOVA) was assessed among different age groups.

The statistical tests were two-tailed with the following significance levels: p<0.05 and

p<0.01.

Table 4.2: Age distribution of study subjects for skin porphyrin measurement

Age 10s 20s 30s 40s 50s 60s 70s 80s Total
number 22 1422 563 1001 365 152 56 14 3595

4.3 Skin red fluorescence of porphyrins evaluation results

For extracting fluorescent porphyrins, the implemented algorithm segments the fluores-

cent image and indicates number, area and mean intensity output parameters. As can be

seen from Fig. 4.6, main porphyrins were classified and extracted well, especially the

obvious and large ones. Unlike the T zones, there are few porphyrins on the cheek. How-

ever, four grades were established on the cheek site as a parameter to imply the skin health

hazards, such as comedogenic potential.

As we know, algorithm evaluation methods must adhere to rigorous standards of sta-

tistical reliability. Three parameters were chosen to verify the proposed algorithm which
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Figure 4.6: Processed porphyrin images with contours

includes accuracy, sensitivity, and precision in this study. Statistical measurements of

accuracy and precision demonstrate the basic reliability of the test. Accuracy means the

percentage of measuring the true amount. Precision represents similar results provided on

the same sample when the test repeats. Sensitivity reveals the likelihood of false negatives

and false positives.

To verify the accuracy, sensitivity, and precision of the proposed algorithm, four pa-

rameters were applied, which are (i) true positive (TP) rate (number of the fluorescence

detected correctly), (ii) false negative (FN) rate (number of the fluorescence not detected),

(iii) false positive (FP) rate (number of the non-fluorescence wrongly detected as fluores-

cence) and (iv) true negative (TN) rate (number of the non-fluorescence correctly detected

as non-fluorescence). And the formulas are as follows.

Accuracy = (TP+TN)/(TP+FN+FP+TN)

Sensitivity = TP/(TP+FN)

Precision = TP/(TP+FP)

Ten random images were selected and counted by both the proposed algorithm and the

human eye. Table 4.3 below illustrates the comparison results, where sample images are

selected randomly by randomized algorithm and human counting results are calculated by

three test people and the median values are chosen as the result. It can be found out that the

accuracy, sensitivity, and precision were 71%, 72% and 88%, respectively. It can be seen

from the data in Table 4.3 that the algorithm showed great accuracy and sensitivity when

there are a lot of porphyrins in the image, which indicated that the proposed algorithm

is sensitive to detect the porphyrins and has the strong ability to calculate the porphyrins
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Table 4.3: Verification of porphyrin image processing

Sample
images

Human
counting

Image
processing TP FP TN FN Accuracy Sensitivity Precision

1 51 52 51 1 0 0 0.98 1 0.98
2 20 8 8 0 0 12 0.4 0.4 1
3 4 3 3 0 0 1 0.75 0.75 1
4 2 0 0 0 0 2 0 0 0
5 68 67 67 0 0 1 0.99 0.99 1
6 2 1 1 0 0 1 0.5 0.5 1
7 31 20 20 0 0 11 0.65 0.65 1
8 2 2 2 0 0 0 1 1 1
9 21 22 21 0 0 1 0.95 0.95 1
10 56 66 56 10 0 0 0.85 1 0.85
Average 71% 72% 88%

correctly. However, it would miss some information when there are fewer porphyrins. In

some cases, the percentage of discrepancy between human counting and image processing

did not exceed 1%.

Figure 4.7: Comparison results of extracted skin porphyrins
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Table 4.4: Comparison with other methods

Algorithm Accuracy Sensitivity Precision Merit Limitation

Proposed method 71% 72% 88%

No over-segmentation happens
in all kinds of images.
Only extract porphyrins
without hair follicles.

Sometimes cannot detect
porphyrins, especially when
there are few porphyrins.

Manita 2011 [72] 11% 100% 11%

Balbin 2017 [74] 18% 100% 18%
Perform well when porphyrins
are obvious and big.

Fajarnes 2020 [71] 21% 100% 20%
Perform well in images with
lots of porphyrins.

Over segmentation,
especially when there are
few porphyrins.
(Image data is different. )

By compared to other three existed method shown in Table 4.4 , the results show in

Fig. 4.7. Other than proposed method, other methods all show some over segmentation.

Continually, the accuracy, sensitivity, and precision are calculated and compared, which

turns out the proposed method has the highest accuracy and precision. It has the merit that

no over segmentation happens in all kinds of images. Also, only porphyrins are extracted

without hair follicles.

4.4 Age-dependent changes in facial porphyrins

Age-dependent changes in porphyrins were examined applied the algorithm proposed and

Fig. 4.8 provides some examples of different ages.

Figure 4.8: Porphyrin trends with age examples

The change in porphyrin number with age is shown in Fig. 4.9(a). It indicated that por-

phyrin numbers increased with age and rose to the peak at 30 years old and then decreased

at a high rate with age. It came to almost zero when people were 60 years old. And the

values among different age groups showed a significant difference(p<0.01), except for

the 10s and 20s age groups. Likewise, the change of porphyrin area and mean intensity

with age implied similar trends, but with a sharper slope (Fig. 4.9(b), Fig. 4.9(c)). For
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porphyrin area and mean intensity, the significance difference started earlier from 20 years

old. From the graph we can see that after 50 years old, there was no significant difference

anymore, which may be due to lack of sebum.

