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Abstract

Digital images are frequently contaminated by noise due to different sources such

as transmission errors, malfunctioning pixel elements in the camera sensors, faulty

memory location and timing errors in analog-to-digital conversion. The presence of

noise in digital images leads to some undesirable effects such as image degradation

and distortion of some important image features. Therefore, image denoising has

recently become essential in many subsequent image processing applications as a pre-

processing step. The aim of image denoising is to efficiently attenuate the corrupted

noise and preserve the image details such as edges and textures in the image. Some-

times, digital images are degraded by single noise as well as more than one type of

noise. Denoising methods may be different depending upon the types of noise because

the characteristics of noise and filtering approaches are dissimilar to each other. The

objectives of this thesis are to enhance the quantitative performance of mixed-noise

removal method with interpolation approach while preserving the image details and

improve the denoising performance of Gaussian noise removal method via Improved

Rapid and Accurate Image Super-Resolution (IRAISR) with the reduced number of

filters without sacrificing salient image features.

The suppression of mixed-noise composed of Additive White Gaussian Noise

(AWGN) and Random-Valued Impulse Noise (RVIN) is considered in this thesis.

There are mainly two steps in the removal of mixed noise. The first step is to

achieve the denoised image by integrating Interpolation, Directional Weighted Me-

dian (DWM) filter, downsampling and Block Matching and 3D (BM3D) filtering.

The second step is to obtain the restored image by combining re-detect process which

is thresholding on the absolute difference between the input noisy image and the

pre-estimated image from the first step, and BM3D. Even though some conventional

mixed-noise removal methods can successfully filter the noise, some image details are

lost due to the miss detection of the image details as the impulse noise. In order

to overcome this issue, the interpolation technique based on multi-surface fitting for

x



single image is added before the detection of impulse noise in DWM filter. And then,

it is also necessary to down-sample the interpolated DWM output because of the

effect of interpolation. As most mixed-noise removal methods are detection-based,

the detection of impulse noise in eliminating the mixed-noise plays a vital role to

be considered. The addition of interpolation before DWM filter is very efficient in

detecting the impulse noise to achieve an excellent denoising performance.

On the other hand, the elimination of Gaussian noise can be improved by em-

ploying IRAISR as a post-processing step to prevent from distortion of some image

structures because of the deterioration of high frequency components in the existing

noise removal methods. In this method, the two steps are basically structured namely:

learning phase and testing phase. The filters are learned from the image pairs be-

tween the patches extracted from the images denoised by nonlocal-based benchmark

methods such as BM3D and Weighted Nuclear Norm Minimization (WNNM), and

the pixels from Ground truth by eigen-analysis in the learning phase. The filtered

image can be obtained by applying the pre-learned filters which are the reduction to

18 filters in the hash classes by two improvements including geometric conversion for

the gradient angle and the minimization of the classes for the gradient strength to

the patches extracted from the denoised image in the testing phase. Moreover, the

Census transform (CT) is also utilized by blending the image attenuated by Gaussian

noise removal techniques and the filtered output to restore the local structures of the

image within a wide range of frequencies.
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Chapter 1

Introduction

1.1 Background

Nowadays, digital images can be easily obtained according to the advance in camera

technology. However, digital images are inevitably corrupted by noise during the pro-

cess of image acquisition and transmission. In particular, they are degraded by only

single noise and the images with a variety of different noise are frequently contributed

in the real applications. In order to get high quality noise-free images, image denoising

becomes not only a highly demanded area of research in the image processing fields

but also an indispensable pre-processing step for many low-level vision applications.

Two types of commonly encountered noises in the real-world are additive Gaussian

noise and impulse noise. Practically, impulse noise is occurred by malfunctioning

pixels in camera sensors, faulty memory locations in hardware, or transmission in

a noisy channel and Gaussian noise is usually generated by the thermal motion of

electron in camera sensors during the process of image acquisition.

When Gaussian noise is added to an image, a corrupted pixel value is the sum

of the original pixel value and the Gaussian distributed random noise. Especially,

Additive White Gaussian Noise (AWGN) is the noise which is found to be additive

in nature with uniform power in the whole bandwidth with Gaussian probability

distribution. AWGN is a good approximation of noise in the real world and many

Gaussian noise removal methods have been successfully proposed since a few decades.

The general block diagram of Gaussian noise removal is illustrated in Fig. 1.1. Some

denoising methods are locally-based and some are nonlocally. Wiener filtering [1,

2], bilateral filtering which is well-known as edge-aware filtering [3], total variation

(TV)-based methods [4–10], nonlocal-based image denoising methods [11–30], sparse

1



representation (SR) based methods [31–39], low-rank minimization based methods

[40–45], dual-domain based image denoising methods [46,47] and convolutional neural

network (CNN)-based denoising methods [48–51] have been recently presented to

efficiently remove Gaussian noise. Many conventional methods utilize the frequency

property to suppress AWGN. For instance, BM3D [24] is a classical and effective

denoising method by applying a grouping of similar 2-D fragments extracted from the

noisy image and collaborative filtering of grouped blocks. In contrast, SAIST [40] and

WNNM [30] use singular value decomposition and low rank approximation without

utilizing frequency properties. Zhang et al. [52] grouped the similar patches into a

matrix and applied principal component analysis (PCA) to remove AWGN.

Figure 1.1: General block diagram of Gaussian noise removal

On the other hand, when impulse noise is added to an image, a corrupted pixel is

replaced by a fixed-value (salt-and-pepper noise) or random value. Salt-and-pepper

noise is the noise which replaces the dark pixel in the bright region and bright pixel in

the dark region. Random-Valued Impulse Noise (RVIN) is the impulse noise which re-

places pixels by random values within the dynamic range of images without changing

the remaining pixels. Figure. 1.2 shows the general block diagram of impulse noise

removal. Recently, many impulse noise removal methods [53–69] have been published.

The most classical and simplest filter for removal of impulse noise is median filter [53]

which is typically nonlinear filter. Although the median filters can attenuate the im-

pulse noise, some local structures of the image are deteriorated when the noise density

2



level is high. Hence, the modification of median filters such as the weighted median

filter [54], the multistate median (MSM) filter [55], the center-weighted median fil-

ter [56] and the stack filter [57] are proposed to improve the denoising performance.

Figure 1.2: General block diagram of impulse noise removal

These aforementioned median filters tend to cause oversmoothing the image local

structures because they don’t consider the identification of image pixels which are

noisy or not. Therefore, many improved denoising techniques for impulse noise which

are the integration of impulse noise detection mechanisms and the median filtering

such as switching median filter [58], MSM filter [59], tristate median (TRI) filter

[60], adaptive center-weighted median (ACWM) filter [61], the pixel-wise median

absolute deviation (PWMAD) filter [62], the adaptive switching median (ASWM)

filter [63], a directional weighted median (DWM) filter [64], Luo-iterative median

filter [65], the conditional signal-adaptive median (CSAM) filter [66], and the rank-

ordered logarithmic difference edge-preserving regularization filter (ROLD-EPR) [67]

are explored.

In addition, the genetic programming filter [70] is also developed to remove IN

by switching between two IN detectors and their associated estimators. Generally

speaking, there are typically two processes in detection-based impulse noise removal

methods namely: noise detection and noise removal. For instance, the DWM filter

[64] first detects noisy pixels by the local difference between a target pixel and its

neighboring pixels, and then removes the noisy pixels by the directional weighted

3



median filter. Hence, the detection of impulse noise plays an important factor in the

removal of impulse noise to achieve an enhanced denoising performance.

Sometimes, the images are contaminated by different types of noise. Since the

characteristics of noises are significantly different, it is necessary to select an effective

algorithm to remove the mixed-noise. The general block diagram of mixed noise re-

moval is shown in Fig. 1.3. A few mixed noise removal methods [71–78] are efficiently

developed to suppress the combination of RVIN and AWGN. In [71], the pixels de-

graded by RVIN are firstly detected and then removed by computing an optimization

problem using the pixels unaffected by RVIN. [72] addresses a denoising framework

for mixed noise which is a detection mechanism based on Robust Outlyingness Ratio

(ROR) incorporating with nonlocal similarity models to achieve a more accurate and

powerful denoising performance. The combination of impulse detection and sparse

coding-dictionary learning is proposed in [73] to restore the image and textures cor-

rupted by mixed noise. The mixed noise is removed by adopting a variational encoding

framework which is an integration of image sparsity prior and nonlocal self-similarity

prior [74]. In [75], Weighted Joint Sparse Representation (WJSR) model is applied

to mixed noise removal by jointly coding the grouped nonlocal similar image patches

to obtain more robust denoising performance.

An effective mixed IN and AWGN removal method is proposed by Huang et al. [76]

based on Laplacian Scale Mixture (LSM) modeling and nonlocal low-rank regulariza-

tion. The impulse noise is characterized by LSM model where both the hidden scale

parameters and the impulse noise are jointly estimated from the observed noisy im-

age. Zhang et al. [77] proposed an algorithm to remove the mixture of Gaussian

and impulse noise by exploiting the image local consistency and nonlocal consistency

concurrently. Moreover, a Split-Bregman based iterative numerical algorithm is also

developed to solve the optimization problem efficiently [77]. The integration of im-

pulse noise detector with improved NL-means is presented in [78] to estimate the

parameter for NL-means depending on the noise value.
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Figure 1.3: General block diagram of mixed noise removal

1.2 Types of Image Noise

Image noise is random variation of brightness or color information in the image cap-

tured by digital cameras. Noise generates undesirable effects such as artifacts, unre-

alistic edges, unseen lines, corners, blurred objects and degrades background scenes.

There are various types of noise that are affected to the digital images in the real

world. Some noise are multiplicative and some are additive. Among them, some

well-known image noise mostly corrupted in the digital images are described in the

following.

• Gaussian Noise

• Impulse Noise

• Shot Noise or Poisson Noise

• Speckle Noise

The characteristics of each noise will be briefly explained in the following subsec-

tion.
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1.2.1 Gaussian Noise

Gaussian Noise is a statistical noise having a probability density function equal to

normal distribution, also known as Gaussian distribution. It is generated by adding

random Gaussian function with zero mean and standard deviation to image function.

GN is also known as electronic noise because it arises in amplifiers or detectors. It

is caused by thermal vibration of atoms and discrete nature of radiation of warm

objects. The magnitude of Gaussian noise depends on the standard deviation (σ).

When the value of standard deviation is higher, the noisy image may be stronger.

The Gaussian noisy image of Lena is generated as shown in Fig. 1.4.

(a) Original (b) Noisy Image

Figure 1.4: Generation of Gaussian noise in Lena image with σ = 30

1.2.2 Impulse Noise

Digital images are frequently contaminated by impulse noise during the process of

image acquisition or transmission through communication channels. Consequently,

some pixel intensities are inevitably altered while others remain noise-free. The image

model comprehending impulse noise with probability of occurrence p can be expressed

as follows:

Xij =

 Nij with probability p;

Sij with probability 1− p
(1.1)
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where Sij denotes the noiseless image pixel and Nij means the noise substituting for

the original pixel. Two commonly encountered impulse noises in digital images are

• Salt-and-Pepper Noise (SPN) and

• Random-Valued Impulse Noise (RVIN).

The image corrupted by salt-and-pepper noise is produced by replacing the dark

pixels (with 0 pixel value) in the bright regions and the bright pixels (with 255

pixel value) in the dark regions all over the image if the number of bits are 8 for

transmission. This type of noise can be caused by analog-to-digital converter errors,

bit errors in transmission and malfunctioning of cameras sensor cell.

RVIN is characterized by replacing a portion of image pixel with noise values

normally distributed within the dynamic range [0, 255] without altering the remaining

pixel in the original image. To be clearly seen the generation of noisy images, Fig. 1.5

illustrate Airplane images degraded by salt-and-pepper noise p = 5% and random-

valued impulse noise p = 25%. In case of random-valued impulse noise, the detection

of impulse noise is relatively more difficult in comparison with salt-and-pepper impulse

noise because the intensity values of noisy pixels are randomly changed. Among the

suppression of impulse noise, median filtering also known as nonlinear filtering is the

most fundamental and effective one because of its effectiveness and computational

efficiency. It can successfully optimize the tradeoff between noise reduction and detail

preservation.

1.2.3 Shot Noise or Poisson Noise

Poisson noise is characteristic of many image acquisition modalities. It is signal de-

pendent because the noise variance is equal to the expected value of the underlying

reference signal. Therefore, it is more difficult to remove than Additive White Gaus-

sian Noise. The manifestation of this noise is introduced due to the statistical nature

of electromagnetic waves such as x-rays, visible lights and gamma rays. The x-ray

and gamma ray sources emit number of photons per unit time. These rays are in-

jected in patient’s body from its source in medical x-rays and gamma rays imaging
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(a) Original (b) Salt and pepper Noisy Im-
age

(c) RVIN Noisy Image

Figure 1.5: Generation of Salt-and-Pepper noise with p = 5% and RVIN with p = 25%
in Airplane image

systems. The removal of poisson noise becomes a fundamental importance for many

applications and particularly in astronomy and medical imaging.

1.2.4 Speckle Noise

Speckle noise is a form of multiplicative and locally correlated noise. It can be found

in coherent imaging systems, such as laser, SAR (Synthetic Aperture Radar) and

medical ultrasonic images. Speckle noise is generated in several ways in various type

of images. In case of ultrasound images, speckle noise arises when a sound wave beat

arbitrarily interferes with little particles or on a scale equivalent to sound wavelength.

The presence of these noises significantly degrade the image quality and consequently

the diagnostic decisions. In case of conventional radar images, it arises due to random

variation in return signal. The speckle noise can be modeled as the following equation:

SN = I + n ∗ I (1.2)

where SN is the noisy image contaminated by speckle noise, I means the clean image

and n is uniformly distributed random noise with mean and variance. The Pepper

image disturbed by speckle noise with σ = 15 is produced as shown in Fig. 1.6. Many

denoising methods such as spatial filtering approach, frequency domain approach and

spatio-frequency approach have been widely used to suppress the speckle noise.
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(a) Original (b) Noisy Image

Figure 1.6: Generation of Speckle noise in Pepper image with σ = 15

1.3 Causes of Noise in Digital Images

Digital images in the real applications are often corrupted by one or more than one

type of noise due to many kinds of reasons as expressed in the following:

• Environmental conditions

• Temperature of the sensor

• Confliction in the transmission channel

• Insufficient light

• Dust on the screen during scanning the image

The presence of noise in the digital images leads to generation of poor quality

image and distortion of important image features. Thus, image denoising plays a

critical role in the subsequent image processing applications such as object recogni-

tion, surveillance, remote sensing and image compression etc, as a preprocessing step.

Figure. 1.7 depicts the pictorial representations of the corruption of noise in digital

images by different causes at different conditions.
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Figure 1.7: Causes of noise in digital images at different conditions

1.4 Problem Statement

Natural images in the real world can be degraded by more than one type of noise dur-

ing the process of image acquisition and transmission. Many researchers have been

trying to remove the mixed noise for a few decades because it is a fundamental and

essential step to be considered in sequential image processing applications. Therefore,

they utilized many denoising methods for removal of mixed noise because the char-

acteristics of noise are different from each other. In this thesis, how to remove mixed

noise composed of Additive White Gaussian Noise (AWGN) and Random-Valued Im-

pulse Noise (RVIN) , and Gaussian noise only are mainly considered. Mixed noise

image can be obtained by adding two commonly encountered noise such as AWGN

and RVIN to clean image. Gaussian noisy image is produced by concatenating the

Gaussian noise with zero mean and standard deviation to a noise-free image.

The removal of mixed-noise is more difficult than the removal of Gaussian noise

only because different noises have different characteristics. Most mixed-noise removal

methods are basically detection based methods. The presence of impulse noise in the
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noisy image is initially detected and then filtered in the detection-based noise removal

methods. Although most mixed-noise removal methods can successfully suppress the

noise, some image details are lost in the edge and texture regions because of the

miss-detection of the image details as the impulse noise. The cropped region of

denoised Barbara image degraded by the combination of Gaussian noise σ = 25 and

RVIN p = 25% is illustrated in Fig. 1.8. The image details in the image are failed

to preserve according to the simulation result. Hence, the detection of impulse noise

becomes a challenging problem to remove the mixed noise and restore some important

features of the image.

(a) Original (b) Denoised Image

Figure 1.8: Denoised result of Barbara corrupted by mixed Gaussian and random-
valued impulse noise (σ = 25 and p = 25%)

Moreover, an accurate Gaussian noise removal approach has been recently attract-

ing considerable attentions to apply for mobile processors like smart phone. There are

accurate conventional denoising methods that have the potential ability for improving

the denoising performance with no more time. Local-based denoising methods as well

as nonlocal-based denoising methods have been extensively used to remove the Gaus-

sian noise since a few years. Local-based denoising methods can effectively remove

the noise. However, they tend to blur the edges and over-smooth the flat regions of

the image when the noise level is strong. Similarly, even though some state-of-the-art

nonlocal-based denoising methods such as Block Matching and 3D filtering (BM3D) ,

and Weighted Nuclear Norm Minimization (WNNM) produce high quantitative per-
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formance, some fine details of the image are less visualized due to the loss of high

frequency information. The visual quality of the Butterfly image corrupted by Gaus-

sian noise σ = 60 by using BM3D filtering is shown in Fig. 1.9. Not only the edge

regions of the image are poor but also the flat regions lead to a little blur in the

situation of high noise level.

(a) Original (b) Denoised Image

Figure 1.9: Denoised result of Butterfly corrupted by AWGN (σ = 60)

1.5 Research Objectives

As explained in Section. 1.4, it is difficult to successfully remove the mixed noise

composed of AWGN and RVIN without sacrificing the image features because of the

detection problem of the image details in the image. Moreover, some image structures

in the nonlocal-based image denoising techniques are failed to efficiently restore due

to the disappearance of high frequency components. Therefore, this dissertation

particularly aims at the following factors.

• To preserve the image details lost in the mixed noise removal method by using

Interpolation approach based on multi-surface fitting for single image

• To compensate the high frequency information in the nonlocal-based Gaussian

noise removal methods with the help of Improved RAISR technique
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1.6 Research Methodology

In this dissertation, a mixed-noise removal method is proposed to preserve the im-

age details with the aid of image interpolation technique that will be mentioned in

Chapter.3. There are typically two steps in the proposed method. The first step

is to estimate the denoised image by integrating interpolation, DWM filter which is

used to eliminate the impulse noise, down-sampling and BM3D which is utilized for

Gaussian noise reduction. The second step is to preserve the image details lost in

the first step by calculating the absolute difference between the input noisy image

and the pre-estimated image obtained from the first step. In addition, BM3D is also

used to suppress the remaining Gaussian noise after removing the accurately detected

impulse noise. The main contribution of this research is that the input noisy image

is initially interpolated by multi-surface fitting for single frame before impulse noise

detection of DWM filter in the first step to keep the image details in the edge and

texture regions.

Furthermore, an improvement of Gaussian noise removal method using learning-

based super-resolution (SR) approach as a rapid post-processing is also proposed

in this dissertation. Block Matching and 3D filtering (BM3D) , and Weighted Nu-

clear Norm Minimization (WNNM) are utilized to suppress the noise. Although

these nonlocal-based image denoising methods can efficiently remove GN, some im-

portant details of the image are deteriorated due to the loss of high frequency in-

formation. In order to tackle this problem, an Improvement of Rapid and Accurate

Image Super-Resolution, so-called IRAISR is applied as a rapid post-processing to

the denoised image because it leads to high performance comparable to some state-of-

the-art super-resolution (SR) techniques with low cost computational complexity as

well as preserves the important image structures. The modification of this approach

is that the hash classes for the patches extracted from the denoised image and the

pixels from Ground truth are reduced to 18 filters by two improvements including

the minimization of the classes for the angle by geometric conversion and reduction

of the classes for the strength. The filters are learned from the image pairs between
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the patches extracted from the denoised image and the pixels from the clean image

by using eigen-analysis. Similarly to the pioneer RAISR, the Census Transform (CT)

is exploited by blending the image processed by noise suppression methods with the

filtered output to achieve the artifact-free results.

1.7 Organization of the Dissertation

Chapter 1 provides a brief introduction to background theory of image denoising,

a variety of noise commonly degraded in the digital images in the real-world, the

causes of noise in the digital images, the main issues in removing both mixed noise

and Gaussian noise, the principal objectives to tackle this problem, needed methods

in this study and organization of the dissertation.

Chapter 2 presents the characteristics and methodology of some state-of-the-art

nonlocal-based Gaussian noise removal methods and convolutional neural network

(CNN)-based denoising methods.

Chapter 3 expresses the removal of mixed-noise comprised of Additive White

Gaussian Noise (AWGN) and Random-Valued Impulse Noise (RVIN) by using inter-

polation technique based on multi-surface fitting for single frame.

Chapter 4 describes the improvement of denoising performance in an accurate

Gaussian noise removal method by employing Improved Rapid and Accurate Image

Super-Resolution (IRAISR) technique with less number of filters.

Chapter 5 explains an overall conclusion of this thesis, some limitations and further

extensions of image denoising methods proposed in this thesis.
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Chapter 2

Related Works

2.1 Nonlocal-based Image Denoising Methods

Image denoising is a fundamental problem in image processing to be considered for

many researchers in order to estimate the original image from noise-contaminated

observation while preserving the image features as much as possible. Traditionally,

the classical linear filtering known as Gaussian filtering is utilized to remove Additive

White Gaussian Noise (AWGN). Even though the flat regions of the image are opti-

mally restored in this filtering, it tends to blurry effect in the edge and texture regions

because the intensity values are drastically changed in that regions. To overcome this

problem, the edge preserving filter so-called bilateral filter [3] is widely used. The bi-

lateral filter is the simplest and most intuitive filter based on the weighted-averaging.

The filtered output at each pixel is computed as the average of its neighboring pixels

and the weights are evaluated between the spatial and intensity similarity. The best

PSNR performance can be achieved depending upon the selection of spatial and range

kernels. The image can be smoothed and the edges are well restored in bilateral filter.

As these above image denoising methods are locally based, the denoising perfor-

mance is significantly decreased when the noise level is gradually increased. Therefore,

nonlocal-based image denoising methods have been recently popular for the removal of

AWGN. Among them, many denoising methods based on the nonlocal self-similarity

(NSS) models such as nonlocal means (NLM) filter [11, 12], Block Matching and 3D

filtering (BM3D) [24], Learned Simultaneous Sparse Coding (LSSC) [34], Nonlocally

Centralized Sparse Representation (NCSR) [39] and Weighted Nuclear Norm Mini-

mization (WNNM) [30] have been extensively addressed for the removal of Gaussian

noise to obtain an excellent performance while preserving the image details.
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2.1.1 Nonlocal Means

Nonlocal means (NLM) is actually an extension of bilateral filtering (BF) based on

the fact that similar pixels in an image can be spatially far from each other. It is

also a pioneer of denoising method based on nonlocal self-similarity (NSS) models. In

NLM, the estimated value at each pixel is computed as the weighted average of all its

similar pixels in the image, and the weights are determined by the similarity between

them. The main idea of NLM is the calculation of similarity between a target pixel

processed and its neighborhoods across the image by using Euclidean distance as a

similarity metric.

The denoised result of the image by using NLM is computed by the following:

ŷ(i) =
∑
j∈I

ω(i, j)y(j) (2.1)

where y is a noisy image which is an addition of noise-free image x and Gaussian

noise n with zero mean and variance σ2. The weights dependent on the similarity

between the pixels i and j can be calculated by

ω(i, j) =
1

Z(i)
e−
‖y(Ni)−y(Nj)‖2

2,σ

h2 (2.2)

where Ni and Nj denote square neighborhood of fixed size and centered at pixels i

and j, respectively. σ > 0 is the standard deviation of Gaussian kernel. Z(i) is the

normalizing constant and can be evaluated by

Z(i) =
∑
j

e−
‖y(Ni)−y(Nj)‖2

2,σ

h2 (2.3)

where the parameter h is a degree of filtering.

The decay of the weights can be controlled by this parameter as a function of the

Euclidean distances. The NL-means allow a more robust to high noise comparison

with the other locally-based denoising methods because not only the intensity level at
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a single point but also the geometrical configuration in a whole neighborhood can be

considered in NLM. To the best of our knowledge, similar pixel neighborhoods give

a large weight while the small weights are obtained in much different pixel neighbor-

hoods. Hence, the similarity of the target pixel with its nearest neighborhoods plays

an essential role in NLM to achieve higher performance over local-based Gaussian

noise removal methods.

2.1.2 BM3D Filtering

Block Matching and 3D filtering (BM3D) [24] has become a state-of-the-art Gaussian

noise removal method since a few years due to its high quantitative performance and

subjective visual evaluation. It is also based on nonlocal self-similarity (NSS) models

and uses transform-based shrinkage in the frequency domain. There are two steps in

BM3D as illustrated in Fig. 2.1. The first step is to obtain the pre-estimated image

by using block matching which is a grouping of nonlocal similar patches into a 3-D

cube and applying hard-thresholding operation. The second step is to achieve the

restored image by utilizing block matching and employing wiener filtering.

Figure 2.1: Block diagram of BM3D

In hard thresholding operation, BM3D defines the difference d to measure the

similarity between the target patch and the candidate patches at different locations

of the image as

d(pi,pj) =
1

N1

‖Υ
(
F2D(pi), λ2Dσ

√
2 log(N2

1 )

)
−Υ

(
F2D(pj), λ2Dσ

√
2 log(N2

1 )

)
‖2

(2.4)
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where pi and pj are a target patch processed and a neighbor patch sized N1 ×N1 in

the input noisy image y corrupted by AWGN, F2D is a 2D linear unitary transform

operator, λ2D is a fixed threshold parameter, σ is the variance of AWGN, and ‖.‖2
denotes the L2-norm. Υ is the hard-threshold operator and it is defined as

Υ(λ, λthr) =

 λ, |λ| > λthr

0, otherwise
(2.5)

where λthr is the threshold parameter. A set Si of the coordinates of the blocks

similar to pi can be obtained as follows.

Si = {(xj, yj) | d(pi,pj) < τ} (2.6)

where (xj, yj) is the coordinates of the nonlocal similar patch pj and τ is the maximum

parameter of d. Then, the similar patches extracted from the noisy image are stacked

together to form a 3-D array sized N1×N1× |Si|, where Si describes the cardinality

of Si and hard-thresholded to attenuate the noise.

The estimates of all grouped blocks can be produced by inverting the 3-D trans-

form and returned back to their original positions. The denoised array can be depicted

as follows.

Ỹi = F−13D

(
Υ

(
F3D(Pi), λ3Dσ

√
2 log(N2

1 )

))
(2.7)

where Pi is the 3-D array for target patch pi, F3D and F−13D are 3-D linear unitary

transform operator and the inverse operator, and λ3D is a fixed threshold parameter.

Moreover, the weight ωi for each array Ỹi can be calculated as

ωi =

 1
NiHT

NiHT ≥ 1

1 otherwise
(2.8)

where NiHT is the number of non-zero coefficients of P i.

In wiener filtering, two groups which are one from the input noisy image and the

another from the estimates evaluated by using hard-thresholding are formed by block

18



matching. For the block matching, the difference d
′

is computed as follows.

d
′
(qi, qj) =

1

N1

‖(qi − q̄i)− (qj − q̄j)‖2 (2.9)

where qi and qj are a target patch and its neighbor patch in ỹ, and q̄i and q̄j are the

mean value of qi and qj , respectively. Analogously to the first step, a set Śi of the

coordinates of the blocks similar to qi can be obtained as follows.

Śi = {(xj, yj) | d́(qi, qj) < τ} (2.10)

where (xj, yj) is the coordinates of the patch qj . In the second step, BM3D processes

the linear wiener filter instead of hard-thresholding to improve the grouping of blocks

because hard-threshold removes not only AWGN but also the important image details.

The estimates of all grouped blocks are analogously produced by applying the inverse

3-D transform on the wiener-filtered coefficients and put them back to their original

positions. BM3D produces the filtered array Ŷi as follows.

Ŷi = F−13D (WQi
F3D(Pi)) (2.11)

where Pi is the noisy observation of 3-D array Qi in y. The Wiener filter coefficients

in a 3-D transform can be calculated from the estimates of the first step

WQi
(i, j, t) =

|F3D(Q)(i, j, t)|2

|F3D(Q)(i, j, t)|2 + σ2
. (2.12)

After processing these two operations for all target patches, the restored image is

finally estimated by aggregating all denoised arrays of each patch with their relevant

weights in both processes.

2.1.3 Learned Simultaneous Sparse Coding

Mairal et al. [34,35] proposed a Learned Simultaneous Sparse Coding (LSSC) which is

a nonlocal-based framework by combining nonlocal means (NLM) and sparse coding

to restore the image. In LSSC, the dictionaries D are learned on the set of overlapping
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noisy patches. Unlike NLM, LSSC can solve the denoising process in the patches

that are not similar to the other patches in the image by forcing the similar patches

to similar sparse decompositions. The convex l1,2 norm is fundamentally used for

learning the dictionary and the l0,∞ pseudo-norm is utilized for the final reconstruction

in this approach. The set Si of similar patches for each patch yi from the noisy image

y is defined as

Si , {j = 1, ..., n s.t ‖yi − yj‖22 ≤ ξ} (2.13)

where yi is the target patch processed and yj means the similar patches related to

the target patch across the image. ξ is the threshold value.

The sparse optimization problem can be solved by decomposing the patch yi with

a grouped-sparsity regularizer on the set Si, expressed as

min
Ai
‖Ai‖p,q s.t

∑
j∈Si

‖yj −Dαij‖22 ≤ εi (2.14)

where Ai = [αij]j∈Si ∈ Rk×|Si|. Dαij is the estimate of denoised image and αij is the

corresponding code for the learned dictionary. k is the number of elements.

The maximum window size ω for semi-local grouping is selected to 64 in LSSC.

The key contribution is the computation of only n vector αij because each pixel in

the image belongs to exactly one cluster for grouping. In contrast to BM3D, the

patches are initially denoised from the noisy image by sparse coding approach before

extracting the patches from the noisy image to improve matching. In addition, the

mean intensity (or RGB color) value of a patch is often subtracted from all its pixel

values in order to enhance the numerical stability of sparse coding. Hence, some

image restoration tasks such as image denoising and color image demosaicking can

be addressed successfully by applying the integration of nonlocal means and sparse

coding approach.
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2.1.4 Nonlocally Centralized Sparse Representation

Nonlocally Centralized Sparse Representation (NCSR) [38, 39] is one of the most

popular nonlocal-based denoising methods for image restoration. The main key of

this method is to recover the original image from the noisy measurements by reducing

the sparse coding noise (SCN) which is the difference between the sparse code αy of

the observed image and the sparse code αx of the reference image. The minimization

problem can be solved by the following equation to reconstruct x from the observed

image degradation model y = Hx+ v:

αy = arg min
α
{‖y −HΦ ◦α‖22 + λ‖α‖1} (2.15)

where H is an identity matrix for image denoising, λ means the regularization pa-

rameter to adjust the sparse approximation error y and the sparsity of α , and

Φ ∈ Rn×M(n < M) is an over-complete dictionary. The reconstructed image x̂ can

be calculated by the following equation

x̂ = Φ ◦αy. (2.16)

One major challenging problem about sparsity-based image restoration is the se-

lection of dictionaries Φ. In NCSR, the adaptive sparse domain selection strategy

is adopted and the sub-dictionaries are learned from the given image instead of the

example images, leading to a more stable and sparser representation. The extracted

image patches from the image x are clusterd into K clusters by using the K-means

clustering method. The over-complete dictionary for each cluster is not needed to

learn because the patches in a cluster are similar to each other. Therefore, the learned

dictionary-based PCA is employed to code the patches in this cluster. These K PCA

sub-dictionaries construct a large over-complete dictionary to characterize all the

possible local structures of natural images.

The nonlocally centralized sparse representation (NCSR) model can be expressed
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as follows.

αy = arg min
α
{‖y −HΦ ◦α‖22 + λ

∑
i

‖αi − βi‖p} (2.17)

where ‖αi − βi‖ is a nonlocally centralized sparsity term and p is assumed to be

1. The estimate βi is obtained by using the nonlocal redundancy of natural images.

Then, a good estimation of αi, i.e., βi can be calculated as the weighted average of

those sparse codes associated with the nonlocal similar patches to the target patch i.

The sparse codes of patch xi,q within a set of similar patches Ωi are denoted by αi,q.

Then, βi can be computed as the weighted average of αi,q

βi =
∑
q∈Ωi

ωi,qαi,q (2.18)

where ωi,q is the weight. The weights should be inversely proportional to the distance

between the target patch processed xi and its similar patches xi,q

ωi,q =
1

W
exp(−‖x̂i − x̂i,q‖22/h) (2.19)

where x̂i = Φα̂i and x̂i,q = Φα̂i,q are the estimates of the patches xi and xi,q, h is a

pre-determined scalar and W is the normalization factor.

In order to improve the accuracy of the sparse codes and the image restoration

quality, the estimation of sparse vector can be iteratively solved by the following

minimization problem

α(l)
y = arg min

α
{‖y −HΦ ◦α‖22 + λ

∑
i

‖αi − β(l)
i ‖p} (2.20)

The restored image is then updated as x̂(l) = Φ ◦ α(l)
y . When the accuracy of sparse

coding coefficient α
(l)
y in the iteration process is gradually improved, the accuracy of

βi will be significantly increased. The improved βi is used to improve the accuracy

of αy.

In addition to reduce the SCN, the tremendous amount of nonlocal redundancies

are exploited to the sparse coding coefficients of αx and then the sparse codes αy

22



of the observed image are centralized to these estimations of the original image.

Accordingly, the denoising performance of NCSR is improved by using this approach

and competitive with benchmark BM3D for Gaussain noise removal.

2.1.5 WNNM Filtering

Low rank matrix approximation is an important approach to compensate the under-

lying low rank matrix from its degraded observation. There are two categories in

low rank matrix approximation methods namely: the low rank matrix factorization

(LRMF) methods and the nuclear norm minimization (NNM) methods. LRMF is

able to be factorized into the product of two low rank matrices to approximate a

given data matrix.

The LRMF problem is fundamentally nonconvex optimization problem. Different

from LRMF, NNM is a convex optimization problem with certain data fidelity term.

The lowest rank approximation X from the observed matrix Y can be estimated

based on NNM problem:

X̂ = arg min
X

‖Y −X‖2F + λ ‖X‖∗ (2.21)

where ‖.‖2F denotes the Frobenius norm to measure the difference between the ob-

served data matrix Y and the latent data matrix X, ‖X‖∗ assigns the nuclear norm

of a matrix X, is defined as the sum of its singular values, i.e., ‖X‖∗ =
∑

i ‖σi(X)‖1,

where σi(X) is the i -th singular value of X, and λ is a positive constant. The solution

to this problem can be obtained by

X̂ = USλ(Σ)V T , (2.22)

where Y = UΣV T is the SVD of Y and Sλ(Σ) = max(Σ − λI, 0) is the singular

value soft-thresholding operator. In NNM, the same soft-threshold will be applied to

all the singular values because the weights of each singular value are equal. Therefore,

it is not reasonable and flexible to estimate the low-rank matrix approximation.
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In order to improve the flexibility of NNM, Gu et al. proposed Weighted Nuclear

Norm Minimization (WNNM) [30] which assigns different weights to the singular

values in the restoration of the original image from its degradation model. From the

noisy image y, the non-local similar patches relevant to the target patch across the

image are searched for a local patch yj by block matching as mentioned in [24]. The

patch matrix of noisy image, defined by Y j is obtained by stacking the non-local

similar patches from the noisy image. Then, the low rank matrix approximation

method based on WNNM can be used to estimate Xj from Y j. The denoising

structure of WNNM is illustrated in Fig. 2.2 to remove the Gaussian noise. The

WNNM problem is proposed as described in

X̂j = arg min
Xj

1

σ2
n

‖Y j −Xj‖2F + ‖Xj‖w,∗ (2.23)

where σ2
n is the noise variance to normalize the F -norm data fidelity term ‖Y j −Xj‖2F ,

‖Xj‖w,∗ =
∑

i ‖ωiσi(Xj)‖1 is the weighted nuclear norm ofX ,w is the weight vector

and ωi is a non-negative weight assigned to σi(Xj).

Figure 2.2: Denoising model of WNNM

In the application of denoising, the singular values should be large because they
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represent the energy of the major components of the data matrix Xj to be pre-

served well. Hence, the weight assigned to singular values of Xj might be inversely

proportional to σi(Xj) as described in the following:

ωi = c
√
n/ (σi(Xj) + ε) (2.24)

where c > 0 is a constant, n is the number of similar patches in Y j, σi(Xj) is the

i -th singular value of Xj ,and ε = 10−16 is a constant parameter to avoid division by

zero. The unknown singular values σi(Xj) can be estimated as

σ̂i(Xj) =
√

max(σ2
i (Y j)− nσ2

n, 0), (2.25)

where σi(Y j) is the i -th singular values of Y j. The number of iterations and the patch

size are selected depending on the noise levels in the application of image denoising by

WNNM. Note that the weights are sorted in a non-descending order since the singular

values have been arranged in non-ascending order in this consideration. Finally, the

reconstructed image x can be achieved by applying the above procedures to each

patch in the noisy image y and aggregating all of the denoised patches together to

return to their original positions.

2.2 CNN-based Image Denoising Methods

Image denoising methods are generally divided into two categories: image priors

model based methods and discriminative learning based methods. Although most of

the image priors model based methods produce high quantitative measurements and

superior visual quality, some limitations are found in these methods. The two major

drawbacks are time consuming due to the consideration of optimization problems

in the testing stage and the lack of restoration of image structures because of the

selection of hand-crafted parameters to boost the denoising performance.
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2.2.1 Residual Learning of Deep CNN for Image Denoising

In contrast to the image priors model based methods, the main idea behind the

image denoising methods based on discriminative learning is to learn the underlying

image priors and fast inference from a training set of degraded and ground-truth

image priors. A cascade of shrinkage fields (CSF) method that combines the random

field-based model and the unrolled half-quadratic optimization algorithm to form

a single learning frame-work is proposed in [79]. The aim of trainable nonlinear

reaction diffusion (TNRD) model [80, 81] is to learn stage-wise image priors in the

context of truncated inference procedure. CSF and TNRD give high potential to

image denoising while bridging a gap between computational efficiency and denoising

performance. However, they lead to some drawbacks such as limitation in capturing

the characteristics of image structures, robustness of denoising performance due to

the manually selective parameters and consideration of training a specific model at

certain noise level.

In order to solve this problem, the suppression of noise from the noisy image

by feed-forward convolutional neural networks (CNN), namely DnCNN is proposed

in [48, 49] instead of learning a discriminative model with an explicit image prior.

The DnCNN model is to learn a mapping function x̂ = F (y; Θσ) between the input

noisy version y and the desired clean image x̂. The parameters Θσ are trained for

noisy images contaminated by AWGN at fixed noise variances. An important issue

in network architecture design of DnCNN is the selection of proper network depth.

When the noise level is high, the effective patch size should be large. The receptive

field size of DnCNN is set to 35×35 with the corresponding depth of 17 for Gaussian

denoising with a certain noise level.

There are typically three types of layers in DnCNN. In the first layer, 64 features

maps are generated by using 64 filters of size 3×3×c for convolution and rectified linear

units (ReLU, max(0,.)) [82] are then utilized for nonlinearity. c represents the number

of image channels, i.e., c = 1 for gray scale image and c = 3 for color image. In the

second layer, 64 filters of size 3×3× c are used and batch normalization [83] is added
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between convolution and ReLU. In the last layer, c filters of size 3× 3× 64 are used

to reconstruct the output. In addition, simple zero padding strategy is utilized before

convolution to reduce the boundary artifacts in DnCNN. In this method, not only

the training process is accelerated but also the denoising performance is enhanced by

integrating the residual learning [84] and batch normalization [83]. Residual learning

tends to solve the performance degradation problem and the use of BN is to alleviate

the internal covariate shift while producing the excellent denoised results. Therefore,

Gaussian denoising method using feed-forward convolution neural network (DnCNN)

is competitive with some state-of-the-art nonlocal based denoising methods in both

gray scale and color images.

2.2.2 Fast and Flexible Denoising Convolutional Neural Net-

work: FFDNet

The above mentioned DnCNN [48, 49] model is not flexibility to deal with spatially

variant noises and has some limited applications in practical denoising because it re-

quires multiple models for denoising images with different noise levels. To circumvent

this issue, the fast and flexible denoising convolutional neural network (FFDNet) [50]

is appeared to adaptively perform a trade-off between noise elimination and detail

restoration. The three main objectives of FFDNet are to be highly efficient without

disturbing denoising performance, to handle images with different noise levels and

even spatially variant noise , and to achieve artifacts-free images in controlling the

trade-off between noise reduction and detail preservation.

Unlike the DnCNN model, the FFDNet model can be formulated as x̂ = F (y,M ; Θ)

by addressing the tunable noise level map M as a main contribution. The architec-

ture of FFDNet is mainly classified into three layers. In the first layer, the noisy

image y is reshaped into four downsampled sub-images by using down-scaling factor

2. Then, a tunable noise level map M which is a stretching of noise level σ is con-

catenated with the down-sampled images to form a tensor ỹ of size W
2
× H

2
× (4C+ 1)

as the inputs to CNN where W means the width of the image, H is the height of
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the image and C defines the image channel i.e., C = 1 for gray scale and C = 3 for

color image. With the tensor ỹ as input, the CNN is composed of a series of 3 × 3

convolution layers. The combination of convolution (Conv) and Rectified Linear Unit

(ReLU) [82] for the first layer, the integration of Conv, batch normalization (BN) [83]

and ReLU for the middle layer and Conv for the last layer are adopted respectively.

Similarly to DnCNN, zero-padding is utilized to maintain the size of feature maps

after convolution. After that, the estimated clean image x̂ of size W ×H ×C is pro-

duced by applying upscaling operation as the reverse operator of the downsampling

operator applied in the input stage.

The efficiency of image denoising for practical CNN-based denoising can be im-

proved by applying the downsampled images as input. The role of noise level map

M becomes important to control the trade-off between noise reduction and detail

preservation and to avoid the possible visual artifacts caused by noise level mismatch.

Moreover, residual learning is not necessary for network design in FFDNet because

the final performance after fine-tuning are almost exactly the same. During training

and testing of FFDNet-Clip, the noisy images are quantized into 8-bit format. Thus,

it is more flexible than the other discriminative learning based methods at different

noise levels with a single network while accelerating both the training and testing

speed.
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Chapter 3

Image Denoising Using

Interpolation

3.1 Introduction

Image denoising for mixed-noise is an essential issue to be taken into account for

many researchers in the image processing applications because most of the digital

images in the real world may be corrupted by more than one type of noise due to

different conditions. Therefore, how to remove the mixed-noise and which technique

will be used to enhance the image quality without losing the image details such as

edges and textures are addressed in this chapter. Most mixed-noise removal methods

are fundamentally based on the detection because of the presence of impulse noise in

the mixed-noise. Many denoising methods for mixed-noise have effectively suppressed

the noise for a few years as mentioned in Chapter 1.

Moreover, a two-step mixed noise removal method is reported in [85] to eliminate

RVIN and AWGN mixed noise. In the first step, DWM filter [64] is utilized to remove

RVIN and BM3D [24] is applied for removing AWGN. In the second step, a straight-

forward and effective noise detection method which is thresholding on the absolute

difference between the input noisy image and the pre-estimated image obtained from

the first step is employed to accurately detect the impulse noise. Besides, BM3D

is again utilized to remove the remaining noise. Although the salient RVIN which

cannot be removed by BM3D can be eliminated in this method, some image details

are still lost because of the miss-detection of the image details as the impulse noise.

In order to overcome this problem, a mixed-noise removal method is proposed by

adding the interpolation process before the impulse noise detection to the conven-
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tional mixed-noise removal method described in [85] leading to preserve the distorted

image details such as edges and textures. Although DWM filter is very effective for

the removal of RVIN, it tends to miss-detect the image details and over-smooth them

in removing the mixed noise. Therefore, the input noisy image is initially interpo-

lated based on multi-surface fitting for single frame [86]. Interpolation technique can

significantly reduce the miss-detection of the impulse noise as well as accurately de-

tect the presence of impulse noise in the noisy image. Moreover, the output of DWM

filter is down-sampled to reconstruct the original image. The remaining parts of

the proposed mixed-noise removal method are the same as the conventional method.

The mixed noise model used in this dissertation, characteristics and mathematical

approach of DWM filter, methodology of interpolation scheme, the block diagram of

the proposed method, and the quantitative and qualitative comparison of the pro-

posed method with the conventional denoising methods will be specifically explained

in the following sections.

3.2 Mixed Noise Model

In this chapter, the removal of mixed noise which is a combination of Additive White

Gaussian Noise (AWGN) and Random-Valued Impulse Noise (RVIN) is considered.

The mixed noise model will be presented in this portion. Firstly, x is represented

as a noise free image and the noisy inspection of x corrupted by AWGN as yG and

RVIN as yI , respectively. x(i, j) is the pixel value at the location (i, j) in x . In this

mixed noise model, all the scalars are represented with small case normal font letters

(e.g., x , yG , and yI ) to denote the intensity values in the image. The lower case and

bold face letters (e.g., x, yG and yI) are reserved for matrices. A corrupted pixel’s

value by AWGN is the sum of the original pixel value and the noise which follows

Gaussian distribution. The Gaussian noisy image with corrupted pixel yG(i, j) in yG

can be created by using the following formula

yG(i, j) = x(i, j) + z(i, j) (3.1)
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where z(i, j) is the white Gaussian noise whose variance is σ2. Alternatively, a cor-

rupted pixel by RVIN is replaced by a random value. Namely, a corrupted pixel

yI(i, j) in yI is modeled as

yI(i, j) =

 n(i, j) with probability p

x(i, j) with probability 1− p
(3.2)

where n(i, j) represents an impulse noise which has a random value in the range of

[0, 255], and p is the impulse noise density. Therefore, a noisy pixel y(i, j) corrupted

by the mixed noise composed of AWGN and RVIN is modeled as

y(i, j) =

 n(i, j) with probability p

x(i, j) + z(i, j) with probability 1− p.
(3.3)

3.3 DWM Filter

Directional Weighted Median (DWM) filter [64] is utilized to remove the impulse

noise because it is one of the denoising methods for RVIN. Similarly to the conven-

tional impulse noise removal methods, there are two processes in DWM filter namely:

detection process and removal process.

3.3.1 Detection Process

In this process, DWM detects the pixels corrupted by impulse noise. The edges

aligned with four main directions are mainly concentrated on as shown in Fig. 3.1.

A set of coordinates aligned with the kth direction centered at (0, 0) is represented by

Sk(k = 1 to 4) , i.e.,

S1 = {(−2,−2), (−1,−1), (1, 1), (2, 2)},

S2 = {(0,−2), (0,−1), (0, 1), (0, 2)},

S3 = {(2,−2), (1,−1), (−1, 1), (−2, 2)},

S4 = {(−2, 0), (−1, 0), (1, 0), (2, 0)}.

(3.4)
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Figure 3.1: Four directions for impulse detection

Firstly, the sum of the absolute difference between yI(i + s, j + t) and yI(i, j)

in the noisy image yI corrupted by RVIN with (s, t) ∈ Sk which is defined by d
(k)
i,j

is calculated for each direction in a 5x5 window centered at (i, j). The weighted

difference between the center pixel and the nearest neighboring pixels for the four

direction indexes are then evaluated. Namely,

d
(k)
i,j =

∑
(s,t)∈Sk

ωs,t|yI(i+ s, j + t)− yI(i, j)|, 1 ≤ k ≤ 4 (3.5)

where

ωs,t =

 2 (s, t) ∈ Ω3

1 otherwise
(3.6)

and Ω3 = {(s, t) : −1 ≤ s, t ≤ 1}. After that, the smallest value for the four directions

ri,j is utilized to detect the impulse noise, which can be denoted as

ri,j = min{d(k)i,j : 1 ≤ k ≤ 4}. (3.7)

Moreover, whether the target pixel is a noisy pixel or not can be identified by em-
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ploying a threshold T as

y(i, j) is a

noisy pixel, ri,j ≥ T

noise-free pixel, otherwise

. (3.8)

3.3.2 Removal Process

After detecting the impulse noise, the DWM filter employs the weighted median filter

to restore the noisy pixels. The weighted median filter can be formulated as

mi,j = median{ώs,t � yI(i+ s, j + t) : (s, t) ∈ Wm} (3.9)

where the operator � represents repetition operation, and

ώs,t =

 2, (s, t) ∈ Sli,j
1, otherwise

(3.10)

li,j = arg min
k
{σ(k)

i,j : k = 1 to 4} (3.11)

where σ
(k)
i,j is the standard deviation of gray-level values for all yI(i + s, j + t) with

(s, t) ∈ Sk(k =1 to 4). Finally, the output of the DWM filter can be calculated as

ui,j = αi,jy(i, j) + (1− αi,j)mi,j (3.12)

where

αi,j =

 0, ri,j >T

1, ri,j ≤T
(3.13)

In order to achieve the high accuracy of detection, the above method is applied

recursively and iteratively depending on the threshold value. The threshold is defined
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as

Tn+1 = 0.8 · Tn, 0 ≤ n ≤ Nmax,

T0 = 510
(3.14)

where T0 is the initial threshold, and Tn is the threshold in the nth step.

3.4 Interpolation

Image interpolation aims to achieve the high quality image with fast computation

time from single frame or multi-frame low resolution (LR) images based on the image

upsampling technologies. In this section, how to interpolate the image for single frame

using multi-surface fitting [86] will be mentioned. The main objectives are to improve

the reliability of each local function and calculate the weight λi of each local function

because the first one reduces the blurring effects and the second one minimizes the

fitting errors. The details of this process will be explained in the following subsections.

3.4.1 Local Functions Estimation

In order to obtain a target high resolution (HR) pixel pH , every local function Γi

can be estimated at each known low resolution (LR) pixel in the image. The function

Γi(x, y) centered at the LR pixel pi can be evaluated by using the following equation

Γi(x, y) = f(xi, yi) + αx(x− xi) + αy(y − yi)

+ αxx(x− xi)2 + αyy(y − yi)2.
(3.15)

where (xi, yi) is the coordinates of pi , f(xi, yi) is the known low resolution pixel

values at the coordinates xi and yi, and αx, αy, αxx, αyy are the parameters of the

local function Γi. These parameters {αx, αy, αxx, αyy} are computed by assigning the

values and the coordinates of the neighboring pixels to Eq. 3.15 and the following
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simultaneous equations are obtained.



f(xi, yi) + 2αx + 4αxx = f(xi + 2, yi)

f(xi, yi)− 2αx + 4αxx = f(xi − 2, yi)

f(xi, yi) + 2αy + 4αyy = f(xi, yi + 2)

f(xi, yi)− 2αy + 4αyy = f(xi, yi − 2)

(3.16)

They are obtained by solving Eq. 3.16 as follows.



αx = f(xi+2,yi)−f(xi−2,yi)
4

αy = f(xi,yi+2)−f(xi,yi−2)
4

αxx = f(xi+2,yi)+f(xi−2,yi)−2f(xi,yi)
8

αyy = f(xi,yi+2)+f(xi,yi−2)−2f(xi,yi)
8

(3.17)

The directional weights for horizontal and vertical factors are applied in each

local region to prevent the cause of fitting errors in the edge regions of the image by

modifying Eq. 3.15.

Γi(x, y) = f(xi, yi) + 2ωh,i{αx(x− xi) + αxx(x− xi)2}

+ 2ωv,i{αy(y − yi) + αyy(y − yi)2}.
(3.18)

where ωh,i and ωv,i are the directional weights for horizontal and vertical factors in

the local function Γi. The target HR pixels with diamond shape can be estimated

by interpolating the known four neighboring LR pixels which consists of one black

circle-shaped and three blue circle-shaped pixels. The remaining square-shaped HR

pixels are interpolated by the two neighboring LR pixels. The interpolation scheme

for calculating the local functions at every known LR pixel in the image is illustrated

in Fig. 3.2.

The interpolation quality may be degraded due to the large differences of direc-

tional weights in the edge and texture regions. Therefore, the directional weights for
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Figure 3.2: Interpolation scheme to calculate the local function Γi centered at pi.

vertical and horizontal factors can be respectively computed by using the following

equations.

dv,i = |f(xi, yi + 2) + f(xi, yi − 2)− 2f(xi, yi)|

+

∣∣∣∣∣∣∣∣∣
{f(xi, yi + 4)− f(xi, yi − 4)}

∗{f(xi + 2, yi + 4)− f(xi − 2, yi − 4)}

∗{f(xi − 2, yi + 4)− f(xi + 2, yi − 4)}

∣∣∣∣∣∣∣∣∣

1
3

(3.19)

dh,i = |f(xi + 2, yi) + f(xi − 2, yi)− 2f(xi, yi)|

+

∣∣∣∣∣∣∣∣∣
{f(xi + 4, yi)− f(xi − 4, yi)}

∗{f(xi + 4, yi + 2)− f(xi − 4, yi − 2)}

∗{f(xi + 4, yi − 2)− f(xi − 4, yi + 2)}

∣∣∣∣∣∣∣∣∣

1
3

(3.20)

ωv,i =
1

dv,i + ε1
, ωh,i =

1

dh,i + ε1
(3.21)

where ε1 is a constant parameter to control when both dv,i and dh,i are small values.

The fitting error between the center pixel and its nearest neighboring pixels depends

on the first terms of Eq. 3.19 and Eq. 3.20 because the 1-D second derivative at

the coordinate of the local functions (xi, yi) is represented as these terms. When

these terms are larger, the fitting error may be bigger. To distinguish the regions

between edges and textures, the second terms of Eq. 3.19 and Eq. 3.20 is utilized

because they represent the geometric means of the differences for three directions.

The three differences are almost the same in the edge regions and random in the
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texture regions. Hence, the difference of the geometric mean of these directions in

vertical and horizontal components is large at edge regions and almost zero at texture

regions. How much important the consideration of second term in each local region

of the image is visualized as shown in Fig. 3.3. The interpolated result without the

second term produces more smoothness in the edge region of the image. Eventually,

the reliable local functions Γi can be achieved depending upon the directional weights.

(a) LR image (b) With the second term (c) Without second term

Figure 3.3: Visual comparison on the effect of second term in the strong edge image

3.4.2 Weighted Mean Calculation

It is also necessary to calculate the weighted mean for obtaining the final estimation

of the target pixel pH as follows

f̂(pH) =

K∑
i=1

λiΓi(xH , yH)

K∑
i=1

λi

(3.22)

where f̂(pH) is the final estimation of HR target pixel pH at (xH , yH) , K is the

number of local functions and λi is the weight parameter for the estimation in a

local function Γ(xH , yH). The weight λi can be evaluated depending on the weighted

differences
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di = ωh,i{|f(xi + 2, yi)− f(xi, yi)|+ |f(xi − 2, yi)− f(xi, yi)|}

+ ωv,i{|f(xi, yi + 2)− f(xi, yi)|+ |f(xi, yi − 2)− f(xi, yi)|}
(3.23)

λi =
1

di + ε2
(3.24)

where di is the sum of the weighted differences between the center pixel pi and the

four neighbor known pixels, and ε2 is a constant parameter to avoid division by zero.

If the difference di is smaller, the fitting error of the local function Γi(x, y) will be

smaller.

3.5 Proposed Method

Many mixed-noise removal methods are typically detection-based methods that is

detecting the impulse noise pixels from the noisy image followed by removing the

noise. Although the mixed-noise removal method which is a combination of DWM and

BM3D filtering sufficiently suppresses the noise after conducting the whole process,

some image details are deteriorated because of the miss-detection of the image details

as RVIN in DWM filter. Therefore, the detection of the impulse noise plays an

important role in a mixed-noise removal method to restore the image details.

In order to handle this problem, a mixed-noise removal method is proposed in this

section. There are two steps in the proposed method. The first step is to estimate the

denoised image from the input noisy image. The second step is to obtain the restored

image by utilizing the pre-estimated image from the first step while preserving the

important image structures. The core of this proposed method is that the input

noisy image is firstly interpolated before the impulse noise detection in DWM filter

to preserve the image details. Due to the effect of interpolation, the upscaled DWM

output is also needed to down-sample. However, the remaining parts of the proposed

noise suppression method for mixed noise are the same as the conventional two-step

mixed noise removal method. The block diagram of the proposed method for removal
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Figure 3.4: Block diagram of the proposed method

of mixed-noise is shown in Fig. 3.4. The first step is highlighted in green block and

the second step is described in blue block to be clearly seen.

3.5.1 Interpolation in Mixed Noise Removal

The first step is composed of interpolation, DWM filter, downsampling and BM3D.

In this section, the effectiveness of interpolation for the removal of impulse noise and

the accuracy of impulse noise detection by using interpolation are considered. In

order to verify the first consideration, RVIN (impulse noise density levels 20 and 40

are used in this approach) is added to some natural images and the test images in

which the edges can be clearly seen to obtain the noisy image. Then, the reference

image and the noisy image are simultaneously up-sampled by using some interpolation

methods such as bicubic interpolation [87] and Interpolation for Single Frame using

Multi-surface Fitting (ISFMF) [86]. The impulse noise rate without interpolation is

the ratio of thresholding on the absolute difference between the reference image and

the noisy image to the total number of pixels in the reference image. Similarly, the

influence of impulse noise in the interpolated image can be formulated by the ratio

of thresholding on the absolute difference between the interpolated reference image

and the interpolated noisy image to the total number of pixels in the interpolated

reference image.

To be clearly seen, the comparisons of impulse noise rate between without inter-

polation and using interpolation techniques including bicubic [87] and ISFMF [86]
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are shown in Fig. 3.5 and Fig. 3.6, respectively for the test image with strong edge

and some natural images (for instance Lena image in this case). Experiments are

conducted on these images with different impulse noise density levels and different

threshold values to estimate the impulse noise rate. The solid line represents the

results for the impulse noise density level 20% and the dashed-line demonstrates the

impulse noise level 40%.

As can be observed, the impulse noise rate using ISFMF is the lowest among

them for both noise levels except for the high threshold values. This is because

bicubic interpolation technique considers the same filter in each local region and

does not consider the noise and local structure. In contrast, ISFMF considers the

different directional weights for vertical and horizontal factors in the local region. The

reliability of the local function can be improved by utilizing the different weights in

each local region. In the vertical direction, the large difference of the three pixel values

gives a small weight. In the horizontal direction, the small difference of the three pixels

generates a large weight. If the impulse noise is located in the vertical direction of

each local function, the weight of noise can be reduced. Therefore, interpolation using

ISFMF is more effective in removing the impulse noise than bicubic interpolation

because the rate of impulse noise can be significantly attenuated. When the threshold

value is gradually increased, the number of impulse noise is slightly decreased. By

inspiration to this concept, the mixed-noise image should be initially interpolated

before the detection of impulse noise to reduce the impulse noise rate. Hence, the

impulse noise can be efficiently removed as well as the image details can be well

preserved.

For the second consideration, some experiments are conducted to detect the ac-

curacy of impulse noise in some natural images (512× 512-sized) with different noise

levels. Table 3.1 presents the comparison of true-detected, miss-detected and un-

detected pixels in the noisy image between using DWM filter only and DWM filter

with interpolation. True-detected pixels are the correct estimation of impulse noise

pixel values that locate at the correct position. Miss-detected pixels define the es-

timation of noisy pixels although they are actually the original pixel values. The
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Figure 3.5: Reduction of impulse noise rate in 100× 100-sized Test image corrupted
by p = 20% and p = 40%
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Figure 3.6: Reduction of impulse noise rate in 512× 512-sized Lena image corrupted
by p = 20% and p = 40%
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Table 3.1: Accuracy of impulse noise detection due to the effect of interpolation
Image(512× 512) Impulse Noise level (p)

DWM Interpolation+DWM
True-detect Miss-detect Un-detect True-detect Miss-detect Un-detect

Lena
10 8060 0 18327 17035 283 9352
20 14093 0 38433 33240 536 19286
30 18681 1 60062 48925 1139 29818

Barbara
10 8093 14 18294 16625 3284 9762
20 14278 26 38248 32557 4287 19969
30 19134 40 59609 48229 5511 30514

Hill
10 8219 1 18168 16933 232 9454
20 14316 1 38210 33186 498 19340
30 18951 3 59792 48891 1129 29852

un-detected pixels are the estimated original pixel values that are indeed the noisy

pixels. As can be seen, the addition of interpolation to the DWM filter increases the

number of true-detected and miss-detected pixels in the detection of impulse noise al-

though the un-detected pixels are decreased. The accuracy of impulse noise detection

is significantly improved due to the increase in true-detected pixels. The increment

in miss-detection of impulse noise pixels tends to cause the low PSNR value in the

interpolated DWM output. But, the miss-detected pixels can be removed by BM3D

because they are actually Gaussian noisy pixels that are miss-detected as the impulse

noise. Besides, the number of miss-detected pixels are increased based on upscaling

the noisy image and the impulse noise density level because the random-valued im-

pulse noise is not so different from its neighborhood pixels. However, BM3D is the

Gaussian noise removal method and is affected by un-detected pixels. Therefore, the

higher PSNR values can be obtained in the first step of the proposed mixed noise

reduction method with interpolation than the conventional two-step mixed noise re-

moval method [85].

3.5.2 Impulse Noise Removal

After interpolation, the DWM filter mentioned in Sec. 3.3 is applied to the up-

sampled noisy image to detect and remove RVIN because it enhances the suppression

of impulse noise with high noise level. For DWM filter, the initial value T0 of the

threshold parameter T is selected to 500 and the number of iterations is 6 to avoid

over-smoothing image details based on PSNR value. The greater the threshold value,
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the more corrupted pixels and the larger the number of iterations. Moreover, the

neighboring window size of each pixel is set as 5 × 5 to prevent from decreasing the

quality of the reconstructed image in the proposed mixed noise removal method.

3.5.3 Down-sampling

Down-sampling is the reduction of image size by using an arbitrary factor in both

horizontal and vertical directions. Normally, the signal is needed to pre-filter before

down-sampling to avoid aliasing. In the proposed method, the output of DWM filter

should be down-sampled by using scaling factor to reconstruct the original image due

to the effect of interpolation process. The down-sampled image can be calculated by

using the following equation.

yd(m,n) = ý(K(m− 1) + 1, K(n− 1) + 1) (3.25)

where K is the downsampling factor.

3.5.4 Gaussian Noise Removal

BM3D filtering is used to remove the remaining noise because it is an effective Gaus-

sian noise removal method. Even though BM3D cannot successfully remove the mixed

noise, the remaining noise can be eliminated because of its robustness.

Although almost all noises can be removed in the first step, some important image

details are still lost. Despite setting the significant parameters to reduce the miss-

detection of the impulse noise pixels in the noisy image by observing the best PSNR

values, it is unable to preserve some image details because of the detection process of

DWM filter. However, it is very difficult to detect most corrupted pixels without miss-

detection of image details in the removal of RVIN. The precision of detection strategy

may be decreased because the DWM filter cannot remarkably detect the mixed noise

corrupted by AWGN. Therefore, this problem will be solved in the second step.
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3.5.5 Re-detect Process and BM3D

The second step is a combination of re-detect process and BM3D. After conducting

some experiments on several test images with different Gaussian and impulse noise

levels in the first step, some important image structures are still eliminated although

the mixed-noise can be efficiently suppressed. Hence, an effective detection method

for RVIN is addressed to preserve the image details degraded in the first step. To do

this, the evaluation error e(i, j) which is the absolute difference between the input

noisy image and the output of the first step is firstly defined as

e(i, j) = |ỹ(i, j)− y(i, j)|. (3.26)

Whether the current pixel is a noisy or noise-free pixel can then be identified by

thresholding the error e(i, j). Furthermore, the noisy pixel is replaced with the pixels

in ỹ. Therefore, a pixel value ŷ
′
(i, j) in the output ŷ

′
of this process is indicated as

follows.

ŷ
′
(i, j) =

 ỹ(i, j) e(i, j) > τ

y(i, j) otherwise
(3.27)

where τ is the threshold parameter. The threshold parameter τ is set to detect

the significant noisy pixels which BM3D cannot remove through many experimental

tests because it plays an important role in the detection process. The parameter τ is

chosen three times of standard deviation of Gaussian noise according to the conducted

experimental results. After removing the impulse noise accurately, BM3D is again

exploited for the removal of remaining noise from ŷ
′

in the same manner as the first

step and the reconstructed output image is obtained eventually.

3.6 Experimental Results

In order to evaluate the performance of mixed-noise removal method with interpola-

tion, the experiments are conducted on 512 × 512-sized eleven natural images. The

peak signal-to-noise ratio (PSNR) values are used in this implementation as a quanti-
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tative metric. All the experiments are conducted in MATLAB (R2018b) environment

on 2.2 GHz Intel Core i7 processor with 8GB 1600 MHz DDR3 memory.

3.6.1 Parameters Setting

The basic parameters of the proposed method are set as follows: the upscaling factor

M = 2 to upsample the input noisy image for image enlargement; the specified

window size is 5× 5 to calculate the four direction indexes in DWM filter; the patch

size is set as 9×9; the patch step size is fixed as 3; the neighborhood window size is set

as 39× 39 in both steps of BM3D filtering. The maximum number of patches are 16

in hard-thresholding and 32 in wiener-filtering, respectively. The input noisy image

is symmetrically padded depending on the patch size to handle the image border in

this consideration. Simulations are carried out on 11 widely used images corrupted

by Gaussian coupled with random-valued impulse noise with σ = 5, σ = 10, σ = 15

σ = 20, σ = 25 and p = 5%, p = 10%, p = 15% , p = 20% , p = 25%, respectively.

3.6.2 Quantitative and Visual Evaluation

Table 3.2, Table 3.3 ,Table 3.4, Table 3.5 and Table 3.6 describe the comparison of

quantitative measurements of the mixed noise removal method using ISFMF [86] in

the interpolation process with some denoising methods including BM3D [24], DWM

filter [64], two-step mixed noise removal method (TSMNR) [85], and the replace-

ment of bicubic interpolation [87] in the proposed method on 11 extensively used

natural images corrupted by Gaussian noise with σ = 5, 10, 15, 20, 25 and RVIN with

noise level p = 5%, 10%, 15%, 20%, 25% in terms of PSNR, respectively. For more

convenient comparison, the best values are highlighted in bold. According to the

experimental results, the PSNR values of DWM filter [64] are gradually decreased

when the impulse noise level is increased. Although BM3D [24] has a weakness in

removing the impulse noise, the presence of Gaussian noise in the mixed noise image

can be efficiently attenuated. The PSNR values of BM3D will be efficiently improved

if Gaussian noise level is maximized.

45



Table 3.2: Restoration results for mixed noise removal in terms of PSNR [dB] (σ = 5)

Images(512× 512) Airplane Barbara Boats Bridge Goldhill Houses Lena Mandrill Milkdrop Pepper Sailboat Avg.

Noise Level p = 5%
BM3D [24] 21.17 22.16 22.59 21.90 22.39 21.37 22.77 22.58 22.21 22.22 21.38 25.92
DWM [64] 30.56 24.07 28.02 24.92 29.55 21.93 31.93 22.23 36.91 32.77 27.88 28.25

TSMNR [85] 31.19 24.29 28.47 25.10 30.27 22.18 32.75 22.21 38.05 33.48 28.31 28.75
Proposed(Bicubic) 34.28 26.68 31.40 27.79 32.39 25.76 34.96 24.54 37.93 34.53 31.03 30.98
Proposed(ISFMF) 35.71 28.59 32.79 28.22 33.31 27.54 36.19 25.70 38.52 35.29 32.04 32.17

Noise Level p = 10%
BM3D [24] 18.13 18.96 19.42 18.83 19.18 18.37 19.39 19.59 18.85 19.01 18.32 18.91
DWM [64] 30.24 23.94 27.79 24.75 29.37 21.74 31.61 22.12 36.18 32.39 27.70 27.99

TSMNR [85] 30.91 24.19 28.26 24.95 30.09 22.01 32.47 22.12 37.57 33.16 28.15 28.53
Proposed(Bicubic) 32.48 26.10 30.33 26.48 31.38 24.74 33.55 24.09 35.64 33.17 29.78 29.79
Proposed(ISFMF) 34.43 27.74 31.87 27.53 32.60 26.37 35.14 25.14 37.42 34.49 31.16 31.88

Noise Level p = 15%
BM3D [24] 16.36 17.16 17.61 17.07 17.41 16.64 17.59 17.85 17.05 17.23 16.57 17.14
DWM [64] 29.86 23.79 27.50 24.54 29.16 21.48 31.26 22.00 35.34 31.88 27.48 27.66

TSMNR [85] 30.57 24.05 27.98 24.76 29.89 21.77 32.18 22.03 36.85 32.71 27.96 28.25
Proposed(Bicubic) 29.82 25.27 28.87 25.49 29.82 23.62 31.59 23.57 32.36 30.94 28.05 28.13
Proposed(ISFMF) 32.54 26.79 30.68 26.67 31.53 25.15 33.72 24.54 35.52 32.97 29.86 29.99

Noise Level p = 20%
BM3D [24] 15.08 15.91 16.35 15.81 16.13 15.39 16.32 16.59 15.79 15.94 15.30 15.87
DWM [64] 29.39 23.63 27.19 24.27 28.88 21.15 30.79 21.87 34.29 31.28 27.18 27.27

TSMNR [85] 27.02 23.91 27.69 24.52 29.64 21.44 31.78 21.93 35.83 32.19 27.69 27.89
Proposed(Bicubic) 30.14 24.28 27.24 24.37 27.89 23.62 29.34 22.99 20.09 28.46 26.03 26.29
Proposed(ISFMF) 29.91 25.74 29.12 25.61 29.86 23.86 31.68 23.88 32.27 30.86 28.05 28.26

Noise Level p = 25%
BM3D [24] 14.08 14.91 15.37 14.82 15.14 14.39 15.32 15.61 14.81 14.95 14.32 14.89
DWM [64] 28.88 23.45 26.84 23.96 28.54 20.79 32.28 21.72 33.26 30.58 26.81 26.83

TSMNR [85] 29.69 23.76 27.36 24.23 29.33 21.08 31.30 21.81 34.78 31.56 27.36 27.48
Proposed(Bicubic) 24.46 23.14 25.63 23.13 25.93 21.31 27.10 22.34 26.46 26.09 24.09 24.52
Proposed(ISFMF) 27.01 24.51 27.33 24.31 27.79 22.55 29.25 23.13 29.09 28.23 25.99 26.29

The use of bicubic interpolation in the proposed method gives larger PSNR values

than the other conventional mixed noise reduction methods , especially in the images

corrupted by the impulse noise levels less than 25%. However, the PSNR values of the

mixed noise elimination method using ISFMF interpolation technique are the highest

for almost all noise levels. In particular, the proposed mixed noise removal method

is quite effective for the images which are rich in regular and repetitive structures

such as Barbara, Bridge, Houses and Mandrill images in the case of Gaussian plus

random-valued impulse noise with σ = 25 and p = 25%. The average PSNR values

of the proposed method using ISFMF is lower than the two-step conventional mixed

noise removal method at low Gaussian noise levels σ = 5 and σ = 10 with strong

impulse noise level p = 25% because the number of miss-detected pixels are highly

increased. When the Gaussian noise level is slightly increased, the number of miss-

detected pixels are decreased and the number of un-detected pixels are increased.

The un-detected pixels can be successfully removed by BM3D. Moreover, DWM fails
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Table 3.3: Restoration results for mixed noise removal in terms of PSNR [dB] (σ = 10)

Images(512× 512) Airplane Barbara Boats Bridge Goldhill Houses Lena Mandrill Milkdrop Pepper Sailboat Avg.

Noise Level p = 5%
BM3D [24] 22.63 23.99 24.55 22.79 24.41 22.23 25.27 23.43 24.47 24.37 22.59 23.70
DWM [64] 29.92 23.92 27.65 24.71 29.03 21.86 31.09 22.14 34.97 31.82 27.53 27.69

TSMNR [85] 31.26 24.98 28.69 25.42 30.45 22.71 32.87 22.45 36.89 33.03 28.45 28.84
Proposed(Bicubic) 33.64 27.55 30.99 27.06 31.77 26.26 34.38 24.57 36.92 33.75 30.55 30.68
Proposed(ISFMF) 34.24 29.42 31.74 27.55 32.09 27.67 34.82 25.49 37.07 34.02 30.99 31.37

Noise Level p = 10%
BM3D [24] 18.63 19.62 20.24 19.21 19.91 18.69 20.39 20.04 19.79 19.81 18.76 19.55
DWM [64] 29.59 23.79 27.42 24.53 28.84 21.65 30.77 22.03 34.34 31.44 27.32 27.43

TSMNR [85] 30.95 24.81 28.46 25.22 30.22 22.50 32.57 22.34 36.63 32.77 28.27 28.61
Proposed(Bicubic) 32.81 26.99 30.37 26.54 31.31 25.42 33.69 24.18 36.11 33.18 29.94 30.05
Proposed(ISFMF) 33.61 28.59 31.19 27.11 31.73 26.79 34.29 25.03 36.61 33.64 30.52 30.83

Noise Level p = 15%
BM3D [24] 16.59 17.46 17.96 17.28 17.73 16.82 17.99 18.09 17.43 17.57 16.79 17.43
DWM [64] 29.18 23.63 27.13 24.32 28.61 21.38 30.41 21.90 33.60 30.94 27.07 27.11

TSMNR [85] 30.62 24.61 28.14 24.99 29.97 22.21 32.26 22.22 36.22 32.41 28.08 28.34
Proposed(Bicubic) 31.48 26.31 29.54 25.88 30.60 24.46 32.72 23.76 34.55 32.07 29.03 29.13
Proposed(ISFMF) 32.67 27.70 30.56 26.57 31.25 25.78 33.60 24.55 35.86 32.94 29.89 30.12

Noise Level p = 20%
BM3D [24] 15.24 16.09 16.57 15.97 16.34 15.52 16.56 16.77 16.02 16.16 15.45 16.06
DWM [64] 28.69 23.46 26.81 24.05 28.31 21.05 29.95 21.77 32.71 30.35 26.75 26.72

TSMNR [85] 30.21 24.42 27.84 24.72 29.70 21.85 31.87 22.08 35.52 31.99 27.82 28.00
Proposed(Bicubic) 29.37 25.46 28.35 25.02 29.39 23.39 31.39 23.28 31.79 30.34 27.59 27.74
Proposed(ISFMF) 31.13 26.77 29.59 25.85 30.39 24.62 32.49 24.01 34.03 31.78 28.81 29.04

Noise Level p = 25%
BM3D [24] 14.20 15.05 15.54 14.95 15.30 14.51 15.50 15.75 14.98 15.11 14.45 15.03
DWM [64] 28.13 23.27 26.45 23.73 27.94 20.69 29.43 21.61 31.76 29.67 26.34 26.28

TSMNR [85] 29.78 24.20 27.52 24.42 29.38 21.45 31.42 21.92 34.64 31.45 27.47 27.61
Proposed(Bicubic) 26.73 24.35 26.95 23.95 27.66 22.18 29.23 22.73 28.90 28.10 25.78 26.05
Proposed(ISFMF) 28.79 25.65 28.28 24.86 29.03 23.34 30.75 23.39 31.23 29.78 27.25 27.49

to suppress the miss-detected pixels affected by Gaussian noise level. Therefore, the

performance evaluation of the proposed method is higher at strong noise levels σ = 15,

σ = 20 and σ = 25 than the low noise levels. However, the average values for all

test images in the proposed method are superior to the other competitive denoising

methods.

Table 3.7 and Table 3.8 compare the number of un-detected and miss-detected

pixels in Barbara image and Lena image degraded by different noise levels using

the proposed method with the conventional two-step mixed noise removal method

(TSMNR) [85] to detect the presence of impulse noise in the noisy image. The

number of miss-detected and un-detected pixels are estimated between the input

noisy image and the re-detect process. Un-detect means the estimation of the original

pixel values but they are actually noisy. Miss-detected pixels are the estimated noisy

pixels although they are indeed the original pixel values. As can be seen in Table

3.7 and Table 3.8, the number of miss-detected pixels in both images are significantly
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Table 3.4: Restoration results for mixed noise removal in terms of PSNR [dB] (σ = 15)

Images(512× 512) Airplane Barbara Boats Bridge Goldhill Houses Lena Mandrill Milkdrop Pepper Sailboat Avg.

Noise Level p = 5%
BM3D [24] 25.33 26.72 26.75 24.19 27.15 23.77 28.33 24.36 27.85 27.40 24.83 23.81
DWM [64] 29.14 23.71 27.16 24.42 28.39 21.70 30.11 21.99 33.05 30.72 27.06 27.04

TSMNR [85] 31.09 26.47 28.74 25.50 30.16 23.31 32.51 22.89 35.92 32.43 28.38 28.85
Proposed(Bicubic) 32.56 28.57 30.28 26.48 30.86 26.38 33.32 24.59 35.96 32.88 29.71 30.15
Proposed(ISFMF) 32.84 29.88 30.66 26.72 30.98 27.26 33.49 25.17 36.01 33.04 29.91 30.54

Noise Level p = 10%
BM3D [24] 20.16 21.26 22.08 20.24 21.81 19.58 22.65 21.12 21.85 21.88 20.06 21.15
DWM [64] 28.78 23.57 26.92 24.24 28.18 21.47 29.77 21.88 32.48 30.33 26.81 26.77

TSMNR [85] 30.75 26.17 28.47 25.28 29.91 23.04 32.21 22.72 35.64 32.19 28.16 28.59
Proposed(Bicubic) 32.02 28.01 29.82 26.11 30.53 25.68 32.86 24.24 35.48 32.49 29.30 29.68
Proposed(ISFMF) 32.38 29.13 30.25 26.38 30.69 26.58 33.09 24.77 35.65 32.73 29.57 30.11

Noise Level p = 15%
BM3D [24] 17.23 18.28 19.02 17.86 18.69 17.29 19.22 18.78 18.57 18.61 17.39 18.27
DWM [64] 28.34 23.41 26.62 24.01 27.92 21.20 29.39 21.75 31.82 29.83 26.53 26.44

TSMNR [85] 30.36 25.84 28.16 25.04 29.66 22.69 31.89 22.53 35.26 31.85 27.94 28.29
Proposed(Bicubic) 31.22 27.31 29.27 25.65 30.09 24.91 32.24 23.86 34.61 31.82 28.76 29.07
Proposed(ISFMF) 31.74 28.29 29.80 25.99 30.35 25.80 32.62 24.36 35.11 32.21 29.15 29.58

Noise Level p = 20%
BM3D [24] 15.59 16.57 17.18 16.34 16.89 15.83 17.21 17.21 16.62 16.72 15.82 16.54
DWM [64] 27.82 23.24 26.29 23.73 27.59 20.87 28.93 21.61 31.02 29.24 26.17 26.05

TSMNR [85] 29.99 25.51 27.80 24.74 29.38 22.29 31.50 22.35 34.78 31.48 27.64 27.95
Proposed(Bicubic) 30.03 26.52 28.49 25.05 29.37 23.98 31.34 23.42 32.99 30.75 27.88 28.17
Proposed(ISFMF) 30.85 27.44 29.16 25.49 29.78 24.84 31.91 23.89 34.04 31.47 28.45 28.85

Noise Level p = 25%
BM3D [24] 14.46 15.39 15.95 15.23 15.68 14.75 15.93 16.08 15.37 15.48 14.72 15.37
DWM [64] 27.21 23.02 25.91 23.40 27.19 20.51 28.41 21.45 30.15 28.56 25.71 25.59

TSMNR [85] 29.53 25.14 27.46 24.42 29.05 21.84 31.08 22.14 34.07 30.99 27.29 27.55
Proposed(Bicubic) 28.17 25.49 27.49 24.27 28.31 22.93 30.01 22.93 30.67 29.12 26.63 26.91
Proposed(ISFMF) 29.36 26.45 28.29 24.81 28.96 23.79 30.79 23.38 32.15 30.13 27.43 27.78

decreased by 50% in the proposed mixed noise reduction method in comparison with

TSMNR method. When the number of miss-detected pixels are smaller, the image

details are clearer. Therefore, the proposed method with interpolation approach is

very effective to preserve some fine details in the image. According to the increase in

Gaussian noise level, the number of miss-detected pixels are decreased and the number

of un-detected pixels are efficiently increased. Although the number of un-detected

pixels are increased, BM3D can remove the remaining noise.

Figure. 3.7 shows the enlarged parts of the denoised Airplane image corrupted

by mixed Gaussian-impulse noise with σ = 15 and p = 20% to compare the visual

quality. The conventional two-step mixed noise removal method blurs the image edges

and some image details are lost due to over-smoothing. In contrast, the proposed

method can remove the noise drastically as well as preserve most of the image details;

especially the numerical value written on the plane. The restoration results of Barbara

image affected by the mixture of Gaussian and impulse noise with σ = 25 and p = 25%

48



Table 3.5: Restoration results for mixed noise removal in terms of PSNR [dB] (σ = 20)

Images(512× 512) Airplane Barbara Boats Bridge Goldhill Houses Lena Mandrill Milkdrop Pepper Sailboat Avg.

Noise Level p = 5%
BM3D [24] 27.70 28.31 27.82 24.86 28.39 24.80 29.90 24.52 30.38 29.19 26.38 27.48
DWM [64] 28.29 23.45 26.59 24.08 27.69 21.48 29.12 21.81 31.36 29.62 26.51 26.36

TSMNR [85] 30.69 27.69 28.55 25.28 29.68 23.75 31.86 23.20 35.06 31.84 28.12 28.70
Proposed(Bicubic) 31.55 29.07 29.49 25.79 29.99 26.08 32.32 24.36 35.09 32.09 28.89 29.52
Proposed(ISFMF) 31.68 29.75 29.70 25.92 30.06 26.63 32.40 24.65 35.11 32.18 28.99 29.74

Noise Level p = 10%
BM3D [24] 22.37 23.17 23.72 21.41 23.90 20.74 24.96 22.11 23.94 23.98 21.78 22.92
DWM [64] 27.92 23.31 26.35 23.89 27.46 21.25 28.77 21.69 30.83 29.21 26.23 26.08

TSMNR [85] 30.37 27.32 28.26 25.04 29.41 23.43 31.56 22.99 34.77 31.56 27.86 28.42
Proposed(Bicubic) 31.07 28.50 29.12 25.51 29.69 25.50 31.91 24.01 34.66 31.73 28.53 29.11
Proposed(ISFMF) 31.27 29.11 29.35 25.64 29.78 26.07 32.03 24.31 34.75 31.87 28.67 29.35

Noise Level p = 15%
BM3D [24] 18.37 19.54 20.54 18.79 20.18 18.09 20.97 19.80 20.14 20.24 18.47 19.56
DWM [64] 27.45 23.15 26.04 23.65 27.19 20.97 28.38 21.56 30.21 28.71 25.92 25.75

TSMNR [85] 29.95 26.86 27.92 24.79 29.13 23.05 31.20 22.76 34.39 31.19 27.61 28.08
Proposed(Bicubic) 30.45 27.81 28.65 25.14 29.33 24.85 31.40 23.67 33.98 31.17 28.08 28.59
Proposed(ISFMF) 30.72 28.38 28.94 25.33 29.46 25.43 31.60 23.94 34.23 31.40 28.29 28.88

Noise Level p = 20%
BM3D [24] 16.27 17.42 18.27 17.03 17.87 16.40 18.42 18.00 17.71 17.74 16.49 17.42
DWM [64] 26.90 22.96 25.69 23.36 26.84 20.64 27.90 21.41 29.49 28.13 25.51 25.35

TSMNR [85] 29.54 26.43 27.54 24.51 28.85 22.60 30.82 22.52 33.87 30.79 27.27 27.70
Proposed(Bicubic) 29.59 27.05 28.04 24.69 28.78 24.07 30.68 23.28 32.82 30.38 27.42 27.89
Proposed(ISFMF) 30.02 27.64 28.39 24.93 28.99 24.63 30.99 23.55 33.36 30.77 27.74 28.27

Noise Level p = 25%
BM3D [24] 14.95 16.00 16.70 15.76 16.38 15.19 16.73 16.69 16.09 16.17 15.22 15.99
DWM [64] 26.26 22.72 25.29 23.02 26.40 20.28 27.38 21.24 28.66 27.46 25.02 24.89

TSMNR [85] 29.07 25.93 27.18 24.19 28.49 22.12 30.40 22.27 33.16 30.31 26.87 27.27
Proposed(Bicubic) 28.28 26.11 27.29 24.11 28.02 23.17 29.73 22.85 31.10 29.17 26.52 26.94
Proposed(ISFMF) 28.92 26.71 27.74 24.42 28.36 23.74 30.18 23.11 31.91 29.75 26.95 27.44

are illustrated in Fig. 3.8. The image details such as the stripes and thin lines on

the scarf are failed to restore in TSMNR method because of over-filtering. But, not

only the mixed noises are successfully suppressed but also more accurate textures

are reconstructed in the proposed method. The denoised fragments of Boat image

contaminated by AWNG and RVIN mixed noise (σ = 20 and p = 15%) are depicted

in Fig. 3.9. Some important image features such as text written on the front part of

the boat and tiny ropes can be well preserved in the proposed method.

The zoom version of denoised results in Goldhill image degraded by σ = 20 and

p = 10% , and Houses image corrupted by AWGN and RVIN mixed noise with

σ = 10 and p = 10% are shown in Fig. 3.10 and Fig. 3.11, respectively. The more

accurate brick textures in both images and text written on the wall of house in Houses

image can be clearly seen in the proposed mixed noise removal method with ISFMF

interpolation approach. The restored results of Lena image disturbed by AWGN +

RVIN (σ = 25 and p = 20%) and Pepper image contaminated by mixed GN and RVIN
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Table 3.6: Restoration results for mixed noise removal in terms of PSNR [dB] (σ = 25)

Images(512× 512) Airplane Barbara Boats Bridge Goldhill Houses Lena Mandrill Milkdrop Pepper Sailboat Avg.

Noise Level p = 5%
BM3D [24] 28.71 28.55 27.89 24.75 28.44 25.01 30.08 24.13 31.27 29.59 26.77 27.75
DWM [64] 27.45 23.18 25.99 23.72 27.02 21.22 28.16 21.59 29.89 28.56 25.93 25.70

TSMNR [85] 30.19 28.26 28.19 24.89 29.09 23.99 31.18 23.24 34.27 31.23 27.68 28.38
Proposed(Bicubic) 30.68 28.97 28.79 25.19 29.28 25.68 31.43 23.95 34.29 31.37 28.14 28.89
Proposed(ISFMF) 30.75 29.38 28.89 25.25 29.31 26.01 31.47 24.09 34.32 31.43 28.21 29.01

Noise Level p = 10%
BM3D [24] 23.94 24.37 24.69 22.16 25.07 21.63 26.31 22.49 25.44 25.29 23.01 24.04
DWM [64] 27.07 23.03 25.75 23.51 26.75 20.98 27.81 21.47 29.41 28.15 25.63 25.41

TSMNR [85] 29.82 27.76 27.88 24.67 28.82 23.64 30.84 22.99 33.91 30.91 27.39 28.06
Proposed(Bicubic) 30.21 28.39 28.42 24.92 28.94 25.16 31.01 23.64 33.82 30.99 27.79 28.48
Proposed(ISFMF) 30.22 28.77 28.55 25.00 29.00 25.50 31.09 23.78 33.88 31.08 27.88 28.62

Noise Level p = 15%
BM3D [24] 19.68 20.76 21.74 19.74 21.53 18.98 22.48 20.64 21.51 21.64 19.64 20.76
DWM [64] 26.58 22.85 25.44 23.26 26.45 20.70 27.41 21.34 28.82 27.66 25.29 25.07

TSMNR [85] 29.37 27.21 27.55 24.42 28.52 23.24 30.43 22.76 33.49 30.53 27.11 27.69
Proposed(Bicubic) 29.59 27.68 27.98 24.61 28.58 24.56 30.52 23.31 33.14 30.43 27.36 27.98
Proposed(ISFMF) 29.77 28.03 28.17 24.71 28.66 24.92 30.65 23.47 33.29 30.58 27.50 28.16

Noise Level p = 20%
BM3D [24] 17.23 18.47 19.48 17.91 19.05 17.17 19.74 18.92 18.92 18.95 17.43 18.48
DWM [64] 26.01 22.64 25.07 22.95 26.07 20.38 26.94 21.18 28.14 27.09 24.85 24.67

TSMNR [85] 28.91 26.69 27.15 24.13 28.21 22.76 30.03 22.49 32.87 30.08 26.72 27.28
Proposed(Bicubic) 28.84 26.96 27.42 24.21 28.08 23.83 29.87 22.96 32.05 29.69 26.77 27.34
Proposed(ISFMF) 29.11 27.32 27.66 24.36 28.22 24.21 30.06 23.10 32.40 29.96 26.97 27.58

Noise Level p = 25%
BM3D [24] 15.71 16.87 17.73 16.54 17.37 15.85 17.84 17.55 17.08 17.16 15.99 16.88
DWM [64] 25.34 22.38 24.67 22.60 25.61 20.02 26.41 21.01 27.36 26.42 24.33 24.19

TSMNR [85] 28.42 26.08 26.74 23.83 27.83 22.24 29.56 22.21 32.11 29.53 26.31 26.80
Proposed(Bicubic) 27.79 26.05 26.75 23.72 27.42 23.03 29.05 22.59 30.63 28.67 25.98 26.52
Proposed(ISFMF) 28.18 26.42 27.03 23.91 27.64 23.41 29.32 22.72 31.10 29.02 26.27 26.82

with σ = 15 and p = 15% are illustrated in Fig. 3.12 and Fig. 3.13, respectively.

Not only almost all mixed noises in both images are efficiently eliminated but also

the features in the smooth regions of Lena, and the image details in both edge and

smooth regions of Pepper image are well restored in accordance with the conducted

visual assessments.

Table 3.7: The number of un-detected and miss-detected pixels in Barbara image
corrupted by mixed noise composed of AWGN and RVIN

[pix] TSMNR [85] Proposed Method
noise Un-detect Miss-detect Un-detect Miss-detect

σ = 5, p = 20% 6819 43029 8076 29983
σ = 5, p = 25% 8545 41060 10468 31847
σ = 15, p = 20% 18808 11095 19868 6056
σ = 15, p = 25% 23626 10547 25354 6606
σ = 25, p = 20% 29697 3583 30650 2276
σ = 25, p = 25% 37457 3469 38941 2407

The enlarged fragments of Bridge image degraded by mixed Gaussian and impulse

noise (σ = 10 and p = 25%) and Mandrill image contaminated by a mixture of GN
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Table 3.8: The number of un-detected and miss-detected pixels in Lena image cor-
rupted by mixed noise composed of AWGN and RVIN

[pix] TSMNR [85] Proposed Method
noise Un-detect Miss-detect Un-detect Miss-detect

σ = 5, p = 20% 6319 13300 7164 9862
σ = 5, p = 25% 7945 13222 9380 12593
σ = 15, p = 20% 18649 2260 19488 1437
σ = 15, p = 25% 23427 2271 24806 1777
σ = 25, p = 20% 29967 1139 30841 807
σ = 25, p = 25% 37809 1104 39042 847

σ = 5 and RVIN p = 20% are shown in Fig. 3.14 and Fig. 3.15, respectively.

It can be observed that some impulse noise cannot be sufficiently reduced in these

figures when the noise density level is strong. However, BM3D can remove Gaussian

noise efficiently with high noise intensity level. In addition, the highlighted regions of

Milkdrop image contaminated by σ = 25 and p = 5% ,and Sailboat image corrupted

by Gaussian noise σ = 20 and RVIN p = 25% are demonstrated in Fig. 3.16 and

Fig. 3.17. It is obvious that some image details in both images can be accurately

preserved except for poor in removing impulse noise in Sailboat image.

Fig. 3.7(c), Fig. 3.8(c), Fig. 3.9(c), Fig. 3.10(c), Fig. 3.11(c), Fig. 3.12(c),

Fig. 3.13(c), Fig. 3.14(c), Fig. 3.15(c), Fig. 3.16(c) and Fig. 3.17(c) illustrate

the reconstructed results by using DWM filter. DWM filter cannot remove Gaussian

noise although RVIN can be effectively eliminated in this filter. Similarly, Fig. 3.7(d),

Fig. 3.8(d), Fig. 3.9(d), Fig. 3.10(d), Fig. 3.11(d), Fig. 3.12(d), Fig. 3.13(d), Fig.

3.14(d), Fig. 3.15(d), Fig. 3.16(d) and Fig. 3.17(d) show the denoising results by

using BM3D filtering. BM3D also cannot remove the mixed noise due to the effect

of RVIN. Moreover, the visual representations of mixed noise removal method using

bicubic interpolation [87] instead of ISFMF [86] are shown in Fig. 3.7(f), Fig. 3.8(f),

Fig. 3.9(f), Fig. 3.10(f), Fig. 3.11(f), Fig. 3.12(f), Fig. 3.13(f), Fig. 3.14(f),

Fig. 3.15(f), Fig. 3.16(f) and Fig. 3.17(f), respectively. The visual measurements

of the proposed method using bicubic are not so different from the method with

ISFMF. Consequently, after restoring the mixed noise image corrupted with different

values of standard variance and impulse noise level by utilizing the proposed method

throughout many experiments, it can be seen that the image details in the edge and
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.7: Restoration results of Airplane corrupted by mixed Gaussian and random-
valued impulse noise with σ = 15 and p = 20%

texture regions can be remarkably preserved as well as the PSNR performance is

significantly increased.

52



(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.8: Restoration results of Barbara corrupted by mixed Gaussian and random-
valued impulse noise with σ = 25 and p = 25%

3.7 Summary

In this Chapter, a mixed-noise removal method has been proposed to remove the

combination of AWGN and RVIN with interpolation technique. There are two steps

in the proposed denoising method for mixed-noise. The first step is the integration of

interpolation, DWM filter, down-sampling and BM3D filtering to denoise the noisy
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.9: Restoration results of Boat corrupted by mixed Gaussian and random-
valued impulse noise with σ = 20 and p = 15%

image. The second step is composed of re-detect process and BM3D to reconstruct the

image. The main contribution of the proposed method is that the input noisy image

is initially interpolated before the detection of impulse noise in DWM filter by using

multi-surface fitting for single frame in order to preserve the distorted image details.

Interpolating the input noisy image not only reduces the impulse noise rate but also

improves the accuracy of impulse noise detection. Therefore, it is very effective for

54



(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.10: Restoration results of Goldhill corrupted by mixed Gaussian and random-
valued impulse noise with σ = 20 and p = 10%

the removal of RVIN in the proposed method. The output of interpolated DWM

filter is down-sampled due to the effect of interpolation. Although almost all noises

can be sufficiently reduced in the first step, some image details are still lost. Hence,

the detection and removal method of RVIN based on thresholding on the error value

between the input noisy image and the pre-estimated image from the first step is

applied in the second step to tackle this issue. After the removal of RVIN, BM3D is
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.11: Restoration results of Houses corrupted by mixed Gaussian and random-
valued impulse noise with σ = 10 and p = 10%

exploited to eliminate the remaining noise. According to the experimental results, the

proposed method gives higher PSNR values and more excellent visual quality than

the conventional noise suppression methods.
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.12: Restoration results of Lena corrupted by mixed Gaussian and random-
valued impulse noise with σ = 25 and p = 20%

57



(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.13: Restoration results of Pepper corrupted by mixed Gaussian and random-
valued impulse noise with σ = 15 and p = 15%
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.14: Restoration results of Bridge corrupted by mixed Gaussian and random-
valued impulse noise with σ = 10 and p = 25%
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.15: Restoration results of Mandrill corrupted by mixed Gaussian and
random-valued impulse noise with σ = 5 and p = 20%
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.16: Restoration results of Milkdrop corrupted by mixed Gaussian and
random-valued impulse noise with σ = 25 and p = 5%
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(a) Original (b) Noisy (c) DWM filter [64]

(d) BM3D [24] (e) TSMNR [85]

(f) Proposed(Bicubic) (g) Proposed(ISFMF)

Figure 3.17: Restoration results of Sailboat corrupted by mixed Gaussian and random-
valued impulse noise with σ = 20 and p = 25%
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Chapter 4

Nonlocal Based Image Denoising

with RAISR

4.1 Introduction

Image denoising aims to recover the efficient original image x from its noisy measure-

ment y = x+n, where y is the observed noisy image, x is the latent clean image and

n is defined by Additive White Gaussian Noise (AWGN) with zero mean and variance

σ2
n. Due to the influence of environment, different transmission channels and other

inevitable factors, the images are contaminated by noise in many subsequent image

processing tasks, such as video processing, image analysis and tracking. Therefore,

image denoising has become not only an indispensible step for many vision applica-

tions but also an ideal test bed for investigating statistical image modeling techniques

since a few decades.

Many researchers have been trying to remove the noise and preserve some impor-

tant features of the image such as fine details, textures and singularities by applying

image denoising methods based on probability theory, statistics, partial differential

equations, linear and non-linear filtering, nonlocal self-similarity (NSS), sparsity, and

low-rank approximations for a few years. Although the mean filter or averaging fil-

ter [88] which is a linear filter has been adopted for the removal of Gaussian noise, the

images are over-smoothed with high noise. In addition, Gaussian noise can also be

suppressed by exploiting non-linear filters such as median filtering [53, 88], weighted

median filtering [89] and the well-known edge preserving filter called bilateral filter [3].

All these filters are not robust to high level noise because they are basically performed

locally i.e., the intensity value of each pixel is replaced by a weighted average of in-
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tensity values from its neighborhood pixels. Hence, they also tend to blurring effect

to the edge regions of the image.

In contrast, non-local means (NLM) [12], a pioneer of nonlocal-based approach

significantly enhances the image denoising performance. This is because its basic

idea is to build a point-wise estimation of the image, where each pixel is obtained

by weighted averaging of the pixel centered at the target patch and the pixels cen-

tered at the similar patches at different locations in the image. Block Matching and

3D filtering (BM3D) [24] has recently become a benchmark Gaussian noise removal

method as the extension of NLM approach in the transform domain. The principal

idea of BM3D is stacking the similar patches to obtain 3-D groups by block match-

ing. Hard-thresholding and wiener-filtering are employed to attenuate the noise from

the 3-D transformed blocks in the first and second step, respectively. In Weighted

Nuclear Norm Minimization (WNNM) [30], the vectorized similar patches that are

typically stacked by block matching are transformed into matrices and the noise can

be suppressed based on low-rank approximations. As these two methods are mainly

based on searching the patches at different locations similar to the reference patch

across the image, the performance is efficiently increased.

Similarly to image denoising, single image Super-Resolution (SR) is a popular

branch in image reconstruction in terms of high frequency compensation within a

short period of computation time. Recently, many SR algorithms have been suc-

cessfully advanced to reconstruct the image without losing the quality of the super-

resolved output image. The Anchored Neighborhood Regression (ANR) [90] is an

example-based super-resolution method in which the nearest neighbors are correlated

with dictionary atoms instead of using euclidean distance to keep the quantitative

performance in low execution speed. An improved variant of ANR [90], A+ [91] ,

is the most efficient dictionary-based super-resolution method which builds on the

feature and anchored regressors from ANR but the full training material is employed

as simple function (SF) [92].

Different from the other external example-based SR methods, the excellent quality

in super-resolution performance and speed is obtained with the use of deep convo-
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lutional neural network for single image super-resolution (SRCNN) [93] which learns

an end-to-end mapping from low resolution (LR) images to their high resolution

(HR) counterparts. Instead of learning the dictionaries for modeling the patches,

the model is implicitly learned by the hidden convolutional layers in this method.

Although these above SR methods are superior to the image restoration, the cost of

computational complexity is very high due to the use of huge amount of dictionaries

to learn mapping. Hence, the rapid and accurate image super-resolution, RAISR [94]

has recently become advanced because it produces a better performance and more

than one to two orders of magnitude faster than the state-of-the-art example-based

image super-resolution methods. In RAISR, the LR patches extracted from the initial

interpolated image are divided into hash classes. The hash parameters are evaluated

based on the gradient of each patch. 864 filters including 4 classes for the pixel type,

3 classes for the strength, 24 classes for the angle and 3 classes for the coherence are

needed to learn the filters. Therefore, the needed storage capacity of RAISR to install

into mobile devices such as smart phones is quite large.

To overcome this problem, an improvement of RAISR is proposed in this chapter.

The main idea is that the number of filters are reduced to 18 filters by upgrading

the hash mechanisms which consist of minimizing the classes for the gradient angle

by geometric conversion and reducing the classes for the gradient strength. Its per-

formance and runtime are almost the same as RAISR. The improvement of RAISR

nominated by IRAISR in the following sections is applied to denoising methods for

enhancing the denoising performance with less memory storage requirement.

Moreover, an accurate Gaussian noise removal method followed by IRAISR as

a post-processing step is proposed. There are two phases in the poposed method

namely: learning phase and testing phase. In the learning phase, the noisy image is

initially denoised by using nonlocal denoising method. Not only the patches extracted

from the image processed by nonlocal-based noise removal method but also the pixels

from Ground truth are classified into 18 hash classes with two improvements including

geometric conversion and reduction of the gradient strength. The filters are learned

by least-square method based on these classes. In the testing phase, Gaussian noise
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is firstly suppressed by nonlocal denoising method. The patches extracted from the

denoised image are divided into classes. Different from [94], only two improvements

which consist of decreasing the classes for the gradient angle by geometric conversion

and the reduction of the classes for the gradient strength are considered to compute

the hash key parameters in the proposed method without considering the pixel type.

The filtered output is obtained by utilizing the pre-learned filters from the learning

phase to the patches from the denoised image in each class and aggregating them.

In addition, the Census Transform (CT) [94] is also employed between the denoised

image and the filtered output to protect the image structure. Eventually, an enhanced

performance and pleasant visual quality of the image can be achieved by weighted

averaging.

4.2 RAISR

Rapid and Accurate Image Super Resolution (RAISR) [94] is one of the most efficient

learning-based single image super-resolution methods which produces high quality

restoration with extremely fast evaluation time. The core idea of RAISR is to boost

the image quality by employing the pre-learned filters on the image patches extracted

from the initial upscaling image. The filters are learned based on the pairs of low

resolution (LR) patches and high resolution (HR) pixels. RAISR needs to classify the

patches into 864 classes i.e., 4 classes for pixel type which depends on the upsampling

factor, 3 classes for strength, 24 classes for angle and 3 classes for coherence. Thus,

864 filters with size 11× 11 are needed.

The hashing approach is considered in distinguishing the image patches into clus-

ters without using the expensive clustering methods (e.g., K-means [95], Gaussian

Mixture Model (GMM) [96], [97]) for keeping the low complexity of the linear filter-

ing. The hash-table keys are obtained by estimating the local gradients’ statistics.

However, RAISR causes some artifacts such as noise amplification and halos due to

the effect of filtering. In order to tackle this problem, Census Transform (CT) [98] is

utilized between the initial bicubic interpolated image and the filtered output based
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on the hamming distance. Some important algorithms for implementing RAISR will

be specifically explained in the following subsections.

4.2.1 Calculation of Hash-table Keys

The local gradient characteristics of the matrix that can be used as the hash-table keys

are evaluated by eigenanalysis [99] . The local gradient of the nearest neighborhoods

of the k-th pixel which is typically
√
n×
√
n patch , i.e., all the pixels are located at

k1, ..., kn is calculated in n × 2 matrix. It is composed from the horizontal gradient

gx and the vertical gradient gy, expressed by

Gk =


gxk1 gyk1

...
...

gxkn gykn

 . (4.1)

In addition, the matrixGT
kW kGk can be constructed by employing a diagonal weight-

ing matrix W k, a separable normalized Gaussian kernel to incorporate a small neigh-

borhood of gradient samples per pixel.

From an eigen-decomposition of GT
kW kGk, the gradients’ strength λk, angle θk

and coherence µk are evaluated by using the larger eigenvalue λk1 and the smaller

eigenvalue λk2, and the two eigenvectors φk1 and φk2 related to λk1 and λk2 as

λk = λk1, (4.2)

θk = arctan

(
φk1,y
φk1,x

)
, (4.3)

µk =

√
λk1 −

√
λk2√

λk1 +
√
λk2
. (4.4)

The three hash-table keys are quantized for computing hash indices λ, θ and µ,

denoted by

λ =

⌈
λk
Qs

⌉
, (4.5)
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θ =

⌈
θk
Qθ

⌉
, (4.6)

µ =

⌈
µk
Qµ

⌉
, (4.7)

where d.e is the ceiling function, Qs, Qθ and Qµ are the quantization factors for

strength, angle and coherence, respectively. In this quantization, 3 classes for the

strength λ, 24 classes for the angle θ and 3 classes for the coherence µ are considered

to learn the filters in RAISR [94]. Hence, 216 classes for the hash keys are needed

because of the integration of these three quantized parameters.

4.2.2 Global Filter Learning

In the learning phase of RAISR, a d × d filter h has to be learned with training

database images which consist of the upscaled versions of LR images yi ∈ RM×N and

the HR images xi ∈ RM×N , i = 1, ..., L. L is the number of images in the training

set. The filter is typically computed by solving a least-squares minimization problem

h = min
h

L∑
i=1

‖Aih− bi‖22 (4.8)

where h is the filter in vector notation with size d2 × 1. Ai is the matrix with size

MN × d2 composed of the patches with size d × d extracted from the image yi. bi

is the vector with size MN × 1 composed of the pixels extracted from the image xi,

corresponding to the center coordinates of yi patches.

In order to control the complexity of estimating the filters for the quite enormous

matrix A , the minimization of the least-squares problem can be solved by RAISR

based on the extension of Eq. (4.8) as

h = min
h
‖Qh− V ‖22 , (4.9)

where Q = ATA and V = ATb. The memory requirements and the computational

complexity can be reduced depending upon the observation of the matrix-matrix and
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Figure 4.1: Census transform(CT)

matrix-vector multiplications as described in

Q = ATA =
L∑
i=1

AT
i Ai (4.10)

and

V = ATb =
L∑
i=1

AT
i bi, (4.11)

where Q is a small d2 × d2 matrix and V is a d2 × 1 matrix.

4.2.3 Detection of Structure Deformations: CT Transform

Structure deformations may occur when the pre-learned filters applied to the initial

interpolated image due to the sharpening property. To preserve the important image

structures, the Census Transform (CT) [98] is exploited between the upscaled image

and the filtered output. As illustrated in Fig. 4.1, an 8 bit string that measures the

local structure is constructed by boolean comparisons between the center pixel and

its nearby pixels in 3×3 patch. Then, the hamming distance is evaluated to count the

number of bits that were changed for each pixel. The larger weights converted from

the number of changed bits can be achieved according to the increase in hamming

distance because the change in structure depends on the distance. The output image

can be estimated by weighted averaging of the interpolated image and the filtered

image. Moreover, the more contrast-enhanced output is sufficiently achieved because

of the consideration in a wide range of frequencies using this approach.
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4.3 Proposed Method

Even though most of the nonlocal-based image denoising methods accurately suppress

the Gaussian noise, some fine image details are degraded due to the losses of high

frequency components in the image. Therefore, an accurate Gaussian noise removal

method is proposed by applying IRAISR as a rapid post-processing step based on the

extension of RAISR [94] to preserve the distorted image details in the denoised image

because it can compensate the high frequency information. There are mainly two

processes in the proposed method. The first process is to remove the noise from the

noisy image for obtaining the denoised image. The second process is to enhance the

performance of the denoised image by applying the improved RAISR to the noise-free

image processed by nonlocal-based noise removal methods. The learning phase and

testing phase of the proposed method are shown in Fig. 4.2 and Fig. 4.3, respectively.

How to remove the noise from the noisy images and the improvement of RAISR in

denoising will be explained in the following subsections.

Figure 4.2: Learning phase of the proposed method
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Figure 4.3: Testing phase of the proposed method

4.3.1 Noise Removal

The extensively used Gaussian noise removal methods based on nonlocal self-similarity

models such as BM3D [24] and WNNM [30] are firstly utilized to suppress the noise

from the noisy image in the learning phase of the proposed method. The patches ex-

tracted from the denoised image are classified into 18 hash classes including 6 classes

for the angle θ and 3 classes for the coherence µ without considering the classes for the

strength. Analogously, the same hash classes are divided from the pixels of Ground

truth. The 18 filters can be learned by solving the least squares method between the

denoised image and the reference image in 18 hash classes.

In the testing phase, the denoised image can be obtained from the noisy images

that are not included in the training sets by using nonlocal-based Gaussian noise

removal methods, BM3D [24] and WNNM [30]. The patches extracted from the

denoised image are separated into hash classes. The 18 hash classes which is composed

of 6 classes for the angle and 3 classes for the coherence are divided from the patches

of denoised image with geometric conversion. Then, the pre-learned filters (18 filters

for 18 classes) generated from the learning phase are applied on the patches and the
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filtered image is produced by aggregating the outputs of each patch.

Similarly to the primary RAISR [94], Census Transform (CT) is used between

the denoised image and the filtered output to keep the structure deformations within

a wide range of frequencies. Then, Hamming distance is evaluated to know how

many bits are changed between the center pixel and its nearest neighborhood pixels

of each patch based on CT. The larger the hamming distance, the larger the change

in structure and the bigger the weights. Finally, an advanced quality of output image

can be achieved by weighted averaging of the denoised image and the filtered output

because this CT approach leads to contrast enhancement of the denoised image.

4.3.2 Improvement of RAISR in Denoising

The nonlocal-based image denosing methods assigned to the proposed method (BM3D

[24] and WNNM [30]) can sufficiently eliminate the Gaussian noise. However, some

important image details from the denoised image are deteriorated due to the dam-

age of high frequency information. In order to overcome this problem, an improved

RAISR is exploited in the proposed method as a post-processing approach to the

denoised image because it is not only a rapid and accurate image super-resolution

method but also it can restore the degraded high frequency components. A modified

version of RAISR [94] used for the proposed method is designed as shown in Fig. 4.4.

The size of the patches extracted from the denoised image is assigned to 11× 11 and

the patch size of hash table is defined as 9×9. Unlike the initial RAISR [94], the pixel

type is not taken into account in the proposed method because the denoised image

is assumed to be the interpolated image. The pre-learned filter generated from the

learning phase is also the same patch size as the denoised patches. The output pixel

is implemented by convolving the patches from the denoised image with the filters

based on the hash-table indices.

In RAISR [94], the LR patches extracted from the initial bicubic upscaled image

are classified into 864 hash classes which consist of 4 classes for the pixel type based

on the upscaling factor, 3 classes for the strength λ, 24 classes for the angle θ and

3 classes for the coherence µ. The memory storage for the filter coefficients in this
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Figure 4.4: Improved RAISR design for the proposed method based on the pairs of
the patches from the denoised image and the pixels from the clean image

approach is highly increased due to the use of 864 filters with size 11× 11. In order

to solve this problem, the number of filters are reduced to 18 filters by addressing

IRAISR with simple geometric and reduction of the classes for λk without interfer-

ing the performance and computational complexity of the original RAISR [94]. For

this reason, IRAISR is utilized in the application of denoising to achieve an accu-

rate denoised image with low memory requirements. Although three improvements

of RAISR including the reduction of the classes for the pixel type by rotation based

on scaling factor, geometric conversion for the gradient angle and the reduction of

the classes for the gradient strength are contributed in the super-resolution (SR) ap-

proach to obtain the same performance and runtime comparable to RAISR with little

computational complexity, only two improvements are considered in image denoising

because the pixel type is not contributed in this implementation.

73



Figure 4.5: Geometric conversion based on each gradient type

4.3.3 Geometric Conversion

The gradient angle θ of the patch with size 11 × 11 can be changed by geometric

conversion to reduce the number of classes for the gradient angle. As illustrated in

Fig. 4.5, the patches whose θk range from 45◦ to 90◦ are applied xy-flip to, and the

patches whose θk range from 90◦ to 135◦ are applied x-flip and xy-flip to, and the

patches whose θk range from 135◦ to 180◦ are applied y-flip to the range from 0◦ to

45◦, respectively. Hence, only 6 angle classes which belong to the range from 0◦ to

45◦ are needed in the proposed method instead of 24 classes for the gradient angle in

RAISR [94].

4.3.4 Reduction of the Classes for the Gradient Strength

Another improvement of RAISR considered in the proposed method is the reduction

of the classes for the gradient strength. The three classes for λ are classified as λ1,

λ2 and λ3 in RAISR [94]. The parameter λk is ranged from 0 to 0.34 for the class

λ1, from 0.34 to 0.67 for the class λ2 and from 0.67 to 1 for the class λ3, respectively

to learn the filters. Table. 4.1 shows the performance comparisons of applying the
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Table 4.1: Average PSNR comparison for upscaling by a factor of 2 over Set5.

Image name Only λ1 Only λ2 Only λ3 RAISR
Baby 37.127 38.387 38.450 38.452
Bird 37.101 39.702 40.275 40.264

Butterfly 27.249 29.911 30.498 30.526
Head 34.905 35.649 35.704 35.695

Woman 32.365 34.453 34.851 34.843

Average 33.749 35.620 35.956 35.956

filters learned with only λ1, only λ2, and only λ3 on Set5 [100] by an upsampling

factor of 2. According to the results, the performance of applying the filters learned

with only λ3 is quite similar to RAISR. Actually, the strength of gradient λ implies

the presence of high-frequency components in the input patch. As the filter learned

with high-frequency patches can generate the low-frequency HR patches, the hash

classes for the strength are not needed in the testing phase.

4.4 Experimental Results

The comparison of the proposed method which is actually an enhanced denoising

algorithm using IRAISR with nonlocal-based state-of-the-art Gaussian noise removal

methods such as BM3D [24] and WNNM [30] is presented in this section. The peak

signal to noise ratio (PSNR) is used as a quantitative metric for performance evalu-

ation.

4.4.1 Parameters Setting

The parameter settings utilized in the proposed method are as follows: the patch

size is set as 9 × 9; the patch step size is 3; the neighborhood window size is set as

39×39 in both steps of BM3D filtering. The maximum number of similar patches are

fixed to 16 in hard-thresholding and 32 in wiener-filtering, respectively. The input

noisy images are padded symmetrically depending on the patch size to keep the image

borders in this implementation before processing.
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In WNNM, the iterative regularization parameter δ and the parameter c are de-

fined as 0.1 and 2.8 for all noise levels. The patch size and the iteration number K are

selected based on noise level. The patch size is described as 6×6, 7×7, 8×8 and 9×9

for σn ≤ 20, 20 < σn ≤ 40, 40 < σn ≤ 60 and 60 < σn, respectively. K is set to 8, 12,

14 and 14, respectively based on these noise levels. When the noise level is higher,

the chosen patch size should be bigger and the consuming time is longer. 191 images

including General 100 and 91 images from Yang et al. are used as training image sets

to learn the filters in the improvement of RAISR for image denoising. The patch size

of the learned filter is 11 × 11. The hash index is considered on its neighborhood of

size 9 × 9 for the computation of hash key parameters in both learning and testing

phase of the proposed method. The source codes of BM3D [24] and WNNM [30]

provided on their relevant websites are used for the experiments.

4.4.2 Quantitative and Visual Evaluation

The comparison of PSNR values of nonlocal-based image denoising methods includ-

ing BM3D [24] and WNNM [30] with the proposed method which is the application

of IRAISR as a post-processing stage to the denoising methods is presented in Table.

4.2. The experiments are conducted over 11 extensively used test images corrupted

by Gaussian noise with σ = 10, σ = 20, σ = 30, σ = 40, σ = 50 , and σ = 60, re-

spectively. The highest PSNR values are marked in bold-faced. As can be observed,

WNNM post-processed by IRAISR outperforms efficiently the other competing meth-

ods in the Airplane, Butterfly, Cameraman and Peppers images which are rich in edge

regions for all noise levels because the image details in the edge regions of the image

can be well restored in the proposed method.

The integration of BM3D and IRAISR gives the highest PSNR value on average at

noise levels σ = 20 and σ = 30, respectively. When the noise level is slightly increased,

the combination of WNNM and IRAISR is the best in almost all test images excluding

Bird and Montage images. As WNNM can remove the Gaussian noise level (especially

σ ≥ 40) more efficiently than BM3D, the performance evaluation of WNNM is higher

than BM3D. WNNM is the signal processing-based state-of-the-art noise reduction
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method. Hence, the combination of WNNM and IRAISR can be sufficiently applied

for the high noise levels while preserving the image details. However, the superiority

of quantitative performance on average for all noise levels can be achieved by using

the proposed method.

Table 4.2: The quantitative comparison on average PSNR (dB) over 11 widely used
test images

Images Airplane Barbara Bird Boat Butterfly C.man Couple Lena Man Montage Peppers Average

Noise Level σ = 10
BM3D [24] 33.37 35.04 37.39 33.69 33.12 33.73 33.77 35.85 33.63 36.89 34.27 34.62
WNNM [30] 33.39 35.04 37.14 33.49 34.31 33.80 33.55 35.61 33.51 37.59 34.52 34.72

BM3D+IRAISR 33.44 35.01 37.39 33.72 33.24 33.73 33.83 35.93 33.73 36.89 34.32 34.66
WNNM+IRAISR 33.63 34.93 37.24 33.63 34.54 33.96 33.73 35.72 33.71 37.11 34.67 34.81

Noise Level σ = 20
BM3D [24] 29.45 31.81 33.68 30.59 29.60 29.99 30.53 32.96 30.27 32.99 30.91 31.16
WNNM [30] 29.57 31.42 32.89 30.23 30.49 29.95 30.11 32.53 29.90 33.68 30.90 31.06

BM3D+IRAISR 29.58 31.74 33.68 30.67 29.77 30.03 30.62 33.09 30.39 32.89 30.98 31.22
WNNM+IRAISR 29.88 31.42 33.08 30.44 30.79 30.13 30.35 32.69 30.14 32.95 31.09 31.18

Noise Level σ = 30
BM3D [24] 27.43 29.86 31.43 28.84 27.72 28.19 28.69 31.18 28.60 30.71 28.98 29.24
WNNM [30] 27.49 29.48 30.67 28.49 28.39 28.26 28.31 30.86 28.29 31.05 28.91 29.11

BM3D+IRAISR 27.53 29.79 31.42 28.91 27.89 28.25 28.78 31.31 28.71 30.62 28.99 29.29
WNNM+IRAISR 27.79 29.54 30.84 28.69 28.76 28.47 28.54 31.00 28.50 30.68 29.08 29.26

Noise Level σ = 40
BM3D [24] 25.96 27.59 29.64 27.38 25.66 26.53 27.15 29.55 27.28 28.52 27.38 27.51
WNNM [30] 26.04 27.88 28.98 27.18 26.96 26.99 26.88 29.51 27.11 29.16 27.47 27.65

BM3D+IRAISR 26.04 27.44 29.68 27.47 25.99 26.78 27.23 29.75 27.38 28.53 27.39 27.61
WNNM+IRAISR 26.33 28.05 29.15 27.41 27.37 27.24 27.13 29.66 27.33 28.97 27.65 27.84

Noise Level σ = 50
BM3D [24] 24.55 26.56 28.37 25.98 24.62 24.85 25.74 28.51 26.19 25.97 26.15 26.14
WNNM [30] 25.05 26.97 27.87 26.27 25.77 25.89 25.97 28.70 26.32 27.52 26.44 26.62

BM3D+IRAISR 24.73 26.17 28.36 26.16 24.91 25.27 25.92 28.65 26.32 26.04 26.16 26.24
WNNM+IRAISR 25.29 27.11 28.02 26.47 26.21 26.16 26.19 28.85 26.49 27.36 26.62 26.79

Noise Level σ = 60
BM3D [24] 23.98 25.66 27.50 25.35 23.83 24.21 25.03 27.79 25.63 25.10 25.44 25.41
WNNM [30] 24.25 25.99 26.84 25.49 24.83 25.03 25.11 27.90 25.61 26.42 25.59 25.73

BM3D+IRAISR 24.09 25.03 27.48 25.50 24.09 24.60 25.17 27.92 25.72 25.33 25.39 25.48
WNNM+IRAISR 24.49 26.17 26.99 25.69 25.31 25.29 25.33 28.06 25.79 26.38 25.78 25.94

The execution time comparisons of the benchmark Gaussian noise removal meth-

ods (BM3D [24] and WNNM [30]) with the application of IRAISR to these denoising

methods for 256× 256-sized and 512× 512-sized images corrupted by additive white

Gaussian noise with σ = 30 are reported in Table. 4.3 and Table. 4.4, respectively.

According to the experimental results, the proposed method takes approximately 0.18

sec and 0.66 sec on average longer than the denoising methods for 256 × 256-sized

and 512 × 512-sized images. Therefore, the performance of image denoising can be

improved by employing IRAISR to the noise removal methods within a rapid process-
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Table 4.3: Execution time comparison for 256× 256-sized images

Images(256× 256)
Execution time in sec (σ = 30)

BM3D [24] BM3D+IRAISR WNNM [30] WNNM+IRAISR
Airplane 23.29 23.47 139.44 139.68
Butterfly 22.14 22.32 156.14 156.31
C.man 19.92 20.09 146.01 146.17

Montage 17.93 18.11 146.26 146.44
Peppers 21.01 21.19 143.59 143.75
Average 20.86 21.04 146.29 146.47

Table 4.4: Execution time comparison for 512× 512-sized images

Images(512× 512)
Execution time in sec (σ = 30)

BM3D [24] BM3D+IRAISR WNNM [30] WNNM+IRAISR
Barbara 93.95 94.53 577.21 577.84

Boat 91.72 92.29 617.99 618.69
Couple 100.33 100.98 611.77 612.42
Lena 91.76 92.37 606.81 607.48
Man 90.53 91.09 567.41 568.09

Average 93.66 94.25 596.24 596.90

ing time. The merit of the improved RAISR is the reduction of learned filters with

the equivalent performance and run-time as RAISR [94] which utilizes 864 filters with

size 11× 11. The reduction of the number of filters simplifies the implementation of

RAISR as well as provides the denoising performance effectively.

The evaluations of visual quality of the proposed method are compared with the

denoising methods including BM3D [24] and WNNM [30] for 256×256-sized Butterfly

image corrupted by additive white Gaussian noise with σ = 30 and Peppers image

degraded by σ = 50 as illustrated in Fig. 4.6 and Fig. 4.7, respectively. It can be

seen that the edge regions of Butterfly are sharper than the competing methods due

to the effect of Census Transform (CT) [94] although the flat regions are a little over-

smoothed in the proposed method. In Peppers image, the edges are well preserved in

the improvement of RAISR applied to the denoising methods except for the generation

of a little blur in the smooth regions. The improvement of image denoising using

IRAISR for 256 × 256-sized Airplane image degraded by Gaussian noise σ = 40

and Cameraman image corrupted by σ = 60 are comparatively visualized with the

conventional Gaussian noise removal methods as illustrated in Fig. 4.8 and Fig.

4.9, respectively. The abruptly changed image pixel intensities of both images are
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significantly reconstructed in the proposed method in accordance with the simulated

results.

Figure. 4.10 and Fig. 4.11 compare the visual assessments of 512 × 512-sized

Couple image corrupted by Gaussian noise with standard deviation 30 and Boat image

corrupted by standard deviation 50. To be clearly seen, the emphasized regions of

both images are demonstrated in orange box. It is obvious that the strong edge

sharpness can be effectively produced in spite of less maintenance of some image

details in the highlighted regions of Couple image. Moreover, some image features of

Boat image (e.g., text written on the front part of the boat) are failed to restore but

a tiny rope can be clearly visualized in the proposed method.

The subjective comparisons for 512 × 512-sized Barbara image deteriorated by

Gaussian noise with σ = 40 and Lena image affected by GN with σ = 60 are respec-

tively shown in Fig. 4.12 and Fig. 4.13. As can be observed, the highlighted texture

patterns on the table sheet in Barbara image can be well reconstructed and some

salient image details in Lena can be significantly preserved in nonlocal-based image

denoising using IRAISR. In addition, the visualization of Montage image contami-

nated by Gaussian noise with σ = 20 and Man image affected by GN with σ = 20

using IRAISR are compared with existing image denoising methods as illustrated in

Fig. 4.14 and Fig. 4.15, respectively. It can be obvious that the proposed method

gives strong sharp edge restoration in Montage and excellent preservation of hair

textures in the enlarged fragment of Man image while efficiently removing Gaussian

noise.

4.4.3 Experiments on Various Datasets

Besides conducting experiments on 11 widely used natural images as a test set for

image denoising, the proposed accurate Gaussian noise removal method is applied to

other various image datasets including Kodak images, Berkeley segmentation dataset

(BSD68) and Set12 images. These image datasets are also not included in the training

set. The average quantitative and runtime comparisons of the proposed method with

BM3D and WNNM are reported in Table. 4.5 for those image datasets corrupted
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Table 4.5: Comparison of PSNR values and runtime on average over various datasets

Dataset Noise Level
BM3D BM3D+IRAISR WNNM WNNM+IRAISR

PSNR runtime PSNR runtime PSNR runtime PSNR runtime

Kodak
10 34.16 149.132 34.25 150.067 34.03 418.649 34.24 419.552
30 28.98 149.326 29.09 150.261 28.77 872.275 28.99 873.126
50 26.39 93.647 26.53 94.49 26.82 694.370 27.00 695.251

BSD68
10 33.04 56.685 33.12 57.085 32.91 180.075 33.13 180.454
30 27.49 56.690 27.60 57.089 27.35 338.575 27.58 338.944
50 24.84 36.498 25.02 36.883 25.34 254.98 25.53 255.360

Set12
10 34.13 51.057 34.19 51.442 34.16 164.556 34.30 164.901
30 28.88 50.871 28.98 51.288 28.81 323.650 29.01 324.007
50 25.96 31.841 26.13 32.193 26.47 235.121 26.69 235.470

by different noise levels σ = 10, σ = 30 and σ = 50, respectively. The best PSNR

values are highlighted in bold faced. It can be observed that the combination of

BM3D and IRAISR outperforms the other competing methods at noise levels σ = 10

and σ = 30, and WNNM post-processed by improvement of RAISR is the highest

value among them at noise level σ = 50 in Kodak images. In BSD68 dataset, the

application of IRAISR to BM3D produces the highest PSNR value at noise level

σ = 30, and the integration of WNNM and IRAISR generates the best PSNR values

at noise levels σ = 10 and σ = 50, respectively. Similarly, the greatest PSNR values

can be achieved in the combination of WNNM and IRAISR for all noise levels in

Set12 images. Therefore, the proposed noise suppression method for Gaussian noise

with the aid of IRAISR as a post-processing step is very effective for any dataset to

obtain high quality denoising performance. The execution time for denoising and the

application of IRAISR depend on the image size. However, it takes a rapid processing

time for IRAISR to enhance the denoising performance.

Figure. 4.16 and Fig. 4.17 compare the visual assessments of one image from

Kodak dataset corrupted by Gaussian noise with standard deviation 30 and one test

image taken from BSD68 contaminated by standard deviation 50. To be clearly seen,

the enlarged fragments of both images are demonstrated in green box. It is obvious

that not only Gaussian noise can be successfully removed but also the strong edge

sharpness (e.g., numerical values written on the sail) can be effectively produced in

80



the highlighted regions of the image by using the proposed method. Moreover, some

image details in the cropped regions of the image from BSD68 can be well recovered

in the proposed method according to the performed visual evaluation.

In addition, the restoration results of one image taken from Kodak dataset cor-

rupted by Additive White Gaussian Noise with σ = 50 and one image chosen from

BSD68 dataset affected by GN with σ = 30 are shown in Fig. 4.18 and Fig. 4.19,

respectively. The proposed method can successfully remove Gaussian noise and effi-

ciently preserve the image details such as stripes in the highlighted regions of both

images.

Furthermore, the denoised results of one image from Set12 dataset contaminated

by σ = 30 are illustrated in Fig. 4.20 to compare the visual evaluation of the pro-

posed method with the conventional denoising methods including BM3D and WNNM.

Gaussian noise can be eliminated and some image structures of Starfish image can

be well restored in the proposed denoising method with super-resolution technique.

4.4.4 Comparison of Performance Evaluation on Different

Training Sets

The performance evaluation and runtime of the proposed denoising method which

is the application of IRAISR to BM3D are compared by employing the pre-learned

filters from two different training sets: 191 images including General 100 images and

91 images from Yang et al., and General 100 images as described in Table. 4.6. The

experiments are evaluated on 11 widely used natural images corrupted by Gaussian

noise with σ = 10, σ = 30 and σ = 50, respectively. It takes about 8 hours for

191 training set and 3 hours for 100 training set to learn the filters in the training

phase. The best PSNR values are described in bold faced and the fastest runtimes

are denoted by bold faced blue color. As can be seen from the table, the average

PSNR values are almost the same at noise levels σ = 10 and σ = 30 for both training

sets. When the noise level is steadily increased to 50, the average PSNR value of the

combination of BM3D and IRAISR is higher in 191 training images. Moreover, it
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Table 4.6: Performance evaluation on different training datasets

Training Dataset Noise Level
BM3D+IRAISR
PSNR runtime

191 images
10 34.66 54.758
30 29.29 51.885
50 26.24 33.928

100 images
10 34.66 58.265
30 29.29 53.326
50 26.23 34.004

takes faster execution time in the testing phase by applying the filters learned from

the training 191 images than 100 training dataset for all noise levels.

4.4.5 Effect of CT in Image Denoising

Census transform (CT) [94] is utilized to restore the local image structures between

the denoised image and the filtered output. The experiments are conducted on 11

widely used natural images degraded by Gaussian noise σ = 10, σ = 30 and σ = 50,

respectively to know the effect of CT in image denoising. Table. 4.7 presents the

comparison of average PSNR values among BM3D, BM3D+IRAISR without CT and

BM3D+IRASIR with CT. According to the simulation result, the proposed denoising

method with CT highlighted in bold face is the best among them for all noise levels.

Table 4.7: Performance comparison of image denoising based on CT over 11 widely
used images

Method
Noise level

σ = 10 σ = 30 σ = 50
BM3D 34.62 29.24 26.14

BM3D+IRAISR without CT 34.65 29.27 26.18
BM3D+IRAISR with CT 34.66 29.29 26.24
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4.4.6 Performance Comparison between RAISR and IRAISR

in Image Denoising

RAISR and IRAISR can be applied to noise reduction methods as a post-processing

step to enhance the performance of denoising. 216 filters which consist of 3 classes for

the gradient strength, 24 classes for the gradient angle and 3 classes for the coherence

in RAISR, and 18 filters including 3 classes for the coherence and 6 classes for the gra-

dient angle by geometric conversion in IRAISR are needed excluding the pixel type in

the image denoising application. The reduction of the classes in IRAISR simplifies the

implementation of RAISR without sacrificing the performance and runtime of RAISR.

The experiments are conducted on 11 widely used images contaminated by Gaussian

noise with σ = 10, σ = 30 and σ = 50, respectively to compare the average PSNR

value and runtime between RAISR and IRAISR applied to the denoising method

(BM3D in this experiment) as presented in Table. 4.8. As can be observed, the

PSNR values of IRAISR and RAISR are almost the same for all noise levels although

the computation time for RAISR is a little faster than that of IRAISR. Moreover,

the computation time for learning the filters in the training phase of IRAISR can be

successfully reduced due to the minimization of the classes. Therefore, the proposed

method can improve the performance of nonlocal image denoising methods with little

computational complexity.

Table 4.8: Impact of RAISR and IRAISR in image denoising over 11 widely used
images

Method
Noise level

No. of filtersσ = 10 σ = 30 σ = 50
PSNR runtime PSNR runtime PSNR runtime

BM3D+RAISR 34.66 53.585 29.29 52.170 26.24 33.628 216
BM3D+IRAISR 34.66 54.758 29.29 51.885 26.24 33.928 18
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4.5 Summary

In this Chapter, an accurate Gaussian noise removal followed by an Improvement

of RAISR (IRAISR) has been presented to successfully remove the noise without

regressing some image features such as edges and textures. BM3D and WNNM, the

state-of-the-art nonlocal-based noise suppression methods for Gaussian, are used for

image denoising. In order to preserve the distored image details from the denoised

image, IRAISR is utilized as a post-processing step because it is a rapid and accurate

learning-based super-resolution method as well as it can restore the high frequency

information. The main idea behind IRAISR is the minimization of the number of

filters. The number of filters can be reduced from 216 to 18 by two improvements

including the reduction of the classes for the gradient angle by geometric conversion

and the reduction of the classes for the gradient strength without considering the pixel

type in the image denoising. IRAISR can simplify the implementation of RAISR and

provides the denoising performance effectively with less computational complexity.
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.6: Visual comparison of Butterfly image corrupted by σ = 30
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.7: Visual comparison of Peppers image corrupted by σ = 50
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.8: Visual comparison of Airplane image corrupted by σ = 40
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.9: Visual comparison of Cameraman image corrupted by σ = 60
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.10: Visual comparison of Couple image corrupted by σ = 30
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.11: Visual comparison of Boat image corrupted by σ = 50
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.12: Visual comparison of Barbara image corrupted by σ = 40
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.13: Visual comparison of Lena image corrupted by σ = 60
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.14: Visual comparison of Montage image corrupted by σ = 20
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.15: Visual comparison of Man image corrupted by σ = 20
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.16: Visual comparison of one image from Kodak dataset corrupted by σ = 30
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.17: Visual comparison of one image from BSD68 dataset corrupted by σ = 50
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.18: Visual comparison of one image from BSD68 dataset corrupted by σ = 30
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.19: Visual comparison of one image from Kodak dataset corrupted by σ = 50
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(a) Ground truth (b) Noisy

(c) BM3D [24] (d) WNNM [30]

(e) BM3D+IRAISR (f) WNNM+IRAISR

Figure 4.20: Visual comparison of one image from Set12 dataset corrupted by σ = 30
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Chapter 5

Conclusion

5.1 Overall Conclusion of the Dissertation

This dissertation mainly focuses on the removal of mixed-noise that consists of AWGN

and RVIN with the help of interpolation technique to efficiently preserve the image

details and the removal of Gaussian noise using Improved RAISR with less number

of filters to maintain the deteriorated high frequency information.

It is more difficult to remove the mixed-noise than single noise because the char-

acteristics of noise are dissimilar to each other. In this dissertation, the removing

of mixed-noise composed of AWGN and RVIN is considered. Image denoising meth-

ods for AWGN are basically classified into spatial-domain based methods, transform

domain-based methods, dictionary learning-based methods and CNN-based methods.

Gaussian filtering also known as linear filtering can effectively remove GN but the

edge and texture regions of the image tend to blurring effect because of the over-

smoothing. Bilateral filtering is then advantageous to attenuate Gaussian noise due

to its effectiveness in preserving the edges. Even though linear-based denoising meth-

ods can remove the noise, some image details are still disappeared to reconstruct as

the original. In order to tackle this problem, nonlocal-based image denoising methods

have been recently eminent in suppressing the noise because the basic idea behind

these methods is searching the similar patches related to the target patch at different

locations across the image.

Analogously, median filtering is the most traditional impulse noise removal method

in image processing applications. The main concept of median filtering is that every

pixel in the image is replaced by median value arranged in ascending order with its

nearest neighborhood across the image. The demerit of this method is the blurring
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effect in the desirable image details because it removes not only impulse noise but

also the important image details when the noise level is enormous. Therefore, var-

ious types of modified median filtering techniques have been successfully utilized in

attenuating impulse noise for a few decades. Fundamentally, these methods consist

of noise detection followed by noise filtering.

Mixed-noise removal method proposed in this dissertation typically consists of two

steps. The first step is the integration of interpolation, DWM filter, down-sampling

and BM3D filtering to denoise the noisy image. The second step is composed of

re-detect process and BM3D to reconstruct the image. DWM filter is employed

to remove RVIN and BM3D is utilized for the removal of Gaussian noise because

these methods are state-of-the-art denoising methods. As most mixed-noise removal

methods are detection based, the detection of impulse noise present in the mixed-noise

may become an important role to upgrade the image quality without losing the image

details. Hence, the input noisy image is initially interpolated before the detection of

impulse noise in DWM filter by using multi-surface fitting for single frame in order

to preserve the image details.

Interpolating the input noisy image not only reduces the impulse noise rate but

also improves the accuracy of impulse noise detection. Therefore, it is very effective

in the removal of RVIN. The output of DWM filter is also needed to down-sample

because of the consideration of interpolation. Although almost all noises can be

sufficiently removed in the first step, it can be seen that some image details are

still damaged. Hence, the detection and removal method of RVIN is applied in the

second step to overcome this problem. After the removal of RVIN, BM3D is exploited

to remove the remaining noise. According to the experimental results presented in

Chapter 3, the proposed two-step mixed-noise removal method using interpolation

gives higher PSNR values and more excellent visual quality than the conventional

denoising methods.

In Gaussian noise removal, an accurate Gaussian noise removal strategy followed

by an Improvement of RAISR (IRAISR) is presented to successfully remove the noise

without regressing some image features such as edges and textures. Not only the
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patches extracted from the image processed by BM3D and WNNM , and the pixels

from the reference image in the learning phase but also the patches from the denoised

image in the testing phase are classified into hash classes. The filtered output is

obtained by convolving the pre-learned filter generated from the learning phase with

the patches extracted from the denoised image. The main contribution of IRAISR is

the minimization of number of filters by two improvements including the reduction

of the gradient angle by geometric conversion and the reduction of the classes for the

gradient strength. In addition, Census transform (CT) is utilized by weighted aver-

aging of the images processed by nonlocal-based denoising methods and the filtered

output to restore the distorted image structure. Eventually, more advanced quanti-

tative performance and stronger sharpness than the conventional denoising methods

can be significantly acquired in accordance with the experimental results.

5.2 Limitations

The performance of image denoising in both mixed-noise and Gaussian noise can be

determined by peak-signal-to-noise-ratio (PSNR) value as a quantitative metric. The

visual evaluation of these denoising methods can be assessed depending upon the

preservation of some important features such as artifacts, edges, textures and fine

details in the image. In the removal of mixed-noise, it can be observed that some

images which are plenty of texture regions such as Barbara and rich in smooth regions

such as Lena images can be well restored by using the proposed mixed-noise removal

method excluding Airplane, Goldhill and Peppers images with strong noise levels.

DWM filter can only suppress RVIN and BM3D can also eliminate AWGN only.

Experiments are conducted on 11 widely used natural images with different values of

Gaussian noise and RVIN. Even though GN can be efficiently eliminated in the mixed-

noise by BM3D whenever the noise level is increased, DWM filter cannot suppress

the degraded impulse noise in the interpolated noisy images such as Bridge, Mandrill

and Milkdrop images. This is because the number of miss-detected pixels are highly

increased based on interpolating the noisy image and increasing the impulse noise
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levels. As the handcrafted parameters such as threshold value τ for the detection of

impulse noise in the second step of the proposed method and window size for DWM

filter are chosen depending on the standard deviation of noise values, it provides some

leeway to boost denoising performance.

There are mainly two portions in the proposed Gaussian noise removal method.

The first portion is to remove noise by using nonlocal-based denoising methods

namely: BM3D and WNNM. The second portion is to improve the denoising perfor-

mance with the aid of Improved RAISR as a post-processing step without sacrificing

the image details with less number of filters. The use of Improved RAISR is very

effective in enhancing the image quality with high computational efficiency. The dis-

advantage of this approach is the execution time for denoised process in both learning

and testing phase. It takes one day for BM3D and three days for WNNM in each

noise level to learn the filters for 191 training sets including 100 general images and 90

images from Yang.et.al. This is due to searching patches similar to the target patch

for every pixel in the noisy image although nonlocal-based denoising methods can sig-

nificantly produce higher performance and better visual quality than the local-based

denoising methods. Moreover, the proposed method is applied in the noisy images

with gray-scale where the noise level is already known.

5.3 Further Extensions

According to the advanced camera technology in mobile devices especially smart

phones, the production of high quality images without losing some valuable image

features within a rapid computation time plays a vital role in the local market. Many

mobile phone companies are currently endeavoring to manufacture the products with

high technology that are cost effective, durable, high-speed performance and good

quality depending on the demands for end users. From a theoretical and research

perspective, nonlocal-based denoising methods are not reliable to use in the real ap-

plications due to its high execution time. Hence, other noise removal methods should

be selected to obtain an enhanced quantitative performance with less computation
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time because Gaussian noise removal methods assigned in this dissertation are based

on nonlocal self-similarity (NSS) models.

Figure 5.1: Learning phase in local-based denoising method

As a further extension, some local-based denoising methods such as bilateral fil-

tering or wiener filtering will be utilized to remove Gaussian noise in both learning

and testing phases as illustrated in Fig. 5.1 and Fig. 5.2, respectively instead of

using nonlocal-based denoising methods. IRAISR is applied to the images processed

by local-based denoising methods to enhance the performance of image by visually

and quantitatively. Similarly to the nonlocal-based denoising methods, the patches

extracted from the denoised images processed by local-based noise reduction method

and the pixel from Ground truth are divided into hash classes in the learning phase.

18 filters are learned based on these image pairs by least square minimization problem.

In the testing phase, Gaussian noise can be removed by local-based denoising

method to achieve noise-free image. The patches extracted from the denoised image

are classified into hash classes. The filters are reduced from 216 to 18 filters by

modifying the hash mechanism with two improvements including geometric conversion

for the angle θ and the reduction of the strength λ without considering the pixel type.

The filtered image can be obtained by convolving the patches from the denoised

image with the pre-learned filters generated from the learning phase. Then, census

transform (CT) is also used by blending the denoised image and the filtered output
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Figure 5.2: Testing phase in local-based denoising method

to get the final denoised image. Generally speaking, local-based denoising methods

take faster execution time than nonlocal-based denoising methods. In addition, an

excellent image quality with a rapid computational efficiency while efficiently restoring

some image structures can be achieved by adding the improvement of RAISR to the

denoised image as a post-processing step according to the experimental results as

mentioned in Chapter. 4. It will be quite beneficial to us for using these methods in

the real applications such as mobile devices if the denoising process can be improved

within a low execution time.

Moreover, the proposed Gaussian noise removal method will be applied in real

noisy images to be more practical and in RGB color images to distinguish the image

features clearly as a future work. Furthermore, the proposed method will be utilized in

the applications where the noise values are unknown (e.g., blind Gaussian denoising)

by evaluating the noise based on the noise level estimation methods as a preliminary

processing.
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