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SUMMARY OF Ph.D. DISSERTATION 
 

Human motion sensing technologies have recently attracted attention in the fields of 

medicine and healthcare. To estimate and track human motions using wearable/fixed sensors, 

the sensing systems must model the user-specific relationship between the sensor measurements 

and the motion parameters or complex motion dynamics. However, the estimation accuracies 

of previous learning approaches were diminished through overfitting when the diversity and 

size of the dataset were constrained by device resources and users' motor capacities. In addition, 

a single model cannot adapt to changes in the sensor–motion relationship due to sensing 

conditions and complicated motions that cannot be represented by one specific model. To 

address these issues, this dissertation presents biomechanics-driven stochastic learning for the 

motion sensing systems, which achieves data-efficient learning of estimation models using 

limited datasets and adaptive estimation using multiple models. 

Chapter 1 describes the background and major contributions of the dissertation. 

Chapter 2 presents the force plate-free learning for estimating the vertical ground reaction 

force (vGRF) using insoles instrumented with a small number of force sensors. The system 

learns a regression model using sensor measurements obtained during a single leg stance, by 

applying the biomechanics that the vGRF approximately matches the body weight. The 

regression avoids overfitting through biomechanical constraints that peak/trough vGRFs are 

linear with respect to stance duration during walking. 

Chapter 3 presents the insole-based estimation of vGRF for users with decreased motor 

abilities. The system probabilistically augments the sensor measurements and vGRFs for a 

single step to a dataset for multiple steps, using the biomechanical assumption that 

measurements vary owing to the inconsistency of walking. A Gaussian process regression model 

is then learned to prevent overfitting. 

Chapter 4 presents a shift-adaptive estimation of the knee joint angle using an instrumented 

brace. The system learns relationships between the strains of two stretch sensors and joint 

angles at varying brace positions using Gaussian mixture models (GMMs). This utilizes the 

biomechanics that skin strain decreases as the distance from the joint increases. The angle is 

then calculated adaptively to the brace shift using the maximum likelihood (ML) GMM 

identified by the sensor strains in a previous 1 s period. 

Chapter 5 presents a learning-based occlusion compensation for leg tracking with a laser 

range sensor. The system learns relationships between leg trajectory and traveling direction 

for straight walking and turning under different curvatures/directions using GMMs. When an 

occlusion occurs during tracking, the walking type is identified by a joint probability of both 

legs' trajectories using biomechanics that they move in a coordinated manner. The ML GMM 

then estimates the direction and position of the hidden leg.    

Chapter 6 summarizes the findings and presents the conclusions and future research 

directions. 
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Chapter 1

Introduction

1.1 Background

In recent years, human motion sensing technologies have attracted increasing attention in the

fields of medicine and healthcare. This has been driven by electronic device advancements,

such as enhanced miniaturization, high-speed signal processing, and cost-effectiveness. These

technologies quantify kinetic, kinematic, and spatial motion parameters [e.g., the ground reac-

tion force (GRF), joint angle, and step length/width calculated from leg positions, as shown in

Figure 1.1]. These parameters facilitate the early detection and treatment of progressive mus-

culoskeletal diseases [e.g., knee osteoarthritis (OA)], which are difficult to assess by visual and

X-ray inspections alone.

For example, patients with mild to moderate knee OA [Kellgren–Lawrence (KL) grades 1 and

2] exhibit push-off vertical GRF (vGRF) and total impulse during the stance phase of walking

that are 18% and 12% smaller than those of asymptomatic counterparts, respectively [1]. These

patients also exhibit reductions of 6.9°, 14.5°, and 200 mm in their swing-phase maximum knee

flexion angle [2], range of motion [2], and step length [1] during walking, respectively. In addition,

patients with severe OA (KL grades 3 and 4) exhibit further reductions of 15.4°, 12.1–16.1°, and

230 mm in their swing-phase knee flexion angle [3], range of motion [2, 3], and step length [3],

respectively, compared with moderate OA patients.

This dissertation focuses on sensing systems to quantify the motion parameters of patients

that have mild to moderate progressive musculoskeletal disease but do not exhibit extreme move-

ment disorders. The systems require to estimate and track human motion using wearable/fixed

sensors, which are accessible and suitable for use in small clinics and healthcare centers. In

accordance with the previous studies [1–3], this dissertation sets the sensing accuracy criteria

to 12% for the vGRF, 6.9° for the knee flexion angle, and 100 mm for the leg position when

1



1. INTRODUCTION

(a) (b) (c)

Figure 1.1. Motion parameters focused on this dissertation. (a) Vertical ground reaction force, (b) knee
joint angle, and (c) step length and width calculated from leg positions.

calculating step length.

1.2 Overview of Motion Sensing Systems

1.2.1 Kinetic Motion Sensing Systems

Force plates are the gold standard for measuring GRF because of their high accuracy. However,

they are often cost-prohibitive for use in small clinics. In addition, their fixed installation does

not support measurement during continuous walking for long distances and leads the patients

to target the plates causing unnatural walking.

As an alternative to force plates, various wearable systems measuring/estimating GRF during

long-range walking have been proposed, for example, inertial measurement units [4–8], mobile

force plates [9,10], and force sensing insoles [11,12]. In particular, the insole-type sensors do not

affect natural walking and exhibit advantages in terms of evaluating pathological gaits, through

measurement of stance duration, the center of pressure (COP), and GRF on each foot. Some

of these devices have already been commercially available [e.g., Pedar (Novel, Munich, DE) and

F-Scan (Tekscan, South Boston, US)]. They measure plantar pressure, which approximately

matches vertical ground reaction force (vGRF) [11,12], and can estimate shear forces and joint

torques through an inverse dynamics-based optimization using vGRF, COP, and kinematic in-

formation [13–16]. However, the full cost of these commercial devices remains prohibitive for

widespread use at clinical sites.

Accordingly, previous studies have developed various in-shoe measurement systems using

a small number of low-cost force sensing resistors (FSRs) [17–21]. In addition, some groups

estimated GRF from these sensors or local plantar pressure measurements by representing their

relation using machine learning techniques (e.g., linear [22–25] and nonlinear regressions [26–29]),

with root mean square errors (RMSEs) under 10%. Note that learning a model to estimate GRF

2



1. INTRODUCTION

from insoles should be performed as subject-specific owing to individual differences in the sizes

and shapes of the foot.

1.2.2 Kinematic Motion Sensing Systems

Infrared motion capture cameras with retroreflective markers are typically employed for accurate

kinematic motion analysis. However, their fixed installation limits the measurement range.

Meanwhile, IMUs integrating accelerometers, gyroscopes, and magnetometers have recently

achieved remarkable development as wearable motion-sensing technologies [30]. The system

reconstructs human motion using the orientations of IMUs attached to the body segments.

To estimate the sensor orientation, a strap-down-integration of the angular rates is typically

employed and its drift is eliminated using the gravitational acceleration and heading determined

from magnetometer measurements if available. Although numerous fusion algorithms have been

proposed, elimination of long-term drift and compensation for magnetic disturbances inevitable

in a living environment still have attracted interest from researchers [31]. In addition, IMUs are

typically made of rigid components and must be tightly attached to the body because the motion

reconstruction is based on fixed sensor-to-segment frames and linked rigid-body modeling. The

restraints these introduce restrict their long-term wearability in daily life.

As alternatives to IMUs, it has been proposed to use wearable sensors that directly measure

changes in the joint angles, such as electrogoniometers (rotational potentiometers) [32,33], fiber-

optic sensors [34–37], flex sensors [38–40], and stretchable strain sensors [41–47]. In particular,

the stretch sensor, which transduces a mechanical deformation (sensor strain) to resistive or

capacitive change, can (i) comply with fabric stretch and capture motion, (ii) avoid mechanical

damage to the sensor, (iii) maintain user comfort when incorporated into garments (e.g., gloves

[43], knee/ankle braces [44], or soft sensing suits [41,46,47]).

To estimate joint motions from such sensors, previous studies have modeled relationships be-

tween the sensor strains and motion parameters (e.g., joint angles or positions) via supervised/semi-

supervised learning. For example, Nakamoto et al. [43] constructed a glove instrumented with

a stretch sensor, whose capacitance was proportional to the square of the stretch length. They

applied a linear least squares technique and estimated the wrist joint angle from the sensor

capacitance with an RMSE less than 3°. Totaro et al. [44] integrated three/five capacitive sen-

sors into commercial knee/ankle braces. They combined sensor outputs using third, fourth, and

fifth-order polynomials and estimated joint angles (knee flexion/extension, ankle dorsi/plantar

flexion, adduction/abduction, and rotation) with an RMSE less than 4°.

3



1. INTRODUCTION

1.2.3 Spatial Motion Sensing Systems

In achieving the continuous tracking of the absolute positions of legs in the measurement space,

fixed sensors still retain an advantage over wearable sensors such as IMUs, which are prone to

drift errors. Although motion capture cameras are the gold standard for spatial sensing, they

are not always accessible at clinical sites, owing to their cost, scale, and portability, as well as

the complexity of their operations (e.g., camera calibration and pasting markers to appropriate

positions).

In contrast, robotic vision technologies, (e.g., sonar sensors [48–51], RGB-Depth sensors

[52–56], and laser range sensors (LRSs) [57–72]) have recently been employed for human detection

and tracking. In particular, LRSs can obtain highly accurate two-dimensional distance data over

wide ranges and can detect/track both legs during walking when installed at shin height (100–

300 mm from the floor). To detect leg positions from scanned distance data, previous works

have applied specific geometrical shapes [57, 58, 62–66, 72] or supervised learning techniques

[59,61,67–70].

To track both legs while simultaneously maintaining their left/right distinction, numerous

groups have combined motion prediction based on human walking models using linear/unscented

Kalman filters [58,65,66,71] or particle filters [64,67] and data association techniques (e.g., global

nearest neighbor (GNN) [58, 64, 66] or joint probabilistic data association [67] algorithms). For

example, Yorozu et al. [66] tracked a timed up and go test that included rapid turning, by

using the Kalman filtering considering gait phase and a GNN-based data association. They also

applied Catmull–Rom spline-based interpolations to leg occlusions (i.e., where one leg is hidden

from the sensor by the other). The errors of the tracked leg trajectories were approximately 50

mm when verified against motion capture cameras. Meanwhile, when walking on circular paths

(useful for assessing fall risks [73, 74]), occlusion occurs continuously in several sampling steps

and produces false tracking. To address this, several groups have proposed combinations of an

LRS and RGB-Depth camera [58,64] or IMU [63] to obtain the walking direction or spline-based

trajectory interpolation after occlusion [66,72].

1.3 Problem Definition

To estimate and track human motions using wearable/fixed sensors, the system must model

the user-specific relationships between the sensor measurements and the motion parameters or

complex nonlinear motion dynamics. However, existing learning approaches decrease estimation

accuracy through overfitting when the diversity and size of the dataset are constrained by device

resources and the feasibility of user motion. In addition, the single model cannot adapt to

4



1. INTRODUCTION

changes in the sensor–motion relationship because of the sensing conditions and the complicated

motions that cannot be represented by a specific model. To address these issues, data-efficient

learning using small datasets and limited sensor resources (i.e., without highly accurate devices)

are required to generate motion estimation models. Moreover, multiple models must be trained

according to the measurement condition, and adaptive estimation through selecting an adequate

model therefrom must be established to handle the changes in sensor–motion relationships and

complicated dynamic motions. Examples of these problems in measurement/estimation systems

for kinetic, kinematic, and spatial motion parameters are described below.

1.3.1 Problems in Estimation of GRF Using Instrumented Insole

To estimate GRF from a small number of force sensors or local plantar pressure measurements,

previous studies have proposed to learn a user-specific model, representing relationships between

insole measurements and GRF, using linear/nonlinear regressions [22–24,26–29]. However, these

learning methods have two fundamental problems remaining in order to be used at clinical sites.

First is that they rely on the use of highly accurate devices (e.g., force plates) unavailable in

small clinics to obtain ground truth of GRF as a target value of learning. Second is that the

learning requires measurements of multiple walking steps (e.g., 10–20 steps on the floor [23] or

60–120 s on an instrumented treadmill [27,29]) to prevent overfitting on small datasets, because

foot contact conditions (e.g., force magnitude and plantar pressure distribution) vary between

steps. However, the measurement of multiple steps prior to a clinical test induces fall risks and

physically taxes elderly people and patients with musculoskeletal disease. In addition, an efficient

learning procedure is desired in clinical assessments owing to consultation time limitations.

1.3.2 Problems in Estimation of Joint Angle Using Stretch Sensor

To estimate joint motions from stretch sensors incorporated into garments, previous stud-

ies have modeled the relationship between the sensor strains and motion parameters using

supervised/semi-supervised learning techniques (e.g, linear/polynomial regressions [43, 44] or

deep neural networks (DNN) [46, 47]). However, typically these only model a single relation-

ship assuming the sensor to be located at a specific point on the body. Consequently, these

approaches may exhibit reduced performance when the strain–parameter relationship varies due

to shifting of the sensor with respect to the body, which is caused by long-term wearing or

donning/doffing of garments. Especially in the knee brace, Brouwstein [75] reported that 15

min of exercise induces the brace shift of up to 11 mm, and Singer et al. [76] mentioned that

individuals will likely stop their activity to adjust the brace position when it has shifted by more

than 20 mm distally on the leg. Thus, the previous single model-based approaches may decrease
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motion estimation accuracy when unnoticed brace shift occurs during long-term use.

1.3.3 Problems in Leg Tracking Using LRS

To track both legs during walking, previous studies have combined a state prediction using

model-based Kalman/particle filters and data association techniques. However, when walking on

circular paths, the position estimation accuracies decrease because continuous occlusion occurs

over several sampling steps preventing observations from being obtained. This arises because

human leg motions are highly nonlinear and difficult to model accurately [58, 77]. Accordingly,

numerous groups have installed LRSs onto mobile robots that follow humans at relatively close

distances (1–2 m) and tracked legs using models that consider horizontal rotation, angular

velocity, and/or angular acceleration [58, 63, 67]. Meanwhile, a clinical assessment system must

track legs across a wider range (3–5 m from the sensor) using an LRS fixed to the floor [65,66].

However, the number of lasers irradiating the leg surface decreases as the distance from the

sensor increases, because the laser spreads radially. This increases the position error and makes

it difficult to accurately obtain the walking direction and angular velocity prior to occlusion,

causing accuracy of motion prediction during occlusion to further deteriorate. To address this

problem, sensor combination that measures walking direction have been proposed, however,

unnatural wearable devices (e.g., IMUs mounted on the back [63]) can affect natural walking, and

RGB cameras [58,64] are unsuitable for clinical use because of privacy protection regulations [78].

1.4 Major Contributions

This dissertation presents biomechanics-driven stochastic learning for human motion sensing

systems, which achieves the data-efficient learning of motion estimation models from limited

datasets and the adaptive estimation using multiple models. For data-efficient learning, train-

ing/constraint dataset acquisition or data augmentation, which are based on human biomechan-

ics, and stochastic learning techniques enable learning of sophisticated models using a small

dataset with constrained diversity while avoiding overfitting. For adaptive estimation, the learn-

ing of multiple stochastic models and biomechanics-based identification of the appropriate model

therefrom allow changes in the sensor–motion relationship and complicated dynamic motions to

be handled, which is difficult to achieve using a single model.

1.4.1 Data-efficient Learning for User-specific Model Acquisition

Chapters 2 and 3 present the data-efficient learning for generating motion estimation models

from small datasets and limited sensor resources (i.e., without highly accurate devices). More
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specifically, to estimate vGRF during walking using an insole instrumented with a small number

of force sensors, constrained linear least squares regression and Gaussian process regression

combined with a data augmentation—which utilize biomechanics (i.e., vGRF characteristics

during single leg stance and/or walking)—learn sophisticated models while avoiding overfitting

on limited datasets.

1.4.2 Multiple Model Learning for Adaptive Estimation

Chapters 4 and 5 describe the learning of multiple Gaussian mixture models (GMMs) and the

adaptive estimation using the maximum likelihood (ML) model. These models handle changes

in the relationships between the sensor measurements and the motion parameters or complex

motion dynamics, which are difficult to represent with a single model. More specifically, to

estimate joint angles using a brace instrumented with two stretch sensors, the system learns

different strain–angle relationships at varying brace shift positions, which are induced by biome-

chanics (i.e., characteristics of the skin stretch around the joint). The ML model identified by

referring to the relationship between the two sensor strains estimates the joint angle adaptively

to the brace shift. In LRS-based leg tracking, the relationships between trajectories of the legs

and their traveling directions during walking under different curvatures/directions are modeled

in advance by GMMs. The system then estimates the direction and position of the hidden leg

during occlusion using the ML GMM, which is identified from the joint probability of both legs’

trajectories using biomechanics (i.e., interlimb coordination during one walking cycle).

1.5 Dissertation Outline

This section presents an outline of the dissertation. Figure 1.2 depicts the overall configuration.

Chapter 1 describes the background and major contributions. Chapters 2–6 are summarized as

follows.

Chapter 2: Force Plate-free Learning for Estimation of Vertical Ground Reaction

Force Using Instrumented Insole

Chapter 2 presents force plate-free learning that estimates vGRF during walking using an

insole instrumented with a small number of force sensors. This method uses limited data that

consists of only the insole measurements and the user’s body weight. The system learns a linear

regression model between the insole measurements during a single leg stance (SLS) and the

body weight by the least squares method, which is based on biomechanics that vGRF during

the SLS approximately matches the body weight. In the regression, linear constraints for the

upper/lower bounds based on the biomechanics that the magnitudes of peak/trough vGRFs and
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stance durations during natural walking are linearly related are added to prevent overfitting.

Chapter 3: One-step Learning for Estimation of Vertical Ground Reaction Force

Using Instrumented Insole

Chapter 3 presents data-efficient one-step learning for deriving insole-based vGRF estima-

tion. It requires only one walking step to be performed, which is useful for users who struggle to

perform SLS or multiple-step walking because of decreased motor abilities. The system proba-

bilistically augments the actual insole measurements and vGRF obtained from a low-cost body

scale for one step to a virtual dataset for multiple steps. This augmentation is based on the

biomechanical assumption that the insole measurements and vGRF obtained from the scale vary

between multiple walking steps owing to inconsistencies in walking behaviors. The system then

learns a Gaussian process regression model that can avoid overfitting on small datasets.

Chapter 4: Shift-adaptive Estimation of Joint Angle Using Instrumented Brace

with Two Stretch Sensors

Chapter 4 presents a shift-adaptive estimation to obtain the joint angle from a knee brace

instrumented with two stretch sensors. This method involves learning multiple models and

performing adaptive estimation to changes in the relationship between the sensor strains and

the joint angle due to the brace shift. The system induces changes in the relationship between

the strains of the two stretch sensors, which are placed above and below the patella hole of the

brace, utilizing biomechanics that the skin strain is high in the patella area and rapidly decreases

further from the joint. The relationship between the two sensor strains and the joint angle at

varying brace shift positions is then learned using user-specific GMMs. In the estimation, an

ML GMM (i.e., the brace shift position) is identified by referring to the relationship between

the two sensor strains. The angle is then calculated adaptively to the brace shift using the ML

GMM.

Chapter 5: Learning-based Occlusion Compensation for Leg Tracking Based on Fu-

sion of Laser Range Sensor and Instrumented Insoles

Chapter 5 presents a learning-based occlusion compensation for leg position based upon the

interlimb coordination for one walking cycle. This facilitates LRS-based tracking of compli-

cated dynamic motions of both legs during walking on circular paths. The system measures

straight walking and turning under different curvatures/directions in advance, and then learns

the relationship between the trajectory and traveling direction of each leg during one cycle of

each walking type, using user-specific GMMs. In the tracking, an ML GMM (i.e., the walking

type) is identified using a joint probability of both legs’ trajectories during the walking cycle,
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in accordance with the biomechanics that both legs move in a coordinated manner. The ML

GMM then estimates the traveling direction and position of the hidden leg during occlusion.

