A Dissertation for the Degree of Ph.D. in Engineering

Increasing Developer Productivity by
Improving Build Performance and
Automating Logging Code Injection

February 2021

Graduate School of Science and Technology

Keio University

Takafumi Kubota

lIE3S)

6))

+ %% B %5 E‘ No.1
WEE S ® z & 1= K 4 FEH B
i E 4

Increasing Developer Productivity by Improving Build Performance and Automating Logging
Code Injection

(EVv Rt & v 7o B8R AIZ X 5 BRFEE DL pENER HIZET 2 0F58)

(NEDHEE)
W, VAT LY 7 b =7 OBRBEFALSBEIANTHR L TV DIZoN, &0 2hRRBEE FiE1 K
DOHNTETND., FlxIE, KB Y 7 o =7 B% Cld Continuous Integration (CI) & \9 F
ENFEFELOFREL > TS, CL TRAREPES O3 — FERZBBEICAAL VR FVIZY
—VL, TOEWNIHEEENT-EL RET A MRFATEN TN S.

LrL2R3 D, ZORBFEOHRELMTIELEIE LT, BHERENY 7 bv=ToOrY Yy 7 L
IFIERAfR 7 TRICKHHAIR OGN T LE S TWOIER®H H. Km L TIIRD 2 RICEET 5. 1) EL
NI A, BB L RSB DBASEREE T b FRFRIZIER TE 20 A — =y R L2
STETND. 2 BZOFA FASNTVErZOMERENEY, KLY 7 =707
Ny ZRRINELS 2D ZENMBNTWD. L, EZICEDL S en 72 ATIUX L Vo
BRI H DEFAHF & Engineering effort ([Z K& KTFEL, KON HIEETH S.

Z 2T, AL TIHERBUEE C+ Ty c s hOEL RARTp—< A\ EZABELIZEL RV
A7 A Cauldron &~/VF AL vy K2 C 7ay=7 halfor 7O HEHEAY —/L K9 #iET
%, Cauldron 13 & V¥ S 7z Unity Build Z#9R—hL, 2> A LIND7 7 A4 VEIZGT
THEIZEN ROEFBZLEE TS, Z LT, IBROFELD b ENV NCET HRFHEZEETEL L
27, Bz X, WebKit @ Continuous Build 2B\ C EJL R %2 23% HIET= 5.

$72, K9 TEvAF ALy RTHEISND T — XM TRAET D7 —ZIKEFEBREEZE LTIcr 7D
HEHAZIT). ~VF ALy FERETIIESEZBESEDL ALYy REATEZET LA Ly FR
BROGEENRHY, ALy FEOEFMRERET 2 2 ENT Ay FRHCEREE 2%, K9 3V —A =
— Mt 2 W T A Ly FEOT — ZEAFRR A 38 4E S 2 W72 = — RREFT 2 M U, 5282
o/ a—RzHEEAT S, KO Lo THAIN/-2 7L Linux kernel ® 1 DORIFERONRT 25
to, ADDFELETDINTIKLTT ANy FIFICHE N2 EME R c& 5 2 L 2R T

MSLOEBIKIZE LD OND. Y7 DY = TREONRETHHEN LY 7 by T Y
v 7 LITERRAR TR THD BN FEu ZOMAX L THMZR 2 DY —/LOR5E - 328k - fiHli 2R~ L
TW%. Y7 by =7 BRIIERDO TR TR L->TEY, RV A 7V 2EORLER D 2 &3
HETHD. KL T, B RERTOFAD 2 ODORED TRODFIMEHMBELTBY, Y7k
V=T RREOENEND TR TOMFLITHENLTDHZ ENTEXS.

A5k 6

(3) Keio University
Thesis Abstract
No.
Registration X “‘KOU” [O“OTSU”)
Name Takafumi Kubota
Number No. *Office use only
Thesis Title

Increasing Developer Productivity by Improving Build Performance and Automating Logging Code

Injection

Thesis Summary

As software is growing in size and complexity, it is critical to develop software efficiently and reliably. For
example, Continuous Integration (Cl) has become a de-facto practice of the daily development in large
software projects, in which builds and tests are automated, resulting in numerous developers' modifications

are efficiently integrated in a mainline.

However, as an obstacle for improving development efficiency, software engineers spend lots of time outside
of the actual development of the software. This dissertation addresses two problems. 1) Build time: builds
occur frequently during software development. As a result, the times spent on builds is a noticeable overhead.
2) Logging code insertion: the quality of log messages is critical to the efficiency in failure diagnosis. However,
appropriately inserting the logging code is time-consuming because it depends on developers' expertise and

engineering effort.

To deal with these problems, | introduce two effective tools. For build times, | present a new build system,
called Cauldron, which aims to improve the build performance for large C++ projects. Cauldron supports
sophisticated unity builds and adaptive build behavior based on the number of files to be compiled. My
experiments show that Cauldron outperforms existing approaches; for example, it reduces build times of
WebKit by 23% in continuous builds.

For logging code insertion, | introduce a new logging tool, called K9, which automatically inserts the logging
code to trace inter-thread data dependencies caused by shared data among threads. In multi-threaded
systems, the traceability of inter-thread data dependencies is essential in failure diagnosis because the
thread actually causing the failure may be different from the thread executing the buggy code. In my
experiments, | show that the log of K9 provides useful clues for debugging four bugs in the Linux kernel,

including one unknown bug.

The contribution of this dissertation is summarized as follows. As software development consists of multiple
tasks, it is important to consider the various processes in the development cycle. This dissertation proposes
two tools to improve the efficiency of two specific parts of software development: build time and logging code

insertion. | describe in detail the design, implementation, and evaluations of the two tools.

	Introduction
	Motivation
	Dissertation Contributions
	Build System for Sophisticated Unity Builds
	Logging Automation Tool for Logging Inter-thread Dependencies

	Organization

	Related Work
	Improving C++ Build Performance
	Compile Caching Tools
	Compiler Approach
	Language Approach

	Failure Diagnosis
	Diagnosis without Reproducing the Failure
	Diagnosis with Failure Reproduction

	Other Related Work
	Test Case Generation & Selection
	Static Analysis for Bug Detection

	Summary

	Build System for Unity Builds with Sophisticated Bundle Strategies
	Background
	Build systems
	Incremental builds
	Long build times of large C++ projects
	Unity builds

	Problems in Unity Builds
	A Case Study on Unity Builds in WebKit
	Research Questions
	Metrics
	Experimental Results

	Design and Implementation of Cauldron
	Design Choice: Meta-Build System vs. Native Build System
	Bundle strategies in Cauldron
	Overview
	Dependency graph analysis
	Build behavior decision
	Bundling source files
	Bundle Configuration Refinement

	Experiments
	Build Performance in Continuous Builds
	Incremental-build performance
	Full-build performance

	Summary

	Logging Automation for Inter-thread Data Dependencies
	Motivation
	Inter-Thread Data Dependency
	Bug Examples in Linux

	Design Goals and Overview of K9
	Inter-thread Data Dependency Model
	Collections and Items
	Dependencies between Collections and Items
	Log Points for Collections and Items

	Design and Implementation of K9
	Collection Support Library
	Data-flow Graph of K9
	Direct Dependency Analysis
	Indirect Dependency Analysis

	Experiments
	Scalability
	Precision of Log Points
	Diagnosing failures
	Performance Overheads

	Summary

	Conclusion
	Contribution Summary
	Future Directions

	Bibliography

