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Abstract 
 

A smart community utilizes information technology to interconnect and manage 

community infrastructures. These networks consist of many Internet of 

Things(IoT) devices that provide different services to the end-users. In 

conventional networks, these sensor data send to cloud services for processing 

and management. However, cloud-based data processing introduces latency to the 

services. Fog computing techniques have been introduced to support these services 

at the network edge reducing the network latency. Smart community networks should 

support latency-sensitive services such as smart grid systems at the edge. In 

addition, Smart community services require service migration and service 

chaining to manage and distribute multiple services. For example, the current 

smart community edge(SCE) supports smart energy management services where data 

anonymization and data aggregation services should be chained, and the services 

should be migrated depending on the network’s location and network traffic.  

SCE services can leverage generic hardware devices and network virtualization 

technologies to deploy the services without proprietary middleware devices. The 

current network virtualization methods mainly consider only core network 

applications. In contrast, smart community services operate on application layer 

data and process in-transit data to capture sensor data at the edge. Therefore, 

data extraction edge nodes that support sensor data processing are required to 

support these smart community services. A service-oriented container-based 

solution that processes data streams from sensors using conventional hardware 

will improve the applicability, compatibility, and latency of smart community 

services. 

To this end, a software-based edge node, namely, the SCE platform, was proposed 

to support smart community services. SCE supports data-tapping applications, 

especially for IoT devices, and has a stream processing feature with a 

comparatively shorter processing delay. This tapping and processing function on 

in-transit data was named stream content analysis(SCA). SCA captures in-transit 

data through zero copy stream reconstruction and string matching process. 

Afterward, SCE proposes a distributed rule application method to manage multiple 

services and distribute matched data to the services. SCE supports services 

through Docker containers to provide remote deployment, service migration, and 

service isolation. The real world SCE platform implementation allows SCE services 

to operate on 10Gbps links and apply 100 accumulated rules while maintaining 

less than 1ms latency using commodity hardware devices.  

To support SCE service migration, SCE proposes a consistently guaranteed 

migration method to support service migration to distribute the services 

depending on the nodes’ availability. The proposed migration technique is 

designed to guarantee network consistency while migrating between nodes. 



ii 

 

Compared to existing container migration methods, the proposed migration reduces 

the migration data transfer through container layers and migrating only the 

streams affected by the migration application through SCA. The proposed container 

migration methods reduced the network downtime by more than 10% compared to 

conventional methods for containers with image sizes larger than 400MBs. 

Furthermore, SCE services require chaining to distribute sensor data efficiently 

to the edge nodes to apply multiple network services for a given traffic flow. 

To this end, SCE introduces a service function chaining-based request 

distribution method that utilizes proactive data collection and heuristics to 

analyze the network traffic and to select optimal SCE nodes. The SCE request 

distribution method reduces the end-to-end service latency by 10% compared to 

the available algorithms. The SCE platform provides commodity hardware-based 

SCA, distributed rule change application, service migration, and service 

chaining to support SCE services.  
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 Introduction 

1.1 Motivation 

Information technology integrates communication, processing, and computing 

technologies to provide services such as healthcare, education. UNIVAC 1, the 

first commercial computer [1], was developed by John Eckert and John W. Mauchly 

in 1951. For the next few decades, enterprises developed mainframe computers to 

store and process a large amount of information. The internet was started in the 

1960s as a data transfer solution between large-sized immobile computers[2]. The 

size of computers reduced around the 1980s to the size of minicomputers. The 

ARPANET and Defense Data Network officially standardized internet communication 

with TCP/IP protocol in 1983, and this day is considered the birthday of The 

internet[2].  The connected devices on the internet have become smaller and 

smaller to the current trend of IoT, Big data, and Smart cities. 

Processing, computing, and communication of a large number of connected devices 

required considerable processing power. Before the internet, mainframe computers 

were initially used in enterprises to compute information in the 1950s[2]. 

Internet services required datacenters to process the information on connected 

devices. The term cloud computing was introduced around 2006 to identify the new 

paradigm in which people increasingly access software, computer power, and files 

over the web instead of on their desktops[3]. In the cloud computing paradigm, 

user traffic usually sends to data centers for processing. Commonly, the 

Representational state transfer Application Programming Interface[4] (Rest API) 

is used to communicate where users request data through a well-defined interface. 

The client-server architecture was used by these services to execute end-user 

requests in the cloud. Cloud computing also uses virtualization technologies to 

deploy the services on bare metal servers. The data processing services are 

usually packaged to virtual machines and executed within the data center. The 

virtualization technologies improve the scalability, efficiency, and agility of 

these networks. 

Cloud services usually process application layer data of the communication. 

However, network appliances process network-layer, transport layer, and data-

link layer data using services such as a firewall. These network appliances are 

also moving from proprietary hardware devices to virtualized devices with the 

development of virtualization technologies. ETSI introduced network function 

virtualization(NFV) in 2012 in a conference on software-defined networking and 

OpenFlow[5]. NFV provides a framework to manage virtualized network services. 

The framework includes virtualized network functions(VNFs), network function 
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virtualization infrastructure(NFVI), and network function virtualization 

management and orchestration(MANO). These three components allow service 

providers to deploy, manage, and orchestrate network services. However, NFV is 

designed toward network-layer applications, while cloud computing is designed 

toward application layer services.  

 

Edge and fog computing was introduced as an added computing layer between the 

cloud and terminal devices[9]. Fog computing is a paradigm of distributed 

computing. In contrast, cloud computing tends to be more centralized. Centralized 

systems are easier to manage and deploy while they introduce longer access time 

to users. On the other hand, a distributed system provides resilience, better 

performance, and flexibility while causing high deployment and maintenance costs 

due to the system’s geographical distribution. Therefore, fog computing has the 

decentralized system’s advantages, while edge nodes’ deployment and management 

become problematic in networks. Cloud computing has more extensive computation 

capability compared to edge computing nodes. However, cloud computing data 

centers are placed further away from the end-users. Fog computing is about 

processing real-time data closer to the network edge, while cloud computing runs 

end-user applications, as shown in Figure 1-1. Therefore, the fog layer should 

capture in-transit IoT data to provide real-time smart community services. A fog 

computing platform should be able to capture in transit IoT data from the line. 

In contrast, cloud services usually process the end request; therefore, it could 

operate in a standard client-server architecture. In contrast, fog computing 

nodes carry out stream processing to process in-transit information.  

 
Figure 1-1 Application service hierarchy  
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Fog and edge-based services could be used to process the information of a 

rapidly increasing number of connected IoT devices[6], as shown in Figure 1-2. 

According to current trends, this will increase to 75 billion devices in 2025[6]. 

However, these connected devices allow us to develop complex systems to monitor 

and manage our community. However, with the increase of IoT sensors, it is 

required to process these data closer to the network edge to reduce network 

latency and traffic[7]. The smart community concept uses these devices to 

efficiently manage the citizens’ infrastructure, ICT, energy, and lifestyle. 

According to the Japan smart community alliance, “smart community is a community 

where various next-generation technologies and advanced social systems are 

effectively integrated and utilized, including the efficient use of energy, 

utilization of heat and unused energy sources, improvement of local 

transportation systems and transformation of the everyday lives of citizens”[8]. 

This requires smart community services and users to process data efficiently. 

However, the application services and the computing location depend on the type 

of capabilities required by the different services, as shown in Figure 1-1. For 

example, a sensor network operates in a narrow area with limited computation and 

security capabilities. In contrast, cloud services operate in a broader area 

with unlimited computation capability. The fog layer operates in the middle to 

provide services such as anonymization for these weak terminal devices before 

the traffic transit into the cloud. Smart community services could leverage 

commodity hardware devices between the cloud and the terminal devices to support 

these services. 

 

 
Figure 1-2 Connected IoT devices 
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 The smart community services can be differentiated according to the 

application hierarchy, as shown in Figure 1-3. Services such as healthcare 

monitoring, remote control, and grid control should be processed at the edge to 

reduce the delay of the services. Smart community networks should process in-

transit traffic of the sensors to support smart community services. Smart 

community services should capture the in-transit data and carry out device 

identification through stream reconstruction of network traffic. For example, a 

smart energy management service that anonymizes and aggregate sensor data should 

capture the device identifier and data values by analyzing the network’s RestAPI 

communications. Therefore, a platform that supports smart community services 

should have the ability to analyze the terminal devices’ application layer data. 

 

 
Smart community networks can leverage these methods to provide network 

transparency, add-on services without updating or interacting with the terminal 

devices. For example, the smart community can provide privacy encapsulation for 

the network traffic by analyzing and watermarking in-transit data without 

updating the terminal devices’ computation capabilities. However, smart 

community networks should process the traffic at 1-10Gbps bandwidth to meet 

Japanese households and enterprises’ typical requirements, such as 10G-EPON, 

XGS-PON, and NG-PON2[9], [10], some of the popular optical passive optional 

networks for last-mile connections. Therefore, smart community networks are 

required to analyze the network traffic at 1-10Gbps bandwidth to support the 

services. 

Smart community services require services to migrate from cloud to edge and 

edge to cloud depending on the network load. For example, the smart energy 

 
 

Figure 1-3 Smart community services hierarchy 
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management service requires the service containers to migrate from cloud to edge 

or one-N replicate to support the increasing network workloads, as shown in 

Figure 1-4. Smart community service could be migrated closer to the terminal 

devices or replicate into multiple locations to improve the latency and 

throughput of the service. Therefore, service migration is an essential 

requirement for these services. The migration process should also prevent the 

data loss of any in-transit data under migration as loss of sensor data could 

cause control problems such as a smart energy management system. Therefore, 

consistently guaranteed service migration is required for smart community 

services. 

 

Smart community services commonly apply multiple services to the same network 

flow in a chain to provide a complete set of services. For example, the smart 

meter service first anonymizes the data, and then the data is sent to the 

aggregate node to record the data of multiple smart meters for processing and 

display, as shown in Figure 1-4. Therefore, smart community networks should 

support service chaining to distribute sensor traffic to execute these services 

in the required order. This requires smart community services to transit the 

correct sensor through nodes that support these services while reducing the end-

to-end service delay of the network. Therefore, smart community networks should 

analyze in-transit network content, provide service migration, and service 

chaining to support SCE services. 

1.2 Research Directions 

SCE, a platform that provides SCA, service migration, service chaining, was 

proposed to this end. SCE platform proposes SCA to capture sensor data in the 

network. SCA is the process of stream reconstruction, application layer decoding, 

and string matching to identify and segregate network streams containing sensor 

data. SCA leverages the capabilities of packet forwarding and string matching 

 
Figure 1-4 Typical smart community application 
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of data plane development kit (DPDK) and Hyperscan technologies to achieve 1-

10Gpbs throughput. SCE platform uses DPDK to manipulate header and data sections 

of the packet to carry out SCA, while current software-based packet forwarding 

research [11]–[16] only manipulates the header. The SCA provides an interface 

for smart community services to access the sensor data. Furthermore, the SCE 

platform proposes a distributed rule application change method using a multi-

layer architecture. SCE platform uses multiple layers to apply service rules to 

network flows to segregate network streams compared to packets. Compared to NFV 

[17], [18] research where virtual switches are used to segregate the packets, 

the SCE platform proposes a distributed rule application that allows smart 

community services to migrate through the smart community network without 

affecting the network flows. The SCE platform uses a service management 

layer(SML) to facilitate the distributed rule change process without affecting 

the SCA in the network forwarding layer. 

In addition to the distributed rule change, the SCE platform uses the SML to 

facilitate multiple services. The management layer allows smart community 

services to run multiple applications in isolated software environments. 

Furthermore, the applications can directly capture data from the IoT terminal 

devices without being aware of the network control plane. The SML allows services 

to remote deployment and migration. SCE platform utilizes Docker containers to 

isolate the application services, allowing application migration without 

affecting the network flows. SCE platform proposed a consistency guarantee of 

the migration(CGM) to resolve the above issues. SCE platform CGM provides 

stateful application migration with data buffering to capture and store the 

network data within the migration downtime. 

In comparison to current research [19] [20], techniques such as network storage 

devices improve the migration downtime. CGM uses container layer separation and 

buffered data separation through distributed rule applications to reduce data 

transfer and data buffering between the source and destination nodes. The SCE 

management layer communicates with destination nodes to identify transit traffic 

between the source and destination nodes. Afterward, the proposed method uses 

temporary buffers to store the in-transit data until the container restores at 

the destination node. Furthermore, the CGM can be used to provide one-many 

migration(O2NCGM) to support service replication. The CGM performance was 

compared with conventional methods through the hardware tests to evaluate CGM’s 

effectiveness. 

Furthermore, the SCE platform proposes a service function path(SFP) selection 

process to distribute traffic through SCE service chains optimally. The current 

path selection algorithms, such as the optimal path selection algorithm[21], use 

reactive data collection to identify the optimal SFP. However, this method 

consumes considerable network traffic and calculation time waiting for the nodes 

to advertise their loads. To resolve this, SCE proposed an optimized SFP 

selection method that periodically collects the load data to approximate the 
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system load within the advertisement period. The proposed SCE platform SFP 

selection process uses calculation cost and network delay to calculate the SFP 

cost. Then SFP calculation process calculates the cost of assigning all SFs to 

a single node to identify whether the single node assignment yields a better 

end-to-end delay. This method reduces the network traffic introduced by the node 

advertisements while increasing the overall SCE nodes’ efficiency. The proposed 

optimized path selection algorithm is evaluated using a Cloudsim simulation 

environment compared to optimal and nearly-optimal SFP methods. 

   

  

SCE platforms layered architecture provides the following capabilities and 

supports the requirements of smart community services mentioned above, as shown 

in Figure 1-5.   

1. Software-accelerated SCA 

2. SCE node for containerized services 

3. Consistency guaranteed migration 

4. Computational delay aware service function chaining 

 
 

Figure 1-5 SCE platform layers 
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The place the dissertation resides in the current context is shown in Figure 

1-6. The SCE node implementation is related to the network infrastructure layer 

where physical and virtual network devices operate to support the services. The 

SCE management layer and live container migration reside within the application 

management and orchestration, where consistency guarantee migration supports 

application orchestration. Finally, SFP selection resides in the application 

layer, where application request distribution is managed. 

 

 

         

      

 

  

 
 

Figure 1-6 The place the dissertation resides within the current context 
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1.3 Dissertation structure 

The dissertation structure is illustrated in Figure 1-7. Table 1-1  denotes a 

brief description of each chapter. As denoted in Figure 1-7, Chapter 2 explains 

the background studies associated with this dissertation. It provides a detailed 

explanation of the smart community, smart community services, service migration, 

and service function chaining. Moreover, the chapter briefly explains the issues 

with currently available methods and how the proposed methods will resolve those 

issues using the SCE.  

Chapter 3 introduces the software-accelerating for SCA through DPDK and 

Hyperscan technology with the evaluation results. How the software-accelerated 

SCA is used to create SCE is explained in chapter 4. The chapter explains the 

components of the SCE node, the distributed rule change method, and its’ core 

implementation details. In addition, it explains how the SCE application process 

is carried out within the multi-layer architecture. The chapter is concluded 

with the evaluation results of the SCE node comparison of the f-stack library. 

Chapter 5 extends the ability of SCE by implementing CGM for services. This 

chapter explains the architecture of Docker-based live migration. Explain the 

implementation process of CGM through buffers. The evaluation results of CGM in 

Intel NUC computers are provided at the end of the chapter. Chapter 6 further 

extends the SCE platform by introducing the SFP selection method for service 

chaining to smart community networks. The proposed SFP selection algorithm is 

evaluated compared to currently available algorithms to identify its ability to 

execute user requests efficiently.  

Finally, Chapter 7 summarize and concludes the dissertation. 
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Figure 1-7 Dissertation structure 
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Table 1-1 Chapter description 

Chapter 2 Purpose Background study and survey of related work. 

Chapter 3 Purpose Implement and evaluate software-accelerated 

stream processing of SPL. 

Objectives 1) Find available methods to improve the 

performance of the SCA. 

2) Handle 1-10Gbps throughput in SCA. 

Proposed 

Methods 

Use DPDK, and Hyperscan libraries to improve the 

performance of SCA by using zero copy stream 

processing. 

Achievement 1) Implemented and evaluated SPL using DPDK 

and Hyperscan Technology. 

2) Achieve 1-10Gbps throughput in multi-core 

server. The implementation and results 

are published. 

Chapter 4 Purpose Implement and evaluate SCE node to support 

containerized services. 

Objectives 1) Provide multi-service support for SCE 

service. 

2) Provide distributed rule change to 

separate application traffic. 

3) Handle 1-10Gbps throughput for multiple 

services at sub millisecond latency. 

Proposed 

Methods 

Use modular multilayer architecture to support 

distributed rule change method that use of SPL 

and SML. Use Docker containers to containerize 

applications. 

Achievement 1) Implement multi-service support, and 

distributed rule change through SML. 

2) Implement application API that support 

applications through Docker containers. 

3) Achieve 1-10Gbps throughput for multi-

service SCE platform while minimizing SCE 

latency to 0.8ms. The implementation and 

results are published. 

Chapter 5 Purpose Implement and evaluate CGM to support data 

consistency in Docker migration. 

Objectives 1) Provide network data consistency to 

Docker applications. 

2) Reduce downtime of applications. 

Proposed 

Methods 

Use container layer separation and application 

based data separation to buffer data at SML to 

guarantee data consistency of applications.  

Achievement 1) Implement and evaluate CGM in hardware 

platform. 
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Chapter 6 Purpose Implement a SFP selection process to reduce end-

to-end delay of SFCs. 

Objectives 1) