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Chapter 1

Introduction

1.1. Business Strategy in the Digital Age

We are currently facing times of severe changes triggered by emerging digital technolo-

gies. Technological developments are not gradually increasing but skyrocketing exponen-

tially. Living in a world determined by exponential change entails extensive implications

for society, politics and the economy. When it comes to aligning businesses, facing these

developments is no longer about simply digitizing business processes; it is about transform-

ing business models to maintain sustainable competitive advantage. In short, it is about

creating something new, rather than just soliciting a process of adaption. In the near future,

industry leaders, even in traditional industries such as automotive or financial services, will

increasingly transform into tech companies. Successful innovators such as Amazon, Google,

Microsoft, Apple, Netflix and others that have only existed for a few decades are now among

the most valuable companies in the world.

Disruptive technologies and exponential technological progress are framing today’s busi-

ness environment across all major industries. For many businesses, expressions such as

Big Data, the Internet of Things (IoT), 3D printing, Artificial Intelligence etc., are still

only buzzwords that are yet to be implemented into business strategies. On the one hand,

this global development opens many opportunity windows for existing businesses as well as

new ventures around the world, to achieve strategic competitive advantage, expand busi-

ness models or enter into entirely new markets. On the other hand, however, these trends

are a major threat for established companies, as many of them struggle to keep up with

the pace of the developments while mushrooming tech-newcomers are unsettling traditional

value chains. In today’s digital economy, incumbents have to exploit the potential of digital

technologies to innovate their businesses. In other words, they have to proactively invest in

the digital transformation of their business models.
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Figure 1.1: Determinants of change in the digital economy; For a detailed explanation of
the technological shifts and the determinants of the digital economy, see Leonhard (2016)
and Parker (1995)

A prominent example for this development is the automotive industry. Car manufactur-

ers’ traditional asset-based business models are built around a linear value chain of produc-

ing, selling and distributing vehicles. These companies are facing severe challenges induced

by increasingly blurred industry boundaries, changes in regulation and new competitors

such as Tesla, Apple and Uber. As a result, incumbents have started to bundle their forces

to work on new products and business models by selling mobility services based on digital

platforms and self-driving electric vehicles. Recently, rivals BMW and Daimler have merged

their car sharing platforms to compete with newcomers on a global scale, while Ford and

Volkswagen have entered into a joint venture on electrified physical automobile platforms.

According to a recent study by Murray (2016), 75% of the fortune 500 CEOs said that

“a trio of technologies – cloud computing, mobile computing and the Internet of Things –

will be either ’very important’ or ’extremely important’ to their businesses in the future” and

more than 50% added artificial intelligence and machine learning to the list. Incumbents

often lack the core capabilities and resources to exploit technological developments in an

effective way. As a consequence, we are facing an era in which the standards of business

practice are increasingly set by innovative startups rather than by existing market leaders.

Figure 1.1 summarizes the determinants of paradigmatic change in the digital economy.

It illustrates the different dimensions of technological progress and their economic impact

flowing together to create a VUCA world1. Technological progress can be clustered into five

1VUCA, which is an acronym for the words Volatility, Uncertainty, Complexity and Ambiguity, has
recently found its way into the business lexicon. It is a concept that describes the unpredictable nature of
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dimensions that are expected to have a severe impact on the vectors of the digital economy.

These dimensions are highly interdependent unfolding enormous disruptive potential on any

layer of our economy. The areas of change described in Figure 1.1 draw a picture about the

fast-paced, unpredictable environment surrounding the digital economy and highlight the

importance of digital transformation.

1.2. Challenges in Investment Decision-making for Digital Transformation

Digital transformation initiatives have become a necessary tool to avoid disruption and

Digital Darwinism2. According to a report by IDC (2019), executives of established enter-

prises have started to realize this phenomenon investing USD 1.18 trillion in digital trans-

formation in 2019, an increase of 17.9% over 2018. However, a recently published study

by KPMG (2017) points out that only 41% of companies have an enterprise wide digital

strategy, and only 18% of companies rate their use of digital technology as “very effective”.

One reason for this is that most companies focus much on certain technologies rather than

the underlying business strategies or long-term customer needs. While new technologies can

indeed drive new business models, they are often generic in nature. Where creativity comes

into play is in applying them to revolutionize a business. It is the business application and

the specific use of the technology which makes the difference (Massa et al., 2017).

As discussed in Gassmann et al. (2014a), decision-making for digital investments thus

remains to be a critical task, mainly due to the following reasons: (a) it is hard to think

outside traditional industry boundaries, (b) there is a lack of systematic tools that support

decision-makers, (c) these investments are highly risky, (d) it is close to impossible to forecast

the respective Return on Investment (ROI). This dissertation is aiming to cope with (b),

(c) and (d) by developing a number of quantitative frameworks that consider uncertainty,

forecast financial performance and derive investment strategies to support decision-makers

in the challenging process of digital business model innovation (BMI).

Standard investment decision models in corporate finance theory include the Discounted

Cash Flow (DCF) analysis, or Net Present Value (NPV) techniques. According to Copeland

and Antikarov (2001), practitioners frequently apply these methods for project valuation and

a proxy for decision-making for vast kinds of projects including Information Systems (IS)/

Information Technology (IT) investments. However, these methods do not suffice in coping

the times currently confronted by managers (Bennett and Lemoine, 2014). Especially in the digital economy,
it can provide a framework that helps managers to understand how much they know about their situation
and how well they can predict the result of their actions by capturing the characteristics of their situation
along these four dimensions.

2In the rapidly changing digital economy, businesses will digitalize or die – a phenomenon that can
already be observed in practice and is recently being referred to as Digital Darwinism (see, for example
Kreutzer (2014)).
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with high levels of uncertainty, as they do not capture the value of managerial flexibility,

neither before nor after an investment is installed. Hence, as suggested by Trigeorgis (1996),

these methods systematically undervalue projects in high uncertainty situations. Real op-

tions analysis is concerned with valuing this managerial flexibility and finding the right

timing or scale of such investment decisions. A broad variety of literature has suggested

applying real options reasoning for decision-making for irreversible investments under un-

certainty. However, existing research has focused on applying real option analysis to other

kinds of projects with crucially different characteristics such as IT investments, energy,

mining, oil or Research and Development (R&D) projects.

1.3. Scope and Purpose of this Dissertation

Recent literature has suggested real options reasoning as an approach to strategic think-

ing and decision-making related to BMI and Digital Transformation of Business Models

(DTBM) (McGrath, 2010; Amit and Zott, 2010). Interestingly, however, to the best of our

knowledge, no scholars have presented any structured quantitative approach to decision-

making for digital transformation initiatives. In this dissertation, we try to close this gap

by developing a set of generic frameworks that are able rationally value risky DTBM projects

and investments in digital business models under uncertainty.

Our contributions to this interdisciplinary research area are comprised by several studies.

First, we discuss recent developments in the digital economy and provide an understanding

of digital transformation, BMI and the nature of investments in DTBM. Second, based

on these findings, we introduce real options analysis as a viable approach to value these

investments and derive investment strategies under uncertainty. A quantitative model is

presented that is based on an iterative approach of experimentation and learning to support

managers in finding the strategic value of DTBM projects. Third, an alternative perspective

on valuation in the digital economy is given by shedding light on the intangible value of

users. We introduce customer-based corporate valuation methods as a promising alternative

to traditional performance measures and derive business value from a digital company’s most

valuable asset: It’s users. We employ this approach to show how to value a digital business

by applying it to real-world business cases including Netflix, Roku and Stitch Fix and present

some sensitivity analyses to derive concrete measures for managerial action. Finally, we show

how input parameters for some of the presented models can be obtained by integrating

finance concepts with quantitative technology forecasting literature and demonstrate its

functioning by applying it to the 3D printing technology.

Thus, the overall scope of this dissertation is to provide an understanding of doing

business in the digital age, provide deeper understanding of digital business transformation
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from a financial perspective and improve managerial investment decision-making. The study

places its focus on investments in digital business models rather than digitization investments

for operational layers of businesses. The presented frameworks shall serve as a guide for

decision-makers to evaluate digital transformation opportunities in uncertain environments

and increase the efficiency of value-based management in such situations.

1.4. Main Contributions and Research Questions

This dissertation aims to provide an answer to the following major research questions:

1. What is digital business transformation and how does it manifest itself with managerial

investment decision-making?

2. How can traditional valuation techniques be improved to cope with the uncertain

business environment in the digital economy?

3. What are the major value drivers of digital business models and how can such com-

panies be evaluated?

4. How can we estimate input parameters for investment-decision models in the elusive

context of long-term digital investments?

The structure of this study is as follows: In order to facilitate a discussion about business

value in the digital economy, we provide a generic definition of the term Digital Business

Transformation and DTBM in Chapter 2. In Chapter 3, based on the rapid changes induced

by the digital economy, we highlight the challenges of investment decision-making and the

differences to traditional environments. These challenges serve as a motivation for the need

of more sophisticated valuation techniques, which are introduced in Chapter 4. Chapter

5 provides a generic quantitative framework to value digital transformation initiatives by

placing emphasis on managerial flexibility and show how experimentation, learning and

expansion decisions can be modelled as real options. We show that these real options can

bear substantial value with the potential to shift traditional investment decisions. Chapter

6 then provides an out-of-the-box way of thinking in regards to value in the digital age

by introducing an alternative set of performance measures that is more suitable as a basis

of assessment for value-based management. These ideas are implemented in Chapter 7 by

providing a framework to employ user-based metrics to value digital business models under

uncertainty and prove their power by applying the suggested modelling approach to value

three digital companies. Chapter 8 provides a guideline of how to estimate input parameter

values for technology investments and demonstrate its impact on real options valuation

frameworks and their functioning by applying it to the 3D printing technology. Chapter 9

concludes this dissertation by presenting a summary and a future outlook.
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Chapter 2

Understanding Digital Business

Transformation

Despite the growing importance and an exploding number of academic as well as manage-

ment articles on the phenomenon of digital business transformation, interestingly, academic

literature is yet to provide a generic definition of the term. In the following, we venture to

provide such a definition by systematically analyzing the core determinants of the expres-

sion. We distinguish different types of digital business transformation initiatives to facilitate

further discussion and clarify the scope of investments that are subject to analysis by this

dissertation. We further give an overview of the different types of digital business models

and their differences to traditional asset-based business models.

2.1. Change

Change is a word used a lot in our everyday language. At first sight, there is nothing sci-

entific about it and if you use it in a conversation, everyone will understand what you mean

by it. This is why in science, the definition of change is usually marginalized or ignored.

However, as we want to clearly highlight the difference between non-transformational and

transformational change, we will present my position on distinguishing these terms. Gener-

ally speaking, change can be defined as the “act or instance of making or becoming different”

(Dictionaries, 2017). Yet, in order to establish a clear line between change and transforma-

tion, it is essential to provide a more precise definition of change. The concept of time can

help us to do so (for a qualitative definition of time, see Weik (1998)). We can define time

as a continuous infinite interval of points in time

T = ]−∞,∞[ .
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Let us consider an object W, which is defined by its attribute space

A = α1, ..., αn,

containing the entire set of attributes of the object. Each of the attributes αi have a certain

set of possible manifestation values Mi defined by

Mi = µi1 , ..., µi2 ,

while the scale of µ1, ..., µn can be nominal, ordinal or metric. Now let’s regard two random

points in time tn and tm ∈ T with n 6= m and an object Ω with an attribute space A and

manifestations M . Then, if

∆(tn, tm) = {αi ∈ A|Mi(tn) 6= Mi(tm)} 6= ∅,

there was a change in manifestations for all α ∈ ∆(tn, tm) between tn and tm and hence

a change of object Ω. The change of an object is defined by the change of its attributes’

manifestations across time. In other words, the change of every object that is subject to

the time order scheme, can be defined as the dissimilarity between the object’s attributes’

manifestations at two different points in time. This also implies that |∆(tn, tm)| is the

number of changes in object Ω.

As an example, let’s consider a newly manufactured automobile. At the time of purchase

(t0 ∈ T ) the car’s attribute “condition” (α1 ∈ A) exhibits the manifestation “new” (µ11 ∈
M1). After driving it for some time (t1 ∈ T ), the attribute “condition” (α1) will change its

manifestation to “used” (µ12). We get

∆(t1, t2) = {αi ∈ A|Mi(t1) 6= Mi(t2)} = {condition} 6= ∅,

For the same attribute, the manifestation of the condition of the vehicle has changed. As

the car is defined by its attributes and their manifestations it has changed respectively. This

represents a generic definition of change that is also valid in the context of transformational

change. To differentiate transformational change from other types of change, I will further

analyze the term transformation.

2.2. Transformation

Transformation is a commonly used term across various scientific disciplines. In fact,

it would be a difficult task to find an area of science in which no kind of transformation

process appears. Scientists on mathematics, physics, biology and engineering use the term

7



as do researchers from economic sciences, sociology, anthropology and linguistics. Due to the

interdisciplinary nature of transformation it is not that manifest to find a generic definition.

It would be obvious to define transformation by the quantity of change processes an object

undergoes within a certain period of time, i.e. by ∆(tn, tm). However, in a world that is

constantly subject to a countless number of incremental change, it is not practicable to

define a quantity X that, if ∆(tn, tm) ≥ X then a change is transformational.

While looking for a neutral definition of transformation in a common dictionary, you

come across definitions like transformation is “a marked change in form, nature or appear-

ance” or “a thorough or dramatic change in form or appearance” (Dictionaries, 2017). Most

of these definitions have three things in common: (1) there has to be a change (2) that is

significant and (3) has an impact on an object’s core characteristics such as its shape, type or

nature. I have already provided an explanation for (1) in the previous section. By having a

closer look at the second and the third components, we can identify the subjective nature of

the term transformation. While a change can be significant for one individual, it might not

be for another. This implies that transformation depends on individually perceived char-

acteristics. The subjectivity of the term makes general statements about transformation

difficult. However, it is still possible to define different types of change by their basic (sub-

jective) determinants. While quantity plays a role, transformation is not only a dependent

of the number of changes. Transformation is also and in particular determined by

� the perceived relevance of a change by an individual or a group and

� the perceived degree of change by an individual or a group (Weik, 1998).

Following these dimensions provides us with a stringent logic to subjectively classify change.

In their famous model “punctuated equilibrium” for organizational transformation, Tush-

man and Romanelli (1985) differentiate incremental change vs. transformational change to

facilitate a more precise definition of the transformation process. By mapping these two

terms to the dimensions of perceived relevance and perceived degree of change as suggested

above, we can define incremental change as a change that exhibits both a low perceived de-

gree and low perceived relevance. Correspondently, we can define transformational change

(which is a synonym to transformation) as a change with a high perceived degree and a

high perceived relevance. In order to get the full picture, we can further define step change,

which exhibits a high degree of change but low relevance and fundamental change, which

represents a change with high relevance but a low degree. Figure 2.1 summarizes the four

types of change and maps them to their deterministic dimensions.

The dimension quantity of change can also be incorporated in this framework. To find

out if a set of multiple incremental, step or fundamental changes facilitate a transforma-
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Figure 2.1: The Change Classification Matrix; own illustration based on Weik (1998) and
Tushman and Romanelli (1985)

tion/transformational change, we can assess whether the aggregated change reaches a high

degree and/or a high relevance respectively. In this way, we can combine any number and

types of changes by simply summing up their impact and find out if they constitute a trans-

formation. This simple but holistic framework can help us to draw a line between change

and transformation. Due to the subjective nature of the determining dimensions relevance

and degree of change, this has to be evaluated individually. This definition of transforma-

tion further implies that every transformation is a change, however, not every change is a

transformation, which is in line with basic intuition. Additionally, change as well as trans-

formation can be reversible, irreversible, permanent or temporary, which does not influence

their identity as change or transformation.

In the next step, in order to get a better understanding of transformation, we have to

zoom into the upper right quadrant of the matrix from Figure 2.1. Similar to the existence

of different types of change, there is also a variety of different types of transformations,

which can be distinguished to analyze the implications for the transformation process. In

their work on transformation science, Kollmorgen et al. (2014) analyze the term transforma-

tion by considering perspectives from various scientific disciplines. The authors summarize

their findings by presenting a taxonomy that characterizes transformation along five di-

mensions. The first dimension distinguishes between disruptive transformations resulting

in a substantial modification and rather reforming transformations. The second dimension

concerns the transforming object. It separates transformations affecting single objects from

transformations affecting entire systems. By the third dimension, the authors polarize con-

trolled and uncontrolled transformations. Fourth, a transformation can be short-term and
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Figure 2.2: The Different Characteristics of Transformation; own illustration based on Koll-
morgen et al. (2014)

radical or step-wise and of rather evolutionary nature. Fifth, transformations can exhibit an

innovative vs. an imitative character. To incorporate the dimension of aspiration when clas-

sifying transformations, we can further classify by distinguishing accidental and intentional

transformations. Figure 2.2 illustrates the resulting taxonomy of transformation.

Again, most of these dimensions are of subjective nature, which means that the use of

this framework might show different results while being applied by different individuals.

Despite the problem of subjectivity, we can use this framework to systematically describe

each transformation along six distinct criteria. By assigning indicative values to an examined

transformation, we can derive the characteristics of a transformation. In the following, we

will have a closer look at transformations in a business and subsequently in a business

digitalization context.

2.3. Digital Business Transformation

An insightful perspective on businesses describes the firm’s general business architecture.

It encompasses the different layers and components that constitute a business. The business

architecture serves as a blueprint of the enterprise that provides a common understanding of

the organization and is used to align strategic objectives and tactical demands. Irrespective

of size and industry, there are certain elements you will find in each and every company.

While there are several versions of presenting the components of the business architecture,

Figure 2.3 presents them based on the suggestions by Ferstl and Sinz (2013) and Ullrich

(2014).

All business components in the business architecture can be (and are frequently) subject

to change as well as transformation. A transformation on the infrastructure layer is an

infrastructure transformation, on the application systems layer an IT transformation, on

the business process layer a process transformation and on the organizational layer an orga-

nizational transformation. All types of digital transformations in the business architecture
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Figure 2.3: The layers of the business architecture; as presented by Ullrich (2014) and Ferstl
and Sinz (2013)

can be referred to as digital business transformation. However, as this study is aiming to

analyze investments in DTBM, in the following, we place our focus on the business model

layer.

The business model represents the highest level of the business architecture. It rep-

resents the organization of the company from a strategic perspective. Osterwalder and

Pigneur (2010) state it ”describes the rationale of how an organization creates, delivers,

and captures value”. Ferstl and Sinz (2013) argue that it represents the outside view on a

business system. It formulates the vision, sets objectives and states the strategy to achieve

them. Additionally, it defines the interfaces to the business environment and describes the

connections and relationships with external parties. The business model is the determining

factor of a company’s core characteristics while lower layers in the business architecture

are ideally aligned to enable the business model and implement its strategy in an econom-

ically viable matter. According to Gassmann et al. (2013) the different components of a

business model can be summarized by the four questions ”who?”, ”what?”, “how?” and

“why?”. The answers to these questions concretize the business model’s customer segment,

its value proposition, the value chain and the revenue model. Only a significant change in

one or more of the answers to the four questions has the potential to shift a company’s core

characteristics leading to a business model transformation.

A prominent and promising way to achieve DTBM is BMI. BMI creates new logic re-

garding how a company creates or captures value by making changes in the components

that constitute a firm’s business model. Business models subsume a vast scope, multiple

interdependencies and side effects (Gassmann et al., 2014b). In contrast to product or pro-

cess innovation, BMI allows for additional innovation potential based on long-term strategic
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growth opportunities. However, despite well-known examples such as Apple’s iTunes, Net-

flix’s streaming service or Amazon’s Kindle e-book reader, radical BMI remains to be elusive

and highly risky. Therefore, transforming or innovating a business model remains a complex

and challenging task.

Zott and Amit (2008) state that BMI can aim at differentiation or cost advantage, often

unguided by principles or theory. It is about achieving strategic competitive advantage by

replacing the combined elements of “who”, “what”, “why”, and “how” involved in providing

customers and end users with products and services (Mitchell and Coles, 2003). While

product innovations are aiming to rethink what is done, BMI rather focuses on changing

how it is done. According to a study by the Economist Intelligence Unit, the majority of

CEOs favored new business models over new products and services as a source of future

competitive advantage (Borzo, 2005). Moreover, over the period of five years, business

model innovators are on average six percent more profitable than pure product and process

innovators (Gassmann et al., 2013). BMI is often facilitated by technological innovations,

which enable firms to organize and interact in new ways. However, business model innovators

do not necessarily need to commit R&D investments to these technologies – it can also be

achieved by deploying existing technologies in innovative ways (Amit and Zott, 2010).

We define DTBM as a radical BMI that is driven by digital technologies. It is directed

at the company’s vision, overall objectives or business strategy and affects a large number of

stakeholders inside as well as outside the transforming organization and other entities in the

business environment. Ultimately, DTBM can lead to a shift in a firm’s core characteristics

with the potential to revolutionize or disrupt traditional markets or business practices.
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Chapter 3

Investing in Digital Business

Transformation

This chapter presents an overview of investments relating to the digital and IT domains.

First, we discuss the business value of IT and the business value of digital transformations

of business models. Then, we distinguish different types of digital investments and digital

business models and explain their differences. The chapter concludes by introducing the

main types of risks and uncertainties that surround investments in DTBM, which will serve

as the main motivation to present valuation methods that consider uncertainty.

3.1. The Business Value of Information Technology

In order to understand how IS/IT investments should be prioritized and chosen, there

is the need for a sound understanding of the benefits of IT and its mechanics when influ-

encing the overall business value of a company. Since the early 80s, loads of research has

investigated the business value of IT. Numerous findings, frameworks and models on the

influence of IT-based value on the business value have been developed. The most central

questions in the discussion about IT business value are where and how IT-based value man-

ifests itself. While some researchers place their focus on certain performance measures to

capture IT-based business value (e.g. productivity (Hitt and Brynjolfsson, 1996), market

performance (Tam, 1998), accounting performance (Bharadwaj, 2000), intangible benefits

(Soh and Markus, 1995), others focus on the different levels on which IT business value re-

veals itself (e.g. process level (Bartel et al., 2007), firm level (Brynjolfsson and Hitt, 1996),

project level, industry/competitive level, macroeconomic level customer surplus (Shih et al.,

2007)). Additionally, there is a number of research on the mediating factors between IT

and the business value (Davern and Kauffman, 2000; Weill, 1992) and the different types of
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business value that can be generated by IT (Alshawi et al., 2003).

Kohli and Grover (2008) summarize the most important research findings from this

area as follows: (1) IT does create value. Several studies have proven a positive effect of

IT investments on business value whether it is financial, intermediate (process-related) or

affective (perception-related). (2) IT creates value under certain conditions. IT is simply

bundles of hardware and software and cannot create value in isolation. In order to create

value, IT has to be part of some business value creating process (which is usually the case

when IT is applied in corporations). (3) IT-based value manifests itself in many ways. IT

value can be observed at many levels (e.g., individual, group, firm, industry or process).

Several frameworks and models exist, to identify the different areas of value manifestation

within organizations (see, for example, Barua and Mukhopadhyay (2000), Davenport (1993),

and Schryen (2010)). (4) IT-based value is not the same as IT-based competitive advantage.

IT-based value has to be differential in order to lead to competitive advantage. (5) IT-based

value could be latent. It usually appears with some kind of latency effect (time lag) before

it can be observed. (6) Numerous factors mediate IT and value. There are several factors

influencing the value of IT-based value before being transformed into business value. Some

of them are IS strategy alignment, organizational and process change, process performance,

information sharing, and IT usage. (7) Causality for IT value is elusive. Due to points (1)

to (6) it is extremely difficult to capture and assign the full picture of the value generated

by IT investments. Over the past 30 years, the core question has transformed from “does

IT create value?” to “how does IT creates value?” (Mittal and Nault, 2009). This brings

a pervasive difficulty to IS/IT capital budgeting, where it is necessary to find an objective

(typically financial) indicator for investment decision-making (e.g. ROI).

The difficulties about IT-based business value can be divided in two sub questions:

“where does IT create value?” and “what is the IT value creation process?”. To answer

these questions, several frameworks that can help to understand the mechanics of how IT

investments influence the overall business value of a company exist. A simple example

is the benefit and value categories of IT investments as presented by Nagel (1991). The

author names three distinct categories that can be influenced by investing in new IT so-

lutions: (1) strategic competitive advantage, (2) productivity improvements and (3) cost

savings. While cost savings manifest themselves on the operational layer and productivity

improvements affect the tactical layer, strategic competitive advantage shows effect on the

strategic layer of a company. IT investments are typically targeted at increasing one of these

three categories, however, they can also simultaneously influence two or all of them, due

to their strong interdependencies. To illustrate these relationships with an example, let’s

regard an automation technology investment that aims to reduce production downtimes

and increase throughput. Successfully implemented, this technology will obviously lead to
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productivity improvements. If the productivity improvement leads to increased output with

underproportionally increasing costs (or same output with decreased costs), the technology

will also generate cost savings. Ultimately, if the cost savings are strong enough to enable

underpricing of competitors, this will lead to strategic competitive advantage based on cost

leadership.

In this context, the most intensively discussed type of value is IT-based strategic com-

petitive advantage. While the impact of productivity improvements and cost savings is

calculable, the value of strategic competitive advantage is somewhat harder to determine.

Further, a number of researchers argue, that strategic competitive advantage can only be

achieved under certain conditions. Zahn (1990) states that competitive advantage can only

be achieved in combination with active strategic management. A further criterion for IT-

based competitive advantage is the imitability of the applied technologies or the degree to

which competitors can benefit from imitation. Brynjolfsson and Hitt (1996) find that, al-

though IS investments do not lead to competitive advantage, they are necessary to maintain

competitive parity. More recent research focusing on the resource-based view on IT-based

competitive advantage find that its extent is highly dependent on the quality of IT capabil-

ities, managerial skills and dynamic (learning) capabilities (Bhatt et al., 2005).

The most prominent source of IS/IT-based competitive advantage stems from so called

Strategic Information Systems (SIS). SIS are information systems that either generate com-

petitive advantage or prevent competitive disadvantage for companies (Krcmar, 1987). They

are systems that support or shape a business’s competitive strategy (Callon, 1995; Neuman,

1993). The competitive strategy is a broad-based formula for how a business is going to

compete, what its goals should be, and what plans and policies will be required to carry

out those goals (Porter, 2008). Investments in SIS can influence the competitive strategy in

many ways. Typical dimensions are innovative applications, competitive weapons, changes

in processes, links with business partners, cost reductions, relationships with suppliers and

customers, new products or competitive intelligence (Wetherbe et al., 2007). These dimen-

sions can also be influenced by DTBM investments. In order to create an understanding of

the difference between DTBM and SIS investments, the next section further analyzes the

relation between IS, corporate strategy and DTBM.

3.2. The Business Value of Digital Transformation of Business Models

SIS investments and DTBM are closely related and have a lot in common. A non-

exhaustive list of their shared characteristics is their elusiveness, the existence of influencing

factors on their resulting business value, and the variety of its different, sometimes latent,

manifestations. Despite these similarities, DTBM and SIS investments must be clearly
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Figure 3.1: DTBM in the Strategic IS/IT Alignment Model; own illustration in extension
of Krcmar (2015)

differentiated. DTBM exhibits some special aspects that will change the very nature of

the related investment decisions. DTBM consists of SIS investments that have a strategic

impact leading to a transformational change in the corporate business model. The two main

aspects that should be discussed in this context are the substantial strategic importance of

DTBM projects on a corporate level and the extent of risk and uncertainty that is related

to these types of investments.

As we have learned, DTBM is directed at the business strategy, i.e. located at the

business model layer of the business architecture. Similar to SIS investments, the business

value that is generated by DTBM is typically based on strategic competitive advantage. We

can say that it is the primary goal of DTBM to transform the existing business model to

achieve sustainable strategic competitive advantage. While the category of DTBM-based

business value is obvious, the question of how strategic competitive advantage is achieved is

somewhat more complex. According to Porter (1979), competitive advantage is based either

on cost leadership or on differentiation. Furthermore, in order to be sustainable, the as-

pect that constitutes the competitive advantage has to be hard to imitate or substitutable.

Competitive advantage can lead to an increased market share, a better market position,

first mover advantages, a more comprehensive value proposition, improved customer expe-

rience and retention, a more efficient value chain and others. Ultimately, these types of

benefits will lead to rising revenues and profits. While SIS and DTBM are able to generate

these types of benefits, a big difference between SIS-based and DTBM-based competitive

advantage remains. This can be illustrated by regarding relation between IS, DTBM and

corporate strategy. The strategic alignment model by Krcmar (2015) can help us to do so.

A modification of the model is shown in Figure 3.1.

The corporate business strategy and its applied IS are closely related. On the one

hand, IS can support the corporate strategy and on the other hand, they can also provide
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the opportunity for new strategies. IS are aligned to support the corporate strategy. If

they present an option to enter into a new strategy, we can speak of enablement. In the

digital economy and based on the changing role of IT, the distance between the business

domain and the IS/IT domain is becoming increasingly narrow and the boarder blurrier.

SIS investments are located on the right side, while DTBM is located at the very center of

the enable-alignment cycle. DTBM is influenced by both the technology and the business

domain. It is driven by new technologies for IS, and directed to transform the corporate

strategy. While SIS investments increase competitive advantage through the new digital

technology application, DTBM is based on simultaneous changes in both IS and the business

model. Hence, digital business transformation investments must be seen as a hybrid form

of IS/IT investment and business model transformation/innovation, which justifies for their

transformational strategic impact. As a consequence, the strategic importance of DTBM

typically exceeds the strategic importance of SIS investments. DTBM is typically more

long-term, more business-driven and more multifaceted than SIS investments. Ultimately,

DTBM means exploiting new digital technologies to create new SIS systems that engage

transformational business model changes or innovations.

The hybrid nature of DTBM projects indicates that, in addition to the competitive

advantage generated by SIS, the business value of DTBM encompasses an additional com-

ponent: BMI. We can summarize that DTBM projects and SIS investments are different in

some respects. DTBMs are interdisciplinary projects that require substantial investments

with full impact on both IS and the business model. As DTBM directly (transformational)

as well as indirectly (via new SIS) affects corporate strategy, it has a much higher strategic

relevance than pure SIS investments. Due to this strategic nature, DTBM is more long-term

oriented and has to be assessed over an extended time horizon. As a consequence of its rela-

tion to the rapidly changing digital world, its strategic importance and its extended planning

period, volatility, risk and uncertainty play an important role in DTBM investments.

3.3. Types of Digital Investments

Investment is defined as the act of incurring an immediate cost in the expectation of

future rewards (Dixit and Pindyck, 1994). DTBM projects are unique and can show diverse

characteristics. In order to imagine the financing of a DTBM investment, its core charac-

teristics have to be duly considered. Typically, investments in digital technologies lie at the

core of each and every DTBM. In order to build a business model based on new technologies,

infrastructures have to be built, hardware and software applications systems developed, im-

plemented, tested and configured. The different types of IT investments can be clustered

based on several different aspects such as the underlying technology, the investment pur-

pose or the monetary outcome or impact. In their study on strategic IT investments, Ross
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and Beath (2001) suggest a purpose-based clustering of IT investments: renewal, process

improvements, transformation and experiments. They characterize renewal as investments

that maintain infrastructure’s functionality and keep systems cost-effective. Process im-

provements are investments in business applications that leverage a firm’s infrastructure by

delivering short-term profitability based on increasing operational performance. Transfor-

mation investments are driven by core infrastructures that are seriously inadequate for the

desired business model and therefore have to be aligned with the business strategy. Finally,

experiments are IT investments, which test new technologies, new ideas for products or pro-

cesses or new business models. This terminology does a good job in capturing the spectrum

of IT investments. However, it is not in line with today’s role of IT as a driver and dis-

ruptor of businesses as it does not incorporate highly strategic investments such as DTBM

projects. Hence, in order to include IT-driven investments in business transformations,

further investment types have to be discussed.

A more comprehensive approach to classifying IT investments is based on their goals:

strategic investments with long term goals relating to competitive advantage, informational

investments with medium term goals improving managerial decision-making, transactional

investments with the goal of cost reduction and threshold investments to stay competitive,

even if the ROI of the investment might be negative (Willcocks, 2013). This taxonomy

includes strategic IS investments that are aiming at achieving competitive advantage. A

similar approach is provided by Quinn (1992), who differentiates between cost-reducing and

new product investments, infrastructure investments, and strategic technology investments.

As the author summarizes cost-reducing and new product investments into one category,

his classification consists of only three investment types. However, he includes strategic IS

investments, which he defines as investments that either change the firm’s basic position in

the marketplace or ensure its very viability, which clearly points in the direction of DTBM

investments.

Based on the these classifications, we can summarize three generic types of IS/IT invest-

ment as follows:

� Operational IS/IT investments: This type of investment includes renewal of in-

frastructure and applications to replace existing technologies to achieve cost reduction

or because existing technology is dysfunctional, outdated, or no longer appropriate for

the desired business practice;

� Tactical IS/IT investments: Investments in technologies with mid-term goals

typically aiming to increase productivity, lead to improved managerial decision-making

or stay competitive. These investments include investments in digitalization projects;

� Strategic IS/IT investments: Investments in new technologies that enable or
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drive the modification of the business strategy of a firm; these investments are aiming

to achieve long-term strategic competitive advantage by investments in strategic IS

and non-transformational as well as transformational digital change in the business

model.

This typology, combines the thoughts of the priors. While operational and tactical in-

vestments cover the traditional IT investments on the process, application and infrastructure

level, the strategic IS/IT investments also include investments affecting the firm’s strategic

business layer. This type of investment is closely linked to its business value. It is important

to be able to distinguish between the different types of investments as they have entirely

different goals and exhibit entirely different characteristics. DTBM is driven by strategic

IS/IT investments. However, often there are also tactical or operational IS/IT investments

necessary to successfully transform the business. In most cases, when implementing new

strategic IS, infrastructures have to be adjusted, processes digitized and operating proce-

dures changed. Additionally, when engaging in DTBM, further non-technology investments

will be required. DTBM projects are large-scaled business transformation initiatives with

an impact on the entire enterprise. The types and scale of investments are highly dependent

on the particular project. However, besides investing to realize the technologies that enable

a transformation, investments in R&D, applied personnel, external consultants, marketing

and promotion costs, licenses and others to pave the way for successful transformation might

be necessary. To decide on a full transformation project, the big picture of all required in-

vestments has to be evaluated. For this reason, DTBM cannot be considered pure IS/IT

investments when it comes to decision-making and capital budgeting.

3.4. Types of Digital Business Models

After having discussed the investments that are necessary to establish or transform

digital business models, in this section, we provide a generic overview of the different business

models that can be frequently found in the market. As financial performance measures are

highly dependent on monetization strategies, i.e. how a business makes money, we place

the focus of our analysis on this dimension.

In accordance with technological developments, new types of business models have

emerged as a direct result of the increasingly digitized economy. In contrast to tradi-

tional asset-based business models that are built around linear value chains, the class of

digital business models is typically based on digital products or services offered, advertised

and distributed via digital channels such as online platforms in concurrence with mobile

applications. Veit et al. (2014) state that a business model is digital, if changes in digital

technologies trigger fundamental changes in the way business is carried out and revenues
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are generated. Weill and Woerner (2013) define the digital business model as a blueprint

that describes how firms engage their customers digitally to create value, via mechanisms

such as websites or mobile devices. In recent years, we could witness strong economic suc-

cess and a global spread of these types of businesses that understood to quickly branch out

into all corners of the consumer’s life and establish itself there as a new staple. As a con-

sequence, successful innovators such as Amazon, Google, Microsoft, Apple, Uber, Airbnb,

eBay or Salesforce that have only existed a few decades, are now among the most valuable,

innovative and proliferous companies in the world.

Regarding the different types of digital business models, Moazed and Johnson (2016)

distinguish linear digital business models and digital platforms. Linear businesses models

describe the standard way of doing business, based on a linear value chain. The company

acquires information or material, holds control of it, transforms it into some product and

then sells it. Thus, value is added throughout a linear process. In contrast, platform

businesses function within their matrix as an intermediary between one or more groups of

producers and consumers. Digital platforms are systems that facilitate interaction between

different types of users and do not create any of the products or contents that are exchanged

on their platforms. In other words, these businesses simply provide the infrastructure to

enable efficient matchmaking between producers and consumers while frequency, efficiency

and value-add of transactions are at the core of value creation. It is therefore the allegory

of the commercialization of multilateral networks linked to digital platforms: The product

is the connection of individuals, who then engage in the exchange of classic commodities,

information or services.

In brief, linear digital business models are ways to distribute services or products, which

are produced or provided by a single producer, who distributes its services or products

via digital channels. On digital platforms, products, content or services are produced or

provided by a large number of supply-side users, who are independent of the platform

provider. It is noteworthy that platform users can represent a homogeneous group, driven by

similar purposes and convictions (e.g. social media and dating platforms) or a heterogeneous

group of producers and sellers with opposing interests in the facilitated transaction (e.g.

drivers and passengers with Uber, landlords and tourists with Airbnb).

Recent literature evidences several attempts at a classification of a variety of different

types of digital business models. For example, Bock and Wiener (2017) provide a compre-

hensive taxonomy of digital business models, analyzing existing models along five distinct

dimensions. As our study places its focus on financial aspects and corporate valuation,

it is further essential to distinguish digital business models in regard to their approach to

monetization. Revenue mechanisms describe how digital businesses earn money. Several
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Table 3.1: Overview of Digital Business Models

Monetization Description Typical exam-
ples

Linear
Digital
Busi-
nesses

Subscription-
based

Products & services are created or acquired by the
company and provided to the customer, who pays
a fixed subscription fee.

Netflix

Freemium

Products & services are created or acquired by the
company; there are two different versions of the
product; a standard product for free users and a
superior product for premium users; often these
companies include ads to generate additional
revenue streams from free users.

Spotify

Transaction-
based

Products & services are created or acquired by the
company; the company offers, sells or grants tem-
porary usage of the product for a certain fee.

Software as a
Service such as
Salesforce, car
sharing companies
such as ShareNow

Digital
Plat-
forms

Free

Contents are not owned by the platform; access to
and usage of products and services are free;
revenues are generated by secondary revenue
streams such as integrated ads, offerings by third
parties or commercialization of user data.

Social media plat-
forms such as Face-
book and Instagram,
Messaging services
such as Whats-
App and Line

Premium

Contents are not owned by the platform; access to
and usage of the platform are granted for a fixed
subscription fee; often only the producers are char-
ged while consumers can access for free.

WooCommerce,
Shopify

Freemium

Contents are not owned by the platform; a stan-
dard product for free users and a superior product
for premium users is offered on the platform;
often ads are included to generate an additional
revenue stream from free users.

LinkedIn,
Dropbox, Skype,
Tinder

Transaction-
based

Contents are not owned by the platform; many
producers offer their products and services to
many consumers on the platform; the platform
provider typically earns a fee for every successful
transaction.

Airbnb,
Uber, Amazon,
PayPal, eBay,
Alibaba

typical approaches can thus be frequently found in business practice. In both, linear as well

as platform business models, there are subscription-based, freemium and transaction-based

business models. Sometimes, we can also find hybrid monetization mechanisms. Table 3.1

provides a high-level typology of the different types of digital business models with regards

to monetization. Understanding the major differences between these models is important

to facilitate further discussions about their valuation.

A major difference between linear digital business models and digital platforms is that

the value provided by linear digital business models is typically contained in the very object

that is sold to consumers. In contrast, the value provided by digital platforms is typically

related to direct transactions between users and highly dependent on so-called network

effects within the matrix. Network effects describe the phenomenon that a large number of
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users increases the value to potential new users. It is a self-perpetuating mechanism that

explains the rapid, sometimes exponential growth of these platforms, in some cases, such as

e.g. Facebook and Amazon, even amounting to almost as much as a social obligation of the

user. In other words, an increasing number of producers will attract an increasing number

of consumers and vice versa. Furthermore, the very act of consuming will make it more

likely that producers join the platform to add additional value. Thus, the more participants

are in the system, the more valuable are its products or services for users. This phenomenon

describes a ripple-effect, which illustrates the scalability of such business models – we have

seen examples of it resulting in an upward spiral that leads to exponential user growth.

Network effects can also explain the winner-takes-it-all phenomenon, which is, for example,

comprehensively discussed by Moazed and Johnson (2016) and responsible for the global

monopolies of successful digital platforms such as Amazon, Google and Facebook.

From a managerial as well as investors’ perspective, digital business models have further

crucial advantages over traditional asset-based business models:

� Almost unlimited scalability: Digital businesses sell digital products and services

or provide digital infrastructures for frictionless transactions, using technologies such

as the internet and the cloud. As a result, growth is not limited by physical bound-

aries or limited human or material resources and products or services are instantly

and infinitely multipliable. Typically, this type of progressive geographic expansion

by entering into new markets does not require a significant amount of additional in-

vestments.

� Extremely low marginal costs: Similarly, selling more digital products or in-

creasing the number of users do not result in significant additional costs. A digital

business model’s cost structure gets more efficient with increasing scale. Especially for

digital platforms, cost of goods sold are proportionally much smaller than for tradi-

tional businesses. Major cost factors are typically represented by fixed costs including

overheads such as general administrative, IT, and marketing expenses. In the case of

digital business models, the number of users hardly influences the amount of expenses

necessary for the maintenance of the digital infrastructures. As a consequence, large

digital companies can invest most of their cash for customer acquisition and R&D to

complement network effects and further drive growth.

� No physical proximity to customers: Digital businesses can simply achieve

global reach via digital distribution channels and the internet. Irrespective of location

and regional footprint, digital companies can compete on a global scale. Digital prod-

ucts and services can be advertised and distributed globally to any customer online at

anytime and anywhere with close-to-zero transactional friction.

� High-paced innovations: Digital companies can easily test and roll-out new prod-

22



ucts, product versions or ideas without facing the hurdles of classic business models,

which are entangled in a strife to balance costs, resources, staff and other real-life

anchors. Congruously, the time to market is extremely short. Typically, innovations

follow an iterative lean startup-like innovation cycle that maximizes learning and in-

creases efficiency. Prototypes can be instantly tested with customers and results ana-

lyzed and fed back into the system in real-time. Artificial Intelligence helps to process

huge amounts of data and to derive appropriate responses to new developments. Ad-

ditionally, as digital businesses typically collect massive amounts of user-related data,

informed managerial decision-making can happen at unprecedented reaction times,

capitalizing on the high potential of transparency and automation. Detailed user

profiles are created and analyzed and additional revenue streams such as monetizing

user data with third parties, introducing targeted and personalized marketing strate-

gies and a huge cross-selling potential are just some decisive advantages of the new

data-driven digital company.

� Strategic growth options: A large part of value of digital businesses stems from

their users and the data that are not on the balance sheet. When growing beyond

the critical mass, these companies typically face additional data monetization options

as their user base snowballs due to the network effects described above, ultimately

resulting in a winner-takes-it all scenario. While digital products, services or infras-

tructures are easy to imitate, sustainable competitive advantage is achieved by a large

self-sustaining user base that attracts new users who might, in addition, even become

customers of future business opportunities.

Despite some typical advantages of digital business models such as almost unlimited

scalability, no physical proximity to customers, extremely low marginal costs and the exis-

tence of network effects, there is a threat of overvaluation of these companies, which became

palpable for the first time when the dot-com bubble burst in 2000. Today, many finance

experts are – again – warning about the high market valuations of these companies, as they

typically report razor thin profits and market value is not backed by a reasonable amount of

real assets. Thus, most of the equity value of these firms must stem from intangibles such as

users, data, network effects and related growth options that are not disclosed with financial

statements. This is a strong indicator that managers and investors have started to lose

their trust in traditional financial performance measures such as price-earnings ratios, re-

turn on assets (ROA) or book-to-market (BtM) values, which often lack explanatory power

for shareholder value of digital enterprises. Consequently, some experts demand regulators

to impose the disclosure of additional user-based performance measures such as churn rates

or purchase behavior, in order to increase transparency and the understanding whether high

market valuations are justifiable (e.g., Wiesel et al. (2008), Chakravarty and Grewal (2011),

and Bonacchi and Perego (2019)).
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Another concern about the value of digital businesses is that these companies are typi-

cally subject to high levels of uncertainty, as they are easy to imitate or copy, which makes

it difficult to build sustainable competitive advantage. Moreover, even strong network value

of digital platforms cannot ensure stability: Once there is a more attractive offering in the

market, users will start to flee creating some sort of a downward spiral induced and ag-

gravated by downside network effects. Some key advantages of these new digital business

models can therefore also function in reverse, making the industry highly volatile to unfore-

seeable trends. Thus, business models with strong network effects tend to grow faster but

also shrink faster which results in highly volatile stock returns and substantial risk when

investing in these companies.3

3.5. Uncertainties Surrounding Investments in Digital Transformation of Busi-

ness Models

DTBM includes both BMI and the creation of new strategic IS. Both approaches can be

especially valuable in times of instability. However, according to Boutetière et al. (2018),

84% of digital transformation projects fail. BMI as well as strategic IS creation involve

hefty investments, high levels of uncertainty, complexity and, inevitably, risk (Taran et al.,

2015). While the potential business value of DTBM can be enormous, these projects are

highly risky. Risk relates to the uncertainty of outcome (Chapman and Ward, 2003). It

can be seen as a threat to the success of a project leading to the stochastic nature of its

financial results. We cluster the major risk factors of DTBM in three groups: (a) business

strategy-related risk, (b) technology-related risk, and (c) implementation-related risk, all

playing a critical role in the success of DTBM projects.

The business strategy-related risk inherent in DTBM reflects the level of success of the

business strategy itself, based on market dynamics, enterprise dynamics and timing. Busi-

ness strategy risk focuses on the long-term risk surrounding competitive strategy and change

in the market environment due to changing supplier-customer relationships, political realign-

ments and demographic or regulatory trends (Parker, 1995). They include several different

business aspects. Strategic investment decisions, such as BMIs, affect the entire enterprise.

They are long-term oriented and subject to the highly volatile business environment. Long-

term investment decisions in a VUCA world are by nature highly risky. Projections of future

customer needs and competitive actions have to be conducted in order to assess the potential

of BMI in DTBM. Estimating the costs and benefits of business model transformation is ex-

3A prominent example for the threats of such developments is the social media platform Myspace.
Myspace used to be the leading social network worldwide. However, the eroding quality of its network in
conjunction with the market entry of Facebook led to a rapidly decreasing number of active users and the
loss of its biggest competitive advantage: its network value.
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tremely difficult. Competitors might develop businesses or release solutions that disrupt the

desired business model. Moreover, customer needs may change or develop in different pat-

terns than expected. Especially in case of entirely new markets, estimating profitability is

extremely challenging, as there are no comparables in the market and no historic data exists.

Business strategy risk in DTBM is substantial and due to its exogenous nature, mitigation

opportunities are limited. Business strategy risk can result in uncertainty over revenues as

well as costs, which are the main determinants of a project’s profitability. Sophisticated

anticipation of future trends, developments and decision-path flexibility is essential.

Technology-related uncertainty in DTBM refers to choosing and implementing the tech-

nologies that should drive the desired business model transformation. The choice of the right

technologies is one of the key success factors in DTBM. It comprises the typical dimensions

of risk in strategic information system investment decisions. In this context, one of the core

considerations will be the solutions and infrastructures that are used to implement a certain

technology with the company. In the digital economy, it is difficult to foresee the long-

term persistence of certain technologies. Usually, there are several alternative IT-solutions

with individual advantages and disadvantages. When investing into emerging technologies

such as the IoT or 3D-printing, it is not clear, which of the existing technologies will be the

dominant solution in the future. Another technology-related risk is determined by the build-

or-buy decision. There is the possibility to self-develop the required technologies with the

in-house R&D or IT departments, which typically requires high up-front investments, com-

prehensive technological capabilities, and further (R&D-related) risks. On the other hand,

buying the required technology from third parties might lead to a lock-in effect resulting in

increased dependency and long-term inflexibility. Further IT-related risks in DTBM relate

to IT scalability, compatibility, security, integrity and availability. IT-based risks are par-

tially exogenous (technological progress) and endogenous (technology deployment). Due to

their partially endogenous nature they are easier mitigate than business-related risks. How-

ever, a team of experienced IT-experts has to be in place to identify and actively mitigate

technology-related DTBM risk.

While business strategy-related risks reflect exogenous risk factors, implementation-

related risks and uncertainties have an internal enterprise focus. In DTBM, managing

business transformation means anticipating and adapting process designs, organizational

structures, incentives and rewards, cultural practices, and the skill-set, attitudes and ulti-

mately the work behavior of employees (Gibson, 2004). Implementation-related risks are

based on the required change processes within the organization. A recent study has found

that most change-related risks do not lie in strategy development but in execution (Half,

2016). 84% of digital transformation programs do not meet their goals, mostly due to people

or change management-related issues (Rogers, 2016a). Hence, even in case of a promising
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business strategy and functioning, cutting-edge technologies, transformation projects have

a high probability to fail in the execution stage. To mitigate these risks, effective change

programs and enterprise-wide communication must lie at the core of DTBM execution man-

agement. Thus, the chance of success of such projects can be best increased by developing

a dynamic and innovation-friendly corporate culture that comprises highly skilled human

resources that can represent both, technical skills and strong business acumen.

The extent of risks and uncertainties surrounding DTBM, indicates the need of special

treatment of related investments. While there exist vast research papers and best practices

on idea generation and digital transformation project management, literature is lacking

suitable quantitative frameworks to support managers in the investment decision process.

However, existing literature indeed provides the different building blocks that are required

to construct such frameworks. In the following, we summarize some of these building blocks

and subsequently present a generic model that is able to evaluate DTBM projects and help

managers to find the right investment decisions in high-uncertainty situations.
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Chapter 4

Managerial Investment

Decision-making

4.1. Traditional Approaches

Managers regularly evaluate competing actions and strategies with impact on their com-

panies’ business value. In the corporate objective function, it is an overarching goal to

increase the overall business value. Managing business value is a complex task that brings

many dimensions to capital budgeting. The shareholder value approach emphasizes that so-

cial welfare is maximized, when all firms in a society maximize their own firm value (Jensen,

2001). This approach is about maximizing the firm’s market value, while shareholders are

residual claimants. Shareholders are mostly interested in the company’s overall performance,

i.e. the numbers, which provide a straightforward guideline for managerial decision-making.

In theory, investments are only made if they would increase the overall business value of

a firm. Investment criteria are usually expressed by so called key performance indicators

(KPIs) such as the ROI, the NPV, the Internal Rate of Return (IRR) or Economic Value

Added (EVA).

IT investments take a large share in DTBM-related investments. Assessing the busi-

ness value of existing IT is crucially different from assessing the business value of new IT

investments. There are two distinct approaches to measuring the business value of IT: post-

investment and pre-investment. In the post-investment situation, measuring the value of

IT is basically about assessing the business value of current systems and technologies by

observing and determining their performance gain with the company. Measuring the value

of existing systems is observable and typically calculable. Additionally, often there is the

opportunity to execute before and after comparisons by reviewing past investments to define

the value-add of the respective technologies. Unfortunately, this straightforward approach
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is not applicable in capital budgeting problems, as the investment decision process predates

the investment. In contrast to the post-investment perspective, assessing the value of IT

pre-investment is more complex. This situation basically requires sophisticated estimates of

the expected benefits and the expected expenses associated with a project. Decision makers

have to weigh up these numbers across a certain time period and benchmark the results

with the respective investment alternatives. As ascertaining the business value-add of the

investments is based on expected values, investment decisions are always subject to a certain

level of risk and uncertainty.

Often depending on the type of investment, managerial decision-making in capital bud-

geting is typically made based on value captured by some performance metric. For instance,

in IT investment decision-making Business Case Analysis (BCA) is the dominant approach

among companies. Ward et al. (2007) found that 96% of European companies use BCA to

justify for funding of their IT investments. The authors state that, besides justifying for

funding, presenting expected costs and benefits of a potential project in a sound business

case has further advantages, that should not be neglected:

� It enables priorities to be set among different investments for funds and resources,

� it identifies how the combination of IT and business changes will deliver each of the

benefits identified – resulting in a benefit realization plan,

� it ensures the commitment from the business managers to achieving the desired in-

vestment benefits,

� it creates a basis for review of the realization of the proposed business benefits after

completion of the investment.

Based on the estimated costs and benefits over the regarded time period (typically three

to five years), the net benefits are calculated for every single time period. After the calcu-

lation of the net benefits, the key financial metric (or KPI) can be calculated. This metric

provides a statement about the profitability of an investment capturing the result in one

single standardized number to make it comparable to alternative choices. There are several

financial metrics that are frequently applied in investment decision-making, aiming at pro-

viding a statement about the profitability of an investment by summarizing their expected

profitability in a single metric. In practice, the main methods of valuing such investments

are the NPV, the IRR, the ROI and the Profitability Index (PI) (Willcocks, 2013). Bacon

(1994) concludes that 75% of companies use some form of DCF or NPV techniques in select-

ing their large-scalded IS/IT projects. Today, these traditional techniques are still widely

applied to value a broad variety business cases and derive investment decisions.

The NPV method is a discounting technique that takes the future expected cash flows

and the related expenses back to their value at commencement of a project. It is the most
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dominant capital budgeting technique in business practice across all major industries. The

respective discount rate is typically reflected by the company’s weighted average cost of

capital (WACC). The WACC is the average of the company’s cost of equity and cost of debt

weighted by the current equity to debt and debt to equity ratios. The NPV can be calculated

as the value of the discounted cash flows minus the value of the discounted investment outlays

over the entire lifetime of a project. Normally, in case of several investment alternatives,

the project with the highest NPV will be adopted. In case of only a single investment

opportunity, the project will be adopted if its NPV exceeds zero.

Additionally, as the cash flows from the business case are estimated, sophisticated models

will use probabilistic cash flows (i.e. based on Decision Tree Analysis) combined with

scenario and sensitivity analysis to find an investment decision. For standard IT-investments

with a moderate level of cash flow and cost uncertainties and a limited life-time of three to

five years, this approach seems to present sufficient insights to make the right investment

decisions. In regards to DTBM projects, however, the substantial degree of uncertainties

over cash flows induces the need of more sophisticated models. Related investments are

more long-term, have a higher strategic relevance, a large impact on the entire enterprise

and, ultimately, a high degree of risk and uncertainty limiting the applicability of traditional

techniques.

4.2. Real Options Analysis

There are several standard investment decision models in corporate finance theory in-

cluding NPV, IRR, ROI, PI techniques, see Copeland and Antikarov (2001), for example.

These methods are very commonly used for technology investments. However, they do not

suffice in coping with high levels of uncertainty, as they do not capture managerial flexibility,

neither before nor after an investment is made. In general, the higher the uncertainty, the

higher the value of managerial flexibility. Hence, traditional methods systematically under-

value projects in situations of high uncertainty (Trigeorgis and Mason, 1987). Especially in

the domain of DTBM, applying standard valuation methods may lead to wrong investment

decisions, i.e. investments that do not maximize shareholder value.

Managerial flexibility can be expressed as the existence of several different real options

related to leeway during or following investment decisions. The term real options was first

coined by Myers (1977). Since the 1970s, a large number of papers have addressed the

importance of managerial flexibility. Baldwin (1982) examines sequential investment strate-

gies and inter-dependencies with future investment opportunities. Myers (1984) considers

strategic investment opportunities as growth options, while Kester (1984) discusses qualita-

tively strategic and competitive aspects of growth opportunities. Dixit and Pindyck (1994),
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Trigeorgis and Mason (1987), Trigeorgis (1995), Trigeorgis (1996), and Sick (1989), and

many others, discuss a variety of corporate options and provide various expositions of the

real options approach to investment.

In IS research, several studies propose the use of real options theory for IS/IT invest-

ments, with early adopters being Benaroch and Kauffman (1999), Clemons (1991), and

Dos Santos (1991) and Venkatraman et al. (1993). Over the years and with the growing

strategic relevance of IT, literature has provided a variety of models and applications to

value managerial flexibility in IS/IT investments. For instance, Angelou and Economides

(2008) use ROA to prioritize a portfolio of IT projects with interdependencies to follow-up

projects of a water supply and sewage company. Balasubramanian et al. (2000) apply the

idea of real options with the implementation of a document imaging software in a Cana-

dian mortgage bank. Ekström and Björnsson (2005) value the growth option to extend the

purchase of an enterprise resource planning software by additional functionalities in the fu-

ture, and Li (2009) values the option to defer an investment in new technologies considering

organizational learning. On a more strategic level, Hallikainen et al. (2002) use ROA to

assess strategic investments in web content management systems and Angelou and Econo-

mides (2009) value a compound real option to strategically evaluate different IT-related

business paths. While a large number of papers address the phenomenon of managerial

flexibility in strategic IS/IT investments, most research is focusing on valuing investments

in single technologies to achieve cost efficiency or productivity improvements. However, to

our knowledge, few research exists that investigates or applies real options techniques to the

interdisciplinary nature of DTBM.

Traditionally, management will decide to invest in the transformation project in case the

NPV is positive and reject the project in case it is negative. However, real options theory

has shown us that this rule can lead to wrong investment decisions in situations of high

uncertainty. Investment decisions typically share three important characteristics in varying

degrees: irreversibility, uncertainty, and timing (Dixit and Pindyck, 1994). Investments in

DTBM are at least partially, sometimes entirely, irreversible. Timing of these investments

is especially important, as the digital economy is characterized by rapid technological de-

velopments, changing customer needs and frequent market redefinitions. Additionally, we

have shown that DTBM projects are highly strategic, risky, time-intensive and expensive.

All these characteristics indicate the value of learning from experimentation associated with

these projects is significant, and hence bears the potential to shift traditional NPV-based

investment decisions.