(a) Porphyrin number change with age (b) Porphyrin area change with age

(c) Porphyrin mean intensity change with age

Figure 4.9: Porphyrin variation with age

4.5 Discussion

In this research, we developed a new quantitative algorithm to classify and extract the por-

phyrins features from skin fluorescence images which had the potential to monitor skin

health. Furthermore, age-related changes with porphyrins in healthy skin were conducted

applying the algorithm proposed. The range of fluorescence is the key point for the pro-

posed approach so that precise and numerical parameters like fluorescence number, area

and mean intensity can be used to reflect skin conditions quantitatively.
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Prior studies have noted the importance of fluorescence images in skin acne evalua-

tion, like skin acne grade classification, skin acne lesion segmentation. Several fluorescent

image processing algorithms have been performed until now for skin acne or sebum eval-

uation in general. The proposed algorithm utilized the feature in different color models

to extract the fluorescence number, area and mean intensity at the same time. M. Khong-

suwan et al. [72] used the extended maxima transform to extract porphyrin numbers.

However, it might cause over-segmentation and only calculated the number. Assessing

the porphyrin number and area at the same time is more accurate because situations of-

ten happen with little number but large areas. Other research [71] used the whole facial

images as the original data, where fluorescence shows too small and is hard to count the

number.

The correlation of fluorescence and age was performed under large-scale samples

from Japan, which presented human skin porphyrin was increasing with age until 30

years old when it got to the highest level. Later porphyrin decreases rapidly until 50 years

old. There is no significant variation after 50 years old. All the three fluorescence indexes

showed similar trends, which was also reported by K. J. Mcginley et al. [76]. There are

several possible explanations for this result. First of all, porphyrins evaluated in the study

are mainly produced by P. acnes, and P. acnes change with age. J. J. Leyden et al. [77]

found out P. acnes levels increase with age and get to the peak around 30 years old, which

confirms the association between fluorescent porphyrins and P. acnes. The second rea-

son may be related to sebum secretion. H. Dobrev et al. [68] explored the relationship

between fluorescence intensity and sebum level in patients with acne and found out the

strong correlation with the parameters, number, and percentage of the area, which were

similar to our study. S. W. Youn et al. [78] investigated that porphyrins were affected by

not only P. acnes but also sebum secretion. However, this relationship is contrary to that

of D. T. Xu et al. [79] who found that the ultraviolet-induced red fluorescence is emitted

by resident bacteria, rather than by sebum. These results should be interpreted with cau-

tion because sebum secretion might be the major factor determining P. acnes populations.
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In addition, people usually feel more stressed both at work and home after they graduate

from university and start to work even build a family. M. Tanida et al. [80] demonstrated

the subjects with higher sebum levels and high P. acnes populations in the facial skin were

more sensitive to stress.

More information existing in fluorescence images is waiting to be discovered, as

shown in Fig. 4.10, other than red-orange fluorescence spots, there are white spots, black

areas, and bright blue substances, representing sebum secretion, pigmentation and ex-

ogenous substances to each. It would be more effective to predict skin health if all this

information can be extracted and segmented directly from the fluorescence images using

image processing or machine learning. A. Lihachev et al. [81] used the fluorescence im-

ages to differentiate seborrheic keratosis, basal cell carcinoma, nevi and melanoma. K.

Tsuchida et al. [82] found out the positive correlation between oxidative stress and skin

porphyrins, which also indicated skin porphyrins are related to skin aging.

Figure 4.10: Information illustration of the skin fluorescence image

The utilization of fluorescence images is not only in the field of skin conditions, but

also in the product quality appraisal. G. Sauermann et al. [83] analyzed comedogenic

possibility of raw materials and consumer products by comparing the fluorescent images

before and after using them. The parameters they chose were the number of fluorescent

spots/area, size of individual glands and fluorescence intensity, which were similar to the

parameters selected in the study.
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The proposed method focused on the fluorescence attribute in normal skin. Most

studies compared the frequency zone of fluorescence, like nose, head, however, cheek

site would also have strong fluorescence intensity when skin becomes unhealthy in daily

life, such as keratotic plugs.

On the other hand, when there are a lot of people with different skin disorders, like

acne vulgaris with different visual types and severity, the therapeutic effect in porphyrins

may need more time than visual improvement. There are several algorithms proposed to

assess and classify the acne vulgaris with optical images [74, 84, 85]. It would be better

to diagnose and follow up on the effect combining the results of fluorescence images and

optical images.

4.6 Conclusions

In conclusion, the convenient and quantitative evaluation algorithm of fluorescence pro-

posed in this study has the potential to be an effective assisted tool to monitor skin health

and support skin acne diagnosis. The study figured out the variation trends of porphyrin

fluorescence in cheek site with age, which it shows level up from 10 years old and got

the peak in 30 years old, and then level down from 30 years old. These variation trends

provide the fiducial values for skin condition evaluation.

For skin porphyrin extraction, it is hard to extract porphyrin accurately without over

segmentation, especially when there are few porphyrins. Proposed method focused on the

color information of porphyrins, and found out the most suitable color space HSV, and

the most appropriate ranges, which prevent the possibility of over segmentation.

In the future, combined with the fluorescence extraction algorithm, more segmented

methods should be designed for more information extraction from fluorescence images,

such as comedogenic possibility, the sebum level quantification, pigmentation analysis,

and so on.
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Chapter 5

Quantitative Evaluation of Skin Barrier
Function: a Preliminary Study
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5.1 Introduciton of Skin barrier function

As the outermost organ of human body, skin takes a momentous role in defending against

the harmful external factors owing to its complex structure and physicochemical prop-

erties. Therefore, skin barrier function is one of the prior research areas in the field of

dermatology and cosmetics, which is formed mainly by a unique structure of lipids and

corneocytes from the Stratum corneum (SC), the most external layer of epidermis.

The state of the skin barrier is determined by its physical properties, such as epidermal

hydration, transepidermal water loss (TEWL), the pH values, and sebum amount. Healthy

skin has acidic pH values, oscillating between 4.0 and 6.0. A hydro-lipid film covers the

surface of SC, which mainly consists of sebaceous gland lipids as the biochemical barrier.

Epidermal hydration is thus preserved inside without loss. A sufficient quantity of water

is a prerequisite for maintaining normal structure and function of the SC [86–90]. Two

characteristic parameters are used to represent the water content, skin surface hydration

content, and TEWL. Impairment of skin barrier function usually accompanies with low

levels of SC hydration and high levels of TEWL.

There are a number of individual and environmental factors that would influence these

properties and further on skin barrier function, like the environmental humidity, tempera-

ture, seasons, race, gender, age, anatomical sites, and so on. Consequently, objective and

quantitative measurement of these properties is quite important for monitoring skin bar-

rier conditions. A variety of measurement has been developed recently including invasive

and non-invasive methods.

According to the revised EEMCO guidance [91], non-invasive skin hydration eval-

uation is usually based on electrical methods, including capacitance and conductance.

Mainstream electrical evaluation has already made commercial instruments come true.

Probes are designed to measure skin hydration. Skico-200EX (I.B.S. Co., Ltd., Japan)

is developed utilizing the principle of skin electrical conductance. In addition, one more

popular commercial instrument is Corneometer CM825 (Courage Khazaka Co., Ltd.,
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Germany), which applies electrical capacitance as measuring principle. Both of these

instruments represent high levels of skin hydration positively.

Within rapid development of image technology, it has been possible to measure skin

hydration by images. Mapping of skin hydration by electrical capacitance multisensor

is one of the methods to make variation of skin hydration visualization [92–94]. This

measurement is based on capacitance imaging and the sensor measures the penetration

of the electromagnetic field. Water reflect the signal making the resulting pixel darker

while non-conductive material makes the signal go farther inside and the resulting pixel

would be lighter on a scale of 255 grey levels [86,95]. Thus, high levels of skin hydration

are represented by grayscale values negatively. The MoistureMap (Courage Khazaka

Co., Ltd., Germany) has been available commercially. Furthermore, skin hydration image

captured under near-infrared (NIR) light source has also been developed to visualize water

distribution [96, 97]. This method applies the water OH band centered near 1920nm to

evaluate skin hydration. High levels of skin hydration are characterized by lighter pixels.

In addition, hydration measurement based on spectroscopy data is also developed re-

cently. B. P. Yakimov et al. [98] used diffuse reflectance spectroscopy data to assess skin

water content.

However, traditional methods have plenty of flaws that need to be addressed. For

probe used methods, the operation usually needs professional trained operators, and it is

easily influenced by pressing strength. Also they can only measure the partial area of the

skin due to the small area of the probe, which makes skin hydration mapping difficult.

For capacitance image based methods, it forms the non-optical image eventually still with

the probe integrated multi-sensors, which is expensive and regionally. Until now skin

hydration evaluated by images are mainly focused on their electrical properties or optical

properties of water on the wavelength of near infrared area, and the details show in Table

5.1. For NIR image methods, it is effective but needs professional light source, which is

inconvenient and costly.
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As a matter of fact, skin surface optical properties are highly influenced by skin hy-

dration conditions. T. Y. Masahiko Ooe et al. [99] explored the influence of SC hydration

for optical properties and found out the adequate hydration contents (up to 38%) in the

SC showed gradually to increase the transmission, while excess hydration conversely de-

creased. Z. X. Jiang et al. [100] studied the appearance benefits of skin moisturization and

their research revealed that the optical heterogeneity of skin surface decreases when skin

hydration levels up. Both the skin spectral reflectance and the skin scattering coefficient

decreased as skin was hydrated.

Table 5.1: Related work of skin hydration evaluation

Approach
Image capture

device Image data Algorithm Extracted features

D. Batisse [94] Capacitance device Partial skin image
Calculate the mean gray level
and mean thresholded histogram 20

Grayscale value
(darker means high content)

H. Arimoto [97] NIR device Partial skin image
Calculate the area of
light grayscale region

Grayscale value
(lighter means high content)

M. Egawa [96] NIR device Whole facial image Mesh partition analysis algorithm
Grayscale value
(lighter means high content)

In this chapter, based on skin optical properties with skin hydration conditions, we

proposed a new method to evaluate skin hydration objectively and quantitatively from

optical skin images. Reflectance intensity is extracted as the feature to evaluate skin

hydration. Skin hydration values evaluated by Corneometer and Skicon are set as ground

truth to be compared.

5.2 Methods and materials

5.2.1 Skin hydration evaluation instruments

Skin hydration evaluation instruments based on electrical measures

Two common evaluation instruments of skin hydration were applied in the study, which

are Corneometer® CM825 (Courage Khazaka, Germany) and Skicon-200EX (I.B.S. Co.,

Ltd, Japan).
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Skin image capture device

The optical skin image was captured by EPISCAN (CBON Co., Ltd., Tokyo, Japan) with

a camera, white LED lamps and blue LED lamps (Fig. 5.1). The whole facial image

could be captured and the resolution of it is 980 × 1307 pixels.