Chapter 6: Conclusion

Chapter 6 summarizes the findings obtained from the aforementioned investigations, presents

conclusions, and suggests directions for future research.
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Chapter 2

Force Plate-free Learning for

Estimation of Vertical Ground

Reaction Force Using Instrumented

Insole

2.1 Chapter Overview

This chapter presents force plate-free learning that estimates vGRF during walking using an

insole instrumented with a small number of force sensors. This method uses limited data that

consists of only the insole measurements and the user’s body weight. The system learns a linear

regression model between the insole measurements during SLS and the body weight by the least

squares method, which is based on biomechanics that vGRF during the SLS approximately

matches the body weight. In the regression, linear constraints for the upper/lower bounds

based on the biomechanics that the magnitudes of peak/trough vGRFs and stance durations

during natural walking are linearly related are added to prevent overfitting.

2.2 Force Plate-free Learning

2.2.1 Hardware

This study designed an insole instrumented with 15 force sensing resistors (FlexiForce Standard

Model A301, Tekscan, South Boston, US), as shown in Figure 2.1(a). The sensors were fixed on

an insole-shaped overhead projector (OHP) sheet using a polytetrafluoroethylene (PTFE) tape.
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(a) (b)

Figure 2.1. (a) The insole was instrumented with 15 force sensors. (b) The electric circuit board was
placed on the back of the user’s lower leg.

Three sizes of the insole were developed corresponding to the differences in shoe sizes between

users. The small size was men’s size 6 (women’s 6.5), the middle size was men’s size 7 (women’s

7.5), and the large size was men’s size 9 (women’s 9.5). The sensor positions were determined

from [23] to cover a typical pressure distribution on the foot anatomical areas [79]. The sensor

measures the force applied to the sensing area using an inversely proportional relationship with

changes in resistance. All sensors were calibrated using a load cell (Press Force Sensor 9313AA2,

Kistler, Winterthur, CH) prior to installation. The instrumented insoles were inserted into shoes

(LD AROUND M, Mizuno, Tokyo, JP) according to correct sizes and were covered with an insole,

which is a stainless-steel sheet of 0.45 mm thickness sandwiched by ethylene-vinyl acetate (EVA)

copolymer sheets. In addition, a circuit board comprising a microcontroller, op-amps, analog-

to-digital (A/D) converters, a microSD card, and a radio module was developed to record sensor

measurements through a voltage divider with a buffer amplifier and synchronize the system with

external devices. As shown in Figure 2.1(b), the board was fixed to the back of the user’s lower

leg and connected to the insole using a ribbon cable.

2.2.2 Learning Flow

To estimate vGRF during walking from the insole measurements, a linear least squares regression

with constraints and a bound is used to learn a model. The flow of the force plate-free learning

is shown in Figure 2.2.

(1) Measurement of SLS and Walking

First, SLS including standing on a heel and a toe, and natural walking are measured only by the

insoles. SLS is used because vGRF during SLS approximately matches the body weight, which

can be clearly defined as the output value of learning and easily obtained using a low-cost body
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Figure 2.2. (Top) Flow of the insole-based estimation of vGRF using the force plate-free learning from
SLS and natural walking. (a) SLS including standing on a heel and a toe is measured by only the insoles.
(b) Natural walking is also measured by only the insoles. (c) A linear least squares regression fits the
insole measurements during SLS to the body weight. This learns a model while avoiding overfitting using
constraints that peak/trough vGRFs estimated during natural walking are of proper magnitude. (d)
The insole estimates vGRF during walking using the learned model. (Bottom) Data flow of the force
plate-free learning.
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Figure 2.3. A vGRF measured using force plate (black line) and the total force of the insole sensors (gray
line) during one walking step. Solid lines represent the forces in mid-stance between two peaks of the
insole force. Red and blue lines indicate the upper/lower bounds to peak/trough vGRFs, respectively.

Figure 2.4. Relationships between peak/trough vGRFs (red/blue dots) and stance duration. Black
lines are linear approximations to each dataset. The dash-dot (fbp) and dot lines (fbt) are upper/lower
bounds defined as linear functions of stance duration (ts), considering 95% prediction intervals of the
approximations.

scale. The standing on the heel and toe aims to reenact foot contacts close to walking.

(2) Constrained Linear Least Squares Regression

To learn the estimation model, a linear least squares regression then fits the insole measurements

during SLS to the body weight. To prevent overfitting to the constant value (i.e., the body

weight), constraints are added to the regression so that peak/trough vGRFs estimated from

the insole measurements during natural walking are of proper magnitude. These constraints

are based on the biomechanics that vGRF typically has two peaks corresponding to weight

acceptance and push-off impulse in a stance [80], whose magnitude changes proportionally to

walking velocity that ranges from 0.75 to 2.00 m/s [81] and up to 3.5 m/s [82]. Referring to
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these features, this study defines the upper bound for estimated peak vGRFs as a linear function

of stance duration as an alternative to walking velocity. This is because stance duration can be

directly captured by the insole [83, 84] unlike walking velocity, and its percentage to the gait

cycle linearly reduces as the velocity increases [85, 86]. In addition, as shown in Figure 2.3,

a lower bound for the trough vGRF in mid-stance is added as the constraint to enhance the

estimation performance. This constraint is also defined as a linear function of stance duration.

From the above, the regression form is given as follows:

min
ws

1

2

Ns
s∑

j=1

(
ns∑
i=1

wsiF
s
sij −mg

)2

(2.1)

subject to



ns∑
i=1

wsiF
we
sij ≤ fbp(ts) (j = 1, . . . , Nwe

s )

ns∑
i=1

wsiF
wm
sij ≥ fbt(ts) (j = 1, . . . , Nwm

s )

0 ≤ ws

(2.2)

where ws is the coefficient weight vector for the insole forces, N s
s is a size of the force data

obtained from the insole during SLS, ns is the number of insole sensors, F s
s is the input data

matrix obtained from the insole during SLS, and mg is the user’s body weight. In the linear

inequality constraints, Fwe
s and Fwm

s are the data matrices obtained from the insole in entire

stance phase and mid-stance during walking, respectively. The mid-stance is defined as a period

between the two peaks of the insole total force, as depicted in Figure 2.3. Sizes of these data

matrices are Nwe
s and Nwm

s . The bounds fbp and fbt, which are defined as functions of stance

duration ts, are the upper and lower bounds for peak/trough vGRFs, respectively. The lower

bound of the weight vector was set to 0 to ensure that the weights remain positive because a

negative force would be unnatural. This study assumed that the effect of horizontal GRF during

SLS and walking was negligible in accordance with the report that the total plantar pressure

measured by a commercial insole-type sensor approximately matched the vGRF (the difference

was less than 4% [12]).

(3) Predefinition of Constraints

To define the upper/lower bounds of constraints as linear functions of stance duration, five

healthy adults with no gait abnormalities (age: 22.8 ± 1.2 years, height: 1.70 ± 0.05 m, body

mass: 60.5 ± 4.5 kg) were recruited for a pre-experiment. The experiment was approved by

Keio University Research Ethics Committee (reference number 30–68). All participants provided

informed consent. The participants were asked to perform straight walking, and vGRF in their

fourth and fifth steps were measured using force plates (Kistler, Winterthur, CH) at 1000 Hz.
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Insole

WBB

Force plate

(a) (b)

Insole

Figure 2.5. Task executions and walkway of the experiment A. (a) Participants performed SLS on the
WBB. (b) Participants walked straight at a self-selected pace with their fourth and fifth steps contacting
the force plates.

The task was repeated 10 times and the data from 20 steps were collected per participant.

Stance duration was obtained as a period from heel contact to toe-off, which were detected from

the threshold of 50 N. The peak/trough vGRFs and stance duration in each step were collected

from all participants and then applied linear approximations, as shown in Figure 2.4.

The stance durations were ranged from 613 to 804 ms, and coefficients of determination for

the approximations were R2 = 0.633 and R2 = 0.586 for the peaks and trough, respectively. The

results show that the vGRF decreased at the peaks and increased at the trough as the stance

duration extended. From these results, the upper/lower bounds for the peak/trough vGRFs

were defined as linear functions of the stance duration considering 95% prediction intervals

using standard errors of the approximations (SEbp/bt), as follows:

fbp(ts) = (−1.24ts + 2.11 + 1.96SEbp)mg (2.3)

fbt(ts) = (1.03ts − 0.01− 1.96SEbt)mg (2.4)

2.3 Evaluation of Force Plate-free Learning

2.3.1 Experiment A: Validation for Healthy Young Adults

(1) Study Procedure

Four healthy males (age: 25.3 ± 2.9 years, height: 1.71 ± 0.07 m, body mass: 68.6 ± 7.3 kg,

shoe size: L) differed from the subjects in the pre-experiment participated in this experiment.

All participants provided informed consent. The participants wore shoes with the instrumented
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insoles inserted. Their task executions were measured using the insoles, two scales (the Nintendo

Wii Balance Board, Nintendo, Kyoto, JP), and two force plates (Kistler, Winterthur, CH). The

Nintendo Wii Balance Board (WBB) is a portable scale and can measure vGRF with an error of

3% [87]. The WBBs were used to obtain vGRF during SLS. The measurements were collected

from the insoles and the WBBs at 100 Hz and the force plates at 1000 Hz. All devices were

synchronized via voltage inputs and radio communications.

As shown in Figure 2.5, the participants were asked to perform the following tasks:

A. As shown in Figure 2.5(a), the participants performed SLS on the WBB and alternatively

stood on their heel and toe three times at their selected pace. During the SLS, participants

were allowed to put their hands on the wall to maintain balance. This task was repeated

five times.

B. The participants walked straight and naturally eight steps on the floor at their selected

pace. This task was repeated four times.

C. As shown in Figure 2.5(b), the participants walked straight and naturally at a self-selected

pace with their fourth and fifth steps contacting the force plates. This task was repeated

10 times.

Data analysis was executed using MATLAB (MathWorks, Natick, MA, US). The measurements

of all devices for the right foot were used for the analysis. Noise and data loss of the insole

measurements were handled using a fifth-order one-dimensional median filter. In task A, the

participants’ body weight was measured during standing on both feet before starting SLS. The

SLS phases were obtained as the duration from the lifting to the landing of the foot opposite

to the supporting side, and the first and last 1 s were excluded as transient states. In task B,

the fourth walking step was used for the constraints of learning. Using these data, MATLAB

Optimization Toolbox solved the constrained linear least squares problem, as described in (2.1),

to learn a regression model based on the interior-point method.

To evaluate the learned model, a dataset of the insole and force plate in a stance phase and

100 ms before/after that during walking was obtained from 10 trials in task C. Measurements

of the force plate were resampled at 100 Hz according to the insole. The accuracies of vGRF

estimated by the learned model were evaluated by comparison with ground truth obtained from

the force plate, using a normalized root mean squared error (nRMSE), which is calculated as a
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Table 2.1. Mean (± SD) of vGRF during SLS for five trials and overall.

ID Trial 1 (%BW) Trial 2 (%BW) Trial 3 (%BW) Trial 4 (%BW) Trial 5 (%BW) Overall (%BW)
A 99.2 (2.2) 99.5 (2.7) 99.2 (2.3) 99.1 (2.9) 99.1 (2.9) 99.2 (2.6)
B 99.1 (2.0) 99.3 (1.7) 99.4 (2.5) 99.3 (2.6) 99.4 (2.2) 99.3 (2.2)
C 99.9 (3.3) 99.8 (3.4) 100.1 (5.0) 100.1 (3.6) 100.1 (3.6) 100.0 (3.8)
D 99.8 (4.5) 99.5 (3.8) 99.8 (4.2) 99.8 (4.1) 99.8 (3.9) 99.8 (4.1)

Table 2.2. Stance duration and accuracy of estimated vGRF during walking.

ID SDLEARN (ms) SDEVAL (ms)
nRMSE (%BW)

W/O UPCONST UPLIN UL90%
LIN UL95%

LIN UL99%
LIN

A 665 (10) 647 (12) 13.8 (2.4) 13.4 (2.6) 14.7 (2.6) 8.7 (1.5) 8.4 (2.3) 9.3 (2.4)
B 670 (8) 652 (11) 24.2 (13.3) 17.9 (4.4) 15.1 (3.1) 9.2 (3.5) 9.8 (2.6) 10.6 (3.2)
C 670 (18) 644 (11) 21.4 (5.8) 14.7 (1.9) 11.6 (2.0) 10.6 (4.4) 10.4 (3.6) 10.9 (2.5)
D 705 (21) 678 (12) 13.3 (1.7) 13.3 (1.7) 12.3 (1.6) 7.1 (1.1) 6.6 (0.9) 7.2 (1.3)

Overall 678 (18) 655 (16) 18.2 (8.7) 14.8 (3.4) 13.4 (4.2) 8.9 (3.2) 8.8 (2.9) 9.5 (2.8)
p 0.011 0.016 0.028

1− β 0.445 0.516 0.398

percentage of the body weight (%BW) as follows:

nRMSE (%BW) =

100

√
1
Nt

Nt∑
k=1

(ffpk − festk)2

mg
(2.5)

festk = w>s f sk (2.6)

where k is the time step, Nt is a size of the test dataset in stance phases and 100 ms before/after

them, ffpk is the ground truth obtained from the force plate at k, and festk is vGRF estimated

by the learned model from the insole forces f sk at the same time step.

To evaluate the effect of prediction intervals of fbp(ts) and fbt(ts) on the proposed method

(UL95%
LIN ), the nRMSE of the methods using linear constraints with 90/99% prediction intervals

(UL90%
LIN/UL99%

LIN ) were also calculated. In addition, comparative methods, using linear regressions

with no constraints (W/O), a fixed upper constraint with 140% of the body weight (UPCONST)

[88,89], and an upper constraint as a linear function of stance duration (UPLIN), were examined

using the same datasets with the proposed method. Their estimation accuracies were also

evaluated using nRMSEs for 10 trials in task C. The accuracy criteria were set to 12% since its

validity for capturing pathological gaits has been reported. This includes mild to moderate knee

osteoarthritis (OA), which decreases push-off forces by 18% and total impulse by 12% compared

with healthy controls [1].
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(Subject A) (Subject B)

(Subject C) (Subject D)

FP UPCONST ULLIN

Figure 2.6. vGRF lines estimated by the comparative (UPCONST) and proposed (ULLIN) methods and
ground truth obtained from the force plate (FP) in a stance are illustrated for each participant. Each
plot is the mean of 10 trials in task C.

(2) Results

The results of vGRF during SLS measured by the WBB are listed in Table 2.1. The mean (±
SD: standard deviation) is given for each participant and overall. The results show that the

mean vGRF during SLS exceeded 99% of the body weight for all participants, which indicates

that every participant did not extremely lean against the wall.

Stance duration of walking steps for constraints (SDLEARN) and evaluation (SDEVAL), and

nRMSE of the comparative (W/O, UPCONST, UPLIN) and proposed (UL90%
LIN , UL99%

LIN , UL95%
LIN )

methods are listed in Table 2.2. The mean (± SD) is given for each participant and overall.

The results show that stance durations for both constraints and evaluation for all participants

were within the range obtained from the pre-experiment (600–800 ms). The mean differences

between stance duration for the constraints and evaluation were under 30 ms. The proposed

methods (UL90%
LIN , UL99%

LIN , UL95%
LIN ) enhanced the estimation accuracies for overall participants

when compared to the other methods. The accuracies of the proposed methods were evaluated
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(a) (b) (c)

Figure 2.7. Task executions and walkway of experiment B. (a, b) Participants performed SLS on the WBB.
(c) The participants walked straight at a self-selected pace with their fourth and fifth steps contacting
the WBB.

by one-sample t-tests. The null hypothesis was that the accuracy of these methods came from

a population with a mean of 12%, and was against the alternative that the mean was under

12%. As listed in Table 2.2, the tests for all methods rejected the null hypothesis at the 5%

significance level and supported the alternate hypothesis (p < 0.05). Meanwhile, the powers of

the tests (1−β) were less than 0.8 and did not provide strong statistical support for the results.

The vGRF lines estimated by the comparative and proposed methods (UPCONST,UL95%
LIN )

are presented in Figure 2.6. Each line is the mean of all trials in task C. These results show that

the proposed method using upper/lower bounds as linear functions of stance duration improved

estimation accuracies at the two peaks and the trough when compared with the method using

the fixed upper bound.

2.3.2 Experiment B: Validation for Elderly and Patients with Gait Disorders

(1) Study Procedure

To examine the validity of the force plate-free learning for the elderly and patients with mild gait

disorders, the experiment recruiting 13 elder women was conducted at a local healthcare center.

All participants provided informed consent prior to the experiments. The participants wore

shoes with the instrumented insoles (S size). Their task executions were measured using the

insoles and the two WBBs at 100 Hz. Both devices were synchronized via radio communications.

The participants were asked to perform the following tasks, as shown in Figure 2.7:

A. As shown in Figure 2.7(a,b), the participants performed SLS on the WBB and alternatively

stood on their heel and toe three times at their selected pace. During the SLS, participants
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Table 2.3. Characteristics of participants in experiment B.

ID Age (years) Height (m) Weight (kg) BMI KL NRS HV angle (°)
E 70 1.52 55.2 23.9 1 0 1
F 77 1.58 57.2 22.9 2 3 10
G 76 1.52 51.8 22.4 0 0 9
H 67 1.58 48.1 19.3 1 2 5
I 73 1.53 45.0 19.2 1 3 15
J 75 1.53 38.8 16.6 0 0 11
K 74 1.53 52.1 22.3 1 0 6
L 83 1.48 54.0 24.7 2 0 9
M 77 1.53 48.0 20.5 1 0 5
N 82 1.40 41.7 21.3 2 1 5
O 79 1.52 52.1 22.6 2 3 0
P 79 1.50 42.8 19.0 2 0 19
Q 69 1.57 49.9 20.2 1 0 34

Overall 75.5 (4.8) 1.52 (0.05) 49.0 (5.6) 21.1 (2.2) 1.2 (0.7) 0.9 (1.3) 9.9 (8.9)

were allowed to put their hands on the wall to maintain balance.

B. The participants walked straight and naturally eight steps on the floor at their selected

pace.

C. As shown in Figure 2.7(c), the participants walked straight and naturally at a self-selected

pace with their fourth and fifth steps contacting the WBBs. The participants walked on

the WBB with a small step up owing to a little height (53.2 mm).

Measurements of both devices for the right foot were used for data analysis using MATLAB.

In task A, the participant’s body weight and data during SLS were obtained through the same

process as experiment A. In task B, two steps after the fifth step of the straight walking were

used for constraints of the proposed learning method. Using these data, the linear least squares

regression (2.1) was executed to learn a model to estimate vGRF during walking.

To evaluate the models, a dataset of the insole and the WBB in a stance phase and 100 ms

before/after that was obtained from the 10 trials in task C. The estimation accuracy of vGRF

was evaluated by comparison with ground truth obtained from the WBB using nRMSE.

(2) Results

Characteristics of the participants are described in Table 2.3. As the indexes related to gait

disorders, the KL grade for classifying the severity of knee OA, numerical rating scale (NRS)

reflecting the intensity of knee pain, and hallux valgus (HV) angle are given for the right foot

of each participant. The participants included five patients with knee OA (KL grade 2), five

participants with knee pain symptoms in the last month (NRS ≥ 1), and three patients with an

HV (HV angle ≥ 15°).
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Table 2.4. vGRF during SLS, stance duration, and accuracy of estimated vGRF during walking.

ID vGRFSLS(%BW) SDLEARN(ms) SDEVAL(ms) SDDIF(ms) nRMSE (%BW)
E 100.2 (4.7) 650 (14) 810 160 (14) 7.6
F 93.8 (8.3) 620 (0) 800 180 (0) 8.4
G 95.7 (6.3) 700 (28) 870 170 (28) 7.7
H 91.0 (6.0) 780 (14) 1160 380 (14) 12.4
I 94.7 (12.1) 650 (14) 820 170 (14) 6.1
J 91.0 (8.4) 660 (0) 1010 350 (0) 17.1
K 88.0 (5.5) 690 (0) 800 110 (0) 13.2
L 95.0 (6.7) 695 (35) 930 235 (35) 14.9
M 89.6 (7.0) 675 (7) 760 85 (7) 18.4
N 95.8 (6.7) 670 (14) 1260 590 (14) 18.1
O 96.2 (3.1) 690 (42) 730 40 (42) 5.3
P 95.0 (5.9) 625 (7) 710 85 (7) 6.9
Q 93.6 (5.6) 655 (7) 730 75 (7) 15.4

Overall 93.8 (3.2) 674 (41) 876 (171) 202 (155) 11.6 (4.8)

(a) (b)

R2 = 0.223

R2 = 0.279

Figure 2.8. (a) The relationship between mean vGRF during SLS (vGRFSLS) and estimation accuracy
of vGRF during walking (nRMSE). (b) The relationship between difference in stance duration for the
constraints and evaluations (SDDIF) and nRMSE. Both relationships indicate moderate correlations.

The mean (± SD) of the vGRF during SLS measured by the WBB in task A (vGRFSLS),

stance durations for the constraints (SDLEARN) and evaluation (SDEVAL), and accuracies of the

vGRF estimated by the proposed method (nRMSE) are summarized in Table 2.4. SDLEARN was

within the range obtained from the pre-experiment (600–800 ms) for all participants. Meanwhile,

mean vGRFSLS was 93.8% of the body weight and SDEVAL was 876 ms (200 ms longer than

SDLEARN), and the accuracy of estimated vGRF varied between participants (11.6% ± 4.8%).

Thus, this study investigated relationships between vGRFSLS, the differences in stance dura-

tions between the constraints and evaluation (SDDIF = SDEVAL−SDLEARN), and the estimation

accuracy of vGRF. As shown in Figure 2.8, the estimation accuracy improved as vGRFSLS ap-

proached the body weight without leaning against the wall and SDDIF became small. The
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SDDIF=300 ms

vGRFSLS=92%
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× Sub. E (7.6%)

× Sub. F (8.4%)

× Sub. G (7.7%)

● Sub. H (12.4%)

× Sub. I (6.1%)

● Sub. J (17.1%)

× Sub. K (13.2%)

● Sub. L (14.9%)

● Sub. M (18.4%)

● Sub. N (18.1%) 

× Sub. O (5.3%)

× Sub. P (6.9%)

● Sub. Q (15.4%)

Figure 2.9. The relationship between mean vGRF during SLS (vGRFSLS) and the difference between
stance duration for the constraints and evaluations (SDDIF). Red cross plots indicate participants with
nRMSE under 12%. Gray lines represent cutoffs for vGRFSLS (dot line) and SDDIF (dash-dot line),
respectively.

relationships between mean vGRFSLS and SDDIF for all participants are illustrated in Figure

2.9. Given these results, cutoffs for applicable conditions of the proposed method were defined

as 92% of the body weight for vGRFSLS and 300 ms for SDDIF. According to Table 2.3 and

Figure 2.9, nine of the participants, including four patients with knee OA, three participants

with knee pain symptoms in the last month, and three patients with an HV, were selected by

these cutoffs. The nRMSEs for the selected participants were under 12% except for subject L

with an HV (34°) and Q with knee OA (KL grade 2), and the mean (± SD) was 9.0% ± 3.9%.

One-sample t-test rejected the null hypothesis that the accuracy of the proposed method came

from a population with a mean of 12% at the 5% significance level (p = 0.034). Meanwhile,

the power of the test (1 − β) was 0.618 and did not provide strong statistical support for the

alternate hypothesis that the mean was under 12%. The vGRF lines estimated by the proposed

method are presented for each participant in Figure 2.10.

2.3.3 Discussion

(1) General Discussion

In experiment A for healthy subjects, although the results did not provide strong statistical sup-

port (1−β < 0.8), the proposed learning method (UL95%
LIN ) and the methods with stricter/looser

constraints (UL90%
LIN , UL99%

LIN ) estimated vGRF with valid accuracy (under 12%, p < 0.05), which

were enhanced when compared to all other methods. The results indicate that the proposed

force plate-free learning is robust to the approximation error of the linear constraints and is

valid for clinical assessment. In addition, Figure 2.6 shows that the accuracies of the estimated

peak/trough vGRFs were improved when compared with the method using the fixed upper

bound. These results indicate that the proposed method, which defines upper and lower bounds
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(Subject E) (Subject F)

(Subject G) (Subject I)

(Subject L) (Subject O)

(Subject P) (Subject Q)

WBB INS

Figure 2.10. vGRF lines estimated from the insole (red) and ground truth obtained from the WBB (black
dash) in a stance are illustrated for each participant.
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of the constraints as linear functions of stance duration, can prevent overfitting to the limited

dataset.

In experiment B for the elderly including patients with gait disorders, the mean vGRF

during SLS was smaller (93.8%) than experiment A. Moreover, the mean difference between

stance duration for the constraints and evaluations was longer than 200 ms, and the nRMSE

varied between participants (11.6% ± 4.8%). Given these results, cutoffs in Figure 2.9 were

provided and the mean nRMSE was 9.0% for the selected eight participants shown in Figure

2.10. Although the results did not provide strong statistical support (1 − β = 0.618), the

accuracy overall was under 12% (p = 0.034).

From the above results, the validity of the force plate-free learning was verified in the fol-

lowing conditions:

A. vGRF during SLS needs to exceed 92% of the body weight without extreme leaning against

a wall.

B. Stance duration for both the constraints and evaluation requires to be within a certain

range, in which linear relationships between vGRF magnitudes at peak/trough and stance

duration are verified (e.g., 600–800 ms in this study). In addition, the difference between

the stance durations for the constraints and evaluation should be small (under 300 ms).

The key finding of this study is that the validity of the proposed learning method under the

aforementioned conditions was verified for not only healthy adults but also the elderly and

patients with various mild to moderate gait disorders, including knee OA, knee pain, and valgus

hallux.

(2) Limitations

This study tested the proposed method for only four healthy young and nine older adults,

which did not provide strong statistical support. Thus, the method needs to be tested for

more people in future research. The system may have difficulty in adapting to patients with

abnormal plantar pressure distribution. The user-specific model handles individual differences

in foot size and pressure distribution to a certain extent by adjusting the coefficient weight for

the sensors. However, estimation accuracy may decrease in some cases; for example, flat feet

wherein pressure concentrates on the arch area where the sensors are not located on the insole.

Thus, the robustness of the sensor locations should be investigated for various plantar pressure

distribution. In addition, the validity of the proposed method was examined for walking on a

relatively hard floor, which is widely used in small clinics. Therefore, the applicability of the

system to softer floors such as carpets used at home needs to be examined in future work. In
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addition, this study focused on assessing the natural walking of patients with mild to moderate

musculoskeletal disease and did not consider the effect of asymmetrical upper body posture and

specific upper limb motion on vGRF. A different learning method may need to be applied to

patients with severe musculoskeletal disease presenting these postures or motions.

2.4 Conclusion

This chapter presented the force plate-free learning that estimates vGRF during walking using

the insole instrumented with a small number of force sensors. This method uses limited data

that consists of only the insole measurements and the user’s body weight. The system learns a

linear regression model between the insole measurements during SLS and the body weight by the

least squares method, which is based on biomechanics that vGRF during the SLS approximately

matches the body weight. In the regression, linear constraints for the upper/lower bounds based

on the biomechanics that the magnitudes of peak/trough vGRFs and stance durations during

natural walking are linearly related are added to prevent overfitting. Through the experiments,

the proposed method showed a valid accuracy (a nRMSE under 12%) for healthy young and

elderly adults with stance durations within a certain range (600–800 ms).
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Chapter 3

One-step Learning for Estimation of

Vertical Ground Reaction Force

Using Instrumented Insole

3.1 Chapter Overview

This chapter presents data-efficient one-step learning for deriving insole-based vGRF estima-

tion. It requires only one walking step to be performed, which is useful for users who struggle to

perform SLS or multiple-step walking because of decreased motor abilities. The system proba-

bilistically augments the actual insole measurements and vGRF obtained from a low-cost body

scale for one step to a virtual dataset for multiple steps. This augmentation is based on the

biomechanical assumption that the insole measurements and vGRF obtained from the scale vary

between multiple walking steps owing to inconsistencies in walking behavior. The system then

learns a Gaussian process regression model that can avoid overfitting on small datasets.

3.2 One-step Learning

3.2.1 Hardware

This study used the insole with 15 force sensors, as described in Chapter 2. To learn a model

to estimate vGRF from the insole, the Nintendo Wii Balance Boards (WBBs) shown in Figure

3.1 were used as low-cost alternatives to force plates for obtaining vGRF during walking. The

device can measure the vertical force applied to the usable surface using four strain gauge load

cells (MinebeaMitsumi, Nagano, JP) located near each of four corners. Previous studies have
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(a) (b)

316 

mm

511 mm

Load cell

Figure 3.1. Appearance of the Nintendo Wii Balance Board (WBB): (a) usable surface, and (b) four load
cells located near the four corners (bottom view).

used the WBB to assess postural instability [90–98] and measure weight-bearing asymmetry or

vGRF during sit-to-stand (squat) [99,100], ski-jumping [101], and walking [87]. In this study, the

WBBs were connected to a laptop computer through a Bluetooth connection and collected their

measurements using custom C++ software. The obtained data were filtered using a moving

average with a window size of 30 ms [87] because the measurements were corrupted by an

inconsistent sample rate and a low signal-to-noise ratio [102].

3.2.2 Learning Flow

A model estimating vGRF from the insole is learned using measurements of the insole and the

WBB during walking on the WBB. Although increasing the size of the dataset for learning could

enhance the performance of the model, measuring many walking steps is often difficult at clinical

sites because of the consultation time limitations and fall risks, and because it physically taxes

elder people and patients with musculoskeletal disease. Meanwhile, the WBB has a measurement

error, and the performance of the deterministic model (e.g., a linear regression model and neural

networks) decreases owing to overfitting when using a dataset of a small number of walking

steps. To overcome these problems, this study proposes data-efficient learning shown in Figure

3.2, which uses measurements of a minimum (just one) step, probabilistic data augmentation,

and a GPR model.

(1) Probabilistic Data Augmentation

First, one walking step is measured by the insole and the WBB, and the dataset is time nor-

malized to 100 equally spaced data points. Datasets for an arbitrary number of walking steps

are then randomly generated at each sampling time point. This data augmentation is based

on the biomechanical assumption that the insole measurements and vGRF obtained from the
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Figure 3.2. (Top) Flow of the one-step learning for the insole-based vGRF estimation during walking. (a)
Measurements of the insole (f s) and the WBB (fwb) are obtained from one walking step on the WBB.
(b) The dataset is time normalized to 100 spaced equally data points. (c) Variability of measurements
between steps is defined using a multivariate normal distribution. (d) Datasets for an arbitrary number
of steps are randomly generated at each sampling time. (e) GPR model is learned using the augmented
dataset. (f) vGRF during walking is estimated from insole measurements using the learned GPR model.
The vGRF typically has two peaks (P1 and P2) and a trough (T) in a stance. (Bottom) Data flow of the
one-step learning.
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(a) (b)

Figure 3.3. Examples of the probabilistic data augmentation. (a) Measurements in one walking step
(black line) are augmented for virtual steps (red dots) using variability of vGRF measured by the WBB
between steps (pink band). (b) The insole forces are augmented at the same sampling time points
(red/blue dots).

WBB vary between multiple walking steps, owing to inconsistencies in walking behaviors. The

variability is defined as a multivariate normal distribution with the probability density function

as follows:

f(d,µda,Σda) =
1

(2π)
s
2

1

|Σda|
1
2

exp

(
−1

2
(d− µda)Σda

−1(d− µda)
′
)

(3.1)

where d is the vector of dataset (insole measurements f s and outputs of the WBB fwb), s is the

summed number of these sensor measurements, the mean vector µda is their actual measurement

during one walking step, and the covariance matrix Σda is their variability between steps defined

from measurements for other users in advance. Taking Figure 3.3 as an example, vGRF obtained

from the WBB and the insole forces vary between 10 steps (bands) for a user. The data

augmentation generates new datasets (dots) of both devices for an arbitrary number of virtual

steps at the same sampling time points, using the measurements in the actual one step (lines)

as the means and their variability as covariance.

(2) Gaussian Process Regression

GPR [103] is used to learn a model using actual/augmented datasets of the insole measurements

and vGRF obtained from the WBB. GPR is a nonparametric kernel-based probabilistic regres-

sion method and can prevent overfitting on the small dataset. In addition, the learned model

can estimate not only a true value but also its standard deviation as the uncertainty of the
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estimate.

The GPR model using a dataset D = {(f si, fwbi); i = 1, 2, ...Ns} is described as the following

form:

fwb = h(f s)
>β + fl(f s), where fl(f s) ∼ GP (0, k(f s,f

′
s)) (3.2)

fwb| fl(f s),f s ∼ N(fwb|h(f s)
>β + fl(f s), σ

2) (3.3)

where the input vector f s is measurements of the insole, the output fwb is vGRF obtained from

the WBB, Ns is the number of sampled time steps, h is constant basis function (Ns-by-1 vector

of 1 s), β is a coefficient vector of h, and σ2 is a noise variance. The latent variable fl(f s) is

a Gaussian process and covariance function K(F s,F s);F s = (f s1,f s2, · · · ,f sNs
)> is set to the

exponential kernel as follows:

K(F s,F s) =


k(f s1,f s1) k(f s1,f s2) · · · k(f s1,f sNs

)

k(f s2,f s1) k(f s2,f s2) · · · k(f s2,f sNs
)

...
...

...
...

k(f sNs
,f s1) k(f sNs

,f s2) · · · k(f sNs
,f sNs

)

 (3.4)

k(f si,f sj |γ ) = σ2f exp

(
− r
σl

)
, r =

√
(f si − f sj)

>(f si − f sj) (3.5)

where kernel functions k(f si,f sj |γ ) are based on the signal standard deviation σf and the

characteristic length scale σl, and r is the Euclidean distance between f si and f sj . The expo-

nential kernel was chosen by referring to the fitting results to datasets in an experiment. σl

defines how far the input vector f si parts to become uncorrelated for f sj . Both σl and σf need

to be greater than 0, and this can be enforced by the unconstrained parametrization vector

γ = (log σl, log σf)
>.

To learn a GPR model, the coefficient vector β, the noise variance σ2 and hyperparameters

γ are estimated from the dataset (F s,fwb). These parameters are calculated to maximize the

marginal log-likelihood function formed as follows:

logP (fwb|F s,β,γ, σ
2) =− 1

2
(fwb −Hβ)>[K(F s,F s|γ) + σ2INs ]

−1(fwb −Hβ)

− 1

2
log
∣∣K(F s,F s|γ) + σ2INs

∣∣− Ns

2
log 2π

(3.6)

where H = (h1,h2, · · · ,hNs)
>, the initial value of σl is the mean of standard deviations of the

input F s, and the initial values of σf and σ are the standard deviation of the output fwb divided

by
√

2. This study assumed that the effect of horizontal GRF during walking was negligible in

accordance with the report that the total plantar pressure measured by a commercial insole-type
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Figure 3.4. Experimental walkways. (a) Participants wearing the insole walked on the WBB with a small
step up. (b) The participants walked on the force plates. In both tasks, the participants walked straight
at a self-selected pace.

sensor approximately matched the vGRF (the difference was less than 4% [12]).

(3) Estimation

The learned GPR model probabilistically estimates vGRF during walking. The probability

density of estimated vGRF festk given fwb, F s, parameters (β,γ, σ2), and an input f sk at time

step k is as follows:

festk|fwb,F s,f sk ∼ N(festk|h(f sk)
>β + µgp, σ

2 + Σgp) (3.7)

µgp = K(f>sk,F s)(K(F s,F s) + σ2INs)
−1(fwb −Hβ) (3.8)

Σgp = k(f sk,f sk)−K(f>sk,F s)(K(F s,F s)+σ2INs)
−1K(F s,f

>
sk) (3.9)

The expected value of estimation festk is as follows:

E(festk|fwb,F s,f sk) =h(f sk)
>β +K(f sk,F s|γ)α

=h(f sk)
>β +

Ns∑
i=1

αik(f sk,f si|γ)
(3.10)

where α = (K(F s,F s|γ) + σ2INs)
−1(fwb −Hβ).
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3.3 Evaluation of One-step Learning

3.3.1 Study Procedure

Six healthy adults (five males, age: 24.0 ± 3.6 years, height: 1.70 ± 0.07 m, body mass: 65.6

± 7.2 kg) were recruited for this study. Ethical approval was obtained from Keio University

Research Ethics Committee (reference number 30–68) prior to the experiments. All participants

provided informed consent. The participants wore shoes with the instrumented insoles inserted.

Their task executions were measured using the insoles, the two WBBs, and two force plates

(Kistler, Winterthur, CH). Measurements were collected from the insoles and the WBB at 100

Hz, and from the force plates at 1000 Hz. All devices were synchronized via voltage inputs and

radio communications. The participants were asked to perform the following tasks in walkways,

as shown in Figure 3.4:

A. For learning the model, the participants walked straight and naturally at a self-selected

pace with their fourth–fifth steps (right–left) contacting the WBBs. At the fourth step,

the participants walked on the WBB with a small step up. This task was repeated 10

times.

B. For evaluating the learned models, the participants walked straight and naturally at a

self-selected pace with their fourth–fifth steps (right–left) contacting the force plates. This

task was repeated 10 times.

3.3.2 Acquisition of Datasets for Learning and Evaluation

In both tasks A and B, measurements of all devices for the fourth steps (right foot) were used

for data analysis. For learning the model, a dataset of the insole and the WBB in a stance

phase during walking was obtained from task A. In addition, the measurements during 100 ms

before/after the stance phase were contained to the dataset in order to suppress estimation

offsets in a swing phase. The datasets for 10 steps were acquired from 10 trials in task A.

For evaluating the models, a dataset of the insole and the force plate in a stance phase and

100 ms before/after that was obtained from task B. The measurements of the force plate were

resampled at 100 Hz to match the insole. The datasets for 10 steps were acquired from 10 trials

in task B.
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3.3.3 Evaluation of Probabilistic Data Augmentation

(1) Data Analysis

For evaluating the effectiveness of the data augmentation, each dataset of 10 walking steps in

task A was augmented with a different number of virtual steps (nda = 0, 1, ..., 8), following

Section 3.2.2(1). For the augmentation, a variability of the insole measurements and vGRF

obtained from the WBB at each sampling time point (1–100) in a step was determined from

datasets of five participants except for each participant. A multivariate normal distribution

was fitted to the datasets of the five participants at the same sampling time points in 10 steps

of task A using the expectation-maximization algorithm, and a mean and covariances of them

were then calculated at each point. Using the dataset from one measured step (10 steps) and

the data augmentation (nda = 0, 1, ..., 8) based on the variabilities defined from the other five

participants in task A, a total of 80 GPR models were constructed. The models were learned

using the MATLAB Statistics and Machine Learning Toolbox.

The performance of learned models was evaluated through their estimation accuracy of vGRF

compared with ground truth obtained from the force plate in 10 steps of task B. To assess the

accuracy of the estimated vGRF in the entire step, the normalized root mean squared error

(nRMSE) was calculated as follows:

nRMSE (%BW) =

100

√
1
Nt

Nt∑
k=1

(ffpk − festk)2

mg
(3.11)

where k is the time step, Nt is the size of the dataset, ffpk is the ground truth obtained from the

force plate, festk is the expected estimate of the model, and mg is the participants’ body weight.

In addition, their accuracies at peaks (P1 and P2) and a trough (T) in the stance described

in Figure 3.2 (f), which were examined as evaluation indexes of gait abnormalities at clinical

sites [1], were assessed using the normalized Error (nError) calculated as follows:

nError (%BW) =
100

(
f ifp − f iest

)
mg

(i = P1,T,P2) (3.12)

To evaluate both nRMSE and nError, estimation accuracy criteria were set to 12% similar to

Chapter 2.
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Table 3.1. Accuracy of vGRF estimated by GPR models using data augmentation.

nRMSE in each number of augmented steps for learning nda (%BW)
ID nda = 0 nda = 1 nda = 2 nda = 3 nda = 4 nda = 5 nda = 6 nda = 7 nda = 8
A 7.0 (4.0) 5.7 (2.2) 5.5 (1.9) 5.8 (2.1) 5.2 (1.5) 5.3 (1.7) 4.9 (1.4) 5.2 (1.5) 5.0 (1.1)
B 8.4 (3.3) 6.7 (2.2) 6.6 (1.9) 6.4 (2.2) 6.3 (1.9) 6.2 (1.9) 6.1 (2.0) 6.2 (1.9) 6.2 (2.1)
C 6.9 (2.1) 5.9 (1.5) 5.8 (1.4) 5.9 (1.3) 5.7 (1.4) 5.8 (1.2) 5.8 (1.4) 6.0 (1.6) 6.0 (1.4)
D 6.7 (2.4) 5.3 (1.7) 5.4 (1.6) 5.0 (1.4) 5.1 (1.6) 5.1 (1.8) 5.1 (1.7) 5.0 (1.6) 4.7 (1.4)
E 13.1 (3.8) 11.6 (2.7) 11.5 (2.5) 10.8 (2.3) 11.4 (2.5) 10.9 (2.4) 11.1 (2.5) 10.7 (2.3) 10.7 (2.4)
F 9.3 (2.6) 8.0 (2.2) 7.9 (2.2) 7.5 (2.1) 7.6 (2.5) 7.9 (2.3) 7.7 (2.4) 7.8 (2.4) 7.8 (2.3)

All 8.6 (3.8) 7.2 (3.0) 7.1 (2.9) 6.9 (2.7) 6.9 (2.9) 6.9 (2.8) 6.8 (2.9) 6.8 (2.7) 6.7 (2.8)
p 0.009 0.002 0.002 <0.001 0.002 0.001 0.001 <0.001 0.001

1− β 0.602 0.951 0.968 0.988 0.977 0.985 0.982 0.990 0.989

Figure 3.5. The nRMSE (for overall) of GPR models learned using the different number of augmented
steps (nda = 0, 1, ..., 8).

(2) Results

The nRMSE of the GPR models learned using datasets consisting of one measured step and the

different number of augmented steps (nda = 0, 1, ..., 8) are summarized in Table 3.1 and Figure

3.5. The nErrors of the GPR models with data augmentation at peaks/trough are shown in

Table 3.2. The mean (± SD) of nRMSE and nError are given for each participant and overall.

The nRMSE and nError for overall were evaluated by one-sample t-tests. The null hypothesis

was that the accuracy of the proposed method came from a population with a mean of 12%,

against the alternative that the mean was under 12%. In addition, vGRF lines estimated by

the GPR models with/without augmentation (nda = 0 and 8), their estimation intervals, and

the ground truth from the force plate are presented in Figure 3.6. Each plot is the mean of 10

steps in task B.

As shown in Table 3.1, although the model without data augmentation (nda = 0) had mean

nRMSE under 12%, the result did not provide strong statistical support (1−β = 0.602). Mean-

while, the data augmentation (nda ≥ 1) showed accuracy with statistical validity (p = 0.002,
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GPR (nda=0)

GPR (nda=8)

Interval (nda=0)

Interval (nda=8)
FP

(Subject A) (Subject B)

(Subject C) (Subject D)

(Subject E) (Subject F)

Figure 3.6. vGRF lines estimated by GPR models learned using datasets with the different number of
data augmentation (nda = 0 and 8 as blue and red lines), the estimation intervals of the GPR models
(Interval), and the ground truth from the force plate (FP) in a stance are illustrated for each subject.
Each plot is a mean of 10 steps in task B.
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Table 3.2. Accuracy of vGRF at P1/T/P2 estimated by GPR models using data augmentation.

nError in each number of augmented steps for learning nda (%BW)
ID Part nda = 0 nda = 1 nda = 2 nda = 3 nda = 4 nda = 5 nda = 6 nda = 7 nda = 8

A
P1 -4.7 (2.8) -3.7 (2.5) -2.1 (3.1) -2.8 (3.0) -1.8 (2.6) -2.1 (3.2) -1.4 (2.9) -2.0 (2.8) -1.1 (3.0)
T -6.0 (8.0) -2.7 (4.2) -1.1 (3.8) -0.4 (3.5) -0.3 (3.5) 0.1 (2.8) 0.6 (3.0) 0.7 (3.3) 0.7 (3.1)
P2 -9.7 (9.2) -7.5 (6.8) -7.2 (5.6) -8.3 (6.2) -6.6 (6.2) -7.0 (5.4) -7.3 (6.2) -6.8 (4.6) -7.7 (6.2)

B
P1 -12.7 (14.7) -6.0 (5.3) -4.6 (4.7) -3.1 (3.6) -4.0 (3.5) -3.1 (4.6) -3.0 (4.7) -3.0 (4.7) -3.4 (4.5)
T -6.7 (14.5) -2.4 (7.5) -0.9 (6.7) -0.8 (7.0) -0.1 (6.4) -0.2 (6.6) -0.4 (6.3) -0.1 (6.2) 0.1 (6.4)
P2 -10.7 (19.2) -5.1 (10.2) -5.4 (10.3)-5.1 (10.2) -3.8 (9.9) -2.9 (8.4) -3.6 (10.1) -3.5 (9.4) -3.5 (8.6)

C
P1 -4.6 (3.8) -3.7 (3.2) -3.7 (3.8) -3.6 (3.9) -3.5 (3.4) -4.0 (3.8) -3.4 (3.7) -3.1 (3.9) -3.0 (3.9)
T -1.1 (5.7) 1.1 (3.4) 1.5 (3.7) 2.0 (3.0) 2.2 (3.3) 1.9 (3.1) 2.4 (2.9) 2.6 (3.2) 2.7 (3.0)
P2 -10.1 (12.3) -5.9 (10.4) -5.7 (10.0) -5.1 (9.7) -5.2 (9.6) -5.6 (10.1)-5.2 (10.2)-6.3 (10.3) -5.9 (9.8)

D
P1 -9.0 (4.3) -5.9 (3.4) -6.1 (3.3) -5.2 (3.4) -5.7 (3.3) -5.4 (3.0) -5.6 (3.8) -5.8 (3.3) -5.7 (3.4)
T -6.6 (6.9) -3.6 (3.9) -3.3 (4.1) -2.4 (3.4) -2.2 (3.2) -2.1 (3.1) -2.0 (3.2) -1.7 (3.0) -1.5 (2.4)
P2 -8.7 (8.0) -10.5 (10.5) -9.0 (8.3) -9.9 (8.9) -9.6 (10.3) -9.4 (9.2) -8.4 (7.8) -9.6 (9.7) -8.6 (9.1)

E
P1 -17.8 (8.7) -14.6 (6.5) -14.5 (7.1)-13.4 (6.8)-13.8 (7.5)-13.1 (6.3)-11.8 (6.9)-11.9 (6.8)-11.8 (6.7)
T -10.8 (7.8) -8.5 (6.9) -7.4 (6.5) -6.6 (6.3) -7.3 (6.8) -6.7 (6.7) -6.1 (6.2) -5.3 (6.3) -5.4 (6.9)
P2 -9.3 (8.9) -7.4 (8.5) -8.0 (8.4) -7.0 (7.5) -7.5 (9.1) -6.5 (7.7) -8.0 (9.5) -7.8 (9.3) -9.1 (10.7)

F
P1 -15.3 (5.7) -12.7 (5.8) -12.9 (6.6)-11.4 (7.2)-11.0 (6.5)-11.8 (6.6)-11.1 (7.3)-10.9 (8.0)-10.5 (8.1)
T -7.2 (6.1) -4.3 (5.0) -3.2 (4.9) -2.7 (5.0) -3.0 (5.3) -2.6 (5.2) -2.5 (4.8) -1.8 (4.8) -2.5 (4.7)
P2 -7.5 (8.8) -3.8 (8.8) -4.5 (9.6) -4.4 (8.0) -3.7 (8.5) -3.4 (6.8) -3.9 (9.5) -3.6 (9.5) -2.3 (6.9)

All
P1 -10.7 (9.3) -7.8 (6.3) -7.3 (6.9) -6.6 (6.5) -6.6 (6.5) -6.6 (6.4) -6.1 (6.5) -6.1 (6.6) -5.9 (6.6)
T -6.4 (9.1) -3.4 (6.1) -2.4 (5.8) -1.8 (5.6) -1.8 (5.8) -1.6 (5.6) -1.4 (5.3) -0.9 (5.3) -1.0 (5.4)
P2 -9.4 (11.7) -6.7 (9.5) -6.6 (8.9) -6.6 (8.7) -6.1 (9.2) -5.8 (8.3) -6.1 (9.2) -6.3 (9.2) -6.2 (9.0)

p
P1 0.293 0.039 0.038 0.017 0.019 0.018 0.011 0.010 0.009
T 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
P2 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002

1− β
P1 0.090 0.408 0.422 0.546 0.545 0.555 0.610 0.597 0.618
T 0.368 0.906 0.965 0.984 0.979 0.987 0.994 0.997 0.995
P2 0.123 0.321 0.355 0.369 0.389 0.471 0.392 0.371 0.388

1− β = 0.602). Improvements in the accuracy for overall participants were found until nda = 3

and the accuracy did not change when nda ≥ 4. Table 3.2 shows that the model without data

augmentation did not show valid accuracy for P1 of nError. Although valid accuracy (under 12%

and p < 0.05) for all parts (P1, T, P2) were found when nda = 2, statistical support (1−β > 0.8)

was provided for only trough (T). Figure 3.6 shows that the GPR models with data augmentation

(nda = 8) estimated the vGRF lines more accurately than the models without augmentation

(nda = 0). The estimation intervals of the GPR models became smaller when nda = 8 than

nda = 0, indicating that the GPR model estimated the vGRF more deterministically by the

data augmentation.
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Table 3.3. Accuracy of vGRF estimated by LIN and GPR models.

nRMSE in each number of walking steps for learning nst (%BW)
ID Model nst = 1 nst = 2 nst = 3 nst = 4 nst = 5 nst = 6 nst = 7 nst = 8 nst = 9

A
LIN 20.8 (16.1) 9.4 (5.2) 7.9 (3.9) 7.4 (2.8) 7.1 (3.0) 6.7 (1.6) 6.5 (1.4) 6.3 (1.1) 6.3 (1.1)
GPR 7.0 (4.0) 5.9 (2.7) 5.8 (2.4) 5.3 (2.4) 5.0 (1.9) 4.6 (1.8) 4.6 (1.7) 4.4 (1.7) 4.3 (1.5)

B
LIN 19.6 (13.9) 12.8 (6.3) 9.4 (3.9) 8.5 (3.4) 9.1 (3.3) 8.1 (3.1) 8.2 (3.0) 8.1 (3.0) 7.9 (3.1)
GPR 8.4 (3.3) 6.6 (2.4) 5.5 (1.7) 5.3 (1.7) 5.4 (1.6) 5.1 (1.4) 5.0 (1.2) 5.1 (1.3) 5.0 (1.1)

C
LIN 16.3 (6.8) 12.0 (4.5) 9.0 (3.0) 8.4 (3.1) 8.7 (2.9) 7.7 (2.4) 7.6 (2.4) 7.6 (2.4) 7.4 (2.3)
GPR 6.9 (2.1) 6.1 (1.8) 5.8 (1.5) 5.6 (1.5) 5.3 (1.4) 5.2 (1.3) 5.1 (1.3) 5.1 (1.3) 5.0 (1.3)

D
LIN 20.4 (19.5) 9.2 (7.0) 6.8 (2.3) 6.2 (1.6) 6.3 (2.1) 6.0 (1.5) 6.0 (1.5) 5.9 (1.5) 5.9 (1.4)
GPR 6.7 (2.4) 5.0 (1.6) 4.4 (1.4) 3.7 (1.1) 3.7 (1.0) 3.4 (1.0) 3.3 (0.9) 3.2 (0.9) 3.1 (0.9)

E
LIN 39.9 (38.7) 26.4 (26.0) 16.1 (7.2) 15.5 (6.3) 16.3 (11.5) 13.5 (3.9) 13.0 (3.7) 12.9 (3.9) 12.6 (3.6)
GPR 13.1 (3.8) 10.4 (2.6) 9.7 (2.1) 9.1 (2.0) 9.0 (1.9) 8.8 (1.7) 8.8 (1.5) 8.8 (1.4) 8.8 (1.3)

F
LIN 25.6 (16.3) 10.0 (5.1) 12.7 (9.7) 8.5 (2.6) 8.0 (2.0) 7.9 (2.0) 7.7 (1.9) 7.6 (1.9) 7.5 (1.9)
GPR 9.3 (2.6) 7.6 (2.2) 7.6 (2.3) 7.5 (2.0) 7.4 (2.0) 7.6 (2.0) 7.5 (2.0) 7.5 (2.0) 7.5 (1.9)

All
LIN 23.8 (22.3) 13.3 (13.2) 10.3 (6.4) 9.1 (4.7) 9.3 (6.2) 8.3 (3.5) 8.2 (3.4) 8.1 (3.4) 7.9 (3.2)
GPR 8.6 (3.8) 6.9 (2.8) 6.5 (2.6) 6.1 (2.5) 6.0 (2.4) 5.8 (2.4) 5.7 (2.4) 5.7 (2.4) 5.6 (2.4)

p
LIN – – 0.144 0.041 0.060 0.010 0.007 0.006 0.004
GPR 0.009 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1− β LIN – – 0.139 0.370 0.241 0.705 0.774 0.789 0.838
GPR 0.602 0.982 0.997 0.999 1.000 1.000 1.000 1.000 1.000

3.3.4 Evaluation of GPR

(1) Data Analysis

For assessing the advantage of GPR for small data learning, GPR models were learned from a

different number of walking steps (nst = 1, 2, ..., 9) of task A. When nst = 1, each step of 10

trials was used to learn 10 models individually. In each of nst = 2, ..., 9, 10 models were learned

using 10 datasets combining the steps taken randomly and equally from 10 steps. In addition, a

linear regression model (LIN) proposed in [23] was constructed as a comparative approach using

the same datasets. The estimation accuracy of the learned models was evaluated by comparison

with the force plate using nRMSE and nError for 10 steps of task B similar to the evaluation of

probabilistic data augmentation in Section 3.3.3.

(2) Results

The nRMSE of the LIN and GPR models learned from the different number of steps (nst =

1, 2, ..., 9) are summarized in Table 3.3 and Figure 3.7. Overall nRMSEs of both models were

tested by one-sample t-tests. The null hypothesis was that the accuracy of the proposed method

came from a population with a mean of 12%, against the alternative that the mean was under

12%. The nError of the GPR models at peaks/trough are summarized in Table 3.4. The mean

(± SD) of nRMSE and nError are given for each participant and overall. Overall nErrors were

evaluated by one-sample t-tests similar to nRMSE. In addition, vGRF lines estimated by the
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Figure 3.7. The nRMSE (for overall) of the LIN and GPR models, which were learned using a different
number of steps (nst = 1, 2, ..., 9).

LIN and GPR models learned from the different number of steps (nst=1 and 9), their estimation

intervals, the ground truth obtained from the force plate, and the total force of the 15 insole

sensors in a stance are illustrated in Figure 3.8. Each plot is the mean of 10 steps in task B.

As shown in Figure 3.7 and Table 3.3, both the LIN and GPR models enhanced their

estimation accuracies as the number of steps for learning increased. The LIN models learned

from small numbers of steps (nst = 1 and 2) had large estimation errors over 12% and showed

valid accuracy (p < 0.05, 1−β > 0.8) only when nst = 9. Meanwhile, the GPR showed the valid

accuracy (p < 0.05, 1 − β > 0.8) for overall when nst = 2 and enhanced the overall mean until

nst = 9. The GPR models exhibited better performance when compared with the LIN models

for every number of walking steps for learning. Table 3.4 shows that the accuracy of all three

parts estimated by the GPR models improved as the number of steps for learning increased, and

the nEorror of all parts for overall participants became under 12% with statistical support when

nst ≥ 2 (p < 0.05) and nst ≥ 7 (1− β > 0.8). Figure 3.7 shows that the GPR models estimated

the lines of vGRF more accurately and deterministically than the LIN models when both nst =1

and 9. The intervals of GRF became smaller when nst = 9 than nst = 1, indicating that the

GPR model estimated vGRF more deterministically by increasing the size of the datasets for

learning.

3.3.5 Discussion

(1) General Discussion

As shown in Table 3.1, the model with data augmentation (nda ≥ 1) showed valid estimation

accuracy (nRMSE under 12%, p < 0.05, 1 − β > 0.8), which was enhanced when compared

with no augmentation (nda = 0). In addition, Table 3.2 illustrates that the mean nError at
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(Subject B, nst=1) (Subject B, nst=9)

(Subject E, nst=1) (Subject E, nst=9)

(Subject D, nst=1) (Subject D, nst=9)

(Subject A, nst=1) (Subject A, nst=9)

Figure 3.8. vGRF lines estimated by two models (LIN, GPR), the estimation intervals of the GPR model
(Interval), the ground truth from the force plate (FP) and the total force of the insole (Raw) in a stance
are illustrated. Each plot is the mean of 10 steps in task B. The results are of the models learned using
a different number of steps (nst = 1 and 9) in four subjects (A, B, D, E).
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Table 3.4. Accuracy of vGRF at P1/T/P2 estimated by GPR models using single/multiple walking steps.

nError in each number of walking steps for learning nst (%BW)
ID Part nst = 1 nst = 2 nst = 3 nst = 4 nst = 5 nst = 6 nst = 7 nst = 8 nst = 9

A
P1 -4.7 (2.8) -2.6 (2.6) -2.8 (2.3) -1.4 (1.9) -1.4 (2.0) -1.4 (1.5) -1.3 (1.6) -1.2 (1.4) -1.1 (1.4)
T -6.0 (8.0) -2.6 (4.8) -1.7 (3.6) -1.1 (3.2) 0.1 (2.2) 0.3 (1.7) 0.9 (1.4) 1.2 (1.5) 1.4 (1.4)
P2 -9.7 (9.2) -7.0 (6.4) -5.7 (5.9) -6.4 (5.6) -4.4 (4.1) -5.4 (4.5) -4.1 (4.0) -4.4 (3.7) -4.4 (3.7)

B
P1 -12.7 (14.7)-8.6 (11.1) -6.0 (3.5) -4.6 (4.1) -3.4 (3.2) -2.0 (3.1) -1.5 (2.8) -0.7 (2.6) -0.1 (2.4)
T -6.7 (14.5) -2.9 (10.7) -0.9 (5.8) -0.2 (5.7) 0.7 (5.6) 1.3 (5.5) 1.7 (5.4) 2.1 (5.6) 2.5 (5.5)
P2 -10.7 (19.2)-5.1 (15.3) -1.7 (8.3) -1.7 (8.2) 0.4 (6.6) -1.0 (8.2) 0.5 (6.0) 0.3 (6.5) -0.1 (6.9)

C
P1 -4.6 (3.8) -4.0 (3.8) -4.4 (4.0) -4.6 (4.2) -4.1 (4.1) -5.2 (4.1) -5.1 (4.1) -5.3 (4.3) -5.5 (4.5)
T -1.1 (5.7) -0.1 (4.8) 0.4 (3.9) 0.7 (3.2) 0.9 (3.3) 0.8 (2.9) 0.9 (2.9) 0.9 (2.9) 1.0 (2.7)
P2 -10.1 (12.3)-7.6 (10.1) -4.5 (8.8) -7.6 (11.1)-6.2 (10.3)-5.4 (10.1) -3.5 (8.6) -4.4 (9.2) -4.1 (9.1)

D
P1 -9.0 (4.3) -6.7 (3.9) -4.5 (2.6) -4.1 (2.6) -3.9 (2.8) -3.6 (2.6) -3.4 (2.3) -3.2 (2.3) -2.9 (2.1)
T -6.6 (6.9) -3.2 (4.6) -2.4 (3.4) -1.2 (1.6) -1.4 (2.2) -1.0 (1.5) -1.0 (1.4) -0.9 (1.4) -0.7 (1.1)
P2 -8.7 (8.0) -6.9 (4.9) -7.5 (6.8) -5.4 (4.8) -5.8 (5.2) -5.7 (6.0) -5.9 (6.8) -6.2 (7.5) -6.2 (7.8)

E
P1 -17.8 (8.7) -14.1 (7.1)-13.8 (6.7)-11.3 (6.2)-11.7 (5.7)-10.5 (5.2)-10.8 (4.9) -9.9 (4.5) -10.0 (4.3)
T -10.8 (7.8) -7.3 (5.6) -6.0 (4.9) -5.6 (4.8) -5.7 (4.6) -5.6 (4.7) -5.5 (4.6) -5.6 (4.6) -5.7 (4.6)
P2 -9.3 (8.9) -4.9 (6.8) -2.6 (6.5) -2.9 (8.9) -1.0 (9.2) -1.2 (9.0) 1.2 (6.4) 0.6 (9.8) 2.1 (8.1)

F
P1 -15.3 (5.7) -12.0 (5.4)-11.2 (6.0)-11.4 (5.5)-10.6 (5.1)-10.6 (5.4)-10.1 (5.3)-10.1 (5.2) -9.8 (4.9)
T -7.2 (6.1) -4.8 (4.9) -5.2 (5.5) -3.9 (4.4) -4.0 (5.2) -3.6 (4.6) -3.7 (4.9) -3.4 (4.7) -3.2 (4.6)
P2 -7.5 (8.8) -2.7 (5.5) -3.1 (7.2) -0.6 (5.4) 0.2 (3.2) -0.4 (7.0) 0.2 (5.4) -0.8 (9.4) 0.2 (7.2)

All
P1 -10.7 (9.3) -8.0 (7.5) -7.1 (6.0) -6.2 (5.7) -5.9 (5.6) -5.6 (5.4) -5.4 (5.3) -5.1 (5.3) -4.9 (5.3)
T -6.4 (9.1) -3.5 (6.6) -2.6 (5.1) -1.9 (4.6) -1.6 (4.8) -1.3 (4.5) -1.1 (4.6) -1.0 (4.7) -0.8 (4.7)
P2 -9.4 (11.7) -5.7 (9.1) -4.2 (7.5) -4.1 (8.1) -2.8 (7.4) -3.2 (8.0) -1.9 (6.9) -2.5 (8.3) -2.1 (7.9)

p
P1 0.293 0.040 0.020 0.009 0.008 0.006 0.006 0.005 0.005
T 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
P2 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1− β
P1 0.090 0.306 0.532 0.684 0.748 0.803 0.831 0.867 0.879
T 0.368 0.851 0.984 0.998 0.998 0.999 0.999 0.999 0.999
P2 0.123 0.431 0.703 0.661 0.829 0.749 0.920 0.772 0.840

peaks/trough for overall participants was lower than 12% (p < 0.05) when nda ≥ 2. These

results indicate that the data augmentation from one walking step contributes to the valid

estimation of vGRF during walking.

As can be seen in Figure 3.7 and Table 3.3, both the LIN and GPR models enhanced the

estimation accuracy as the number of walking steps for learning increased. This result is natural

because the generalization performance of the learned models can be enhanced as the size of the

dataset increases and becomes more diverse. Meanwhile, while the LIN models decreased the

accuracy when the size of the dataset was small, the GPR model showed better performance

than LIN. In addition, GPR exhibits better performance when compared with LIN for every

number of steps for overall participants. These were because GPR is a probabilistic learning

technique based on Bayesian inference and does not induce overfitting on the small dataset

corrupted by measurement noise and the inconsistency of walking. Table 3.4 shows that the

nError at peaks/trough of the GPR models for overall participants were under 12% (p < 0.05)

when nst ≥ 2.
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USING INSTRUMENTED INSOLE

From the above results, this study found that the one-step learning, which augments a

dataset for one walking step to virtual datasets for multiple steps, could estimate vGRF during

walking with valid accuracy for clinical use. In addition, GPR can evaluate the uncertainty of

each estimate based on the similarity between datasets for learning and evaluation, and estimate

vGRF deterministically as the size of the dataset increased, as shown in Figures 3.6 and 3.8.

This could be beneficial for determining the reliability of the estimates in clinical diagnosis.

(2) Limitations

Similar to Section 2, robustness to abnormal plantar pressure distribution, the validity for walk-

ing on a softer floor at home, and the effect of asymmetrical upper body posture and specific

upper limb motion on vGRF should be examined in future research.

3.4 Conclusion

This chapter described data-efficient one-step learning for the insole-based estimation of vGRF

by measuring a minimum (just one) walking step, probabilistic data augmentation, and Gaussian

process regression avoiding overfitting on a small dataset. In experiments, the data augmenta-

tion enhanced the estimation accuracy, and the GPR models learned from two walking steps

estimated vGRF with valid accuracy for clinical use (under 12% for entire/local magnitudes).

From the above, this study found that the proposed learning is beneficial for assessment in small

clinics, where measuring multiple steps is difficult due to limitations to therapy time, fall risks,

and physical burden on patients.
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Chapter 4

Shift-adaptive Estimation of Joint

Angle Using Instrumented Brace

with Two Stretch Sensors

4.1 Chapter Overview

This chapter presents a shift-adaptive estimation to obtain the joint angle from a knee brace in-

strumented with stretch sensors. This method involves learning multiple models and performing

adaptive estimation to changes in the relationship between the sensor strains and the joint angle

due to the brace shift. The system induces changes in the relationship between the strains of

the two stretch sensors, which are placed above and below the patella hole of the brace, utilizing

biomechanics that the skin strain is high in the patella area and rapidly decreases further from

the joint. The relationship between the two sensor strains and the joint angle at varying brace

shift positions is then learned using user-specific GMMs. In the estimation, an ML GMM (i.e.,

the brace shift position) is identified by referring to the relationship between the two sensor

strains. The angle is then calculated adaptively to the brace shift using the ML GMM.

4.2 Shift-adaptive Estimation of Knee Joint Angle

4.2.1 Instrumented Knee Brace with Two Stretch Sensors

The flow of shift-adaptive estimation of the knee joint angle is shown in Figure 4.1. First,

an instrumented brace measuring the knee flexion/extension angle was developed, as shown in

Figure 4.1(a). Flexion/extension is the primary movement of the knee joint and is informative
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Figure 4.1. (Top) (a) A wrap-style brace is instrumented with two stretch sensors placed above and below
the patella hole. (b) The capacitance (proportional to the sensor strain) decreases more significantly in
the lower sensor than the upper sensor (|cil − c

j
l | > |ciu− cju|) at the same joint angle when the brace shifts

downward. Consequently, the relationship between the two sensor capacitances and the joint angle varies
depending on the brace shift position. (c) The system learns the different capacitance–angle relationships
at varying brace shift positions using user-specific GMMs based on the iterative expectation-maximization
(EM) algorithm with scaling to [0, 1] (c′, θ′) and k-means clustering. (d) An ML GMM is identified by
referring to the two sensor capacitances in a fixed time window. (e) The system estimates the joint angle
adaptively to the brace shift through Gaussian mixture regression, using ML GMM and present sensor
capacitances. (Bottom) Data flow of the shift-adaptive estimation of knee joint angle.
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for monitoring a progressive joint disorder (e.g., osteoarthritis [2]). This study used a commercial

wrap-style brace (Open Patella Knee Stabilizer, Mueller Sports Medicine, Wisconsin, US). This

type of brace is easily donned/doffed, adjustable to achieve a comfortable restraint, and effective

for the treatment of disorders associated with degenerative cartilage [104]. by stabilizing the

patella [104].

Two electro capacitive stretch sensors (C-STRETCH®, Bando Chemical Industries, Kobe,

JP) were placed above and below the patella hole of the brace. The sensor capacitance is

proportional to the strain. The sensors installation is aimed at recognizing brace shifts by

referring to the relationship between the two sensor capacitances while avoiding artifacts from

the physical contact of the sensors and the skin. The mechanism of changes in the relationship

between the two sensor capacitances is illustrated in Figure 4.1(b). The capacitance decreases

more significantly in the lower sensor than the upper sensor at the same joint angle when the

brace shifts downward. This is induced by the biomechanics that the skin strain is high in the

patella area and rapidly decreases away from this region [105].

4.2.2 Learning of User-specific GMMs from Multiple Brace Shifts

The learning flow of user-specific GMMs is shown in Figure 4.1(b). First, a user wears the

instrumented brace at the appropriate position on the knee. Next, the user performs knee flex-

ion/extension (e.g., squatting) with the maximum executable range. The motions are measured

by the brace in synchronization with the ground truth device. The measurement provides a

dataset d ∈ R3 consisting of the capacitance of the two stretch sensors c = (cu, cl) ∈ R2 and the

ground truth of the joint angle θ ∈ R. A GMM of L components is then fitted to the dataset d

using the iterative expectation-maximization (EM) algorithm with scaling to [0, 1] (c′, θ′) and

k-means clustering. The model is defined as the following probability density function:

p (d) =

L∑
l=1

πlN (d |µl,Σl ) ,

L∑
l=1

πl = 1 (4.1)

N (d|µl,Σl) =
1

(2π)
3
2

1

|Σl|
1
2

exp

{
−1

2
(d− µl)

>Σ−1l (d− µl)
}

(4.2)

where πl indicates the prior probabilities and N (z |µl,Σl ) is the Gaussian distributions de-

fined by the mean vector µl and covariance matrix Σl, whose components can be represented

separately as follows:

µl =
[
µc,l µθ,l

]
, Σl =

(
Σcc,l Σcθ,l

Σθc,l Σθθ,l

)
(4.3)
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Following collecting data at the appropriate position, the user migrates the brace to anticipated

shift positions (e.g., every 5 mm up to 20 mm) and measure knee flexion/extension again.

A GMM is fitted to the dataset of each shift position, and the GMMs at all shifts are then

integrated with equal mixing proportions.

4.2.3 Shift-adaptive Estimation

(1) Identification of ML GMM

The system estimates the joint angle from the two sensor capacitances according to the brace

shift, using the ML GMM identified from the integrated GMMs. This identification may be

affected by the measurement error and sensor noise when the relationships between the two

sensor capacitances of the GMMs proximate. Therefore, this study proposes to identify the ML

GMM by referring to the two sensor capacitances in a fixed time window.

When given the capacitance of the two sensors c, the probability of each component l of the

integrated GMMs is defined as follows:

βl =
p (l) p (c |l )

ngmL∑
i=1

p (i) p (c |i)
=

πlp
(
c
∣∣µc,l,Σcc,l

)
ngmL∑
i=1

πip
(
c
∣∣µc,i,Σcc,i

) (4.4)

where ngm is the number of learned GMMs (five in this study). Using βl, the system identifies

the ML GMM by referring to the summed probabilities of L components of each GMM averaged

in a certain time window T as follows:

arg max
mgm

1

T

k∑
i=k−T

ngmmgm∑
l=ngm(mgm−1)+1

βl,mgm

mgm = {1, 2, ..., ngm} , θ̂ (i) < θub

(4.5)

where mgm denotes each GMM and k is the last frame. The time window T includes only frames

in which the estimated joint angle is lower than θub. This condition aims to exclude datasets of

larger joint angles when the sensor strains are close to the maximum, in which capacitances of

the GMMs are proximate despite their differing angles.

(2) Estimation Using ML GMM through Gaussian Mixture Regression

Using the identified ML GMM, the system estimates the joint angle from the present two sensor

capacitances through Gaussian mixture regression (GMR) [106]. GMR probabilistically blends

the estimates of GMM components. For each component l of the GMM, the expected distribution
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of joint angle θ̂l given the capacitances of the two stretch sensors c is defined as follows:

p (θ |c, l ) = N
(
θ
∣∣∣θ̂l, Σ̂θθ,l

)
(4.6)

θ̂l = µθ,l + Σθc,l (Σcc,l)
−1 (c− µc,l

)
(4.7)

Σ̂θθ,l = Σθθ,l −Σθc,l (Σcc,l)
−1 Σcθ,l (4.8)

By considering the complete GMM, the expected distribution is defined by

p (θ |c) =

ngmmgm∑
l=ngm(mgm−1)+1

βlN
(
θ
∣∣∣θ̂l, Σ̂θθ,l

)
(4.9)

where βl = p (l |c) is the probability of the component l responsible for c, i.e.,

βl =
p (l) p (c |l )

ngmmgm∑
i=ngm(mgm−1)+1

p (i) p (c |i)
=

πlp (c |µc,l,Σcc,l )
ngmmgm∑

i=ngm(mgm−1)+1

πip (c |µc,i,Σcc,i )

(4.10)

Using the linear transformation properties of Gaussian distributions, an estimation of the con-

ditional expectation of θ given c is defined as follows:

p (θ |c) = N
(
θ̂, Σ̂θθ

)
(4.11)

where the parameters of the Gaussian distribution are defined as

θ̂ =

ngmmgm∑
l=ngm(mgm−1)+1

βlθ̂l, Σ̂θθ =

ngmmgm∑
l=ngm(mgm−1)+1

β2l Σ̂θθ,l (4.12)

4.3 Evaluation of Shift-adaptive Estimation

4.3.1 Experimental Setup

Two healthy adults (male, age: 26 ± 1 years, height: 1.78 ± 0.5 m, body mass: 64.5 ± 2.5 kg)

were recruited for this study. The experiment was approved by Keio University Research Ethics

Committee (reference number 31–80). Informed consent was obtained from the participants

prior to the experiments. The participants wore the instrumented brace on their right knee at a

comfortable tightness. Hard thin CEM-3 plates (95 × 72 × 1.6 mm) incorporating three infrared

reflective markers were then tightly attached to the right thigh and shank. The positions of the

plates were chosen such that upper/lower markers on the thigh/shank were located along a

line connecting the greater trochanter and the ankle joint. The capacitance of the two stretch
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sensors was amplified and DA-converted using a dedicated module (KIT BT01, Bando Chemical

Industries, Hyogo, JP) placed on the brace. A data logger (TSND151, ATR Promotions, Kyoto,

JP) on the thigh plate then AD-converted the voltage outputs of the module and transmitted

them to a laptop computer at 200 Hz through Bluetooth communication. Additional markers

sets were attached to the front of the thigh and shank and the upper/lower edges of the brace for

measuring the distances of brace shifts. Landmark stickers representing a 5 mm spacing from 0

to 20 mm also adhered to the thigh and shank for manual brace shifting. The positions of the

reflective markers on the thigh and shank were obtained by a motion capture system (Nexus,

Vicon, Oxford, UK) at 100 Hz. All devices were synchronized using a voltage input.

4.3.2 Generation of Virtual Knee Joint Marker

The ground truth of the knee joint angle can be calculated as the angle between two vectors

from the knee joint to the greater trochanter and the ankle joint. However, the motion capture

marker could not be directly attached to the knee joint because of the knee brace. Therefore, a

virtual knee joint marker was generated from three markers on the plates attached to the thigh

and shank.

The marker generation was executed through an optimization inspired by a gap-filling algo-

rithm [107]. The algorithm fills a target marker unobservable at an interpolation frame ki using

the positions of the target marker observable at a reference frame kr and a rotation matrix of

three reference markers from kr to ki. At the reference frame kr and the interpolation frame ki,

the relative positions of the reference markers M̄ r/i to their center Or/i are defined as follows:

M̄ r/i = M r/i −Or/i = M r/i −
1

3

3∑
j=1

M r/ij (4.13)

A rotation matrix Ri from kr to ki can be generated by calculating a covariance matrix C i and

by applying a singular value decomposition using the Kabsch algorithm as follows:

C i = M̄
>
r M̄ i = USV > (4.14)

Ri = V


1 0 0

0 1 0

0 0 b

U>, b =

−1 (det(V U>) < 0)

1 (otherwise)
(4.15)

The target marker positions P i at ki are then calculated using the rotation matrix Ri, the
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Figure 4.2. The participants were asked to perform two motions for each brace shift position. (a)
Standing still for measuring brace shift distances. (b) FROM squat for generating a virtual knee joint
marker shown in (a), learning the GMMs, and testing the estimation methods.

relative positions of the target marker at the reference frame P̄ r, and Oi.

P i = RiP̄ r +Oi

= Ri(P r −Or) +Oi

(4.16)

Based on the above algorithm, the virtual knee joint marker positions P r were identified

through a nonlinear optimization, that minimized the sum of the following two distances during

knee flexion/extension. One was the error between the two virtual marker positions estimated

from three reference marker sets on thigh and shank, respectively. The other was the distance

from the upper marker on thigh to the lower marker on the shank through the virtual marker

(assuming all markers to be located on the same plane). The optimization is defined as follows:

min
x
‖f(x)‖22 = min

x

(
f1 (x)2 + f2 (x)2 + ...+ fn (x)2

)
(4.17)

f(P r) ={Rt
i (P r −Ot

r) +Ot
i}

− {Rs
i (P r −Os

r) +Os
i}

+ (P r −Ot
r) + (P r −Os

r)

(4.18)

where superscripts t and s indicate thigh and shank, respectively.

4.3.3 Study Procedure

To validate the shift-adaptive estimation of the knee joint angle, the participants were asked to

perform the following tasks:
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A. To generate the virtual knee joint marker, as shown in Figure 4.2(a), the participants

performed a full range of motion (FROM) squat five times during a 20 s period.

B. To measure the brace position, the participants stood still for 10 s, as shown in Figure

4.2(a).

C. For the learning and testing of the proposed method, the participants performed a FROM

squat five times within a 40 s period, as shown in Figure 4.2(b). During this motion, they

took a 2 s rest after every squat-stand motion.

D. The participants migrated the brace manually to the anticipated shift positions (5, 10, 15,

and 20 mm away from the initial position) according to the landmark stickers. They then

repeated tasks B and C at each shift position.

E. The participants returned the brace to the initial position and repeated tasks B–D to

reenact donning/doffing or position correction of the brace.

Tasks B–E indicate that standing still and the FROM squats were measured for two sets of

brace shifts (every 5 mm from 0 to 20 mm) in total.

4.3.4 Data Analysis

(1) Preparation of Datasets for Learning and Testing

Using the marker positions obtained in task A, the virtual knee joint marker was generated

through the optimization (4.17) using MATLAB Optimization Toolbox. The knee joint angle

during the squat for tasks C–E was then calculated as the angle between two vectors, which

are from the virtual knee joint marker to the upper marker on the thigh and the ankle marker.

The AD-converted capacitances of the two stretch sensors were filtered by moving average with

a time window of 20 ms for reducing noise and then resampled at 100 Hz to match the motion

capture system.

The data sets consisting of the two sensor capacitances and the joint angle during the squat

were then divided into the knee flexion (including rest) and extension motions by referring to

the plus/minus sign of the derivative capacitance in the upper stretch sensor. This was aimed at

modeling the capacitance–angle relationships, which differ between the stretch and relaxation

owing to the different delay times for the capacitance-to-voltage conversion of the amplifier. The

numerical differentiation was executed using the first-order derivatives and a moving average

filter with a time window of 200 ms. All datasets were scaled to [0, 1] by referring to the

measurement range for both sets of brace shifts, and then homogenized using a box grid filter.
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Figure 4.3. AIC and BIC for each number of GMM components.

(2) Training and Test of Proposed and Comparative Methods

Datasets of each brace shift set (every 5 mm from 0 to 20 mm) were used for training, and

datasets of the other set were used for testing for cross-validation. For training, user-specific

GMMs were fitted to the datasets of the five brace shift positions. The number of GMM

components was set to five such that the AIC and BIC values were sufficiently small for the

datasets of all shift positions, as shown in Figure 4.3. For testing, the proposed method estimated

the joint angle of the datasets of each set using the GMMs trained by the other set. As described

in Section 4.2.3, the ML GMM was identified by referring to the average probability of each GMM

in a certain previous period of time. The time window T was set to 1 s, and the upper limit of

data used for the identification was set to θub = 140°. Using the identified ML GMM, the joint

angle was estimated from the present two sensor capacitances through GMR. The estimation

accuracy was evaluated using an RMSE during the test section, which excluded the first round

of the squat as a sufficient period of time to identify the first ML GMM.

To assess the advantages of the proposed method using the previous ML model (PV), three

comparative methods using the same datasets for learning and testing were examined as follows:

• Single Model (SM): The method learns the relationship between the two sensor capaci-

tances and the joint angle at non-shift (0 mm) position as a single GMM.

• Single Sensor (SS): The method learns the relationships between only the upper sensor

capacitance and the joint angle at five shift positions. The joint angle is estimated using

the ML GMM identified by referring only to upper sensor capacitance.

• Present ML Model (PS): The method learns the relationships between the two sensor

capacitances and the joint angle at five shift positions similar to PV. The joint angle is es-

timated using the ML GMM identified by referring to the present two sensor capacitances.

The effectiveness of the multiple shift models, multiple sensors, and the ML GMM in a fixed time
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Figure 4.4. Relationships between the scaled capacitances of the two stretch sensors (c′u, c
′
l) and the

joint angle θ′, the same datasets plotted into each 2-D space, and the fitted GMMs (± 3σ) during knee
extension at five brace shifts (0–20 mm) of the second set for both subjects A (top) and B (bottom).

window are assessed through comparisons between SM–PS, SS–PS, and PS–PV, respectively.

4.3.5 Results

The relationships between the scaled capacitances of the two stretch sensors and the joint angle

during a knee extension at five brace shift positions, the same datasets plotted into each 2-D

space, and the fitted GMMs are illustrated in Figure 4.4. The measured brace shift distances

and the accuracy of the joint angles estimated by comparative and proposed methods during

the squat motion are listed in Table 4.1. The method with the best performance at each shift

position is highlighted in bold. The overall accuracy of PV at each shift position was evaluated

by one-sample t-test. The null hypothesis was that the accuracy of the proposed method came

from a population with a mean of 6.9°, against the alternative that the mean was under 6.9°. The

criteria of 6.9° were chosen since its validity for capturing pathological gaits has been reported.

This includes mild to moderate knee OA, which decreases maximum knee flexion angle by 6.9° in

swing phase during walking [2]. The joint angles estimated by SS, PS, and PV, their absolute

error, and ML models identified during two rounds of the squat motion are shown in Figure 4.5.

The results are for two brace shift positions (5 and 20 mm) of the first set for both participants.

4.3.6 Discussion

(1) General Discussion

As illustrated in Figure 4.4, the relationship between the two sensor capacitances and the joint

angle varied depending on the brace shift position. Specifically, the capacitance–angle relation-
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(Subject A, 5 mm) (Subject B, 5 mm) (Subject B, 20 mm)(Subject A, 20 mm)

Figure 4.5. Ground truth of the joint angles (GT) and estimates of the comparative and proposed
methods (SS, PS, PV) (top), their absolute error (the second row), and ML GMMs identified by each
method during two rounds of the squat motion (the lower three). The results are for two brace shift
positions (5 and 20 mm) of the first set for both subjects.

ship for each sensor changed according to the brace shift, and a more significant change in the

lower sensor capacitance induced different relationships between the two sensor capacitances at

varying shift positions. In addition, as indicated in Table 4.1, SM had lower accuracies at all

brace shifts except for 0 mm of subject A when compared with PS. These results demonstrated

that the learning of strain–angle relationships at multiple brace shift positions is required for

the shift-adaptive estimation.

Table 4.1 also shows that SS had lower accuracies at most brace shifts when compared with

PS. As shown in Figure 4.5, SS did not identify the correct ML GMM according to the brace

shift even at larger joint angles, in which the relationship between two sensor capacitances

clearly differed between GMMs, as shown in Figure 4.4. These results demonstrated that the

two sensors placed above and below the patella hole are essential for recognizing the brace

positions by identifying the correct GMM. From Table 4.1, PV exhibited an equivalent or higher

performance to that of PS at most shift positions. As shown in Figure 4.5, PS switched the ML

GMM frequently and decreased the accuracy due to the incorrect identification when the angle

was close to the maximum. The switching of PS was due to the sensor noise and the proximity

of the sensor capacitances between the GMMs near the maximum flexion angle, as shown in

53



4. SHIFT-ADAPTIVE ESTIMATION OF JOINT ANGLE USING INSTRUMENTED BRACE WITH

TWO STRETCH SENSORS

Table 4.1. Brace shifts and RMSE of estimated knee joint angle.

ID (Set)
Brace shift (mm) RMSE of knee angle (°) t-test for PV

Target Measured SM SS PS PV p 1− β

A (1st)

0 – 3.7 4.5 3.7 3.7
5 8.8 6.3 6.7 5.9 4.7
10 13.2 10.3 7.4 3.2 4.2
15 17.6 15.0 5.8 4.4 4.2
20 26.9 23.6 9.7 10.5 4.0

A (2nd)

0 2.9 2.7 4.6 5.0 3.1
5 10.3 19.6 4.3 2.7 3.2
10 18.0 36.0 4.9 4.1 3.9
15 19.1 39.3 6.3 5.4 3.5
20 29.9 23.9 9.3 4.0 3.7

B (1st)

0 – 10.4 7.6 6.1 5.8
5 1.3 5.9 7.7 5.3 4.8
10 6.9 6.6 6.0 3.9 3.2
15 12.4 12.7 5.8 5.7 3.1
20 18.2 17.0 8.3 3.3 3.4

B (2nd)

0 0.0 7.8 7.6 6.7 6.5
5 2.5 7.6 7.5 5.9 6.7
10 6.2 6.1 6.7 3.5 2.8
15 10.3 4.7 6.7 2.9 2.8
20 19.4 7.0 7.2 3.0 2.9

Mean (± SD)

0 1.5 (2.1) 6.1 (4.2) 6.1 (2.2) 5.4 (1.4) 4.8 (1.9) 0.181 0.196
5 5.7 (5.4) 9.8 (4.4) 6.6 (1.5) 4.9 (0.9) 4.9 (1.3) 0.131 0.281
10 11.1 (6.4) 14.7 (11.9) 6.3 (0.1) 3.7 (0.1) 3.5 (0.8) 0.050 0.675
15 14.8 (5.1) 17.9 (13.0) 6.2 (0.1) 4.6 (0.4) 3.4 (0.6) 0.041 0.769
20 23.6 (6.8) 17.9 (8.4) 8.6 (1.2) 5.2 (2.9) 3.5 (0.5) 0.031 0.895

Figure 4.4. In contrast to PS, PV showed higher performance through stable identification of

the correct ML GMM. These results indicate that identification of the ML GMM by referring to

the two sensor capacitances in a fixed time window except for near the maximum angle enhances

the estimation.

From the above results, it is found that the proposed method can estimate the joint angle

with higher accuracy than previous methods when the brace shifts downward, and the three

components are effective for the shift-adaptive estimation.

(2) Limitations

The t-test for PV provided strong statistical support only for the result at 20 mm (p < 0.05 and

1 − β > 0.8). Thus, the statistical validity of the proposed method at varying shift positions

must be examined in future research with more participants. In addition, this study focused

on flexion/extension as the dominant knee joint motion and adaptation to the distal brace shift

as a common problem due to these motions. Meanwhile, the brace may rotate slightly in the

horizontal plane owing to the rotation of the ankle joint or the donning/doffing of the brace.
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Thus, future work should examine the applicability of the proposed method to joint motion

around other axes and a rotational shift. Finally, although the time window for identifying ML

GMM was set to 1 s, assuming sit-to-stand and walking, the window size should be adjusted

according to the speed of the target motion because the brace shift may occur suddenly during

fast motion.

4.4 Conclusion

This chapter presented the shift-adaptive estimation of the knee joint angle by combining the

following: (i) a brace instrumented with two stretch sensors placed above and below the patella

hole, (ii) learning the strain–angle relationships at multiple brace shift positions using user-

specific GMMs, and (iii) estimation using an ML GMM in a previous 1 s period. Especially in

(ii), changes in the relationship between two sensor strains utilized the biomechanics that the

skin strain is high in the patella area and rapidly decreases further from the joint. Experimental

results indicated that the proposed method estimates the joint angle at multiple shift positions

(0–20 mm) with higher accuracy than methods using a single model, single sensor, or referring

to the present sensor strains.
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Chapter 5

Learning-based Occlusion

Compensation for Leg Tracking

Based on Fusion of Laser Range

Sensor and Instrumented Insoles

5.1 Chapter Overview

Chapter 5 presents a learning-based occlusion compensation for leg position based upon the in-

terlimb coordination for one walking cycle. This facilitates LRS-based tracking of both legs’

complicated dynamic motions during walking on circular paths. The system measures straight

walking and turning under different curvatures/directions in advance, and then learns the re-

lationship between the trajectory and traveling direction of each leg during one cycle of each

walking type using user-specific GMMs. In the tracking, the walking type is identified by a joint

probability of both legs’ trajectories during the walking cycle, in accordance with the biomechan-

ics that both legs move in a coordinated manner. The ML GMM then estimates the traveling

direction and position of the hidden leg during occlusion.

5.2 Learning-based Occlusion Compensation for Leg Tracking

5.2.1 Sensor Configuration

An overview of the measurement system is depicted in Figure 5.1. The system consists of the

LRS (UST-10LX, Hokuyo Automatic Co., Osaka, JP) and the instrumented insoles using 15 force
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Figure 5.1. The measurement system consists of an LRS and the insoles instrumented with 15 force
sensors. The LRS captures distance data over 270° of a horizontal plane at shin height, with a resolution
of 0.25°. The insole detects each foot as grounded when the total force exceeds 15 N.

sensors (as described in Chapter 2). The LRS captures distance data over 270° of a horizontal

plane at shin height (270 mm above the floor), with a resolution of 0.25°. The scanning speed is

25 ms (40 Hz) per round. The system then observes candidate positions of both legs from the

distance data using geometrical observation patterns (as described in [66]). The instrumented

insoles are inserted into the shoes of the subject and measure force applied to each sensor at 100

Hz. The insole detects each foot as being grounded when the total force exceeds the threshold,

expressed as follows:
ns∑
i = 1

fsi > 15 N (5.1)

where ns is the number of insole force sensors, fsi is the measured force of each sensor. The

threshold was set to 15 N, taking into account the sensitivity of the force sensors and their

experimental noise. The LRS and insoles were synchronized through Ethernet cables and radio

communications.

5.2.2 Pre-measurement Using Two LRSs without Occlusion

The flow of the leg tracking system with learning-based occlusion compensation is illustrated in

Figures 5.2 and 5.3. The system tracks both legs in advance for straight walking and turning

under different curvatures/directions. The measurement environment assumes that two LRSs

(without occlusion) are available. The LRSs are installed facing each other and 6 m apart. The

observations of both LRSs are merged through weighted averaging using the inverse distance

from the sensor to the observation.
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Figure 5.2. Flow of the leg tracking system with learning-based occlusion compensation: (a) The system
tracks both legs during straight walking and turning under different curvatures/directions in advance,
using two LRSs (without occlusion). (b) The time-series data of positions and velocities are divided by
the walking cycle and transformed into a unified coordinate system. (c) The relationship between the
leg trajectory and traveling direction during one walking cycle is modeled using the user-specific GMM
for each walking type. (d) After learning the trajectory–direction relationships, the system tracks legs
using only a single LRS and executes GMM-based compensation when occlusion occurs after the fifth
step of the swing phase. (e) For occlusion compensation, the system identifies the ML GMM using the
joint probabilities for the trajectories of both legs in accordance with interlimb coordination, and then
estimates the traveling direction of the hidden leg at k − 1.

(1) Gait Phase Detection

The system tracks both legs using the merged observations of the two LRSs in combination

with the insole data. First, the gait phase [comprising stance and swing phases with acceler-

ation/deceleration, as illustrated in Figure 5.4(a)] is identified for each leg. The stance/swing

phase is identified by detecting foot grounding using the insole. The acceleration/deceleration of

the swing phase is determined from the sign of the inner product between (i) the relative position

vector from each leg to the opposite leg and (ii) the velocity vector of the target leg [66]. For

example, the acceleration/deceleration of the left leg during the swing phase at discrete time

step k − 1 is calculated from the inner product as

(pRk−1 − pLk−1) · vLk−1 (5.2)

where (pRk−1 − pLk−1) is the relative position vector of the right leg with respect to the left leg,

and vLk−1 is the velocity vector of the left leg. As shown in Figure 5.4(b), the left leg accelerates

when the inner product is positive and decelerates otherwise.
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Figure 5.3. Data flow of the leg tracking system with learning-based occlusion compensation.
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Figure 5.4. (a) Gait phase consisting of stance and swing phases with acceleration/deceleration. The
stance/swing phases are recognized by detecting foot grounding using the insole. (b) The accelera-
tion/deceleration of the swing phase is determined from the sign of the inner product between (i) the
relative position vector from each leg to the opposite leg and (ii) the velocity vector of the target leg.

(2) Prediction of Leg Positions

The positions and velocities of both legs at the subsequent discrete time step k are predicted

using a linear Kalman filter under the assumption of constant translational acceleration. The

discrete motion model is given as

xfk = Axfk−1 +Buu
f,pg
k−1 +B∆xfk−1 (f = L,R) (5.3)

A =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 , Bu = B =


∆t2/2 0

0 ∆t2/2

∆t 0

0 ∆t

 (5.4)

uf,1k = 0, uf,2k = gfk−1
vfk−1∥∥∥vfk−1∥∥∥ , uf,3k = −gfk−1

vfk−1∥∥∥vfk−1∥∥∥ (5.5)

where xfk = [ pfk
>

vfk
>

] = [ xfk yfk ẋfk ẏfk ]> is predicted position and velocity of the leg,

∆t is the sampling time, and f = L,R specifies the L/R leg. uf,mk = [ ẍ
f,pg
k ÿ

f,pg
k

]>(pg = 1, 2, 3)

is the legs’ acceleration input vector, which corresponds to their gait phase (e.g., pg = 1 is

the stance phase, and pg = 2, 3 are the acceleration/deceleration stages of the swing phase,

respectively). gfk is the average norm of the acceleration vectors (∆vfx,k/∆t,∆v
f
y,k/∆t) := afk

for the swing leg during the last 20 time steps (0.5 s). ∆xfk = [ nẍk nÿk ]> is the acceleration

disturbance vector assuming a modeling error, which has zero mean and a white noise sequence

with covariance Q. This study proposes to change the covariance Q according to the gait phase
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(by assuming that the modeling error reduces when the leg is in the stance phase) as follows:

Q =

diag
(
16.02, 16.02

)
(Swing phase)

diag
(
4.02, 4.02

)
(Stance phase)

(5.6)

The measurement model is expressed as

yfk = Cxfk +w (5.7)

C =

[
1 0 0 0

0 1 0 0

]
(5.8)

where wk = [ nxk nyk ]> is the measurement noise, which is assumed to have a zero mean

and a white noise sequence with covariance R. The value was set to R = diag(0.042, 0.042), in

consideration of the measurement accuracy of the LRS.

Using the aforementioned motion model, the system predicts the position and velocity of

both legs as

ŷfk/k−1 = Cx̂fk/k−1 = C
(
Ax̂fk−1/k−1 +Buu

f
k−1

)
(5.9)

where ŷfk/k−1 is the predicted position of the leg, and x̂fk/k−1 and x̂fk−1/k−1 express the a priori

state estimate at time step k and a posteriori state estimate at k− 1, respectively. The a priori

covariance matrix P f
k/k−1 is then calculated as

P f
k/k−1 = AP f

k−1/k−1A
> +QBQ> (5.10)

where P f
k−1/k−1 is the a posteriori covariance matrix at k − 1.

(3) Gating and Data Association

After predicting the positions of the tracked legs and collecting observations, the system gen-

erates observation-to-track associations using the gating approach and GNN algorithm. The

gating approach constructs a validation region around the predicted position of each leg ŷfk/k−1

and excludes all observations outside this region to prevent undesired associations. This region is

defined as a threshold λ on the relation between the prediction ŷfk/k−1 and the j-th observation

yjk, which is calculated as the Mahalanobis distance df,j , expressed as

df,j =


√(

yjk − ŷ
f
k/k−1

)> (
Sfk

)−1 (
yjk − ŷ

f
k/k−1

)
(d2f,j < λ)

∞ (otherwise)

(5.11)
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where Sfk is the covariance matrix of the innovation yjk − ŷ
f
k/k−1 calculated as follows:

Sfk = CP f
k/k−1C

> +R (5.12)

The threshold is set to λ = 13.82 according to the probability PG = 0.999 (extracted from the

χ2 distribution with two degrees of freedom) that an observation generated by the leg is located

inside the region.

The GNN then assigns each included observation to a maximum of one leg, by minimizing

a cost function ca,b expressed as the sum of the Mahalanobis distances for each leg:

ca,b = dL,a + dR,b (0 ≤ a ≤ Jk, 0 ≤ b ≤ Jk, a 6= b) (5.13)

where Jk is the total number of observations at k.

(4) Filtering

When the observation corresponding to the predicted position is found, the system performs a

filtering process using a Kalman filter. The a posteriori state estimate x̂fk and Kalman gain Kf
k

are calculated as follows:

x̂fk/k = x̂fk/k−1 +Kf
k

(
yfk −Cx̂

f
k/k−1

)
(5.14)

Kf
k = P f

k/k−1C
>
(
CP f

k/k−1C
> +R

)−1
(5.15)

The a posteriori covariance matrix P f
k/k is then calculated as follows:

P f
k/k =

(
I −Kf

kC
)
P f
k/k−1 (5.16)

If the corresponding observation is not found (owing to occlusion), the filtering process is sup-

pressed and the a posteriori state estimate and covariance matrix are set to the a priori ones.

Applying the above process to the fusion of the two LRSs and instrumented insoles al-

lows the system to track both legs during straight walking and turning under different curva-

tures/directions.
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Figure 5.5. The time-series positions and velocities of each leg are divided by the walking cycle, which
lasts from the start of one swing phase (toe-off) to the start of the next, as identified by the insole.
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Figure 5.6. Definition of unified coordinate system. The origin denotes the leg position at the first time
step, and the front-facing (0°) direction is set as the mean velocity vector’s orientation for the four initial
steps.

5.2.3 Learning of Trajectory–Direction Relationship Using GMMs

(1) Division of Time-series Positions and Velocities into Walking Cycle

After tracking different walking types, the relationship between the leg trajectory and traveling

direction for one walking cycle is modeled for each type. First, the time-series positions and

velocities of each leg are divided by the walking cycle, which lasts from the start of one swing

phase to the start of the next (depicted in Figure 5.5), as identified by the insole.

(2) Transformation into Unified Coordinate System

Next, the unified coordinate system (shown in Figure 5.6) is defined for each cycle. The origin

of the coordinate system is the leg’s position at the first time step, and the front-facing (0°)

direction is set as the mean velocity vector’s orientation for the four initial steps (0.1 s). The
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Figure 5.7. The positions and velocities after the fifth step are transformed into a unified coordinate
system, and the traveling directions are calculated as the directions of the transformed velocity vectors.

transformation matrix is defined as follows:

Rt (θr) =


cos θr − sin θr −px,1
sin θr cos θr −py,1

0 0 1

 (5.17)

θr =
π

2
− 1

4

4∑
k=1

tan−1
vy,k
vx,k

(5.18)

The time-series positions and velocities after the fifth step are then transformed into a unified

coordinate system, and the traveling directions are calculated as the direction of the transformed

velocity vectors.

Through these processes, datasets describing the transformed leg’s position p′ and traveling

direction θ′v are obtained for each walking type, as shown in Figure 5.7.

(3) Fitting of User-specific GMMs

To model the relationship between the leg trajectory and the traveling direction for each walking

type, the user-specific GMM is fitted to the transformed dataset d′ = (p′, θ′v) using the EM

algorithm, as demonstrated in Figure 5.8. The probability density function is described as

p(d′) =
L∑
l=1

πlN
(
d′|µl,Σl

)
=

L∑
l=1

πlN

([
p′ θ′v

] ∣∣∣∣∣[ µp′,l µθ′v ,l

]
,

[
Σp′p′,l Σθ′vp

′,l

Σp′θ′v ,l Σθ′vθ
′
v ,l

])
(5.19)

N
(
d′|µl,Σl

)
=

1

(2π)
3
2

1

|Σl|
1
2

exp

{
−1

2

(
d′ − µl

)>
Σ−1l

(
d′ − µl

)}
(5.20)
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● Gentle CCW turning ● Sharp CCW turning

Toe-off

Next 

toe-off

Toe-off

Next 
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Figure 5.8. The relationships between the leg trajectory and traveling direction for straight walking and
turning under different curvatures/directions are modeled by user-specific GMMs.

where L is the number of GMM components.

5.2.4 GMM-based Occlusion Compensation

After learning the trajectory–direction relationships, the system tracks legs using a single LRS

and the insole data. Tracking is performed according to Section 5.2.2(1)–(4), and the compen-

sation is executed when occlusion arises after the fifth step of the swing phase. Occlusion is

defined as occurring when no observation is associated with the leg at k − 1. The occlusion

compensation procedure is described below.

(1) Identification of ML GMM based on Interlimb Coordination

The trajectories from the fifth step of the swing phase to the k − 1 time step (for both legs)

are transformed into the unified coordinate systems. Given the transformed leg position p′, the

probability of the GMM for each walking type mgm is calculated as

βgm =

ngmmgm∑
l=ngm(mgm−1)+1

βl (5.21)

βl =
p (l) p (p′ |l )

ngmL∑
i=1

p (i) p (p′ |i)
=

πlp
(
p′
∣∣µp′,l,Σp′p′,l

)
ngmL∑
i=1

πip
(
p′
∣∣µp′,i,Σp′p′,i

) (5.22)
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where ngm is the number of walking types. The ML GMM, which maximizes the joint probability

of bot legs’ trajectories, is then defined as follow:

arg max
mgm

1

NLNR

NL∑
k = 5

βLmgm,k

NR∑
k = 5

βRmgm,k (mgm = 1, 2, ..., ngm) (5.23)

This identification is based on the biomechanical assumption that the walking types for both legs

match because legs move in a coordinated manner (interlimb coordination) during one walking

cycle [108]. Note that the numbers of time steps differ between legs (NL 6= NR). When the

opposite leg is performing the first four steps of the swing phase, an ML GMM that maximizes

the probability of the target leg is used instead.

(2) Prediction Using ML GMM

Using the ML GMM, the expected value and standard deviation of the hidden leg’s traveling

direction at k − 1 are calculated from its position, using Gaussian mixture regression:

θ̂′v =

ngmmgm∑
l=ngm(mgm−1)+1

βl

{
µp′,l + Σθ′p′,lΣ

−1
p′p′,l

(
p′k−1 − µp′,l

)}
(5.24)

Σ̂θ′vθ
′
v

=

ngmmgm∑
l=ngm(mgm−1)+1

β2l

(
Σθ′vθ

′
v ,l−Σθ′vp

′,lΣ
−1
p′p′,lΣp′θ′v ,l

)
(5.25)

βl =
p (l) p (p′ |l )

ngmmgm∑
i=ngm(mgm−1)+1

p (i) p (p′ |i)
=

πlp
(
p′
∣∣µp′,l,Σp′p′,l

)
ngmmgm∑

i=ngm(mgm−1)+1

πip
(
p′
∣∣µp′,i,Σp′p′,i

) (5.26)

The direction of the leg’s velocity vector at k − 1 is then changed to the expected value, as

follows: [ ̂̇xfk−1̂̇yfk−1
]

=

[
cos θ̂v

sin θ̂v

]
‖vfk−1‖ =

[
cos θ̂v

sin θ̂v

]√(
ẋfk−1

)2
+
(
ẏfk−1

)2
(5.27)

θ̂v = θ̂′v +
π

2
− θr (5.28)

Next, the leg position at k is predicted from the acceleration in the expected direction, according

to Section 5.2.2(1)–(2).

(3) Gating Using ML GMM

When the occlusion continues for several time steps, the validation region defined by the a poste-

riori covariance matrix expands, owing to the lack of filtering process. This induces an undesired

66



5. LEARNING-BASED OCCLUSION COMPENSATION FOR LEG TRACKING BASED ON

FUSION OF LASER RANGE SENSOR AND INSTRUMENTED INSOLES

k-1

k-2
XY

4

ky

3

ky

23

k-1

k-2

3



2

ky

1

ky

XY

Observation

θ

Prediction

(a) (b)

Figure 5.9. (a) The system excludes the undesired observation y2k using the Mahalanobis distance λ3, by
evaluating the relations of the position and the traveling direction. (b) The observation y3k (exhibiting a
small distance on the XY-axis and a large direction error) is not excluded by the Mahalanobis distance
λ2, to account for the measurement noise of the LRS.

association with observations away from the traveling direction. To address this problem, the

system excludes these undesired observations using the estimated traveling direction, as shown

in Figure 5.9(a).

In the gating approach, the three-variable Mahalanobis distance—which evaluates the re-

lations between the predicted position and XY-axis observation and between the ML GMM

estimates and the direction from the leg position at k − 1 to the observation—is calculated as

follows:

df3,j =

√√√√√√√√√


xjk − x̂
f
k/k−1

yjk − ŷ
f
k/k−1

tan−1
yjk−y

f
k−1

xjk−x
f
k−1


>  Sfk

0

0

0 0 Σ̂θ′vθ
′
v


−1 

xjk − x̂
f
k/k−1

yjk − ŷ
f
k/k−1

tan−1
yjk−y

f
k−1

xjk−x
f
k−1

 (5.29)

The threshold to df3,j is set to λ3 = 16.27 according to the probability PG = 0.999 extracted

from the χ2 distribution with three degrees of freedom. Meanwhile, observations exhibiting

a small XY-axis distance and large direction error [as shown in Figure 5.9(b)] should not be

excluded. Thus, the Mahalanobis distance on the XY-axis distance is also used to account for

the measurement noise of the LRS (defined by covariance matrix R):

df2,j =

√√√√√ xjk − x̂
f
k/k−1

yjk − ŷ
f
k/k−1

> (R)−1

 xjk − x̂
f
k/k−1

yjk − ŷ
f
k/k−1

 (5.30)
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Figure 5.10. A schematic walkway including a straight path of 6 m and circular paths with 0.5 and 1 m
radii, as well as walking directions.

The threshold to df2,j is set as λ2 = 13.82, similar as described in Section 5.2.2(3).

After gating, the system performs data association by minimizing the sum of Mahalanobis

distances on the XY-axis [as seen in Section 5.2.2(3)], and filtering is executed when an obser-

vation is assigned.

5.3 Evaluation of Learning-based Occlusion Compensation

5.3.1 Study Procedure

Six healthy adults (five males, age: 24.0 ± 3.6 years, height: 1.70 ± 0.07 m, body mass:

65.6 ± 7.2 kg) participated in this study. Ethical approval was obtained from Keio University

Research Ethics Committee (reference number 31–80), and informed consent was obtained from

participants prior to the experiment. The participants wore shoes containing the instrumented

insoles. Their task executions were measured and recorded by the LRS–insole system, using

custom software (C++) and a motion capture system comprising eight cameras and a Plug-in

Gait lower-body marker set (Nexus, Vicon, Oxford, UK). The data were collected at 40 Hz from

the LRS and at 100 Hz from the insoles and the motion capture cameras. All devices were

synchronized via voltage inputs and radio communications. Insole measurements were recorded

onto microSD cards located on electrical circuit boards fixed to the back of the user’s lower

leg, and tracking was executed offline using MATLAB. Participants were asked to perform the

following tasks on the walkway (highlighted using tape), which included a straight line of 6 m

and circular paths with 0.5 and 1 m radii, as illustrated in Figure 5.10.

A. ST: The participants walked in a straight line from points A to B. This task was repeated
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Figure 5.11. AIC and BIC for each number of GMM components.

eight times.

B. The participants walked directly from point A/B, turned clockwise/counterclockwise on

the circular path with a radius of 0.5/1 m five times, walked in a straight line again, and

stopped at point B/A. These tasks were repeated four times.

(I) CW-L: The participants started from point A and turned clockwise on the circular

path of radius 1 m.

(II) CCW-L: The participants started from point B and turned counterclockwise on the

circular path of radius 1 m.

(III) CW-S: The participants started from point A and turned clockwise on the circular

path of radius 0.5 m.

(IV) CCW-S: The participants started from point B and turned counterclockwise on the

circular path of radius 0.5 m.

5.3.2 Data Analysis

First, the proposed system tracked both legs using the merged observations from the two LRSs

in tasks A and B. The time-series data were then divided into the walking cycle using the foot

grounding times, which were detected by the insoles, and transformed into a unified coordinate

system. The traveling direction was calculated from the transformed velocity vector. Next, all

datasets (except those for two of the eight trials for task A and one of the four trials for task

B) were integrated, and a GMM was fitted to each. The number of GMM components was set

to four to ensure that the AIC and BIC values were sufficiently small for datasets describing

all walking types, as shown in Figure 5.11. Finally, the system tracked the subject’s legs using

the observations from one LRS (installed at the start point side in each task) and executed

learning-based compensation when occlusion occurred. The ground truth of the leg position in

each task was calculated as an internally divided point at 270 mm above the floor between the
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knee/ankle joints of the Plug-in Gait model obtained from the motion capture system. The

time-series of the ground truth was resampled at 40 Hz according to the LRS.

To evaluate the tracking performance, the number of time steps until tracking failure was

calculated. False tracking was identified when one of the following scenarios occurred over four

consecutive steps (0.1 s):

• When data association was performed for both legs and the distance from the ground truth

of the target leg position to its estimate exceeded the estimate for the opposite leg.

• When data association was not performed for one leg and its estimate was more than 1 m

distant from the ground truth.

To assess the advantages of the proposed method [that is the fusion with the instrumented

insoles and occlusion compensation (I+C)], two comparative methods were evaluated using the

same observations, as follows:

• L-C: The method tracks legs using only a single LRS without fusion with insole data. The

grounding of each foot was identified from threshold values of the estimated leg velocity.

These was set to vswthr = 0.93 (m/s) for the swing phase and vstthr = 0.47 (m/s) for the stance

phase according to [66].

• I-C: The method tracks legs using the fusion with insole data but without occlusion com-

pensation.

5.3.3 Results

The total number of tracking time steps (NALL), the success rate of tracking steps for L-C, I-C,

and I+C (rST/ALL), the number of trials successfully completed (NS), and the ratio between the

number of steps requiring occlusion compensation and the successfully tracked steps for I+C

(rC/ST) are listed in Tables 5.1 and 5.2. The results are summarized for each participant and

overall. The tracking methods with the highest success rate are highlighted in bold. Examples

of leg trajectories tracked by the comparative and proposed methods (I-C and I+C) for turning

under different curvatures and directions in subjects B–E are shown in Figure 5.12. The tra-

jectories of the left/right legs are plotted in blue/red, respectively. The accuracies of both leg

positions as tracked by I+C in time steps that use data association are listed in Table 5.3. The

accuracies were evaluated by one-sample t-test. The null hypothesis was that the accuracy of

the method came from a population with a mean value of 100 mm. The alternative hypothesis

was that the mean was under 100 mm. A cutoff of 100 mm was chosen because it has been

reported as valid for capturing pathological gaits. This includes mild to moderate knee OA,

which decreases walking step lengths by 200 mm [3].
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Table 5.1. The total time steps, tracking success rate, and rate of occlusion compensation during successful
tracking of I+C for gentle turning.

CW-L CCW-L
rST/ALL(%) rC/ST(%) rST/ALL(%) rC/ST(%)

ID Trial NALL L-C I-C I+C L R NALL L-C I-C I+C L R

A

1 1438 100 37.1 37.1 4.7 4.5 1420 42.8 6.8 100 0.7 11.6
2 1425 100 100 100 5.5 5.3 1441 6.9 42.7 100 0.8 11.1
3 1420 100 100 100 5.8 5.1 1397 25.8 25.8 100 0.6 10.2
4 1394 12.3 100 100 7.1 5.4 1415 61.2 6.8 100 0.8 9.7

Mean 1419.3 78.1 84.3 84.3 6.0 5.2 1418.3 34.2 20.5 100 0.8 10.6
NS 3 3 3 0 0 4

B

1 1505 9.5 45.2 100 5.8 3.1 1413 10.4 7.0 100 1.4 9.6
2 1427 9.7 27.8 100 6.2 3.0 1410 10.1 42.6 100 2.4 11.4
3 1454 28.1 28.3 100 8.8 1.9 1420 6.8 24.5 100 2.5 9.4
4 1470 9.7 9.7 100 8.8 2.7 1432 6.6 24.0 100 3.6 11.3

Mean 1464.0 14.3 27.7 100 7.4 2.7 1418.8 8.5 24.5 100 2.5 10.4
NS 0 0 4 0 0 4

C

1 1394 40.3 40.3 100 8.8 4.0 1408 27.0 9.4 100 1.3 9.0
2 1549 63.7 26.3 26.3 8.3 0.0 1527 17.3 17.3 100 1.2 8.1
3 1421 64.3 100 100 9.5 3.2 1386 25.8 7.6 100 1.7 8.2
4 1429 47.0 11.3 100 10.1 4.0 1387 11.5 8.1 100 1.4 8.3

Mean 1448.3 53.8 44.5 81.6 9.4 3.4 1427.0 20.4 10.6 100 1.4 8.4
NS 0 1 3 0 0 4

D

1 1504 52.7 23.0 100 4.8 6.9 1553 7.0 7.0 100 4.6 9.9
2 1503 27.4 81.4 100 5.4 5.3 1593 7.6 7.6 100 4.2 10.3
3 1487 22.9 22.9 100 6.8 5.8 1569 24.3 7.1 100 4.8 8.5
4 1496 17.9 100 100 5.8 4.8 1552 7.7 7.7 100 4.4 8.0

Mean 1497.5 30.2 56.8 100 5.7 5.7 1566.8 11.7 7.4 100 4.5 9.2
NS 0 1 4 0 0 4

E

1 1526 8.7 8.7 100 7.1 4.9 1432 6.7 24.6 100 2.5 11.7
2 1444 10.0 23.1 100 6.9 6.3 1426 6.9 7.2 100 2.3 9.5
3 1412 10.3 23.7 88.6 8.2 6.4 1418 2.0 7.1 100 2.6 11.7
4 1415 40.9 23.6 100 7.1 6.0 1424 44.0 25.2 100 2.1 10.7

Mean 1449.3 17.5 19.8 97.1 7.3 5.9 1425.0 14.9 16.0 100 2.4 10.9
NS 0 0 3 0 0 4

F

1 1204 38.5 79.7 100 5.9 5.6 1462 70.3 68.3 100 1.4 12.2
2 1275 90.7 100 100 7.9 4.5 1284 7.8 7.8 100 1.8 12.5
3 1378 10.7 100 100 5.6 4.7 1277 83.4 100 100 1.1 11.9
4 1417 100 35.0 100 7.8 2.6 1182 32.7 100 100 1.1 11.8

Mean 1318.5 60.0 78.7 100 6.8 4.3 1301.3 48.6 69.0 100 1.4 12.1
NS 1 2 4 0 2 4
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Table 5.2. The total time steps, tracking success rate, and rate of occlusion compensation during successful
tracking of I+C for sharp turning.

CW-S CCW-S
rST/ALL(%) rC/ST(%) rST/ALL(%) rC/ST(%)

ID Trial NALL L-C I-C I+C L R NALL L-C I-C I+C L R

A

1 1000 100 100 100 4.5 2.5 1048 100 100 100 1.3 13.1
2 1002 100 100 100 6.0 2.8 1022 100 100 100 0.8 12.5
3 1004 8.5 100 100 5.4 2.6 1045 100 100 100 1.1 12.8
4 991 100 100 100 3.7 3.0 1064 61.6 26.5 100 1.7 14.2

Mean 999.3 77.1 100 100 4.9 2.7 1044.8 90.4 81.6 100 1.2 13.2
NS 3 4 4 3 3 4

B

1 989 100 100 100 7.9 2.7 972 41.7 41.7 100 3.4 12.7
2 968 14.6 100 100 6.0 2.2 1067 0.9 38.6 100 5.2 9.7
3 993 100 100 100 4.5 2.1 983 9.7 9.7 100 1.7 7.1
4 990 100 100 100 4.0 2.4 999 78.7 100 100 3.4 7.9

Mean 985.0 78.6 100 100 5.6 2.4 1005.3 32.7 47.5 100 3.5 9.3
NS 3 4 4 0 1 4

C

1 945 100 100 100 7.8 3.4 991 13.0 13.0 100 0.8 8.1
2 1157 100 100 100 6.5 2.6 1120 22.8 22.8 22.7 0.0 1.2
3 1286 86.8 100 100 7.5 2.6 1178 11.4 11.4 100 0.6 7.6
4 958 100 100 100 4.3 3.2 995 14.3 14.4 100 1.3 6.5

Mean 1086.5 96.7 100 100 6.6 2.9 1071.0 15.4 15.4 80.7 0.8 7.0
NS 3 4 4 0 0 3

D

1 924 100 100 100 7.3 7.1 957 3.4 27.0 100 6.0 5.4
2 881 1.7 100 100 4.3 4.7 986 13.5 13.5 100 7.3 5.2
3 926 24.7 100 100 5.5 5.5 1143 39.1 64.1 100 5.5 4.7
4 900 42.1 100 100 7.0 4.1 988 14.2 27.2 100 5.9 8.2

Mean 907.8 42.1 100 100 6.0 5.4 1018.5 17.6 33.0 100 6.1 5.8
NS 1 4 4 0 0 4

E

1 869 1.7 100 100 5.2 5.3 862 12.3 23.9 77.3 8.4 8.1
2 842 1.1 10.0 73.4 5.0 5.0 855 12.5 46.8 100 8.0 6.7
3 868 25.2 100 86.8 7.3 3.1 835 12.5 29.2 100 8.6 8.3
4 857 10.6 10.6 100 6.2 4.0 830 12.9 100 100 3.9 5.5

Mean 859.0 9.7 55.1 90.0 5.9 4.3 845.5 12.5 50.0 94.3 7.2 7.1
NS 0 2 2 0 1 3

F

1 922 100 100 100 6.1 2.1 830 12.8 100 100 0.7 10.0
2 892 100 100 100 4.7 3.0 840 13.6 100 100 0.7 6.5
3 388 100 100 23.2 0.0 0.0 828 13.4 79.3 100 0.5 12.0
4 934 100 100 100 3.9 3.4 729 100 100 100 0.5 9.1

Mean 784.0 100 100 80.8 4.7 2.7 806.8 34.9 94.8 100 0.6 9.4
NS 4 4 3 1 3 4
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Position of right leg Velocity of right legTrajectory of right leg
Position of left leg Velocity of left legTrajectory of left leg

Occlusion compensation of left leg
Occlusion compensation of right leg

LRS observation+
Unified coordinate system

Invalid region of left leg
Invalid region of right leg

(Subject B, CCW-L) (Subject C, CCW-L)

(Subject B, CCW-S) (Subject C, CCW-S)

(Subject D, CCW-S) (Subject E, CCW-S)

(Subject D, CCW-L) (Subject E, CCW-L)

Figure 5.12. Leg trajectories tracked by I-C (left) and I+C (right) for gentle and sharp counterclockwise
turning in subjects B–E.
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Table 5.3. The mean (± SD) error of leg positions tracked by I+C in time steps with data association.

CW-L CCW-L CW-S CCW-S
ID Trial L (mm) R (mm) L (mm) R (mm) L (mm) R (mm) L (mm) R (mm)

A

1 45.4 (25.6) 58.6 (32.7) 51.2 (27.0) 42.7 (28.7) 33.3 (20.9) 49.4 (26.0) 44.1 (23.5) 27.6 (22.2)
2 41.8 (28.1) 61.7 (32.5) 51.4 (28.3) 42.1 (28.4) 37.4 (21.9) 49.8 (28.2) 43.7 (24.3) 29.2 (22.5)
3 41.3 (28.1) 62.9 (35.0) 50.6 (28.1) 43.1 (28.3) 33.8 (20.6) 48.5 (26.7) 45.4 (27.0) 28.5 (22.2)
4 42.2 (28.2) 61.3 (34.2) 51.6 (29.7) 41.6 (27.3) 34.2 (22.0) 49.6 (27.7) 45.7 (27.0) 28.8 (25.2)

Mean 42.2 (27.9) 61.6 (33.8) 51.2 (28.3) 42.4 (28.2) 34.7 (21.4) 49.3 (27.2) 44.7 (25.5) 28.5 (23.1)

B

1 44.8 (25.3) 57.8 (33.5) 46.5 (23.4) 38.4 (26.1) 35.6 (18.3) 49.4 (25.2) 35.2 (22.9) 35.7 (20.2)
2 43.2 (22.7) 55.8 (31.9) 48.0 (26.2) 42.0 (28.4) 36.8 (18.8) 49.4 (27.2) 35.7 (21.0) 33.6 (20.0)
3 47.2 (27.5) 64.9 (37.4) 48.6 (26.3) 40.4 (27.6) 34.6 (19.0) 50.7 (34.0) 37.3 (22.2) 34.6 (19.9)
4 44.4 (24.6) 56.8 (33.5) 49.9 (25.2) 41.6 (28.4) 37.8 (19.6) 48.9 (24.9) 34.6 (18.2) 32.5 (19.6)

Mean 44.9 (25.1) 58.8 (34.3) 48.2 (25.3) 40.6 (27.7) 36.2 (19.0) 49.6 (28.1) 35.7 (21.2) 34.0 (20.0)

C

1 53.6 (28.6) 51.7 (32.5) 47.3 (27.5) 42.4 (28.5) 46.7 (20.6) 42.4 (26.3) 34.6 (20.4) 35.2 (20.3)
2 34.8 (38.1) 36.8 (31.1) 45.4 (26.1) 40.1 (28.1) 43.1 (21.9) 37.5 (25.7) 18.1 (17.5) 13.5 (15.2)
3 50.8 (28.6) 49.1 (31.3) 47.1 (26.9) 43.1 (31.0) 39.8 (23.8) 36.0 (25.4) 32.8 (20.6) 33.1 (17.6)
4 51.0 (28.5) 51.7 (32.8) 46.3 (26.4) 42.9 (30.0) 44.9 (19.9) 41.2 (25.5) 33.8 (20.3) 33.4 (19.0)

Mean 50.3 (29.9) 49.5 (32.4) 46.5 (26.7) 42.1 (29.4) 43.3 (22.0) 38.9 (25.8) 32.5 (20.7) 32.2 (19.5)

D

1 42.2 (26.1) 55.0 (30.6) 50.7 (27.1) 43.5 (26.6) 40.1 (26.2) 57.9 (33.3) 58.0 (27.4) 42.3 (23.4)
2 41.6 (26.8) 53.2 (30.8) 50.5 (26.5) 42.9 (27.3) 38.5 (25.7) 57.8 (31.9) 61.0 (27.7) 43.4 (24.1)
3 44.5 (33.1) 56.6 (32.1) 51.0 (27.5) 44.7 (28.0) 40.6 (28.8) 58.8 (33.1) 58.4 (25.8) 44.3 (22.5)
4 43.5 (27.9) 53.2 (29.1) 50.4 (26.0) 43.7 (28.4) 41.2 (27.1) 55.2 (31.4) 60.5 (30.4) 44.0 (24.5)

Mean 42.9 (28.6) 54.5 (30.7) 50.6 (26.8) 43.7 (27.6) 40.1 (27.0) 57.5 (32.4) 59.4 (27.8) 43.5 (23.6)

E

1 50.8 (37.4) 52.7 (31.0) 49.7 (26.4) 40.4 (27.5) 52.6 (28.9) 57.9 (32.0) 46.3 (27.3) 59.2 (47.1)
2 51.2 (39.8) 53.5 (32.1) 49.5 (25.6) 41.2 (28.6) 50.8 (24.2) 59.5 (32.9) 44.8 (27.2) 33.9 (23.2)
3 53.4 (35.5) 57.2 (33.8) 49.1 (25.6) 40.3 (27.1) 48.8 (23.4) 61.7 (31.9) 45.3 (25.7) 35.5 (24.2)
4 54.5 (40.2) 56.2 (32.9) 48.8 (25.9) 39.7 (26.4) 48.8 (25.2) 58.9 (30.9) 43.6 (24.7) 35.7 (22.7)

Mean 52.4 (38.4) 54.8 (32.5) 49.2 (25.9) 40.4 (27.4) 50.2 (25.7) 59.4 (31.9) 44.9 (26.2) 40.0 (31.4)

F

1 41.8 (25.4) 44.2 (25.0) 44.3 (28.0) 46.9 (29.4) 37.6 (20.3) 36.9 (21.2) 47.3 (24.6) 46.9 (29.0)
2 40.4 (24.0) 42.6 (24.9) 49.5 (31.5) 48.6 (29.4) 37.0 (20.0) 39.2 (21.4) 47.5 (23.2) 45.9 (26.0)
3 38.9 (23.8) 41.4 (24.5) 49.9 (30.7) 48.5 (29.7) 35.7 (13.5) 36.6 (18.0) 47.4 (24.0) 44.8 (27.3)
4 39.4 (25.2) 42.3 (22.5) 48.4 (29.6) 48.2 (28.5) 37.0 (19.4) 39.1 (21.3) 48.4 (23.9) 44.0 (22.9)

Mean 40.1 (24.6) 42.6 (24.2) 47.9 (30.0) 48.0 (29.3) 37.2 (19.7) 38.3 (21.2) 47.7 (23.9) 45.4 (26.5)

All
Mean 45.4 (29.8) 53.7 (32.1) 49.0 (27.2) 42.8 (28.3) 40.0 (23.0) 48.6 (29.1) 44.3 (25.9) 37.3 (24.9)
p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1− β 0.985 0.915 0.987 0.994 1.000 0.978 0.997 1.000
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5.3.4 Discussion

(1) General Discussion

Tables 5.1 and 5.2 show that, in most trials and for all walking types, the proposed method with

occlusion compensation (I+C) continued tracking for more time steps than the comparative

methods without compensation (L-C, I-C). Similarly, Figure 5.12 demonstrate that the method

without compensation (I-C) often failed to continue tracking when occlusion occurs while the

method with the compensation (I+C) did continue. This extension of the tracking distance is

valuable because the GNN does not guarantee recovery after tracking failure. This advantage

can lead to efficient clinical assessments, even when only a few trials can be measured (owing to

physical burdens on the patients or limitations of consultation time).

Table 5.3 shows that, when tracked using the proposed method (I+C) in time steps with

data association, the mean error of both leg positions was below 60 mm, which is valid for

clinical assessment (under 100 mm, p < 0.001, 1 − β > 0.9). From the above results, it can

be seen that the proposed method—which applies learning-based occlusion compensation—can

track the complicated dynamic motions of both legs during walking on circular paths with valid

accuracy.

(2) Limitations

This study examined the validity of the proposed method for only a few types of periodic curved

walking. However, the tasks included transitions from straight to curved walking trajectories

and vice versa, and the proposed method improved the tracking performance for these phases.

Therefore, the proposed method can be widely applied to walking tests, including turnings

of various curvatures (e.g., the Figure-of-Eight Walk test). Meanwhile, the robustness of the

method against specific leg motions (e.g., slow walking with short steps), which may induce

extreme long-term occlusion, should be examined in future research.

5.4 Conclusion

This chapter presented the learning-based compensation of the leg position to facilitate LRS-

based tracking of both legs during walking on circular paths, using the interlimb coordination

during one walking cycle. The method measures straight walking and turning motions under dif-

ferent curvatures/directions in advance, and then learns the relationship between the trajectory

and traveling direction for each leg during one cycle of each walking type using GMMs. During

tracking, the walking type is identified from the joint probability of both legs’ trajectories dur-
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ing the walking cycle, according to the interlimb coordination, and the traveling direction and

position of the hidden leg during occlusion are estimated by the ML GMM. Experimental results

showed that the proposed method prevents undesirable data associations during occlusion and

continues to track legs after recovering from occlusion.
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Chapter 6

Conclusion

6.1 Summary of Contributions

To estimate and track human motions using wearable/fixed sensors, this dissertation focused on

solving two problems that arise when modeling the relationships between the sensor measure-

ments and motion parameters or complicated motion dynamics. The first is that the learning

approaches lose estimation accuracy through overfitting when the diversity and size of the dataset

are constrained by device resources and the user’s limited motor abilities. The second is that

a single model cannot adapt to changes in the sensor–motion relationship, owing to sensing

conditions and the complicated motions that cannot be represented by a specific model.

To address these issues, data-efficient learning that uses small datasets and limited sensor

resources (i.e., without highly accurate devices) is required to obtain motion estimation models.

Moreover, the training of multiple models according to the measurement condition and adaptive

estimation through selecting the adequate model therefrom are needed to handle changes in

sensor–motion relationships and complicated dynamic motions. Therefore, this dissertation

presented the biomechanics-driven stochastic learning for human motion sensing systems, which

achieved data-efficient learning of motion estimation models using limited datasets and adaptive

estimation using multiple models.

6.1.1 Theoretical Contributions

(1) Data-efficient Learning for User-specific Model Acquisition

Chapters 2 and 3 presented the constrained least squares method and data augmentation, which

are based on biomechanics, and stochastic learning techniques. These facilitate the data-efficient

learning of sophisticated models using a small dataset with constrained diversity while avoiding
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overfitting.

More specifically, Chapter 2 presented the force plate-free learning that estimates vGRF

during walking using an insole instrumented with a small number of force sensors. This method

uses limited data that consists of only the insole measurements and the user’s body weight. The

system learns a linear regression model between the insole measurements during SLS and body

weight by the least squares method, which is based on biomechanics that vGRF during SLS

approximately matches the body weight. In the regression, linear constraints with upper/lower

bounds based on the biomechanics that magnitudes of peak/trough vGRFs and stance durations

during natural walking are linearly related are added to avoid overfitting. In addition, Chapter 3

presented the one-step learning that uses only one walking step to handle the cases in which per-

forming SLS or multiple-step walking is difficult because of the user’s decreased motor abilities.

The system probabilistically augments the actual insole measurements and vGRF obtained from

a low-cost body scale for a single step to a virtual dataset for multiple steps. This augmentation

applies the biomechanical assumption that the insole measurements and vGRF obtained from

the scale vary between multiple walking steps, owing to the inconsistencies of walking behaviors.

In addition, the method learns a Gaussian process regression model, which prevents overfitting

on a small dataset.

(2) Multiple Model Learning for Adaptive Estimation

Chapters 4 and 5 presented the learning of multiple GMMs and biomechanics-based identification

of the ML model. These facilitate adaptive estimation by handling changes in the relationships

between the sensor measurements and the motion parameters or complex motion dynamics,

which are difficult to represent with a single model.

More specifically, Chapter 4 presented the shift-adaptive estimation to obtain the joint angle

from a knee brace instrumented with two stretch sensors. This method consists of learning

multiple models and performing adaptive estimation to changes in the relationship between the

sensor strains and the joint angle due to the brace shift. The system alters the relationship

between the strains of the two stretch sensors, which are placed above and below the patella

hole of the brace, by utilizing biomechanics that the skin strain is high in the patella area

and rapidly decreases further away from the joint. Next, the relationship between the two

sensor strains and joint angles at varying brace shift positions is leaned via GMMs. In the

estimation, an ML GMM is identified from the relationship between the two sensor strains,

and the angle is calculated adaptively to the brace shift. In addition, Chapter 5 presented the

learning-based occlusion compensation for leg position based upon the interlimb coordination

for one walking cycle. This facilitates LRS-based tracking of complicated dynamic motions of

both legs during walking on circular paths. The method measures straight walking and turning
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under different curvatures/directions in advance, and then learns the relationship between the

trajectory and traveling direction of each leg during one walking cycle for each walking type

using GMMs. In the tracking, the walking type is identified using the joint probability of both

legs’ trajectories during the walking cycle under the biomechanical assumption that both legs

move in a coordinated manner, and the ML GMM estimates the traveling direction and position

of the hidden leg during occlusion.

6.1.2 Practical Contributions

(1) Kinetic Motion Sensing System

Chapter 2 presented force plate-free learning, which uses only the insole measurements during

single leg stance and walking, and Chapter 3 proposed one-step learning, which uses the mea-

surement of one walking step using the insole and a low-cost body scale. These learning schemes

achieve an accessible and efficient vGRF estimation that does not require highly accurate devices

(e.g., force plates) and complicated motions.

(2) Kinematic Motion Sensing System

Chapter 4 described the estimation of knee joint angle adaptive to the brace shift, which consists

of a brace instrumented with two stretch sensors, learning of user-specific GMMs from multiple

brace shift positions, and ML GMM identification. The system achieves the measurement of

joint angle robust to the brace shifts during long-term wearing or donning/doffing.

(3) Spatial Motion Sensing System

Chapter 5 presented the learning-based occlusion compensation for leg position to facilitate the

tracking of both legs during walking on circular paths. The system offers enhanced tracking per-

formances for straight and curved walking and achieves efficient evaluation of step length/width

using only a few clinical trials.

6.2 Future Work

6.2.1 Validation for Patients with Severe Musculoskeletal Disease

In this dissertation, the models for estimating human motion were learned as user-specific using

datasets acquired from the users themselves. Thus, they can adapt to individual differences (e.g.,

foot size or body shape). Meanwhile, the proposed systems are intended for the assessment of
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patients with mild to moderate musculoskeletal diseases, who can perform natural motions such

as SLS, straight/curved walking, and knee flexion/extension. Therefore, the validity of each

system for patients with severe musculoskeletal disease (who cannot perform such motions)

should be investigated in future work.

6.2.2 Robustness for Different Conditions of Fabric and Clothes

Chapters 2 and 3 described that the instrumented insole was firmly fixed to the shoe and

covered with a relatively hard insole to ensure sensitivity. However, slippage of the insole sensor

and plastic deformation of the covering insole during actual use may affect the relationship

between sensor measurements and vGRF. Chapter 4 used the brace capable of stabilizing the

patella for the estimation of joint angle with stretch sensors, and the effect of the brace wrinkles

was negligible. However, when the system is applied to a typical low-restraint brace with high

stretchability, irregular deformations due to wrinkles may affect the strains of the stretch sensors.

To manage these changes to the sensor, the systems must learn more diverse models beforehand

or recognize the changes autonomously during actual use and perform re-learning to obtain a

new model. In addition, Chapter 5 described LRS-based leg tracking, which assumes that the

target person wears tight-fitting clothes. Thus, the robustness of leg tracking against fluctuations

caused by the looser clothes must be enhanced, by using probabilistic learning approaches to

model perturbation of surface shape.

6.2.3 Extension to Three-dimensional Motion Sensing

Although the instrumented insoles (described in Chapters 2 and 3) and the brace (described

in Chapter 4) facilitates estimation of one-dimensional/uniaxial motion parameters, the three-

dimensional GRFs and triaxial joint angles are essential for calculating joint torques that rep-

resent a more detailed motor function. In addition, although a two-dimensional LRS was used

in Chapter 5, depth cameras (e.g., Microsoft’s Kinect) have recently attracted attention in

three-dimensional motion analysis. However, when estimating and tracking three-dimensional

motion, the relationship between sensor measurements and motion parameters become further

complicated. Therefore, large-scale models with multiple inputs and outputs (and considering

the correlations between each of them) should be examined. In addition, changes to the sen-

sor structure, as well as the addition of further sensors (e.g., IMUs) to obtain different motion

parameters, could enhance the estimation.
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and Vladimı́r Mař́ık. Motion tracking and gait feature estimation for recognising parkin-

son’s disease using ms kinect. Biomedical Engineering Online, 14:20, 2015.

[53] B. Fosty, G. Ben-Sadoun, G. Sacco, A. König, V. Manera, P. Foulon, J. Brisswalter, P. H.

Robert, and F. Bremond. Accuracy and reliability of the rgb-d camera for measuring

walking speed on a treadmill. Gait & Posture, 48:113–119, 2016.

[54] Xi Cai, Guang Han, Xin Song, and Jinkuan Wang. Single-camera-based method for

step length symmetry measurement in unconstrained elderly home monitoring. IEEE

Transactions on Biomedical Engineering, 64(11):2618–2627, 2017.

[55] Maria do Carmo Vilas-Boas, Hugo Miguel Pereira Choupina, Ana Patŕıcia Rocha,
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