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Abstract

Reproducing kernels have been extensively exploited for online nonlinear estima-
tion tasks such as time-series data prediction which are of significant importance
in many fields of science and engineering. However, two major challenges for
online learning with kernels have also been recognized. First, the size of the
dictionary grows linearly with the amount of observed data. Second, it is prac-
tically impossible to choose an appropriate kernel in an online situation where
data are observed sequentially. Multikernel adaptive filtering has been proposed
to solve the second issue, although a proper kernel weight design is essential to
exploit its full potential.

In this thesis, the insights related to the above two issues are presented.
The thesis consists of the following five chapters. Chapter 1 introduces the
background and motivation of the thesis. Chapter 2 provides mathematical pre-
liminaries on sparse optimization and online learning with kernels. The related
works are introduced as well. In Chapter 3, sparse optimization by ℓp-norm
(0 < p < 1) regularization is considered as a fundamental study for sparsifi-
cation of the dictionary. Given an ℓp-regularized least squares problem, the
behavior of the critical points with a variation of the regularization parameter
is investigated. In addition, it is proved that there exists a continuous, piece-
wise smooth path of critical points connecting the origin and the sparsest least
square solution. Chapter 4 proposes a kernel weight design for multikernel adap-
tive filtering and shows that the proposed design is optimal in a certain sense.
The proposed weight design is derived by equalizing the convergence speeds of
kernel-wise coefficient errors. The derived weights can be calculated recursively
using the observed data and the recursive kernel weighting is implemented to
a multikernel adaptive filtering algorithm using metric projection. Numerical
results show the superiority of the proposed algorithm over both of the carefully
tuned preset weights and the machine learning algorithm based on multiple ker-
nel learning, in the senses of the accuracy and the dictionary size. Chapter 5
summarizes the previous chapters and gives concluding remarks of this thesis
as well as the future prospects for this study.
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Chapter 1

General Introduction

The study of my Ph. D. course has been devoted for development of an online
learning algorithm exploiting reproducing kernels, with a appropriate technique
for dictionary sparsification. This thesis presents (i) a theoretical study on
nonconvex regularizaiton for sparse optimization and (ii) a multikernel adaptive
filtering algorithm with an automatic tuning of kernel weights. This chapter
briefly introduces the background of sparse optimization and kernel adaptive
filtering.

1.1 Sparse Optimization

In signal processing, the way how to transform a signal, also called as encoding–
decoding or analysis–synthesis, has always been a fundamental topic of study.
Mallat and Zhang [1] have focused on the use of a large dictionary which consists
of atoms with various waveforms including Fourier and wavelets. As an approach
for flexible signal decomposition, a greedy algorithm called the matching pur-
suit (MP) has been proposed in [1]. Donoho and Johnstone [2] have proposed a
wavelet selection technique for reconstruction of a noise-corrupted signal. The
soft thresholding operator, which has been proposed in [2], has been also used
for signal denoising in [3]. Both studies of [1] and [2] have consequently led to a
signal representation by a small number of atoms from a redundant dictionary.
Such tasks can be generalized to finding a sparse solution of an underdetermined
least squares problem, which has more variables than equations, and hence there
exist infinitely many solutions. From a practical viewpoint, sparse decomposi-
tion of a signal leads to small computational costs for processing tasks of the
decomposed signal. Therefore, finding a sparse representation eventually im-
proves efficiency of signal processing even though using a redundant dictionary
may be memory-inefficient.

The ℓ1-norm is the absolute sum of the coefficients associated with the se-
lected atoms. Chen et al. [4] have proposed linear programming approaches
which solve a least squares problem regularized by the ℓ1-norm to obtain a
sparse solution of signal decomposition. It has also been shown in [4] that
the use of soft thresholding corresponds to solving a particular case of an ℓ1-
regularized least squares problem. In the statistics community, a similar con-
cept has been considered in an overdetermined system with a unique ordinary

7
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Figure 1.1: The solutions of ridge regression and LASSO.

least squares (OLS) solution. Tibshirani [5] has proposed a variable selection
technique named least absolute shrinkage and selection operator (LASSO), to
achieve a fine bias-variance tradeoff in regression. It is also shown that LASSO
coincides with solving a least squares problem with an ℓ1-norm constraint, and
LASSO achieves a sparser model than the ridge regression, which is constrained
by the squared ℓ2-norm. See Figure 1.1 for comparison between solutions of
ridge regression and LASSO.

Sparsity of a vector is measured by the ℓ0-norm, which counts the number
of its nonzero entries. Since the ℓ0-norm is discontinuous, sparse optimization
based on the ℓ0-norm yields a combinatorial optimization problem, which is
NP-hard. The use of greedy algorithms to deal with the problem in affordable
computational costs. The orthogonal matching pursuit (OMP) [6], an improved
version of the MP, has been a celebrated example of such algorithms, since its
potential ability to find a sparse solution has been reported in [7]. The OMP
sets the initial coefficient vector at the origin, and then updates its step-by-step
solution such that a residual error becomes zero at the solution. Thanks to sim-
plicity and theoretical performance guarantee of the OMP, many improvements
have been proposed. See [8, 9] for the ameliorated algorithms.

The ℓ1-norm can be regarded as a convex and continuous relaxation of an
ℓ0-norm, which is nonconvex and discontinuous. See Figure 1.2 to compare
the ℓ0-norm and the ℓ1-norm. Thanks to the convexity of the ℓ1-norm, an ℓ1-
norm minimization problem with a zero-error constraint can be solved by linear
programming. In addition, an ℓ1-norm minimization problem has been com-
pared with an ℓ0-norm minimization problem profoundly. Donoho and Huo [10]
have studied conditions for both problems to have unique solution. Candès and
Tao [11] have proposed the restricted isometry property (RIP), which provides
sufficient conditions that a solution of an ℓ1-norm minimization problem is the
same with that of an ℓ0-norm minimization problem. It has been also shown
that some random matrices satisfies a good RIP and this leads to the use of
sparse optimization with using the ℓ1-norm not only in denoising but also in
general signal recovery tasks and compressive sensing [12–14].

Sparse optimization using the ℓ1-norm has been also considered from a geo-
metrical viewpoint. It has been reported in [5] that the LASSO solution moves
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Figure 1.2: The ℓ0-norm, the ℓ1-norm, and the ℓp-norm (0 < p < 1).

when a hyperparameter for an ℓ1-norm constraint changes, and the solution
draws a trajectory called a solution path. Osborne et al. [15] have shown that
the solution path is piecewise straight and proposed the homotopy algorithm
which obtains the entire path. Efron et al. [16] have proposed another algorithm
called least angle regression (LARS). Although LARS is a greedy algorithm
which starts from the origin and increases the number of nonzero coefficients, a
modified version which allows nullifying a nonzero coefficient is equivalent to the
homotopy algorithm. Donoho and Tsaig [17] have reported that the LARS and
the homotopy algorithm, which consider an overdetermined system as LASSO
does, can be used to solve an ℓ1-regularized least squares problem which con-
siders an underdetermined system. In [17], the OMP has also been compared
with the LARS, focused on the similarity in their greedy processes.

While the ℓ1-norm has been popular, the ℓp-(quasi-)norm, where 0 < p < 1,
has also been considered as an attractive substitute of the ℓ0-norm for sparse
optimization because it is a closer continuous approximation of the ℓ0-norm than
the ℓ1-norm. Chartrand and Steneva [18] have presented an RIP for the ℓp-norm
and Foucart and Lai [19] have shown another sufficient condition for achieving
the sparsest solution of an underdetermined system by ℓp-regularization. Xu et
al. [20] have focused on the case of p = 0.5 and solved an ℓ0.5-regularized least
squares problem using a thresholding operator derived from cubic equations. See
the related algorithms in [21,22]. Yukawa and Amari [23] have extended LARS
to the ℓp case. They have observed that the solution path under ℓp-regularization
is discontinuous, while the path consisting of the critical points is continuous
and piecewise smooth. (See Figure 1.3.) It is shown that the breakpoints of the
piecewise smooth path correspond to the step-by-step solution of the OMP, and
this is a more direct link than that shown in [17].
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Figure 1.3: The solution path and the critical-point path under an ℓp-
regularization.

1.2 Kernel Adaptive Filtering

The core idea of kernel methods is to replace an inner product by a positive
definite kernel function. This is eventually equivalent to map the data in a
parametric space onto the higher-dimensional reproducing kernel Hilbert space
(RKHS) associated with the positive definite kernel function. In addition, the
representer theorem guarantees that the minimizer of a regularized loss function
can be represented by a linear combination of a finite number of the basis
functions of the RKHS. By the above properties, calculation and representation
of an estimator in a possibly infinite-dimensional RKHS can be done by a finite
number of calculations in a parametric space.

Enjoying such an advantage, kernel methods have been studied not only
in batch settings, but also in online settings. Adaptive filtering [24, 25] is a
representative online framework for linear estimation in the signal processing
community. Kernel Adaptive Filtering [26] has emerged from direct application
of an RKHS to the existing adaptive filtering algorithms. Engel et al. [27] have
proposed an extension of the recursive least squares (RLS) algorithm. Ker-
nelized versions of the affine projection algorithm (APA) and the least mean
square (LMS) algorithm have been proposed by Liu et al. [28, 29]. Richard et
al. [30] have also proposed the kernelized APA and LMS algorithms indepen-
dently from [28, 29]. The main differences between the algorithms in [28, 29]
and [30] are that (i) the formers explicitly consider calculations in an RKHS
while the latters only use kernelized input in the parametric space and (ii) the
latters are normalized algorithms. For simplicity, hereafter the two kernelized
LMS algorithms in [29] and [30] are called the KLMS algorithm and the KNLMS
algorithm, respectively.

Not only for kernel adaptive filtering, but most online kernel methods face
two major challenges. One is undesirable growth of the dictionary, which con-
tains the basis functions representing the estimator. Exploiting an infinite-
dimensional RKHS inherently allows an excessively large basis. For online
learning of large datasets, in particular, this implies the dictionary size and
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the computational costs also increase linearly to the number of observed data.
Wang et al. [31] have called such an undesired growth of dictionary as the curse
of kernelization. The other is difficulty of kernel selection, which significantly
affects on the performance of kernel methods including kernel adaptive filtering.
It is practically impossible to choose a proper kernel before a sufficient number
of observations. Kernel methods have been studied from various viewpoints to
tackle the above challenges.

For kernel adaptive filtering, sparsification of the dictionary using certain
criteria has been considered even in earlier works as [27]. The sparsification
criteria are based on one or several measures such as a novelty [32], the approx-
imate linear dependence (ALD) [27], the coherence [30], and the surprise [33].
The ALD measures a distance in an RKHS between the newly observed data and
its projection onto the subspace spanned by all the basis functions in the dictio-
nary. Van Vaerenbergh et al. [34] have found that, from the Bayesian viewpoint,
the ALD can be regarded as the prediction variance which is used in the online
Gaussian process regression [35]. The coherence has been already considered
in greedy algorithms for sparse optimization [1, 4, 6, 36]. The use of the coher-
ence for kernel adaptive filtering has been proposed in [30] and the quantized
KLMS (QKLMS) [37] employs essentially the same criterion. The surprise is
an information-theoretical measure which generalizes the novelty proposed by
Platt [32] and the above other measures. Liu et al. [33] has shown that both
of the ALD and the coherence are particular cases of the surprise which can
be derived by assuming the Gaussian input distribution and unknown desired
signal. Soft thresholding operator has also been used for sparse kernel adaptive
filtering in [38].

To circumvent the difficulty of kernel selection, a simultaneous use of multiple
kernels has been studied. Inspired by the multiple kernel learning (MKL) [39–44]
which has emerged in the machine learning community, many kernel adaptive
filtering using multiple kernels have been proposed [45, 46]. Yukawa has pro-
posed another way of simultaneously using multiple kernels, called multikernel
adaptive filtering [47,48]. While the other methods consider a convex combina-
tion of kernels or an ensemble of a number of kernel adaptive filters, multikernel
adaptive filtering takes different convex combinations so that different kinds of
basis functions are included in the dictionary. Such a use of multiple kernel
allows multikernel adaptive filtering a higher degree of freedom in estimation
than the other methods [49]. Effectiveness of multikernel adaptive filtering has
been shown in several applications including communications [50–52] and sensor
network [53].

1.3 This Study

The main topics of this thesis are twofold.

• One is on critical-point paths of an ℓp-regularized least squares prob-
lem in an underdetermined system. Although the study by Yukawa and
Amari [23] have presented a LARS extension in an overdetermined sys-
tem and observed a continuous path of critical points, the existence of a
path connecting the origin and the ordinary least squares (OLS) solution
has not been proved. In Chapter 3, it is proved that (i) there exists a
continuous critical-point path connecting the origin and the (unique) OLS
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Figure 1.4: Effect of kernel weights on multikernel adaptive filtering.

solution in an overdetermined system, and (ii) there exists a continuous
critical-point path connecting the origin and the sparsest OLS solution in
an underdetermined system.

• The other is on a kernel weight design for multikernel adaptive filtering.
The performnace of multikernel adaptive filtering heavily depends on the
choice of kernel weights, as shown by Figure 1.3, whereas the weights
are learned in MKL. In Figure 1.3, the target function is estimated us-
ing two kernels: one is linear and the other is Gaussian. In the legend,
MKNLMS (a, b) means that the kernel weights for the linear kernel and the
Gaussian kernel are a and b = 1 − a, respectively. The proposed weight
design in Chapter 4 is derived by equalizing the convergence speeds of
kernel-wise coefficient errors. The derived weights can be calculated re-
cursively using the observed data and the recursive kernel weighting is
implemented to a multikernel adaptive filtering algorithm using metric
projection. Numerical results show the superiority of the proposed al-
gorithm over both of the carefully tuned preset weights and an online
regression algorithm based on MKL, in the senses of the accuracy and the
dictionary size.

The remainder of this thesis is organized as follows. Chapter 2 provides
mathematical preliminaries on sparse optimization and online learning with ker-
nels. The related works are introduced as well. In Chapter 3, sparse optimiza-
tion by ℓp-regularization is considered as a fundamental study for sparsification
of the dictionary. Chapter 4 proposes a kernel weight design for multikernel
adaptive filtering and shows that the proposed design is optimal in a certain
sense. Chapter 5 summarizes the previous chapters and gives concluding re-
marks of this thesis as well as the future prospects for this study.



Chapter 2

Preliminaries

The main results of this thesis are derived from discussions dealing with various
mathematical concepts. This chapter presents preliminary materials for the
discussions in the main chapters.

2.1 Notations

Let R and N denote the sets of all real numbers and all nonnegative integers,
respectively. RL and RL1×L2 are the L-dimensional Euclidean space and the set
of all L1×L2 matrices, respectively. In addition, define RL

++ := {x ∈ RL : xi >
0, ∀i}. The superscript T stands for the transposition of a vector or a matrix.
Ir and O are the r× r identity matrix and the zero matrix of appropriate size,
respectively. 1r and 0 are the vector of r ones and the zero vector of appropriate
size, respectively. For a scalar a, |a| stands for the absolute value of a. For a
set I, |I| is the cardinality, or size, of I. For a vector x ∈ L, the ℓp-norm of x
for 0 < p <∞ is defined as follows:

‖x‖p =

( L∑

i=1

|xi|p
)1/p

, (2.1)

while the ℓ0-norm ‖x‖0 is the number of nonzero entries of x. The range space
and the null space of a matrix are denoted by R(·) and K(·), respectively.

2.2 ℓp-regularized Least Squares Problem

Consider the linear system model

d := UTh∗ + ǫ ∈ Rl, (2.2)

where the sensing matrix U := [u1 · · ·ul] ∈ Rm×l and the measurement vector
d are given, and h∗ ∈ Rm and the noise vector ǫ ∈ Rl are unknown. Assume
that U has full rank; i.e., Rank(U) = min{m, l}. The linear system UTh = d,
d ∈ Rl, has infinitely many OLS solutions if the system is underdetermined
(m > l), whereas it has a unique one if the system is overdetermined (m ≤ l).

13
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Figure 2.1: A geometric interpretation of critical point.

A problem of finding a sparsest OLS solution is formulated as follows:

find hsparsest ∈ argmin
h∈Rm

‖h‖0 s.t. d = UTh. (2.3)

The ℓ0-norm involves combinatorial problem and hence solving (2.3) requires
unaffordable computational costs for large systems. Consider the following ℓp-
regularized least squares problem for p > 0:

(Lp
λ): find ĥλ ∈ argmin

h∈Rm

fλ(h) := ϕ(h) + λFp(h), (2.4)

where ϕ(h) := 1
2‖U

Th− d‖22, Fp(h) :=
1
p‖h‖pp = 1

p

∑m
i=1 |hi|p, and λ ≥ 0 is the

regularization parameter.
It has been shown in [23] that the set of global minima (or even local minima)

for every possible λ ≥ 0 is discontinuous. In this thesis, the critical point
is considered as a generalized concept of the stationary points. Indeed, Fp is
differentiable only at those points which have no zero component. One cannot
therefore define a stationary point of fλ in the entire space, but instead can
define a critical point by considering the partial derivatives of fλ in terms of
only nonzero components. Prior to the definition of a critical point, define the
support of a vector as follows.

Definition 1 (Support). The support of a vector h is defined as supp(h) :=
{i ∈ {1, 2, · · · , n} : hi 6= 0}, i.e., it is the set of the active indices of h.

For I = {i1, i2, · · · , im} := supp(h) with its cardinality |I| = m, denote by
∇I the gradient with respect to the nonzero components; i.e., for any function
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f(h) : Rm 7→ R,

∇If(h) :=

[
∂f

∂hi1

∂f

∂hi2
· · · ∂f

∂him

]T
. (2.5)

Definition 2 (Critical point). A vector h is said to be a critical point of fλ if
it satisfies the following condition:

∇Iϕ(h) + λ∇IFp(h) = 0. (2.6)

Definition 2 implies that the functions ϕ and Fp share the same tangent
plane at a critical point. See Figure 2.1. Hereafter, the first order condition
(2.6) is referred to as the critical point condition.

2.3 Multikernel Adaptive Filtering with Weighted

Kernels

2.3.1 Multikernel Adaptive Filtering

Kernel adaptive filtering considers the following nonlinear system model:

dn = ψ(un) + νn ∈ R, n ∈ N, (2.7)

where un ∈ RL is the input vector, dn is the corresponding output generated
by the unknown function ψ of interest, and νn is the zero-mean additive noise
which is assumed independent of un. Multikernel adaptive filtering simultane-
ously exploits multiple kernel functions to estimate the target function ψ given
the observation un and dn up to each time instant n. Suppose that Q kernel
functions κq(·, ·), q = 1, 2, · · · , Q, are used. The dictionary for the qth kernel

is defined as Dq,n := {κq(x(q)
1 , ·), · · · , κq(x(q)

rq,n , ·)}, where rq,n is the cardinality

of Dq,n and the vectors x
(q)
j ∈ RL, j = 1, 2, · · · , rq,n, determine the dictionary

elements. The instantaneous estimate is then obtained as

ϕ̂n(un) =

Q∑

q=1

rq,n∑

j=1

h
(q)
n,jκq(x

(q)
j ,un) =

Q∑

q=1

k(q)T
n h(q)

n , (2.8)

where

k(q)
n =

[
κq

(
x
(q)
1 ,un

)
, · · · , κq

(
x(q)
rq,n ,un

)]T ∈ Rrq,n ,

h(q)
n =

[
h
(q)
n,1, · · · , h(q)n,rq,n

]T ∈ Rrq,n ,

for all q = 1, 2, · · · , Q. Concatenating the vectors as

kn =
[
k(1)T
n , · · · ,k(Q)T

n

]T ∈ Rrn ,

hn =
[
h(1)T
n , · · · ,h(Q)T

n

]T ∈ Rrn ,

where rn =
∑Q

q=1 rq,n, reduces (2.8) to

ϕ̂n(un) = kT

nhn. (2.9)
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The nonlinear estimation of ψ then reduces to linear estimation of the Euclidean
vector h∗, which is a minimizer of some error function, given the kernelized input
vector kn, n ∈ N. For u,v ∈ RL, the celebrated examples of positive definite
reproducing kernel are given as below.
Normalized Gaussian kernel

κG(u,v) =
1

(
√
2πσ)L

exp

(
− ‖u− v‖22

2σ2

)
, σ > 0. (2.10)

Linear kernel
κL(u,v) = uTv + c, c ∈ R. (2.11)

Polynomial kernel

κP(u,v) = (uTv + c)a, c ∈ R, a ∈ N. (2.12)

In the multikernel adaptive filtering algorithms, the dictionaries Dq,n for the
Gaussian kernel are constructed in online fashion, as in the case of the other
kernel adaptive filtering algorithms, whereas the dictionary for the linear kernel
is fixed. This is because the RKHS for the linear kernel has finite dimension
and its basis is known a priori whereas that for the Gaussian kernel has infinite
dimension and an appropriate dictionary is unknown in practice. Some criteria
for dictionary construction can be found in the literature [27, 30, 32, 33, 35]. A
popular criterion for the Gaussian kernel is the coherence criterion [30], which

tests whether the maximal entry of the kernelized input vector k(q)
n is below a

prespecified threshold, say δ > 0. If the maximal entry is below δ, then the input
is considered to be novel (since it is incoherent to any existing elements of the
dictionary) and is thus added to the dictionary. The resulting dictionary consists
of incoherent elements, meaning that the centers of the Gaussian functions in
the dictionary are apart from each other at the prespecified level.

The MKNLMS algorithm [47,48] is a multikernel adaptive filtering algorithm
of which the error function is the mean squared error MSE(h) := E

[
(kT

nh −
dn)

2
]
, where h ∈ Rrn and E[·] stands for the expectation with respect to the

input un and the noise νn. Without a manipulation of dictionaries, each update
of the MKNLMS algorithm can be written as follows:

hn+1 = hn − µ
kT

nhn − dn
‖kn‖22

kn, (2.13)

where µ ∈ (0, 2) is the step size. When Q = 1, the MKNLMS algorithm reduces
to the KNLMS algorithm [30].

2.3.2 Relation to MKL

MKL has extensively been studied in machine learning community. In a
similar form to (2.8), the instantaneous estimate by MKL can be written as
follows:

ϕ̂n(un) =

rn∑

j=1

hn,j

( Q∑

q=1

θq,nκq(xj ,un)

)

=

rn∑

j=1

hn,jκn(xj ,un), (2.14)
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Algorithm 1 OMKR (hedge)

0) D0 = ∅, h(q)
0 = [ ], θq,1 =

1

Q
, q = 1, 2, · · · , Q, µ > 0: step size,

β ∈ (0, 1): discounting parameter.

1) Prediction: ϕ̂n(un) =
∑Q

q=1 θq,nk
(q)T
n h(q)

n .

2) ǫq,n = dn − k(q)T
n h(q)

n .

3) h
(q)
n+1 =

[
h(q)
n

µǫq,n

]
, θ̃q,n+1 = θq,nβ

ǫ2q,n .

4) θq,n+1 =
θ̃q,n+1∑Q
p=1 θ̃p,n+1

.