Figure 5.1: The whole facial skin image capture instrument: EPISCAN [4]

5.2.2 Database of skin hydration

As a prior study, two healthy Japanese female volunteers aged 30s were enrolled. The

study was conducted according to the principles of the Declaration of Helsinki. Informed

consent was obtained from all the subjects after the subjects were providing a complete

explanation of the protocol. As shown in Fig. 5.2, three facial sites of skin surface hy-

dration from two volunteers were evaluated three times as the database of skin hydration,

which include before using the moisture cream, after using the moisture cream for 15

minutes, and after using the moisture cream for 60 minutes. Three instruments were ap-

plied to record the skin hydration inclusive of skin image capture machine, EPISCAN,

and common skin hydration evaluation instruments, Corneometer and Skicon. Measured

skin hydration values from Corneometer and Skicon are set as ground truth. During the

measurements, the device was put gently and fully on the measured area to avoid any

pressure or outside light. The ground truth data was all operated for three times and the

mean values represented facial skin hydration for each subject.
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Figure 5.2: Skin hydration database

5.3 Image processing

The flowchart of skin hydration extraction algorithm is shown in Fig. 5.3. Image pro-

cessing was enabled by MATLAB software. There are two series of original images from

EPISCAN and the white image was chosen as the original image to be processed, which

were recorded in RGB color space and consisted of 980 × 1307 pixels pixels with the

resolution.

Figure 5.3: The flowchart of skin hydration extraction
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Since RGB color model is more fitted in computer vision instead of human vision,

conversion of color model is necessary. There are plenty of color models such as CIE-

L*a*b* color space, which is usually applied in skin color evaluation, CMY color model,

which is commonly used in color printing. In the study, HSI color model was selected,

where each color represented by three components: hue (H), saturation (S), and Intensity

(I).

Conversion formula from RGB to HSI is shown as follows.

θ = cos−1

{
1
2
[(R−G) + (R−B)]

[(R−G)2 + (R−B)(G−B)]1/2

}
(5.1)

H =

{
θ, B ≤ G

360− θ, B > G
(5.2)

S = 1− 3

(R +G+B)
[min(R,G,B)] (5.3)

S = 1− 3

(R +G+B)
[min(R,G,B)] (5.4)

Figure 5.4 displays the illustration of HSI color model.

Figure 5.4: The illustration of HSI color model
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After conversion to HSI color space, component I (intensity) was extracted for further

processing. For the purpose of contrast enhancement, contrast limited adaptive histogram

equalization (CLAHE) algorithm was utilized to obtain enhanced skin image. Contrast

enhancement is always applied to make the reflectance of light more obvious, where

brighter area represents high reflectance. In contrast with ordinary histogram equaliza-

tion tending to overamplify the contrast in near-constant regions, contrast amplification is

limited in CLAHE making noise reduction possible [101]. Contrast enhancement in the

neighborhood of a given pixel value is given through the slope of the transform function,

which is proportionate to the slope of the cumulative distribution function of neighbor-

hoods (CDF) and hence to the histogram value at this pixel value. Predefining value before

computing the CDF is the principle to make the limitation come true, which restricts the

slope of the CDF and thus of the transform function.

Large information details of skin have a bad effect on skin reflectance computing,

which both exist in mono and CLAHE images, such as skin spots, color, and texture.

These influences can be diminished by subtracting the CLAHE image from the mono

image and the skin reflectance image was obtained.

The next step is to evaluate skin hydration content in specific region. Therefore, re-

gion of interest (ROI) was selected as same as the sites measured by Corneometer and

Skicon. All of ROI are 101 x 101 pixels. Due to the skin color and human facial size, the

overall intensity degree is different. Therefore, the grayscale value ratio (GVR) is also

computing besides the average grayscale value (AGV). The formula of grayscale value

ratio is performed as follow.

Grayscale Value Ratio (GVR) =
average grayscale value of ROI

sum gray value of whole image
(5.5)

5.3.1 Statistical analysis

SPSS 21.0 (SPSS Science, Chicago, IL) software was used for all statistical analyses.

The variation trends of skin hydration content before and after using moisture cream were
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illustrated by folded line chart. Pearson correlation coefficients were assessed among the

hydration values measured by Corneometer and Skicon and grayscale value ratio calcu-

lated by proposed algorithm, in which lower than 0.3 representing weak correlation, 0.4-

0.6 representing mediate correlation and higher than 0.6 representing high correlation.

The linear regression was applied to explore the relationship among the skin hydration

value by Corneometer and Skicon and grayscale value ratio, respectively. The statistical

tests were two-tailed with the following significance levels: p < 0.05 and p < 0.01.

5.4 Results of skin hydration evaluation

5.4.1 Image processing results

Color model conversion results were shown in Fig. 5.5 and intensity (I) component was

extracted successfully.

(a) RGB image (b) HSI image (c) I component image

Figure 5.5: Color model conversion example

Continually CLAHE was applied to enhance the contrast of I component, which can

be found out in Fig. 5.6. Skin reflectance was separated from mono image by subtracting

the CLAHE image, where there was more reflectance on the cheek site over other posi-

tions. The reason of this phenomenon is not only the skin hydration content, but also the

skeletal structure of the face, such as zygomatic bone.

The ROI of different positions was displayed in Fig. 5.7 both on original and re-

flectance images.

91



(a) mono image (b) CLAHE image (c) skin reflectance image

Figure 5.6: The example of mono image, CLAHE image, and skin reflectance image

Figure 5.7: ROI comparison in original image and skin reflectance image
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5.4.2 Before-after variation trends of skin hydration

The changes of skin hydration content before and after using the moisture cream evalu-

ated by different instruments are shown in Fig. 5.8, which found out the variation trend of

average grayscale value ratio was similar to the ground truth (both skin hydration content

measured by Corneometer and Skicon), while average grayscale value had the totally dif-

ferent trend from the ground truth. Later the one-way analysis of variance (AVONA) was

(a) skin hydration measured by Corneometer (b) skin hydration measured by Skicon

(c) average grayscale value (d) average grayscale value ratio

Figure 5.8: Before-after skin hydration content variation trends

applied among before and after using the moisture cream, which improved that for ground

truth, there was a significant difference (p<0.01) of skin hydration content between 0 min

and 15 min. also there was a significant difference between 0 min and 15 min, while no

significant differences showed between 15 min and 60 min. Same correlation has been

embodied in the average grayscale value ratio with significant differences. So far, the
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average grayscale value ratio indicated same variation trend and significant correlation as

same as the ground truth.

5.4.3 Correlation with skicon and corneometer

It was implied that average grayscale value ratio had more relationship with ground truth

from before-after experiment. Therefore, the correlation of GVR with Skicon values

and Corneometer values were explored by pearson correlation coefficients and linear re-

gression, which is shown in Fig. 5.9. A positive correlation was found among GVR,

Corneometer values and Skicon values.

(a) Linear regression of GVR and Skicon value (b) Linear regression of GVR and Corneometer
value

Figure 5.9: Linear regression among GVR, Corneometer, and Skicon

On the other hand, it is apparent from Table 5.2 that there was medium correlation

between GVR and Corneometer values. In addition, strong correlation between GVR and

Skicon values were also figured out.

Table 5.2: Pearson correlation coefficient

ratio corneometer skicon

ratio
Pearson correlation
coefficient 1 0.477* 0.736**

Significant difference 0.046 0

corneometer
Pearson correlation
coefficient 1 0.830**

Significant difference 0
*p<0.05; **p<0.01.
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5.5 Discussion

In this chapter, we developed a novel algorithm using image processing to assess skin

hydration quantitatively from visible optical skin images. GVR, as the feature value, has

been proved to highly relate to skin hydration ground truth. The reflectance intensity

image is the key point for the proposed approach since skin color, texture, and spots have

large effect on skin hydration evaluation.

A lot of color model has been tried out, like the skin color represented CIE-L*a*b*

color model, which has been proved without any effect. At last, HSI color model was

selected since the original image is low-light image, which enhancement algorithm would

be more effective and without over enhancement based on HSI color space [102].

Contrast enhancement is the regular operation for most image processing algorithms.

However, choosing different algorithm would obtain totally different results. In this re-

search, what we need is non-reflectance images with high contrast. Plenty of enhance-

ment algorithms were attempted, and the results showed that CLAHE was the most fitted

algorithm in the study.

Non-invasive skin hydration measurement has been researched and developed for

many years. Researchers are not content with conventional probe measurement, since

the evaluation area is small and it is easily influenced by pressure. Skin hydration mea-

surement based on image processing and machine learning is state of the art. K. Koseki

et al. [88] applied topological data analysis to measure the TEWL with skin images and

predicted TEWL using machine learning. It is surprising to develop the rational algo-

rithm to represent parameters related to skin barrier function. S. Liaqat et al. [103] also

applied machine learning to detect skin hydration level, whose dataset is from collecting

skin conductance data by the non-invasive wearable sensor. However, in this research,

tradition image processing was utilized and skin hydration related optical properties were

under consideration, which is also proved effective. Most comprehensive skin measure-

ment instruments are optical system, no matter the professional instruments, like VISIA

and SmartSkinCare, or convenient instruments, like mobile applications, most of which
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use smartphone’s lens directly. Therefore, the development hydration measurement of

visible optical skin images has a board prospect of adapting these existing instruments.

5.6 Conclusion

In conclusion, this novel algorithm was undertaken to design a quantitative and objec-

tive measurement for skin surface hydration evaluation from visible optical skin images.

Although it is a prior study until now, it is observed that this algorithm has the great poten-

tial to be an effective evaluation method to measure skin hydration directly from visible

optical images and may even visualize skin hydration mapping. The study explored a fea-

ture value to represent skin hydration and extracted the GVR parameter which has strong

positive correlation with skin hydration values measured by Skicon and medium positive

correlation with Corneometer values.

For skin hydration estimation, it is the first time that skin hydration related features are

extracted from visible optical images with strong correlation, which provides the poten-

tial of evaluating skin hydration from images directly and mapping the variation of skin

hydration.

In the future, more image data should be collected to verify the proposed algorithm.

In addition, there are a variety of whole facial skin image by different instruments, and

some modification may also need to be considered.
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Chapter 6

Comprehensive Evaluation System of
Skin Conditions
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6.1 Introduction

The skin condition is full of changes and complexity, which results in a simplified mea-

surement unsatisfied with the diagnosis of the condition of the skin in practice. Skin

condition is not influenced only by one parameter, but the synthesis of various indicators.

Therefore, the establishment of a comprehensive skin condition measurement system is

necessary and significant.

6.2 Comprehensive skin evaluation system structure

6.2.1 Radar chart introduction

There are many types of diagrams to demonstrate the data status. Radar chart is one of the

clear approach to exhibit multiple variables at the same time visibly. Due to the similarity

to the graphics of radar chart in navigation radar screen, radar chart is called so and as a

geometric projection method to articulate the data points in the multiple dimension. Radar

chart is a visual method which has the ability to plot the point of a multidimensional space

to the two-dimensional space and put into use the attribute values using two-dimensional

graphics [104].

In this study, radar chart is plotted by MATLAB and the drawing method for multidi-

mensional data is pointed out.

X = X1, X2, . . . , Xj, . . . , Xn is a multi-dimensional data set, andXiXi1, Xi2, . . . , Xin

is a N-dimensional vector. Use the radar chart when N≥3.

(1) Draw a circle and divide it in N parts equally.

(2) Connect the center and individual points. The radius is defined as the coordinate

axis of the aimed attribute and marked with apropos calibration.

(3) Mark the values of indicator N of the values observed on the corresponding axis

and connect them in a form of N-sides.

(4) Observation data N can be formed as N-sides.
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6.2.2 Five-level evaluation rating scales design

Rating scales has been applied prevalently in many fields. The purpose of a rating scale

is to allow respondents to express both the direction and strength of their opinion about a

topic [105]. With the development of rating scales, it is also used for system evaluation.

Investigation of the choice and functioning of rating scale categories has a long history.

Rating scale categorizations should be well-defined, mutually exclusive, univocal and

Exhaustive [106].

Five-level rating scales has a widespread application on skin related evaluation. D.

J. Day et al. [107] set up the 5-grade wrinkle severity rating scale and it is proved as a

useful clinical tool to assess the effectiveness of soft-tissue augmentation and other facial

contouring procedures. J. I. Silverberg [108] proposed a 5-level numeric rating scale

to measure the skin-pain with atopic dermatitis in adults, including clear, mild, moderate,

severe, and very severe. Similarly, E. K. Yeoung et al. [109] improved burn scar evaluation

by developing a scar rating scale, which also has 5 levels by increasing severity, ranging

in whole numbers from -1 to 4, representing smooth to rough.

In this chapter, 5-level skin condition rating scale is proposed, where 5 represents the

best condition, and 1 represents the worst condition.

6.2.3 Evaluation index chosen standards

The definition of beautiful and healthy skin varies among different countries and culture.

White skin tends to be preferred in Asian countries, while people prefer tanning skin in

western countries. There is a slight difference in skin tone even within the Asian regions,

like China and Japan, not to mention the standard of skin beauty and skin concern. S.

Kasolang et al. [110] reviewed the common skin disorders and found out that majority

of the global population is affected by skin disorders mainly including three categories

namely dry skin, acne and hyperpigmentation.
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In this thesis, we define some skin indexes to assess skin condition based on the ma-

jority of common skin concerns, which includes skin health, skin aging, skin roughness,

skin pores, and skin color.

The example of skin assessment result is shown in Fig. 6.1, which includes 5 dimen-

sion, and 5 levels in each dimension, ranging from 1 to 5. Higher number represents

better condition. The blue section of the radar chart is the average skin condition of the

era, which is set as level 3 in all dimensions.

Figure 6.1: Skin evaluation score of average level

6.3 System algorithm design

6.3.1 Skin health algorithm design

As we known, skin health is highly related to skin surface flora. And P. acnes is one of

them, which produce porphyrins with fluorescence under ultraviolet light. Therefore, the

status of porphyrins is possible to imply skin health. Three features about porphyrins are
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extracted well from Chapter 4, including porphyrin number, porphyrin area, and mean

intensity of porphyrins. Two of them of selected to calculate skin health by the following

formula (6.1).

skinhealthlevel = min[level(porphyrinnumber), level(meanintensityofporphyrins)]

(6.1)

According to the samples in Chapter 4, it is figured out that both porphyrin number

and mean intensity of porphyrins change with age, which reveals that the rating scale

needs to be set differently with age. Table 6.1 calculated the number of level 3 firstly,

which are the average value among age groups. And then other levels’ values are also

determined based on the percentage.

Table 6.1: Level standard of porphyrin number among age groups

Level 10s 20s 30s 40s 50s 60s 70s
5 0 0 0 0 0 0 0
4 4 2 2 2 1 1 1
3 10 8 7 8 4 2 2
2 20 21 21 23 17 5 4
1 21 22 22 24 18 6 5

Table 6.2 is calculated in the same way. According to formula (6.1), the maximum

level is chosen as the final level of skin health.

Table 6.2: Level standard of mean intensity of porphyrins among age groups

Level 10s 20s 30s 40s 50s 60s 70s
5 0 0 0 0 0 0 0
4 0.12% 0.08% 0.09% 0.04% 0.03% 0.02% 0.01%
3 0.31% 0.27% 0.28% 0.15% 0.07% 0.04% 0.02%
2 0.61% 1.05% 0.97% 0.72% 0.20% 0.07% 0.03%
1 0.61% 1.05% 0.97% 0.72% 0.2% 0.07% 0.03%

6.3.2 Skin aging algorithm design

Skin aging is a huge project, which is effected by internal and external factors at the same

time. Skin aging appearance gives expression to many prospects, mainly focused on skin

micro-relief. Four related indexes are chosen to imply the skin aging.
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Contrast is one of the features extracted by Tamura Features in Chapter 2, which dis-

closed the depth of skin furrows and the higher the contrast, the deeper the skin furrows,

as well as the older skin. Skin contrast has strong correlation with age, and according to

the formula of skin contrast variation with age (6.2), average contrast values among each

age group are computed as level 3.

y = 0.05x+ 11.26 (6.2)

Later other levels are calculated based on the percentage as shown in Table 6.3.

Table 6.3: Level standard of contrast among age groups

Level 0s 20s 30s 40s 50s 60s
5.0 8.0 9.0 9.0 9.0 10.0 10.0
4 10.0 11.0 11.0 11.0 12.0 12.0
3 11.5 12.5 13.0 13.5 14.0 14.5
2 13.0 14.0 15.0 15.0 16.0 18.0
1 15.0 16.0 17.0 18.0 18.0 20.0

Furrow state is highly correlated with skin aging. Furrow has primary lines and sec-

ondary lines. In chapter 2, we found out furrow length (FL) decreases with age and furrow

width (FW) increases with age. Therefore, the shorter furrow length, the older skin. The

wider furrow width, the older skin, which forms the level values in Table 6.4 and 6.5 cal-

culated by the formula of furrow length with age (6.3) and furrow width with age (6.4).

y = −108x+ 3.26E4 (6.3)

y = 0.02x+ 4.47 (6.4)

Table 6.4: Level standard of furrow length among age groups

Level 0s 20s 30s 40s 50s 60s
5 40000 40000 40000 40000 35000 35000
4 36500 35000 35000 33870 30830 30290
3 33140 29900 28820 27740 26660 25580
2 28000 22500 20000 18870 18330 17790
1 23000 15000 10000 10000 10000 10000
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Table 6.5: Level standard of furrow width among age groups

Level 0s 20s 30s 40s 50s 60s
5 2.5 2.5 2.5 2.5 2.6 2.8
4 3.5 3.7 3.8 3.9 4.1 4.3
3 4.6 5.0 5.2 5.4 5.6 5.8
2 6.0 6.3 7.6 7.7 7.8 9.1
1 7.5 7.5 10.0 10.0 10.0 12.5

In addition, closed polygon is also related to skin aging. The formula of average area

of closed polygon (ACP) with age is as follows (6.5).

y = 6.67x+ 1.22E3 (6.5)

According to the formula (6.5), skin closed polygon increases with age, and average

value among age groups is calculated as level 3. Other level values are computed by

percentage, which is shown in Table 6.6.

Table 6.6: Level standard of average area of closed polygon among age groups

Level 0s 20s 30s 40s 50s 60s
5 900.0 850.0 850.0 800.0 800.0 800.0
4 1076.5 1118.4 1151.7 1160.1 1193.4 1226.8
3 1253.4 1386.8 1453.5 1520.2 1586.9 1653.6
2 1626.5 1843.4 1976.7 2110.1 2293.4 2326.8
1 2000.0 2300.0 2500.0 2700.0 3000.0 3000.0

Each parameter’s evaluation rating scale is calculated and in conclusion, skin aging is

the average level of all these parameters, whose formula is shown as follows (6.6).

skin aging = round(
level(contrast) + level(FL) + level(FW) + level(ACP)

4
) (6.6)

6.3.3 Skin color algorithm design

Skin color is effected by ITA value and hue angle at the same time. ITA has a bias on the

lightness and melanin content, while hue angle represents erythema and yellowish more.

The combination of ITA and hue angle has the capacity on skin color in an all-round

way. ITA has its level already according to the ITA values. Since there is no significant
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difference between age and skin color, the related level of ITA and hue angle is shown in

Table 6.7 without comparison among age groups.

Table 6.7: Level standards of skin color

Level ITA Hue angle
5 55º (very light) 40
4 41º (light) 45
3 28º (immediate) 50
2 10º (tan) 55
1 -30º (brown) 60

The formula of skin color calculation is as follows.

skin color = round(
level(ITA) + level(Hueangle)

2
) (6.7)

6.3.4 Skin roughness algorithm design

Skin roughness is also called skin coarseness, which is extracted directly in Chapter 2.

Skin roughness reveals skin hydration, skin texture, and skin smoothness, playing a vital

role in skin evaluation visually. The relationship between coarseness and age is exhibited

in following equation (6.8).

y = 0.03x+ 18.79 (6.8)

Same method as above was utilized, level standards of skin roughness are shown in

Table 6.8.

Table 6.8: Level standards of skin roughness among age groups

Level 0s 20s 30s 40s 50s 60s
5 15 16 16 16 16 16
4 17 19 19 19 19 19
3 19 20 20 21 21 21
2 21 22 22 22 22 22
1 21 24 25 25 25 25

6.3.5 Skin pores algorithm design

Skin pores are affected by many factors, and due to the gravity and sebum secretion, skin

pores become bigger and more obvious with age. In this evaluation system, average pore
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area is the key index to affect skin pores. According to the formula (6.9), the values of

level 3 among different age groups are calculated first, and other values are continually

computed with percentage, as shown in Table 6.9.

y = 6.75x+ 7.86E2 (6.9)

Table 6.9: Level standards of average skin pores area among age groups

Level 0s 20s 30s 40s 50s 60s
5 500 500 500 500 500 500
4 650 700 700 700 700 700
3 820 955 1022 1088 1157 1225
2 950 1200 1200 1400 1400 1400
1 1000 1500 1500 2000 2000 2000

6.4 Application for skin conditions evaluation

After establishing the comprehensive skin evaluation system, some skin image samples

from the volunteer aged 25 years old (Fig. 6.2) are captured using the microscope, includ-

ing the images from canthus and forehead. Image processing algorithms from Chapter 2

to 4 are utilized to analyze the conditions of skin micro-relief, skin color, and skin por-

phyrins.

The skin parameters details are evaluated by equation 6.1 to equation 6.9, and the

comparison results between canthus and forehead are shown in Table 6.10 to 6.12, which

is found out that skin health level of canthus is 5 while the level of forehead is 4 because

of the high value of porphyrin number in Table 6.10. Skin aging is decided by several

parameters shown in Table 6.11, and the final level of skin in canthus arrives at 4, while

the forehead skin only gets 2. In addition, the skin pore condition in canthus is also

better than forehead. For skin roughness, canthus skin condition gets level 4, which is

also higher than forehead skin according to the calculated values. Skin color condition is

determined as the average value of ITA and hue angle levels, therefore, the final level of

skin color in canthus and forehead is 4 and 3 separately shown in Table 6.12.
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(a) skin micro-relief image of
canthus

(b) skin micro-relief image of
canthus

(c) skin porphyrin image of
canthus

(d) skin micro-relief image of
forehead

(e) skin color image of fore-
head

(f) skin porphyrin image of
forehead

Figure 6.2: Skin samples captured by microscope

Table 6.10: Skin health level calculation

Porphyrin number Mean intensity of porphyrins Level result
Canthus 0 0.00% 5
forehead 3 0.00% 4

Table 6.11: Skin aging, pores, and roughness calculation

Contrast FL FW ACP Aging Roughness pore
Canthus 14.52 30914.6 4.22 1269.8 19.96 751
Level 2 3 4 4 4 4 4
forehead 15.47 18520 6.55 2219.5 20.93 1339.5
level 2 1 2 1 2 3 2

Table 6.12: Skin color calculation

L a b ITA level Hue angle level average
Canthus 56.65 20.95 25.53 31.7 3 48.1 4 4
forehead 35.38 12.05 15.6 21.8 2 49.3 4 3

Radar charts of these two anatomical sites are displayed in Fig. 6.3, which can be

found out clearly that skin condition in crow’s feet is better than forehead.
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(a) radar chart of canthus (b) radar chart of forehead

(c) radar chart of comparison of canthus and forehead

Figure 6.3: Radar chart of skin conditions

6.5 Discussion

In this chapter, comprehensive skin evaluation system was established, where five indexes

are selected to represent skin condition synthetically. It is proved effectively and is easy

to compare the results through the application of canthus and forehead.

In fact, this skin evaluation system is only the prototype and is not complete, which is

built on account of the algorithms from Chapter 2 to 4. Some important skin parameters

are not included yet, such as skin hydration and sebum.

On the other hand, radar chart is a common method to visualize composite indicator

(CI). However, when involved in comparative evaluation of radial visualization solutions,
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radar chart does not have the good performance [111]. As a CI, skin condition evaluation

and visualization is complicate, especially when the skin condition changes over time, the

comparison of this CI is more difficult to visualize.
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Chapter 7

Conclusions and Future Work
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The measuring of the skin is quite critical due to its function as a barrier to the human

body. Within the complexity of human skin, most measurement can only measure the

single property and small area. The evaluation methods presented in this thesis address

this issue from four aspects by using image processing, including skin micro-relief, color,

porphyrins, and hydration. In addition, the comprehensive skin evaluation system is es-

tablished based on the extracted features. This chapter epitomizes the major contributions

of this dissertation. Some perspectives are introduced for future research as well.

7.1 Conclusions

Objective measurement of skin micro-relief is proposed in Chapter 2, with four series

of features extracted by image processing. Not only the skin surface property, but also

the skin pores, furrows and closed polygons are segmented and calculated. Parameters

variation of skin micro-relief with age is also explored, which provides the skin anti-aging

advice.

Based on the comparison of skin color measurement by different instruments, Chapter

3 presents a quantitative skin color evaluation algorithm from digital images. ITA and

hue angle are selected as standard indexes to represent skin color properties, including

the information of brightness, melanin, and erythema. Skin color information is also

proposed by comparing the anatomical sites and geographic regions.

Skin flora has momentous influence on skin health, and porphyrins by P. acnes are

visible under the ultraviolet light, the properties of fluorescence produced by porphyrins

are important. In Chapter 4, we propose a new algorithm to extract fluorescence and

reveal the skin porphyrins variation with age.

Chapter 5 studies objective measurement of skin hydration from visible optical im-

ages, which is the first attempt and reached a great result by segmenting the skin re-

flectance of images.

According to several skin properties evaluated separately in Chapter 2 to 5, a compre-

hensive skin evaluation system is established in Chapter 6. Skin health, skin aging, skin
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roughness, pores, and skin color are selected as representative indexes of comprehensive

skin evaluation system, displayed as the radar chart.

7.2 Future research prospects

Skin surface characteristics include not only skin micro-relief, color, porphyrins, and hy-

dration, but also other skin barrier function related parameters, such as skin sebum, TEWL

values, and pH value. There are little research using optical images to extract them. Most

of evaluation methods is to use the professional probes and tapes. Therefore, it would be

great challenges to design the accurate algorithm, which needs not only image processing

technology, but also optic simulation in skin and color science knowledge.

Figure 7.1: Future research perspectives

As shown in Fig. 7.1, eventually parameter information highly related to skin bio-

physical properties would be extracted from optical images. Furthermore, these properties

distribution in facial epidermal layers would be visualized and form the property map.

The future perspective is to develop an automatic skin health condition monitoring

system using machine learning for cosmetic dermatology to detect skin health condition.

First, classification algorithm would be chosen to detect if the skin is healthy or not, for
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example, CNN. Combined with parameter’s fiducial values of different age group, skin

health score would also be calculated automatically, which has the potential to determine

the effects of cosmetic procedures and treatments. In addition, the indirect goal is to

contribute to the reduction of medical costs by compensating for the shortage of human

resources among aesthetic dermatologists in the future.
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