There are many similarities between real options and financial options, both granting

the right, but not the obligation, to take a pre-defined action at a pre-determined cost
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(the exercise price) within a certain period of time (the maturity of an option). Therefore,

valuation methods for financial options are often applied for valuing real options respectively.

Generally, as with financial options, there are five major factors influencing the value of a

real option:

� The NPV of the project’s cash flows (stock price S),

� the investment expenditure (exercise price X),

� the length of time over which a decision can be deferred (time to expiration T ),

� the time-value of money (based on the risk-free rate of return rf ),

� the riskiness of the project’s cash flows (its volatility σ) (Luehrman, 1998a).

The motivation of option pricing in capital budgeting arises from its potential to properly

quantify the option premium or flexibility component of the project value. Real Option

Analysis should not replace static NPV analysis; rather, it should expand the traditional

NPV approach to include the strategic component of managerial flexibility into capital

budgeting and decision-making. Using the real options approach in capital budgeting will

leave us with the following expanded NPV rule (Trigeorgis, 1996).

Expanded (strategic) NPV = Static (passive) NPV + Option Premium

This established, there are several options in the setting of capital budgeting for DTBM.

In practice, once an investment is made, managers have the flexibility to expand, contract,

abandon a project, or launch follow-on projects. Additionally, there is flexibility with regard

to the timing of an investment, i.e. the option to defer an investment. In this section, based

on the summary of Trigeorgis (1996), I will name and briefly explain the most important

real options in capital budgeting situations. Additionally, I will explain their role in and

highlight their importance for decisions about investing in DTBM projects.

Option to defer: When applying standard models such as the NPV for capital bud-

geting situations, investments are now-or-never decisions. Either the investment is realized

now (typically if NPV > 0 or exceeding the alternative investments’ NPVs) or it is not

realized at all. However, in practice, there is the option to wait, i.e. the option to defer an

investment. With an option to defer, management holds a claim on (or an option to buy)

certain resources. It can wait x years to observe how technologies, competition and the

market develop. Management will invest the outlay I1 (i.e. exercise its option to invest in

DTBM) only if the related technology and business model proves to be successful, otherwise

it will not commit to the project. Just before the expiration of the claim, the investment

opportunity’s value will pay max(V − I1, 0) while V is the value of the underlying project.

The option to defer is thus analogous to an American call option on the gross present value

of the completed project’s expected cash flow, with an exercise price equal to the required
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outlay I1. Since early investment implies sacrificing the value of the option to wait, this op-

tion value loss is like an additional investment opportunity cost, justifying investment only

if the value of cash benefits actually exceeds the required outlay by a substantial premium.

In DTBM, the option to wait can be valuable due to the related resolution of technology-

and business strategy-related uncertainty over time. This is based on three main factors.

First, managers can defer a DTBM project in order to collect more information about

the developments in related technologies. Emerging technologies are always risky to some

extent, as industry standards are usually non-existent (e.g. IoT) in early phases of new

technologies. Hence, with growing maturity of a technology, the related uncertainties will

decrease. Second, managers can yield more time to observe competitive actions. Early

adopters of technologies or innovative business models are always exposed to higher risks

than followers. To defer an investment might provide information about how competitors

try to exploit novel technologies or innovate business models with their companies. Third,

trends and developments in the market, such as customer needs, will become more evident

with time. The uncertainties in anticipating market developments will decrease respectively.

However, in today’s rapidly changing business world, digital transformation requires speedy

decisions. Hence, in DTBM, deferring an investment might come at some cost with a

reducing effect on the value of the option to wait.

Time-to-build option: The time-to-build option describes the staging of investment as

a series of outlays that create the option to abandon the project if new information received

is unfavorable. Each project stage (e.g. infrastructure building) can be viewed as an option

on the value of subsequent stages and valued as a compound option (an option on an option).

This option is especially valuable in high uncertainty, long-term projects, such as in R&D,

for new startup ventures and, similarly, in DTBM. Similar to the option to wait, the value

of this option lies in the effect of passing time that resolves uncertainty. The all-or-nothing

decision from traditional capital budgeting techniques is abrogated. A simple example in

the context of DTBM could be the building of the required technological infrastructure to

undergo a DTBM. After this project stage, management can observe the functioning of the

technology within their company and may receive additional decision-relevant information

about the business environment. If new information is deemed unfavorable, management can

default the project at any project stage instead of investing additional outlays to continue

an unprofitable project.

Option to alter: If market conditions turn out to be more favorable than expected,

the firm can expand the scale of the project or accelerate resource utilization. Conversely,

if conditions are less favorable than expected, it can reduce the scale of the project or, in

extreme cases, halt and relaunch the project. Due to the strategic nature of DTBM and
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its dependence on the business environment, market conditions are a critical success factor.

The option to adjust the intensity and scale of the project to the development of market

conditions can be extremely valuable. This option does not only refer to the investment and

implementation phase of the project but also to the degree of operations of the resulting

business. The option to alter can be divided into two cases: the option to expand and

the option to contract. If market conditions are better than expected, management can

accelerate the rate or expand the scale of operations by incurring a follow-on cost (IE).

It resembles a call option to acquire an additional part of the base-scale project, paying

IE as exercise price. The overall project value can then be described as the base-scale

case plus the call option to expand investment, i.e. V + max(V − IE, 0). The option to

expand is especially important in DTBM as it gives management the strategic opportunity

to capitalize on future growth opportunities or launch trail projects. Further discussions

about and applications of the option to expand will be presented in the next chapter.

If market conditions turn weaker than originally expected, management can operate

below capacity or reduce the scale of operations, thereby saving a part of the planned

investment outlays (Ic). This is the option to contract that can mitigate loss analogously to

a put option on the reduced part of the base-scale project. The exercise price will then be

equal to the potential cost savings Ic, giving max(Ic−V, 0). The extreme case of the option

to contract is the option to shut down and restart operations. If market conditions lead to a

loss resulting from ongoing operations, it might be sensible to halt operations and restart at

a later, more favorable point in time. In this case, operation in each year may be seen as a

call option to acquire that year’s cash revenues (C) by paying the variable cost of operating

(IV ) as exercise price. We get max(C − IV , 0). These options can have substantial value

in DTBM, because it is related to the introduction of new businesses in highly uncertain

immature markets.

Option to abandon: If the project develops in an extremely negative way, management

holds the option to abandon a project and sell its capital equipment and other assets to

the secondhand market. In practice, it is not necessary to continue unsuccessful projects

with negative profit margins. Although most investments are at least partially irreversible,

there might be the opportunity to free some cash based on divestments. This option can be

valued as an American put option on the project’s current value (V ) with an exercise price

the salvage or best-alternative-use value (A). Management can receive V +max(A−V, 0) or

max(V,A). This option is especially valuable in investments with high capital expenditures

in non-special purpose assets. For DTBM, the value of this option is rather limited, as

customized technologies as well as partially built business models usually cannot be divested

on secondhand markets.
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Option to switch: The option to switch describes the flexibility to change inputs

or outputs of a project based on market conditions. For instance, an oil refinery can be

designed to use alternative forms of energy, such as fuel oil, gas or electricity. Depending

on the prices of input factors, these refineries can switch their input factors. This can lead

to investments in more expensive technologies that can provide this built-in flexibility. In

both cases the option can be seen as an American put or call option with the value of the

cost savings or profit gains from switching inputs or outputs. The resulting switching costs

are the exercise price Ic. The project value can be viewed as V + max(VC − IC , 0), while VC

is the adjusted value of the project’s cash flows based on the new input or output factors.

While there might be substitutable input factors in DTBM, the more relevant option to

switch may be related to the project’s outputs. If a company develops a business model

that might lead to better results applied to different markets than initially planned, there

is the opportunity to switch to design products that sell on more profitable markets. For

instance, once the infrastructure for 3D printing is built into a company, it has the potential

to be applied in other ways (and for other products) than initially planned. This is especially

relevant for markets with volatile prices and/or demand. This option is closely related to

the category of growth options, describing long-term strategic opportunities.

Growth option: Corporate growth options set the path for future opportunities and

are of considerable strategic importance. They can be seen as inter-project compound

options (options on options for future projects) that can open up future business opportu-

nity windows including new products, processes, access to markets, strengthening of core

capabilities, etc. Growth options lie at the core of strategic investment decisions and of

what is intended to be achieved by DTBM. They are extremely valuable in early projects

that derive their value not so much from their expected directly measurable cash flows as

from the future growth opportunities they may unlock. These options do frequently justify

for investment in negative NPV projects, as they generate the infrastructures, experience,

potential by-products and ultimately competitive advantage. Without these investments,

future business in new markets might not even be feasible. An example suitable for the

DTBM setting is the introduction of big data and data analytics software for predictive

maintenance in the firm’s production sites. These investments are typically cost intensive

and do not generate directly measurable cash flows. However, once the infrastructures and

know-how on data mining and knowledge discovery is built-up and implemented within

the company, the concepts can be applied to other business functions, such as customer

relationship management, strategic business forecasts, or built into new high-tech products.

Multiple interacting options: Financial strategy can be regarded as a portfolio of

real options (Luehrman, 1998b). In real-life projects, several different options are inherent in

investment decisions. Upward-potential enhancing as well as downward-protection options
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are present in combination. Their combined value may differ from the sum of their separate

values; i.e., they interact. For example, the value of the option to switch is zero if the option

to abandon has been exercised. In DTBM, most important factors of managerial flexibility

are the option to wait, the time-to-build option, growth options and the option to expand.

These options can considerably influence a project’s value and have the potential to shift

investment decisions. In extreme cases, option values can justify for negative NPVs, making

the projects that are traditionally evaluated as being unprofitable desirable. The high

uncertainties related to DTBM, volatility in demand and the highly strategic nature, make

the real options approach inevitable to value DTBM projects. While general statements

about the relevance of certain real options in DTBM are possible, their importance highly

depends on the particular project setting and has to be assessed for each case individually.

A successful digital transformation strategy is rather driven by strategy than by tech-

nology (Kane et al., 2015; Chesbrough, 2007). Real options reasoning can help to build

BMI strategies and identify and manage digital transformation initiatives (McGrath, 2010;

Gassmann et al., 2016). Many researchers argue that an iterative approach of experimenta-

tion is vital to succeed in digital transformation (Rogers, 2016b). Practitioners frequently

apply trial projects as a useful tool to learn about a new product or business model and

resolve parts of the related uncertainty. It is a common approach to test risky projects

on the real market, before deciding on a larger-scale project. Especially in the context of

BMI and DTBM, where markets often do not exist and customer segments are still to be

defined, experimentation and learning is essential. In the following, after briefly introducing

the major real options valuation techniques, I translate these findings into a quantitative

model by modeling experimentation as a learning option and a trail project as an expansion

option on a digital transformation project’s stochastic NPV.

4.3. An Overview of Real Options Valuation Methods

Several valuation methods and analytical techniques for real options have been devel-

oped and derived from financial options theory since the discussion about real options has

emerged. Research on option pricing had its breakthrough in 1973, when Black, Scholes and

Merton published their paper on valuing dividend-protected European-styled options (Black

and Scholes, 1973). The authors used a so called “replicating portfolio” – a portfolio that

is composed of the underlying asset and risk-free assets that have the same payoff as the

option being valued – to derive their continuous-time option pricing formulas. Based on the

same logic, Cox et al. (1979) have revolutionized option pricing by introducing a simplified

Binomial Lattice Model to value options. Boyle (1977), has first suggested to use numerical

Monte Carlo simulation methods for pricing options. With increasing computational power,

these simulation methods have been increasingly applied to value financial options. In this
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context, Longstaff and Schwartz (2001) have developed the Least Squares Monte Carlo

method (LSMC), which is still widely applied in Real Option Valuation. Additionally, so

called Quasi-Monte Carlo simulation methods, which are an efficient and time-saving alter-

native to standard Monte Carlo methods, are increasingly being applied in option pricing

(Imai and Tan, 2014). Recent research has also started to combine Monte Carlo simulation

methods and Lattice models. Moreover, as first noted by Trigeorgis (1993), complex Real

Option problems typically embed many options that interact and are strategically interde-

pendent. This is especially important in large-scaled, real-world business projects, such as

DTBM, that typically incorporate a portfolio of options which are neither strategically, nor

statistically independent from each other.

In the following, I present the basics of the most prominent real options valuation tech-

niques. In general, there are three different groups of models, that can be applied to find

the value of the managerial flexibility based on real options. Discrete-time models view

time as a discrete number of periods, while managers can make a decision about exercising

an option at the beginning of each discrete period. Continuous-time models view time as

a continuous flow of points in time. Most of these models are based on the ideas of Black

and Scholes (1973) adjusted to the respective capital budgeting problem. These models are

based on analytical methods that are aiming to find a closed-form solution for the optimal

investment decision. Thirdly, numerical methods can be applied to find option premiums.

If there is no analytical closed-form solution, these models can provide approximations to

the stochastic process of the underlying patterns.

4.3.1. Discrete-time Models

Discrete-time models to value real options are based on the project value across a discrete

number of finite periods (e.g. three six-month periods). Binomial (or trinomial)4 Lattice

models are based on the risk-neutral asset pricing by Black and Scholes (1973), and combines

Decision Tree Analysis (DTA) and Contingent Claims Analysis (CCA) (Trigeorgis, 1996).

These models have their origin in the work of Cox et al. (1979). A binomial lattice tree is

constructed based on the movements of the project value (i.e. the NPV of its cash flows)

Vt across time until the final period T is reached. The movements of the time-dependent

project value Vt typically follow a stochastic process that is based on probabilities and its

volatility σ. The volatility of the project’s value development is typically estimated based

on numerical methods.

Discrete-time models are a useful and necessary tool to generate a basic understanding

of how the value of financial as well as real options is constituted. In contrast to continuous-

4Three-dimensional lattice models have been introduced by Boyle (1988).
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time and simulation models, they are more intuitive and easy to use. Besides the option

to defer, binomial lattice models can be used to value a variety of different options, such

as the option to expand, the option to contract, the option to temporarily shut down, or

the option to switch. Moreover, this approach can be particularly useful to price American-

style options (i.e. options that allow early exercise), which is especially relevant to value

managerial flexibility in real-world business projects. However, discrete-time models remain

to be a simplified approach that is restricted to analyzing a certain limited number of

points in time, lacking one closed-form solution. Furthermore, lattice models cannot handle

multiple starting prices at a time and assume that uncertainty at any time can be represented

by two alternative states.

With increasing time periods and starting values, the required computational power to

compute the model rises rapidly and thus applicability decreases. Despite their limitations,

it is sensible to apply discrete-time models for real (non-financial) assets, as they are not

traded and their value can thus be observed only at a limited number of points in time. Also,

there are a number of extended, more sophisticated lattice models, such as the Log-Normal

Binomial Lattice model, which tackle the drawbacks of binomial lattice models by allow-

ing for several stochastic processes including multiple state variables, multiple interacting

options and intermediate payoffs (Trigeorgis, 1991).

4.3.2. Continuous-time Models

Continuous-time models view time as an infinite sequence of continuous moments. They

are analytical models aiming to find a closed-form optimal solution to capital budgeting

problems. Most of the continuous-time models presented by literature are based on the

ideas of the Black-Scholes model. The basic process of determining the option value is

similar to the approach in discrete-time models. In analytical continuous-time models for

option pricing, the movements of the underlying, (e.g. the gross project value (Vt, t ≥ 0)) is

determined by a continuous-time stochastic process. The process is described by Stochastic

Differential Equations (SDE). SDEs are differential equations, in which at least one term

is a stochastic process. Typically, the stochastic component in an SDE models the random

behaviour of the underlying, a geometric Brownian motion (Wiener process). Additionally,

more advanced literature has started to incorporate stochastic jump processes into their

SDEs. The solution to an SDE is a continuous-time Markov process with almost surely

continuous sample paths. Several papers have used SDEs to value different types of real

options. McDonald and Siegel (1985) use the following SDE to derive a diffusion process to

value the option to defer:

dVt = µVtdt+ σVtdBt,
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while t ≥ 0, µ ∈ R+ is the instantaneous expected return on the project and σ ∈ R+ its

instantaneous standard deviation called volatility and Bt is a standard Brownian motion.

Paddock et al. (1988) use a similar, however slightly adjusted, process given via the SDE

dVt = (µ− δ)Vtdt+ σVtdBt,

with δ standing for the payout rate for the valuation of off-shore petroleum leases. In

general, the construction of the SDE (and the resulting solution) will depend on the type of

application (or project) that is to be analyzed. Both papers derive an optimal investment

timing rule from their diffusion process. The optimal investment timing is determined

as the time until the investment should be deferred. McDonald and Siegel (1985) and

Myers and Majd (2001) use a similar SDE approach to value the option to shut-down

or abandon a project. Margrabe (1978), analyzes the option to switch between two non-

dividend paying risky assets and Geske (1979) first calculates the value of an option on

an option (compound option) using similar techniques. Based on this fundamental work,

several articles and books have been published that present continuous-time models to value

IS/IT-related investments. For instance, Grenadier and Weiss (1997) investigate the option

to invest in a current technological innovation at time t = 0 or a future technological

innovation at a random time T > t. The technological progress is modeled using the SDE

dXt = µXtdt+ σXtdz,

where µ is the instantaneous conditional expected percentage change in X per unit time, σ

is the instantaneous conditional standard deviation per unit time and dz is the increment of

a standard Wiener process. More recent research has also started to model two stochastic

input factors allowing for individual consideration of, for instance, cost and revenue uncer-

tainties of a project. A famous example for models that use multiple stochastic input factors

are the Schwartz & Moon model (Schwartz, 2000; Schwartz and Moon, 2000). It is heavily

applied in R&D as well as Venture Capital investments, as in both cases costs as well as

future cash flows are subject to uncertainty.

The presented models are especially important for finding optimal investment decision

rules based on stochastic movements of the underlying (and its influencing factors). Much

work in that area was characterized by these analytical solutions that offer a closed-form

solution to simplified problems that seldom reflect reality (Schulmerich, 2010). All of these

models are simplifications of real-life scenarios that only work under certain circumstances

(e.g. only if there are no intermediate project payouts). Moreover, there are two major

downsides of these analytical continuous-time models. First, in order to find a viable so-

lution, the capital budgeting problem has to be traceable, i.e. the SDE describing the
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behaviour of the underlying has to be known. This is almost never the case in practice,

which indicates highly limited applicability to real-world business projects. Moreover, in

practice, managers are typically confronted with a collection of real options, i.e. a port-

folio of real options. Finding a solution when there are interactions between the several

options in the portfolio is extremely difficult (mostly impossible) by using the analytical

continuous-time models (Schulmerich, 2010). Hence, the presented analytic techniques may

not be viable for capital budgeting problems, if competitive entry, compoundness within or

between projects, or other strategic interactions are important (Trigeorgis, 1996). Finally,

as these models are based on the Black-Scholes model, which has originally been developed

to value financial options on traded assets, some of the underlying assumptions should be

critically considered when applying analytical continuous-time models to real-life capital

budgeting techniques. Hence, this approach is especially valuable if the value of the under-

lying is based on traded assets with mature futures markets, such as, for instance in oil, gas,

gold, energy etc. projects.

4.3.3. Numerical Models

In a lot of real-life business scenarios, such as those involving multiple interacting real op-

tions, analytical closed-form solutions may not exist, and one may not be able to write down

a set of partial differential equations describing the underlying stochastic process (Trigeor-

gis, 1996). Numerical Models can be applied to overcome these problems by approximation.

They can be divided in three groups: (i) finite difference and lattice models, (ii) numerical

simulation models and (iii) formulas, approximations and other specialized methods. The

first includes the explicit and implicit finite difference methods that aim at approximating

the partial differential equation as well as lattice models as briefly explained in Section 4.3.1.

The second is based on Monte Carlo and similar simulation methods. Instead of approx-

imating the differential equation, these models estimate the underlying stochastic process

(Schulmerich, 2010). The third includes transform and asymptotic expansion techniques

and other specialized methods. Two of the most prominent numerical methods are briefly

described below.

Finite-difference models: Finite-difference models try to approximate the differ-

ential equation of the underlying by a set of partial differential equations. The partial

differential equations are solved recursively to find the approximate differential equation of

the underlying. Finite-difference models discretize the stochastic movements of the under-

lying resulting in a movement grid. They can also handle multiple state variables resulting

in a multidimensional grid. There are three types of finite-difference models: implicit, ex-

plicit and hybrid models; which differ in the way the grid is solved (Schulmerich, 2010).

Finite-difference models require less intuition than lattice models, however, they are me-
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chanically more challenging. All finite-difference models are able to value American as well

as European-type options. They can be used in complex option pricing problems, where a

closed-form solution does not exist. However, a prerequisite to this approach is the ability

to determine the partial differential equations for the underlying capital budgeting prob-

lem. For two pertinent research examples that use finite-difference models for (real) option

pricing, see Brennan and Schwartz (1978) and Majd and Pindyck (1987).

Numerical simulation models: Numerical simulation models use Monte Carlo sim-

ulation to approximate the stochastic process of the underlying. In the context of option

pricing, they were first introduced by Boyle (1977). Originally, these models were only ap-

plicable for European-style options. However, more recent research has improved standard

Monte Carlo methods making them suitable for valuing American-style options respectively

(Barraquand and Martineau, 1995; Broadie and Glasserman, 1997; Broadie et al., 1997).

The Monte Carlo approach approximates the movements of the underlying based on the

simulation of one or multiple input factors. The starting point of a standard Monte Carlo

simulation is the stochastic differential equation that describes the underlying for t ≥ 0. For

instance, the underlying St(t) ≥ 0 can be described via

dSt = αStdt+ σStdBt,

where α is the instantaneous return of the underlying, σ its instantaneous standard deviation

and dBt is a normally distributed random variable with variance dt. A discretization of the

stochastic differential equation allows the simulation of a path of the underlying with a

computer simulation program. In order to get a significant result, these path values should

be simulated a large number (e.g. 10,000) of times. The basic idea is to divide the time

interval [0, T ], T > 0, in N ∈ N subintervals with equal length ∆s := T
N

. ∆s is called step

size of the simulation. The goal is to simulate a path value Si := S(τi) for each of the

time points τi := i∆s, i = 0, 1, ..., N . The different path values Si will then be iteratively

calculated based on the given start value S0. For European call options with strike price X,

ST and X will be compared at the time of maturity. Let Pj := max(ST −X, 0) be the option

price of the jth simulated path at maturity T . The mean of all path option prices discounted

by the risk-free rate will then be the resulting option value at t = 0 (Schulmerich, 2010).

Numerical simulation methods are especially valuable, in complex but realistic, real-life

projects including several options, multiple input factors, multiple start values, or intermedi-

ate (dividend-style) payout, where no known analytical solution exists. The simulations can

be drawn from a lognormal distribution, a Poisson distribution, or a combination of both.

Thus, they can be directly used for different types of stochastic processes including pure

diffusion, pure jump, or jump-diffusion valuation models. Simulation methods are a sim-

40



Table 4.1: Real Options Valuation Techniques – An Overview; own illustration based on
the summarizing reviews of Schulmerich (2010), Schwartz (2004) and Trigeorgis (1996)

Multiple
starting
points

Multiple
stochastic
processes

Multiple
state

variables

Multiple
(interacting)

options

American-
style

options

Dividend
payments

Continuous
closed-form

solution
Binomial lattice no yes no no yes yes no
Log-transformed
binomial lattice

no yes yes yes yes yes no

Analytical methods yes no yes no no no yes
Finit-difference yes yes yes yes yes yes no
Monte Carlo
simulation

yes yes yes yes no no no

Extended simulation
techniques

yes yes yes yes yes yes no

ple forward induction procedure that is more intuitive than backward induction techniques

such as finite-difference models or binomial lattice models. Due to their forward induction

approach, standard Monte Carlo techniques are especially suitable to value European-style

options. However, as mentioned, more recent literature has developed extended models

for valuing American-style options (see, for example, Cortazar (2001) and Longstaff and

Schwartz (2001)).

4.3.4. Summary

Research on Real Option valuation has existed for more than 30 years. In these years,

loads of different models and model extensions standing for individual advantages and dis-

advantages have been developed. In general, the decision about the applied model has to

depend on the type of option as well as on the individual underlying project characteristics.

Most real-life capital budgeting scenarios are complex and lack an analytical solution. In

these situations, numerical approximations such as lattice models, finite-difference methods

or simulation techniques have to be applied. Additionally, when applying real options valu-

ation techniques, the underlying assumptions should always be critically questioned against

the project circumstances. Table 4.1 provides a basic summary of the core characteristics of

the different standard methods. Most applications to IT investments use the Black-Scholes

model to find an analytical solution for capital budgeting problems by assuming the cost of

the underlying project is known. However, these models are subject to strong assumptions

(for instance, the underlying is traded, replicating portfolios can be built), which, in fact,

renders them non-applicable for such investment decisions.

In the following, I translate the discussions about real options and DTBM into a quanti-

tative framework that develops a continuous-time model for valuing investments in DTBM

by including several sources of uncertainty and two types of real options. To solve the

model, I use discretization and simulate the underlying’s sample paths using Monte Carlo

and LSMC techniques.
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Chapter 5

Valuing Investments in Digital

Transformation of Business Models

This chapter summarizes our findings around DTBM and Real Options analysis and

tries to bring them together to form a reference model that can be used to value digital

transformation projects under uncertainty. We show a generic scenario and apply the model

to a fictional business case to demonstrate its practical functioning.

5.1. Real Options in Digital Transformation of Business Models

As mentioned in the previous chapter, there are several real options that can play an

important role in DTBM capital budgeting decisions. The relevance and value of these

options highly depends on the project’s characteristics. In every case, the strategic circum-

stances, inherent uncertainties and risks, markets and competition have to be analyzed in

order to evaluate the significance of different real options. The option to wait can generally

be incorporated with all investment decisions, however, it might come at some cost with

DTBM, as delayed investments may eliminate first mover advantages associated with the

BMI. Thus, when modeling the option to wait in DTBM, the cost of waiting has to be

modeled as a function against time, which leads to a reduced option value respectively (an

exemplary model that enables modeling of cost uncertainties is provided by Schwartz and

Moon (2000)). Similarly, there is the generic option to abandon a project, if the situation

turns out to exhibit unfavorable market conditions or project dynamics. In DTBM, the

option to abandon an unsuccessful project certainly has some value, however, it does not

play a special role in DTBM as this option is strategically not interesting. As the related

investments are typically irreversible, the option to abandon should be exercised very care-

fully as this would lead to the realization of sunk costs. The option to switch might play a
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role in specific DTBM projects, however, it is only relevant if substitutes for the project’s

input or output factors exist and if the transaction costs of switching are low.

In the DTBM setting, there are several strategic options that are of more interest and

typically more valuable than the generic real options mentioned above. The time-to-build

option can be especially interesting in DTBM projects that consist of several subsequent

and interdependent project stages. It comprises compound options that can be seen as a

multi-stage option to expand (or abandon), exercisable at the end of predefined project

stages. As DTBM is typically realized by large-scaled and complex project structures with

several phases and work streams, practitioners should be aware of the inherent value of this

option. Similarly, the strategic growth option can be of great value in DTBM, especially

if the transformation enables new market entry or increased market penetration, which

typically comes with a high degree of strategic, long-term growth potential. Due to the

compound nature of time-to-build as well as strategic growth options, their valuation is

mathematically rather complex. In most cases, an analytical solution cannot be found and

numerical methods have to be applied to approximate the value of the compound option.

Another option that is of special interest in the DTBM context is the multifaceted option

to alter. This option includes the option to expand, reduce or shut-down (and restart). It

is of high strategic value in projects with a high degree of payoff uncertainty such as R&D,

new venture investments and innovative technology adoption. Similarly, as DTBM has a

lot of shared characteristics with the named types of projects, the option to expand is of

special importance. For instance, the option to expand can be set up as the option to

launch a large-scaled follow-on project after the completion of a smaller-scaled pilot project.

This will facilitate the full investment decision to be based on a broader and more reliable

information base, an approach that is common practice in projects with high uncertainties.

In contrast to the valuation of time-to-build options, the valuation of the option to expand

is somewhat simpler, as it expresses itself as a single call option on the project value of the

larger follow-on project.

Digital business transformation projects are risky, time-intensive and expensive. In prac-

tice, before management decides to undergo such a project, it will require reliable informa-

tion indicating a high success potential. The standard approach to receiving this information

is testing. Hence, before a new business model is implemented, the reaction of the market

and the underlying technologies will be duly tested. This approach can reduce business-

strategy-related as well as technology-related risks and uncertainties. Typically, this is

achieved by small test projects or prototypes that enable management to gather more in-

formation about the potential of the transformation in one or more real-world business

scenarios.
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In the following, we will first develop a simple Real Option pricing model that is able

to value the option to expand in the DTBM setting. Theoretically, there are many ways to

incorporate the option to expand in a DTBM capital budgeting problem. In practice, it is a

common approach to launch a pilot project to test the potential of the new business model

before management will decide on the full-scaled digital transformation project. Thus, the

presented model views the option to expand as the opportunity to execute a large-scaled

digital business transformation project after an initial pilot project has been completed.

