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ABSTRACT

The interest in haptic technology has been growing exponentially in recent years due to its
capabilities in accelerating product development cycles especially in analysis and design stage. It
is primarily due to the significance in tactile sensations in consumer. By introducing haptic
technology in the manufacturing industry, new products can be developed rapidly, thus allowing
higher rate of production to satisfy the booming market demand. The integration of haptic
technology, namely tactile rendering will be a great aid in product development industries as it can
manipulate the prototype’s touch sensation to the chosen material’s touch sensation without
producing a sample of the product. Furthermore, to evaluate new products, manufacturers need to
conduct a sensory evaluation which is a time consuming and costly process. Therefore, a need to

quantify tactile sensation is explored to accelerate the product development.

In this research, we investigate the significance of tactile rendering and sensation technologies
in manufacturing industry. For tactile rendering, we focus on the impact of spatial summation for
augmentation of thermal sense in AR thermal display. The proposed display is used to replicate
the material identification, in order to allow users experience various materials without changing
the material of an object. In tactile sensation, we present a novel quantification method of human
tactile sense evaluation for fabrics to provide a reliable quality assessment method for textile
industry. We hierarchically classify adjectives into three groups called as low-order of tactile
sensation (LTS), high-order of tactile sensation (HTS) and desired tactile sensation (DTS). We
then perform a multiple regression analysis to discover the correlations between each extracted
LTS factor and all measured physical quantities. We express DTS adjectives in terms of physical
quantities by computing equations. From the proposed quantification, we are able to predict or

evaluate unknown samples’ tactile sensation.
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Chapter 1

INTRODUCTION
1.1 Background

Human has five traditionally recognized senses: sight, hearing, taste, smell, and touch
(Hellier, 2016). Through these senses, we can perceive the surroundings' changes and respond to
the particular physical phenomenon. Each of the senses has a specific organ that runs specific
tasks. There are sensory receptors in the sensory organs that will produce signals, and the signal
will be sent via networks of neurons to the brain, where the signals are being processed and

interpreted.

Among all these senses, touch has the most prominent organ called the skin that covers
every part of the body. Furthermore, skin also acts as the first line of defense from the intrusion
of viruses and bacteria. Skin is so vital that it is the first natural instinct of living for us from
newborns, as touch appears not just to soothe and relax us but also to enhance our growth and
comfort level. For example, Dr. Harry Harlow had conducted an experiment where infant
monkeys were separated from their mothers a few hours after birth and provided with a folded
gauze diaper on their cage floor (Harry, 1959). From this experiment, the infant monkeys have
deep personal attachments towards diaper pads and exhibited distress when the pads were
removed once a day for sanitation purposes. Furthermore, the discovery shows impressive
enlightenment that the sense of touch is inevitable in our daily life, although we do not

personally realize and appreciate it.

Haptics is a study field that is related to the sense of touch. This word derives from the
Greek, which means “being able to come into contact” (Mudit Ratana, Harsh Vardhan, & Anand
Vardhan, 2010). After the rise of the nuclear industry in the 1950s, the first haptic feedback

master-slave telemanipulation system was developed in the United States. Then, this haptic



technology was used in military flight simulators in the 1960s to imitate the tactile and
kinesthetic cues of real flight. From the late 1970s, visual and audio media developed
tremendously fast, and now, the interfaces are widely used in everyday life. However, the haptic
interface is far behind compared to the visual and audio interfaces as haptics is complex and
challenging to synthesize (Iwata, 2008). Until now, haptic technology has been applied in
various fields, including entertainment, medical, military, communication, aviation, and many
more. Currently, new product development in the manufacturing industry has become a

promising application area for haptic technology (Pingjun, 2016).

In recent years, the competition in the world market for manufactured products has
intensified enormously. The rapid development of new products has become the top priority in
many manufacturing industries to commercialize emerging technology and satisfy customer
needs. Hence, it is essential for new products to shorten product design to the market as fast as
possible (Y. Chen, Yang, & Lian, 2005). Besides shorter time-to-market, affordable prices and
high quality of a product are also crucial factors for the manufacturing industry to compete
effectively in the world market. Consequently, the processes involved in the design, test,
manufacture, and market of the product have been squeezed regarding time and cost. Figure 1.1
shows one of the primary product development cycles, which starts from the analysis and design

stage (Seeram, Lingling, Charlene, Susan, & Wee Eong, 2015). This cycle adopts multiple

Analysis and design

!

Refining requirements |«

!

Testing

v
v

Evaluation < Prototype

Figure 1.1 Product development cycle



iterations of the products from customer feedback at the early stage of the development. Hence,

this may help the manufacturing industry to survive in rapidly changing markets.

There have been many efforts introduced and developed to shorten the product
development cycle time. Recently, haptic technology has been introduced in the manufacturing
industry, especially in the analysis and design stage. Haptic technology is practically used to aid
computer-aided engineering, CAE (Y. Chen et al., 2005). As the high power of computing
technologies, there are many aspects of work that can be done in a virtual environment, such as
shape modeling and reverse engineering. For this task, a commercial haptics device like Touch X
from 3D System Corporation is commonly used ("3D Systems: Scanners and Haptics," 2017).
By using haptic shape modeling, the designers can trace, touch, feel, deform or grasp virtual
objects. Moreover, the product can be evaluated some of the functional performances in the early
stage. For example, when designing a toothbrush, the designer may want to make sure the
toothbrush is not too hard, mainly when used by children. From the haptic modeling, the
designer can feel the stiffness of a toothbrush’s neck and change the material or geometry of the
brush neck. Hence, the designer may iterate the product’s design on the tactile aspect from

building and testing the product virtually compared to traditional product simulation.

Currently, haptic technology has also become one of the promising approaches for
prototype and evaluation stages to reduce time-taken for a product to reach the market. For the
prototyping stage, rapid prototyping has been developed over the past few decades and proven to
shorten the lead time by 60 % compared to conventional technologies such as numerical control
milling (Lan, 2009). Rapid prototyping is a novel technology in forming process where physical
parts are fabricated layer by layer to form three-dimensional computer-aided design, 3D CAD
models in a short time (Lan, 2009). Rapid prototyping can also be referred to as solid free-form

manufacturing, computer automated manufacturing, and layered manufacturing.

The prototypes are generally used for market research, typically to acquire customers’
requirements. Besides, the prototypes can also be powerful communication tools among
designers for better understanding (Lan, 2009). Also, through prototypes, any mistake is easy to
be discovered and corrected, and most importantly, modifications can also be made while the

prototypes are still inexpensive. Although the materials used for rapid prototyping usually are



affordable compared to conventional technologies, the range of materials is limited and mostly
available for plastic. As a result, in order to use other materials, the prototypes have to be made
by using conventional technologies, and eventually, it will lengthen development time and also
increase the cost. Even though the product’s appearance and function are vital factors for a
product, touch sensation also gives an added value with significant impact in the highly
competitive market (Grohmann, Spangenberg, & Sprott, 2007; Peck & Childers, 2002, 2003,
2006). In addition, Citrin et al. demonstrate that individuals with a higher need for tactile input
when making decision of product will be less likely to purchase products over the Internet as
tactile cues are absent (Citrin, Stem, Spangenberg, & Clark, 2003). Although the need for tactile
cues will vary across consumers, it is clear that tactile cues are essential in decision making.
Therefore, the integration of tactile rendering technologies in rapid prototyping is a new
approach to rendering various touch or tactile sensations. The related research on tactile

rendering technologies will be introduced in Section 1.2.1.

On the other hand, for the evaluation stage, customer feedback on a product is essential to
review the product's acceptance or preference. There are many perspectives of the feedbacks
such as appearance, durability, functionality, expected price, and many more. Besides, touch or
tactile sensation also plays a crucial role in determining the preference of a product (Grohmann
et al., 2007; Schmitt, Falk, Stiller, & Heinrichs, 2015), as mentioned in the previous paragraph.
Although the impact of tactile sensation will vary across the types of products, the tactile

sensation can affect the evaluation of the product’s quality (Grohmann et al., 2007).

Besides, McCabe and Nowlis also prove that tactile cues significantly affect impulse
purchasing. Buying impulsiveness refers to the tendency of a customer to buy spontaneously
(McCabe & Nowlis, 2003). Peck and Childers also reported that there is a positive and
significant correlation between the need for tactile input and buying impulsiveness (Peck &
Childers, 2003); increment of the necessity for tactile input will increase the buying
impulsiveness of the customer. Apart from that, the confidence level in product evaluations
increases with tactile input (Peck & Childers, 2002, 2003). Generally, tactile input will lead to

positive consumer responses; acceptable quality level.



Additionally, Grohman et al. reveal the effects of tactile input on product evaluation.
Furthermore, the tactile input can also result in the quality of a product. In the experiment, for
high-quality products, tactile input positively affects the evaluation of products and vice versa
(Grohmann et al., 2007). Overall, tactile cues play an important role in making product

evaluations, whether in the perception of product quality or decision making.

Conventionally, most manufacturing industries use sensory evaluation to evaluate a
product as this method gives direct feedback from the customers, and it is the most
comprehensive method (Kemp, Hollowood, & Hort, 2009). Sensory evaluation is a scientific
method used to measure, analyze, and interpret qualitative responses from our senses (Stone,
Bleibaum, & Thomas, 2012). Unfortunately, the feedback from this method may not be
applicable for newly modified or developed products. Furthermore, this method can be a time-
consuming and costly process (Lawless & Heymann, 2010). Consequently, a quantification
method of tactile sensation is crucial in improving the conventional way of manufacturing
industries evaluate their product at low cost and fast in time. Thus, introducing tactile sensing
technologies in the product‘s evaluation method is a new and worthwhile practice. This may also
help manufacturing industries to understand the main factors that correlate with customers’

preferences. The related research on tactile sensing technologies will be presented in Section

1.2.2.

1.2 Related Works

In this section, based on the fundamental knowledge of the human sense of touch, haptics

technologies including tactile rendering and sensing that have been developed will be introduced.

1.2.1 Tactile Rendering Technologies

In general, tactile rendering or display can be divided according to the type of tactile
information such as roughness/smoothness, hardness/softness, stickiness/slipperiness, and

warmness/coldness (Shirado & Maeno, 2014; Yamauchi et al., 2010). Besides, tactile display can



also be classified by the display method of tactile information; Virtual Reality (VR) and
Augmented Reality (AR) technologies. VR is a computer-simulated environment where the user
is totally immersed in. This utterly synthetic world may mimic the properties of real world
environment either fictional or nonfictional (Milgram & Kishino, 1994). On the other hand, AR
is a novel human-machine interaction that allows the user to see the real world with the
superimposed upon or composited with the real world (Rekimoto, 1997). AR blurs the boundary
between reality and computer-generated by enhancing what we see, hear, feel and smell and has

been found as fine potential applications in many fields (Ong, Yuan, & Nee, 2008).

Roughly, as shown in Table 1.1, this clause will explore conventional tactile display
based on two types of tactile stimuli: mechanical (roughness, hardness, and friction) and thermal

information, and display method of the information.

In general, tactile displays are used to provide roughness and hardness information of an

Table 1.1 Classification of tactile rendering or display

Receptors included Display method  Related works
* Tactile feedback for teleoperation
(Sarakoglou, Garcia-Hernandez, Tsagarakis, &
Caldwell, 2012)
VR + Tendon electrical stimulation (Kajimoto,
2012)
* Exolnterfaces (Tsetserukou, Sato, & Tachi,
2010)
Mechanoreceptor * Fingertip display system (Ando et al., 2007)
* REVEL (Bau & Poupyrev, 2012)
* High precision AR haptics display (Bianchi,
Knorlein, Székely, & Harders, 2006)
* TeslaTouch (Bau, Poupyrev, Israr, &
Harrison, 2010)
* Force feedback AR haptics display (Zhao,
Huang, Lu, & Liu, 2017)
DGIS (Caldwell et al., 1996)
VR TELESAR V (Fernando et al., 2012)
VITAL (Khoudja & Hafez, 2004)

AR

Mechanoreceptor and
thermoreceptor




object in virtual environment. Consequently, the integration of thermal feedback into tactile
displays is a relatively new concept. Several studies have shown how thermal cues can provide
information about the object’s temperature and thermal properties that assist in object
identification and material discrimination when other cues, such as surface texture are minimized
(Dyck, Curtis, Bushek, & Offord, 1974; Ho & Jones, 2006; L. A. Jones & Berris, 2003). As a
result, a more realistic image can be created with thermal information in a virtual environment.
Therefore, the integration of thermal information into conventional tactile displays can improve

the tactile displays that only have the mechanical information: roughness, hardness, and friction.

In this research, using this new concept of the tactile display, the tactile information of a
certain material can be manipulated or deluded to any materials. In other words, this proposed
tactile display can solve the limitation of materials in rapid prototyping technologies. As a result,
this research proposes a tactile display that can provide all of the tactile information in rapid
prototyping technologies and at the same time, reduces lead time and cost, which have been

significant factors in determining the success in product development.

a) Mechanical Stimulated Tactile Display for VR

In the past decades, VR tactile displays which create stimulation of roughness and
friction that are mechanically stimuli have enormously developed. This clause will introduce two

methods of displaying mechanical stimuli: (i) mechanical and (ii) electrical actuation.
(1) VR Tactile Display using Mechanical Actuation

Sarakoglou et al. (2012) developed a compact tactile: roughness, friction and hardness,
and force feedback display for integration in teleoperation (Sarakoglou et al., 2012). The tactile
display contains of a fingertip display module, a flexible tendon transmission, and the actuation
unit. The fingertip module houses 16 vertically moving tactors that are cylindrical with flat top
end and round edge. These tactors move perpendicularly to the skin surface and typically convey

information on roughness, friction, and roughness. This information is perceived by slowly



adapting and rapidly adapting mechanoreceptors. It is integrated on Omega7 ("Force Dimension:

Products," 2017) force feedback device.

This tactile display achieves a compact design with superior performance in terms of
spatiotemporal resolution, force, and amplitude. Furthermore, the ergonomic design of this
tactile display makes it suitable for integration on haptic devices in teleoperation. However, this
device does not provide visual and thermal feedback for teleoperation. It would need a further
study on visual feedback for exploration and recognition of remote surfaces, and thermal

feedback for assisting in material identification.
(i1) VR Tactile Display using Electrical Actuation

Kajimoto proposed to use electrical stimulations to tendons in order to create a
kinesthetic illusion (Kajimoto, 2012). The illusion was generated by the activity of the muscle
spindles, which are indirectly stimulated by vibratory input to the tendon. However, it would
inevitably stimulate muscle efferent nerves that cause motion. Electrodes are placed on the Golgi

tendon organ, which is at least partially responsible for the illusion without stimulating muscles.

In the experiment, a current-controlled rectangular pulse with 200 ps pulse width, up to
20 mA pulse height, and 100 Hz pulse frequency. The voltage is depending on the conditions on
the skin, ranged from 0 to around 150 V. When the biceps electrode was the cathode, the arm felt
to move outwards. Conversely, when the triceps electrode was the cathode, the arm felt to move
inwards. Consequently, as the electrode positions were close to the elbow joint, the stimulation

of the muscle spindles is not possible.

b) Mechanical Stimulated Tactile Display for AR

Recently, a novel technology, AR tactile display mostly creates stimulation of roughness
and friction that are mechanically stimuli. Same as VR tactile display, this clause will explore

two methods of displaying mechanically stimuli: (i) mechanical and (i1) electrical actuation.

(1) AR Tactile Display using Mechanical Actuation



Ando et al. (2007) had developed a tactile device that presents tactile information
(roughness and friction) to the fingertips (Ando et al., 2007). The methods of tactile sensation
presentation are utilized not only in the virtual space but also in AR, where artificial sensation is
superimposed on the real environment. Ando et al. (2007) proposed an adequate vibration
stimulus is applied from above of the nail to generate the virtual undulation sensation, as shown
in Figure 1.2 (Ando et al., 2007). Therefore, the device was not interposed between the real
environment and did not block tactile sensations from the real environment. The vibration
sensation will be produced more strongly in the finger pads in contact with the object than on the
nail side since the tactile receptors are concentrated on the finger pads (McGlone & Reilly, 2010).
This device is small and can be attached as a wristwatch, including the power supply and the
control circuits. This tactile sensation can be realized over a wide range of applications, for
example, adding tactile sensation to the contour of a picture, providing interaction through tactile
sensation in combination with a large-scale monitor, adding click sensation to a touch panel

(Fukumoto & Sugimura, 2001), and many more.
(i1) AR Tactile Display using Electrical Actuation

REVEL is an AR tactile technology that allows us to change the tactile feeling of real
world objects by augmenting them with virtual tactile texture (Bau & Poupyrev, 2012). The user
feels virtual tactile textures on a real object while observing them through an AR display. It is
based on the principle of reverse electrovibration where a weak electrical signal is injected
anywhere on the user’s body, creating an oscillating electrical field around the user’s finger.

Reverse electrovibration is a novel use of the fundamental physical effect of electrovibration,

Fingernail-mounted
vibration device

Object

Figure 1.2 Proposed tactile display (Ando, Watanabe, Inami, Sugimito, &
Maeda, 2007)
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which is an electrically-induced mechanical skin vibration. When alternating current is injected
into a conductive object covered by a thin insulator, a distinctive rubbery tactile sensation is

perceived by a finger sliding on the surface of the object (Bau & Poupyrev, 2012). This is due to

the AC signal creates an intermittent electrostatic force I?'e(t) that attracts the finger to the

conductive surface. When the finger is static, this force is too weak to be perceived, but it does

modulate friction ﬁr(t) between the surface and sliding finger. Thus this creating a strong
friction-like tactile sensation. By using this new concept of tactile display, it allows for the
design of intrinsic tactile displays by instrumenting the user with a small wearable tactile signal

generator that can be attached anywhere on the user’s body.

The signal generator creates various tactile sensations by injecting an AC electrical signal
into the user’s body. Properties of the generated signal have a significant effect on the nature of
the tactile sensations’ quality and intensity. This tactile display is lightweight, inexpensive, can
be used anywhere and at anytime to add tactile sensations to both virtual and real objects, but at
the same time, it has some limitations. The skin condition affects the operation, for example,

excessive sweating because REVEL has to be operated by dry clean hands.

¢) Mechanical-Thermal Stimulated Tactile Display for VR

In previous researches, the thermal display is capable of simulating materials that cover a
broad range of thermal properties and becomes an important element for telexistence, virtual
reality, and virtual environments (Caldwell et al., 1996; Ho & Jones, 2007). Thus, there are many
researches that integrate thermal display with their present mechanical stimulated tactile display.
This section will explore some researches which include thermal information in a tactile display

by using Peltier device.
(1) Multi-modal Cutaneous Feedback Systems

Recently, an advanced realistic user interface that included five key sensor elements;
vision, audition, smell, taste, and touch, is needed for telexistence, virtual reality, and virtual
environments. In Caldwell’s research, a combined multi-modal mechanical and thermal output
system, Data Glove Input System (DGIS) has been designed and constructed which is proposed

to be applied to a remote operator working in a telexistence environment (Caldwell et al., 1996).
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This haptic interface provides force, tactile and thermal feedback. The thermal feedback unit is a
Peltier device that makes contact with the dorsal surface of the index finger. Thermal feedback
tests were conducted with objects at temperatures ranging from 0 °C to more than 45 °C.
Subjects achieved a 90% success rate in identifying the various materials (ice, boiling kettle,
foam, aluminium) based only on these thermal cues. In their research, the combination of
different types of feedback (mechanical and thermal) can be achieved. However, further

developments will be required, which include:

a) better spatial resolution,
b) simulation of frictional forces,
c) combination with kinesthetic sensation derived from joint and muscle position

and force inputs.
(i) TELESAR V

Fernando et al. proposed a telexistence surrogate anthropomorphic robot called Telesar,
composed of a head-mounted display, a mechanism for sensing and rendering fingertip haptic as
wel as thermal sensation. In telexistence, the operator should be able to move freely and feel the

slave robot as an expansion of his bodily consciousness.

The robot’s fingers are installed with a vision-based cutaneous sensor to sense both force
vector and temperature. The force vector is detect by tracking green and red markers placed on a
transparent elastic body. In addition, a layer of thermo sensitive ink is wafered between the

elastic body and outer surface.

Furthermore, on the master’s side, the vertical and shearing forces generated by motor
driven belt mechanism. Peltier devices are placed on the bottom side of operator’s fingertips to

reproduce the temperature.
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1.2.2 Tactile Sensing Technologies

Currently, the evaluation on product quality is now largely depending on human tactile
sensory evaluation which is the most logical method as people’s preferences rely on numerous
factors; physiological, perceptional, social factors and etc. Besides, the sensory evaluation gives
the direct answer on consumers’ perception of product quality. However, the sensory evaluation
method may not be reliable for many cases as the arrival of new products are very quick.
Moreover, the sensory evaluation can be a time consuming and costly process (Lawless &

Heymann, 2010).

Hence, a quantification method of tactile sense evaluation, as the foundation of
developing tactile sensing technologies is required to help product industry to evaluate their
products without consuming too much time and cost. Moreover, quantification of tactile sense
evaluation may help product industry and us in understanding the relationship between physical

stimuli and physiological with psychological and perceptual response.

Beginning from 1930, started by Peirce, there was a number of trials in quantifying tactile
sensation according to physical quantities (Pan, 2007). In 1970’s, a KES-F system (Kawabata’s
Hand Evaluation System for Fabric) for tactile sense evaluation/sensing was developed by
Kawabata et al. to the prior of quantification of tactile sensation. The system is used to measure
fabric’s surface properties and low stress mechanical such as fabric bending, shear, extension,

compression, surface friction and roughness by applying simple scientific principles.

From the recorded values and curves obtained from each tester in warp and weft direction,
a characteristic Table 1.2 shown below is hereby calculated and tabulated. Same apparatus is
used to measure both the tensile properties (force-strain curve) and shear properties (force-angle
curve) to measure the bending properties (torque-angle curve) are achieved by bending first its
reverse sides against each other and later the face sides against each other. A compression tester
is used to measure the pressure-thickness values. Same apparatus with different detectors
measurements are done for surface friction (friction coefficient variation curve) and surface

roughness (thickness variation curve).
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Table 1.2 Characteristic values in KES-F system (Kawabata, 1980; Maikinen,
Meinander, & Mag, 2005)

Type of Surface' Characteristics measured
system properties
Linearity of load-extension curve
Tensile Tensile energy
Tensile resilience
KES-FBI Shear rigidity
. Hysteresis of shear force at 0.5°
Shearing shear angle

Hysteresis of shear force at 5°
shear angle

. Bending rigidity
KES-FB2 Bending ] ]
Hysteresis of bending moment

Linearity of pressure-thickness

) curve
KES-FB3 Compression .
Compressional energy

Compressional resilience

Coefficient of friction

KES-FB4 Surface Mean deviation of MIU, frictional
roughness
Geometrical roughness

Fabric Weight Weight per unit area

construction  Thickness Thickness at 0.5 gf/cm?

Kawabata and Niwa (Kawabata, 1980; Médkinen, Meinander, & Mag, 2005; Niwa, 1975)
had put forward Empirical equations for calculating primary hand value and total hand values

from the measurement of quantified tactile sensation properties.

Fabric properties is measured by the system which then correlate the measurements with
the subjective assessment of handle (Niwa, 1975) . Nonetheless, the system needs professionals
to interpret the resulting data and very costly too. These drawbacks brought to the development
of different testing device called the FAST (Hu, 2004). Australian CSIRO has introduced FAST

(Fabric Assurance by Simple Testing) in 1990 to provide easier alternative than KES system.
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FAST is designed and developed by the Australian CSIRO which is better in terms of
testing speed and practicality than the KES system. Other than that, the FAST system met the
requirements of garment makers, finishers and is reliable, inexpensive, accurate, robust and easy
to operate. Compared to KES-F system, FAST only measures the resistance of fabric to

deformation; not the recovery of fabric from deformation (Behery, 2005; Shishoo, 1995).

Similar information on the aesthetic characteristics of fabric is observed from FAST as
compared to KES-F. However, it is even simpler and more suited to a mill environment. The
FAST system can be categorized as follows: FAST-1 for thickness, FAST-2 for bending, FAST-
3 for extensibility and FAST-4 for dimensional stability (refer to Table 1.3). Based on the
objective measurement of fabric and ‘fingerprint’ or data set on a chart, manufacturer will be
able to localize fabric faults, make predictions of the consequences of the faults found and look

for other alternative routes or possible changes in the production process (Hu, 2008).

As the sensation is very much related to physical properties of the material, thus the data
obtained through physical measurements will significantly portray an objective evaluation results.

Complicated measuring systems posed major disadvantages such as high costs, complexity in

Table 1.3 List of fabric properties measured using FAST (Saville, 1999)

Type of Surfacq Characteristics measured
system properties
Total thickness
FAST-1 Compression )
Surface thickness
FAST-2 Bending Bending length
Warp elongation
FAST-3 Tensile Weft elongation
Crosswise elongation
: : Relaxation shrinkage
FAST.4 D1mepsmnal g
stability Hygral expansion
Fabric Weight Weight per unit area

construction
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maintenance and reparation. Studies to improve simpler and individual instruments was then

conducted for each handle related objective fabric properties (Kayseri et al., 2012).

Asaga et al., based on human tactile perception mechanism proposed a new tactile
evaluation method. The evaluation used vibration information acquired during active touch
(Asaga, Takemura, Maeno, Ban, & Toriumi, 2013). First, sensory evaluation was carried out to
extract same potential factors of each adjective on 16 samples that are made of fabrics and
leathers. Two factors relating to softness and surface roughness are extracted according to factor
analysis. Therefore, by quantifying the two factors, the evaluation of tactile sensation on

leather/fabric samples may be conducted.

To imitate human active touch a concept of tactile measuring system will need to be
devised. Human touches an object in order to perceive tactile sense. Human perceives the texture
of an object using the kinesthetic and tactile information obtained by several receptors in his/her
body while touching the object (Hollins, Aldowski, Rao, & Young, 1993; Lederman, 1983;
Lederman, Loomis, & Williams, 1982; Taylor et al., 1973). In perceiving surface roughness or
slipperiness of an object, “active touch” or “stroking the surface” is suitable to be applied, while
“passive touch” or “just pressing an object” is the best way to perceive stiffness and thermal feel

of the object. To detect minute surface roughness, active touch is known to be effective

(Lederman, 1974).

Therefore, a system, which is known as the tactile measurement system, is capable of
measuring vibration information during actively touching an object was then developed. The
ability to control the tracing velocity and normal force during measurement was its key main
function. Later the vibration information during actively touching the samples shall be used in
sensory evaluation from the measurement system developed. Two factors extracted are surface
softness and roughness were quantified by comparing the vibration information and tactile
receptors properties. The tactile evaluation indices obtained would then be able to provide close
approximation values of the softness and roughness correlation coefficient of 0.47 and 0.54
respectively. A preference index can be defined by combining the softness and roughness index.
The index value was observed to be higher when the object is softer and smoother. Thus

preference with correlation coefficient of 0.69 is able estimate successfully (Asaga et al., 2013).
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This system has a concrete concept on quantifying tactile sensation. However, the system has a
low correlation coefficient that leads to large error when estimating unknown samples. Therefore,

there is a necessity to increase the accuracy of this system to quantify tactile sensation.

Moreover, a tactile-haptic interface was developed by Shen et al. to quantify surface
texture properties such as roughness, softness, and veins of automobile interior (Shen et al.,
2006). The interface will aid the designer to quantify and group the comfort index of automobile
interior design for quality control, and allow customers to experience the surface textures in
order to determine the preferable surface characteristics for each customer. A high-resolution
optical tactile sensor is developed to accurately capture the interior surface textures in order to

realize the aim. The tactile sensor is designed based on total internal reflection optical principle.

The pattern of the surface that differs from a nominal surface is called the surface texture.
The differences may be random or repetitive, and result from lay, flaws, roughness and waviness.
The seat surface textures could be quantified by executing the 3-D surface textures from the
tactile sensing. To quantify one of the required parameters of the seat surface texture, surface
roughness is used as it affects a few of functional attributes of the seat surface textures; for
example, contact causing heat transmission, light reflection, surface friction and others. As a
result, both samples of Majesty-B-Loose5 and Provence-A-Loose5 possess the similar surface
roughness. The two samples’ roughness curves which have the same surface roughness in real
life are close in both the column and row axis as observed from the quantified roughness curves.
The effectiveness of the quantification method and the sensor performance are verified by the

analysis of the roughness curves.

Furthermore, softness of the non-identical leathers of the seats were quantified with the
aid from ATI-FT05900 force/torque sensor i.e the tactile sensor used to make contact with the
three different leather surfaces to increase the difference of the pressure force. The larger bright
area of the 2-D tactile image shall indicate that the distension of the leather is more (due to more
contact area involved). Therefore, we could determine the softness of the leathers by calculating
the increased bright area, where the larger the increased bright area, the softer the leather. The
softness order of the three samples (from soft to hard) is determined and matched the real

circumstances (Shen et al., 2006). This system shows that surface roughness and softness could
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be quantified by the proposed method. However, Shen et al. did not show the accuracy of this
system quantitatively. Furthermore, there is a need to relate this quantified results with subjective

sensory by human to verify this system.

1.3 Objective

The integration of tactile display into rapid prototyping will be a great help in product
development industries and a novel device that can manipulate the prototype’s touch sensation to
any material’s touch sensation without making a sample of the product. Previous researches have
shown that tactile display can be categorized based on how the tactile information is displayed:
(1) Realized tactile information to obtain real-world sensation, (2) Emphasize or restraint certain
tactile information, (3) Display a completely different tactile information based on purpose
(Shimojo, 2014). Furthermore, in order to display tactile information onto a rapid prototyping
model, the tactile display should not block the user to touch the prototype directly. Therefore,
this research proposes AR technology as the method to display tactile information which is
nearer to real material sensation. In previous studies have shown that in virtual environment,
thermal displays could assist in material identification and discrimination. The absence of
thermal tactile feedback does not allow us to take advantage of the powerful mechanisms of the
human sense of touch and diminishes the quality of experience. Thus, for tactile rendering, this

research proposes an AR thermal display that can augment the thermal sensation.

From section 1.2.2, most of the previous works attempted to quantify the component in
basic tactile sense classification, as generally, tactile sense can be expressed as
roughness/smoothness, hardness/softness, friction, and warmness/coldness (Yamauchi et al.,
2010). There is almost no work that attempt to quantify the complex sense of touch such as,
elegant, refreshing, comfortable, etc. This is because of human tactile perception is very complex
that involves many other factors. However, it is also important to the manufacturers to grasp this

kind of complex tactile sensation too, in order to evaluate their products. Thus, this research
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proposes a new method to quantify the complex tactile sensation by hierarchically classifying

tactile sensation for better interpretation and understanding.

Furthermore, presently, most of the previous works were using one physical quantity to
quantify one tactile sensation. This is because this method is very simple and comprehensible;
however, it does not give high accuracy in quantification of tactile sensation. This may be due to
the existence of multiple correlations between one tactile sensation with multiple physical
quantities (Shimojo, 2014). Thus, this research proposes to quantify one tactile sensation by

using multiple physical quantities.

This research also focuses on quantification of tactile sensation for fabrics. This is
because, Citrin et al. thus deduced that clothing/fabrics do have a much higher need for tactile as
compared to other products (Citrin et al., 2003). In conclusion, for tactile sensing, this research
proposes a novel quantification method of human tactile sense evaluation for fabrics to provide a

reliable quality assessment method for textile industry.
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Chapter 2

HUMAN SOMATOSENSORY MECHANISM

Haptic information can be classified basically into two kinds of information: kinesthetic
and tactile information. Kinesthetic information refers to the sensation acquired from the internal
sensing inside muscles, tendons, and joints. On the other hand, tactile information refers to the

sensation received from the receptors inside our skin.

Most of the early works on haptic devices are primarily related to kinesthetic sensation.
As a result, the studies on kinesthetic sensation are quite established (Bergamasco et al., 1994;
Hannaford, Wood, McAffee, & Zak, 1991; Okamura, Richard, & Cutkosky, 2002; Shimoga,
1993), and currently, a vast variety number of devices that are commercially available ("3D
Systems: Scanners and Haptics," 2017; "Force Dimension: Products,” 2017; "Haption:
Products," 2017). On the contrary, the studies on tactile devices are immature compared to
kinesthetic devices. As haptics is associated with both kinesthetic and tactile sensation, this
research will address mostly on tactile sensation to help in enhancing the haptic technologies as

overall.

In general, tactile information can be expressed as roughness/smoothness,
hardness/softness, stickiness/slipperiness, and warmness/coldness (Shirado & Maeno, 2014;
Yamauchi et al., 2010). However, these expressions may vary depending on the type of object
that it is being evaluated. These sensations are perceived through cutaneous receptors located
inside our skin. The skin can be divided into two; glabrous skin and hairy skin (Schmidt, 1986),
and the area of hairy skin is larger compared to glabrous skin. This research will focus on the
glabrous skin as the tested skin area is restricted only to the hand. There are three layers of skin;
epidermis, dermis, and subcutaneous (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth, 2012).
The cutaneous receptors consist of mechanoreceptor, thermoreceptor, chemoreceptor, polymodal

receptor, and nociceptor (Miyaoka, 2010a).
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2.1 Mechanoreceptors

Mechanoreceptor is an enclosed dendrite in a capsule that senses touch, pressure,
vibration, and skin tension. In other words, the stimuli received from mechanoreceptors can
correspond to tactile information of roughness, hardness, and stickiness. There are four types of
mechanoreceptors in the glabrous skin, which are Meissner's corpuscle, Pacinian corpuscle,

Merkel’s disk, and Ruffini ending (Miyaoka, 2010a).

Mechanoreceptors in the glabrous skin can also be classified by the size and structure of
the receptive field and sensitivity to static and dynamic events, as shown in Table 2.1 (Vallbo &
Johansson, 1984). Meissner's corpuscle, Pacinian corpuscle, Merkel’s disk, and Ruffini ending
can be identified as fast adapting I (FA 1), fast adapting II (FA II), slow adapting I (SA I), and

slow adapting II (SA II). In addition, each mechanoreceptor has its own frequency range of the

Table 2.1 Types of tactile afferent units in the glabrous skin of the human hand and
their properties. Graphs show schematically the impulse discharge (lower trace) to
perpendicular ramp indentation of the skin (upper trace) for each unit type. (Vallbo
& Johansson, 1984)

Presence of  Receptive
static response fields

FA1 Fast No Small, / \
(Meissner’s sharp

Mechanoreceptor Adaptation Impulse discharge graph

corpuscle) borders I I I I I I
FA Tl Fast No Large, _/—\—
(Pacinian obscure

corpuscle) borders I I I I I I

SA 1 Slow Yes Small, _/—\—
(Merkel’s disk) sharp

borders  —HH-HHH-H—
SAII Slow Yes Large, —/—\—
(Ruffini ending) obscure

borders  FHHHHHHHHH—




21

tuning curve (A. Gescheider, Bolanowski, & Hardick, 2001).

2.1.1 Meissner’s Corpuscle

The Meissner’s corpuscle is found in glabrous hairless skin within the dermal papillae. It
consists of an elongated, encapsulated stack of flattened epithelial cells with the first afferent

terminal fibers interdigitated between the cells.

A force applied to non-hairy skin causes the laminar cells in the Meissner corpuscle to
slide past one another. This distorts the membranes of the axon terminals located between these
cells. When the force is maintained, the laminar cells remain in a fixed, displaced position, and
the shearing force on the axon terminals' membranes disappears. Consequently, the first afferent

axons produce a transient, rapidly adapting response to a sustained mechanical stimulus.

When a force is applied to the dermal papilla containing the Meissner’s corpuscle, the
laminar cells in the corpuscle slide past one another. This shearing force distorts the membranes
of the axon terminals located between the laminar cells, which depolarizes the axon terminals.
When the force is sustained on the dermal papilla, the laminar cells remain in their displaced
positions and no longer produce a shearing force on the axon terminals. Consequently, the
sustained force on the dermal papilla is transformed into a transient force on the axon terminals
of the Meissner’s corpuscle. The first afferent axon response of a Meissner’s corpuscle is rapidly

adapting, and action potentials are only generated when the force is first applied.

The Meissner’s first afferent discharges follow low frequency vibrating (30-50Hz)
stimuli, which produces the sensation of flutter. Because a single afferent axon forms many
dispersed Meissner’s corpuscles, the first afferent can detect and signal small movements across
the skin. Stimulation of a sequence of Meissner’s corpuscles has been described to produce the

perception of localized movement along the skin.

Besides that, Meissner’s corpuscles are also considered to be the discriminative touch

system's flutter and movement detecting receptors in non-hairy skin.
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2.1.2 Pacinian Corpuscle

Pacinian corpuscle is found in subcutaneous tissue beneath the dermis and the connective
tissues of bone, the body wall, and the body cavity. Therefore, they can be cutaneous,

proprioceptive, or visceral receptors, depending on their location.

The Pacinian corpuscle is football-shaped, encapsulated, and contains the concentrically
layered epithelial cell. The Pacinian corpuscle looks like a slice of onion in the cross-section,
with a single first afferent terminal fiber located in its center. The outer layers of laminar cells

contain fluid that is displaced when a force is applied to the corpuscle.

When a force is first applied on the Pacinian corpuscle, it initially displaces the laminar
cells and distorts the axon terminal membrane. If the external pressure is maintained on the
corpuscle, the displacement of fluid in the outer laminar cells dissipates the applied force on the
axon terminal. Consequently, a sustained force on the corpuscle is transformed into a transient
force on the axon terminal, and the Pacinian corpuscle's first afferent produces a fast adapting

response.

Pacinian corpuscles' first afferent axons are most sensitive to vibrating stimuli at 100Hz
to 300Hz and unresponsive to steady pressure. The sensation is elicited when cutaneous Pacinian
corpuscles are stimulated by vibration or tickle. Pacinian corpuscles in the skin are considered to

be the vibration-sensitive receptors of the discriminative touch system.

2.1.3 Merkel’s Corpuscle

Merkel’s disk is found in both hairy and non-hairy skin and is located in the basal layer
of the epidermis. The Merkel’s disk is non-encapsulated and consists of a specialized receptor
cell, the Merkel cell, and a first afferent terminal ending, the Merkel’s disk. Thick, short, finger-
like protrusions of the Merkel cell are coupled tightly to the surrounding tissue. The Merkel cell

is a modified epithelial cell, which contains synaptic vesicles that appear to release neuropeptides
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that modulate the activity of the first afferent terminal. Each first afferent axon often innervates

only a few Merkel cells in a discrete patch of skin.

A force applied to the overlying skin distorts the Merkel cell, which releases a stream of
neuropeptides at its synaptic junctions with the Merkel disk. As the Merkel cell is mechanically
coupled to the surrounding skin, it remains distorted for the duration of the force applied on the
overlying skin. As a result, the action potential discharges produced by the Merkel complex

afferent are slowly adapting.

Merkel’s disk is considered to be the fine tactile receptors of the discriminative touch

system that provide cues used to localize tactile stimuli and to perceive the edges of objects.

2.1.4 Ruffini Ending

Ruffini ending is found deep in the skin, as well as in joint ligaments and joint capsules,
and can function as cutaneous or proprioceptive receptors depending on their location. The
Ruffini ending is cigar-shaped, encapsulated, and contains longitudinal strands of collagenous
fibers that are continuous with the connective tissue of the skin or joint. Within the capsule, the
first afferent fiber branches repeatedly, and its branches are intertwined with the encapsulated

collagenous fibers.

The Ruffini ending is oriented with its long axes parallel to the surface of the skin and is
most sensitive to skin stretch. Stretching the skin stretches the collagen fibers within the Ruffini
ending, which compresses the axon terminals. As the collagen fibers remain stretched and the
axon terminals remain compressed during the skin stretch, the Ruffini ending afferent axon

produces a sustained slowly adapting discharge to maintained stimuli.

Ruffini endings in the skin are considered to be skin stretch-sensitive receptors of the
discriminative touch system. They also work with the proprioceptors in joints and muscles to

indicate the position and movement of body parts.
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2.2 Thermoreceptors

Thermoreceptors are free dendrite endings without any special structure.
Thermoreceptors can be divided into two types; warm and cold thermoreceptors (Hensel, 1973b).
Cold thermoreceptors respond only to cooling, whereas warm thermoreceptors respond to
warming. Neither the thermoreceptors respond to mechanical stimulation. (Patapoutian et al.,
2003). The density of thermoreceptors may vary at different sites on the body. However, the

density of cold thermoreceptors is higher than warm thermoreceptors in all sites. The resting
temperature of the skin on the hand ranges from 25 °C to 36 °C (Verrillo et al., 1998). However,
the neutral skin temperature ranges from 30 °C to 36 °C. This is because when the skin

temperature is maintained at the neutral skin temperature, there will be no thermal sensation is

sensed; despite that, both types of thermoreceptors exhibit spontaneous firing.

The response of both cold and warm thermoreceptors changes according to the skin

temperature (Patapoutian, Peier, Story, & Viswanath, 2003). The warm thermoreceptor’s firing

frequency increases when the skin temperature increased from 30 °C to 50 °C and reached a
maximum at 45 °C. On the other hand, the cold thermoreceptor responds at the range of 5 °C to
43 °C and at the maximum when the skin temperature ranges 22 °C to 28 °C (Ho & Sato, 2014;
Spray, 1986). In addition, when the skin temperature increases above 45 °C and decreases below

15 °C, nociceptor is also stimulated, and the thermal sensation change to pain sensation (Ian

Darian-Smith & Johnson, 1977; Ho & Sato, 2014; L. a Jones & Ho, 2008).

2.3 Nocireceptors

Nociceptor is free dendrite endings without any special structure and responds to pain
caused by physical or chemical injury to body tissues. For example, pain can be divided into

sharp, pricking, cutting pain, dull, burning pain, and deep aching pain.
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Chapter 3

MODELING OF TACTILE SENSATION

As described in Chapter 1, quantification of tactile sense evaluation may help industries
to evaluate their new products without conducting a sensory evaluation. In order to realize this
objective, there are several steps that are indispensable. First, to understand on how human
percepts and evaluates tactile sensation. Next, to determine the approach on how to define or
model tactile sensation that will be discussed in this chapter. Lastly, to propose the method to
quantify the tactile sensation and suggest physical quantities for the quantification (will be

discussed in Chapter 4).

In Section 3.1, the concept for modeling of tactile sensation will be discussed.
Specifically, in Section 3.1.1, human tactile cognition and evaluation of tactile sensation will be

explained, and a novel approach for defining tactile sensation will be proposed in Section 3.1.2.

Next, by using the concept explained, modeling of tactile sensation for door armrests and
fabrics will be discussed in Section 3.2 and 3.3, respectively. Lastly, an improved way of

modeling tactile sensation will be introduced in Section 3.4.

3.1 Concept for Modeling of Tactile Sensation
3.1.1 Human Tactile Sense Evaluation

The perception of touch sensation does not normally come from the simple stimulus
patterns or from the stimulation of single receptors. The complexity of the stimulation of the

various senses through coordinated variation in the outputs of logically independent receptors
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shall need to be sought out. The information obtained from patterns of motion kinesthetically

sensed in combination with the pattern of motion visually, auditorily, and tactually sensed.

According to Taylor, the interaction between an object's surface and skin may consider as
same as a transducer (Taylor et al., 1973). A transducer is a device that changes energy from one
form to another. For example, a speaker is a transducer as it converts electrical energy into sound
and heat. Although heat is usually ignored, it is actually as much a part of the output. During the
interaction between a fingertip and an object, the inputs of the transducer are the relative motions
of the object and skin and the force between the hand and the object. The outputs are skin
deformation, vibration, lateral (friction) and vertical (resistance) forces, bulk deformation of the
fingertip, thermal effects, and sound. The transducer function, which relates the input and output,

can be defined as the texture. It is determined by the properties of the object and skin. In other

Table 3.1 Postulated links between knowledge about objects and EPs (Lederman &
Klatzky, 1987)

Knowledge about object Exploratory procedure

Substance-related properties

Texture Lateral motion

Hardness Pressure

Temperature Static contact

Weight Unsupported holding

Structure-related properties

Weight Unsupported holding

Volume Enclosure .
Contour following

Global shape Enclosure

Exact shape Contour following

Functional properties
Part motion Part motion test

Specific function Function test
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words, the transducer function is a joint function of object and skin properties. The simple
transducer function explained above represents only a small part of multimodal texture

perception system.

Regarding the input of texture perception, the hand movements are purposively related to
object properties. The typical movements (i.e., exploratory procedure) such as lateral movements,
unsupported holding, etc., are used to identify object properties (Lederman & Klatzky, 1987).
The object properties and exploratory procedures are summarized in Table 3.1. This study
presents the nature of haptic object recognition. In the other study, when the object is focused on

fabrics, the exploratory procedures are as shown in Figure 3.1. Table 3.2 shows the properties

(a) Touch stroke (b) Rotating cupped

(c) Multiple finger (d) Two handed rotation

Figure 3.1 Handle techniques
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Table 3.2 Properties evaluated by different handle techniques (Moody, Morgan,
Dillon, Baber, & Wing, 2001)

Handle technique Properties evaluated

Surface quality (texture),

(a)  Touch-stroke
temperature

Stiffness, weight, temperature,

Rotati ti .
(b) otating cupped action comfort, overall texture, creasing

Multiple finger pinch: Texture, stiffness, temperature,
Rotating between the finger  fabric structure, both sides of a
action with one hand (thumb  fabric, friction, stretch (force-
and 1 or 2 fingers) feedback)

(©)

(d) Two handed rotation action  Stretch, sheerness

evaluated for each exploratory procedure (Moody et al., 2001).

3.1.2 Modeling of Tactile Sense Evaluation

After detecting physical quantities by the cutaneous receptors, human perceives these
tactile senses after in-depth data analysis and integration done (Maeno, Kobayashi, & Yamazaki,
1998). From psychological aspect, the tactile sensation is usually evaluated qualitatively by
humans (Shirado & Maeno, 2014). Generally, human uses adjectives to express the tactile
sensation of an object. As the evaluation of tactile sensation is complicated (Shimojo, 2014), it is
important to use the right expression for describing the tactile sensation to ensure the assessment

reliability (Mékinen et al., 2005).

Therefore, this research proposes to hierarchically classify adjectives into three groups
called as low-order of tactile sensation, high-order of tactile sensation, and desired tactile
sensation. This concept is based on the flow of human tactile perception (refer to Figure 3.2), i.e.,
from the interaction between object and skin, the stimuli are perceived by the receptor, and then

the signals are interpreted in the brain. As shown in Figure 3.3, low-order of tactile sensation
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Brain

A
Intepret

Skin

A

Perceive

Object

Figure 3.2 Summary on flow of human tactile perception

(Like, Comfort, etc.)

1

e p
High-order of tactile sensation, HTS

(Elegent, Refreshing, Gentle, etc.)
N y,

s 2
Low-order of tactile sensation, LTS

(Rough, Fluffy, Warm, etc.)
\ J

Desired tactile sensation, DTS
Terms related to preference responses

Terms related to emotional responses

Terms related to psychophysical responses

Figure 3.3 Proposed concept of hierarchically classified tactile sensation

(LTS) is a group of adjectives that directly describe the texture/property of the object, in other
words, tactile-related adjectives. On the other hand, high-order of tactile sensation (HTS) is a
group of adjectives that describe the object by associating LTS adjectives with psychological
impressions and past experiences. Desired tactile sensation (DTS) means adjectives that are
related to one’s preference which majorly affect the purchase decision-making process. By using
this concept, better understanding and interpretation of tactile sensation could be achieved. In
order to acquire the main components in LTS, HTS, and DTS, and the relationship between LTS
and HTS, and HTS and DTS, a sensory evaluation is conducted. After clarifying the definition of

tactile sensation, the method to quantify may be determined in Chapter 4.
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3.2 Modeling of Tactile Sensation for Door Armrest

This section mainly explores the hierarchical structure of tactile sensation for door
armrest. First, in Section 3.2.1, the tactile sensation is classified into two groups; low-order of
tactile sensation (LTS) and high-order of tactile sensation (HTS). Then, two adjectives are
selected as the desired tactile sensation (DTS). Then, a sensory evaluation is conducted and

explained in section 3.2.2.

3.2.1 Classification of Adjectives

In the sensory evaluation, there were 22 items of adjectives listed and classified into LTS,
HTS, and DTS as shown in Table 3.3. The adjectives were selected by referring to previous
works (Asaga, 2012; Guest et al., 2009; Nagano, Okamoto, & Yamada, 2014; Okamoto, Nagano,
Kidoma, & Yamada, 2016; Shirado & Maeno, 2014) and discussion with door-armrest

developers.
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Table 3.3 List of adjectives

Adjective Adjective
Wet Fit
Damp Embraceable
Chilly Reviving
Cold Refreshing
HTS .
Smooth Exciting
Silk Exhilaratin
LTS y s
Rough Cheap
Bumpy Luxury
Tough
Hard Prefer
) DTS
Brittle Pleasant
Hollow

3.2.2 Sensory Evaluation

A sensory evaluation with a semantic differential method was carried out. 15 adults with
age between their twenties and forties were asked to touch freely with their hands. Then, they
were asked to evaluate 26 samples of door armrest on a seven-point unipolar scale. The unipolar
scale is used to avoid translation problems between opposite adjectives (Tuorila et al., 2008).
Moreover, the scale is only defined at the endpoints to prevent varying interpretations of verbal

anchors and unevenness between anchors (Cantin & L. Dubé, 1999).
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Table 3.4 List of door armrest samples.

#1

5 mm 5 mm 5mm
e —— e
Genuine leather Resin Synthetic leather
Type A Type E Type A
#4 5 mm #5 5 mm #6 5 mm
e | b — = =
Synthetic leather Synthetic leather Synthetic leather
Type B Type A Type B
#7 5mm 5 mm #9 5 mm
— et k==
Fabric Resin Synthetic leather
Type A Type B Type C
#10 5 mm #11 5 mm #12 5 mm
= s e
Synthetic leather Polyvinyl chloride Genuine leather
Type A Type C Type C
#13 5 mm #14 5 mm #15 5 mm
_— PR e
Synthetic leather Genuine leather Synthetic leather
Type C Type A Type A
#16 #17 5 mm #18 5 mm
= ——
Fabric Synthetic leather Synthetic leather
Type D Type C Type A
#19 5 mm #20 5 mm #21 5mm
Synthetic leather Fabric Polyvinyl chloride
Type A Type A Type C
#22 5mm #23 5mm #24 5 mm
—— — —_—
Polyvinyl chloride Synthetic leather Synthetic leather
Type C Type A Type A
#25 5 mm #26 5 mm
F— iz
Polyvinyl chloride Resin

Type C Type E




Outer layer Outer layer
nd 2
2% Cushion Outer layer
Cushion layer
1 st : g
ayer 1 Cushion Cushion Outer layer
layer layer
Resin layer Resin layer Resin layer Resin layer Resin layer

(a) Type A

(b) Type B

(c) Type C

(d) Type D

(e) Type E
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Figure 3.4 Cross-sectional structure types of door armrest samples.

The experiment was carried out as a blind test with samples’ details undisclosed in order
to exclude visual effects from the sensory evaluation,. Table 3.4 shows the outer layer samples
(synthetic leather, genuine leather, fabric, polyvinyl chloride, and resin) and the cross-sectional
structure types of each sample; there are five types, as shown in Figure 3.4. The participants are

informed in advance of what objects that they are going to evaluate.

3.2.2.1 Principal Component Analysis

From the survey data of sensory evaluation, principal component analysis with varimax
rotation was carried out using statistical analysis software (SPSS Ver. 22, IBM) to reduce the
number of variables by grouping the adjectives that have a strong correlation to each other into
an independent semantic variable or principal component (PC). Previous research (X. Chen,
Barnes, Childs, Henson, & Shao, 2009; Okamoto, Nagano, & Yamada, 2013; Sakamoto &
Watanabe, 2017) has shown that the adjectives can be grouped and one of the methods used is
principal component analysis. By reducing the number of variables, they become practical and
easy for interpreting the data. Tables 3.5 and 3.6 show the results of principal component
analysis for LTS and HTS, respectively. All components that have loadings higher than 0.50 are
in bold (this is an arbitrary limit).
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Table 3.5 Result of principal component analysis for low-order of tactile sensation

(LTS).
Principal Components
Adjective
1 2 3 4 5 6
Wet 0.971  0.091 0.081 -0.014 —0.057 —0.010
Damp 0.967 0.098 0.125 —0.018 -0.053 —0.028
Chilly 0.088  0.966  0.091 0.066  0.067  0.084
Cold 0.104 0963  0.091 0.066  0.112  0.038
Smooth 0.100  0.106 0915 -0.176 —0.105 -—0.057
Silky 0.118  0.084 0908 -0.127 —0.199 0.000
Rough -0.019 0.105 —0.093 0917 0.219  0.006
Bumpy -0.014 0.031 —0.227 0.886 0.216  0.100
Tough —0.023  0.140 -0.131 0.239  0.893 —0.129
Hard -0.102 0.061 —0.193 0.220  0.887 —0.143
Brittle —0.101  0.069 -0.139 0.144 -0.024  0.900
Hollow 0.063  0.052 0.084 —0.052 -0.223  0.892
Eigen value 3430 2513 1.899 1.490  0.983 0.693
Cumulative contribution ratio 16.22 3239  47.74 62.84 77.86 91.74

Table 3.6 Result of principal component analysis for high-order of tactile sensation

(HTS)
Principal Components
Adjective
1 2 3 4

Fit 0.920 0.025 0.188 0.241
Embraceable 0.887 0.108 0.272 0.245
Reviving 0.075 0.945 0.173 0.049
Refreshing 0.057 0.865 0.378 0.039

Exciting 0.287 0.314 0.858 0.160
Exhilarating 0.256 0.322 0.858 0.194
Cheap -0.216  0.018  —0.115 -0.941

Luxury 0.501 0.203 0.287 0.695

Eigen value 4.369 1.741 0.708 0.570
Cumulative contribution ratio 26.09 49.82 72.94 92.35
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There were six principal components for LTS extracted with 91.7% of the total variance.
PC1 was interpreted as “dampness” dimension, with high loadings on damp and wet, PC2 was
“coldness” dimension, with high loadings on chilly and cold. PC3 was “micro-roughness”
dimension, with high loadings on smooth and silky. PC4 was “macro-roughness” dimension,
with high loadings on rough and bumpy. PC5 was “hardness” dimension, with high loadings on
tough and hard. Lastly, PC6 was “hollowness” dimension, with high loadings on brittle and

hollow.

On the other hand, there were four principal components for HTS extracted with 92.3%
of the total variance. PC1 was identified as “embracingness” dimension, with high loadings on fit
and embraceable. PC2 was “refreshingness” dimension, with high loadings on reviving and
refreshing. PC3 was “excitingness” dimension, with high loadings on exciting and exhilarating.
Lastly, PC4 was “expensiveness” dimension, with high loadings on cheap (negative sign) and
luxury. Here, luxury was seen to have slightly loading on PC1, in other words, /uxury had a

combination of not cheap and fit.

3.2.2.2 Multiple Regression Analysis

Multiple regression analysis is generally used when a statistician thinks there are several
independent variables contributing to the variation of the dependent variable. Furthermore, this
analysis could determine whether there is a significant relationship exists between the

independent variables and dependent variables (Bluman, 2014).

In multiple regression, the strength of the relationship between independent variables and
the dependent variable is presented by multiple correlation coefficient, R. This R is computed
from individual correlation coefficients of all independent variables. The multiple coefficient of
determination, R’ is a better indicator of the strength of the relationship compared with R. Yet,
adjusted R’ considers the sampling error and controls overestimation of R°. The R’ represents the
amount of variation explained by the regression model. By identifying the significance of R’, one
could determine whether the regression model is a good fit for the data. If a multiple regression

equation fits the data well, it can be used to make predictions (Bluman, 2014).
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Moreover, multiple regression equation can be generally represented as below.

Yy = a + byx;+ byxy, + -+ bpxy (3.1)

The x’s are the independent variables, and y is the dependent variable. The value for a is
more or less an intercept, although a multiple regression equation with two independent variables
constitutes a plane rather than a line. The b’s are called as partially regression coefficients. Each
regression coefficient represents the amount of change dependent variable for one unit of change
in corresponding to one independent variable when the other independent variables are held
constant. The probability value (p-value) of the regression coefficient shows the amount of

contribution of the independent variable to the regression model.

However, the regression coefficient could not represent the correlation between a
dependent variable and independent variables individually. Here, the correlation should be
computed to determine whether a positive/negative linear relationship exists between a
dependent variable with independent variables individually, and each probability value (p-value)

of correlation shows the strength of the individual correlation.

In this section, multiple regression analysis was conducted to determine and examine the
relationship between all components in LTS and each component in HTS, and between all
components in HTS and each adjective in DTS by using SPSS software [IBM Corporation].
Before conducting the multiple regression analysis, bivariate Pearson correlation was conducted
for all explanatory variables to make sure that there is no multicollinearity occurred between the

variables. All the correlations showed values below 0.65.

Table 3.7 shows the correlation and multiple regression analysis results when the
dependent variable is HTS component of “embracingness” and the independent variables are

2 ¢ 29 ¢ 29 ¢

LTS components of “dampness”, “coldness”, “micro-roughness”, “macro-roughness” , “hardness”
and “hollowness”. As shown in Table 3.7 (a), “dampness”, “micro-roughness” and “hollowness”
had a positive and significantly correlation with “embracingness”. However, “macro-roughness”
and “hardness” had a negative and significantly correlation with the “embracingness”. Moreover,

“coldness” had a weak negative correlation with “embracingness”.
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The multiple regression model with the two predictors (“macro-roughness” and
“hardness”) produced R’ = 0.961, F (2, 23) = 284.494, p < .001, thus, the multiple regression

model had a very good fit of data, indicating that the “embracingness” scores were related to two

Table 3.7 Result for multiple regression analysis (HTS-“Embracingness” with all
LTS principal components)

(a) Correlations

“Embracingness”

Pearson correlation  Sig.

“Dampness” 0.341** .044
“Coldness” -0.147 236
“Micro-roughness”  0.633%*** 2.575E-04
“Macro-roughness”  -0.443** 012
“Hardness” -(0.954 % %% 2.208E-14
“Hollowness” 0.493%#** .005

*p<.l *p< 05 *Ep< (] *F*p< 001

(b) Model Summary

Adjusted R Std. Error of

R R Square Square the Estimate

.980* 0.961 0.958 0.143

a. Predictors: (Constant), “Hardness”, “Macro-roughness”

(c) ANOVA?
Model Sum of Mean Sig.
Squares Square
Regression 11.689 2 5.845 284.494* .000°
Residual 0.473 23 0.021
Total 12.162 25
*p <.001

a. Dependent variable: “Embracingness”
b. Predictors: (Constant), “Hardness”, “Macro-roughness”
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Table 3.7 Result for multiple regression analysis (HTS-“Embracingness” with all
LTS principal components)

(d) Coefficients?
Unstandardized Standardized
Model Coefficients Coefficients  gjg.
B Std. Error  Beta
(Constant) -0.002 0.028 - .945
“Hardness” -0.846 0.040 -0.900* .000
“Macro-roughness” -0.231 0.042 -0.231* .000

*p <.001
a. Dependent variable: “Embracingness”

LTS components: “macro-roughness” and “hardness”.

According to the standardized regression coefficients, the “hardness” had the most
contribution to the HTS component of “embracingness”, followed by “macro-roughness”.
“Hardness” and ‘“macro-roughness” had negative regression coefficients, indicating that the
higher score of “hardness” and “macro-roughness”, i.e. the softer and smoother sample was
expected to have a higher score of “embracingness”. From Table 3.7 (d), a multiple regression

equation can be obtained as the equation below.

Hembracingness = (_0-846 X Lhardness) + (_0-231 X Lmacro—roughness) —0.002 (3'2)

Table 3.8 shows the correlation and multiple regression analysis results when the
dependent variable is HTS component of “refreshingness” and the independent variables are LTS
components of “dampness”, “coldness”, “micro-roughness”, “macro-roughness”, “hardness” and
“hollowness”. As shown in Table 3.8 (a), “dampness” had a negative and significantly
correlation with the “refreshingness”. However, “hardness” had a positive and significantly
correlation with the “refreshingness” and others LTS components had weak correlations with

“refreshingness”.



Table 3.8 Result for multiple regression analysis (HTS-“Refreshingness” with all
LTS principal components)

(a) Correlations

“Refreshingness”

Pearson correlation  Sig.

“Dampness” 0. 751 F*** 5.001E-06
“Coldness” -0.178 192
“Micro-roughness”  0.024 454
“Macro-roughness”  0.090 331
“Hardness” 0.579%** .001
“Hollowness” 0.073 361

*p<.l *p<.05 FFp<.01 FFEEp <001

(b) Model Summary

Adjusted R Std. Error of

R R Square Square the Estimate

.819% 0.670 0.642 0.127
b. Predictors: (Constant), “Dampness”, “Hardness”

(c) ANOVA?
Model Sum of Mean Sig.
Squares Square
Regression 0.762 2 0.381 23.391* .000°
Residual 0.375 23 0.016
Total 1.136 25
*p <.001

c. Dependent variable: “Refreshingness”
d. Predictors: (Constant), “Dampness”, “Hardness”

39
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Table 3.8 Result for multiple regression analysis (HTS-“Refreshingness” with all
LTS principal components)

(d) Coefficients?
Unstandardized Standardized
Model Coefficients Coefficients  gjg.
B Std. Error  Beta
(Constant) 0.002 0.025 - 939
“Dampness” -0.443 0.092 -0.622%* .000
“Hardness” 0.101 0.037 0.351%* 012

*p <.001
b. Dependent variable: “Refreshingness”
The multiple regression model with the two predictors produced R’ = 0.670, F (2, 23) =
23.391, p <.001, thus, the multiple regression model had a very good fit of data, indicating that

the “refreshingness” scores were related to two LTS components: “dampness” and “hardness”.

According to the standardized regression coefficients, the “dampness” had the most
contribution to the HTS component of “refreshingness”, followed by ‘“hardness”. “Dampness”
had a negative and “hardness” had positive regression coefficients, indicating that the higher
score of “dampness” and “hardness”, i.e., the drier and softer sample was expected to have a
higher score of “refreshingness”. From Table 3.8 (d), a multiple regression equation can be

obtained as the equation below.

H‘refreshingness = (_0-443 X Ldampness) + (0-101 X Lhardness) +0.002 (33)

Table 3.9 shows the correlation and multiple regression analysis results when the

dependent variable is HTS component of “expensiveness” and the independent variables are LTS

2 (13 2 (13

components of “dampness”, “coldness”, “micro-roughness” , “macro-roughness” , “hardness”
29 ¢

and “hollowness”. As shown in Table 3.9 (a), “dampness”, “micro-roughness” and “hollowness”

had positively and significantly correlations with the “expensiveness”. However, “macro-
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Table 3.9 Result for multiple regression analysis (HTS-“Expensiveness” with all
LTS principal components)

(a) Correlations

“Expensiveness”

Pearson correlation  Sig.

“Dampness” 0.293* 073
“Coldness” -0.129 265
“Micro-roughness”  0.672%*** 8.510E-05
“Macro-roughness”  -0.443** 012
“Hardness” -0.747%F** 5.863E-06
“Hollowness” 0.394** 023

*p<.l FEp<.05 FrEp<.01 FF*p <001

(b) Model Summary

Adjusted R Std. Error of

R R Square Square the Estimate

0.815% 0.664 0.634 0.202

c. Predictors: (Constant), “Hardness”, “Micro-roughness”

(c) ANOVA?
Model ~ Sumof 4 Mean o Sig.
Squares Square
Regression 1.852 2 0.926 22.681* .000°
Residual 0.939 23 0.041
Total 2.791 25
*p <.001

e. Dependent variable: “Expensiveness”
f. Predictors: (Constant), “Hardness”, “Micro-roughness”

roughness” and “hardness” had positively and significantly correlations with the “expensiveness”,

and “coldness” had a weak correlation with “expensiveness”.
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Table 3.9 Result for multiple regression analysis (HTS-“Expensiveness” with all
LTS principal components)

(d) Coefficients?
Unstandardized Standardized
Model Coefficients Coefficients  gjg.
B Std. Error  Beta
(Constant) -0.004 0.040 - 922
“Hardness” -0.245 0.064 -0.543** .001
“Micro-roughness”  0.346 0.129 0.384* .013

*p<.05 **p<.01
c. Dependent variable: “Expensiveness”
The multiple regression model with the two predictors produced R’ = 0.664, F (2, 23) =
22.681, p <.001, thus, the multiple regression model had a very good fit of data, indicating that
the “expensiveness” scores were related to two LTS components: “hardness” and “micro-

roughness”.

According to the standardized regression coefficients, the “dampness” had the most
contribution to the HTS component of “expensiveness”, followed by “hardness”. “Hardness” had
a negative and “micro-roughness” had positive regression coefficients, indicating that the higher
score of “hardness” and “micro-roughness”, i.e., the softer and smoother sample was expected to
have a higher score of “expensiveness”. From Table 3.9 (d), a multiple regression equation can

be obtained as the equation below.

Hexpensiveness = (_0-245 X Lhardness) + (0-346 X Lmicro—roughness) —0.004 (34)

Table 3.10 shows the correlation and multiple regression analysis results when the
dependent variable is DTS component of “prefer” and the independent variables are HTS
components of “embracingness”, “refreshingness”, “excitingness” and ‘“expensiveness”. As

2 (13

shown in Table 3.10 (a), “embracingness”, “excitingness” and “expensiveness” had positively
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and significantly correlation with the “prefer”. However, “refreshingness” had a negatively and

significantly correlation with the “prefer”.

Table 3.10 Result for multiple regression analysis (DTS-*“Prefer” with all HTS
principal components)

(a) Correlations

“Prefer”

Pearson correlation  Sig.

“Embracingness” (.94 3% 2.667E-13
“Refreshingness” -0.344** 0.043
“Excitingness” 0.308* 0.063
“Expensiveness” 0.795%** 6.272E-07

*p<.l FEp<.05 FrEp<.01 FEEEH <001

(b) Model Summary

Adjusted R Std. Error of

R R Square Square the Estimate

0.959% 0.919 0.912 0.315

d. Predictors: (Constant), “Embracingness”, “Refreshingness”

(c) ANOVA?
Model ~ Sumof 4 Mean o Sig.
Squares Square
Regression 25979 2 12.990 130.566* .000°
Residual 2.288 23 0.099
Total 28.267 25
*p <.001

g. Dependent variable: “Prefer”
h. Predictors: (Constant), “Embracingness”, “Refreshingness”
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Table 3.10 Result for multiple regression analysis (DTS-“Prefer” with all HTS
principal components)

(d) Coefficients?
Unstandardized Standardized
Model Coefficients Coefficients  gjg.
B Std. Error  Beta
(Constant) 3.776 0.062 - .000
“Embracingness” 1.596 0.106 1.047** .000
“Refreshingness”™  0.995 0.346 0.199% .009

*p<.01 **p<.001
d. Dependent variable: “Prefer”
The multiple regression model with the two predictors produced R’ = 0.919, F (2, 23) =
130.566, p < .001, thus, the multiple regression model had a very good fit of data, indicating that

the “prefer” scores were related to two HTS components: “embracingness” and “refreshingness”.

According to the standardized regression coefficients, the “embracingness” had the most
contribution to the DTS component of “prefer”, followed by “refreshingness”. “Embracingness”
and “Refreshingness” had positive regression coefficients, indicating that the higher score of
“embracingness” and “refreshingness”, i.e. the more embracing and refreshing sample was
expected to have higher score of “prefer”. From Table 3.10 (d), a multiple regression equation

can be obtained as the equation below.

Dp‘refer = (1-596 X Hembracingness) + (0'995 X Hrefreshingness) +3.776 (35)

Table 3.11 shows the correlation and multiple regression analysis results when the
dependent variable is DTS component of “pleasant” and the independent variables are HTS
components of “embracingness”, “refreshingness”, “excitingness” and ‘“expensiveness”. As
shown in Table 3.11 (a), “embracingness”, “excitingness” and “expensiveness” had positively
and significantly correlation with the “pleasant”. However, “refreshingness” had a negatively

and significantly correlation with the “pleasant”.
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The multiple regression model with the two predictors produced R’ = 0.964, F (3, 22) =
96.164, p < .001, thus, the multiple regression model had a very good fit of data, indicating that

Table 3.11 Result for multiple regression analysis (DTS-“Pleasant” with all HTS
principal components)

(a) Correlations

“Pleasant”

Pearson correlation  Sig.

“Embracingness” (0.939% % 6.795E-13
“Refreshingness” -0.330* .050
“Excitingness” 0.276* .086
“Expensiveness” (0.824%#* 1.187E-07

*p<.l FEp<.05 FFEp<.01 FF*p < .001

(b) Model Summary

Adjusted R Std. Error of

R R Square Square the Estimate
.964% 0.929 0.919 0.283
e. Predictors: (Constant), “Embracingness”, “Refreshingness”,
“Expensiveness”
(c) ANOVA?
Model ~ Sumof 4 Mean o Sig.
Squares Square
Regression 23.078 3 7.693 96.164 .000°
Residual 1.760 22 0.080
Total 24.838 25
*p <.001

1. Dependent variable: “Pleasant”
j. Predictors: (Constant), “Embracingness”, “Refreshingness”,
“Expensiveness”
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Table 3.11 Result for multiple regression analysis (DTS-“Pleasant” with all HTS
principal components)

(d) Coefficients?

Unstandardized Standardized
Model Coefficients Coefficients Sig.

B Std. Error  Beta
(Constant) 3.907 0.055 - .000
“Embracingness” 1.272 0.145 0.890%** .000
“Refreshingness” 0.917 0.313 0.196** .008
“Expensiveness” 0.574 0.274 0.192* .048

*p<.05 *Ep<.01 ***p<.001
e. Dependent variable: “Pleasant”

b 13

the “pleasant” scores were related to three HTS components: “embracingness”, “refreshingness”

and “expensiveness”.

According to the standardized regression coefficients, the “embracingness” had the most
contribution to the DTS component of “pleasant”, followed by “refreshingness” and “expensive”.

2 13

“Embracingness”, “refreshingness” and “expensiveness” had positive regression coefficients,
indicating that the higher score of “embracingness”, “refreshingness” and “expensiveness”, i.e.
the more embracing, refreshing and expensiveness sample was expected to have higher score of
“pleasant”. From Table 3.11 (d), a multiple regression equation can be obtained as the equation

below.

Dpleasant = (1-272 X Hembracingness) + (0-917 X Hrefreshingness)
+ (0.574 X Hoypensiveness) + 3-907 (3.6)

3.2.3 Discussions

From the principal component analysis and multiple regression analysis results, the

hierarchical structure of tactile sensation for door armrest can be summarized as shown in Figure
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- x<0.1
— 0.1<x<05
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Figure 3.5 Multiple regression analysis result.

3.5. The thickness of the lines corresponds to the standardized coefficients. Moreover, the solid

and dash lines indicate the positive and negative coefficients, respectively.

There was one component in HTS (the “excitingness” dimension) that could not
successfully construct its multiple regression with components in LTS because the correlations
between the “excitingness” dimension with components in LTS were not significantly strong.
Therefore, the “excitingness” dimension was not included during the construction of multiple

regressions between DTS and HTS.

By using the multiple regression equations, DTS adjectives can be expressed by LTS
components. In order to express DTS adjectives for hand in terms of LTS components, the
equations (3.2), (3.3), and (3.4) are substituted in equations (3.5) and (3.6). The computed

equations are as shown below.

Dp‘refer = (_1-250 X Lhardness) + (_0-369 X Lmacro—roughness)
+ (—0.441 X Lygmpness) + 3-775 (3.7)

Dpleasant = (_1-124 X Lhardness) + (_0-294 X Lmacro—roughness)
+ (=0.406 X Lygmpness) + (0.199 X Lynicro—roughness) — 0-003 (3-8)
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3.3 Modeling of Tactile Sensation for Fabrics

This section mainly explores on the hierarchical structure of tactile sensation for fabrics.
First, in Section 3.3.1, the tactile sensation is classified into two groups; low-order of tactile
sensation (LTS) and high-order of tactile sensation (HTS). Then, two adjectives are selected as
the desired tactile sensation (DTS). Next, a sensory evaluation by using hand and forearm are
conducted and explained in section 3.3.2 and section 3.3.3, respectively. The sensory evaluation
is conducted using hand and forearm to understand the difference of tactile perception in both
types of skin; glabrous skin (hand) and hairy skin (forearm). Besides, the tactile sensation by
hand may represent the tactile sensation when the consumer firstly touches the fabric during the
evaluation for purchasing. On the other hand, the tactile sensation by forearm may represent the
tactile sensation when the consumer actually wears the fabric. Lastly, in section 3.3.4, the

summary of analysis results will be presented.

3.3.1 Classification of Adjectives

There are 15 adjectives that are used in this research, as shown in Table 3.12. The
original Japanese terms of these adjectives’ definitions together with English meanings are
provided as well. These adjectives were selected by referring to previous works (Asaga et al.,
2013; Shirado & Maeno, 2014) and discussion with tactile-related experts and experienced

textile-related workers.

Table 3.12 List of adjectives in Japanese and English translation

Roman

Japanese alphabets

English translation

Hiya’ means the feel of
chilly.

Atatakai means the feel
of warm.

eyl &\ Hiya’/ Atatakai




Table 3.12 List of adjectives in Japanese and English translation (continued from

previous page)

Japanese aﬁ)(l)lr;lljler}[s English translation
Karui means light or
[ Q7 & EW Karui/ Omoi not h§avy.
Omoi means heavy or
weighty.
Zara-zara means the
feel of rough like sandy,
NI <o Zara-zara/ gritty or granular.
shbab & TT Sube-sube Sube-sube means the
feel of smooth but not
slippery.
Kimeoa arai/ Kimega arai means
T O o T O Kimega rough texture.
FHU VAN i o Kimega komakai means
omakai
fine texture.
Katai/ Katai means hard.
BT & EBDV Yawarakai Yawarakai means soft.
Funwari means spongy,
jﬁgb g N i?i? @ Funwari fluffy and soft in an airy
& manner.
Lo&b Lo&D o Shittori means moist
57 4 L7eun Shittori and damp
Sara-sara means the
Ibab o Ibab Sura-sara feel of smooth and dry
I A L7 with no stickiness or
moistness
- EHAEDN . Ochitusku means
wHAS O AR Ochitsuku relaxing and calm
S O Sawayaka means the
SO © TR0 Sawayaka feel of refreshing
ToEY . Sukkiri means the feel
Toxh © L7 Sukkiri of be refreshed or clear
L7 Yasashi means delicate
BLw & - Yasashi or gentle

49
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Table 3.12 List of adjectives in Japanese and English translation (continued from
previous page)

Roman

alphabets English translation

Japanese

Jouhin means elegant or
stylish
. Gokochiyoi means
DBV & ;I:C iﬂfﬁ < Kokochiyoi pleasant, cozy or
comfortable
Suki means prefer or
like

B & i Jouhin

I = & o Suki

Suki

Yasashi
Sawayaka
Ochitsuku
Sukkiri
Jouhin
Kokochiyoi
Hiya’/ Atatakai
Karui/ Omoi
Shittori
Funwari

Adjectives

Zara-zara/ Sube-sube
Sara-sara
Katai/ Yawarakai

Kimega arai/ Kimega komakai

0 0.5 1

{ﬁleag%dggt,s related to the object
d <«—> with inclusion of

XTur . .
texture human impressions

Figure 3.6 Grouping of adjectives
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Table 3.13 Classification of adjectives

Adjectives Adjectives

Hiya’/ Atatakai Ochitsuku
Karui/ Omoi Sawayaka
Zara-zara/ Sube-sube E Sukkiri

- foizceiziarai/ Kimega Yasashi

= | Katai/ Yawarakai Jouhin
Funwari % Kokochiyoi
Shittori 2| Suki
Sara-sara

In order to classify tactile sensation into LTS and HTS, a survey was carried out. 53
males and females in their twenties participated in this survey. They were asked whether the
listed adjectives in Table 3.12 are related to the object’s texture or related to the object with

inclusion of human emotions.

The result is as shown in Figure 3.6. From the result, the tactile sensation is classified in
LTS, HTS and two adjectives, i.e. “comfort” and “preference” are selected for DTS. “Preference”
is selected for DTS because it directly describes the one’s preference towards an object.

Nevertheless, “comfort” is selected for DTS because it has the

same tendency as preference, since generally, only comfortable fabrics that will be preferable.

The classification of adjectives is summarized in Table 3.13.
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3.3.2 Sensory Evaluation by Hand

In this section, a sensory evaluation is carried out to model the tactile sensation by human
evaluation. A paired comparison method was used for this sensory evaluation. 13 adult females
around twenties and thirties were asked to touch with their hands in wale direction of fabrics and
evaluate 7 samples of fabrics on a seven-point scale with Sample #1 which is made of 100 %
cotton as the standard sample. In order to exclude non-tactile effects in the sensory evaluation,
the experiment was carried out as blind test with samples’ details undisclosed. The participants

are informed in advance of what objects that they are going to evaluate.

The sensory evaluation included 15 items of adjectives as mention in section 3.3.1. The

room temperature and humidity were controlled to 24 “C and 50 % respectively. The list of

Table 3.14 List of fabric samples
(a) Materials and knitted method
# Material Knitted method

1 Cotton 100 % Rib stitch
2 Polyester 100 % Interlock stitch
Rayon 95 %,

3 Polyurethane 5 % Plain stitch

4 Acryl 100 % Rib stitch
Cupro 59 %,

5 Nylon 34 %, Plain stitch
Polyurethane 7 %
Cupro 53 %,

6 Nylon 39 %, Plain stitch
Polyurethane 8 %
Cupro 60 %,

7 Nylon 30 %, Rib stitch

Polyurethane 10 %
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Table 3.14 List of fabric samples (continued from previous page)

(b) Picture of fabrics (x10

A N ] Yy ARYIEN VS LT
] = e oY vlalwlalv alvw a\¥,
A Eaka i ki SO S )
g a ATIENTY
s1ey a1 r] BeRTe
¥ 1 v,a'.v,;\?;:\‘:);
P = & N ‘ALY A JaANYIGN
eI T A0 Shindavialvis
L 4 ARYIAAYIEATYISY
. Yoaulr A\ A
i i ! rh ':t:':“:"“,}\".:{f
- PN TAM AW
fefegarial UOURUDNY
! o g v ralvialYJialVis

#5 #6

samples with the material, knitted method and picture are as shown in Table 3.14. The samples

are undergarments which are designed for summer season.

This sensory evaluation is participated by only female. This is because Citrin et al.
discovered that female requires tactile input more than male to evaluate or purchase a product

(Citrin et al., 2003). Thus, by limiting participants to female, this research expects to reduce the

errors in evaluation caused from gender difference.

3.3.2.1 Principal Component Analysis

Principal component analysis with varimax rotation is performed to extract the common

potential components of adjectives from each group, i.e. LTS and HTS.
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Before conducting component analysis, all of the sensory evaluation values are
normalized by each participant by using below equation.
xij — X

xj = (3.9)

x. : Normalized sensory value for each item of a sample
x.. : Sensory value for each item of a sample

X :Mean for all sensory values of a participant

s  : Standard deviation for all sensory values of a participant

As the results, there were 4 principal components extracted with 72.0% of cumulative
contribution rate as shown in Table 3.15. According to Shirado et al., the cumulative contribution
is preferable to be around 70 to 80 %, so that most of the tactile sensations could be explained by
the extracted components (Shirado & Maeno, 2014). The scree plot was as presented in Figure
3.7. PC1 was interpreted as “surface texture” because high loadings were shown by items such as
“kimega arai/ kimega komakai”, “zara-zara/ sube-sube” and “katai/ yawarakai’. PC2 was
interpreted as “dryness” because high loadings were shown by items such as “shittori” and
“sara-sara”. PC3 was interpreted as “downiless” because high loadings of items “‘funwari” and

“karui/ omoi”. PC4 was interpreted as “coolness” because high loading of item “atatakai/ hiyak™.



Table 3.15 Result for principal component analysis of LTS

Principal Components

Adjective
1 2 3 4
Ratai/ 0900  -0.118 0126  -0.207
Yawarakai
Zara-zara/ 0.796 -0.029 0.048 0.207
Sube-sube

Kimega arai/

Kimega komakai 0.774 0.197 -0.150 0.071

Shittori 0.036 0.853 -0.029 -0.151
Sara-sara -0.090 0.690 0.160 0.163
Funwari 0.014 -0.013 0.998 -0.009
Karui/ Omoi 0.066 0.131 0.407 0.027

Hiya’/ Atatakai -0.008 -0.043 0.004 1.027

Eigenvalue 3.206 1.509 1.290 0.686

Cumulative

o 18.971 39.811 63.307 71.994
contribution rate
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Figure 3.7 Scree plot for principal component analysis of LTS

Table 3.16 Result for principal component analysis of HTS

Principal Components

Adjective " 5
Yasashi 0.937 -0.030
Ochitsuku 0.844 -0.034
Jouhin 0.482 0.334
Sawayaka 0.002 0.878
Sukkiri -0.020 0.783
Eigenvalue 3.167 0.862
Cumulative

contribution rate 56.939 68.751
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Figure 3.8 Scree plot for principal component analysis of HTS
On the other hand, there were 2 principal components extracted with 68.8% of
cumulative contribution rate as shown in Table 3.16 and the scree plot was as presented in Figure
3.8. Although the cumulative contribution ratio is lower than 70 %, the number of extracted
components can also be determined by the curve of scree plot. PC1 was interpreted as
“relaxation” because high loadings were shown by items such as “yasashii”, “ochitsuku” and

“jouhin”. PC2 was interpreted as “refreshingness” because high loadings were shown by items

such as “sawayaka” and “sukkiri”.
3%

3.3.2.2 Multiple Regression Analysis

In this section, multiple regression analysis was conducted to determine and examine the
relationship between all components in LTS and each component in HTS, and between all
components in HTS and each adjective in DTS by using SPSS software [IBM Corporation].
Before conducting multiple regression analysis, bivariate Pearson correlation was conducted for
all explanatory variables to make sure that there is no multicollinearity occurred between the

variables. All the correlations showed values below 0.65.
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Table 3.17 Result for multiple regression analysis (HTS-“relaxation” with all LTS

components)
(a) Correlations
“relaxation”
Pearson‘ Sig.
correlation
“surface texture” 0.984**** 000
“dryness” 0.948*** .001
“downiless” 0.631°%* .064
“coolness” 0.714** .036
*p<.l FEp<.05 FrEp<.01 FF*p <001
(b) Model Summary
R s MRS b
0.998% 0.996 0.989 0.074478

a. Predictors: (Constant), “surface texture”, “dryness”, “downiless”,

“coolness”

(c) ANOVA?
Model Sum of Mean Sig.
Squares Square
Regression 2.942 4 0.736 132.605*% .007°
Residual 0.011 2 0.006
Total 2.953 6
*p <.01

a. Dependent variable: “relaxation”
b. Predictors: (Constant), “surface texture”, “dryness”

“coolness”

b

“downiless”

2
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Table 3.17 Result for multiple regression analysis (HTS-“relaxation” with all LTS
principal components)

(d) Coefficients?

Unstandardized Standardized
Model Coefficients Coefficients Sig.

B Std. Error  Beta
(Constant) -8.577E-7 0.028 - 1.000
“surface texture” 1.497 0.561 1.281 117
“dryness” -0.109 0.796 -0.097 904
“downiless” 0.016 0.162 0.012 932
“coolness” -0.308 0.372 -0.252 494

a. Dependent variable: “relaxation”

Table 3.17 shows the correlation and multiple regression analysis results when the
dependent variable is HTS component of “relaxation” and the independent variable are LTS
components of “surface texture”, “dryness”, “downiless” and “coolness”. As shown in Table
3.17 (a), “surface texture”, “dryness” and “coolness” had a positively and significantly
correlation with the “relaxation”. However, “downiless” had a weak positive correlation with
“relaxation”. This indicates that when all LTS components values increase, the “relaxation”

component value tends to increase too.

The multiple regression model with all four predictors produced R> = 0.996, F (4, 2) =
132.605, p < .01, thus, the multiple regression model had a good fit of data, indicating that the
“relaxation” scores were related to all four LTS components. According to the standardized
regression coefficients, the “surface texture” had the most contribution to the HTS component of
“relaxation”, followed by “coolness”. “Surface texture” had a positive regression coefficient,
indicating that the higher score of “surface texture”, i.e. the smoother sample was expected to
have higher score of “relaxation”, i.e. more relaxation. On the other hand, “coolness” had a
negative regression coefficient (opposite in sign from its correlation with “relaxation”),
indicating that after accounting for “surface texture”, the higher score of “coolness”, i.e. the

cooler sample was expected to have lower score of “relaxation”, i.e. less relaxation. However,
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“dryness” and “downiless” had the least contribution to this multiple regression model because
the p-value of both LTS components was not significant and nearly 1 (if p-value equals to 1
indicates that the independent variable does not contribute to the regression model at all). From

Table 3.17 (d), a multiple regression equation can be obtained as the equation below.

Hrelaxatian = (1-497 X Lsurface) + (_0-109 X Ldryness) + (0-016 X Ldawniless)

+ (—=0.308 X Leooimess) — 8.577 x 1077 (3.10)

Table 3.18 shows the correlation and multiple regression analysis results when the
dependent variable is HTS component of “refreshingness” and the independent variable are LTS
components of “surface texture”, “dryness”, “downiless” and “coolness”. As shown in Table
3.18 (a), “surface texture”, “dryness” and “coolness” had a positively and significantly
correlation with the “relaxation”. However, “downiless” had a weak positive correlation with
“refreshingness”. This indicates that when all LTS components values increase, the

“refreshingness” component value tend to increase too.

Table 3.18 Result for multiple regression analysis (HTS-“refreshingness” with all
LTS principal components)

(a) Correlations

“refreshingness”

Pearson. Sig.

correlation
“surface texture”  0.922%** .002
“dryness” 0.948*** .001
“downiless” 0.209 326
“coolness” 0.942%** .001

*p<.l FFp<.05 FEp<.01 FFFFp <001



Table 3.18 Result for multiple regression analysis (HTS-“refreshingness” with all
LTS principal components)

(b) Model Summary

Adjusted R Std. Error of

R R Square Square the Estimate

0.983% 0.967 0.901 0.21560

f. Predictors: (Constant), “surface texture”, “dryness”, “downiless”,
“coolness”

(c) ANOVA?
Model ~ Sumof 4 Mean Sig.
Squares Square
Regression 2.712 4 0.678 14.584* .065°
Residual 0.093 2 0.046
Total 2.805 6
*p <.l

k. Dependent variable: “refreshingness”
. Predictors: (Constant), “surface texture”, “dryness”, “downiless”,
“coolness”

(d) Coefficients®

Unstandardized Standardized
Model Coefficients Coefficients  gjq.

B Std. Error  Beta
(Constant) 2.769E-8  0.081 - 1.000
“surface texture” 1.833 1.625 1.610 376
“dryness” -1.586 2.303 -1.450 .562
“downiless” -0.014 0.470 -0.011 979
“coolness” 1.085 1.076 0.912 419

a. Dependent variable: “refreshingness”

61
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The multiple regression model with all four predictors produced R> = 0.901, F (4, 2) =
14.584, p < .1, thus, the multiple regression model had not so good fit of data compared to
“relaxation” regression model. According to the standardized regression coefficients, the
“surface texture” had the most contribution to the HTS component of “refreshingness”, followed
by “coolness” and “dryness”. “Surface texture” and “coolness” had positive regression
coefficients, indicating that the higher score of “surface texture” and “coolness”, i.e. the
smoother and cooler sample was expected to have higher score of “refreshingness”, i.e. more
refreshing. On the other hand, “dryness” had a negative regression coefficient (opposite in sign
from its correlation with “refreshingness”), indicating that after accounting for “surface texture”
and “coolness”, the higher score of “dryness”, i.e. the drier sample was expected to have lower
score of “refreshingness”, i.e. less refreshing. However, “downiless” had the least contribution to
this multiple regression model because the p-value of the LTS component was not significant
and nearly 1. From Table 3.18 (d), a multiple regression equation can be obtained as the equation

below.

Hrefreshingness = (1-833 X Lsurface) + (—1.586 X Ldryness)
+ (=0.014 X Lyownitess) + (1.085 X Leooiness) + 2.769 X 10°8 (3.11)

Table 3.19 shows the correlation and multiple regression analysis results when the

dependent variable is DTS adjective of “comfort” and the independent variable are HTS

Table 3.19 Result for multiple regression analysis (DTS-“comfort” with all HTS
principal components)

(a) Correlations

“comfort”

Pearson Sj

correlation g
“relaxation” 0.988**** 000

“refreshingness” 0.856%*** .007
*p<.l FEp<.05 FFFp<.01 *FF*FFp< 001
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Table 3.19 Result for multiple regression analysis (DTS-“comfort” with all HTS
principal components)

(b) Model Summary

Adjusted R Std. Error of
Square the Estimate

R R Square

0.988* 0.977 0.965 0.09127

2 ¢C

a. Predictors: (Constant), “relaxation”, “refreshingness”

(c) ANOVA?
Model ~ Sumof 4 Mean o Sig.
Squares Square
Regression 1.411 2 0.706 84.714*  .001°
Residual 0.033 4 0.008
Total 1.445 6
*p <.01

a. Dependent variable: “comfort”
b. Predictors: (Constant), “relaxation”, “refreshingness”

(d) Coefficients?
Unstandardized Standardized
Model Coefficients Coefficients  gjg.
B Std. Error  Beta
(Constant) 0.559 0.034 - .000
“relaxation” 0.657 0.101 0.940%* .003
“refreshingness” 0.041 0.103 0.057 713

*p <.01

f. Dependent variable: “comfort”
components of “relaxation” and “refreshingness”. As shown in Table 3.19 (a), “relaxation” and
“refreshingness” were positively and significantly correlated with the “comfort”. This indicates
that when all HTS components values increase, the “comfort” adjective sensory evaluation value

tend to increase too.

The multiple regression model with all two predictors produced R’ = 0.965, F (2, 4) =
84.714, p < .01, thus, the multiple regression model had a good fit of data, indicating that the
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“comfort” adjective sensory evaluation value was related to all two HTS components. According
to the standardized regression coefficients, the “relaxation” had the most contribution to
“comfort” adjective sensory evaluation value. “Relaxation” had a positive regression coefficient,
indicating that the higher score of “relaxation”, i.e. the more relaxation of sample was expected
to have higher value of “comfort” adjective sensory evaluation, i.e. more comfort. However,
“refreshingness” had the least contribution to this multiple regression model because the p-value
was not significant and nearly 1. From Table 3.19 (d), a multiple regression equation can be

obtained as the equation below.

Dcomfort = (0-657 X Hrelaxation) + (0-041 X Hrefreshingness) + 0.559 (3-12)

Table 3.20 shows the correlation and multiple regression analysis results when the
dependent variable is DTS adjective of “preference” and the independent variable are HTS
components of “relaxation” and “refreshingness”. As shown in Table 3.20 (a), “relaxation” and
“refreshingness” were positively and significantly correlated with the “preference”. This
indicates that when all HTS components values increase, the “preference” adjective sensory

evaluation value tends to increase too.

Table 3.20 Result for multiple regression analysis (DTS-“preference” with all
HTS principal components)

(a) Correlations

“preference”

Pearson Si

correlation g
“relaxation” 0.993**** 000

“refreshingness” 0.901%*%* .003
*p<.l FFp<.05 FEp<.01 FFFp <001
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Table 3.20 Result for multiple regression analysis (DTS-“preference” with all
HTS principal components)

(b) Model Summary

Adjusted R Std. Error of
Square the Estimate

R R Square

0.999* 0.998 0.997 0.02923

2 ¢C

a. Predictors: (Constant), “relaxation”, “refreshingness”

(c) ANOVA?
Model Sum of Mean Sig.
Squares Square
Regression 1.784 2 0.892 1043.876* .000°
Residual 0.003 4 0.001
Total 1.787 6
*p <.001
a. Dependent variable: “preference”
b. Predictors: (Constant), “relaxation”, “refreshingness”
(d) Coefficients?
Unstandardized Standardized
Model Coefficients Coefficients  gjg
B Std. Error  Beta
(Constant) 0.305 0.011 - .000
“relaxation” 0.639 0.032 0.821%* .000
“refreshingness” 0.162 0.033 0.203* .008

*p<.01 **p<.001
a. Dependent variable: “preference”

The multiple regression model with all two predictors produced R’ = 0.997, F (4, 2) =
1043.876, p < .001, thus, the multiple regression model had a better fit of data compared to
“comfort” regression model. According to the regression coefficients, the “relaxation” had the
most contribution to the DTS adjective of “preference”, followed by “refreshingness”.
“Relaxation” and “refreshingness” had significantly positive regression coefficients, indicating
that the higher score of “relaxation” and “refreshingness”, i.e. the more relaxation and refreshing

sample was expected to have higher value of “preference” adjective sensory evaluation, i.e. more
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preferable. From Table 3.20 (d), a multiple regression equation can be obtained as the equation

below.

Dpreference = (0-639 X Hrelaxation) + (0-162 X Hrefreshingness) +0.305 (313)

3.3.3 Sensory Evaluation by Forearm

A sensory evaluation is conducted with similar conditions in the section 3.3.2. However,
this section focuses to discover the tactile sensation by forearm. As shown in Figure 3.9, both
forearms of the participants are placed on a table and an examiner uses a jig to place the fabric
samples on the participants’ both forearms or stroke in wale direction of fabrics. The touch
behavior is set differently according to the adjectives (refer to Table 3.21). The touch behavior
will differ depending on the tactile information that one would like to know (Lederman &
Klatzky, 1987). The stroking velocity and the placing weight are set as around 50 mm/s and 3 g
respectively. Asaga et al. had discovered that human strokes around 52.4 mm/s when one is
simply asked to touch an object (Asaga et al., 2013). In order to exclude non-tactile effects in the
sensory evaluation, the experiment was carried out as blind test with samples’ details undisclosed.

The participants are informed in advance of what objects that they are going to evaluate.

Figure 3.9 Sensory evaluation by forearm [received permission from Asahi
Kasei Corporation]
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Table 3.21 Adjectives and touch behavior

Touch

Adjectives behavior

Hiya’/ Atatakai
Overlay on
Karui/ Omoi

Zara-zara/ Sube-
sube

Kimega arai/
Kimega komakai

LTS

Katai/ Yawarakai Touch stroke
Funwari
Shittori

Sara-sara

Ochitsuku

Sawayaka

HTS

Sukkiri Touch stroke

Yasashi

Jouhin

Kokochiyoi
Touch stroke

DTS

Suki

3.3.3.1 Principal Component Analysis

Similarly to section 3.2.1, all of the sensory evaluation values were normalized by using
equation (1) and varimax rotation was used to extract the principal components in each group, i.e.

LTS and HTS.
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From the results, there were 3 principal components extracted with 54.9% of cumulative
contribution rate as shown in Table 3.22 and the scree plot was as presented in Figure 3.10.
Although the cumulative contribution ratio is lower than 70 %, the number of extracted
components can also be determined by the curve of scree plot. PC1 was interpreted as “surface
texture” because high loadings were shown by items such as “zara-zara/ sube-sube”, “atatakai/

hiyak>”, “shittori”, “kimega arai/ kimega komakai” and “sara-sara”. PC2 was interpreted as

Table 3.22 Result of LTS principal component analysis

Principal Components

Adjective
1 2 3
Zara-zara/
Sube-sube 1.015 -0.115 0.163

Kimega arai/ 0.571 0.015 0.005

Kimega komakai

Sara-sara 0.490 -0.059 -0.014
Hiya’/ Atatakai 0.481 0.223 -0.115
Shittori 0.448 0.269 -0.225

Katai/ Yawarakai -0.034 1.010 0.146

Karui/ Omoi -0.015 -0.029 0.858
Funwari 0.020 0.261 0.486
Eigenvalue 2.922 1.529 0.930
Cumulative

o 20.865 41.073 54.876
contribution rate
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Figure 3.10 Scree plot for principal component analysis of LTS

“softness” because high loading was shown by item of “katai/ yawarakai”. PC3 was interpreted

as “downiless” because high loadings of items “karui/ omoi” and “funwari”.

On the other hand, there were 3 principal components extracted with 88.0% of
cumulative contribution rate as shown in Table 3.23. The scree plot was as shown in Figure 3.11.
PC1 was interpreted as “refreshingness” because high loadings were shown by items such as
“sawayaka” and “sukkiri”. PC2 was interpreted as “relaxation” because high loadings were
shown by items such as “ochitsuku™ and “yasashii”. PC3 was interpreted as “elegant” because

high loading of item “jouhin”.
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Table 3.23 Result for principal component analysis of HTS

Principal Components

Adjective
1 2 3

Sawayaka 0.947 -0.029 0.016
Sukkiri 0.906 0.085 0.055
Ochitsuku 0.103 1.004 -0.123
Yasashi -0.177 0.530 0.496
Jouhin 0.111 -0.094 0.971
Eigenvalue 2.525 1.365 0.511
Cumulative

. 50.508 77.818 88.044
contribution rate

Eigenvalue
ST S
N (e 9] (@] V)] (e

T T T T T

()

2 3 4 5
Component number

e
[a—

Figure 3.11 Scree plot for principal component analysis of HTS
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3.3.3.2 Multiple Regression Analysis

Similarly to section 3.3.2, multiple regression analysis was conducted to determine and
examine the relationship between all components in LTS and each component in HTS, and

between all components in HTS and each adjective in DTS. Before conducting multiple

Table 3.24 Result for multiple regression analysis (HTS-“relaxation” with all LTS
principal components)

(a) Correlations

“relaxation”

Pearson Si
correlation g

“surface texture” (0.937%** .001

“softness” 0.808** 014

“downiless” -0.173 355

*p<.l FEp<.05 FrEp< .01 FEEEH <001

(b) Model Summary
Adjusted R Std. Error of
R R Square Square the Estimate
0.949? 0.901 0.803 0.16018

a. Predictors: (Constant), “surface texture”, “softness”, “downiless”

(c) ANOVA?
Model ~ Sumof 4 Mean Sig.
Squares Square
Regression 0.703 3 0.234 9.138*  .051°
Residual 0.077 3 0.026
Total 0.780 6
*p<.l1

a. Dependent variable: “relaxation”

b. Predictors: (Constant), “surface texture”, “softness”, “downiless”
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Table 3.24 Result for multiple regression analysis (HTS-“relaxation” with all LTS
principal components)

(d) Coefficients®

Unstandardized Standardized
Model Coefficients Coefficients  gjg.

B Std. Error  Beta
(Constant) -3.258E-7 0.061 - 1.000
“surface texture” 0.531 0.267 1.004 141
“softness” -0.007 0.293 -0.011 983
“downiless” 0.167 0.315 0.170 .633

a. Dependent variable: “relaxation”

regression analysis, bivariate Pearson correlation was conducted for all explanatory variables to
make sure that there is no multicollinearity occurred between the variables. All the correlations

showed values below 0.65.

Table 3.24 shows the correlation and multiple regression analysis results when the
dependent variable is HTS component of “relaxation” and the independent variable are LTS
components of “surface texture”, “softness” and “downiless”. As shown in Table 3.24 (a),
“surface texture” and “softness” were positively and significantly correlated with the
“relaxation”, indicating that when all LTS components values increase, the “relaxation”

component value tends to increase too. However, “downiless” had a weak negative correlation

with “relaxation”.

The multiple regression model with all three predictors produced R’ = 0.803, F (3, 3) =
0.803, p < .1, thus, the multiple regression model did have not so good fit of data, indicating that
the “relaxation” scores may be related to all three LTS components. According to the
standardized regression coefficients, the “surface texture” had the most contribution to the HTS
component of “relaxation”, followed by “downiless”. “Surface texture” and “downiless” had
positive regression coefficient, indicating that the higher score of “surface texture” and
“downiless”, i.e. the smoother and not too downy sample was expected to have higher score of

“relaxation”, i.e. more relaxation. However, “dryness” had the least contribution to this multiple
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regression model because the p-value of both LTS components was not significant and nearly 1.

From Table 3.24 (d), a multiple regression equation can be obtained as the equation below.

Hrelaxation = (0531 X Lsurface) + (_0'007 X Lsoftness) + (0167 X Ldowniless)

—3258x 1077 (3.14)

Table 3.25 shows the correlation and multiple regression analysis results when the
dependent variable is HTS component of “refreshingness” and the independent variable are LTS
components of “surface texture”, “softness” and “downiless”. As shown in Table 3.25 (a),
“surface texture” was positively and significantly correlated with the “relaxation”. On the other
hand, “downiless” was negatively and significantly correlated with the “refreshingness”.

However, “softness” had a weak positive correlation with “refreshingness”. This indicates that

“surface texture” component value increases, the “refreshingness” component value tend to

Table 3.25 Result for multiple regression analysis (HTS-“refreshingness” with all
LTS principal components)

(a) Correlations

“refreshingness”

Pearson. Sig.

correlation
“surface texture” 0.885%*** .004
“softness” 0.436 .164
“downiless” -0.612%* .072

*p<.l FFp<.05 FEp<.01 FFFFp <001

(b) Model Summary
Adjusted R Std. Error of
R R Square Square the Estimate
977% 954 907 20304

a. Predictors: (Constant), “surface texture”, “softness”, “downiless”
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Table 3.25 Result for multiple regression analysis (HTS-“refreshingness” with all
LTS principal components)

(c) ANOVA?
Model ~ Sumof 4 Mean = p Sig.
Squares Square
Regression  2.545 3 0.848 20.579*% .017°
Residual 0.124 3 0.041
Total 2.669 6
*p <.05

a. Dependent variable: “refreshingness”

99 ¢¢

b. Predictors: (Constant), “surface texture”, “softness”, “downiless”

(d) Coefficients®

Unstandardized Standardized
Model Coefficients Coefficients Sig.

B Std. Error  Beta
(Constant) -1.232E-6 0.077 - 1.000
“surface texture” 1.368 0.339 1.398 141
“softness” -0.733 0.371 -0.656 983
“downiless” -0.007 0.399 -0.004 .633

a. Dependent variable: “refreshingness”

increase too, and when the “softness” component value increases, the “refreshingness”

component value tend to decrease.

The multiple regression model with all three predictors produced R’ = 0.907, F (3, 3) =
20.579, p < .05, thus, the multiple regression model had a better fit of data compared to
“relaxation” regression model. According to the standardized regression coefficients, the
“surface texture” had the most contribution to the HTS component of “refreshingness”, followed
by “softness”. “Surface texture” had a positive regression coefficient, indicating that the higher
score of “surface texture”, i.e. the smoother sample was expected to have higher score of

“refreshingness”, i.e. more refreshing. On the other hand, “softness” had a negative regression
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coefficient (opposite in sign from its correlation with “refreshingness”), indicating that after
accounting for “surface texture”, the higher score of “softness”, i.e. the softer sample was
expected to have lower score of “refreshingness”, i.e. less refreshing. However, “downiless” had
the least contribution to this multiple regression model because the p-value of the LTS
component was not significant and nearly 1. From Table 3.25 (d), a multiple regression equation

can be obtained as the equation below.

Hrelreshingness = (1368 X Lsurface) + (_0-733 X Lsoftness)
+ (=0.007 X Lygwnitess) — 1.232 x 1076 (3.15)

Table 3.26 shows the correlation and multiple regression analysis results when the
dependent variable is HTS component of “elegant” and the independent variable are LTS

2 13

components of “surface texture”, “softness” and “downiless”. As shown in Table 3.26 (a),

Table 3.26 Result for multiple regression analysis (HTS-“elegant” with all LTS
principal components)

(a) Correlations

“elegant”

Pearson

correlation Sig.

“surface texture” 0.864%** .006
“softness” 0.93 1 *** .001

“downiless” 0.162 364
*p<.l FFp<.05 FEp<.01 FFFp <001

(b) Model Summary
Adjusted R Std. Error of
R R Square Square the Estimate
0.991% 0.982 0.965 0.11717

29 ¢

a. Predictors: (Constant), “surface texture”, “softness”, “downiless”
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Table 3.26 Result for multiple regression analysis (HTS-“elegant” with all LTS
principal components)

(c) ANOVA?
Model ~ Sumof 4 Mean o Sig.
Squares Square
Regression 2.287 3 0.762 55.534*% .004°
Residual 0.041 3 0.014
Total 2.329 6
*p <.05

a. Dependent variable: “elegant”
b. Predictors: (Constant), “surface texture”, “softness”, “downiless’

2

(d) Coefficients®

Unstandardized Standardized
Model Coefficients Coefficients  gjg.

B Std. Error  Beta
(Constant) 2.658E-7 0.044 1.000
“surface texture” 0.867 0.196 0.948* 021
“softness” 0.099 0.214 0.095 676
“downiless” 0.788 0.230 0.466* .042

*p <. 05
a. Dependent variable: “elegant”

“surface texture” and “‘softness” were positively and significantly correlated with the “elegant”.
However, “softness” had a weak positive correlation with “elegant”. This indicates that when all

LTS components values increase, the “elegant” component value tends to increase too.

The multiple regression model with all three predictors produced R? = 0.965, F (3, 3) =
55.534, p < .01, thus, the multiple regression model had a quite better fit of data compared to
“relaxation” and “refreshing” regression model. According to the standardized regression
coefficients, the “surface texture” had the most contribution to the HTS component of “elegant”,
followed by “downiless”. “Surface texture” and “downiless” had significantly positive regression

coefficients, indicating that the higher score of “surface texture” and “downiless”, i.e. the
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smoother and not too downy sample was expected to have higher score of “eclegant”, i.e. more
elegant. On the other hand, “softness” had the least contribution to this multiple regression model,
and it was not significantly positive regression coefficient, indicating that the higher score of
“softness”, i.e. the softer sample may not expect to have higher score of “elegant”, i.e. more
elegant. From Table 3.26 (d), a multiple regression equation can be obtained as the equation

below.

Helegant = (0867 X Lsurface) + (0099 X Lsoftness) + (0788 X Ldawniless)

+2.658x 1077 (3.16)

Table 3.27 shows the correlation and multiple regression analysis results when the
dependent variable is DTS adjective of “comfort” and the independent variable are HTS
components of “relaxation”, “refreshingness” and “elegant”. As shown in Table 3.27 (a),
“relaxation”, “refreshingness” and “elegant” were positively and significantly correlated with the

9

“comfort”. This indicates that when all HTS components values increase, the “comfort” adjective

Table 3.27 Result for multiple regression analysis (DTS-“comfort” with all HTS
principal components)

(a) Correlations

“comfort”

Pearson Si

correlation g
“relaxation” 0.779** .020

“refreshingness” 0.896*** .003

“elegant” 0.952%*** 000
*p<.l FFp<.05 FEp<.01 FFEFp <001

(b) Model Summary
Adjusted R Std. Error of
R R Square Square the Estimate
0.982% 0.964 0.928 0.12554

29 < 29 ¢

a. Predictors: (Constant), “relaxation”, “refreshingness”, “elegant”
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Table 3.27 Result for multiple regression analysis (DTS-“comfort” with all HTS
principal components)

(c) ANOVA?
Model ~ Sumof 4 Mean Sig.
Squares Square
Regression 1.268 3 0.423 26.827*% .011°
Residual 0.047 3 0.016
Total 1.316 6
*p <.05

a. Dependent variable: “comfort”
b. Predictors: (Constant), “relaxation”, “refreshingness”, “elegant

2

(d) Coefficients®

Unstandardized Standardized
Model Coefficients Coefficients Sig.

B Std. Error  Beta
(Constant) 0.315 0.047 .007
“relaxation” 0.219 0.117 0.312 157
“refreshingness” -0.020 0.355 -0.015 959
“elegant” 0.580 0.173 0.772%* .044

*p <.05
a. Dependent variable: “comfort”

sensory evaluation value tends to increase as well.

The multiple regression model with all three predictors produced R’ = 0.928, F (3, 3) =
26.827, p < .05, thus, the multiple regression model had a good fit of data, indicating that the
“comfort” adjective sensory evaluation value was related to all three HTS components.
According to the standardized regression coefficients, the “elegant” had the most contribution to
“comfort” adjective sensory evaluation value, followed by “refreshing”. “Elegant” had a
significantly positive regression coefficient, indicating that the higher score of “elegant”, i.e. the
more elegant sample was expected to have higher value of “comfort” adjective sensory

evaluation, i.e. more comfort. Furthermore, “refreshing” had a positive regression coefficient,
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indicating that the higher score of “refreshingness”, i.e. the more refreshing sample was expected
to have higher value of “comfort” adjective sensory evaluation, i.e. more comfort. However,
“relaxation” had the least contribution to this multiple regression model because the p-value was
not significant and nearly 1. From Table 3.27 (d), a multiple regression equation can be obtained

as the equation below.

Dcomfort = (0-219 X Hrefreshingness) + (_0-020 X Hrelaxation)
+ (0.580 X Hejogane ) + 0315 (3.17)

Table 3.28 shows the correlation and multiple regression analysis results when the
dependent variable is DTS adjective of “preference” and the independent variable are HTS

components of “relaxation”, “refreshingness” and “elegant”. As shown in Table 3.28 (a),

Table 3.28 Result for multiple regression analysis (DTS-“preference” with all
HTS principal components)

(a) Correlations

“preference”

Pearson

. Sig.
correlation g

“relaxation” 0.845%** .008
“refreshingness” 0.936%*** .001

“elegant” 0.935%#* .001
*p<.l *Fp<.05 FFp< .01 FEFE <001

(b) Model Summary

Adjusted R Std. Error of
Square the Estimate

R R Square

0.997° 0.993 0.986 0.05272

29 <¢ 29 <¢

a. Predictors: (Constant), “relaxation”, “refreshingness”, “elegant”
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Table 3.28 Result for multiple regression analysis (DTS-“preference” with all
HTS principal components)

(c) ANOVA?
Model ~ Sumof 4 Mean Sig.
Squares Square
Regression 1.209 3 0.403 145.051*% .001°
Residual 0.008 3 0.003
Total 1.218 6
*p <.01

a. Dependent variable: “preference”

29 <¢ 99 <¢

Predictors: (Constant), “relaxation”, “refreshingness”, “elegant”

(d) Coefficients®

Unstandardized Standardized
Model Coefficients Coefficients Sig.

B Std. Error  Beta
(Constant) 0.320 0.020 .001
“relaxation” 0.255 0.049 0.377* .014
“refreshingness” 0.207 0.149 0.165 259
“elegant” 0.402 0.073 0.556* 012

*p <.05
a. Dependent variable: “preference”

9% ¢

“relaxation”, “refreshingness” and “elegant” were positively and significantly correlated with the
“preference”. This indicates that when all HTS components values increase, the “preference”

adjective sensory evaluation value tends to increase too.

The multiple regression model with all three predictors produced R’ = 0.986, F (3, 3) =
145.051, p < .01, thus, the multiple regression model had a quite better fit of data compared to
“comfort” regression model. According to the standardized regression coefficients, the “elegant”
had the most contribution to the DTS adjective of “preference”, followed by “refreshingness”.
“Elegant” and “refreshingness” had significantly positive regression coefficients, indicating that
the higher score of “elegant” and “refreshingness”, i.e. the more elegant and refreshing sample

was expected to have higher value of “preference” adjective sensory evaluation, i.e. more
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preferable. On the other hand, “relaxation” had the least contribution to this multiple regression
model, and it was not significantly positive regression coefficient, indicating that the higher
score of “relaxation”, i.e. the more relaxation sample may not expect to have higher value of
“preference” adjective sensory evaluation, i.e. more preferable. From Table 3.28 (d), a multiple

regression equation can be obtained as the equation below.

Dp‘refe‘rence = (0-255 X Hrefreshingness) + (0-207 X Hrelaxation)
+ (0.402 X Hejogane ) + 0320 (3.18)

— x<0.1
— 0.1<x<0.5
—_— 0.5<x<1.0

— x> 1.0
DTS [ Comfort ] [ Preference ]
R’ =0.965 R’=0.997
HTS [ Relaxation ] [Refreshingness]

Surface texture Dryness Downiless Coolness

Figure 3.12 Results of principal component analysis and multiple regression
analysis (tactile sensation of hand)
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— x<0.1
— 0.1<x<0.5
—0.5<x<1.0
m— x>1.0

DTS [ Comfort ] [ Preference ]

HTS

Surface texture Softness Downiless

Figure 3.13 Results of principal component analysis and multiple regression
analysis (tactile sensation of forearm)

3.3.4 Discussions

From the principal component analysis and multiple regression analysis results, the
hierarchical structure of tactile sensation for hand and forearm can be summarized as shown in

Figure 3.12 and Figure 3.13 respectively.

By using the multiple regression equations, DTS adjectives for hand and forearm can be
expressed by LTS principal components. In order to express DTS adjectives for hand in terms of
LTS principal components, the equations (3.10) and (3.11) are substituted in equation (3.12) and

(3.13). The computed equations are as shown below.

Dcomfort,hand = (1-059 X Lsurface) + (_0-137 X Ldryness) + (0-010 X Ldowniless)
+ (=0.158 X Lipoimess) + 0.559 (3.18)

Dpreference,hand = (1-254 X Lsurface) + (_0-327 X Ldryness)
+(0.008 X Lygwnitess) + (—0.021 X Leooimess) + 0.305 8.19)
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On the other hand, DTS adjectives for forearm can be expressed in terms of LTS
principal components, when the equations (3.14), (3.15) and (3.16) are substituted in equation

(3.17) and (3.18). The computed equations are as shown below.

Dcomfort,forearm = (0-792 X Lsurface) + (—0.103 X Ldryness)
+ (0'452 X Ldowm’less) +0.315 (3'20)

Dpreference,forearm

= (0.807 X Loyrrace) + (—0.149 X Lyryness)

(3.21)
+ (0350 X Lypunitess) + 0.320

From the above summary, there are some points that show the differences in tactile
perception of hand and forearm. First, in principal component analysis of LTS, in the case of
hand, there are 4 principal components were extracted, i.e. “surface properties”, “dryness”,
“downiless” and “coolness”. However, in the case of forearm, there are 3 principal components

b AN1Y

were extracted, i.e. “surface properties”, “softness” and “downiless”.

From the principal component analysis results, hand was able to discover “dryness” and
“coolness” better than forearm. During the evaluation by forearm, the adjectives that represent
“dryness” and “coolness” were not extracted as principal components but the adjectives were
included inside “surface texture” principal component. This shows that one could evaluate the
dryness and coolness of fabric by using hand. This may be due to the difference in receptors exist
in hand (glabrous skin) and forearm (hairy skin), and the greater sensitivity of touch by hand

compared to forearm.

Next, this analysis also found that the forearm could distinguish between “softness” and
“downiless” compared to hand. During the evaluation by hand, the adjective that represents
“softness” was not extracted and was included in the principal component called “surface
texture”. This may be due to the difference in the way of handling the fabric. In order to evaluate

“downiless”, one may press the fabric, however, to evaluate “softness” one may not only press
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the fabric, but also crumple the fabric or overlay the fabric on the skin. For example, the softer

the fabric, the easier the fabric will overlay according to the shape of an object.

Then, in principal component analysis of HTS, in the case of hand, there are 2 potential
principal components were extracted, i.e. “relaxation” and “refreshingness”. However, in the
case of forearm, there are 3 potential principal components were extracted, i.e. “relaxation”,
“refreshingness” and “elegant”. The results present that forearm could evaluate “clegant”
compared to hand. During the evaluation by hand, the adjective that represents “elegant” was not
extracted and was included in the principal component of “relaxation”. This may be interpreted
as when one wears the fabric, one could evaluate the elegant of the fabric; indicating that elegant

is one of the important principal components during the evaluation.

In this chapter, all DTS adjectives have been expressed in terms of LTS principal
components. By quantifying the LTS principal components by using physical quantities which
will be discussed in Chapter 4, DTS adjectives can be quantified by physical quantities as
highlighted in this research.
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Chapter 4

QUANTIFICATION FOR HUMAN TACTILE SENSATION

By using the modeling result of tactile sensation in Chapter 3, the method to quantify
may be determined in this chapter. This research proposes to quantify the LTS as LTS is easier to
relate with physical quantities. This is due to the fact that LTS describes directly the
texture/property of the object. As shown in Figure 4.1, by quantifying LTS with physical

quantities, DTS can also be quantified.

Desired tactile Desired tactile
sensation (DTS) sensation (DTS)

A A

High-order of tactile

sensation (HTS)
T Final result

‘ Quantification

Low-order of tactile
sensation (LTS)

Quantification

[ Physical quantities ] [ Physical quantities ]

Figure 4.1 Proposed concept of quantification of tactile sensation
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4.1 Quantification Tactile Sensation for Door Armrest

For quantification tactile sensation for door armrest, this research suggests using physical
quantities from the transducer’s outputs (refer to Section 3.1.1) which represent the physical
effects of the skin from skin-object interaction, such as, deformation, vibration, thermal effects,
etc. These physical effects are the stimuli that are perceived by the cutaneous receptors, not the

object’s physical properties.

4.1.1 Data Collection of Physical Quantities

There will be four physical measures (vibration, bulk displacement for surface
deformation, thermal property, and friction) for each sample that are acquired in this section by a

proposed tactile sensor for vibration and commercialized tactile sensors for others.

4.1.1.1 Vibration

During interaction between skin and object, vibration is one of the physical effects that
are evoked. There are four kinds of mechanoreceptors in human glabrous skin that perceived
vibration or mechanical stimuli: fast adapting, FA I (Meissner corpuscle), slow adapting, SA [
(Merkel’s disc), FA II (Pacinian corpuscle) and SA II (Ruffini ending) (Miyaoka, 2010b).
Furthermore, each mechanoreceptor has its individual frequency band of vibrating stimuli.

Moreover, they have their own perceptible frequency range up to 1000 Hz (A. Gescheider, 2001).

This research referred to previous research on the method of collecting and indexing
vibrational data. Asaga et al. had collected vibrational data by tracing on the surface of samples
with a piezoelectric element. Then, the vibrational data was compared with mechanoreceptors
properties. As a result, two vibratory stimuli values, /ra 1 and Ira 1, which correspond to the firing
status of FA I and FA 11, were determined and used to quantify roughness (Asaga et al., 2013).
Here, a 15 mm x 22 mm X% 3 mm acrylic resin plate with a piezoelectric element attached to was
fabricated as shown in Figure 4.2. Piezoelectric element is mostly used for actuating or sensing
vibration in numerous researches as it has simple mechanism so that it is easy to implement in

any design (Dargahi & Payandeh, 1998; Klatzky, Pawluk, & Peer, 2013; Xie & Livermore, 2016,
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40 mm

(a) Experimental apparatus (b) Measuring mechanism

Figure 4.3 Measurement of bulk displacement.

2017; Xie, Zaitsev, Velasquez-Garcia, Teller, & Livermore, 2014). The sensor was placed 45° to
the door armrest sample and traced on with a velocity of 50 mm/s under a load of 0.49 N. Then,
two values of vibratory stimuli, ra1 and Ira 1 [V*-Hz] which corresponded to mechanoreceptor

FA T and FA 1I were estimated and will be used in correlating with LTS in the next section.
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4.1.1.2 Bulk Displacement

Compliance or softness is perceived when skin is pressed on an object, and both the
finger and the object deform as well as change their profile/pressure distributions (Klatzky et al.,
2013). However, the deformation of skin will not be measured because previous research
(Bergmann Tiest & Kappers, 2009) proved that 90 percent of the information in perceiving
compliance is associated with the perception of surface deformation. Consequently, this research
proposes to measure bulk displacement when a fixed force is applied. By using an indentation
hardness tester (TK-HS100, Tokushu-Keisoku. Co., Ltd, Yokohama, Japan) as shown in Figure
4.3, a sample was pressed with loads from 5 N to 30 N, with an interval of 5 N and the

corresponding bulk displacements, d [mm] were measured.

4.1.1.3 Thermal Properties

Coldness or warmness is perceived when heat is transferred from or to our skin when we
touch them (L. a Jones & Ho, 2008). Perception of temperature is attributed to the thermal
property between skin and an object (Okamoto et al., 2013). By using Thermo Labo II B (FR-07,
Kato Tech. Co., Ltd., Kyoto, Japan) which is a heat flux sensor, the silicone rubber surfaced
sensor with dimension of ¢35 x 122 mm was preheated to 33 °C which was the average finger

skin temperature, and then it was placed on the sample as shown in Figure 4.4. The peak heat

40 mm

[
Heat < L
transfer

(a) Experimental apparatus (b) Measuring mechanism

Figure 4.4 Measurement of thermal property



89

40 mm

1?_0 mm

Figure 4.5 Experimental apparatus for measuring frictional force

transfer speed, gmar [-] Wwas determined. Note that the sample was left in a room with temperature

of 23 °C.

4.1.1.4 Friction Force

Slipperiness or stickiness is a perception when skin slides over on an object’s surface,
and the skin stretches and adheres to the surface (Okamoto et al., 2013). Furthermore, according
to previous research, this perception is mainly attributed to friction forces or friction coefficients
(Guest et al., 2012; Shirado, Maeno, & Nonomura, 2006; Smith, Scott, Smith, & Scott, 1996).
Hence, by using Built-up Static-Dynamic Friction Measuring Device (TL201Ts, Trinity-Lab. Co.,
Ltd., Tokyo, Japan) with a skin-like urethane pad as shown in Figure 4.5, frictional force was
measured and its variance, Asic was computed to represent the magnitude of fluctuation of the
frictional force. The sensor was placed on a sample with a preload of 1.47 N and traced with a

velocity of 5 mm/s.
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4.1.2 Quantification of Tactile Sense Evaluation

4.1.2.1 Principal Component Analysis

Principal component analysis with varimax rotation was performed to group physical
quantities that had strong correlation, and ensured no multicollinearity between independent
variables. The result is as shown in Table 4.1. There were four principal components extracted
with 94.9% of the total variance; PC1 was associated with bulk displacements for all load
conditions, PC2 with vibratory stimuli values of lrarand lran, PC3 with peak heat transfer speed,
Qmax, and PC4 with variance of dynamic frictional force, Aric. This result supports the concept of

four main aspects of haptic information which are vibration, bulk displacement for surface

Table 4.1 Result of principal component analysis for physical quantities

Physical quantities

Principal Components

1 2 3 4
don 0.920 0.347 0.124 0.083
dis 0.919 0.340 0.165 0.087
dosy 0.910 0.350 0.113 0.062
dio 0.897 0.308 -0.248 0.061
dson 0.894 0.344 -0.106 0.032
dsy 0.825 0.183 -0.400 -0.021
Ira -0.418 -0.840 -0.056 0.114
Iran -0.477 -0.765 0.268 -0.103
Gmax -0.250 -0.063 0.955 0.040
Apiic 0.084 -0.021 0.035 0.992
Eigen value 6.931 1.061 0.951 0.545
Cumulative 52.77 71.77 84.54 94.87

contribution ratio
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— x<0.1
— 0.1<x<05
= 05<x<1.0
DTS [ Prefer ] [ Pleasant m—xz10
R’=0.919 R’ =0.929
HTS [Embracingness] [ Refreshingness ] [Excitingness] [Expensiveness]

Dampness | | Coldness Micro- Macro- Hardness Hollowness
roughness roughness

Physical
quantities

Figure 4.6 Multiple regression analysis result.

deformation,

4.1.2.2 Multiple Regression Analysis

By using principal components scores, multiple linear regression with a stepwise method
was conducted three times using statistical analysis software (SPSS Ver. 22, IBM), and Figure
4.6 shows the result. Here, LTS (as dependent variables) and physical quantities (as independent
variables). Before conducting multiple linear regression, bivariate Pearson correlation was
conducted for all explanatory variables to make sure that there is no multicollinearity occurred
between the variables. All the correlations showed values below 0.65. The thickness of the lines
corresponds to the standardized coefficients. Moreover, the solid and dash lines indicate the

positive and negative coefficients, respectively.
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Dprefer = (0.868 X Bulk displacement) + (0.380 x Vibration)
+ (—0.217 X Thermal property) + (—0.0821 x Friction) + 3.77 (4.1)

Dpieasure = (0.816 x Bulk displacement) + (0.342 X Vibration)
+ (—0.195 x Thermal property) + (—0.0757 X Friction) + 3.90 (4.2)

4.1.2.3 Discussions

The above physical measuring and statistical analysis results have shown that the
proposed concepts of the developed assessment system can be considered adequate with slight
errors. First of all, the concept of hierarchy stages of subjective responses has helped us to easily
interpret the main aspect of tactile sensation that is related to the preference or DTS. From Figure
4.6, the “embracingness” dimension seems to have high correlation to both prefer and pleasure,
compared to other HTS components. Furthermore, the “hardness” dimension shows a strong
correlation to the “embracingness” dimension. Hence, the biggest influence on the preference
layer can be concluded to be the “hardness” dimension in the case of tactile assessment of door
armrests. However, the structure is provisional based on the kind of the object. In another study
on tactile assessment of film and board materials for confectionery packaging (X. Chen et al.,
2009), “roughness” seemed to be the most important principal component to the affective layer

(equivalent to HTS in this research).

Besides, this research suggests using the final-end product in the tactile assessment of a
product that has layers of different materials. This argument is supported by the result obtained
that shows the “hardness” dimension is the most important aspect in tactile assessment of door
armrests. The perception of “hardness” involves both the kinesthetic and cutaneous systems
(Bergmann Tiest, 2010). This perception may not be evaluated accurately by just using only the

outer layer of the sample, as the product had a layered structure.

Furthermore, this research suggests correlating LTS with four main aspects of haptic
information (roughness, compliance, coldness, and slipperiness). The physical quantities for each
aspects of haptic information are selected based on the kind of stimuli that evoked the receptors,

and also the physical effects that occurred during the interaction between the skin and the object.
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Other than the physical quantities that are selected in this research (i.e. vibration for roughness,
bulk displacement for surface deformation for compliance, thermal property for coldness, and
friction for slipperiness), there are many other possible physical quantities that are used in other
studies. For example, Chen et al. chose three dimensional pictures or topography of a surface’s
texture for roughness (X. Chen et al., 2009). However, the result is not quite convincing. In
addition, the author mentioned that there is a need for further study on the measurement of
roughness and it is probably related to vibration, as mentioned in other research (Ekman &
Akesson, 1965; Lederman et al., 1982). Thus, the concept proposed in this research may help in

selecting suitable physical quantities.

More work is required to find the appropriate physical quantities to correlate with LTS,
because in this research, several coefficient of determinations obtained from the multiple
regression analysis between LTS (dependent variable) and physical quantities (independent
variable) are less than 0.5 (arbitrary lower limit for strong correlation), especially in the case of
“micro-roughness”, “macro-roughness” and ‘“hollowness”. Moreover, physical quantity of
vibration, which was expected to have correlation with roughness, was found to be not

significantly correlated.

In addition, the other work is to classify people by clustering them according to their
preference and then construct each group’s hierarchy structure of tactile sensation. This may help

product developers in targeting their market. Before that, there is a need to increase the number

Table 4.2 List of unknown samples

a 5 mm b
b

c
5mm
petic
Synthetic leather Genuine leather
Type C Type D Type A

of participants and vary the cohorts of people, for example, broaden the age groups.



94

4.1.2.4 Verification Test of Quantified Tactile Sense Evaluation

In this section, the equations obtained were verified by using unknown samples of a, b,
and c (refer Table 4.2). First, a sensory evaluation test for each sample with the same condition
and participants in Section 3.2.2 was carried out; however, only adjectives in the preference layer
were asked. Next, similar physical quantities as in Section 4.1.1 for unknown samples were
measured. Consequently, principal component scores for each principal component in the
physical quantities layer were computed by using principal component loadings. Then, the
evaluation scores of Dprefer and Dpieasure Were calculated by using estimating Equations (4.1) and
(4.2), respectively. Lastly, the actual and estimated scores were compared in Figure 4.7. Gray
plots are the 26 samples that are used in the process to derive the estimating equations, and black

plots are the unknown samples. Dashed lines indicate one-to-one relationships.

The accuracy of this tactile evaluation feedback system was determined by calculating

the percent error for each sample using the following equation.

|Estimated score — Actual score|
x 100% (4.3)

Percent error =
Actual score

e  26samples
‘ m a
5T o $oo b
oo e <
4 F

2

3

4 5

Actual value

(a) Prefer

Figure 4.7 Comparison between actual and estimated scores

Estimated value
®
‘e
Estimated value
'\

2 3

4

5

Actual value

(b) Pleasure

6
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As a result, the maximum percent error when estimating prefer and pleasure were 20.8%
and 16.2%, respectively. In other words, the developed system has the accuracy of 79% for

prefer and 84% for pleasure in giving feedback on tactile evaluation.

Similarly, the percent errors when estimating prefer and pleasure for unknown samples a,
b and ¢ were computed, and the result was concluded in Table 4.3. Hence, by comparing the
percentage error for prefer and pleasure, both have smaller percent errors compared to the
developed system. Thus, this system can give estimation on unknown product’s evaluation

successfully.

4.2 Quantification Tactile Sensation for Fabrics

Based on the human tactile perception explained in Chapter 3, this research suggests
using two types of physical quantities to quantify tactile sensation for fabrics. First, the physical
properties of fabrics that determine the transducer function of skin-object interaction. The
physical properties of fabrics are physical quantities that indicate or represent the characteristics
or properties of the fabrics (Charles, 2003). Second, the physical quantities from the transducer’s
outputs (refer to Section 3.1.1) which represent the physical effects of the skin from skin-object
interaction, such as, deformation, vibration, thermal effects, etc. These physical effects are the

stimuli that are perceived by the cutaneous receptors, not the object’s physical properties.

From the first types of physical quantities, the relationship between the properties of an
object and human tactile sensation could be understood. From the second type of physical
quantities, one could comprehend the relationship between physical effects from texture

interactions that excite the receptors in human skin and human tactile sensation. Hence, this

Table 4.3 Percent error for unknown samples.

Samples  Prefer  Pleasure
a 7.56% 13.6%
b 14.3% 12.0%
C 6.71% 2.64%
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research proposes to use both types of physical properties and quantify human tactile sensations.

Section 4.2.2 and 4.2.3 will discuss on the quantification of tactile sensation for hand and

forearm respectively.

4.2.1 Data Collection of Physical Quantities

Section 4.2.1.1 will introduce the physical properties of fabrics that are used for

Table 4.4 List of physical properties of fabrics

Sample
Physical 41 #2234 #5 #6  #7
properties
g/er;%}]mw 157.12 107.68 184.72 109.77 154.72 147.82 148.59
Thickness, T 0.698 032 0646 0522 0526 0514 061
[mm]
Course, C 51 70 56 35 65 82 47
Wales, W 30 71 36 30 46 53 57
Permeating
resistance, Rar | 0.072  0.035 0.103 0.031 0.132  0.349 0.096
[kPa-s/m]
Compressional | ) 13 1 175 0675 0559 0816 0.868 0.847
linearity, LC
Compressional
work energy, 0.099 0.012 0.080 0061 0.027 0.031 0027
WC [gf/cm]
Compressional
resilience, RC | 39.14 48.72 4338 53.18 31.01 39.14 45.63
[%0]
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quantification. Next, section 4.2.1.2 will present about the commercialized tactile sensors and
their measured physical quantities. Then, section 4.2.1.3 will explain on the novel tactile sensors

that are proposed by this research and the measured physical quantities.

4.2.1.1 Physical Properties of Fabrics

The descriptions of physical properties that are used for quantification are as written
below. All the data of physical properties for 7 fabric samples (refer Table 3.14) are recorded in
Table 4.4.

Course

W

Wal

Figure 4.8 Courses and wales

Specimen

Air flow
Rate of air flow, V

(constant)

Pressure, P1 Pressure, P2

Figure 4.9 Concept of Air Permeability Tester [KES-F8-AP1, Kato Tech
Co., Ltd.]
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(1) Weight, w

Weight is defined as mass per unit area. The unit is g/m>.
(i1) Thickness, T

The unit of the thickness of fabric is mm.
(ii1))  Course, C and wale, W

Course is the total amount of horizontal rows and wale is the total amount of vertical
rows in one inch length (or equal to 25.4 mm). For example, in Figure 4.8, there are 3 courses

and 4 wales.
(iv)  Airflow permeating resistance, Ruir

Airflow permeating resistance with the unit of kPa: s/m is measured by using Air

Permeability Tester [KES-F8-AP1, Kato Tech Co., Ltd.] . The concept of the device is as shown

in Figure 4.9. This device sends air at a constant flow rate, V' to the sample by using the

reciprocal movement of its plunger and cylinder. The pressure loss, AP due to the sample is then
measured by using a semiconductor type differential pressure gauge. The permeating resistance,

R.ir can be calculated as below.

AP

Ryir = 7 (4.4)

AP : pressure loss, kPa
V- flow rate, m*/m? s

Here, the flow rate, V of this device was 4x 10~ m/s. By measuring the pressure loss, the

permeating resistance can be calculated.
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Pressure,

A\ 4

Displacement, mm

Figure 4.10 Example of compression test results
(v) Compression properties

By using Handy-Type Compression Tester [KES-GS5, Kato Tech Co., Ltd.], compression
properties such as compressional energy, resilience and rigidity of an object can be measured.
The device presses the object with an area of 2.0 cm? until the upper limit of force is 10 gf/cm?.
The graph result obtained is as shown in Figure 4.10. From the graph, there are 3 physical
quantities that can be computed. First, by using equation (4.5), compressional linearity, LC can
be calculated. Compressional linearity can be interpreted as the hardness of the object and when

the value is closer to 1, the object is assumed to be hard.

_ Areaof a+b

ILC = ——— —
¢ Area of AABC

(4.5)

Second, compressional work energy, WC [gf/cm] can be calculated by using equation

(4.6) and when the value is bigger, the object is easier to be compressed.

WC = Areaof a+b (4.6)
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Third, by using the equation (4.7), compressional resilience, RC [%] can be calculated

and when the value is closer to 100 %, this indicates that the object is good in resilience.

Area of b

RC = ——
Areaof a+b

x 100 % (4.6)

4.2.1.2 Physical Quantities Measured by using Commercialized Tactile Sensor

The descriptions of physical quantities that are measured by using commercialized tactile
sensor are as written below. All the data of physical quantities for the fabric samples are

recorded in Table 4.5.
(1) Thermal property

By using Thermo Labo II B [KES-F7, Kato Tech. Co., Ltd.], warm or cool feeling
through evaluation of q max can be measured. q max represents the peak amount of heat

transferred per unit area. As shown in Figure 4.11, first, the contact surface (copper plate) of

Table 4.5 List of physical quantities measured by using commercialized tactile

Sensor
Sample
Physical 4l w2 #3 #A #S #He #7
quantities
Thermal
property, q max | 123.67 137.67 131.67 105.00 13633 129.67 154.33
[W/m2-C]

Static friction

) 0.671 0.877 0.722 0.596 0.712 1.172 1.086
coeficient, statitc

Dynamic friction
coeficient, 0.400 0.450 0.520 0.383 0359 0.374 0.466

Hdynamic
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Measuring device

Place on

Sample

Figure 4.11 Concept of measuring q max

device with area of 9 cm?% mass of 9.79 g and heat capacity of 4.186x10° JK''m?2°C is
preheated. Then, the copper plate is pressed on the sample with pressure of 10 gf/cm? and the
stored energy is passed to the lower temperature of sample. The peak value of heat transferred is
set as q max. This simulates the thermal effects of warmth or coolness when the skin touches an
object. The thermal effects are one of the physical effects, i.e. the output of skin-object
interaction (refer to Figure 3.1). When the measured value of q max is larger/smaller, the

cooler/warmer the feeling of sample is.
(i1) Friction coefficient, u

The other output of skin-object interaction (refer to Figure 3.1) that is measured is the
lateral force which related to friction. By using Built-up Static-Dynamic Friction Measuring
Device [TL201Ts, Trinity Lab Co., Ltd], the static and dynamic friction coefficient can be
computed. The sample is fixed on the measuring device’s table and a skin-like silicon sensor is
placed on the sample with a normal force of 3 gf. Then, the sensor traces on the sample with the
velocity of 50 mm/s. The measuring length is 100 mm. After that, the lateral force is measured,

and the static and dynamic friction coefficient can be calculated.

4.2.1.3 Physical Quantities Measured by using Proposed Tactile Sensor
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Finger
Tracing direction
(O ’
Object
Vibration

sen

Tracing

element . o
racing direction

Object

Figure 4.12 Concept of vibration measuring system

As mention in our proposal on physical quantities that are going to be used for
quantification of tactile sensation, there are two types of physical quantities; physical properties
of object and physical quantities from the effects of skin-object interaction. In the section 4.2.1.2,
the latter type of physical quantities such as, thermal effect and lateral force has been discussed
and measured. This section will propose to measure two physical effects of skin-object

interaction which are the vibration and deformation.
1) Concept of Measuring System

Vibration is one of the physical effects that occurred from tracing on an object. The
vibration is then perceived by mechanoreceptors and the signal is sent to the brain. From
previous research, Asaga had proposed to collect vibrational data by tracing on the surface of
samples. Then, the vibrational data were collected by using piezoelectric element, and the
research managed to quantify roughness of samples (Asaga 2012). Thus, this research proposes

to a tactile sensor that will collect the vibrational data when tracing fabric samples as one of the
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Finger

Pressing on

Strain
gauge

lPressing on

Figure 4.13 Concept of deformation measuring system

physical quantities for quantification of tactile sensation. The concept of the device is as shown
in Figure 4.12. This research suggests using a thin metal plate to trace on the surface and collect
the vibration by using a vibrational sensor. This is because fabrics have a very soft and small

texture, therefore, a sensor that has low rigidity and easy to vibrate is preferable.

Furthermore, deformation of skin is also one of the physical effects when there is skin
and object interaction. Asaga had measured the deformation by pressing the developed device
and measured the deformation of metal plate by using strain gauge. By using the data from the
deformation, the research tried to quantify the softness of samples (Asaga, 2012). Thus, this
research also suggests developing a tactile sensor that can measure the deformation of tactile
sensor when pressing the object. By using the same structure of tactile sensor as mention in the
previous paragraph, this research proposes to use strain gauge to detect the deformation when
tactile sensor presses on the fabric. As the tactile sensor is made of thin metal plate, it is easy to

bend. The concept of the device is as shown in Figure 4.13.
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As a conclusion, this research proposes to measure two physical effects of skin-object

interaction which are vibration and deformation.
i) Design and Fabrication of Measuring System
(1) Vibration Measuring System

The vibration measuring system is divided into two parts; tactile sensor and sample’s jig.
Figure 4.14 shows the overall system. The tactile sensor is mainly composed of a 0.2 mm thick
metal brass plate with a piezoelectric element [VS-BV201, NEC Tokin Co., Ltd] as the vibration
sensor as shown in Figure 4.15. The signal from the piezoelectric element will be filtered by a
simple low pass filter with cutoff frequency of 4823 Hz. Then, the vibrational signal is recorded

in the computer via AD converter known as High-precision analog I/O terminal for USB2.0
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30 mm

Measuring device

Low pass filter

30 mm

—

AD converter

Computer

Figure 4.14 Overall view of vibration measuring system

) ——

10 mm

10 mm

—

Figure 4.15 Vibration sensor [VS-BV201, NEC Tokin Co., Ltd.]
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o Brass metal
Vibration plate (tracing
sensor element)

10 mm

i

Figure 4.16 Tracing element with a vibration sensor [VS-BV201, NEC Tokin
Co., Ltd.]

Figure 4.17 Built-up Static-Dynamic Friction Measuring Device [TL201Ts,
Trinity Lab Co., Ltd]

[AIO-160802AY-USB, CONTEC Co., Ltd.]. The dimension of the brass plate and the location
where the vibration sensor is placed are shown in Figure 4.16. A jig is fabricated so that the
sensor is placed 45 ° to the sample. A Built-up Static-Dynamic Friction Measuring Device
[TL201Ts, Trinity Lab Co., Ltd] as shown in Figure 4.17 is used to move the sensor at a constant

velocity with a certain length. Besides, by using this device, the load can also be set.
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Movable part Fixed part

The sample is placed on a platform. The sample is
fixed at right fixed part and movable part.

30 mm

The movable part slides and pulls the fabric to the fixed
extension rate. Lastly, the left fixed part is tightened.

Figure 4.19 Procedures in fixing the fabric sample



108

Generally, the main purposes of sample’s jig are to provide repeatability, accuracy, and
interchangeability. The sample’s jig is fabricated to make the sample float without touching any
surface below. As the sample is very thin, it is easy for the tactile sensor to catch noise from
other object too, if there is an object placed below the sample. As shown in Figure 4.18, the jig

has two fixed parts and one movable part. The movable part of the jig is used to make sure the

30 mm

b

Measuring device

Bridge box (Wheatstone
bridge circuit)

50 mm

—

Dynamic strain amplifier

Figure 4.20 Overall view of deformation measuring system
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fabric is fixed with the same condition such as, by fixing the extension rate. The sample is fixed

by the following procedures (refer to Figure 4.19).
(ii))  Deformation Measuring System

The overall system is as shown in Figure 4.20. Similar to the vibration measuring system,
the deformation measuring system uses the same dimension of brass plate. However, two strain
gauges are used to measure the deformation of the brass plate when it presses on the fabric. A
Built-up Static-Dynamic Friction Measuring Device [TL201Ts, Trinity Lab Co., Ltd] is also
used in this system because it is easy to set the load. The two-strain gauge is then connected to
Wheatstone bridge circuit by using a bridge box [DB-120A, Kyowa Electronic Instruments Co.,
Ltd.]. After that, the output voltage from the bridge box is amplified by using dynamic strain
amplifier [DPM-913B, Kyowa Electronic Instruments Co., Ltd]. The amplified voltage is

presented by the monitor indication of strain amplifier. The sample is simply place over a jig.

Load

30 mm

—

Vibration
sensor

Brass metal
plate (tracing
element)

Sample

Figure 4.21 Vibration experimental apparatus
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i11) Measuring Experiment
(1) Vibration Measuring Experiment

Samples used are the same as those in the sensory evaluation in Chapter 3 (refer Table
3.14). As shown in Figure 4.21, the sample was fixed by using the sample’s jig with the
extension rate of 11 %. The velocity, length of measurement and load were set as 50 mm/s, 100
mm and 3 g respectively to the Built-up Static-Dynamic Friction Measuring Device. The

sampling frequency of the data was 10000 Hz. The vibrational data from the tracing on sample

Table 4.6 Vibration measuring results

Sample

Physical

quantities #1 #2 #3 #4 #5 #6 #1

Vp-p [V] 0474 0.194 0.259 0245 0472 1.545 0.188

Load

30 mm

Strain gauge

Brass metal
plate

Sample

Figure 4.22 Deformation experimental apparatus
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was measured by the vibration sensor.

From the results, the mean of peak to peak voltage of the vibrational data was calculated

for each sample and set as the V., (refer to Table 4.6) for the quantification of tactile sensation.
(i1) Deformation Measuring Experiment

Samples used are the same as those in the sensory evaluation in Chapter 3 (refer Table

Table 4.7 Deformation measuring results

Sample

Physical Bl #2 #3 ##5 #6 W
quantities

Vig [V] 0.096 0.130 0.165 0.120 0.087 0.131 0.086
Vo [V] 0.280 0349 0420 0359 0.372 0454 0.339
Vig [V] 0.585 0.544 0.576 0.614 0.616 0.594 0.560
Vg [V] 0.664 0.801 0.851 0.788 0.828 0.812 0.773
Vsg [V] 0983 1.124 0980 0.878 1.180 0.880 0.960
Vg [V] 1.170 1286 1.346 1.230 1.218 1.281 1.233
Vs [V] 1.252 1.583 1435 1346 1.527 1.568 1.408
Vse [V] 1.540 1.798 1.650 1.631 1.600 1.710 1.650
Vog [V] 1.647 2.082 1.846 1973 2049 1.873 1.890

Viog [V] 1.935 2343 2109 2.098 2308 2212 2.190
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3.3). As shown in Figure 4.22, the sample was simply place over the jig. The load was setas 1 g
to 10 g with the interval of 1 g on the Built-up Static-Dynamic Friction Measuring Device and

then, the output voltage of the strain amplifier was recorded.

The experimental results are as shown in Table 4.7. From the results, the output voltage
due to the deformation of tactile sensor when pressed on the fabric was set as Vig to Viog for the

quantification of tactile sensation as further to be discuss in Section 4.2.2 and 4.2.3.

4.2.2 Quantification of Tactile Sense Evaluation by Hand

From sensory evaluation for hand in Chapter 3, there were 4 LTS components extracted;
“surface texture”, “dryness”, “downiless” and “coolness”. By using the measured physical
quantities in previous section, these LTS components will be quantified by using multiple

regression analysis.

4.2.2.1 Multiple Regression Analysis

Multiple regression analysis was conducted to determine and examine the relationship
between all physical quantities that are listed in previous section and each component in LTS by
using SPSS software [IBM Corporation]. Before conducting multiple linear regression, bivariate
Pearson correlation was conducted for all explanatory variables to make sure that there is no

multicollinearity occurred between the variables. All the correlations showed values below 0.65.

Table 4.8 shows the correlation and multiple regression analysis results when the
dependent variable is LTS component of “surface texture” and the independent variables are
physical quantities. As shown in Table 4.8 (b), six physical quantities were included; (1)
thickness, T (2) thermal property, q max, (3) compressional resilience, RC, (4) deformation at 3
g, Vig, (5) deformation at 6 g, Veg, (6) vibration’s peak-to-peak voltage, Vp.p, and others were

excluded variables for the multiple regression model. Viz and V,, had a negatively and
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Table 4.8 Result for multiple regression analysis (LTS-“surface texture” with all
physical quantities)

(b) Coefficients
Unstandardized Standardized
Model Coefficients Coefficients
B Std. Error  Beta

(Constant) -7.775 0.000

T -2.140 0.000 -437
g max 0.025 0.000 .632
RC 0.019 0.000 232
Vg 4.936 0.000 220
Vg 1.830 0.000 174
Voo -0.766 0.000 -.617

Dependent variable: “surface texture”
Independent variable: “T”, “q max”, “RC”, “V3g”, “Veg”, “Vpp”

significantly correlation with the “surface texture”. However, q max, RC and Veg had a weak
positive correlation with “surface texture”. Moreover, T had a weak negative correlation with

“surface texture”.

The multiple regression model with all six predictors produced R’ =1.000, thus, the
multiple regression model had a quite good fit of data, indicating that the “surface texture” scores
are strongly related to all six physical quantities. According to the standardized regression
coefficients, the q max had the most influence to the LTS component of “surface texture”,
followed by Vpp, T, RC, Vig and lastly, V. q max, RC and Veg had positive regression
coefficients, indicating that the higher values of ¢ max, RC and Vg, the sample was expected to
have higher score of “surface texture”, i.e. smoother. On the other hand, T and V,., had a
negative regression coefficient, indicating that the higher values of T and Vp., the sample was
expected to have lower score of “surface texture”, i.e. rougher. However, V3, had a positive
regression coefficient (opposite in sign from its correlation with “surface texture”), indicating

that after accounting for T, q max, RC, Vg and V., the higher value of Vg, the sample was
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expected to have higher score of “surface texture”, i.e. smoother. From Table 4.8 (b), a multiple

regression equation can be obtained as the equation below.

Lsyrface = (—2.140 X T) + (0.025 X gynqy) + (0.019 X RC) + (4.936 X Vy,)

+ (1830 X Vgg) + (=0.766 x V;,_,) — 7.775 (4.7)

Table 4.9 shows the correlation and multiple regression analysis results when the
dependent variable is LTS component of “dryness” and the independent variables are physical
quantities. As shown in Table 4.9 (b), similar six physical quantities were included in this
multiple regression model too. q max had a positively and significantly correlation with the
“dryness”. Nevertheless, Viz and V,., had a negatively and significantly correlation with the
“dryness”. Moreover, RC and Ve, had a weak positive correlation with “dryness”. However, T

had a weak negative correlation with “dryness”.

Table 4.9 Result for multiple regression analysis (LTS-“dryness” with all physical
quantities)

(a) Correlations

“dryness”

Pearson‘ Sig.

correlation
T -0.503 125
qmax  0.639* 061
RC 0.255 291
Vg -0.592* .081
Vg 0.302 255
Voo -0.619* .069

*p<.l *Fp<.05 FFp .01 FEEEp <001
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Table 4.9 Result for multiple regression analysis (LTS-“dryness” with all physical

quantities)
(b) Coefficients
Unstandardized Standardized
Model Coefficients Coefficients
B Std. Error ~ Beta

(Constant) -9.405 0.000

T -2.338 0.000 -.459
g max 0.032 0.000 .769
RC 0.015 0.000 177
Vg 6.845 0.000 293
Vg 1.752 0.000 .160
Voo -0.747 0.000 -.578

Dependent variable: “dryness”
Independent variable: “T”, “q max”, “RC”, “V3g”, “Veg”, “Vpp”

The multiple regression model with all six predictors produced R’ =1.000, thus, the
multiple regression model had a quite good fit of data, indicating that the “dryness” scores are
strongly related to all six physical quantities. According to the standardized regression
coefficients, the q max had the most influence to the LTS component of “dryness”, followed by
Vpp, T, V3g, RC and lastly, Veg. @ max, RC and Veg had positive regression coefficients,
indicating that the higher values of q max, RC and Vg, the sample was expected to have higher
score of “dryness”, i.e. drier. On the other hand, T and V., had a negative regression coefficient,
indicating that the higher values of T and V., the sample was expected to have lower score of
“dryness”, i.e. moister. However, V3¢ had a positive regression coefficient (opposite in sign from
its correlation with “dryness”), indicating that after accounting for T, q max, RC, Vg and V.,
the higher value of Vig, the sample was expected to have higher score of “dryness”, i.e. drier.

From Table 4.9 (b), a multiple regression equation can be obtained as the equation below.
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Laryness = (=2.338 X T) + (0.032 X gypqy) + (0.015 X RC) + (6.845 X Vy,)
+ (1752 x Vig) + (=0.747 x V,_,,) — 9.405 (4.8)

Table 4.10 shows the correlation and multiple regression analysis results when the
dependent variable is LTS component of “downiless” and the independent variables are physical
quantities. As shown in Table 4.10 (b), similar six physical quantities were included in this
multiple regression model too. V,., had a negatively and significantly correlation with the
“downiless”. Moreover, RC and V3, had a weak positive correlation with “downiless”. However,

T, g max and V3 had a weak negative correlation with “downiless”.

The multiple regression model with all six predictors produced R’ =1.000, thus, the
multiple regression model had a quite good fit of data, indicating that the “downiless” scores are
strongly related to all six physical quantities. According to the standardized regression
coefficients, the V;, had the most influence to the LTS component of “downiless”, followed by
Vig, RC, T, Veg and lastly, q max. RC and V3 had positive regression coefficients, indicating

that the higher values of RC and V3sg the sample was expected to have higher score of

Table 4.10 Result for multiple regression analysis (LTS-“downiless” with all
physical quantities)

(a) Correlations

“downiless”

Pearson

correlation Sig.
T -0.095 420
gmax  -0.302 255
RC 0.550 .100
Vg 0.106 410
Vg -0.035 470
Vo -0.844*** 008

*p<.l *Fp<.05 FEp<.01 FFFFp <001



Table 4.10 Result for multiple regression analysis (LTS-“downiless” with all
physical quantities)

(b) Coefficients
Unstandardized Standardized
Model Coefficients Coefficients
B Std. Error  Beta
(Constant) -9.269 0.000
T -0.579 0.000 -.136
g max 0.003 0.000 .080
RC 0.026 0.000 .361
Vig 12.373 0.000 .631
A 1.071 0.000 117
Vpp -0.961 0.000 -.888

Dependent variable: “downiless”
Independent variable: “T”, “q max”, “RC”, “V3g”, “Veg”, “Vpp”

as the equation below.

Laownitess = (—0.579 X T) + (0.003 X Gmqy) + (0.026 X RC) + (12.373 x V3,)

+(1.071 x Vg, ) + (=0.961 x V,_,) — 9.269 (4.9)
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“downiless”, i.e. not downy. On the other hand, T and V., had a negative regression coefficient,
indicating that the higher values of T and V., the sample was expected to have lower score of
“downiless”, i.e. downy. However, q max and Ve had a positive regression coefficient (opposite
in sign from its correlation with “downiless”), indicating that after accounting for T, RC, V3¢ and
Vpp, the higher values of q max and Ve, the sample was expected to have higher score of

“downiless”, i.e. not downy. From Table 4.10 (b), a multiple regression equation can be obtained

Table 4.11 shows the correlation and multiple regression analysis results when the

dependent variable is LTS component of “coolness” and the independent variables are physical

quantities. As shown in Table 4.11 (b), similar six physical quantities were included in this
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multiple regression model too. q max had a positively and significantly correlation with the
“coolness”. Nevertheless, T and V3 had a negatively and significantly correlation with the
“coolness”. Moreover, Vsz had a weak positive correlation with “coolness”. However, RC and

Vpp had a weak negative correlation with “coolness”.

The multiple regression model with all six predictors produced R’ =1.000, thus, the
multiple regression model had a quite good fit of data, indicating that the “coolness” scores were
strongly related to all six physical quantities. According to the standardized regression
coefficients, the g max had the most influence to the LTS component of “coolness”, followed by
T, Vig, Vpp, Veg and lastly, RC. q max and Veg had positive regression coefficients, indicating
that the higher values of q max and Veg, the sample was expected to have higher score of
“coolness”, i.e. cooler. On the other hand, T and V., had a negative regression coefficient,
indicating that the higher values of T and V., the sample was expected to have lower score of
“coolness”, i.e. warmer. However, RC and V3, had a positive regression coefficient (opposite in
sign from its correlation with “coolness”), indicating that after accounting for T, q max, Veg and

Vpp, the higher values of RC and V3ig, the sample was expected to have higher score of

Table 4.11 Result for multiple regression analysis (LTS-“coolness” with all
physical quantities)

(a) Correlations

“coolness”

Pearson

correlation Sig.
T -0.567* .092
gmax  0.810** 014
RC -0.047 460
Vg -0.569* 091
Vg 0.361 213
Vpp -0.219 319

*p<.l FFp<.05 FEp<.01 FFFRp <001



Table 4.11 Result for multiple regression analysis (LTS-“coolness” with all
physical quantities)

(b) Coefficients
Unstandardized Standardized
Model Coefficients Coefficients
B Std. Error  Beta

(Constant) -8.636 0.000

T -2.543 0.000 -.543
qmax  0.035 0.000 908
RC 0.002 0.000 031
Ve 5.705 0.000 265
Ve 1.724 0.000 171
A -0.261 0.000 -220

Dependent variable: “coolness”
Independent variable: “T”, “q max”, “RC”, “V3¢”, “Veg”, “Vpp”

119

“coolness”, i.e. cooler. From Table 4.11 (b), a multiple regression equation can be obtained as

the equation below.

Leooter = (—2.543 X T) + (0.035 X gynqy) + (0.002 X RC) + (5.705 X Vy,)

+(1.724 x Vgy) + (—0.261 X V,_,) — 8.636 (4.10)

From the above multiple regression analysis results, the relationship between LTS

components and physical quantities by using regression coefficients can be summarized as

shown in Figure 4.23.
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Figure 4.23 Multiple regression analysis results (tactile sensation of hand)
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4.2.2.2 Discussions

From the multiple regression equations in section 3.3.2.2 and section 4.2.2.1, DTS
adjectives can be expressed by physical quantities. In order to express DTS adjectives in terms of
physical quantities, the equations (4.7), (4.8), (4.9) and (4.10) are substituted in equation (3.18)

and (3.19). The computed equations are as shown below.

Deomforthana = (—1.550 X T) + (0.017 X Gpqy) + (0.018 X RC) + (3.513 X V)
+(1.436 X Vyg) + (—0.677 x V;,_,,) — 5.116 (4.11)

Dpreerencepana = (—1.870 X T) + (0.020 X gynqy) + (0.019 X RC)
+(3.930 x Vay) + (1.694 X Vyy) + (—0.718 x V;,_,,) — 6.262 (4.12)

By using equations (4.11) and (4.12), DTS values for all 7 samples are calculated from
the measured physical quantities. The actual values of DTS from sensory evaluation and
calculated DTS values from physical quantities are plotted in Figure 4.24, and the absolute errors

between the two values are calculated and recorded in Table 4.12.
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Figure 4.24 Actual and calculated DTS values (tactile sensation for hand)
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Figure 4.24 Actual and calculated DTS values (tactile sensation for hand)

Table 4.12 Absolute errors between actual and calculated values of DTS for
“comfort” and “preference” (tactile sensation of hand)

Absolute error between actual
and calculated values of DTS

Sample “Comfort” “Preference”
#1 0.035 0.028

#2 0.039 0.011

#3 0.039 0.045

#4 0.128 0.067

#5 0.029 0.002

#6 0.048 0.088

#7 0.195 0.149

Mean 0.073 0.056
Standard

deviation 0.059 0.047
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Figure 4.24 shows that the actual and calculated values of DTS for “comfort” and
“preference”. The mean absolute errors for “comfort” and “preference” are 0.073 £ 0.059 and
0.056 £ 0.047 respectively. In conclusion, the equation (4.11) and (4.12) can be used for
prediction of DTS values of “comfort” and “preference” with consideration of the errors. In the

next section, the reliability of the above equations will be verified.

4.2.2.3 Verification Test of Quantified Tactile Sense Evaluation

In this chapter, the computed equations from the quantification of tactile sensation will be
verified the reliability by using unknown samples; other than 7 samples in this research. In order
to conduct verification test, first, a sensory evaluation of the unknown samples is conducted to
determine the actual DTS values. Next, all the physical quantities of the unknown samples
needed are measured. Then, by using the measured physical quantities, predicted DTS values are

calculated. Lastly, the errors between actual and predicted DTS values are evaluated for the

Table 4.13 List of unknown fabric samples
(a) Materials and knitted method
# Material Knitted method

Cupro 93 %,
Polyurethane 7 %

Cotton 93 %,
9 Nylon 20 %, Half Milano rib
Polyurethane 5 %

Plain stitch

(b) Picture of fabrics (X100 magnification)
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Table 4.14 Physical quantities and DTS values (hand) of unknown samples

Sample #8 #9

T [mm] 0.488 0.574

qmax [Wm?°C]  163.7 108.0

Physical RC %] 3230 29
quantities Vg [V] 0.560 0.612

Ve [V] 1.212 1.371

Vo [V] 0.467 0.212
Actual Comort 0329 0200
DTS Value “Preferencen 0416 0348
Predicted ~ -omfort sl 0%
DTS value “Preference” 0.667 0.239

verification of the quantification method proposed by this research.

There are two unknown samples used for the verification. The details on these samples
are as shown in Table 4.13. The samples are also undergarments which are designed for summer

season; similar to 7 samples used for the quantification.

A sensory evaluation by using the similar methods and conditions as in Chapter 3 was
carried out for the two unknown samples. The sensory evaluation was conducted to determine
the actual DTS values when human directly evaluates the fabric. Then, six physical quantities
which are the variables for the prediction of DTS values were measured with the same condition
as in Section 4.2.1 the measured physical quantities, the value of predicted DTS was computed.
The actual DTS values from sensory evaluation, measured physical quantities and predicted DTS

values were summarized in Table 4.14.
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Fioure 4.25 DTS values of unknown samnles (hand)

Table 4.15 Error of predictions (hand)

Error of predictions

Sample “Comfort” “Preference”
#8 0.292 0.251
#9 0.036 0.109
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The actual and predicted DTS values of the unknown samples are plotted in Figure 4.25
with 7 other samples. The errors of predictions are as shown in Table 4.15. From the overall
results, the errors for DTS value of “comfort” and “preference” in sample #8 is greater than
sample #9. The DTS values of “comfort” and “preference” for sample #8 may not be conside