5) Dq,n+1 = Dq,n ∪ {κq(un, ·)}.

where θq,n ≥ 0, q = 1, 2, · · · , Q, are the kernel weights such that
∑Q

q=1 θq,n = 1.
Most MKL algorithms, such as those in [42–44], first update θq,n to construct a
convex combination of multiple kernels, and then update the coefficients hn,j.
One can see from (2.14) that MKL uses the appropriately designed single kernel
κn, and the degree of freedom in MKL is Q + rn. On the other hand, as seen
from (2.8), the degree of freedom in multikernel adaptive filtering is Q × rn,
which is much larger than Q+ rn in practical situations. Thanks to the higher
degree of freedom, multikernel adaptive filtering enjoys a more compact rep-
resentation than MKL by excluding those kernels which are unnecessary for
estimation. Moreover, multikernel adaptive filtering can potentially extract the
local structures of the target containing multiple components, since different
kernels can be used to express different components. In Section 5, the proposed
method is experimentally compared with the OMKR algorithm [43, 44]. The
OMKR algorithm has been developed as an MKL algorithm for online regres-
sion, while most MKL algorithms deal with classification tasks under a batch
setting. It is therefore a particular example of MKL that can be directly com-
pared with multikernel adaptive filtering in numerical examples. Algorithm 1
shows the OMKR algorithm with a discounting parameter, which controls the
kernel weights according to the corresponding kernel-wise prediction errors.

2.3.3 Imposing Kernel Weights

A severe degradation in performance of multikernel adaptive filtering may oc-
cur when there exists some imbalance among the kernels. Such imbalance can
be alleviated by introducing kernel weights. Given positive definite kernels
κ1, κ2, · · · , κQ, imposing weights wq > 0, q = 1, 2, · · · , Q, on the kernels changes
the geometry of the original RKHS [48]. Geometry of the space is important for
multikernel adaptive filtering, of which the update is based on the projection
onto a zero-instantaneous-error hyperplane. The use of unweighted kernels, as
in Figure 2.2(a), leaves the possible imbalance among the kernels and may result
in slow convergence of the errors which are associated with some of the kernels.
Figure 2.2(b) shows the change of geometry by the appropriate kernel weights
such that the imbalance is alleviated. Applying the kernel weights to the update
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hn

hn+1

hn+2

h∗

(a) Without weights

hn

hn+1

hn+2

h∗

(b) With appropriate weights

Figure 2.2: Change of geometry by kernel weights.

(2.13) yields

gn+1 = gn − µ
kT

nWgn − dn
‖Wkn‖22

Wkn, (2.15)

where gn := W−1hn and the weight matrix W is given as

W :=




w1Ir1,n O · · · O

O w2Ir2,n · · · O
...

...
. . .

...
O O · · · wQIrQ,n


 .

The choice of W governs the transient behavior of the coefficient error zn :=
gn − g∗, where g∗ := W−1h∗. Specifically, relative convergence rates among
the kernel-wise coefficient errors, which coincide with the subvectors of zn, are
determined by the ratios among the weights w1, w2, · · · , wQ, as well as the
input autocorrelation matrix. An appropriate choice of kernel weights leads
to uniform convergence rates of the kernel-wise coefficient errors. The kernel
weights, however, need to be chosen carefully because a wrong choice may result
in a worse performance than the use of unweighted kernels and even than the
use of a single kernel.



Chapter 3

Critical-Point Paths under
ℓp-regularization (0 < p < 1)

3.1 Introduction

Regularization by the ℓp-norm (0 < p < 1) has been regarded as an attractive
approach of sparse optimization, since (i) the ℓp-norm is a better approximation
of the ℓ0-norm (the number of nonzero entries); and (ii) it has been reported that
solving an ℓp-norm minimization problem yields a sparser solution than mini-
mizing the ℓ1-norm [18, 19, 22, 54, 55]. By extending the idea of the LARS [16],
the solution path of a least squares problem regularized by the ℓp-norm has
been investigated [23, 56, 57]. The solution path consists of all the solutions,
each of which corresponds to a value of the regularization parameter. In the
ℓ1 case, the solution moves along a gradual change of the regularization pa-
rameter, and hence the solution path is continuous. On the other hand, in the
ℓp case, it has been reported that the solution suddenly jumps, whereas the
corresponding regularization parameter changes gradually [23, 57]. Because of
nonconvexity of the ℓp-norm, the ℓp-regularized least squares problem can have
multiple critical points, where the gradient is zero, including the solutions. (See
also Definition 2.) By tracking the critical points with changing the regulariza-
tion parameter, one can obtain a continuous and piecewise smooth paths.

In this chapter, it is shown that every sparsest OLS solution is connected to
the origin by a continuous path of critical points (Theorem 3.2). The path of
critical points is shortly referred to as a critical-point path. The critical-point
path is investigated first in an overdetermined system, where the OLS solution
is unique. It is proved that (i) there exists a unique path emerging from the OLS
solution and (ii) it does not stop (the velocity vector of the path does not become
zero) as long as the support does not change (see Lemma 3.1). This implies that
the path eventually falls out of the region corresponding to the current support
unless the path ends up with some loop(s). It is ensured automatically that
a path does not bifurcate excluding those critical points at which the Hessian
matrix of the ℓp-regularized squared error function is singular. Such a singular
point always exists on a path indeed (see Proposition 3.2), and therefore it is
assumed that the path does not bifurcate at any singular points in order to
make the analysis feasible. Although the assumption excluding bifurcation is

19
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required for the main theorem, the theorem holds even when the assumption is
violated (see Remark 3.1).

The above argument tells us that the path goes continuously in the region
corresponding to the current support and finally reaches a point out of the
region. The support of this end point is a proper subset of that of the OLS
solution (which means that the end point has at least one zero component),
and it is the OLS solution of a modified squared error function forcing those
components associated with the off-support to be zero. (See Proposition 3.1.)
Repetitions of this lead the path to the origin, which verifies the existence of
a piecewise smooth path (with each end point being its breakpoint) from the
OLS solution to the origin in the overdetermined case. (See Theorem 3.1.) The
basic idea of the proof for an underdetermined case is reducing the problem to
an overdetermined one in terms of a small number of components associated
with the support of an OLS solution. The reduction is only possible for such a
solution whose support has its associated submatrix of the fat sensing matrix
be full column rank. (See Theorem 3.3.) It is proved that being full-rank is a
necessary condition for a reduced overdetermined system to include the sparsest
OLS solution of the entire underdetermined system. (See Lemma 3.2) There is
also a possibility that a path exists even though the problem cannot be reduced
to an overdetermined one. For such an issue, a necessary condition for an OLS
solution to be connected with the origin by a continuous path is presented. (See
Proposition 3.3.)

3.2 A Path to the OLS Solution

An overdetermined system, where the OLS solution is unique, is considered in
this section. Figure 3.1 illustrates critical-point paths, which are obtained by
gradually increasing the ℓp-norm of critical points. One can see that the blue

path connects the origin and the OLS solution hLS, while the red and green
paths reach some other point. The existence of a critical-point path connecting
the origin and the OLS solution is proved under a mild condition. It is also
shown that the path passes through a point at which the Hessian matrix of
fλ := ϕ(h) + λFp(h) is singular.

3.2.1 Existence of a Continuous Critical-point Path

Let us arbitrarily choose a vector ĥ ∈ Rm with its support I := supp(ĥ)

satisfying ∇Iϕ(ĥ) = 0, and define

SI := {h : supp(h) = I} (∋ ĥ). (3.1)

The matrix G := UUT ∈ Rm×m is positive definite in an overdetermined case,
from which it can be verified that ĥ is a unique critical point in SI for λ = 0.

The critical point condition (2.6) can be rewritten as

UIU
T(h− hLS) + λ∇IFp(h) = 0, (3.2)

whereUI ∈ R|I|×l is a submatrix ofU consisting of those row vectors associated
with the support I. Since

∇Iϕ(ĥ) = UIU
T(ĥ− hLS) = 0, (3.3)
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0
0

hLS

h1

h
2

Figure 3.1: Critical-point paths in a two-dimensional overdetermined case.

one can obtain

UIU
T(h − hLS)−∇Iϕ(ĥ) + λ∇IFp(h) = UIU

T(h− ĥ) + λ∇IFp(h)

= GI(hI − ĥI) + λ∇IFp(h)

= 0 (3.4)

for any critical point h ∈ SI , where GI := UIU
T

I and hI ∈ R|I| is a subvector
of h consisting of those components associated with I. The second equality
holds because UTh = UT

IhI . A total differential of (3.4) leads to

KIdhI = −dλ∇IFp(h). (3.5)

where KI := ∇I∇Ifλ(h) = GI + λ∇I∇IFp(h) is the Hessian matrix of fλ.
As shown below, the matrixKI becomes singular at some point on a critical-

point path. Assume that the following statements hold to exclude the case that
a path bifurcates at singular points, guaranteeing that the path has no loop.

Assumption 3.1. For any critical point h̃ such that the Hessian matrix KI

is singular, the following hold:

(i) the zero eigenvalue of KI is simple; and

(ii) ∇IFp(h̃) /∈ R(KI).

The main theorem of this section is stated below.

Theorem 3.1. In an overdetermined case, there exists a continuous path of
critical points connecting the origin and the OLS solution.
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β̂

β̌1

β̌2

Figure 3.2: A case that Assumption 3.1 is violated but Theorem 3.1 still holds.

Remark 3.1 (On Assumption 3.1).

(a) Assumption 3.1 is violated in the following cases:

(i) two eigenvalues become zero coincidentally:

(ii) the vector ∇IFp(h̃) happens to lie in the subspace R(KI) which has
no volume in R|I|.

(b) There exists a case where Assumption 3.1 is violated but Theorem 3.1 still
holds.

Remark 3.1(b) implies that Assumption 3.1 is a sufficient, but not necessary,

condition for Theorem 3.1. Figure 3.2 illustrates the case of G = I, β̂ = [1 1]T

and p = 0.5; the Hessian matrix KI becomes a zero matrix at βbranch and
has the zero eigenvalues with multiplicity two. As Assumption 3.1 is violated,
bifurcation happens on the path emerging from β̂ at the branch point βbranch

into three branches. However, one can find that all the branches reach the
origin.

Theorem 3.1 can be verified by applying the following proposition recursively,
as shown later on.

Proposition 3.1. In the region SI, there exists a path connecting the ĥ and
some ȟ such that (i) supp(ȟ) = Ǐ ( I and (ii) ∇Ǐϕ(ȟ) = 0 (λ = 0). The edge
point ȟ lies on the boundary of the open set SI.

Proposition 3.1 will be proved with the following lemma.

Lemma 3.1.

(a) The ĥ has a neighborhood in which there is a unique path that emerges

from ĥ and lies in SI.
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dhI

−dhI

ĥ (λ = 0)

h̃ (λ > 0)

A path of critical points

Figure 3.3: An illustration of Lemma 3.1(b).

(b) For any critical point h̃ ∈ SI for λ > 0, there exists a unique path in SI

that passes through h̃; i.e., the path never stops at any critical point for
λ > 0.

(c) The path emerging from ĥ does not form any loop on SI.

Proof of Lemma 3.1(a): In a sufficiently small vicinity of ĥ, KI is non-
singular (because GI is). Left-multiplying K−1

I to (3.5) yields the following
diffenrential.

dhI

dλ
= −K−1

I ∇IFp(ĥ). (3.6)

This verifies the claim.
Proof of Lemma 3.1(b): The case that KI is nonsingular has already been
verified in the proof of Lemma 3.1(a). Suppose now that KI is singular. Then,
an eigenvector ε0 ofKI corresponding to the zero eigenvalue satisfiesKIε0 = 0,
meaning that the pair (dhI , dλ) = (ε0, 0) satisfies (3.5). With Assumption 3.1,
this verifies the existence and uniqueness of a path passing through h̃.
Proof of Lemma 3.1(c): Lemma 3.1(a) ensures that the path never returns to

the starting point ĥ. Hence, a loop can exist only if the path bifurcates. How-
ever, bifurcation happens neither at nonsingular points (Lemma 3.1(b)) nor at
singular points (Assumption 3.1). Figure 3.4 illustrates the cases denied in this
work. The cases in Figure 3.4(a) and Figure 3.4(b) are denied by Lemma 3.1(a)
and Assumption 3.1, respectively. �

Proof of Proposition 3.1: Lemma 3.1(c) verifies that the path emerging from

ĥ never stops at any critical point h̃ ∈ SI for λ > 0. By Lemma 3.1(b), the path
does not form a loop and finally falls out of SI . The support of h diminishes
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ĥ

(a) A case denied by Lemma 3.1.

ĥ

hs

(b) A case denied by Assumption 3.1.

Figure 3.4: The cases denied in Lemma 3.1 and Assumption 3.1.

and this verifies Ǐ ( I. Let hi∗ be a vanishing component, where i∗ ∈ I \ Ǐ.
By the critical point condition (2.6), at any point h̃ ∈ SI on the path excluding

the edge point ȟ 6∈ SI , it holds that
∂ϕ

∂hi∗
(h̃) = −λ ∂Fp

∂hi∗
(h̃). As h̃ → ȟ, λ → 0

since

∣∣∣∣
∂Fp

∂hi∗
(h̃)

∣∣∣∣ → ∞, while

∣∣∣∣
∂ϕ

∂hi∗
(h̃)

∣∣∣∣ < ∞. It is hence verified by (2.6) again

that ∇Ǐϕ(ȟ) = 0. �

Proof of Theorem 3.1: Let ĥ = hLS. Then, by Proposition 3.1, the ĥ is
connected with another critical point ȟ ∈ SǏ for some SǏ ( SI and λ = 0.
Since ȟ is also a critical point for λ = 0, it is also possible to consider a path
in SǏ emerging from the ȟ by just the same way with the first stage except

replacing ĥ by ȟ. Repeating such stages recursively, the path eventually reaches
to the origin corresponding to the empty support, and the existence of a path
connecting the origin and hLS is verified. �

3.2.2 Characteristics of Critical-point Paths

Letting both of ĥ ∈ SI and ȟ ∈ SǏ be critical points for λ = 0, the following
proposition on a critical point at which KI is singular can be proved.

Proposition 3.2. A path connecting the ĥ and ȟ passes through a point at
which dλ = 0 (see (3.5),) and the Hessian matrix KI of fλ is singular.

Proof: Both ĥ and ȟ are critical points for λ = 0 and the other points on the
path are for λ > 0. Therefore, λ along the path emerging from ĥ increases up
to some point and then starts to decrease. At the changing point, it holds that
dλ = 0. Substituting dλ = 0 into (3.5) yields KIdhI = 0. Since dhI 6= 0 on
the path, it follows that KI is singular at the changing point and dhI is an
eigenvector corresponding to the zero eigenvalue. �
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ĥ

λ > 0, dλ > 0

λ > 0, dλ < 0
det(KI) = 0, dλ = 0

hs
λ = 0

ȟ

Figure 3.5: An illustration of Remark 3.2.

Below are remarks on the behavior of λ under the light of Proposition 3.2.
(See Figure 3.5.)

Remark 3.2 (Behavior of λ along a path emerging from ĥ).

(a) At ĥ (λ = 0) : The nonsingularity of GI ensures the uniqueness and
existence of dhI .

(b) From ĥ to the singular point hs (dλ = 0) : By Lemma 3.1(c) and As-
sumption 3.1, if KI is nonsingular at a critical point, a single path passes
the point.

(c) At hs : By Proposition 3.2, there is a point at which dλ = 0 and KI is
singular.

(d) From hs to ȟ : The path goes inside SI with decreasing λ and falls out of
SI to reach ȟ.

3.3 Paths to Sparsest OLS Solutions

The primal interest of this chapter concerns the paths that connect the origin
and the set V ∗ of OLS solutions in the underdetermined case. More specifically,
only the paths containing a single OLS solution are considered. Although many
OLS solutions exist, only some of them are connected with the origin by paths
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of critical points. The existence of the paths, each of which leads to a sparsest
OLS solution, are proved.

The statement below is the main result of this chapter.

Theorem 3.2. Every sparsest OLS solution is connected with the origin by a
continuous path of critical points.

The following lemma is useful to prove Theorem 3.2.

Lemma 3.2. Given a fixed OLS solution ĥ ∈ V ∗, let I = supp(ĥ). Consider
the following three conditions.

(C1) GI is nonsingular.

(C2) {h ∈ V ∗ : supp(h) ⊆ I} = {ĥ}; i.e., ĥ is the unique OLS solution over
the subspace in which hi = 0, ∀i ∈ Ī := {1, 2, · · · , n} \ I.

(C3) ĥ ∈ argminh∈V ∗ ‖h‖0; i.e., ĥ is sparsest among the OLS solutions.

Then, the following statements hold.

(a) (C1) and (C2) are equivalent.

(b) (C3) implies (C1) and (C2).

(c) Assume that
min
h∈V ∗

‖h‖0 = r := Rank(U ). (3.7)

In this case, all the conditions (C1), (C2) and (C3) are equivalent.

Proof of Lemma 3.2(a):
(C2) ⇒ (C1): Assume that GI is singular, i.e., K(UT

I) \ {0} is nonempty. It

is shown that ĥ is only an element in {h ∈ V ∗ : supp(h) ⊆ I}, or equivalently
that there exists some h̃ 6= ĥ such that h̃ ∈ V ∗ and supp(h̃) ⊆ I. Then,

h̃ ∈ V ∗ ⇔ ∇ϕ(h̃) = 0

⇔ U(UT
I h̃I − d) = 0

⇔ UUT

I h̃I = Ud. (3.8)

The vector ĥI is clearly a solution of (3.8) and the singularity of GI suggests

that h̃I := ĥI + a for any a ∈ K(UT

I) 6= {0} satisfies (3.8).

(C1) ⇒ (C2): Assume that GI is nonsingular. It is clear that {ĥ} ⊂ {h ∈ V ∗ :

supp(h) ⊆ I}. The inclusion {ĥ} ⊃ {h ∈ V ∗ : supp(h) ⊆ I} can be verified by

showing that h̃ := ĥ+a satisfies (3.8) only for a = 0. Since ĥI is a solution of

(3.8), substituting h̃ := ĥ+ a into (3.8) yields

UUT

Ia = 0 ⇔ UT

Ia ∈ K(U) ⊂ K(UI)

⇔ UT

Ia = 0. (3.9)

The nonsingularity of GI verifies that (3.8) holds for a = 0.

Proof of Lemma 3.2(b): It is shown that (C3) ⇒ (C2). Assume that ĥ

is sparsest over V ∗. Suppose that there exists another vector (ĥ 6=)h̃ ∈ V ∗
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V ∗

ĥa

ĥb

ĥc

(a) A case that (3.7) is satisfied.

h1

h2

h3

V ∗

ĥd

ĥe

(b) A case that (3.7) is not satisfied.

Figure 3.6: Paths of critical points connect the origin and those OLS solutions
satisfying (C2).

satisfying supp(h̃) = supp(ĥ). Then, there exists a sparser vector αĥ + (1 −
α)h̃ ∈ V ∗ for some α ∈ R than ĥ. This contradicts the assumption and hence
(C2) follows.
Proof of Lemma 3.2(c): (C3) ⇒ (C2) has already been proved in the proof
of Lemma 3.2(b) and the equivalence between (C1) and (C2) has also verified
by Lemma 3.2(a). It is thus sufficient to show here that (C1) ⇒ (C3) for

completion of the proof. Assume that ĥ ∈ V ∗ does not satisfy (C3); i.e.,

ĥ /∈ argminh∈V ∗ ‖h‖0. Then, ‖ĥ‖0 > r = minh∈V ∗ ‖h‖0 by the assumption

(3.7). This implies that UI is row rank deficient and hence GI = UIU
T

I is
singular. This completes the proof. �

It must be pointed out that the assumption (3.7) is sufficient (but not nec-
essary) to have the equivalence among (C1) – (C3). To elaborate the role of the
assumption better, let us consider the three-dimensional examples described in
Figure 3.6. Figure 3.6(a) illustrates the case that V ∗ is a one-dimensional linear
manifold which intersects each of the coordinate planes h1-h2, h2-h3, and h3-h1
at a single point out of the h1, h2, and h3 coordinates. In this case, one can read-
ily verify that (3.7) is satisfied; note that 2 = minh∈V ∗ ‖h‖0 = Rank(U ) = 2.

Looking at the points ĥa, ĥb, and ĥc in the figure, one can find that the equiv-
alence between (C2) and (C3) holds in this case. Now, turn to Figure 3.6(b),
which illustrates the case that V ∗ intersects each of the coordinate planes h1-
h2, h2-h3, and h3-h1 at a single point as the previous case but the intersec-
tion point ĥe is on the h2 coordinate. In this case, (3.7) does not hold since

1 = minh∈V ∗ ‖h‖0 6= Rank(U) = 2. The point ĥe indicates that (C3) implies

(C2), while the point ĥd indicates that (C2) does not implies (C3).
The following theorem is more general than Theorem 3.2 in the sense that

it guarantees the existence of a critical-point path not only for sparsest OLS
solutions but also for some other ones.

Theorem 3.3. For any ĥ ∈ V ∗ satisfying (C1), there exists a continuous path

of critical points connecting the origin and ĥ.

Proof: Consider critical points in the subspace in which hi = 0, ∀i ∈ Ī. Define
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ϕI(hI) :=
1
2‖U

T

IhI − d‖22 and Fp,I(hI) :=
1
p‖hI‖pp. Then, it holds that

ϕ(h) = ϕI(hI), Fp(h) = Fp,I(hI)

∇Iϕ(h) = ∇ϕI(hI), ∇IFp(h) = ∇Fp,I(hI)

in the subspace. The critical point condition is therefore reduced to

∇ϕI(hI) + λ∇Fp,I(hI) = 0. (3.10)

The critical points in the subspace can be expressed as those for the following
problem:

find h∗
λ,I ∈ argmin

hI∈R|I|

fλ,I(h) := ϕI(hI) + λFp,I(hI). (3.11)

Due to the nonsingularity of GI , Theorem 3.1 can be applied to the problem in
(3.11) to verify the existence of a continuous path of critical points connecting

ĥ and the origin. �

Lemma 3.2(b) ensures that every sparsest solution satisfies (C2), and hence
Theorem 3.3 directly implies Theorem 3.2. In Figure 3.6, one can see that all
the points ĥa, ĥb, ĥc, ĥd, and ĥe that satisfy (C2) are connected with the origin
by paths of critical points. This illustrates the validity of Theorem 3.3 under
Lemma 3.2.

3.4 Paths from other OLS Solutions

In this section, the possibilities of critical-point paths emerging from some of
the OLS solutions, which have not been considered in the previous section, are
discussed. In fact, being sparsest (or having a sufficiently small support) is a
sufficient, but not necessary, condition for an OLS solution to be connected with
the origin by a path. The following proposition gives a necessary condition for
an OLS solution to have a path emerging from the solution itself.

Proposition 3.3. Let ĥ ∈ V ∗ with its support I. Then, in a vicinity of ĥ,
there exists a path of critical points with support I emerging from ĥ only if

∇IFp(ĥ) ∈ R(UI). (3.12)

Here, a path such that λ is continuously zero (in part) is neglected.

Proof: Suppose that there exists a path C of critical points with support I
leading to ĥ. Then, define a sequence (hn)n∈N ⊂ C converging to ĥ. Since

λ = 0 at ĥ ∈ V ∗, λ 6= 0 in the vicinity of ĥ and hence there exists a sufficiently
large N0 ∈ N such that ∇IFp(hn) is aligned to ∇Iϕ(hn) for all n ≥ N0. This
implies that (∇IFp(hn))n≥N0 ⊂ R(UI). The closedness of the subspaceR(UI)

and the continuity of the operator ∇IFp ensure ∇IFp(ĥ) ∈ R(UI). �

The existence of an OLS solution ĥ ∈ V ∗ with full support which satisfies
the condition in Proposition 3.3 can be considered as follows. Without loss of
generality, suppose that V ∗∩R(U ) ⊂ Rn

++ := {h ∈ Rm : hi > 0, ∀i}; V ∗∩R(U )
contains a sole vector which is the minimum Euclidean-norm OLS solution.
Define dual coordinates by η := ∇Fp(h) for h ∈ Rn

++. It is then not difficult to
see that the correspondence between h and η is one to one over Rn

++. Consider
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the special case of Rank(U) = 1. In this case, R(U) is a one-dimensional
subspace and V ∗ is a hyperplane in Rm. One can see that the hyperplane V ∗

separates the two convex sets in Rn
++: S1 := (0, ǫ)n and S2 := (δ,∞)n for some

small ǫ > 0 and large δ > 0. The subspaceR(U) contains some η1 ∈ (1/
√
ǫ,∞)n

and η2 ∈ (0, 1/
√
δ)n. Then the inverse images of η1 and η2 under the nonlinear

mapping ∇Fp satisfy h1 ∈ (0, ǫ)n and h2 ∈ (δ,∞)n, respectively. This implies
that the inverse image of the ray R(U) ∩ Rn

++ contains a continuous curve
connecting the two points h1 and h2 which are separated by the hyperplane
V ∗. Hence, the curve crosses V ∗, meaning that there exists an OLS solution
with full support satisfying (3.12).

The same discussion can be also applied to the case that Rank(U) = n −
1. However, the above discussion gives us doubts that, in the case that 1 <
Rank(U) < n−1, there exists in general no full-support OLS solution satisfying
(3.12). In this case, one can extend the discussion for Rank(U) = n − 1 by
restricting oneself to an r + 1 subspace

MI := {h : supp(h) ⊆ I} (3.13)

for any I ⊂ {1, 2, · · · , n} with |I| = r + 1 so that V ∗
I := hI ∈ Rr+1 : [hT

I 0T ] ∈
V ∗} is a one-dimensional line and R(UI) ⊂ Rr+1 is a hyperplane in Rr+1.

3.5 Concluding Remarks

In this chapter, critical points of a least squares problem under ℓp-regularization
(0 < p < 1) have been studied. It has been proved under a mild condition that
there exists a critical-point path for every sparsest OLS soluion which connects
it with the origin. The major contributions of this work are summarized as
follows.

• In an overdetermined case, there is a path connecting the unique OLS
solution and the origin (Theorem 3.1).

• The path connecting the OLS solution and the origin consists of curves
each of which connects critical points for λ = 0, hence includes a point
where the Hessian matrix KI is singular (Proposition 3.2, Remark 3.2).

• Every sparsest OLS solution in an underdetermined case is connected with
the origin by a continuous path of the critical points (Theorem 3.2).

• In an underdetermined case, there is a path connecting an OLS solution
and the origin if the solution can be regarded as that of an overdetermined
case (Theorem 3.3).

• An OLS solution has a path of critical points emerging from itself only if
∇IFp(h) lies in the range of GI (Proposition 3.3).

It has turned out that ℓp-regularization (0 < p < 1) does yield sparsest solutions
of a least squares problem. The existence theorem presented in this paper will
become a driving force for developing an efficient method to compute a sparsest
solution by using ℓp-regularization.



Chapter 4

Kernel Weight Design for
Multikernel Adaptive
Filtering

4.1 Introduction

How can multiple kernel functions cooperate well for estimating an unknown
nonlinear function of interest in online fashion? This is a highly important
question for the signal processing community because many tasks in signal pro-
cessing and machine learning can be cast as online nonlinear estimation prob-
lems. Reproducing kernel has widely been studied due to a number of reasons
including the so-called kernel trick to reduce an inner product computation in a
possibly infinite dimensional space to finite-dimensional arithmetics, as well as
the solid theoretical basis. Kernel adaptive filtering [26–28,30, 33, 37, 38, 58–63]
has become a popular approach to online nonlinear estimation during the last
decade. The success of kernel adaptive filtering, however, relies heavily on the
choice of kernel, and it is difficult in practice to design a kernel fitting a given
specific task well.

In the machine learning community, MKL [39–44] has extensively been stud-
ied mainly under batch settings motivated by the difficulty of kernel design, and
online algorithms have also been proposed recently [43, 44]. Most MKL algo-
rithms consist of two steps. In the first step, an appropriate kernel which fits the
observed data well is constructed by a convex combination of multiple kernels,
which is then used to estimate the unknown nonlinear function. The second
step of MKL is essentially a coefficient update with a single kernel, and hence
MKL has a severe limitation in estimating a target function which consists of
multiple components such as linear and nonlinear functions. In the signal pro-
cessing community, on the other hand, multikernel adaptive filtering [47–49] has
been studied as an effective method utilizing multiple reproducing kernels under
online settings. See [45, 46, 64–69] for other approaches using multiple kernels.
Multikernel adaptive filtering has a higher degree of freedom in estimation than
MKL.Thanks to the higher degree of freedom, multikernel adaptive filtering en-
joys (a) a more compact representation than MKL, and (b) a potential ability

30
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to extract the local structures of the target containing multiple components.
Appropriate treatments of kernel weights are necessary for multikernel adap-

tive filtering since a naive use of unweighted kernels never guarantees desirable
performance when there is some imbalance among the kernels. To use an anal-
ogy, suppose the following situation in linear adaptive filtering. When the power
of the input vector is concentrated on a small subset of entries, the input au-
tocorrelation matrix has large eigenvalue spread. It has been known that large
eigenvalue spread of the input autocorrelation matrix causes unbalanced con-
vergence rates among the eigenvectors, and hence deteriorates the performance
of adaptive filtering [24, 25]. The eigenvalue spread can be reduced by impos-
ing weights on the entries so that the powers of weighted entries become equal
to each other. The only difference in the case of multikernel adaptive filter-
ing from the linear case is that each kernel weight is not imposed on a single
entry of the input vector, but on all the entries associated with the correspond-
ing kernel. The power balance and convergence rates are then considered in a
kernel-wise sense. A principled way of tuning the kernel weights, which lead to
uniform convergence rates of the kernel-wise coefficient errors, for multikernel
adaptive filtering has not been investigated so far. Such hyper-parameter tuning
problems have been empirically dealt with under some pretraining or validation
process, which is undesirable in online settings. To exploit the full potential
of multikernel adaptive filtering, it is therefore essential to develop a technique
which yields the appropriate kernel weights for an online manner.

The headline question presented at the beginning can be subdivided as fol-
lows: (i) Is there a set of kernel weights which equalizes the convergence rates
of the kernel-wise coefficient errors? (ii) If such a set of weights exists, how can
it be implemented in online fashion? In this chapter, an answer to the above
questions is presented by deriving a recursive kernel weighting technique which
updates the kernel weights at each iteration, instead of presetting the weights.

4.2 Transient Behavior and Weight Derivation

4.2.1 Preliminaries to Transient Analysis

In advance of discussions on transient analysis, some preliminary informations
related to this chapter must be reminded. The nonlinear adaptive filtering model
is given as follows.

dn = ψ(un) + νn ∈ R, n ∈ N, (4.1)

where un ∈ RL is the input vector, dn is the corresponding output generated by
the unknown function ψ of interest, and νn is the zero-mean additive noise which
is assumed independent of un. Given Q kernel functions κq(·, ·), q = 1, 2, · · · , Q,

and the corresponding dictionaries Dq,n := {κq(x(q)
1 , ·), · · · , κq(x(q)

rq,n , ·)}, whose
cardinality is rq,n, multikernel adaptive filtering achieves the following estimate
of the unknown function ψ.

ϕ̂n(un) =

Q∑

q=1

rq,n∑

j=1

h
(q)
n,jκq(x

(q)
j ,un) =

Q∑

q=1

k(q)T
n h(q)

n = kT

nhn, (4.2)
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where

k(q)
n =

[
κq

(
x
(q)
1 ,un

)
, · · · , κq

(
x(q)
rq,n ,un

)]T ∈ Rrq,n ,

h(q)
n =

[
h
(q)
n,1, · · · , h(q)n,rq,n

]T ∈ Rrq,n ,

for all q = 1, 2, · · · , Q, and

kn =
[
k(1)T
n , · · · ,k(Q)T

n

]T ∈ Rrn ,

hn =
[
h(1)T
n , · · · ,h(Q)T

n

]T ∈ Rrn

are the concatenated vectors, where rn =
∑Q

q=1 rq,n. The nonlinear estima-

tion of ψ then reduces to linear estimation of the Euclidean vector h∗, which
is a minimizer of some error function. The MKNLMS algorithm [47, 48] is a
multikernel adaptive filtering algorithm of which the error function is the mean
squared error MSE(h) := E

[
(kT

nh − dn)
2
]
, where h ∈ Rrn and E[·] stands

for the expectation with respect to the input un and the noise νn. Without a
manipulation of dictionaries, each update of the MKNLMS algorithm can be
written as follows:

hn+1 = hn − µ
kT

nhn − dn
‖kn‖22

kn, (4.3)

Applying the kernel weights to the update (4.3) yields

gn+1 = gn − µ
kT

nWgn − dn
‖Wkn‖22

Wkn, (4.4)

where gn := W−1hn and the weight matrix W is given as

W :=




w1Ir1,n O · · · O

O w2Ir2,n · · · O
...

...
. . .

...
O O · · · wQIrQ,n


 . (4.5)

On the other hand, the coefficient error zn := gn−g∗, where g∗ := W−1h∗,
is updated by equation (4.4) as follows:

zn+1 = zn − µ
kT

nWzn − νn
‖Wkn‖22

Wkn. (4.6)

For the qth block, the blockwise update is given as

z
(q)
n+1 =z(q)

n − µwq
kT

nWzn − νn
‖Wkn‖22

k(q)
n , (4.7)

‖z(q)
n+1‖22 =‖z(q)

n ‖22 − 2µwq
kT

nWzn − νn
‖Wkn‖22

k(q)T
n z(q)

n

+ (µwq)
2 ‖k(q)

n ‖22
‖Wkn‖22

(
kT

nWzn − νn
)2

‖Wkn‖22
. (4.8)
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It is clear that the transient behavior of the squared norm (4.8) depends on
the choice of the kernel weights. It is now to focus on the convergence rates of

‖z(q)
n+1‖22, q = 1, 2, · · · , Q, and find the kernel weights which lead to the uniform

convergence rate, i.e., E
[
‖z(q)

n+1‖22
]
= ρE

[
‖z(q)

n ‖22
]
with the same ρ ∈ (0, 1) for

all q. For simplicity, the transient analysis of the coefficient errors is considered
in the case that the dictionaries are fixed (rq,n is fixed as well for all q). In
addition to fixing the dictionaries, the following properties are also assumed.

Assumption 4.1.

(a) At each time n, the kernelized input kn and the additive noise νn are
independent of each other.

(b) The fluctuations in the squared norms ‖k(q)
n ‖22, q = 1, 2, · · · , Q, and ‖Wkn‖22

are sufficiently small to justify the approximations

E

[ ‖k(q)
n ‖22

‖Wkn‖22

]
≈ E

[
‖k(q)

n ‖22
]

E
[
‖Wkn‖22

] ,

where the matrix W is given as (4.5).

The above assumptions are commonly used for performance analysis of the
NLMS algorithm [24,25].