5.2. Model Development

The model consists of two parts. The first part of the model uses Monte Carlo DCF

methods to find the NPV distribution of a potential DTBM under four sources of uncertainty.

The second part of the model includes the value of managerial flexibility, namely a learning

option and an expansion option. Based on a numerical demonstration, we will show that

these options have a significant value and the potential to shift solely NPV-based investment

strategies.

We first present a generic approach to finding the NPV for risky DTBM projects under

four sources of uncertainty. In contrast to building a static and discrete business case over

the expected economic lifetime of a DTBM project, we use a variety of stochastic processes

to forecast future values and explicitly include uncertainty to estimate the resulting NPV

distribution. This is a more elegant way to determine the NPV, as we only need to input

initial values at t0 to receive all state values across time until the end of the project’s

economic lifetime T . This DCF model is partly based on the work of Schwartz and Moon

(2000) and Schwartz and Moon (2001), who have proposed a sophisticated model to value

high-growth internet companies such as Ebay and Amazon after the burst of the dot-com

bubble in 2000. Based on their model, we apply several simplifications as well as extensions

to adapt the model to the DTBM setting. The presented model implements the value-add of

the new (transformed) business model by modelling the isolated cash-flows generated by the

transformation project. The model is first developed in continuous time. In the application

section of this chapter, solutions are approximated by discretization and simulation of the

model.

Consider a company that has a new business idea to extend its existing business model

based on some emerging technology or technology bundle. We model project revenues fol-

lowing a time-inhomogeneous jump-diffusion process including three sources of uncertainty.

The first uncertainty is about the changes in revenues, the second is uncertainty about the

expected rate of growth in revenues and the third is related to technological progress in-

duced by the underlying technologies that are critical to succeed in the transformation of
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the business model. Accordingly, the instantaneous rate of revenues at any time t is given

by Rt following the stochastic differential equation:

dRt

Rt−

= µtdt+ σdW1 + dJt, (5.1)

where Rt− is the left-hand limit of Rt, µt is the expected rate of growth in revenues assumed

to follow a mean-reversion process with a long-term average µ̄, σ is the volatility in the rate

of revenue growth, dW1 is the Wiener increment, and dJt a time-inhomogeneous compound

Poisson jump process.

The growth rate of project revenues evolves stochastically over time following the mean-

reverting stochastic differential equation:

dµt = κ(µ̄− µt)dt+ ηdW2, (5.2)

where κ is the mean-reversion coefficient describing the speed of convergence to the long-

term average of revenue growth; η is the volatility of expected rates of growth in revenues

and dW2 is the Wiener increment, which we assume to be uncorrelated with dW1. ln(2)
κ

can

be interpreted as the time at which any deviation µt is expected to be halved.

Jumps reflect the revenue impact of technological progress based on innovation arrivals

or breakthroughs in complementary as well as substituting technologies. Jumps are given

by

Jt =

N(t)∑
j=1

Yj, N(t) ∼ Poisson[Λ(t)], (5.3)

where N(t) follows a Poisson process with an accumulated intensity Λ(t), that is given by

Λ(t) =

∫ t

0

λ(u)du, (5.4)

and Yj represents Gaussian random jump size, i.e.,

Yj ∼ N(ψ, δ2).

The respective logistic6 jump frequency function is given by

λ(t) =
K

1 + e−αt−β
, (5.5)

6Logistic S-curve models are frequently applied and have shown broad empirical evidence in technology
forecasting, see for example Kucharavy and De Guio (2011) and Trappey et al. (2011). Technology forecast-
ing research suggests estimating the required parameters using curve-fitting techniques to historical data
that is able to indicate technological progress of the underlying technologies, for example by using patent
data or bibliometrics (Daim et al., 2006; Daim and Suntharasaj, 2009).
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Figure 5.1: Types of technological innovation and their impact on model revenues

with α > 0, β > 0, K > 0, reflecting an increasing frequency of innovations in the relevant

technology markets.

We use this jump-diffusion process to extend the revenue process as introduced by the

Schwartz & Moon model by explicitly including technology uncertainty, as the success of

DTBM projects typically strongly depends on the underlying technologies’ performance.

Parameters ψ and δ can then be used to determine the average direction and magnitude

of impact of technological innovations. Small-size jumps can be interpreted as incremen-

tal innovations, while larger jumps can be viewed as radical innovations. The well known

Innovator’s Dilemma in Christensen (2013) can also be reproduced by the suggested jump

process. While complementary innovations result in an improved performance of the under-

lying technologies, substituting innovations reflect an improved performance of competing

technologies, which might be utilized by competitors or have the potential to disrupt the

technologies driving the regarded DTBM project. Due to the logistic S-curve that deter-

mines the expected movement of jump frequencies across time, expected innovation behavior

can be modeled by scaling the parameters α, β,K. Note that K describes the asymptotic

maximum of the number of relevant expected annual innovations, α is the respective rate

of change of growth while β is the inflection point or mid-point of the curve, describing the

time at which half of the growth is reached. The possible effects of technology uncertainty

are summarized in Figure 5.1.

Following Schwartz & Moon’s extension of their original model (Schwartz and Moon,

2001), total operating cost at any time t, denoted by Ct, have two components; a variable

part γtRt, which is assumed to evolve stochastically but proportionally to revenues Rt, and
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a fixed part F resulting in the total cost function, that is,

Ct = γtRt + F. (5.6)

The variable cost parameter γt at time t can be interpreted as a stochastic variable cost

margin that adds another source of uncertainty. Its dynamics are given by the stochastic

differential equation

dγt = νγtdt+ ϕγtdW3, (5.7)

where ν is the expected growth rate of variable costs, ϕ its volatility and dW3 the Wiener

increment uncorrelated with dW1 and dW2.

The marginal free cash flows of the project at time t are given by revenues minus cost

deducted by the investing company’s corporate tax rate τ as follows:

FCFt = (Rt − Ct)(1− τ). (5.8)

We can then calculate the NPV by accumulating the free cash flows from time t0 = 0

to the expected economic lifetime of the project T discounted by the investing company’s

risk-adjusted discount rate r resulting in

NPV0 =

∫ T

0

e−rtFCFtdt. (5.9)

Several assumptions have to be installed in order to arrive at the suggested model dynamics.

First, changes in working capital related to the project are assumed to be constant or within

standard errors. Second, capital expenditures and depreciation are assumed to compensate

for each other in the long run and are hence neglected by the model. Third, loss carry-

forward is assumed to be non-existent, as the investing company is assumed to be sufficiently

profitable to compensate for losses generated by the transformation project. Hence, the tax

effects of a negative cash flow immediately show effect and do not have to be deducted

from potential profits in the following years. Fourth, for the same reason, bankruptcy is

not considered. Therefore, we assume that even in case of negative cash flows, the company

can still hold on to the project and wait for more profitable time periods to come. Finally,

we further assume constant interest rates and volatilities. Note, however, that the overall

volatility of revenues and the resulting NPV is time-changed as the jump frequency in

revenues evolves along the logistic frequency function λt as described in equation (5.5).

We have identified a generic decision path management typically faces in the context

of DTBM illustrated in figure 5.2. Let us now consider an established company with an

existing business model. Assume that management comes up with some idea to transform
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Figure 5.2: A generic DTBM investment decision process including two types of real options

its current business model based on emerging technologies or mature technologies being

deployed in a new way. Management could decide to invest in a big bang transformation

without testing, which represents the traditional now-or-never decision based on the NPV

rule. At the same time, however, management also holds the option to launch a trial project

to test its idea. Once the trial project is launched, management can observe the performance

of the pilot project and update its expectations regarding the potential profitability of

the transformation project. As no comparable business model exists in the market, we

assume that management cannot learn about the project’s potential if it does not invest

in the trial project. Thus, the option to invest a fixed amount IP to install the pilot

project represents a learning option. If this option is exercised, management can update its

expectations of the NPV dynamics of the transformation project and decide whether or not

to expand. Accordingly, by investing into the trial project, management obtains the option

to expand. In case new information turns in favor of the transformation project’s expected

NPV, management will exercise this option. In case the learning from the pilot project

suggests negative profits from the transformation, management will walk away from the

project realizing a loss associated with the cost of testing IP . Hence, this decision model

includes two options, while the expansion option is obtained by exercising the learning

option with exercise price IP .

The options’ underlying is the transformation project’s NPV. As no comparable secu-

rities are traded on the market, we cannot build a replicating portfolio to find the option

price. To solve this problem, we apply the Market Asset Disclaimer approach as proposed

in Copeland and Antikarov (2001). The authors make the widely accepted assumption that

in absence of a twin security, the present value of the cash flows of the project without

flexibility is the best unbiased estimate of the market value of the project were it a traded
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asset.

We assume that the dynamics of accumulated revenues, costs and thus cash flows follow

the same uncertainty pattern as the marginal values described in equations (5.1)-(5.9). The

only difference is that we replace the initial state variables with the respective sum of present

values resulting from the DCF model. Thus, in order to find the option values, we first have

to recalculate the initial state variables R0, γ0 and F by computing the present value of

marginal value sums so that RPV
0 =

∫ T
0
Rte

−rtdt, CPV
0 =

∫ T
0
Cte

−rtdt, F̄ =
∫ T

0
Fe−rt and

γ̄ = C0−F̄
R0

.

The gross NPV at any time t is then given by

NPVt = (RPV
t − CPV

t )(1− τ), (5.10)

resulting in the immediate payoff at time t

Πt = NPVt − IE

and the claim value of the expansion option at t0

V E
t = max

t∗∈T (t,TE)

{
0,EP

t [e−r(t
∗−t)Πt∗ ]

}
,

where IE is the immediate cost of expansion, T (t, TE) the set of stopping times in [t, TE]

with regards to V E
t and EP

t [·] is the expectation with respect to the physical measure P ,

conditional on the information available at t. The value of the compound option to learn

can then be determined as a function of the price of the option to expand. We model it as

a now or never decision, which implies that there is no timing flexibility relating to the trial

project. The value of the learning option depends on the value of the expansion option and

the costs associated with the trial project. Hence, the value of the option to learn at t0 can

then be calculated by

V L = max
{

0,EP
t [V E

0 − IP ]
}
,

which is simply the expected maximum between zero and the value of the option to expand

minus the losses that are associated with launching and operating the trial project. We

solve this model in a dynamic programming fashion. First, we need to find the value of

the expansion option and then calculate the value of the learning option. At time t0, if

V E > IP , management will launch the pilot project, learn about the success potential and

subsequently decide to expand if new information is in favor of the transformation project.
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5.3. Discretization

We assume an underlying complete probability space (Ω,F , P ) and finite time horizon

[0, T ], where the state space Ω is the set of all possible realizations of the stochastic economy

between time 0 and T and has typical elements ω representing a sample path. F is the

sigma field of distinguishable events at time T , and P is a probability measure defined on

the elements of F . We define F = Ft; t ∈ [0, T ] to be the augmented filtration generated by

the relevant price processes for the project, and assume that FT = F .

We use Monte Carlo simulation to approximate the continuous-time model by choosing

an integer m so that the time span [0, T ] is divided into m intervals whose length is ∆t = T
m

.

We choose T and m in a way to discretize the continuous-time model to generate periodic

(e.g. quarterly, annual) state variables and compute the present value of the sum of all

periods {[tn, tn + ∆t] ∈ [1, T ]}. The state variables are simulated by generating N sample

paths for values of Rt(ω), Ct(ω),FCFt(ω), ω ∈ [1, 2, · · · , N ] restricted to the discrete set of

dates {t1 = ∆t, t2 = 2∆t, . . . , T = m∆t}.
Discretization of equations (5.1), (5.2), (5.5), (5.7) are respectively given by

R(t+ ∆t) = R(t)e

[
µ(t)σ

2

2

]
∆t+σ

√
∆tε1+

∑∆Nt
j=1 Yj ,

Nt+∆t −Nt ∼ P

(∫ t+∆t

t

λ(u)du

)
,

Yj =

0, Nt+∆t −Nt = 0,

q, Nt+∆t −Nt 6= 0,

q ∼ N(ψ, δ2),

µ(t+ ∆t) = γ(t)e

{[
θ−υ

2

2

]
∆t+υ

√
∆tε3

}
.

We can simulate N sample paths directly from these expressions and calculate periodic costs

by computing

Ct(ω) = γt(ω)Rt(ω) + F

and periodic cash flows by computing

FCFt = [Rt(ω)− Ct(ω)] (1− τ).

The NPV expectation can then be calculated by averaging the discounted sum of cash flows

over all sample paths

E[RPV] =
1

N

N∑
ω=1

m∑
t=1

e−rtRt(ω),
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the present value of total costs

E[CPV] =
1

N

N∑
ω=1

m∑
t=1

e−rtCt(ω),

the average share of variable costs over the lifetime of the project

E[γ̄] =
E[CPV]− F̄
E[RPV]

,

and the present value of accumulated fixed cost

F̄ =
T∑

t=∆t

e−rtF.

Next, we set R0 = E[RPV], γ0 = E[γ̄] and F = F̄ as our new initial state variables and

re-run the simulation as in (5.1) – (5.9) to receive the total NPV at any time t until time

of maturity of the expansion option TE. In this setting, the value process of a contingent

claim on NPVt, with maturity TE and payoff Π, can be computed using the LSMC method

as introduced in Longstaff and Schwartz (2001). We choose this method as it is sufficiently

flexible regarding the underlying stochastic processes and easy to integrate with the Monte

Carlo techniques presented under section 3.1. At each point in time t and all sample paths

ω, we compute the continuation value φ by regression and compare it with the discounted

immediate payoff. Like in any American option valuation procedure, the optimal exercise

decision at any point in time is obtained as the maximum between the immediate exercise

value and the expected continuation value. Given that the expected continuation value

depends on future outcomes, the procedure must work its way backwards, starting from

the end of the option’s time horizon TE. For details on the implementation of the LSMC

method refer to Appendix A.1.

5.4. Numerical Application

This section presents a numerical example of the described model, to illustrate some

results and provide an idea about how to obtain the required input variables. We implement

an annual discretization for a digital transformation project with an economic lifetime of

15 years and simulate 30,000 sample paths to approximate the respective NPV and re-run

the simulation 30,000 times to approximate the values of the Bermudan expansion option

as well as the compound learning option. Table 5.1 lists the input variables we used for the

base case of this example. The presented parametrization implies that the transformation

project is expected to generate USD 100 million over the first year with initial variable
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Table 5.1: Illustrative parametrization of base case

Parameter Label Input value
Revenues in the first year R1 100
Revenue growth in the first year µ1 30%
Revenue volatility σ 20%
Long term revenue growth µ̄ 2%
Mean reversion coefficient κ 0.0924
Drift volatility η 5%
Share of variable costs in the first year γ1 100%
Variable cost drift ν -1%
Variable cost volatility ϕ 5%
Fix costs F 80
Corporate tax rate τ 30%
Risk-adjusted interest rate r 10%
Lifetime of transformation project T 15 years
Lifetime of expansion option TE 5 years
Speed of tech progress α 0.5
Half time growth of tech progress β 7.5 years
Asymptotic maximum of innovations K 100
Mean of Gaussian jumps δ 1
Standard deviation of Gaussian jumps ψ 2%
Cost of expansion IE 500
Cost to launch pilot project IP 200

costs of USD 100 million and constant annual fix costs amounting USD 80 million. Hence,

management expects negative cash flows in the early phase of the project. However, the

initial annual growth in revenues amounts 30% and is expected to approach its long-term

average growth rate of 2% p.a.. The mean reversion coefficient equals 0.0924, which implies

that the growth rate of revenues has reached its half time after 7.5 years. The share of

variable costs in revenues is expected to decrease by 1% annually. We assume a constant

risk-adjusted interest rate of 10% and a corporate effective tax rate of 30% p.a..

There are four sources of uncertainty represented by the model. The first is the volatility

in revenues amounting 20% p.a., the second and third are the volatility of revenue growth

and the volatility in variable costs both amounting 5% p.a. and the fourth is represented by

the jumps in revenues determined by the time-changed jump frequency and the standard

deviation of Gaussian jumps. The logistic frequency function is defined by its slope of

α = 0.5, the inflection point, which is set to β = 7.5 years and the asymptotic maximum

of annual innovations amounting K = 50 innovations p.a.. The mean of the multiplicative

Gaussian jumps is set to 1 and its standard deviation to 0.02. We assume a lifetime of the

option to expand of 5 years. This can be interpreted as an internal deadline, until which

management wants to decide whether to expand or not. In other words, if the project

does not seem profitable after this time, management will decide to abandon the project, in

which case management will be confronted with a loss of USD IP = 200 million. The cost

of expansion IE is expected to amount USD 500 million.
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Table 5.2: Summary of simulation results

Results Std. error
NPV -23.25
Option to expand 371.03 1.90262
Learning option 171.03
Expansion probability 76.21%
Expected expansion timing After 4.24 years
Investment decision Launch pilot project

The simulation results of the described parametrization are summarized in table 5.2.

The NPV of the simulation is negative amounting USD −23.25 million. Thus, following

the traditional NPV rule, the project would be regarded as unprofitable and management

would decide to refuse the transformation project in a now-or-never decision. However, if

we include the value of managerial flexibility, i.e. the value of learning and conditional

exercising, the overall transformation project value increases to a positive amount of USD

371.03 million. As management would be required to launch a trial project to obtain the

expansion option and receive the information required for the expansion decision, the value

of the compound learning option amounts USD 171.03 million. Thus, in this example, the

real options approach suggests launching the trial project and subsequently decide to expand

in case new information from the trial project is in favor of the transformation. Learning

from the trial project can be regarded as a hedge against the downside potential of negative

returns from the transformation project without limiting its upside potential, which results

in large option values.

The probability of expansion and the expected expansion timing provides us with further

insights regarding optimal investment strategies. While the expected payoff of expansion

amounts USD 371.03 million, only for 76.21% of simulated trajectories an expansion results

in a positive payoff. Thus, in 23.79% of cases, management would decide to abandon the

project after 5 years leading to a negative return of USD 200 million. The average optimal

expansion timing over all expansion-favoring scenarios is 4.24 years after launching the trial

project. This value is very close to the time of maturity, as the initial payoff expectations are

significantly negative resulting in a long time period until expected growth leads to positive

profit expectations.
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5.5. Sensitivity Analysis

In this section, we analyze the impact of a variety of input variables by applying sen-

sitivity analyses. We start at the base case presented in section 4 and vary the value of

input variables, to identify the most critical parameters. We also come up with an eco-

nomic interpretation of the results and generic implications for managerial decision-making

in regards to the DTBM setting. The results of the sensitivity analysis are summarized in

Table 5.3. The mean reversion coefficient κ determines the speed of conversion from the

initial revenue growth rate µ1 to its long-term average µ̄. This variable is most crucial to

define the expected revenue growth over the entire project lifetime. In our case, where µ1

is significantly higher than µ̄, increasing κ leads to a decrease in overall revenues and thus

to smaller NPV and option values, while a decrease leads to increasing overall revenues and

larger NPV as well as option values. A small change in this variable has a relatively large

impact on the results, which is in line with the findings of Schwartz and Moon (2000) and

Schwartz and Moon (2001).

The drift of variable costs describes the expected growth of γt. In our example, we assume

this to be negative, which can be explained by expected efficiency gains. Furthermore, digital

business models typically have decreasing marginal costs per user. By reducing this value

from -1% to -2% the resulting NPV significantly increases to a positive value of USD 125.59

million. As this number is positive, even the traditional NPV rule would suggest a profitable

big bang transformation. However, as the value of the learning option is significantly higher

than the NPV, even in this case, launching a trial project is favorable. Setting the expected

growth of γt to zero, results in a negative NPV of USD −180.92 million and an option value

of zero. Thus, in this scenario, the profit potential does not compensate for the costs of

launching a trial project, and management would decide not to invest at all. Similar to the

mean reversion coefficient, a relatively small level of variation in variable costs has a large

impact on the results as it drives the overall cost over the lifetime of the project.

Volatility parameters do not have a significant impact on the project’s NPV, as they do

not affect expected (i.e. mean) values. However, by increasing the uncertainty parameters,

option values increase as the value of managerial flexibility is positively correlated with

uncertainty. This is, increased volatilities have a large effect on the upside potential of

project cash flows, whereas the downside potential is hedged by not exercising the expansion

option. By comparing the results between revenue volatility, drift volatility and variable

cost volatility, we find that the latter has the largest impact on option values. This can be

explained by that fact that changes in costs show full impact on pre-tax cash flows, while

the effect of variation in revenues is reduced by the proportional co-movement of variable

costs.
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Regarding the variables that determine the size and frequency of jumps, i.e. innovations

that directly affect revenues, provides us with some further insights that are typically not

covered by existing real options literature. A small change of the standard deviation of jump

sizes ψ only shows little impact on option values. Note, however, that unless ψ is equal to 1,

a change of intensity directly affects the mean of the process. Parameters α, which defines

the steepness of the logistic S-curve and β, describing the mid-point of the curve, do not

have a significant effect on the results. Among the variables that define the jump-frequency

function, variations in the total maximum of annual innovations K show the largest impact.

It defines the deterministic maximum of annual innovations at the end of the project’s

lifetime, while parameters α and β only define the shape of the curve between t0 and T .

Increasing K boosts the total number of jumps resulting in a higher level of uncertainty,

NPVs and option values. For instance, doubling this number from a maximum of 50 to

100 annual innovations, slightly increases the option value to USD 378.53 million. However,

reducing this number to zero, which represents the case without technology uncertainty (or

jumps), leads to a significant decrease in NPVs and option values. The asymmetric effects

of variations in K on the results might seem surprising but can be explained by the following

phenomenon: including jumps leads to an expected change in the NPV of zero. However, as

revenues can never become negative while there is no upper boundary, the upside potential

of jumps is significantly larger than its downside potential, leading to non-linear effects

on expected values. Thus, when rapidly developing technologies play a crucial role in a

project’s revenue expectations and costs remain unaffected, uncertainty increases alongside

upside profit potential. Regarding option values, jumps have a positive effect, due to two

reasons. First, jumps increase the NPV expectation, which is used as the underlying of the

analyzed real options and second, an increased volatility always results in an increased value

of managerial flexibility, which is in line with existing real options literature.

The expansion probabilities after launching a trial project vary between 44% and 94%.

These values describe the share of simulated cases that turn in favor of expansion before

reaching the time of maturity of the expansion option. Hence, in the majority of cases, the

learning from the trial project turns in favor of the transformation and results in expansion.

Optimal expansion timings lie between 3.9 years and 4.55 years. Only in a very limited

number of cases, expansion after 1, 2 and 3 years are optimal, while most trajectories result

in an expansion between year 4 and the option’s maturity. Thus, if management sets itself

an early deadline for making an expansion decision, investment timing might not be optimal

if the value of further uncertainty resolution exceeds the immediate payoff. Note, however,

that in practice, waiting often comes at some cost, as sustaining the trial project might

result in additional expenses and competitors could enter into the market and secure the

majority of market shares.
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Except the examples of decreasing the mean reversion coefficient of revenue growth

and increasing the drift of variable costs from -1% to 0, management would always decide

to launch the trial project to learn about the transformation’s profit potential. Even in

cases with positive NPVs it is always favorable to launch the trial project and learn before

deciding upon expansion. Thus, the hedge against downside potential, i.e. the decision

whether to expand or abandon bears significant value. In this case, after investing the cost

of the trial project of USD 200 million, management can update its expectations annually

and decide whether or not to spend another USD 500 million to transform their business

model. In case the trial project indicates negative returns, management will decide not to

invest, leading to a loss of USD 200 million. The high option values are a result of the

high level of uncertainty that is typical for DTBM projects. The results clearly suggest

that investing in DTBM should be based on a trial and error, rather than a now-or-never

investment approach, which is in line with the findings of pertinent qualitative BMI and

digital transformation literature.

Despite the use of fictional data, the presented example can serve as an illustration of how

experimentation can be valued in highly uncertain environments. It gives an understanding

about the most critical parameters and shows that the value of expansion and learning can

be approximated in different scenarios. The example is based on valuing a single DTBM

project. However, the model could be further extended to value a portfolio of business model

transformation ideas to further mitigate risks by diversification. The higher the surrounding

uncertainty, the larger the value of uncertainty resolution by learning. Only if the expected

costs of experimentation and expansion exceeds the upside potential of a transformation

project, management should reject the investment opportunity.

5.6. Summary and Discussion

The presented framework opens a new chapter of research at the interface between

strategic management, IS research and real options analysis. It applies a set of existing

quantitative models to DTBM and tries to increase the understanding of decision-making

in the digital economy. We have presented a first approach to include experimentation as

a type of managerial flexibility in DTBM projects, which represents a common approach

applied by practitioners and is in line with major findings of related academic literature.

This chapter applied existing real options valuation models and adapts them to a generic

DTBM investment process. It showed how traditional NPV methods can be extended to

include the value of testing, learning and expansion. We found that these options have the

potential to change strategic investment decisions for risky DTBM projects. The resulting

option values are particularly large, as DTBM projects typically have a long time-horizon

surrounded by high levels of uncertainty. The results from sensitivity analyses underlined
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the importance of modifying traditional capital budgeting techniques for DTBM investment

decisions. However, as it is the case with most real options research, careful parameter

estimation is critical to generate meaningful results.

We can expect that the area of DTBM will grow in importance as emergent technologies

mature and the economy further digitalizes. New methods should be developed, which will

require comprehensive cross-functional skills and experts on digital transformation as well

as ROA. The presented study serves as an introduction to ROA in the context of digital

business transformation. It highlights the importance of the intersection of these two areas

and lays the foundations for future research. Future research could engage in extending

the presented model, by analyzing different types of real options or a portfolio of trial

projects. Another interesting extension could be to include metrics other than revenues

and costs to analyze the profit potential of DTBM. Finally, scholars could focus more on

parameter estimation than model development, as this remains to be a challenging task for

real options valuation, especially in the rapidly changing and unpredictable context of the

digital economy.
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Chapter 6

An Alternative Perspective on Value

for Digital Business Models

In this chapter, we introduce an alternative perspective on value and performance mea-

sures in the context of ascertaining value of digital business models. While, in the previous

chapter, traditional financial metrics such as cash flows and NPVs were used as an underly-

ing to value investments in digital business models, in this section we introduce a user-based

view to value for such companies.

6.1. Empirical Value-drivers of Digital Business Models

The distinctively different characteristics of digital business models, the threat of over-

valuation of such companies and the strong value of intangibles such as user data and net-

work effects lead to an important question. Whether traditional accounting-based valuation

methods are still suitable to rationally determine the real value of digital businesses has be-

come a controversy amongst experts in the global business community. In the following, the

considerations, therefore, are as follows: first, we present an empirical study that analyzes

the most important financial performance measures for the value of traditional as well as

digital firms. We will see that, while these measures perform reasonably well for traditional

asset-based firms, they lack in explanatory power for value of digital businesses. Second,

we introduce a user-based valuation model that shows how user-related data can be applied

to value subscription-based digital business models and prove relevance and accuracy by

applying it to a real-world business case.

The structure of the following two chapters compliments these considerations. First,

a brief empirical study about the most important value drivers of digital and traditional
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businesses lays the foundation for the enclosed examination. Second, we summarize existing

literature on customer-based company valuation and postulate it as a viable alternative for

valuing digital businesses. Third, we develop a simple model that employs user base diffusion

as a stochastic logistic growth curve and is able to estimate the customer lifetime values

as well as customer equity of any contractual digital business under uncertainty. We then

apply the model to evaluate the customer equity of Netflix based on publicly disclosed data

and link it to its market capitalization. We also provide some sensitivity analysis over input

parameters and derive some economic insights. Finally, we summarize the findings and

provide some ideas for future research.

The qualitative differences between digital versus traditional businesses have been dis-

cussed in section 3.4. In this section, we focus on the quantitative differences by presenting

a brief empirical study. More precisely, we want to find out if there is a difference in fi-

nancial value drivers for the two types of companies. For this purpose, we have collected

two data sets, one representing what we have defined as digital companies and the other

representing companies with traditional business models. The digital business sample is

comprised of 71 public mid- and large-cap companies. All these firms are generating sub-

stantial revenues from a modern digital business model, including linear models as well as

platforms. The traditional business sample includes all 1360 non-digital large-cap compa-

nies worldwide with a market capitalization of more than USD 10 billion as of November

2019. In a second step, we collected a large variety of quarterly financial data for both

data sets including important performance measures such as profits, cash, leverage, prof-

itability and others for the last 15 quarters from Q4 2015 to Q2 2019. The resulting data

sets include 22,050 data points for digital companies and 428,400 data points for traditional

companies. All data was retrieved via the Microsoft Excel plug-in by S&P’s Capital IQ.

Table A.1 in Appendix A.2 summarizes the descriptive statistics for both collected data sets.

Figure 6.1: Example Value Drivers

Revenue

Multiple

EBITDA

Multiple

Mean
Trad. 4.0x 14.9x

Dig. 7.2x 34.9x

Median
Trad. 2.6x 12.1x

Dig. 5.9x 22.1x

Two-sample

t-test

t-value 19.817 15.238

prob. <0.001 <0.001

Table 6.1: Trading Multiple Analysis

Note: Trad. refers to the 1360 traditional businesses and Dig. refers to the 71 digital companies
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that comprise our sample.

In order to find potential patterns in the data sets, we ran several analyses. Figure 6.1

provides a first impression of the relation between some fundamental financial metrics and

market capitalization. The x-axis describes the natural log of 2019 earnings before taxes,

depreciation and amortization (EBITDA) and the y-axis indicates the natural log of the

respective companies’ market capitalization. Bubble sizes indicate total book equity, while

blue bubbles represent digital and gray bubbles traditional businesses. The graph suggests

that digital businesses can achieve a substantially higher market valuation with the same

level of profits. Additionally, despite similar market valuation, digital companies tend to

have a book equity that is much lower. A similar conclusion can be drawn from Table 6.1,

which shows that revenue and EBITDA multiples are on average almost twice as high for

digital companies.

In order to further analyze the importance of traditional financial performance measures

for firm value, we aim to find an answer to the following two questions: (a) Can market

value of digital companies be explained by traditional financial metrics? (b) Which are the

most important financial metrics for the two types of businesses? For the purpose of this

analysis, spot stock prices serve as the proxy for firm value. In order to limit the effect

of extreme values, the natural log of the stock price is used as the dependent variable in

our regression analysis. Concerning independent variables, we chose the following financial

performance measures that are often used to analyze company performance and value by

analysts and investors alike:

� EBITDA is used as an indicator of profits of the regarded company. As this measure

does not include depreciation, interests and taxes, it is a suitable profit measure when

comparing companies across various regions and industries.

� Earnings per share (EpS) is used to describe relative profits on a per share basis.

It describes how much profit the company generated for each outstanding share. This

measure is often used by analysts as an indicator to identify whether a company is

under- or overvalued by the market. Following a common approach, we calculate EpS

by computing the net income divided by the number of shares outstanding.

� BtM ratio compares the book value of equity from the balance sheet with the market

value of equity of the respective company. The ratio is calculated by dividing the

common shareholder’s equity by the market capitalization. If the BtM is larger than

one, i.e. the book value is larger than the market value, the company is considered

undervalued and vice versa. Thus, high BtM ratios can be interpreted as the market

valuing the company’s equity cheaply compared to its book value. Low BtMs can be

an indicator of overvaluation. However, this ratio is often used to analyze the value of
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intangibles that are not accounted for in financial statements, yet considered valuable

assets by investors.

� ROA is included in our analysis to include a measure of profitability. In contrast

to EBITDA, this ratio benchmarks profits as a fraction of the total assets used by

the company. RoA thus expresses how efficiently a company’s assets were used to

generate profits. It is calculated by dividing the company’s net income by its average

total assets in the respective period.

� Debt ratio (DR) is used as a proxy for leverage. This measure is defined as the ratio

of a company’s total debt to its total assets. It describes the fraction of a company’s

assets that are financed by debt. While debt is typically cheaper than equity, a high

debt ratio indicates that the company may be putting itself at a risk of default on its

loans if interest rates were to rise. However, additional debt may also be an indicator

for additional growth, if cash is invested effectively and assets harnessed efficiently.

� Market capitalization (MC) is used as a control variable and a proxy for company

size. We include this variable to ensure that there is no bias in regard to the scale of

the underlying companies.

The correlation matrices for both data sets can be found in Table A.2 in Appendix A.2.

With the exception of the control variable (MC), for both data sets, there are no significant

correlations between the chosen independent variables that are larger than 0.2. Thus, we

proceed the following analysis assuming that there exists no significant multicollinearity.

For both samples, we ran a panel random effects model using the following linear equation:

ln(Si,t+1) = β1 + β2EBITDAi,t + β3EpSi,t + β4BtMi,t + β5RoAi,t + β6DRi,t + β7MCi,t,

where Si,t+1 is the spot price of the following quarter. Subscripts i and t represent cross-

section i and time t. We installed a time lag for the dependent variable of one quarter to

ensure that financial ratios are known by market participants (i.e. investors).

The regression results are summarized in Tables 6.2 and 6.3. The outcome suggests the

following five major findings: First, while the coefficients for EBITDA are relatively small for

both samples, this is of low significance for digital companies, however, considerably more

significant for traditional companies. The levels of profits thus do not influence the value

of digital companies, which is a phenomenon that can be observed with companies such

as Spotify and Dropbox, which have a history of extremely high market valuations despite

reporting constant losses in consecutive fiscal years. In contrast, for traditional companies,

EBITDA is somewhat significant and short-term profits can thus be regarded as important

value driver for these companies.

Second, EpS are insignificant for the value of digital firms, while they are highly sig-
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Table 6.2: Panel Regression Results for Digital Businesses; Method: Panel Least Squares
(Random Effects), Sample: Q4 2015 to Q2 2019 (15 periods included), Cross-sections in-
cluded: 68 companies, Total panel: 808 unbalanced observations.

Variable Coefficient Std. Error z-value Prob.

(Intercept) 1.1246e-01 9.8282e-02 36.7263 <0.001 ***
EBITDA 1.2113e-05 1.0676e-05 -1.2548 >0.1
EpS 4.3702e-03 5.8397e-03 0.7484 >0.1
BtM -8.3363e-01 6.8142e-02 -12.2337 <0.001 ***
RoA 2.5630e-01 2.6720e-03 2.1687 <0.05 *
DR 5.3961e-01 1.4006e-01 1.8299 <0.1 .
MC 2.3428e-06 2.0015e-07 11.7054 <0.001 ***

R-Squared 0.35364
Adj. R-Squared 0.3488
Chisq. 438.149 on 6 DF
p-value <0.001 ***

Table 6.3: Panel Regression Results for Traditional Businesses; Method: Panel Least
Squares (Random Effects), Sample: Q4 2015 to Q2 2019 (15 periods included), Cross-
sections included: 1114 companies, Total panel: 14787 unbalanced observations.

Variable Coefficient Std. Error z-value Prob.

(Intercept) 3.2361e+00 4.6868e-02 69.0479 <0.001 ***
EBITDA 5.4601e-06 22.0001-06 1.2548 <0.05 *
EpS -2.5848e-05 -3.7583e-06 0.7484 <0.001 ***
BtM -4.7524e-01 9.8892e-03 -48.0565 <0.001 ***
RoA 6.9770e-04 14.0667-04 2.1687 <0.001 ***
DR -1.2060e-01 2.6434e-02 -4.5623 <0.001 ***
MC 1.2586e-05 1.6950e-07 74.2539 <0.001 ***

R-Squared 0.43414
Adj. R-Squared 0.43391
Chisq. 11338.5 on 6 DF
p-value <0.001 ***
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nificant for the value of traditional firms. As EpS represent the level of net income on a

per share basis, it is not surprising that there are no significant effects on firm value for

digital companies. Interestingly, however, there is a significant negative effect of EpS on

log spot prices for traditional enterprises, which might be a consequence of dilution through

increases in capital stock (i.e. an increase in shares outstanding).

Third, RoA has a significant positive effect on both samples. We can conclude that

profitability has a positive effect on firm value for both types of businesses. However, the

confidence level for traditional businesses is much higher, indicating that profitability is less

significant for the value of digital firms.

Fourth, DR exhibits a significant but rather low confidence level for digital businesses.

In contrast, it is highly significant for the value of traditional corporations. Additionally,

the effect shows opposing signs for the two groups, which suggests that investors regard

increasing leverage as rather negative for traditional firms while it is perceived as positive

news for digital firms. A possible interpretation could be that additional cash through

debt is expected to be more efficiently invested with digital firms, as there is typically no

need to finance fixed assets and cash can directly be used to drive growth, for instance via

investments in R&D or business development projects. As expected, the control variable

MC is significant for both samples, although, coefficients are relatively small.

Finally, BtM, which defines the difference between book value and market value of equity,

exhibits a large significant negative effect on both types of businesses. Furthermore, it can

be emphasized that the effect for digital businesses is almost twice as high. According to our

results, BtM is the most important variable for explaining stock prices of digital companies.

The negative effect of BtM indicates that stock prices decrease when the BtM increases.

That is, in case the book equity is smaller than the market equity, an increasing difference

between these values describes an increase in intangibles, which positively affects stock prices

- even more so for digital businesses. The BtM is often used to describe the value of intangible

assets that are not on the balance sheet. The ratio is forward-looking as it reflects intangibles

that are yet to be monetized. It thus represents future earnings potential as expected by

investors. The high sensitivity of stock prices of digital companies to BtMs thus shows that

a large part of value of digital companies must stem from future profit expectations from

intangibles rather than performance that is derivable from financial statements. Hence, the

extreme excess of market equity over book equity for digital companies (as indicated by their

low BtMs, see the descriptive statistics in Table A.1 in Appendix A.2 must be a consequence

of intangibles such as users, data or network effects. Note that, in general, as the value of

intangible assets is more volatile than the value of tangible assets, the high value digital

business models is associated with high levels of uncertainty and therefore, ultimately, risk.
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Despite the large difference in sample sizes, regarding R-squared, we can conclude that

the explanatory power of the model is slightly higher for traditional businesses, which further

suggests that the chosen financial performance measures are more meaningful in explaining

value for traditional companies. In summary, our results indicate that traditional financial

metrics are not sufficient in explaining firm value of digital businesses. The most important

metric, the BtM, considers future growth and profitability generated by intangibles that

are not observable in financial statements. In contrast, standard financial performance

measures that are reported such as profits, short-term profitability, leverage or equity are

no significant factors in explaining a digital enterprise’s market value. Traditional company

valuation techniques such as the enterprise DCF or multiple methods are based on these

metrics. We can thus expect these methods to have difficulties in valuing corporations

that engage digital business models. While financial statements can serve as a tool for

understanding a digital company’s historic performance, our findings show that we should

be doubtful whether they represent a suitable proxy, assessing the value of a digital business.

Accordingly, there is the need of an alternative and more appropriate valuation approach

that is flexible and forward-looking enough to include and consider the massive value of

intangibles held by digital corporations. In the next section we thus introduce a different

perspective on performance measures and company valuation that play a more important

role analyzing the value of digital business models.

6.2. User-based Corporate Valuation

A digital company’s customers are its users. User behavior drives, makes and breaks the

profitability of a digital business model. Since the global deployment of the internet and

the associated emergence of digital business models, a large number of new performance

measures have been introduced in academic literature and managerial practice alike. While

these metrics are derived from traditional performance measures such as revenues, net in-

come or the return on assets, mapping them to users is a helpful tool for understanding

a digital business’s revenue mechanisms, increase transparency in regards to value-based

management and to optimize financial planning and analyses. While different approaches

to monetizing users have been found, all digital business models produce user-based metrics

that can be employed to track performance.

In this context, a frequently applied metric is the average revenue per user (ARPU).

It shows how much revenue a single user generates on average and, thus, the incremental

revenue of acquiring new or losing existing users. A firm’s gross margin multiplied by

the ARPU then reflects the gross profit per user. Another important metric is the cost of

customer acquisition (CAC). It shows us how much the company has to spend on marketing

and sales to acquire one new user. Typically, these costs take a large part in a digital firm’s
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cost structure unfolding substantial impact on profitability. In order to be profitable, the

company’s CAC should be significantly lower than its ARPU. Regarding future performance,

the net growth rate of the user base is important. The net growth of users in a certain period

is the sum of all newly acquired users minus the users who have churned. In order to have

positive net growth, the number of churning users has to be smaller than the number of

user acquisitions.

With the growing importance of digital business models and the increasing popularity of

customer-centric management, the Customer Lifetime Value (CLV) has gained in popularity.

It is a concept that has originated from marketing and has grown into an important metric

for monitoring and management of digital businesses. The customer lifetime value is the

sum of all discounted net cash flows of a user or a cohort of users. Additionally, Customer

Equity (CE) is used to express the total value of all existing and new users in a single

monetary number. It is typically calculated as the sum of all CLVs of existing and future

users.

Osterwalder and Pigneur (2004) state that maximizing CE must be one of the main goals

of any company. Further studies have reinforced the link between marketing performance

and financial metrics (e.g. Mintz and Currim, 2013) as well as firm value (e.g. Srinivasan

and Hanssens, 2009; Edeling and Fischer, 2016) and therefore postulate the essential role

of marketing metrics in value-based management (Verhoef and Lemon, 2013). Hence, mar-

keters need to measure and manage this value of the customer to the firm and have to

incorporate this aspect into management decisions (kumar2016).

In marketing literature, several approaches exist that link CLV and CE to company

valuation. Srivastava et al. (1998) were the first marketing academics to recognize the

potential for using some of the models of customer behavior to generate key insights for

estimating cash flows. Gupta et al. (2004) labeled these valuation approaches as the family of

Customer-based Company Valuation (CBCV). CBCV describes the process of valuing a firm

by forecasting current and future customer behavior using customer data in conjunction with

traditional financial metrics. For many firms, CE represents a major share in shareholder

value enabling the link between user behavior and enterprise valuation (McCarthy and

Fader, 2018). A vast number of scholars have published articles that further analyze this

link (Bauer et al., 2003; Bauer and Hammerschmidt, 2005; Gupta, 2009; McCarthy et al.,

2017). Most of these articles focus on contractual (i.e. subscription-based) monetization

examples, as user-behavior can be modeled by fixed revenue streams and easy to observe

retention rates (McCarthy et al., 2017). However, more recent studies have also started to

value non-contractual businesses by applying CLV techniques. For example, Kumar and

Shah (2009) use probabilities of a customer to purchase in a certain time period to calculate
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the CE and link it to a firm’s market capitalization.

A number of articles apply their CLV models to digital companies such as the online

streaming platform Netflix (e.g. Gupta and Zeithaml, 2006; Pfeifer, 2011; Zhang, 2016)

or the social network xing.com (e.g. Gneiser et al., 2009). Digital business models are

especially suitable for CBCV, as user bases are typically large, exhibit high growth rates

and easily observable purchase behavior. Thus, users are a digital company’s most valuable

asset and the main value driver for enterprise value. Shapiro et al. (1998) show that the

number of customers in prosperous new technology companies, especially in internet-based

companies, increases exponentially in the first few years of the company’s existence. After a

while, growth rates start to decrease gradually until an upper asymptotic limit of the total

potential user base is reached. This phenomenon can be often observed in natural growth

dynamics such as biological population growth (Sakanoue, 2007; Tsoularis and Wallace,

2002), technological progress (Daim et al., 2006; Daim and Suntharasaj, 2009; Easingwood

et al., 1981; Young, 1993), new product deployment (Mahajan et al., 1993) or dynamics in

production volumes (Clark et al., 2011). Logistic growth curves are often applied to forecast

these dynamics based on historical data. Accordingly, several scholars use logistic growth

curves to model customer growth across time. For example, Cauwels and Sornette (2011)

use a logistic model to forecast the growth of Facebook users. Similarly, Gupta et al. (2004)

use logistic user growth to link the CE of one traditional company (Capital One) and four

internet firms (Amazon, Ameritrade, eBay and E*Trade) to their market capitalization.

The author’s results show that estimates of customer value are reasonably close to current

market valuation.

In spite of the overwhelming evidence on the strong link between marketing metrics and

financial performance and a growing body of research on CE and CLV, the finance com-

munity is yet to acknowledge the increasingly well established marketing metrics and, in

fact, few companies have adopted them (Persson and Ryals, 2010). One reason might be

that existing CBCV research mostly uses rather inflexible logistic growth curves to model

deterministic user dynamics. Growth curves are typically applied to be fitted to historical

data by non-linear least squares or maximum likelihood techniques to forecast future devel-

opments of user growth. While this approach is easy to implement and its interpretation

straightforward, it has some critical limitations as it explicitly assumes that future user

growth is known and can be directly derived from historical data. This fairly unrealistic

assumption can be relaxed by modeling state variables as stochastic processes to include

uncertainty and thus allow for time-changed parameters and deviations from deterministic

prediction results.

There are several ways to include uncertainty with logistic growth models: add uncer-
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tainty about the total number of users, add uncertainty about user growth rates or add

uncertainty about the asymptotic limit of total users. The difference between these ap-

proaches is basically a modeling issue, as all three relate to uncertainty about the number

of users across time. Finance literature provides several stochastic approaches to company

valuation. Most are related to the real options approach, that is able to value managerial

flexibility in investments under uncertainty. For example, Schwartz (2000) and Schwartz

and Moon (2001) value high-growth internet companies by modeling discounted cash flows

as a growth option under three sources of uncertainty. Similarly, Perotti and Rossetto (2000)

value internet portals as a portfolio of real options. Both studies argue that internet com-

panies have call-option characteristics, since they have a large upside with limited downside

potential (i.e. bankruptcy). However, most finance articles use traditional financial metrics

to model cash flows and NPVs of such to estimate firm value.

From a CBCV perspective, we only know of a single article that is based on stochastic

logistic growth dynamics. Tallau (2006) includes several sources of uncertainty relating to

the number of customers, the ARPU and the variable costs of a company. The author

further assumes that the number of users evolves based on the Bass (1969) model, which

is a famous mixed-influence model for logistic growth that distinguishes two groups of new

adopters, namely innovators and imitators. However, due to the model’s complexity, it

requires estimation of 32 different input variables, which are mostly not observable limiting

its relevance for practical application.

This study extends existing CBCV techniques by combining them with some basic con-

cepts from quantitative finance literature. That is, rather than modeling future user growth

based on a deterministic fitted growth curve, we use stochastic processes for user acqui-

sition and churn to model user base diffusion, which increases flexibility by allowing for

time-changed growth patterns and random deviations from the underlying deterministic

user growth dynamics. In the next section, we develop a simple stochastic CE estimation

model for subscription-based digital business models including uncertainty in user growth.

After developing the model, we apply it to the examples of Netflix, Roku and Stitch Fix

and show how the required input parameters can be obtained.
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Chapter 7

User-Based Valuation of Digital

Subscription Business Models

7.1. Introduction

The distinctively different characteristics of digital business models, the threat of over-

valuation of such companies and the substantial value of intangibles all lead to the same

question. Whether traditional accounting-based valuation methods are still suitable to ra-

tionally determine the real value of digital businesses has become a controversy amongst

experts in the global business community. This chapter, therefore, aims to contribute to

this debate by introducing a user-based valuation model that is able to employ user-related

data to value subscription-based digital businesses under uncertainty. Additionally, in order

to highlight the relevance and accuracy of the suggested model, we further apply it to the

real-world business case of Netflix and investigates the sensitivity of results to identify the

most critical user-based metrics.

The proposed model has several advantages over existing CBCV. First, in contrast to

previous models, the model allows us to observe how different user-based metrics influence

estimation results across time. Additionally, due to the high flexibility of the model, it

enables us to analyze how this impact evolves for different combinations of user metrics

and derive suggestions optimize user value from a managerial perspective. Therefore, model

results can be used to extract concrete measures for value-based management that increase

customer equity and thus shareholder value by improving the effectiveness of managerial

action. The model further allows for deviations from deterministic growth curves by in-

cluding uncertainty in user growth, which is a valuable tool for scenario-based planning and

analysis. Finally, due to the high flexibility of the Monte Carlo methods that are used to

simulate the model, it can be easily extended and tailored to other types of user mone-
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tization mechanisms. The incorporated uncertainty also allows for including the value of

managerial flexibility that can be modeled as real options, which are especially valuable in

high uncertainty situations.

The structure of this chapter is as follows: first, we develop a simple CE valuation model

that employs user base diffusion as a stochastic logistic growth curve for any contractual

digital business. Second, we apply the model to evaluate the customer equity of Netflix based

on publicly disclosed data and link it to its current as well as historic market capitalization.

We then present a comprehensive sensitivity analysis to deepen the understanding of the

model’s mechanics and derive some general managerial recommendations for value-based

management. Finally, we summarize the findings and provide some ideas for future research.

7.2. Model Development

Consider an existing company with a subscription-based digital business model. The

revenue mechanics of such a company are driven by the number of subscribing users and the

ARPU. The number of future users depends on three variables: The number of existing users,

the number of newly acquired and the number of churning users. We consider a company

with an existing and self-sustaining user base. The churn rate is equal to one minus the

retention rate and the number of newly acquired users is the net growth of the user base

plus the number of churned users in the same time period. Thus, we can model user growth

based on a birth-death population growth model, which can be often found in mathematical

biology (see, for example Brauer and Castillo-Chavez, 2001). In a business context, birth

can then be interpreted as acquiring a new user and death as a churning user. The growth

dynamics are logistic, as the user base cannot grow infinitely large. The upper limit of the

total number of subscribing users can be interpreted as the total number of all potential

users across all relevant markets (e.g. all households with internet access). Previous studies

have found that the predicted number of acquired customers exerts the strongest influence

on shareholder value (e.g. Schulze et al., 2012), which is why the proposed model places its

focus predicting user growth under uncertain acquisition as well as churn rates.

7.2.1. Continuous-time Model

We assume that the total number of paying users at time t, denoted by Ut, follows a

simple differential logistic growth equation:

dUt = (at − ct)Ut
(

1− Ut
K

)
dt, (7.1)
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where at is the instantaneous acquisition rate (or birth rate) relative to the user base Ut,

ct its instantaneous user churn rate (or death rate) and K the theoretical asymptotic limit

(or carrying capacity) of total users at the end of the regarded time horizon T . We choose

this model for user growth as the proposed setting is nothing but an analogy to population

growth. In case that at and ct are constant, equation (7.1) becomes an ordinal differential

equation (ODE) which has the closed-form solution

Ut =
K

1 + be−(a−c)t ,

where U0 > 1 and b > 0 is a constant. That is, the solution to equation (7.1) becomes the

standard logistic growth function, where the constant a− c defines the pace of the growth

between U0 and K. This model can often be found to describe natural growth dynamics in

the fields of mathematical biology and epidemiology but also in business-related applications

including new product adoption, technological diffusion and others.

However, the assumption that growth coefficients at and ct are constant across time

is not reasonable for our setting. We relax this assumption by including two sources of

uncertainty into our model. The first is uncertainty regarding at, the rate of newly acquired

users, that is represented by the stochastic acquisition rate

dat = µaatdt+ atσ
adW a

t , (7.2)

where µa is the expected change in at, σ
a its volatility and dW a

t the Wiener increment. The

second is uncertainty regarding ct, the rate of users who cancel their subscription, which is

modelled by the stochastic churn rate

dct = µcctdt+ ctσ
cdW c

t , (7.3)

where µc is the expected change in ct, σ
c its volatility and dW c

t the Wiener increment. We

therefore assume that both acquisition rates and churn rates evolve as geometric Brownian

motions (GBM).7

We further assume that the diffusion terms of at and ct are correlated, that is,

dW adW c = ρdt,

7GBMs have the implicit assumption that the state variable can never be negative. While the net user
growth rate can be negative, that is, in case the churn rate is higher than the acquisition rate, positive
acquisition and churn rates are a desirable assumption. GBMs are a widely applied concept in finance, for
example when modelling stock price diffusion, which is why we refrain from further explaining this concept
at this point. We choose the GBM to model uncertainty as it is simple and fulfils the reasonable behaviour
of growth rates.
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where ρ is the correlation coefficient between the two Wiener increments dW a and dW c.

Thus, if ρ 6= 0, variations in acquisition rates will likely result in variations in churn rates

and vice versa.

It is noteworthy that, even in case of constant values for at and ct, the effective net

user growth is time-changed, i.e. follows a bell-shaped curve as given by the derivative of

the solution to equation (7.1). Thus, effective growth rates are expected to first increase

and then decrease after half-time growth of users is reached and the user base approaches

the asymptotic maximum of users K. In general, in early growth stages, effective growth

increases for constant nominal growth rates until the inflection point of the number of users

is reached. After this point, effective growth decreases for constant nominal growth rates.

However, negative changes in at and ct indeed result in negative deviations from the bell-

shaped growth curve and vice versa, while the magnitude of their impact strongly depends

on U0, K and t.

The discounted after-tax operating profit across the entire user base at any time t can

be calculated by

Pt = e−rt(πARPUUt − CACatUt − F )(1− τ), (7.4)

where π is the company’s gross margin, F is the company’s fix costs, τ the corporate tax

rate and r the company’s risk-adjusted discount rate. The total CE at the time of valuation

t = 0 can then be determined by computing

CE =

∫ T

0

Ptdt+
PT (1 + g)

r − g
,

where g is the terminal growth rate of P beyond T . The last term of this equation is

a perpetuity, which is commonly applied in calculating terminal values for company and

project valuation. Thus, the CE is the NPV sum of all cash flows created by existing

and future users. It describes the net worth of a company’s current and future user base.

Note that this way of computing the CE of a company is different from most existing

CBCV models, as we do not use individual CLVs, but instead, base our calculations on

instantaneous profits of the entire user-base.

In order to link the resulting CE estimates to firm value, we need to further include non-

operating assets and total debt. Some of existing studies ignore this link and argue that

changes in CE result in proportional changes of shareholder value. However, Schulze et al.

(2012) have found that this assumption might lead to a bias in shareholder value estimations.

Therefore, the shareholder value should be calculated as in Bauer and Hammerschmidt
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(2005) and Schulze et al. (2012). That is

SHV = CE + NOA−D,

where NOA is the company’s non-operating assets and D its total liabilities.

7.2.2. Discretization

We assume an underlying complete probability space (Ω,F , P ) and a finite time horizon

[0, T ], where the state space Ω is the set of all possible realizations of the stochastic economy

between time 0 and T and has typical elements ω representing a sample path. F is the

sigma field of distinguishable events at time T , and P is a probability measure defined on

the elements of F . We define F = Ft; t ∈ [0, T ] to be the augmented filtration generated by

the relevant value processes for the CE, and assume that FT = F .

We use the Monte Carlo method to approximate the continuous-time model by dis-

cretization. Let m denote an integer so that the time span [0, T ] is divided into m intervals

whose length is ∆t = T
m

. We choose T and m in a way to discretize the continuous-time

model to generate periodic (e.g. monthly, quarterly, annual) state variables and compute

the present value of the sum of all periods. To be concrete, let ti be the i-th period, i.e.,

ti = i∆t, i = 0, 1, . . . ,m.

The state variables are simulated by generating N sample paths for values of ati(ωj),

cti(ωj), Uti(ωj) and Pti(ωj), where ωj stands for the j-th sample path with j = 1, . . . , N . We

simulate the user base diffusion based on the solution of the differential equation in (7.1)

such that

U(ti) =
Ut0K

Ut0 + (K − Ut0)e(−(ati−cti )ti)
,

where Ut0 is the initial value of the user base at time ti = 0.

The discrete-time approximation of equations (7.2) and (7.3) are given as

a(ti + ∆t) = a0e
(µa−σ

a2

2
)dt+σa

√
∆tEa)

and

c(ti + ∆t) = c0e
(µc−σ

c2

2
)dt+σc

√
∆tEc),

where Ea and Ec are standard correlated normal variates.

We can simulate directly from these expressions and then compute Pti(ωj) as in equation

(7.4) for each sample path ω. The total CE expectation can then be calculated by averaging
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the discounted sum of the N sample paths for P such that

E[CE] =
1

N

N∑
j=1

m∑
i=0

Pti(ωj) +
PT (ωj)(1 + g)

r − g
.

As with any Monte Carlo simulation, the accuracy of resulting estimates of E[CE] is

dependent on the number of simulations N and the distance between the time steps ∆t. In

the following, we apply the suggested model to a number of business cases to demonstrate

its functioning and evaluate how our CE estimates compare to the market value of three

digital businesses.

7.3. Numerical Applications

In order to find out how well the presented CE model tracks the value of digital subscription-

based companies, we applied the model to evaluate the CE of three public subscription-based

corporations. We computed the suggested model for Netflix, Roku and Stitch fix and com-

pared the resulting CE estimates with their respective market capitalizations. Netflix is the

leading provider of subscription streaming entertainment. It offers TV series, documentaries,

and feature films across various genres and languages. Roku provides a subscription-based

TV streaming platform to its users. The company operates in two segments, Platform and

Player. Its platform allows users to discover and access various movies and TV episodes,

as well as live sports, music, news, and others. Stitch Fix offers a subscription service that

sells a range of apparel, shoes and accessories through its website and mobile app in the

United States.

All three companies represent suitable examples for our model, as they are subscription-

based providers of digital contents and consumer goods that exhibit significant market value

despite relatively low profits. All three companies are listed on the NASDAQ stock exchange,

which makes most input parameters directly observable or calculable from publicly disclosed

data. As financial results are disclosed quarterly, we discretize the continuous-time model

on a quarterly basis and use the company’s 10-Q filings to estimate the respective input

parameters.

7.3.1. Parameter Estimation

In this section, we present how to obtain the input parameters from publicly available

data published by the companies. This section provides detailed explanations about how

the parameter values were obtained. For Netflix and Roku, we have included the last ten

available quarterly results in our analysis. For the case of Stitch Fix, since the company had
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its initial public offering in 2018, only seven quarterly results could be obtained. Table 7.1

lists all input parameters for the simulation of the most recent quarter at the time of our

analysis. Table A.3 in Appendix A.3 lists the input variables for all simulations for previous

quarters. In the following, we explain how the parameters can be obtained in more detail

using the example of Netflix. The data for Roku and Stitch Fix was obtained in exactly the

same fashion. Netflix’s input values for Q2 2020 were obtained as follows:

� Number of subscribed users: this parameter is publicly available and can be

directly extracted from Netflix’s quarterly report.

� Acquisition and churn rates: unfortunately, Netflix has stopped disclosing its

churn rates in 2010. However, the net growth rate of the user base is observable.

According to our definition in equation (7.1), the net growth rate is equal to the

acquisition rate subtracted by the churn rate. Thus, in order to estimate the current

acquisition rate, we needed to find a proxy for its current churn rate. The average

churn rate of over-the-top (OTT) media service companies amounts to 35%, which

is the churn rate we assumed to be true for Roku. However, our research has shown

that Netflix is among the companies with the lowest churn rates, which business press

and media frequently estimated to amount to roughly 10%. That established, we

calculated acquisition rates as the sum of the annual net growth rate and the churn

rate in the same quarter. In order to find a more stable estimate for acquisition rates,

we used the mean of a one-year rolling window of acquisition rates to calculate the

current value. From Q3 2019 to Q2 2020, the average annual acquisition rate of Netflix

amounted to 38.02%.

The drifts of the respective Brownian motions are assumed to be zero, i.e. there are no

expected deviations in growth rates from the dynamics determined by the underlying

S-curve. The combined annual volatility of acquisition and churn rates is assumed to be

constant and equal to the volatility of historic annual net growth rates. Computing this

value for user growth between 2013 and 2020 results in an annual volatility of 0.14166.

We can apply the general fact that Var(X − Y ) = Var(X) + Var(Y ) − 2Cov(X, Y ).

Assuming that the volatilities of at and ct are equal and their correlation coefficient is

−0.6, we arrive at an estimation for σa and σc of around 0.06421.

� Gross margin: the gross margin is directly observable from the income statement.

It is calculated by taking the share of gross profits in total revenues. We used the

mean value of a one-year rolling window to estimate the current gross margin.

� Average revenue per user: this can be easily calculated by dividing total (quar-

terly) revenues by the total number of users. The total number of users over one

period is calculated by averaging the number of users at the beginning and end of the

respective time period. Again, we used the mean value of a one-year rolling window
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to estimate the current ARPU.

� Cost of customer acquisition: this metric is calculated by dividing the periodic

marketing expenses by the number of users in the previous quarter multiplied with

the current acquisition rate. As we found this number to be highly volatile based on

significant changes in both user growth rates and marketing expenses, we used the

median of all CAC values between 2013 and the respective current CAC value.

� Fixed costs: this is the sum of all non-operating expenses directly observable from

Netflix’s income statements.

� Asymptotic limit of total users until T : In order to obtain an unbiased value

for this critical input parameter, we ran a non-least squares curve fitting model to

find the logistic growth curve that best fits the historic user base diffusion. Feeding

the model with the number of users between 2013 and 2020, the model suggested a

K-value of 1.06 billion users.

� Coefficient of correlation between acquisition and churn rates: as acquisi-

tion rates and churn rates are not separately disclosed, we have to install an assumption

about this value. It is intuitive that, when acquisition rates go down, churn rates go

up. This could for instance, be a result of a decreasing perceived attractiveness of the

product or increasing popularity of competitive products (e.g. Amazon Prime Video,

Disney+). On the other hand, a decreasing churn rate suggests high user satisfaction,

which will also attract more new users (e.g. word of mouth effect). The value of ρ can

also be calibrated to account for network effects. A high correlation between acquisi-

tion and churn rates suggests that more acquisitions lead to less churns which lead to

more acquisitions and so on. Thus, we expect a strong negative correlation between

variations in these two metrics. In our simulation, we assume the coefficient of cor-

relation to amount to −0.6. Note that this variable does not have a significant effect

on the resulting CE estimation, as it only influences the magnitude of uncertainty in

user growth, which has only a small influence on expected (mean) values.8

� Weighted average cost of capital: we use the WACC as the discount rate for

customer lifetime values. The WACC represents a common approach to discount cash

flows and is typically calculated by applying the capital asset pricing model (CAPM).

It is the weighted average of a company’s cost of equity and cost of debt, while the

cost of equity is calculated based on the company’s beta. Our research has shown

that Netflix’s historic WACC values have fluctuated between 9% and 11%. Thus, we

assumed a constant WACC of 10%.

8Typically, increasing uncertainty has no effect on expected values and thus CE estimates. However,
due to the deterministic upper limit of total users K that can never be exceeded, effects of uncertainty are
asymmetric. This phenomenon is also observable in Figure 7.1 showing that no sample path exceeds K and
Figure 7.2 showing that the resulting CE distribution is left-skewed (i.e. downside risk is larger than upside
potential). This effect is further investigated in section 7.3.3.
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� Effective tax rate: Calculating Netflix’s effective tax rate between 2013 and 2020

results in an overall mean value of roughly 23%.

� Terminal growth rate: we assume that the CE cohorts will grow at an annual rate

of 3% after the forecast horizon T . Depending on the terminal CE and the company’s

discount rate, this parameter can show large effects on model results, which is why

it has to be chosen carefully. Small positive growth rates can be justified by growth

of served markets induced by population growth or increasing deployment of internet

connections, but also by increasing user revenues or decreasing costs.

� Length of the forecast period: we choose a relatively long time-horizon of 15

years for our forecast. While this explicitly assumes that our metrics follow the pre-

sented equations over the next 15 years, the inherent uncertainty increases across time

allowing for a broad spectrum of different realizations.
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7.3.2. Results

The sample path realizations of user diffusion for Netflix based on Q2 2020 data for 1,000

sample paths are illustrated in Figure 7.1. Figure 7.2 illustrates the respective distribution

of the resulting simulated total CE realizations. The graphs show that the user base is

expected to further increase with first increasing and then decreasing effective growth rates.

Most realizations result in a terminal user base between 800 million to 1 billion users. Given

the presented growth dynamics, it is highly unlikely, however, not impossible that Netflix’s

user base in 15 years is going to be smaller than today’s user base. Regarding Figure

7.2, we can observe that the inherent uncertainty results in a significantly left-skewed CE

distribution, as the upper limit K prevents the user base from growing beyond the total

market size. Note that the total CE can become negative if the sum of all CE cohorts is

expected to be negative.

Figure 7.1: Sample paths of Netflix’s pro-
jected user base diffusion for Q2 2020.
T = 15 years, n = 1, 000, quarterly dis-
cretization

Figure 7.2: Simulated CE distribution for Q2
2020. T = 15 years, N = 1, 000, quarterly
discretization

After having estimated all input parameters for each company and quarter, we fed the

model with the data, forecasted the companies’ CE developments and estimated the resulting

total CE per share. For each quarter, we ran 100,000 simulations to find the companies’

total CE for all available quarters between Q1 2018 and Q2 2020 for Netflix, from Q4 2017

to Q1 2020 for Roku and from Q3 2018 to Q1 2020 for Stitch Fix. We arrived at a total of

27 CE estimates for the three different businesses. This helped us to draw some conclusions

about accuracy and reliability of our model cross section and across time. In order to do

so, we compared the resulting CE estimates with the respective market capitalizations and

the CEs per share with the share price developments within the same quarter.

For Netflix’s Q2 2020, we arrive at a total CE of roughly USD 183 billion. Netflix’s
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average market capitalization during the same quarter was around USD 188 billion. Ac-

cordingly, the CE per share of USD 415.14 is only about USD 12 lower than the respective

average share price of USD 427.55. Thus, the CE was reasonably close to the actual val-

ues that are perceived in the market. As no sample path in our simulation hits zero, the

probability of extinction (i.e. the case Netflix’s user base drops to zero within the next

15 years) is smaller than 0.0001%. Increasing the volatility in the simulation will result in

an increasing extinction probability and decreasing CE estimates. Regarding Roku, for Q1

2020, the simulated CE per share was USD 13.24 lower than the respective mean share price

and for Stitch fix, the difference between these two numbers amounted to USD 11.81. The

probabilities that the number of subscribing users at time T is smaller than U0 equal 0.84%

for Netflix, 0.3% for Roku and 17.63% for Stitch Fix.

Figure 7.3 summarizes the performance of the model for all analysed quarters of the three

companies. The candlesticks illustrate the open, close, min and max values of stock prices

within the respective quarter and the black lines describe the CE per share simulations as

performed by our model. For Netflix and Stitch Fix, in most cases, our estimates were

within the stock price movements of the respective quarter. Almost all CE estimates were

reasonably close to stock prices. Additionally, magnitude and direction of change in value

show extremely similar patterns. For Roku, however, model results showed CE estimates

that were much higher than the respective market capitalization. Only the last three to

four quarters show results that are reasonably close to the market value. Thus, our model

results suggest that Roku used to be undervalued until the stock price significantly increased

during 2019. Tables A.6 to A.8 in Appendix A.4 list the results for all investigated quarters

that are illustrated in Figure 7.3. Regarding the overall performance of our model, we can

conclude that, despite its simplicity, CE estimates track market capitalization remarkably

well and produce realistic results.

80



(a) Netflix CE per Share vs. Stock Price (b) Roku CE per Share vs. Stock Price

(c) Stitch Fix CE per Share vs. Stock Price

Figure 7.3: Model Performance of the three example companies: simulation vs. real market
data. The candles illustrate the stock movements (high, low, open, close) stock prices of the
respective quarter. Dark grey candles indicate an increase while light grey candles indicate
a decrease in stock prices. The line describes the simulated CE per share estimates by
our model. The respective input data for the entire time horizon is listed in Table A.3 in
Appendix A.3.

In summary, the user perspective seems to provide us with some valuable insights about

a digital subscription model’s valuation. The underlying user-based performance measures

should thus play a vital role in managerial decision-making and corporate valuation for

digital businesses. Furthermore, our results show that there is a strong link between user

data and financial performance and the need to emphasize the importance of aligning user-

centric and value-based management for digital corporations.

7.3.3. Sensitivity Analysis

In this section, we use the example of Netflix to provide some sensitivity analyses of our

numerical example. We aim to demonstrate how changes in input parameters affect our
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estimation results and to identify the most critical parameters in our model. As we had to

make some assumptions about some of the required input parameter values such as churn

rates and correlation, we place our focus on these variables. We proceed the analysis using

our estimation results for Q2 2020 and input parameters as described in Table 7.1 as our

base case. We first provide sensitivity analyses over acquisition rates, churn rates, growth

in these values and the carrying capacity without uncertainty. In a second step we present

the effects of adding uncertainty to the model and show how volatility of acquisition and

churn rates affect our results.

Deterministic model

Sensitivity over a0 and c0: Netflix’s average annual net user growth of 38.01% was

estimated based on historic data. However, as acquisition and churn rates are not separately

disclosed, we assumed a constant churn rate of 10% and calculated the acquisition rate as

the sum of net user growth and churn rates. In order to investigate how much deviations in

these numbers affect our results, we varied the values of a0 and c0 between 0% and 50%. The

effects on the number of users at time T are illustrated in Figure 7.4 and on CE per share

in Figure 7.5. We can observe that higher acquisition rates and lower churn rates result in a

larger number of users, ceteris paribus. The incremental value-add of increased net growth

rates first increases and then decreases. Hence, larger values of a0 and smaller values of

c0 show less effect the smaller the distance between the current user base its asymptotic

limit. In all scenarios that represent higher churn than acquisition rates, U(T ) is smaller

than the initial number of users U0, as these combinations represent negative net growth

dynamics. We can further observe that, in absence of uncertainty, any combination of a and

c that results in the same net growth leads to the same number of total users after the end

of the simulation lifetime T . In our simulation, the largest user base is thus reached with

an acquisition rate of 50% and a churn rate of 0%. It is further noteworthy that, within a

time window of 15 years, the carrying capacity K of 1.06 billion users is only approximately

reached for very high net growth rates.

Regarding the CE simulation results, the graph draws a similar picture. We can observe

that the CE always increases when larger net user growth is induced by decreasing churn

rates. In contrast, an increased net user growth induced by higher acquisition rates does

not necessarily result in higher CE values, despite an increasing number of total users. That

is, until a certain effective growth rate is reached, higher acquisition rates have a positive

effect on CE estimates. However, acquisition rates beyond this point result in decreasing CE

estimates, ceteris paribus. Moreover, the higher initial churn rates, the higher acquisition

rates can grow without decreasing CE values. Thus, despite the larger number of total users

for higher acquisition rates, the maximum value of CE estimates amounting to USD 560.50
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Figure 7.4: Sensitivity of user base to
user acquisition and churn rates

Figure 7.5: Sensitivity of CE to user acquisi-
tion and churn rates

is reached at a churn rate of 0% and an acquisition rate of 33%. For the example without

uncertainty and a constant nominal churn rate of 10%, the optimal nominal acquisition rate

amounts to 42% resulting in a CE/share of USD 496.68.

This result might seem counter-intuitive, however, it can be explained by having a closer

look at equation (7.2). Customer lifetime values are a function of user profits and marketing

expenses. It would be intuitive to believe that, under the assumption of constant values for

CAC, π and ARPU, both values increase proportionally with a growing number of users.

In this case, it would always be profitable to add new users as long as costs of customer

acquisition are smaller than profits per user. However, as our proposed model is logistic,

when approaching the asymptotic limit of total users, despite constant nominal acquisition

rates, effective user growth decreases and thus effective CAC increase, ceteris paribus. While

marketing expenses are a function of nominal growth, user profits are a function of effective

growth, which, due to the logistic user evolvement, decreases when approaching K. Thus,

for a large number of existing users, paying atUtCAC results in an effective acquisition rate

that is smaller than the nominal acquisition rate at resulting in negative marginal CE values

and ultimately losses for adding new users.

From a managerial perspective this result can be justified by the following phenomenon:

The less users are left to acquire in the total population of potential users, the less effective

becomes an additional dollar of marketing expenses. That is, users that have waited longer

to subscribe are less likely to become customers at all, as they are typically less susceptible

to marketing campaigns and thus harder to acquire than early users. This is also the reason

why this effect shows more impact for scenarios with lower churn rates. The lower the churn

rate the quicker K is reached. In summary, adding new users adds value to the firm’s CE as
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Figure 7.6: Sensitivity of user base to carr-
ying capacity and net user growth

Figure 7.7: Sensitivity of CE to carrying ca-
pacity and net user growth

long as profits per user calculated by UtARPUπ are larger than the CAC times the nominal

acquisition rate at. In any case, the optimum is thus reached when profits per user are equal

to the effective costs of acquiring a new user.

Sensitivity over K: We have further analysed how changes in the carrying capacity

of the total number of potential users in the market affects user base and CE dynamics. To

do so, we varied K between 750 million and 1.25 billion users. Additionally, to investigate

how combinations of different values of K and net nominal growth rates (at− ct) affect our

results, we have further varied a0 to arrive at net user growth rates between -10% and 40%

p.a.9 The resulting sensitivities for the user base are presented in Figure 7.6 and for CE

estimates in Figure 7.7. Regarding the resulting user base at time T , it is not surprising

that the largest value is reached for the highest K and the largest net growth rate. Note

that, for small growth rates, the value of K does not show any influence, as the inflection

point of growth is not reached in the regarded time horizon of 15 years. However, for large

growth rates lower carrying capacities lead to significantly lower user bases, as K can never

be exceeded.

CE simulations draw a similar picture as the results presented in Figure 7.4 and 7.5.

However, we can additionally observe that increasing K allows for higher growth rates as

this pushes the point at which effective CAC exceeds per user profits further into the future.

The higher K, the longer high effective user acquisition rates can be sustained leading to

higher CE estimates. We can conclude that higher K values always lead to higher CE

estimates, however, the magnitude of the effect is highly dependent on the respective growth

rates as well as the specific combination of a and c. For our base case of 1.06 billion total

9In this example, c was set to 0.1 and a was varied between 0 and 0.5.
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Figure 7.8: Sensitivity of user base to un-
certainty in user acquisition and churn rates

Figure 7.9: Sensitivity of CE to uncertainty
in user acquisition and churn rates

potential users and a churn rate of 10%, the optimal net growth rate equals roughly 32%,

while for a K of 1.25 billion users it equals roughly 33% resulting in a CE/share estimate

of USD 577.01.

Stochastic model

Sensitivity over σa and σc: In this section, we present our results regarding the effects

of introducing uncertainty to the model. All simulations were performed with n = 100, 000

sample paths. In our base case, volatilities of at and ct were assumed to be equal and ρ

was set to −0.6, which resulted in an estimate of σa and σc of 0.0642. In order to analyse

potentially different combinations of volatility values, we have varied σa and σc between

zero and 20%. The results of our user base estimates are displayed in Figure 7.8 and for

CE estimates in Figure 7.9. We can observe that the higher the uncertainty, the lower the

resulting expected number of users and CE estimates. The highest numbers of users and

CE estimates are thus reached when σa and σc are equal to zero, which represents the case

without uncertainty. This might seem surprising, as expected values of GBMs are typically

unaffected by the magnitude of uncertainty. In our model, however, as there exists an

asymptotic limit of the total number of users, upside potential of effective user growth is

limited by the carrying capacity K. Thus, for large user bases, the total upside potential

of uncertainty in Ut becomes smaller than its downside potential. This phenomenon is also

the reason for the slightly left-skewed CE distribution presented in Figure 7.2. Hence, in

the absence of hedging mechanisms such as managerial flexibility, increasing uncertainty

decreases our CE estimates as K gets closer. Consequently, this effect is stronger for lower

K values.

The effect of adding uncertainty to the model is surprisingly high. For instance, the case
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with σa = σc = 20% results in an expected number of 645.72 million users and a CE/share

of USD 298.67 , while the case without uncertainty yields 993 million users and USD 492.97.

The coefficient of correlation ρ, that describes the co-movement of noise in at and ct also

takes a part in explaining the magnitude of the influence on simulation results. That is,

negative ρ-values increase the overall user growth uncertainty, which results in slightly lower

CE estimates. In general, a ρ-value of 1 does only eliminate the effect of uncertainty on net

user growth, but not on CE estimates, as combinations with different at-values show different

impact on CE estimates. If ρ = 1 and σa = σc, noise in at always results in equal noise in

ct, which always leads to the same net growth rate. A ρ-value of 0 describes a scenario in

which noise in acquisition and churn rates is independent from each other and a ρ-value of

−1 the case in which noise in ct evolves perfectly mirror-inverted to noise in at resulting in a

larger magnitude of uncertainty. The total impact of ρ on our simulation results, however,

is rather small and decreases with decreasing volatilities and larger distances of the current

user base to the asymptotic limit. For our example, varying ρ between −1 and 1 results in

varying CE estimates between USD 449.07 and USD 477.67.

Note that, the effect of uncertainty on the expected number of users and CE does not only

depend on the values for σa, σc and ρ, but also on the specific combinations of parameters

K, at, ct and U0. For instance, as the user base can never be smaller than zero, for a small

number of existing users, uncertainty has a positive effect on value of model results. In

general, when the distance of the user base to K is larger than the distance of the user base

to zero, CE distributions are right-skewed and thus expected values increase. In contrast,

when the distance of the user base to K is smaller than the distance of the user base to zero,

CE distributions are left-skewed and thus expected values decrease. Hence, the direction and

magnitude of impact of uncertainty depends on the specific combination of many different

input parameters.

7.3.4. Discussion and Strategic Considerations

From our sensitivity analysis results, we can conclude that marketing-induced user

growth can result in negative effects on a firm’s CE when the number of existing users

approaches the total number of potential users in the market. That is, the smaller the re-

mainder of potential users in the market, the more acquisition costs are necessary to acquire

a new user. We can further conclude that for different market sizes, different acquisition

rates are optimal. In general, the optimal amount of marketing and sales expenses is reached

when the effective CAC becomes equal to per user profits. Thus, the optimal nominal growth

rate also depends on effective user growth, the ARPU and their gross margin. Furthermore,

it is always more profitable to decrease churn rates rather than increasing acquisition rates,

as, in contrast to user acquisition, user retention does not induce additional costs.
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For our Netflix example, and in absence of managerial flexibility, uncertainty in user

growth negatively affects the total number of subscribing users and thus CE estimates.

However, this is not a generic finding, as uncertainty can have positive impact on model

results in case the distance of the number of users to K is larger than its distance to zero.

Negative correlation between uncertainty in acquisition and churn rates further increases

effects, however, the impact of correlation is rather small. Introducing uncertainty becomes

more critical the smaller the distance between the current user base and the total number of

potential users in the market. Thus, for seed and growth companies, where boosting mar-

keting costs still results in an exponential growth of users, adding users is always profitable

as long as per user profits are smaller than CAC.

Our findings suggest that it is not always advisable to further boost marketing expenses

to increase user engagement and acquisition. In our model, such initiatives only make sense

until the optimal level of a sustainable nominal acquisition rate is reached. As Netflix’s user

base is still in its growth stage and yet to reach the inflection point of user growth, increas-

ing acquisition rates still has a positive marginal effect on CE. In any setting, decreasing

churn rates and increasing market size represent the most promising managerial measures

to increase the company’s CE. The first could be achieved, for instance, by introducing a

reward system for loyal existing users or optimization of content offerings. The latter could

be accomplished by entering into new markets, either geographically or by product or BMI

that expands the number of potential customers. In presence of uncertainty, managerial

investment decisions can be modelled as real options, which can further add value to the

firm’s CE.

7.4. Summary and Discussion

This chapter extended existing literature on customer-based company valuation by using

a logistic birth-death-rate process, including an adjustment for uncertainty about growth

rates. We have discussed that traditional financial performance measures often fall short in

explaining, tracking and predicting the value of digital business models. We have explained

why traditional company valuation techniques have difficulties to justify the high market

capitalization of successful digital companies. This study suggests user-based company val-

uation techniques as a reasonable alternative that is derived from user-base diffusion based

on customer acquisition and retention mechanics. Building on existing literature that uses

deterministic growth curves to forecast user base diffusion, we have developed a stochastic

logistic company valuation model that presents a simple framework to integrate CBCV mod-

els with core finance concepts and include uncertainty around the most important metrics

for value-based management of user-driven businesses.
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We have also proven accuracy of our considerations by applying the model to estimate

the CE of three subscription-based digital companies. We have demonstrated how to esti-

mate the required input parameters to compute CE estimates based on publicly available

data. We compared our results with stock prices across time and concluded that the model

results track the investigated companies’ market capitalizations remarkably well. Despite

the simplicity of the model, user forecasting and CE calculation seem to be sufficiently ac-

curate and thus might perform better at explaining business value in the digital economy.

We do also recognize the limitations of our model: The presented model is only suitable

for valuing subscription-based businesses. As it assumes a fixed and known revenue stream

for every user, it does not apply to scenarios, where the users meet a more flexible mode of

participation, which breaks up the regularity which lies at the base of our calculations. Fur-

thermore, despite consideration of uncertainty, the model does not explicitly value potential

real options that relate to additional future growth opportunities, which are especially valu-

able in situations of high uncertainty. Future research could extend the model to freemium

business models, for instance by modelling two different revenue streams by user types and

a stochastic conversion rate, which describes the probability of a ’free user’ becoming a

’premium user’. The model could further be extended to be applicable to platform busi-

nesses by including random purchase volume and timing and the explicit value of network

effects. Finally, the model could also be extended to allow for valuing managerial flexibility

for digital companies, which would represent an interesting option for future research.
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Chapter 8

On Estimating Parameters of Digital

Investments: An Application to 3D

Printing

In the digital economy technology and information have transformed into one of the

core resources of businesses around the world. However, the increasingly important role and

rapid developments in technology markets represent a major challenge for managers when

it comes to investment decision-making. Real options literature provides a large number of

sophisticated models for managerial decision-making concerned with technology investments

under uncertainty. However, practical application with businesses is still very limited, one

major reason being the problem of estimating input variables.

8.1. Literature Review

One of the fastest growing branch of research on real options and technology is con-

cerned with IT investments. For instance, Ekström and Björnsson (2005) and Wu et al.

(2008) value a growth option using DTA to model the decision to purchase a new enterprise

resource planning system. Angelou and Economides (2008) and Angelou and Economides

(2009) provide a decision analysis framework for prioritizing a portfolio of information and

communication systems infrastructure projects by valuing a growth option and Bardhan et

al. (2004) value an IT project portfolio for an energy provider modeling projects as nested

option with interdependencies.

Another important branch of research that is based on technology diffusion is concerned
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with investments in R&D or new product development. While a large number of these

models are based on Dixit and Pindyck (1994)’s stochastic cost-to-completion model, several

extensions as well as applications have been developed. For example, Schwartz (2004) values

patents and R&D as real options modeling random time to completion as well as cash flow

uncertainty as risk factors. A portfolio approach is provided by Van Bekkum et al. (2009),

who use basket options to model R&D portfolio diversification applying portfolio theory

based on correlation and normal distributions. Not many studies exist that integrate R&D

real options models with technology forecasting techniques, an exception being Wang et al.

(2015), who develop a new methodology that integrates real options analysis with the Bass

technology diffusion model.

A more generic trajectory of real options research on technology investments is given

by articles on technology adoption investments. Grenadier and Weiss (1997) provide a

quantitative framework for investments in technological innovations, modeling migration

strategies under uncertainty based on stochastic technology arrivals. Doraszelski (2004)

provides an extension of this model by distinguishing between innovations and improvements

and determine the optimal adoption timing of new technologies. Regarding the risk of

technological substitution, Schwartz and Zozaya-Gorostiza (2002) provide a framework to

value disruptive innovations by modeling stochastic cost-to-completion and stochastic cash

flow over three development stages.

While vast research on technology investments exists, most scholars use generic stochas-

tic processes such as GBMs or Poisson jump processes to model the underlying stochastic

technology diffusion. These processes are widely applied and can result in neat analytical

solutions to derive general findings and investment strategies, however, they are subject to

strong assumptions such as constant growth and no upper limit and thus have their lim-

itations when it comes to practical implication. Furthermore, the majority of research in

this area feeds their models with fictional numerical examples to demonstrate their results,

while ignoring the process of input parameter estimations for real-world application. How-

ever, this remains to be one of the major challenges with investment decision models, as the

input values of, for instance, drift, volatility or jump frequency and magnitude parameters,

significantly affect model results and thus the efficiency of investment strategies.

In this chapter, we try to solve the problem of parameter estimation for technology

investments by showing how technology forecasting literature can help to estimate the re-

quired parameters for technology diffusion under uncertainty. Technology forecasting is a

broad field of research comprised by vast number of different approaches. Porter et al. (1991)

summarize that the main motivation of technology forecasting is to assess the impacts of

implementing a new technology on both the firm and its external environment. Then, it
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can help to identify the magnitude of impact technology induces in the market. Martino

(1993) highlights the importance of technology forecasting and provides details about the

reason why people try to predict the change of technology. In summary, he argues the main

reasons are as follows:

� to maximize gain from future events,

� to minimize loss associated with future uncontrollable events,

� to forecast demand for facilities, capital planning, etc.,

� to develop plans or policy for an organization or individual.

Thus, the main reason for the importance of forecasting technological progress is mainly

to maximize benefits or minimize losses. In other words, technology forecasting can help to

mitigate risks and enable improved decision-making.

Martino (1980) reports that there are two methods, trend extrapolation and Delphi,

which were mainly used for practical research in the 1970s. Delphi is a qualitative approach

using expert opinions and questionnaires. Trend extrapolation is an quantitative method

using easy analytical techniques, however, forecasting performance is poor for emerging tech-

nologies. Yoon and Park (2007) state that these methods have easiness to carry out, but

they also argue that more powerful methods have been introduced in more recent years with

the ease of database availability. Today, growth curves have become the most prominent

technique for technology forecasting. These models use logistic S-curves to estimate tech-

nology diffusion by applying curve fitting techniques to bibliometric data such as patents,

scientific publications or news related to the technology or technology bundle under consid-

eration. In this article, we show how to apply growth curves as a quantitative forecasting

technique to estimate technology diffusion and demonstrate the diffusion of 3D printing as a

numerical example. More precisely, we use the Bass (1969) model to describe the diffusion,

as it has proven solid results and is easy to integrate with investment decision models.

Accordingly, Massiani and Gohs (2015) try to estimate coefficients and market potential

for forecasting the development of the market for electric vehicles. Turk and Trkman (2012)

estimate broadband diffusion in European countries by using the Bass diffusion model. For

the estimation of their parameters, a nonlinear least squares curve fitting model is used.

They include 20 European countries and find that parameters differ between countries.

Tunstall (2015) tries to estimate the Eagle Ford Shale oil and gas development in south

Texas. The author’s approach uses non-linear least squares techniques to fit the curve to

the data and estimate diffusion parameters.

While various data sources are applied for curve fitting, in this chapter, we use bibliomet-

ric data about patents, scientific publications as well as news articles, as it includes ample
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information for forecasting emerging technologies. A large amount of patents or publications

indicates that there is an optimistic view in terms of economy and technological development

as R&D is costly and time intensive (Daim et al., 2006). Campbell (1983) highlights the

importance of using patent data for technology forecasting as patent data exhibits typical

growth patterns for technology markets such as emerging, maturing or declining. Ernst

(1997) reinforces the usefulness of patent analysis by using Japanese and German patenting

activity for forecasting CNC-technologies in the machine tool industry. Similarly, Altuntas

et al. (2015) summarize the historical development of technology forecasting methods using

patent data. Rotolo et al. (2015) define emerging technologies and find that they exhibit

uncertainty and ambiguity in their practical usage and possible impacts on the market. The

authors argue that, in addition to patents, publications in academic journals can help to

forecast emerging technologies whose fundamental or applied research is still ongoing. For

example, Watts and Porter (1997) use data from the science citation index and the engi-

neering index as technology life cycle indicators for technologies in the basic research phase.

Similarly, Daim et al. (2006) use a combination of patents and academic publications to

forecast laser diode and fuel cell technologies.

As 3D printing is still a relatively young technology and application areas, markets and

business models are yet to be defined, forecasting technological progress is an important task

when it comes to deciding where and when to invest in this technology. In the following, we

present a simple quantitative framework about how technology diffusion can be predicted

based on publicly available data. The structure of this chapter is as follows. First, we

demonstrate how the required historical data for the input of the forecasting model can be

obtained. Second, we apply existing technology forecasting methods to this data on patents

and other bibliometrics and come up with an estimate of future technology diffusion for

3D printing products and services. Third, we discuss different estimation methods and

provide some sensitivity analysis about the carrying capacity, i.e. the asymptotic maximum

of future patents/publications. Fourth, we introduce a stochastic version of logistic S-curve

models for technology diffusion, estimate the volatility of 3D printing diffusion and link the

estimation results to the diffusion of the global 3D printing market. Finally, we use our

parameter estimation results to demonstrate a numerical example that compares the value

and exercise strategies of a timing option between the chosen model and a standard GBM

model.

8.2. Data Collection

It is necessary to obtain an understanding of the different 3D printing technologies and

their advancement as well as the spread of related services to forecast the 3D printing

market. We have identified ten major types of 3D printing technologies in 2019. Table
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8.1 lists these ten technologies. We thought of them as basic technologies for 3D printers

and used the number of research papers, patents and news articles on these technologies to

determine current technological state and future progress. We further collected the same

bibliometrics for the keywords ’3D printing’ and ’additive manufacturing’, as they typically

include information on not only certain technologies, but also about services and applications

that facilitate or are frequently used in conjunction with 3D printing. By using this data,

we aimed to identify patterns that tell us about the stage of development of 3D printing

technologies including research as well as practical application.

Table 8.1: Most prominent types of 3D printing technologies in 2019

Fused Deposition Modeling (FDM) Selective Laser Melting (SLM)
Stereolithography (SLA) Electron Beam Melting (EBM)

Digital Light Processing (DLP) Material Jetting(MJ)
Selective Laser Sintering(SLS) Drop on Demand(DOD)

Direct Metal Laser Sintering (DMLS) Sand/Metal Binder Jetting (SBJ/MBJ)

In order to retrieve the described data, we have accessed several databases. First, in

order to collect the number of published research papers, we used the Science Citation

Index (SCI) by Web of Science and the academic database Scopus. Web of Science was

launched in 1961 and includes about 12,000 journals. This database focuses on academic

journals in the fields of science and social science. Scopus was launched in 2004 and includes

about 20,000 journals. This database places its focus on academic journals in the fields of

science, technology and medicine. As can be seen in the number of journals recorded, Scopus

is considered to have slightly less restrictive acceptance standards than Web of Science,

however, both databases stand for the highest quality of academic research.

Second, to obtain the number of news articles that are related to 3D printing, we collected

data from Dow Jones’s news database Factiva. Factiva includes more than 32,000 data

sources across 200 countries focusing on business information. It incorporates not only

newspapers, but also online business articles and magazines and is thus a good indicator for

breakthroughs in science with regard to business applications.

Third, to get the number of patents related to 3D printing technologies, we used the

Derwent Innovation Index (DII). Despite the existence of many patent databases containing

citation information, the DII is often used for economic analysis of technological changes

(Tomizawa, 2007). It represents an integration of two databases, namely the ’Derwent

World Patents Index’ and the ’Derwent Patents Citation Index’. The first includes data of

the patent family and the latter is a database that focuses on citation information.

We have accessed the described databases to search for the annual number of patents,
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scientific publications and news articles for each of the ten major technologies as well as

our two keywords. Data was gathered for the time interval from 1990 to 2018. We choose

this time period, as there were almost no publications on 3D printing before 1990 and, at

the time of our analysis, there was still a large amount of articles and patents missing for

2019. In order to ensure that all search results were strongly related to 3D printing, we have

entered the keywords into the search engines in a way that it includes titles, abstracts and

keywords. In Appendix A.5, we provide a brief description of the resulting data sets.

8.3. Estimation Method and Results

The mixed-influence model for our 3D printing example can be expressed using equation

dN (t)

dt
=
(
p+

q

m
N (t)

)
(m−N (t)) , (8.1)

where N(t) is the cumulative number of technology adopters at time t, m is the ultimate

ceiling (i.e. upper limit) of all potential adopters, p is the coefficient of innovation and q is

the coefficient of imitation. According to equation (8.1) the cumulative number of adopters

N(t) thus follows a S-shaped curve that converges to the total number of adopters m when

the technology matures.

There are several methods for estimating the parameters of innovation diffusion models.

The Ordinary Least Squares (OLS) method is one of the earliest methods for estimating

the parameters as suggested by Bass (1969). This method estimates the parameters by

discretizing the differential equation and estimates regression coefficients to come up with

values for p, q and m. However, for our 3D printing data, the OLS method performed

very poorly and was not able to show meaningful results. That is, most forecasts did not

exhibit smooth logistic S-curves as they are expected when applying the Bass model. In fact,

some of the estimates resulting from SCI, Scopus and Factiva data even became negative.

Contrarily, the estimated number of future patents showed a sudden jump to infinity in

2029. The main reason for these unrealistic results is the lack of data points, which leads

to unstable estimates, as explained in Mahajan and Schmittlein (1982). Due to the novelty

of 3D printing, the data on research papers and patents in each year is not sufficient for the

OLS method, which is why we refrain from presenting our OLS results in more detail.

Maximum Likelihood Estimation (MLE) fitting is a prominent alternative for the Bass

model that has been first proposed by Mahajan and Schmittlein (1982) for estimating an in-

novation diffusion model of new product acceptance as originally considered by Bass (1969).

For details on the implementation of the MLE methods we have employed in our analysis,

refer to Appendix A.6.
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8.3.1. Results

In this section we apply the described MLE curve fitting technique to our 3D printing

example. More precisely, we fit the Bass model to the collected bibliometric as well as patent

data to estimate growth curves for 3D printing diffusion. The results of the MLE forecasts

are illustrated in Figure 8.1.
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Figure 8.1: Estimation results by MLE method - M was set to 100 times the respective
cumulative number of hits in 2018

We receive effective estimates that result in realistic logistic S-curves. Figure 8.1a shows

our forecast using the sum of SCI, DII and Factiva data, 8.1b the sum of Scopus, DII

and Factiva data, 8.1c the sum of SCI and DII without Factiva data and 8.1c the sum of

Scopus and DII without Factiva data. The graphs show that the forecasts including news

articles lead to higher ceilings and faster growth. This is not surprising as Figure A.2 in

Appendix A.5 shows that there was a drastic increase in news articles especially for ’3D

printing’ from 2010. For the same reason, however, these forecasts suggest that 3D printing

is going transition into its maturity stage before 2030, which seems somewhat unrealistic.

According to the graphs in Figure 8.1, 3D printing will enter its maturity stage before 2030,

additive manufacturing around 2040 and the sum of technologies around 2035. It is further

noteworthy that, while the curves for additive manufacturing and 3D printing differ strongly
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between data sources, the forecasts for the sum of technologies seems to be more stable.

These curves show similar shapes in all four graphs. Finally, regarding Figure 8.1c, we can

observe that all three curves are relatively close to each other indicating that SCI + Patents

exhibits the smallest keyword bias. Thus, in the next section we proceed our analysis using

the results from forecasting the sum of technologies based on the sum of SCI and patent

data as illustrated by the blue curve in Figure 8.1c.

8.3.2. Sensitivity Analysis

Building on the estimates obtained in the previous section, in the following, we introduce

some analytical methods that provide a better understanding of the results and their stabil-

ity. It is the purpose of this study to introduce a framework to find an answer to questions

surrounding technology investments as they are frequently faced by managers. Two ques-

tions are particularly in focus of this study. First, how far are the 3D printing technology

and related business applications going to spread in the future? Second, in which phase of

the technology life-cycle is 3D printing currently positioned, i.e. is it an emerging, growth

or maturing technology?

In order to find an answer to these questions, we applied the Bass model to publicly

available data on 3D printing and performed an estimate for 3D printing technology diffu-

sion. In the Bass model, m denotes the asymptotic growth ceiling and thus determines how

important the 3D printing technology will ultimately become. Estimating this parameter is

both difficult and important, as it shows the most crucial effect on our results. As 3D print-

ing is still a relatively young technology, we had to estimate m based on a small data set.

Typically, small data sets result in unstable estimates of m. Thus, in order to investigate

the stability of our results, in the following, we present some sensitivity analyses about this

critical parameter.

In order to estimate the Bass model parameters using the MLE method it is initially

necessary to manually set a value for M . In contrast to m, which describes the actual

number of ultimate adopters, M describes the total population of all specimens that have

the possibility to adopt. As can be seen from equation (A.2), m is a subset of M and thus

has an influence on estimates of m. In the following, we provide our results of performing

sensitivity analysis over M for the described data set. We can assume that M is larger

than the collected cumulative number of patents or publications in 2018. Therefore, in our

sensitivity analysis, we assigned values to M such that it is between 1 and 10, 000 times

larger than the cumulative number of patents and publications in 2018. To determine the

possible range of m, for each value of M , we re-estimated the parameters of the Bass model

by applying the MLE method as described in Appendix A.6. Figure 8.2 shows the results

of estimating m for these different values of M .
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Figure 8.2: Sensitivity analysis results for m

The vertical axis of Figure 8.2a describes the value of m and the horizontal axis represents

the value of the multiple b of M such that M = bNt=2018. We can observe that, for some

cases, the value of m increases approximately linearly when b is increased. However, in most

cases, m seems to fall into a certain range that does not exceed 1.5 million. In order to clarify

the likelihood of m not exceeding this range, we further computed the empirical cumulative

distribution function of m, as illustrated in Figure 8.2b. The vertical axis in Figure 8.2b

indicates the cumulative probability and the horizontal axis describes the value of m. Until

a cumulative probability of around 0.4, the curve is very steep, which means that m has

a high likelihood of taking a value within a small range. When exceeding a cumulative

probability of 75%, however, the curve flattens out. The cumulative probability of 0.9 is

exceeded when m equals around 200 million. We can conclude that, when estimating m by

MLE, changing M causes fluctuations in estimates of m. While there is a tendency of m

falling into a small range of values for large differences in M , for our 3D printing example,

the effect of changes in M on m are rather large.

Table 8.2: Example percentile of m for different values of M

percentile 2.5 25 50 75 97.5
m 1, 389, 068 1, 396, 142 1, 5304, 117 45, 390, 869 346, 679, 981

Table 8.2 highlights the range of realistic values of m when varying b between 1 and

10, 000. The table summarizes representative quantiles with respect to Figure 8.2b. Ac-

cordingly, the 95% confidence interval for m is [1, 389, 068; 346, 979, 981]. Thus, despite the

initial steepness of the CDF shown in Figure 8.2b, the range of m on this confidence level is

extremely large. In other words, there is a high degree of uncertainty regarding the estimates
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of m for our 3D printing example. In order to investigate the effects of this uncertainty,

we further analyzed how changes in M affect the location and shape of the S-curve and

parameters p and q.

First, we analysed the sensitivity of the inflection point of the S-curve towards different

values of M . This is an important measure, as it defines the point at which half time growth

of the technological progress is reached. It also describes the point in time at which growth

rates start to decrease. The mid point can be calculated by substituting the estimated

parameters p and q into the following equation:

T ∗ = − 1

p+ q
ln

(
p

q

)
, (8.2)

where T ∗ is inflection point.
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Figure 8.3: Mid point simulation for 10,000 different values of M

Again, we simulate the value for the 10,000 different values of M . The simulation results

can be found in Figure 8.3. The horizontal axis describes the year and the vertical axis

describes the resulting frequency of inflection points as performed by our simulation. The

graph suggests that for most values of M , the inflection point is estimated to be reached

in 2026. Almost 4,000 out of the 10,000 simulated curves have their mid point in 2026 and

almost no curve has its mid point in neighboring years. Thus, the mid point simulation shows

very stable results indicating that the inflection point of 3D printing progress is reached in

2026 regardless of the value of M . That is, the annual number of new SCI publications and

DII patents on 3D printing is going to grow until 2026 before growth rates start to decrease.

98



0.000

0.001

0.002

0 2500 5000 7500 10000

Multiple b for M

C
o

e
ff

ic
ie

n
t 

o
f 

in
n

o
v
a

ti
o

n
 p

(a) Result of parameter p simulation, n =
10000

0.0

0.1

0.2

0.3

0.4

0.5

0 2500 5000 7500 10000

Multiple b for M

C
o

e
ff

ic
ie

n
t 

o
f 

im
it

a
ti

o
n

 q

(b) Result of parameter q simulation, n =
10000

Figure 8.4: Sensitivities of p and q towards m

Next, to further investigate the reason for the independence between M and the inflection

point, we have analyzed sensitivities of parameters p and q towards M . The results are

summarized in Figure 8.4. Again, we varied the value of b to find out how changes in M

affect our results. Figure 8.4a indicates that the value of parameter p fluctuates between 0

and 0.001 and thus hardly changes with any variation in M . Similarly, Figure 8.4b shows

that the value of parameter q stays between 0.1 and 0.2 and thus hardly changes with

changes in M . Therefore, the independence of the inflection point and the value of M is a

result of the negligibly small sensitivities of p and q towards M .

In addition to the inflection point that describes the time at which half of technological

progress is reached, it is further important to determine the current and future technological

stages of the technology. In order to conduct this analysis, we defined the periods when the

cumulative probability of the S-curve reaches from the 0% to 30% as emerging stage, 30%

to 70% as growth stage and from the 70% to 100% as the maturing stage. Accordingly,

technological stage periods were calculated for each of the selected S-curves.

Table 8.3: Distribution of innovation phases; frequency of transition points between tech-
nological stages of 3D printing

Maturing stage from 2031 Maturing stage from 2032
Emerging stage until 2021 29 0
Emerging stage until 2022 1507 20

Table 8.3 shows the frequency of transition points from emerging to growth and from

growth to maturity stages. The table shows that for any of the 3913 different values of

M that resulted in a mid point in 2026, the timing of the transition from the emerging to

the growth stage and from the growth to the maturing stage are roughly the same. That
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is, 1507 of the curves show their emerging stage until 2023 and their maturing stage from

2031, while none of the curves had their emerging stage until 2022 with a maturing stage

from 2032. Therefore, we can underline the result that p, q and the technological stage are

insensitive to M . Following the logic of these results, technological stages of 3D printing

are as shown in Table 8.4. We can conclude that, with high certainty, 3D printing can still

be declared an emerging technology that is going to transition into its growth period from

2023 and start to mature from 2031.

Table 8.4: Most likely technological stage periods of 3D printing

Emerging Growth Maturing
Period 1990-2022 2023-2030 2031-2064

Finally, in order to analyze the most likely dynamics of innovators and imitators as given

by the Bass model, we had a closer look at parameters p and q. The numbers of innovators

and imitators at each point in time are calculated by the following expression provided by

the Bass model’s analytical solution:

N1(t) = m
p

q
ln

[
1 + q

p

1 + q
p
e−(p+q)t

]
, (8.3)

where, N1(t) is the number of innovators each year,

N2(t) = N(t)−N1(t), (8.4)

where N2(t) is the number of imitators each year and

n(t) = m

[
p(p+ q)2e−(p+q)t

(p+ qe−(p+q)t)2

]
, (8.5)

where, n(t) is the number of total publications / patents on 3D printing each year.

Using these equations, the most likely numbers of innovators N1 and imitators N2 are

calculated. For that purpose, it is necessary to specify parameters m, p and q. Sensitivity

analysis on the inflection point showed that the position of the inflection is independent

of changes in M . Table 8.3 showed that the technology phase is roughly the same for any

S-curve chosen by this criterion. Therefore, a model with a growth stage from 2023 to 2030

and an inflection point in 2026 was selected to calculate the variables. One combination

of the respective parameters p, q and m that describes these dynamics for our 3D printing

example is listed in Table 8.5.
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Table 8.5: Bass model parameters of the selected model

p q m
Value 0.0007279 0.1318882 1, 394, 527
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(c) Annual number of adopters

Figure 8.5: Summary of the Bass model results applied to 3D printing technologies

Figures 8.5a and 8.5b show the resulting cumulative number of innovators and imitators.

The figures show that the number of innovators started to increase in 1990, while the num-

ber of imitators has started to grow significantly from around 2010. Additionally, we can

see that innovators are going to start to mature around 2030, while the number of imitators

continue to increase until around 2050. Figure 8.5c describes the annual number of new

adopters of 3D printing. We can see that the growth rate peaks in 2026. Thus, we can

expect that the technological progress of 3D printing is further going to pick up speed gen-

erating most progress within the next couple of years. Despite the decrease in growth from

2026, the model suggests that there will still be new adopters of 3D printing until around

2070, which represents important insights when it comes to investment decision-making.
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8.4. Stochastic Logistic Growth Models

8.4.1. Stochastic extensions of deterministic models

Most technology forecasting models use deterministic functions to estimate technology

diffusion. While these models can provide an idea about the expected development of

the analysed technology, they do not allow for uncertainty, which makes scenario analysis

and planning difficult. Thus, in order to find out about the distribution of technology

states across time, we have to include uncertainty. This enables us to measure the risk of

technology-related investments (e.g. by calculating relevant risk measures) or value potential

real options, which are especially interesting in the context of managerial decision-making.

More precisely, stochastic technology growth models can be a valuable tool for optimizing:

� technology adoption strategies,

� R&D investment strategies,

� IS or IT investment strategies,

� venture capital investment strategies,

� (tech-)company valuation techniques,

� technology-based trading strategies.

There are several ways to make deterministic logistic growth models such as the Bass

model probabilistic. The most common approach is to add noise to the differential equation,

that then describes the expected development of a technology. Existing literature presents

three different ways to do so. The first method is to add noise to the accumulated number

of published articles and patents as in Giovanis and Skiadas (1999) such that

dN(t) =
(
p+

q

m
N(t)

)
(m−N(t)) dt+ σN(t)dW (t), (8.6)

where p is the coefficient of innovation, q is the coefficient of imitation, m is the carrying

capacity, σ the instantaneous volatility of N(t) and W (t) is the standard Wiener process.

A second possibility to include uncertainty into the mixed-influence model is to add noise

to the growth rate g(t), see, for example, Eliashberg et al. (1983) and Lungu and Øksendal

(1997). Applied to the mixed-influence model N(t) could evolve such that

dN(t)

dt
=

(
p(t) +

q(t)

m
N(t)

)
(m−N(t)) , (8.7)
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with stochastic coefficients of innovation and imitation following GBMs such that

dp(t) = µpp(t) + σpp(t)dW p(t),

dq(t) = µqq(t) + σqq(t)dW q(t),
(8.8)

while µp and µq describes the expected changes in p(t) and q(t) and σp and σq their instan-

taneous volatilities.

The third and less common option that can be found in literature is including noise in

the asymptotic ceiling or carrying capacity m(t) as in Anderson et al. (2016). In conjunction

with the mixed-influence model, we can express the diffusion of N(t) such that

dN(t)

dt
=

(
p+

q

m(t)
N(t)

)
(m(t)−N(t)) , (8.9)

with a stochastic carrying capacity m(t) that follows a GBM. That is,

dm(t) = µmm(t) + σmm(t)dWm(t), (8.10)

while µm describes the expected changes in m(t) and σm its instantaneous volatility. For a

graphical illustration of the three different diffusion models, see Appendix A.7.

All three presented approaches show some noise in N(t). However, we can observe some

important differences between the different realizations. First, (8.7)-(8.8) (Figures A.3c and

A.3d) make the implicit assumption that, despite noise in growth rates, the ceiling m can

never be exceeded. This assumption is the reason for the extremely skewed distribution

of the histogram in Figure A.3d. However, as discussed in section 8.3.2, there exists high

uncertainty concerning the value of m, which has the potential to significantly influence our

estimation results. An example for the simulation of equations (8.9)-(8.10) is illustrated in

Figures A.3e and A.3f. This model includes uncertainty about the value of the ceiling m

into our estimates. We can observe that different realizations of m lead to compression or

stretching of the curve that unfolds the largest effect at the end of our simulation horizon.

Interestingly, earlier points in time are hardly affected by including uncertainty in this way.

This is in line with our findings from Section 8.3.2 indicating that slope and inflection point

hardly change with varying values of m. However, it might not be realistic to assume such

a high certainty about slope and mid-point of the underlying technological diffusion. Thus,

equation (8.6) with sample realizations illustrated in Figures A.3a and A.3b represent the

most realistic uncertainty pattern for our application example. In contrast to the model with

uncertainty about p and q, this model allows for exceeding m. Furthermore, the normally

distributed noise evolves symmetrically across time, which represents the desired setting.

Thus, we proceeded our analysis choosing the model from equation (8.6) as the best fit for
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our desired setting.

8.4.2. Volatility Estimation

The stochastic model we choose for our application is the SDE as presented in equation

(8.6). It can be written as the general form

dft = µtffdt+ ctftdwt, (8.11)

where µt is the drift and ct is called volatility coefficient. Existing literature provides us

with a systematic approach to estimate ct. That is, suppose the values of µt are already

known, then ct can be estimated using Ito’s lemma.10

Based on the assumption that the external and internal influence on the diffusion process

is independent of the whole system’s noise, the estimation for a constant value c on a set of

real data of length T , is

ĉ =
1

T − 1

T∑
t=2

∣∣∣∣∣ft − ft−1√
ftft−1

∣∣∣∣∣ , (8.12)

while ft describes the the number of observations at time t.

The presented estimation method is applied by a vast number of researchers. Skiadas

and Giovanis (1997) and Giovanis and Skiadas (1999) use stochastic Bass models to study

the innovation diffusion in the electricity consumption in Greece and the United States. The

authors use MLE methods to estimate the drift and equation (8.12) for estimating future

volatility from historic data. Similarly, Gutiérrez et al. (2005) use a stochastic Gompertz

model to forecast the natural-gas consumption in Spain, using a similar version of equation

(8.12) to come up with a volatility estimation. The authors use their estimation of c to

calculate confidence intervals and show that between 1973 and 2003, the observed real data

is well within the limits of the resulting confidence interval. In the following section we

apply their approach to the estimation of the volatility coefficient for our 3D printing data.

8.4.3. Application to 3D Printing

We have presented several approaches to estimating the parameters for the deterministic

Bass model based on the collected data for 3D printing technologies. In this section, we

extend this estimation by adding a probabilistic diffusion term to the deterministic model

10For derivation of the estimation for a non-linear SDE, see Katsamaki and Skiadas (1995).
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as in equation (8.6) and estimate the volatility coefficient as in equation (8.12). As in

accordance with existing research, we use some results from the prior sections that have

been estimated by applying MLE techniques. Thus, the combination of p, q and m as

provided in Table 8.5 defines our expected technology development, while the volatility

coefficient c is to be estimated as described in equation (8.12). Some simulation results for

our 3D printing example based on SCI and DII data are illustrated in Figure 8.6.
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Figure 8.6: Simulation results for SCI + DII MLE estimation including uncertainty -
p = 0.0007279, q = 0.1318882, m = 1, 394, 527, c = 0.162278, 100 simulations, annual
discretization

The figure shows the expected progress of 3D printing technologies as described in Sec-

tion 8.3 and the 95% confidence interval of our simulation that includes noise in N(t). In

our example, the estimated annual volatility amounts to 0.162278. We can observe that

the added volatility coefficient results in sample path trajectories that fluctuate around the

expected diffusion, resulting in a broad spectrum of potential realizations. However, as the

modeled uncertainty increases over time, it unfolds rather small effects on the steepness and

shape of the curve in earlier years. Most of the uncertainty is associated with the ultimate

upper limit of technological development, which is in line with the findings from our sen-

sitivity analysis. Thus, when applying this logic to technology investments we can expect

that investment timing is less critical than investment scale and that short-term investments

into 3D printing are not subject to high levels of uncertainty. However, regarding long-term

investments such as newly entering into the 3D printing market or future growth opportu-

nities that are related to this technology, uncertainty can play a crucial role.
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8.4.4. Linking the Results to Technology Performance

Most existing research concerned with technology forecasting solely focuses on finding

trajectories of the cumulative number of patents or publications for the respective technolo-

gies. For example, Daim et al. (2006) forecast the number of patents and publications for

emerging technologies to find the timing of substitution by applying the Fisher-Pry model.

Similarly, Trappey et al. (2011) feed a simple logistic S-curve model with data on China’s

RFID patents to estimate upper limits, time of maturity and technological stages and Chen

et al. (2011) forecast the number of future patents on hydrogen energy and fuel cell tech-

nologies focusing on growth periods, mid-point of the logistic S-curve and technology stages.

As presented in Section 8.3, these models can provide us with important insights regard-

ing the relative importance of certain technologies as well as growth stages and substitution

timing of mature technologies. However, when it comes to investment strategies, the num-

ber of publications might not suffice as a performance indicator relating to economic value.

Thus, the projected cumulative number of patents and publications should be translated into

monetary performance measures that can serve as a proxy for managerial decision-making.

While vast research on technology forecasting exists, it tells us little about how to link

bibliometric data to technological performance measures. Lee et al. (2010) provide a study

on the relationship between technology diffusion and product adoption by comparing patent

citation data with mobile phone adoption data and find that technology diffusion can explain

demand quite well. Kim and Bae (2017) analyze patent forward citations, triadic patent

families and independent claims to assess whether technology clusters are promising and

forecast their diffusion. Depending on the way how a new technology is planned to be

deployed, different performance measures are crucial.

For instance, consider a company that wants to enter into the 3D printing market,

by offering products or services that are used with 3D printers. The success of such a

business model will then highly depend on the future size of the 3D printing market and the

expected market share of the investing company. In contrast, if a business wants to invest

in 3D printing technologies for product manufacturing or to optimize its existing supply

chain by printing spare parts on site, printing cost and efficiency play a more critical role

in assessing investment opportunities. Typically demand, adoption and efficiency increase

while costs decrease when the underlying technology matures. However, in order to make

informed investment decisions, we need to estimate the trajectories of these numbers. We

have learned that patents and bibliometrics can help us to describe and forecast technological

diffusion. Thus, we can expect that these numbers also highly correlate with more relevant

measures that indicate how technology markets or performance evolve.
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As a concluding discussion, in the following, we briefly present a simple approach to link

the presented bibliometric forecasting results to demand. In our example, global demand

for 3D printing products and services is represented by the global 3D printing market size.

We choose this measure, as market size is a crucial economic measure and various studies on

the global 3D printing market exist that determine and predict historical as well as future

market sizes. Market size estimates from these studies are often freely accessible online. We

included 11 data sources provided by well-known market research institutions resulting in

42 point estimates of the global 3D printing market size between 2003 and 2027. According

to these estimates, the global 3D printing market size was 530 million US Dollars in 2003

and has increased to an average of 14.15 billion US Dollars in 2019. The market is further

expected to reach 55.8 billion US Dollars by 2027. The average compound annual growth

rate in this period is estimated to amount roughly 20%.

In order to analytically obtain the trajectory of the total market size, we run a linear

regression model using market size as the dependent variable and the sum of the cumulative

numbers of annual SCI publications and DII patents as the independent variable. The

regression results can be summarized as follows. The coefficient that defines the slope of the

regression curve amounts to USD 83, 560 per publication/patent and is highly significant

with a p-value of < 2.2e − 16. The model has a extremely high explanatory power with

an adjusted R-squared of 0.8786. Thus, we can conclude that there is a strong linear

relationship between the annual number of cumulative patents and publications and total

market size. We predict the market curve by using this linear regression model based on the

estimated cumulative number of publications and patents obtained by MLE curve fitting

as explained in Section 8.3. The resulting curve as well as the collected point estimates are

illustrated in Figure 8.7.
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Figure 8.7: 3D printing market prediction. Point estimates of provided by: Statista,
Wholers, Allied Market Research, Markets and Markets, Mordor Intelligence, Transparency
Market Research, Smitherspira, International Data Corporation, BCC Research, IMARC
Group and Verified Market Research

The S-curve describes the market prediction based on the regression model while the

circles illustrate the collected market estimates. The dashed vertical line highlights the mid

point of the curve in 2026. The results suggest that, the chosen data on publications and

patents track the market growth of 3D printing remarkably well. Despite the high growth

rate in 2019, only a small fraction of the total market size is reached. The curve further

suggests that the market will grow to a total size of almost USD 100 billion reaching its

maturity around 2040, which is in line with the results from Section 8.3. Thus, as 3D

printing is currently approaching its transition point from an emerging technology to a

growth technology, the market will face exponential growth within the next few years and

investments into this market can still unfold a huge potential.

8.4.5. Comparison of the Geometric Brownian motion model with the Stochas-

tic Bass Model

In order to examine the effect of employing the Bass model, we consider a standard

capital budgeting problem with managerial flexibility about investment timing. We demon-

strate how the proposed model affects the value of an investment project by comparing it

to that under a standard GBM setting.

Let us consider a company that can invest an initial amount X to enter into the 3D

printing market. The value of the project is described by its NPV. It can be calculated by

discounting all future net cash flows to the company after entering the market. As shown in
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the previous section, the total 3D Printing market size is dependent on the future number

of cumulative patents and publications N(t), which is subject to uncertainty. The company

uses two different models to estimate the diffusion of N(t). The first model is the stochastic

Bass model as introduced in equation (8.6). The second is a GBM, which is the standard

approach to option pricing in Real Options literature. It can be described by the stochastic

differential equation

dN(t) = µN(t)dt+ σN(t)dW (t),

where µ is the expected rate of growth in N(t), σ the volatility and dW (t) is the Wiener

increment.

As shown in the previous section, the expected market size at any time t can be estimated

by

M(t) = gN(t), (8.13)

where g stands for the rate at which the market grows for each new patent or publication.

Let us assume that the NPV can be calculated by applying a predefined revenue multiple

R to the expected market size M(t). Then, the NPV of the project at any time t can be

calculated by computing

NPV(t) = RM(t)s, (8.14)

where s is the expected market share of the investing company.

Let us further assume that the company holds the option to choose the investment

timing. Expected future values of NPV(t) will be dependent on market size diffusions. The

option to defer can be modelled as an American-style call option on the project’s NPV with

strike price X. Thus, the immediate payoff at time t is given by

Π(t) = NPV(t)−X, (8.15)

resulting in the claim value of the timing option at t0 of

V (t0) = max
t∗∈T (t0,T )

{
0,EP (t0)[e−r(t

∗−t0)Π(t∗)]
}
, (8.16)

where T (t0, T ) is the set of stopping times in [t0, T ] and EP (t0)[·] is the expectation with

respect to the physical measure P , conditional on the information available at t.

We consider the typical optimal investment problem based on the usual complete prob-

ability space with finite time horizon T . Option values considered in this subsection are

evaluated under the physical probability measure. The validity of the risk-neutral probabil-

ity measure is discussed in Borison (2005).
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Table 8.6: Input parameters for both models

Parameter GBM Bass Estimation method
N0 42,455 42,455 Cumulative number of SCI publications and patents in 2018
p - 0.0007278993 MLE estimation
q - 0.1318882 MLE estimation
m - 1,394,527 MLE estimation and sensitivity analysis (best fit)
σ 0.142937322 0.162278 Estimated from historical data*
µ 0.096379829 - Estimated from historical data*
r 10% 10% Assumption
X USD 10 billion USD 10 billion Assumption
T 1 - 35 years 1 - 35 years Assumption
g USD 83,560 USD 83,560 Estimated by linear regression
S 3% 3% Assumption
R 10x 10x Assumption

*Estimation of σ for the Bass model was estimated according to equation (8.12). For the GBM, σ and
µ were calculated from the same data set of the historical numbers of cumulative SCI publications and
patents from 1990 to 2018. σ is estimated as a sample standard deviation of log returns and µ − 1

2σ
2 is

estimated as a sample mean.

For both models, we use Monte Carlo simulation to approximate the continuous-time

model by choosing an integer l so that the time span [t0, T ] is divided into l intervals whose

length is ∆t = T
l
. The value process of a contingent claim on NPV(t), with maturity T

and payoff Π(t), can be computed using the Least Squares Monte Carlo (LSMC) method

as introduced by Longstaff and Schwartz (2001). We choose this method as the LSMC

can be applicable to both stochastic Bass and GBM in the same framework. It is valid to

compare the real option value under the two different stochastic processes. We generate

40,000 sample paths for both models under annual discretization. At each point in time t

and for all sample paths ω, we compute the continuation value by regression and compare

it with the discounted immediate payoff. Like in any American option valuation procedure,

the optimal exercise decision at any point in time is obtained as the maximum between

the immediate exercise value and the expected continuation value. Given that the expected

continuation value depends on future outcomes, the procedure must work its way backwards,

starting from the end of the option’s time horizon T .

Plugging in the previously estimated input parameters as listed in Table 8.6, according

to equation (8.14), the value of the project without managerial flexibility at t = 0 equals

roughly USD 1.064 billion at an initial investment outlay of USD 10 billion. Thus, without

the option to wait, the project would yield a highly negative NPV and would thus be

rejected.
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Table 8.7: Simulation results

Value of the investment project including the timing option (in million USD)
T = 5 T = 10 T = 15 T = 20 T = 25 T = 30 T = 35

GBM 0 0.6 26.4 144.4 331.7 512.9 649.4
Bass 0 488.7 1,436.2 1,726.0 1,780.7 1,790.0 1,792.0
Exercise probability

T = 5 T = 10 T = 15 T = 20 T = 25 T = 30 T = 35
GBM 0% 0.1% 4.3% 21.1% 45.6% 67.4% 82.2%
Bass 0% 50.4 % 89.9% 95.7% 96.1% 96.2% 96.3%
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ence between option values of the two models.
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(b) Approximated optimal exercise timing for
the two models for varying option maturities.
t∗ denotes the expected optimal exercise timing
of the respective timing option with maturity
time T . Note that values of t∗ = 0 suggest that
the option will never be exercised and that the
project should be rejected despite the existence
of a timing option.

Figure 8.8: Real Options Analysis Results - Comparison between the stochastic Bass model
and the GBM

Computing the value of the timing option V (t0) yields different results for the two

different models. Table 8.7 lists the resulting option values as well as approximated exercise

probabilities for both models under different option maturities T . The table shows that

there are significant differences in option values between the two models. That is, the Bass

model yields much higher option values and exercise probabilities than the GBM for all

regarded values of T except for the case of T = 5. The relative difference of these values

first increases substantially for early variations of maturity times and then decreases when

the underlying starts to approach the asymptotic limit of the Bass model m. To further

investigate this result, Figure 8.8a illustrates the absolute difference in option prices between
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both models for different option maturities and different values of m. Delta V is defined as

V (t0)GBM − V (t0)Bass. Thus, negative values of delta V suggest that option values of the

Bass model are higher than of those of the GBM model. We can observe that for lower

values of m the difference in results of the Bass model and the GBM become smaller. An

m-value of 100,000 results in larger option prices for the GBM, while for an m-value of

500, 000, the option value of the GBM only approximately exceeds the option price of the

Bass model with long maturity times of more than 30 years.

Figure 8.8b illustrates the expected optimal investment timings t∗ for both models un-

der different option maturities T . The figure shows that the Bass model suggests much

earlier optimal exercise timings, leading to strong differences in optimal investment strate-

gies. Note that, we omit an analysis of the differences in optimal exercise boundaries, as

is not straightforward to derive when using the LSMC method. In addition, comparing

the boundaries does not lead to major implications for investment decision-makers, as the

resulting option values and exercise probabilities are much more relevant when deciding if

and when a technology investment becomes profitable.

We can conclude that, in our 3D printing example, option values resulting from our Bass

model simulations are significantly higher than for the GBM-based calculations. That is,

despite the significant positive drift of the GBM model, the Bass model curve grows much

faster in early time periods, leading to larger market sizes and thus larger NPVs and option

values. However, if the state variable in the Bass model was sufficiently close to its carrying

capacity m, the GBM model would yield larger option prices. Thus, the difference in the

results between both models is highly dependent on the different combinations of input

variables.

We can expect that the GBM with µ and σ estimated from historical data, highly

undervalues investment opportunities for emerging and growth technologies, while it might

overvalue them, in the case of an underlying maturing technology. Our numerical examples

imply that a naive choice of a standard GBM model often misrecognizes rapid growth

patterns of innovative technologies and tends to postpone the investment, which could

mislead the adaption to new technology environments. These examples clearly show that

the firm could suffer from huge economic losses due to the misrecognition of the underlying

technology development. In most cases of technology diffusion, the GBM is thus not a

reasonable stochastic process to model innovation. That is, when estimating drift and

volatility from historical data, the GBM model leads to unrealistic results and ultimately

suboptimal investment decisions.
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8.5. Summary and Discussion

This chapter explained the importance of technology forecasting for technology invest-

ments and demonstrated how to apply common techniques to 3D printing technologies. We

have shown which data can be used to come up with estimations for future technologi-

cal developments and estimated Bass model parameters fitted to our collected data set of

3D printing-related publications and patents. While estimation of the parameters is often

flawed, mostly due to small or highly volatile samples, we could provide some interesting

insights about the current technological state of 3D printing and its diffusion in the future.

We have also included technological uncertainty into the deterministic model by adding

stochastic noise to our forecast. We could see that probabilistic models have some advan-

tages, as they enable us to model different probabilistic scenarios, which can represent a

helpful tool in decision-making under uncertainty. We have also shown a simple method of

how to link publications and patents to monetary performance measures and applied it to

the global 3D printing market size. Finally, we have shown that standard real option anal-

ysis models based on the GBM are not suitable for technology investments, as technology

diffusion typically does not evolve geometrically. For our 3D printing example and input

parameters estimated from historical data, the GBM can result in significant under- as well

as overvaluation of investment opportunities when there is a timing option. However, the

direction and magnitude of this difference is dependent on the technological state and thus

the particular combination of input variables for the underlying stochastic process. Future

research could try to make better estimates for the model parameter values, for example by

expanding sample sizes, applying different estimation techniques or increase the number of

time-steps. It would also be interesting to compare the presented stochastic logistic growth

model with other existing real options models concerned with technology investments such

as processes that include jumps or mean reversion and investigate differences for technologies

in different growth stages.
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Chapter 9

Conclusions and Outlook

9.1. Conclusion

New challenges require new measures. The combination of real options, user-based

performance measures and technology forecasting can improve strategic reasoning and in-

vestment decision-making for investments in digital business models. All of the presented

models are highly flexible and can thus be tailored to specific company needs and a large

variety of investment decision-making scenarios. Technology forecasting and logistic growth

modelling represent important building blocks for financial as well as technological fore-

casting for digital business model investments. Big data and business analytics have the

potential to further boost efficiency of models while the economy further digitalizes, com-

panies become more customer-centric and decision-making is increasingly based on data.

Despite the importance of this interdisciplinary field, this research area is still young and

should be further developed in academia as well as practical business application.

9.2. Outlook

We acknowledge the limitations of the presented models that are yet to be overcome.

This dissertation places its focus on investment decision-making under uncertainty for sin-

gle, fairly isolated digital transformation projects. The main goal of this dissertation is to

highlight the importance of the field, provide the building blocks for future research and

an easy to understand and easy to implement logic for practitioners. Future research could

build on the presented frameworks to come up with portfolio approaches that are able to

capture and prioritize several investment projects, evaluate synergies and derive efficient

portfolio construction and project selection. In addition, the application to different types

of digital business models such as freemium models and transactional monetization models
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represent a desirable extension to the presented frameworks. This will include the consid-

eration of alternative revenue mechanisms and the valuation of further digital intangibles

such as network effects. As no theory can be seen as valid without careful practical appli-

cation, the application and use of the presented and extended models to a larger number

of real-world business examples will be required to prove accuracy and reliability of such

models. We can also expect see more work around the integration of technology forecast-

ing techniques, marketing measures, valuation of intangibles and strategic management by

leveraging proceedings in big data and machine learning.
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Appendix

.

A.1. Least Squares Monte Carlo Implementation

The path-wise optimal exercise time t∗(ω) is given by the path-wise maximum value of

the difference between immediate payoff and continuation value. We can then estimate the

total option value by computing the average over all sample paths ω when playing the path-

wise optimal exercise strategy. The conditional optimal decision is made by comparing the

payoff Π(tn,NPVtn(ω)) with the value function V E(t,NPVt(ω)). Thus, if V E(t,NPVt(ω)) =

Π(tn,NPVtn(ω)), the optimal stopping time along the ω-th path is updated, t∗(ω) = tn,

otherwise, it is left unchanged. Since V E(t,NPVt) is not available at this step, a way

around this is offered by the Bellman equation of the optimal stopping problem in discrete

time:

V E(tn,NPVtn) = max
{

Π(tn,NPVtn), er(tt+1−tn)EP
tn [V E(tn+1,NPVtn+1)]

}
By denoting the continuation value

Φ(tn,NPVtn) = er(tt+1−tn)EP
tn [V E(tn+1,NPVtn+1)],Φ(TE,NPVT ) = 0,

we can determine the path-wise optimal policy by comparing Φ with the payoff Π. So, if

Φ(tn,NPVtn(ω)) ≤ Π(tn,NPVtn(ω)), then t∗(ω) = tn. (A.1)

The optimal stopping time is found by recursive application of the above decision rule,

proceeding backward from TE. At some previous step of this procedure, if we have already

determined t∗(ω) > tn, and the condition above holds at the current step tn, then the

stopping time is updated: t∗(ω) = tn. At tn = 0, when the optimal stopping times along

all paths are determined, the value of the American option is estimated by averaging the
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path-wise values

V E(0,NPV) =
1

K

K∑
ω=1

ert
∗(ω)Π(t∗(ω),NPVt∗(ω)(ω)).

Let Π(t, s, t∗, ω) be the (not necessarily positive) ω-th path payoff from optimally exercising

the contingent claim at time s with respect to the stopping time t∗(ω), assuming that it has

not been exercised yet. Hence,

Π(t, s, t∗, ω) =

Π(s,NPVs(ω)), t∗(ω) = s,

0, t∗(ω) 6= s.

The continuation value at tn is

Φ(tn,NPVtn) = EP
tn

[
N∑

i=n+1

e−r(ti−tn)Π(tn, ti, t
∗, ·)

]
.

Since Φ is an element of a linear vector space, the continuation value can be represented

as Φ(t,NPVt) =
∑∞

j=1 φj(t)Lj(t,NPVt) with respect to the basis {Lj}. If J < ∞ basis

elements are used to determine Φ, we obtain an approximation of the continuation value

ΦJ(t,NPVt) =
∑J

j=1 φj(t)Lj(t,NPVt) and φj(t) can be estimated by least squares regression

of ΦJ(t,NPVt) onto the basis {Lj(t,NPVt)} by computing

{
Φ̂J(tn)

}J
j=1

= arg min
{φj}Jj=1

∥∥∥∥∥
J∑
j=1

φj(tn)Lj(tn,NPVtn)−
N∑

i=n+1

e−r(ti−tn)Π(t, ti, t
∗, ·)

∥∥∥∥∥
2

.

The estimated continuation value,

φ̂J(tn,NPVtn) =
J∑
j=1

φ̂J(tn)Lj(t,NPVtn),

is then used to apply the decision rule recursively in (A.1).

Accuracy of the American option value depends on the number of time steps, N , the number

of simulated paths, K, and the number of basis functions J . By increasing these numbers,

it has been proven that the estimate converges to the actual value of the corresponding

Bermudan option value with N dates (Moreno and Navas, 2003). The value of the expansion

option at t0 drives the decision whether to invest in the trial project. If the costs of launching

the trial project IP is smaller than the present value of the option to expand, management

will decide to launch the trial project and follow the optimal expansion policy.
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A.2. Descriptive Statistics of Traditional vs. Digital Businesses

Table A.1: Descriptive Statistics of the two data sets

Market
Capitalization

Spot
Price

EBITDA
Net

Income
Trad. Dig. Trad. Dig. Trad. Dig. Trad. Dig.

Min 0.20 370.20 0.00 2.28 -25,403 -329.77 -25,392 -6,302
1st Qu. 11,748 4,794 9.00 32.99 222.40 24.61 99.01 -1.33
Median 18,571 11,024 36.40 61.10 483.80 84.32 239.38 45.72
Mean 32,304 70,098 347.80 128.11 961.70 917.21 486.91 559.58
3rd Qu. 34,282 39,172 82.30 121.69 1,051 459.23 554.00 266.03
Max. 527,451 1,090,308 320,000 2,080 30,887 29,019 32,551 20,065
Missing 616 4 1,595 19 3,319 32 671 3

Free Cash
Flow

Book
Equity

Debt
Ratio

Earnings
per Share

Trad. Dig. Trad. Dig. Trad. Dig. Trad. Dig.
Min -151,886 -4,889 -23,726 -605.40 0.00 0.00 -15,486 -11.50
1st Qu. -2.38 9.64 3,444 757.90 0.14 0.87 -2.38 -0.01
Median 167.89 66.06 8,427 1,946 0.25 0.21 167.89 0.28
Mean 163.59 755.72 17,790 9,852 0.27 0.22 163.59 0.69
3rd Qu. 523.52 409.84 18,355 6,453 0.37 0.32 523.52 0.83
Max. 272,780 25,483 386,391 140,199 3.95 0.75 272,780 38.14
Missing 3,426 147 627 1 1,764 190 3,426 7

Price Earnings
Ratio

Book to
Market Ratio

Return
on Assets

Trad. Dig. Trad. Dig. Trad. Dig.
Min -1,451,304 -57,351 -11.63 -0.17 -108.37 -28.08

1st Qu. 41.00 -30.14 0.21 0.10 1.78 0.38
Median 71.00 99.51 0.43 0.19 4.22 3.79
Mean 169.00 157.97 0.57 0.24 5.35 6.75

3rd Qu. 113.00 194.80 0.78 0.32 7.53 8.27
Max. 3,180,175 101,333 30.47 2.71 753.80 196.89

Missing 1,987 22 895 5 1,592 10

Table A.2: Correlation matrices of independent variables

EBITDA EpS RoA BtM DR MC
EBITDA 1 0.185*** 0.054 . -0.09** 0.083* 0.868***

Digital
Business
Models

EpS 0.251*** 1 0.077* -0.04 0.050 0.174***
RoA 0.015** 0.006 1 -0.17 0.007 0.038
BtM 0.189*** 0.003 -0.23*** 1 -0.11** -0.18***
DR 0.02** -0.01 0.086*** -0.14*** 1 0.107**
MC 0.743*** 0.151*** 0.021** -0.02** -0.02*** 1

Traditional business models
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A.4. Simulation Results

Table A.6: Simulation Results for Q1 2018 to Q2 2020 - Netflix’s Estimated CE vs. Market
Value

Dates
Simulated Total

CE
Average Market Cap.

Simulated
CE/Share

Average Share Price

01/04/2018 1.13935E+11 1.18E+11 262.77 272.22
01/07/2018 1.34296E+11 1.48E+11 309.05 340.90
01/10/2018 1.50629E+11 1.58E+11 346.02 362.95
01/01/2019 1.27253E+11 1.30E+11 291.90 299.26
01/04/2019 1.37392E+11 1.51E+11 315.15 346.67
01/07/2019 1.33517E+11 1.58E+11 305.39 360.78
01/10/2019 1.41698E+11 1.37E+11 323.29 312.89
01/01/2020 1.70903E+11 1.30E+11 389.48 297.42
01/04/2020 1.74189E+11 1.55E+11 396.07 354.33
01/07/2020 1.83084E+11 1.88E+11 415.14 427.55

Table A.7: Simulation Results for Q4 2017 to Q1 2020 - Roku’s Estimated CE vs. Market
Value

Dates
Simulated Total

CE
Average Market Cap.

Simulated
CE/Share

Average Share Price

01/01/2018 10,573,084,443 3,397,944,987 108.11 34.89
01/04/2018 11,635,769,473 4,013,878,101 116.82 40.80
01/07/2018 13,209,933,029 3,701,803,189 130.02 36.68
01/10/2018 13,357,531,596 6,039,213,581 125.90 57.80
01/01/2019 13,516,414,800 4,985,514,157 123.78 46.40
01/04/2019 13,783,745,200 5,861,165,746 125.31 53.51
01/07/2019 13,483,501,453 9,100,798,182 118.90 80.50
01/10/2019 13,391,192,798 14,111,130,149 115.24 122.47
01/01/2020 12,750,000,828 16,246,775,263 108.51 138.45
01/04/2020 12,119,340,849 13,551,657,511 100.99 114.23

Table A.8: Simulation Results for Q3 2018 to Q1 2020 - Stitch Fix’s Estimated CE vs.
Market Value

Dates
Simulated Total

CE
Average Market Cap.

Simulated
CE/Share

Average Share Price

01/10/2018 2,493,615,786 3,593,107,514 25.05 36.71
01/01/2019 2,865,020,541 2,413,651,507 28.66 24.31
01/04/2019 2,163,757,980 2,477,582,138 21.45 24.86
01/07/2019 2,393,109,948 2,686,350,955 23.54 26.80
01/10/2019 2,234,543,765 2,331,034,916 21.97 23.11
01/01/2020 2,185,310,676 2,375,795,256 21.32 23.36
01/04/2020 991,951,348 2,187,669,672 9.67 21.48
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A.5. Data collection results
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(a) Number of academic papers as retrieved via
Scopus
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(b) Number of academic papers as retrieved via
SCI
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(c) Number of news articles as retrieved via
Factiva
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(d) Number of patents as retrieved via Derwent
Innovation Index
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(e) Sum of SCI, patents and Factiva hits

Figure A.1: Data collection overview - ten different 3D printing technologies.

Figure A.1 illustrates the annual number of academic papers, news articles and patents

on each of the identified 3D printing technologies retrieved via the four different databases.

Respectively, Figure A.2 shows the number of academic papers, news articles and patents

referring to the keywords ’3D printing’ and ’Additive Manufacturing’ as well as the sum of

hits related to the ten different technologies from Figure A.1. The data in Figures A.1a and

A.2a has been retrieved via Scopus and the data in Figures A.1b and A.2b via SCI. These
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graphs refer to academic publications and thus represent how much technologies related

to 3D printing have been developed as a research topic. In contrast, the data presented

in Figures A.1c and A.2c has been retrieved via Factiva. As news articles typically have

an application focus, the data presented in these graphs indicate how much attention 3D

printing has gained in the context of practical application. Similarly, Figures A.1d and

A.2d present the number of patents and thus show how much the technology was subject to

commercial development. Figures A.1e and A.2e consolidate the data of three of the four

databases, namely SCI, Factiva and DII. Note that we did not include Scopus at this point

to avoid duplicates, as papers that are included with SCI might also included with Scopus.

In regard to the prominence of the different technologies that are used to enable 3D

printing, we can have a closer look at Figure A.1. Scopus data suggests that SLM and FDM

represent the most researched 3D printing technologies, while SCI data highlights DLP and

MJ. However, similarly to Scopus, SCI data ranks SML and FDM as third and fourth most

researched technologies with much higher growth rates. Thus, it can be expected that FDM

and SLM are going to exceed DLP and MJ within upcoming years. Regarding Figure A.1c,

we can see that there is a similar amount of news articles to academic publications, how-

ever, the fluctuation in annual news is much higher. Factiva also favors SLM and FDM as

dominant technologies, however, in 2018 newly published news on SLM have dropped sig-

nificantly. Regarding the number of annual patent grants, SLM again represents the leading

technology. However, there are less patents on FDM than on SLS and SLA technologies in

recent years. Adding up the data from SCI, Factiv and DII as illustrated in Figure A.1e,

we can conclude that SLM and FDA have attracted most attention and thus represent the

two most prominent 3D printing technologies followed by SLA, DLP and SLS. SLM uses

powder of materials and the object can be created by stacking melted powder for each layer

according to the design. This technology has practically no restriction on the geometry to

make objects and also allows us to produce objects made out of metal. In contrast, FDM

is a process based on the extrusion of feed-stock plastic filaments through a nozzle tip to

deposit layers onto a platform to build parts layer by layer directly from a computer-aided

design (CAD) model (Masood, 2014). FDM printers allow us to produce many types of

materials because the range of filaments which this process uses is extensive and the costs

of the filaments are relative low. These processes are especially known for their high degree

of versatility, which is why they have started to become the dominant technologies recently.

Figure A.2 provides a more consolidated picture of the developments in publications

about 3D printing. Scopus and SCI both show steadily increasing growth in tech-based

publications since 1990. The numbers of publications on 3D printing, additive manufactur-

ing and the underlying ten technologies in both graphs are reasonably close to each other.

In contrast, regarding Figure A.2c, Factiva draws an entirely different picture. Here, al-
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most no articles have been published until 2010. In 2010 we could observe a skyrocketing

number of news on 3D printing, less on additive manufacturing and only a few on the ten

underlying technologies. The number of new patents as illustrated in Figure A.2d shows a

similar pattern to Factiva data, however, the relative importance of tech-based patents is

much higher than it is for news.
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Figure A.2: Data collection overview - keywords ’3D Printing’, ’Additive Manufacturing’
and sum of technologies.

To summarize, Figure A.2 shows a typical pattern of technological progress. Despite
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some publication of academic papers about 3D printing and additive manufacturing in the

early 1990s, there were almost no news or patents on until 2010. Similarly, academic publica-

tions were focusing on certain 3D printing technologies rather than their application (i.e. 3D

printing and additive manufacturing) in the early stage, while there was exponential growth

in these more application-oriented research fields in more recent years. Interestingly, news

and patents seem to show very similar patterns, as both are typically related to later stages

of the technology life-cycle. These findings are in line with Table A.9 that illustrates the

general phenomenon that different R&D stages lead to hits in different databases. Following

this logic, we can thus conclude that 3D printing has started to transition into its applied

research or development phase in 201011.

Table A.9: Sources for technology life cycle data from Martino (2003)

R&D stage Typical source
Basic research Science Citation Index

Applied research Engineering Index
Development US patents
Application Newspaper Abstracts Daily

Social impacts Business and Popular Press

The patterns revealed by our collected raw data from all databases are similar to patterns

that have been discovered by existing studies on technology forecasting. By comparing our

results with the findings by Trappey et al. (2011), who presents his forecasting results about

RFID technologies by using patent data, we can conclude that our results have a similar

increasing trend with early stage RFID technologies. At the same time, the bibliometric

data collected in Daim et al. (2006) also represents the typical patterns of emerging and

growth technologies that can be observed with our 3D printing results.

A.6. MLE Estimation Methods for the Bass Model

Bass (1969) states that the likelihood for eventual adopters of the purchase at time t

given that no purchase has yet been made can be written as follows:

f (t)

1− F (t)
= p+ qF (t) , (A.2)

11Note that the differences between news and patents on tech-based versus 3D printing keyword might
be a result of the hype that has been undergone by 3D printing in recent years. Since 2010, ’3D printing’
and ’additive manufacturing’ have somewhat transformed into buzzwords resulting in extreme growth rates
of related news articles and patents. While it makes sense that there are more hits when using broader
keywords, the extreme difference between hits for the sum of technologies and these buzzwords might seem
unreasonable. Thus, the mushrooming number of patents and publications surrounding these keywords and
the large gap to publications about enabling technologies might lead to a bias and thus overestimation when
using this data for the related technological progress.
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where f(t) is the likelihood of purchase at t and

F (t) =

∫ t

0

f (t) dt.

From equation (A.2), f(t) can be expressed as

f (t) = (p+ qF (t)) (1− F (t)) .

Setting the initial value of F (t) as F (0) = 0, the integration of the above equation can be

expressed as

F (t) =
1− exp(−bt)

1 + a exp(−bt)
,

where a ≡ q
p
, b ≡ p + q, since this equation is only appropriate for eventual adopters and

the probabilities are conditional. Thus, in a system where the probability of eventually

adopting is c, the unconditional probabilities for adoption times can be given by

F (t) =
c (1− exp(−bt))
1 + a exp(−bt)

. (A.3)

The relations between p, q, m and a, b, c are easily obtained as

q̂ =
âb̂

â+ 1
,

p̂ =
b̂

â+ 1
,

m̂ = ĉM. (A.4)

We can proceed our analyses using equation (A.3) and assuming xi to be the number of

academic publications, news or patents in year i, i = 1990, 1991, ...T , the likelihood function

can be expressed as

L (a, b, c, xi) = (1− F (tT−1))xT
T−1∏
i=1990

(F (ti)− F (tt−1))xi , (A.5)

and the logarithm of the likelihood function is then given by

l (a, b, c, xi) =
T−1∑
i=1990

xi

(
ln c+ ln

(
1− exp(−bti)

1 + a exp(−bti)
− 1− exp(−bti−1)

1 + a exp(−bti−1)

))
+ xT ln

(
1− 1− exp(−btT−1)

1− a exp(−btT−1)

)
.

(A.6)
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A.7. Stochastic Logistic Growth Models Overview
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Figure A.3: Simulation of the three stochastic models presented in Section 8.4.1 based on a
generic numerical example - T = 20, n = 1000,m = 3000, p = 0.05, q = 0.2, N0 = 1000, σ =
σm = 0.05, σq = σp = 0.1, µp = µq = µm = 0, µm = 5, 000, annual discretization
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