The goal of this chapter is to derive a set of weights that equalizes the ex-

pected convergence rates of the kernel-wise subvectors z
(q)
n , q = 1, 2, · · · , Q, of

the coefficient error vector zn in the sense of the squared norm. The coefficient
error vector zn itself, however, is unknown due to its dependency on the un-
known target g∗. To tackle with this issue, we assume zn as a random variable
which has the following properties:

Assumption 4.2 (Assumption on zn).

(a) The coefficient error vector zn is distributed spherically with zero mean.

(b) The distribution of zn is nearly even in the larger area than the area where
the weighted input Wkn can exist, so that zn is approximately independent
of Wkn.

The above assumption implies the following properties:

• The subvectors z
(q)
n , q = 1, 2, · · · , Q are independent or each other.

• The probability of zn depends only on its squared norm ‖zn‖22.

4.2.2 Derivation of Kernel Weights Equalizing Conver-
gence Rates

Using the expectation Ezn

[
‖z(q)

n ‖22
]
with respect to zn, the transient analysis

on (4.8) becomes tractable even if z
(q)
n itself is unknown. The expectation of
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(4.8) with respect to zn is

Ezn

[
‖z(q)

n+1‖22
]
=Ezn

[
‖z(q)

n ‖22
]
− 2µwqEzn

[
z
(q)T
n k(q)

n kT

nWzn

‖Wkn‖22

]

+ (µwq)
2 ‖k(q)

n ‖22
‖Wkn‖22

Ezn

[
(kT

nWzn)
2

‖Wkn‖22

]

+ (µwq)
2 ‖k(q)

n ‖22
‖Wkn‖22

ν2n
‖Wkn‖22

. (4.9)

The quadratic terms in (4.9) are calculated with the following lemma.

Lemma 4.1. Let A ∈ Rrn×rn be an arbitrary matrix. If zn is spherically
distributed with zero mean, it holds that

Ezn

[
zT

nAzn

]
=
Ezn

[
‖zn‖22

]

rn
Trace

(
A
)
. (4.10)

Proof: It is trivial that

Ezn

[
zT

nAzn

]
=Trace

(
Ezn

[
znz

T

nA
])

=Trace
(
Ezn

[
znz

T

n

]
A
)
. (4.11)

Since zn is spherically distributed with zero mean, it holds that

Ezn

[
znz

T

n

]
= λnIrn , (4.12)

for some λn ≥ 0. From (4.12), the variance λn can be calculated as

λn =
Trace

(
Ezn

[
znz

T

n

])

Trace
(
Irn

) =
Ezn

[
‖zn‖22

]

rn
. (4.13)

Substituting both of (4.12) and (4.13) into (4.11) leads to

Ezn

[
zT

nAzn

]
=Trace

(
Ezn

[
znz

T

n

]
A
)

=Trace
(
λnIrnA

)

=λnTrace
(
A
)

=
Ezn

[
‖zn‖22

]

rn
Trace

(
A
)
, (4.14)

which completes the proof. �

By Lemma 4.1 and Assumption 4.2(b), (4.9) leads to

Ezn

[
‖z(q)

n+1‖22
]
≈Ezn

[
‖z(q)

n ‖22
]
− 2

µw2
q

‖Wkn‖22
‖k(q)

n ‖22
Ezn

[
‖z(q)

n ‖22
]

rq,n

+
(µwq)

2

‖Wkn‖22
‖k(q)

n ‖22
(
Ezn

[
‖zn‖22

]

rn
+

ν2n
‖Wkn‖22

)

=

(
1− µ(2− µ)

‖Wkn‖22
w2

q‖k(q)
n ‖22

rq,n

)
Ezn

[
‖z(q)

n ‖22
]

+ (µwq)
2 ‖k(q)

n ‖22
‖Wkn‖22

ν2n
‖Wkn‖22

, (4.15)
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where the second equality holds by

Ezn

[
‖z(q)

n ‖22
]
=
rq,n
rn

Ezn

[
‖zn‖22

]
, (4.16)

which is readily verified by Lemma 4.1. The expectation of (4.15) with respect
to kn and νn is

E
[
Ezn

[
‖z(q)

n+1‖22
]]

= E

[
1− µ(2− µ)

‖Wkn‖22
w2

q‖k(q)
n ‖22

rq,n

]
Ezn

[
‖z(q)

n ‖22
]

+ (µwq)
2E

[ ‖k(q)
n ‖22

‖Wkn‖22
ν2n

‖Wkn‖22

]
. (4.17)

Since µ ∈ (0, 2), it holds that

0 <
µ(2− µ)

rq,n
≤ 1

rq,n
. (4.18)

In addition, by wq > 0, q = 1, 2, · · · , Q, it holds that

0 <
w2

q‖k(q)
n ‖22

‖Wkn‖22
< 1. (4.19)

From (4.18) and (4.19), it follows that

E

[
1− µ(2 − µ)

‖Wkn‖22
w2

q‖k(q)
n ‖22

rq,n

]
= 1− µ(2− µ)

rq,n
E

[
w2

q‖k(q)
n ‖22

‖Wkn‖22

]
∈ (0, 1). (4.20)

This implies that the expected squared norms Ezn
[‖z(q)

n ‖22] of the kernel-wise
coefficient errors decrease monotonically after each update (4.4). Then the
expected squared norms converge to zero and (4.20) can be regarded as the
convergence rate. If a uniform convergence rate, say ρ > 0, is achieved by some
kernel weight setting, then it holds that

E

[
1− µ(2− µ)

‖Wkn‖22
w2

q‖k(q)
n ‖22

rq,n

]
= ρ, (4.21)

for all q = 1, 2, · · · , Q, as shown in the following proposition.

Proposition 4.1. Setting the kernel weights as

wq = γ

(
E
[
‖k(q)

n ‖22
]

rq,n

)− 1
2

, γ > 0, q = 1, 2, · · · , Q, (4.22)

achieves the uniform convergence rate

ρ = 1− µ(2− µ)

rn
, (4.23)

for all q = 1, 2, · · · , Q.
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Proof: From Assumption 4.1(b) and (4.22),

E

[
w2

q‖k(q)
n ‖22

‖Wkn‖22

]
≈w

2
qE

[
‖k(q)

n ‖22
]

E
[
‖Wkn‖22

]

=
w2

qE
[
‖k(q)

n ‖22
]

∑Q
p=1 w

2
pE

[
‖k(p)

n ‖22
]

=
rq,nγ

2

∑Q
p=1 rp,nγ

2
=
rq,n
rn

, (4.24)

for all q. This leads to

E

[
1− µ(2− µ)

‖Wkn‖22
w2

q‖k(q)
n ‖22

rq,n

]
=1− µ(2− µ)

rq,n
E

[
w2

q‖k(q)
n ‖22

‖Wkn‖22

]

=1− µ(2− µ)

rq,n

rq,n
rn

=1− µ(2− µ)

rn
, (4.25)

which does not depend on q. �

4.2.3 Steady-state Error

The summation (4.17) with respect to q yields the following transient behavior
of the entire error.

E
[
Ezn

[
‖zn+1‖22

]]
=

Q∑

q=1

E
[
Ezn

[
‖z(q)

n+1‖22
]]

=Ezn

[
‖zn‖22

]
− µ(2− µ)

rn
Ezn

[
‖zn‖22

] Q∑

q=1

E

[
w2

q‖k(q)
n ‖22

‖Wkn‖22

]

+ µ2

Q∑

q=1

E

[
w2

q‖k(q)
n ‖22

‖Wkn‖22
ν2n

‖Wkn‖22

]

=

(
1− µ(2− µ)

rn

)
Ezn

[
‖zn‖22

]
+ µ2E

[
ν2n

‖Wkn‖22

]
, (4.26)

where the second equality is due to (4.16), and the last equality holds because

Q∑

q=1

E

[
w2

q‖k(q)
n ‖22

‖Wkn‖22

]
= E

[ Q∑

q=1

w2
q‖k(q)

n ‖22
‖Wkn‖22

]
= 1. (4.27)

From (4.26), it holds that

Ezn

[
‖zn‖22

]
=

rn
µ(2− µ)

µ2E

[
ν2n

‖Wkn‖22

]

=
µrn
2− µ

E

[
ν2n

‖Wkn‖22

]
(4.28)
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at the steady state. The above steady-state error depends on the choice of W .
In particular, if the weights wq , q = 1, 2, · · · , Q, become larger, the steady-
state error becomes smaller even if the ratios among the weights are fixed. By
considering the normalized error

Ezn

[
‖zn‖22

]

Ezn

[
‖g∗‖22

] =
Ezn

[
‖zn‖22

]

Ezn

[
‖zn‖22

]
+ ‖gn‖22

, (4.29)

such dependency on the amplitudes is eliminated. In addition, both of (4.23)
and (4.29) are independent of the value of γ if the kernel weights are chosen by
(4.22). Hereafter, γ = 1 without loss of generality.

Remark 4.1 (Relation to Batch Normalization). The case where rq,n = 1
of the kernel weight (4.22) corresponds to the use of entrywise kernel weights.
Imposing the entrywise weights is similar to the batch normalization, which has
been popular in machine learning community [70–72]. The batch normalization
aims to balance the scales of the entries of the observed input vector. In the

kernel weights (4.22),
E[‖k(q)

n ‖2
2]

rq,n
can be seen as a scale of the qth kernel because

it holds that

E
[
‖k(q)

n ‖22
]

rq,n
= E

[‖k(q)
n ‖22
rq,n

]
≈

∫

RL

E
[
(κq(un,x)

)2]
dx, (4.30)

for sufficiently large rq,n. The essential difference between imposing the kernel
weight (4.22) and the batch normalization are twofold.

• The kernel weight does not consider the mean of the kernelized input, where
the batch normalization includes the subtraction of the mean. Imposing the
kernel weights is therefore equivalent to the batch normalization when the
mean is zero.

• The kernel weight does not use the mini-batch in order to approximate
the expectation. (In practice, the mini-batch can be used to implement the
kernel weights.)

4.3 Implementation of the Kernel Weights

4.3.1 Weight Estimation from Observations

In kernel adaptive filtering, the length rq,n of the qth kernelized input may

change in time. In addition, E
[
‖k(q)

n ‖22
]
is unavailable because the statistical

properties of k(q)
n are unknown. The expectation in the kernel weight (4.22) can

be approximated by the sample mean

E

[‖k(q)
n ‖22
rq,n

]
≈ 1

n

n∑

l=1

‖k(q)
l ‖22
rq,l

. (4.31)

By the above approximation, the kernel weights can be updated recursively.
Although an exponentially weighted average with a forgetting factor can be
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used instead, the simple sample mean is solely focused in the present study.
Under (4.31) with γ = 1, (4.22) is approximated by

wq,n =

(
1

n

n∑

l=1

‖k(q)
l ‖22
rq,l

)− 1
2

. (4.32)

4.3.2 Implementation Based on Metric Design

Replacing the fixed weight matrix W in (4.4) to W n which is time-varying, the
following update is obtained.

gn+1 = gn − µ
kT

nW ngn − dn

kT

nW
2
nkn

W nkn, (4.33)

where

W n :=




w1,nIr1,n O · · · O

O w2,nIr2,n · · · O
...

...
. . .

...
O O · · · wQ,nIrQ,n


 . (4.34)

Since (4.33) can be regarded as the update equation of the NLMS algorithm
for the modified input vector W nkn, it is clear that the algorithm tracks the
vector g∗

n = W−1
n h∗, so that the output of the filter to this modified input

vector satisfies (W nkn)
Tg∗

n = kT

nh
∗. This, however, means that the target

vector g∗
n changes as W n changes, even if h∗ is fixed. This may cause slow

convergence of the coefficients which comes from strong time dependency of the
kernel weights during the initial phase of adaptation. This dependency issue
can be fixed by left-multiplying the both sides of (4.33) by W n, which leads to

hn+1 = hn − µ
kT

nhn − dn

kT

nW
2
nkn

W 2
nkn, (4.35)

with hn = W ngn. The above update tracks the original target vector h∗,
and hence is free from the dependency of the target vector on W n. Provided
that h∗ stays constant, it can then be guaranteed that the coefficient vector
hn approaches monotonically to h∗ after each update in terms of the metric
W−2

n since the update equation in (4.35) can be interpreted as a relaxed pro-
jection in terms of the metric W−2

n . See [73–77] for the metric projection-based
adaptive filtering algorithms. The entire MKNLMS algorithm equipped with
the proposed metric design is presented in Algorithm 2. As a measure for the
sparsification criterion, the novelty [32], the coherence [30], or the surprise [33]
can be used.

4.3.3 Use of Linear Kernel

For the linear kernel, a fixed dictionary DL := {eT1 (·), eT2 (·), · · · , eTL(·),1}, where
{e1, e2, · · · , eL} is the standard basis of the Euclidean space RL and 1 : RL 7→
R : x 7→ 1, can be considered since the dictionary DL completes a basis
of an L + 1 dimensional Euclidean space. From (2.11), such a use of the
linear kernel is actually the simultaneous use of two linear kernel functions



CHAPTER 4. KERNEL WEIGHT DESIGN FOR MKAF 39

Algorithm 2 MKNLMS with Adaptive Kernel Weighting

0) Dq,n = ∅, h(q)
0 = [ ], q = 1, 2, · · · , Q, µ ∈ (0, 2): step size.

1) Based on a sparsification criterion, decide whether to add the input
κq(un, ·) to the dictionary Dq,n or not.

2) Vector augmentation:

k̃
(q)

n =





[
k(q)
n

κq(un,un)

]
if Dq grows,

k(q)
n otherwise,

h̃
(q)

n =





[
h(q)
n

0

]
if Dq grows,

h(q)
n otherwise.

3) k̃n =




k̃
(1)

n

k̃
(2)

n
...

k̃
(Q)

n



, h̃n =




h̃
(1)

n

h̃
(2)

n
...

h̃
(Q)

n



.

4) w2
q,n =

(
1

n

n∑

l=1

‖k(q)
l ‖22
r
(q)
l

)−1

, ∀q = 1, 2, · · · , Q.

5) hn+1 = h̃n − µ
k̃
T

nh̃n − dn

k̃
T

nW
2
nk̃n

W 2
nk̃n.

κL(x,y) = xTy and κC(x,y) = xTy + 1, with the corresponding dictionaries
DL := {κL(e1, ·), κL(e2, ·), · · · , κL(eL, ·)} and DC := {κC(0, ·)}, respectively.
An application of the above kernel functions and dictionaries to the weight (4.22)
yields the following weights:

wL =

(
E

[‖un‖22
L

])− 1
2

, wC = 1. (4.36)

The above weights can be approximated at each iteration by

wL,n =

(
1

n

n∑

l=1

‖ul‖22
L

)− 1
2

, (4.37)

and
wC,n = 1. (4.38)

4.3.4 Calculation of Kernel Weights (4.22) under Gaussian
Input

Here the kernel weights for the linear kernel and a Gaussian kernel at the steady
state are calculated in the case that the input vector is under the i.i.d. Gaussian
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distribution N (0, σ2
u). The dictionary size r for the Gaussian kernel is constant

at the steady state and then the kernelized input is given as follows:

kn =

[
un

kG
n

]
∈ RL+r. (4.39)

Case 1: Linear kernel (Sec. 4.3.3)
Since wC = 1 is fixed, it is sufficient to calculate wL.

E

[‖un‖22
L

]
=

1

L

L∑

i=1

(2πσ2
u)

−L
2

∫ ∞

−∞

u2i exp

(
− ‖u‖22

2σ2
u

)
du. (4.40)

For all i, the integral part can be rewritten as follows:

∫ ∞

−∞

u2i exp

(
− ‖u‖22

2σ2
u

)
du

=

[ ∫ ∞

−∞

u2i exp

(
− u2i

2σ2
u

)
dui

]∏

j 6=i

∫ ∞

−∞

exp

(
−

u2j
2σ2

u

)
duj . (4.41)

The equality holds because the input follows the i.i.d. Gaussian distribution.
Since ∫ ∞

−∞

exp

(
−

u2j
2σ2

u

)
duj =

√
2πσ2

u (4.42)

for all j, the following holds.

E

[‖un‖22
L

]
=

1

L

L∑

i=1

(2πσ2
u)

− 1
2

∫ ∞

−∞

u2i exp

(
− u2i

2σ2
u

)
dui

=
1

L

L∑

i=1

σ2
u = σ2

u. (4.43)

Then, by (4.36),

wL =
1

σu
. (4.44)

Case 2: Gaussian kernel defined in (2.10)

E

[‖kG
n ‖22
r

]
=
1

r
(2πσ2

u)
−L

2 (2πσ2)−L

×
r∑

i=1

∫ ∞

−∞

exp

(
− ‖u− xi‖22

σ2

)
exp

(
− ‖u‖22

2σ2
u

)
du, (4.45)

where DG = {κG(x1, ·), κG(x2, ·), · · · , κG(xr, ·)} is the dictionary. As in Case 1,
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the integral part can be calculated as follows:

∫ ∞

−∞

exp

(
− ‖u− xi‖22

σ2

)
exp

(
− ‖u‖22

2σ2
u

)
du

=

∫ ∞

−∞

exp

(
−
(

1

σ2
+

1

2σ2
u

)
‖u‖22 +

2uTxi

σ2
− ‖xi‖22

σ2

)
du

=exp

(
− ‖xi‖22

2σ2
u + σ2

)

×
∫ ∞

−∞

exp

(
−
(

1

σ2
+

1

2σ2
u

)∥∥∥∥u− 2σ2
u

2σ2
u + σ2

xi

∥∥∥∥
2

2

)
du

=

(
2πσ2

uσ
2

2σ2
u + σ2

)L
2

exp

(
− ‖xi‖22

2σ2
u + σ2

)
. (4.46)

Then it holds that

E

[‖kG
n ‖22
r

]
=
1

r
(2πσ2)−L

(
σ2

2σ2
u + σ2

)L
2

×
r∑

i=1

exp

(
− ‖xi‖22

2σ2
u + σ2

)
, (4.47)

and the kernel weight is calculated as

wG =

√√√√√√

r(2πσ2)L

(
σ2

2σ2
u+σ2

)L
2

r∑

i=1

exp

(
− ‖xi‖22

2σ2
u + σ2

) . (4.48)

For a sufficiently large r, the following approximation can be used.

1

r

r∑

i=1

exp

(
− ‖xi‖22

2σ2
u + σ2

)
≈
∫

RL

exp

(
− ‖x‖22

2σ2
u + σ2

)
dx

=
(
2π(2σ2

u + σ2)
)L

2 . (4.49)

Substituting (4.49) into (4.48) leads to

wG = (2πσ2)
L
4 . (4.50)

4.4 Numerical Experiments

In this section, numerical experiments related to system estimation and time
series prediction are presented. The following algorithms are studied in those
experiments:

1. The OMKR algorithm [43,44] (Algorithm 1),

2. The MKNLMS algorithm [47,48] with unweighted kernels,i.e., wq = 1/Q
for all q,
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Table 4.1: Computational costs for Gaussian kernels

# Additions # Multiplications

OMKR (hedge) (2Lrn + 1)Q− 1 ((L + 4)rn + 3)Q+ 1

MKNLMS (manual) (2L+ 2)rn − 1 (L+ 3)rn + 1

MKNLMS (proposed) (2L+ 3)rn − 1 (L+ 4)rn + 3Q+ 1

3. The MKNLMS algorithm with weighted kernels, with manually tuned
kernel weights which achieve the smallest MSE, and

4. The MKNLMS algorithm with weighted kernels, whose weights are tuned
by the proposed automatic weighting.

As a measure for the sparsification criterion of the MKNLMS algorithm, the
coherence [30] is employed. The best preset kernel weights for the MKNLMS
algorithm have been found by grid search. In advance of the numerical results,
see the computational costs of the above algorithms in Table 4.1, where L, rn,
and Q are the input length, the dictionary size, and the number of kernels,
respectively.

4.4.1 Experiments with Toy Data

Experiment 1a: The efficacy of kernel weights is investigated by a simple
regression task. Three preset weights for the MKNLMS algorithm are tested
as well as the proposed automatic weighting. In addition, the NLMS algorithm
[78] and the KNLMS algorithm [30] are also compared with the MKNLMS
algorithms. The NLMS and KNLMS algorithms correspond to the cases using
the linear kernel and the Gaussian kernel, respectively. The target system is
given as follows:

ψ(u) = 0.6u+ exp

(
− (u− 0.2)2

2× 0.52

)
. (4.51)

The regression task is to estimate ψ(u) by observing the current input un ∈
R (L = 1) and the noisy output dn = ψ(un)+νn, where un is randomly generated
under the uniform distribution in the interval (−2, 2) and νn is the additive
Gaussian noise satisfying SNR = 10 dB. The initial settings for this experiment
are given in Table 4.2. The averaged results of 200 trials are presented in
Figure 4.1. Note that the NLMS algorithm is not shown in Figure 4.1(a) because
its MSE is excessively large. Figure 4.1(b) shows the differences ϕ̂(un)−ψ(un),
where each ϕ̂(un) is the estimated function by an algorithm. The kernel weights
in Figure 4.1(d) are normalized so that the sum of the weights for the linear
and Gaussian kernels becomes one.
Experiment 1b: This experiment shows that the proposed technique generates
the weight sequence convergent to the weights derived in Section 4.2.2. The
target system is given as

dn = βT

1un + 30 exp

(
− ‖un − β2‖22

2× 0.52

)
− 10 exp

(
− ‖un − β3‖22

2× 0.52

)
, (4.52)
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Figure 4.1: Results of Experiment 1a.
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Table 4.2: Experiment 1a - Initial settings

Step size µ = 0.1

Kernel parameter σ = 0.5

Coherence threshold δ = 0.8
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Figure 4.2: Weight evolution with Gaussian input(Experiment 1b.)
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Figure 4.3: Silverbox dataset for Experiment 2a.

Table 4.3: Experiment 2a - Initial settings

Step size µ = 0.7

Kernel parameter σ = 0.9

Discounting parameter (OMKR) β = 0.5

Coherence threshold (MKNLMS) δ = 0.9

where the input un ∈ R3 is randomly generated under the i.i.d. Gaussian distri-
bution N (0, 0.125) and β1 = [0.5, 0.5, 0]T, β2 = [0.5, 0, 0.5]T, β3 = [0, 0.5, 0.5]T.
The target system is estimated using the linear kernel given in Section 4.3.3 and
the Gaussian kernel with the kernel parameter σ = 0.5 and with the fixed dic-
tionary

DG := {κG(e1, ·), κG(e2, ·), κG(e3, ·)}, (4.53)

where κG and e1, e2, e3 are the Gaussian kernel defined in (2.10) and the stan-
dard basis defined in Section 4.3.3, respectively. Figure 4.2 shows the behavior
of the kernel weight for the linear kernel. If the input distribution and fixed
dictionaries are known, the kernel weights at the steady state can be calculated
by (4.22). See Section 4.3.4 for detailed calculation for Gaussian input. Under
the normalization, the calculated weight is plotted with the dashed line, labeled
as Optimal, while the empirically obtained weight is plotted with the red solid
line, labeled as Proposed in Figure 4.2(a).

4.4.2 Experiments with Real Data - System Estimation

Experiment 2a: Silverbox dataset [79] is used in this experiment. The dataset
consists of the input and output data shown in Figure 4.3. The first 40000 pairs
of the input and the output, the triangular part, are used as the test data. The
next 80000 pairs, the rectangular part, are used as the training data. Denoting
the nth values of the input data and the output data by un and dn, respectively,
the observed values un, un−1, un−2, un−3 and dn−1, dn−2, dn−3 as the input of
the algorithms at the nth iteration, and hence L = 7. The initial settings for
this experiment are given in Table 4.3. The results of Experiment 2a are shown
in Figure 4.4.
Experiment 2b: A subset of the Human Sensing Consortium challenge dataset
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Figure 4.4: Results of Experiment 2a.
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Table 4.4: Experiment 2b - Initial settings

Step size µ = 0.01

Kernel parameter σ = 0.2

Discounting parameter (OMKR) β = 0.5

Coherence threshold (MKNLMS) δ = 0.2
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Figure 4.5: Results of Experiment 2b.
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Table 4.5: Experiment 3a - Initial settings

Step size µ = 0.1

σ(1) = 2, σ(2) = 1,
Kernel parameters σ(3) = 2−1, σ(4) = 2−2,

σ(5) = 2−3, σ(6) = 2−4

Discounting parameter (OMKR) β = 0.5

Coherence threshold (MKNLMS) δ = 0.6

is used for this experiment. (For the detail, visit http://hasc.jp/hc2011.) This
dataset has been obtained by three-dimensional sensor attached on a person
who moves in various patterns, and hence the system to be estimated is non-
stationary. The input is a vector of length L = 8 of which the entries are
three-dimensional coordinates (x, y, z) of the recent three samples excluding the
present z, which is used as the output. One linear kernel and one Gaussian
kernel are used with the initial parameters given in Table 4.4.

4.4.3 Experiments with Real Data - Time Series Predic-
tion

Experiment 3a: The Santa Fe laser dataset [80] is given as the time series data
to be estimated. At each time, the next value is predicted by the algorithms
given the recent nine values as input, i.e., L = 9. The initial settings for this
experiment are given in Table 4.5. As seen in Table 4.5, six Gaussian kernels are
used for this task. Figure 4.6 shows the results of the experiment. In addition,
effect of the number of kernels on performance of the proposed technique has
been examined with the same dataset. See Figure 4.7 and Figure 4.8. The
setting for Q = 6 is the same with that in Table 4.5. For Q = 3 and Q = 9,
the maximal value of σ(q) (Figure 4.7) or the minimal value (Figure 4.8) is
fixed as that of Table 4.5. It is seen that, when the Gaussian kernels are used,
performance of the proposed technique mainly depends on the minimal kernel
parameter, rather than the number of Gaussian kernels.
Experiment 3b: Buzz prediction on social media dataset [81] is used for this
experiment and Experiment 3c. The dataset is obtained from two social media:
one is Tom’s hardware and the other is Twitter. As a characteristic of social
media, the dataset has been considered to be non-stationary. For this experi-
ment, the data from Tom’s hardware is used. The input length is L = 96 and
the other initial settings are given in Table 4.6. Here one linear kernel and four
Gaussian kernels are used for the prediction. See Figure 4.9 for the results of
the experiment.
Experiment 3c: This experiment uses the Twitter dataset, which has been
considered to be less stationary than the data from Tom’s hardware. The in-
put length is L = 77. The linear kernel is not used for this dataset, but six
Gaussian kernels are employed as shown in Table 4.7. The dictionary size of
the OMKR algorithm is here limited to 2600, i.e., the maximal dictionary size
of the MKNLMS algorithm as Figure 4.10(b), to reduce computational costs.
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Figure 4.6: Results of Experiment 3a.
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Figure 4.7: Effect of the number of kernels (maxq σ
(q) = 2).
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Figure 4.8: Effect of the number of kernels (minq σ
(q) = 2−4).
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Table 4.6: Experiment 3b - Initial settings

Step size µ = 0.5

Kernel parameters σ(1) = 2−2, σ(2) = 2−3,

σ(3) = 2−4, σ(4) = 2−5

Discounting parameter (OMKR) β = 0.5

Coherence threshold (MKNLMS) δ = 0.5
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Figure 4.9: Results of Experiment 3b.
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Table 4.7: Experiment 3c - Initial settings

Step size µ = 0.01

σ(1) = 2, σ(2) = 1,
Kernel parameters σ(3) = 2−1, σ(4) = 2−2,

σ(5) = 2−3, σ(6) = 2−4

Discounting parameter (OMKR) β = 0.5

Coherence threshold (MKNLMS) δ = 0.0001
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Figure 4.10: Results of Experiment 3c.
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4.4.4 Discussions on the Numerical Results

Proposed technique versus preset kernel weights:
In Figures 4.1(a) and 4.1(b), it is shown that (i) the MKNLMS algorithm

with inappropriate kernel weights can be worse than the KNLMS algorithm with
a single kernel by the case of (0.7, 0.3), and (ii) the proposed kernel weighting
technique achieves a similar performance with the carefully tuned kernel weights
(0.37, 0.63). The superior performance of the proposed technique to the manual
weighting is also shown in other experiments for system estimation (Experi-
ments 2a and 2b) and time series prediction (Experiments 3a), which use real
data.

According to Table 4.1, the proposed automatic weighting requires rn times
and rn+3Q times of additional addition and multiplication, respectively. Com-
pared with the computational costs of the MKNLMS algorithm itself, the addi-
tional calculations for improving the performance are affordable.
MKNLMS with the proposed technique versus OMKR:

In Figure 4.4(a), the MKNLMS algorithm with the proposed technique
achieves both the fastest convergence and the smallest error, while the error
of the OMKR algorithm decreases fast at early iterations at the price of higher
steady-state errors. Figure 4.4(c) shows that the kernel weight for the linear
kernel used in the OMKR algorithm converges to one approximately. This im-
plies the Gaussian kernel is almost inactive and the OMKR algorithm fails to
achieve a good balance between the linear and Gaussian kernels.

The MKNLMS algorithm with the proposed technique achieves a better MSE
than the OMKR algorithm also in the other experiments, using smaller dictio-
naries. In Figure 4.5(a), the MKNLMS algorithm with the proposed technique
shows the best tracking ability in estimating the non-stationary system (See
the 2000–2500th iterations). In the experiments of time series prediction, the
OMKR algorithm achieves similar MSEs with those of the MKNLMS algorithm
with preset weights. (See Figures 4.10(a) and 4.9(a).)

From the viewpoint of the computational costs, the MKNLMS algorithms
are more efficient than the OMKR algorithm. Focusing on the dictionary size
rn, the computational costs of the OMKR algorithm are nearly Q times larger
than those of the MKNLMS algorithm even if the same dictionaries are used at
every iteration.
Behaviors of kernel weights:

As seen in Figure 4.2, in which the dictionaries are fixed, the kernel weights
set by the proposed technique converge to the values given in (4.22). In Fig-
ures 4.1(d) and 4.4(c), on the other hand, the kernel weight updated by the
proposed technique converges to a different value from the manually tuned one.
This is because the kernel weights (4.22) depend on the sizes of the dictionaries,
which change in time. The proposed technique efficiently tracks the time-varying
weights, thereby achieving an even better performance than the manual tuning
which is optimized for the entire behaviors. Note that the proposed weights are
also different from those of the OMKR algorithm, because the former depends
on the kernelized input, whereas the latter depends on the kernel-wise errors.
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4.5 Concluding Remarks

In this chapter, a recursive kernel weighting technique for multikernel adaptive
filtering has been proposed. To deal with the coefficient error, which is un-
known in practice, the case when it is a spherically distributed random variable
has been considered. The transient behavior of the expected partial coefficient
error then depends on the corresponding kernel weight. From the transient be-
havior, a kernel weight setting which achieves a uniform convergence rate for
all the kernel-wise coefficient errors has been derived. A recursive formula to
implement the derived kernel weights has also been presented, by the approxi-
mation using the simple sample mean. As the time-varying kernel weights make
the adaptive algorithm track the corresponding time-varying solution, the de-
rived weights have been implemented through the corresponding metric design,
which makes the solution time-invariant. Finally, the numerical results have
shown the efficacy of the proposed technique. The proposed technique leads to
the better performance than the manually tuned kernel weights in both senses
of the steady-state MSE and the convergence rate. Compared with the OMKR
algorithm, the proposed approach has achieved a lower MSE, with smaller dic-
tionaries. For the fixed dictionaries, the proposed technique has been shown to
yield eventually the kernel weights derived experimentally based on the tran-
sient behavior. The kernel weights tuned by the proposed technique depend on
the dictionaries, and are thus different from the manually tuned ones in general.
The proposed technique will serve as a baseline for solving the kernel weighting
problem, and exploiting the full potential of multikernel adaptive filtering.



Chapter 5

General Conclusion

This thesis has presented a nonconvex regularization for sparse optimization and
a kernel weight design for multikernel adaptive filtering. In Chapter 3, both in
overdetermined and underdetermined systems, the existence of a critical-point
path which connects the origin and the sparsest OLS solution has been proved.
This implies that ℓp-regularization (0 < p < 1) does yield sparsest solutions of a
least squares problem. In addition, in an underdetermined system, a necessary
condition for the existence of critical-point path emerging from an OLS solution
has been shown. This implies that only few nonsparse OLS solution can be
obtained by solving an ℓp-regularized least squares problem. The theoretical
results given in Chapter 3 will provide useful insights for developing an efficient
sparsity-aware learning algorithm using the ℓp-regularization. In recent years,
nonconvex regularizers other than the ℓp-norm have also been studied [82–89].
Some of them have been reported to preserve the convexity of the regularized
cost function [82,86,88,89], and the convexity ensures that one can achieve global
minima. Although the ℓp-norm does not enjoy such a property, considering
a critical-point path can be helpful for the other nonconvex regularizers. In
Chapter 4, a kernel weight design equalizing the convergence rates of kernel-
wise coefficient errors has been proposed. The convergence rates have been
considered in the case that the coefficient error vector is a spherically distributed
random variable. The kernel weights derived by equalizing the convergence rates
have been implemented into the MKNLMS algorithm using the time-varying
metric design corresponding to the weights. The numerical results have shown
the efficacy of the proposed technique, compared to both of the manually tuned
kernel weights and the OMKR algorithm. To derive the above results, we have
focused on regression, which is only a major task related to online learning. For
the other tasks, the results of Chapter 4 can be a baseline when one tunes kernel
weights of multiple kernels. Both results will become sound bases for developing
an online learning algorithm which utilizes multiple kernels appropriately, while
maintaining its dictionary in an affordable size.

There are many topics beyond the sight of this thesis. Development of
a sparsity-aware online learning algorithm exploiting multiple kernels may be
only a small part of them. The below can be just the next step which are based
on the insights from this thesis.

• Since the existence of a critical-point path connecting the origin and the
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sparsest OLS solution has been proven, now a method for achieving the
sparsest OLS solution using the ℓp-regularization must be developed. Al-
though a greedy approach has been presented in [23], it is not guaranteed
to obtain a path connecting the origin and the sparsest OLS solution.

• The soft thresholding has already been used for dictionary sparsifica-
tion [38]. When a weighted soft thresholding, which virtually realizes the
ℓp-minimization, is employed instead of the plain soft thresholding, the
results in Chapter 4 will lead to an appropriate tuning of the threshold
which coincides with the regularization parameter λ.

• The kernel weights can be applied to classification tasks. Since the loss
function is not the MSE in this case, the derivation of appropriate weights
will be also different from that given in Chapter 4.
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[35] L. Csató and M. Opper, “Sparse online gaussian processes,” Neural Com-
put., vol. 14, no. 3, pp. 641–668, 2002.

[36] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[37] B. Chen, S. Zhao, P. Zhu and J. C. Pŕıncipe, “Quantized kernel least mean
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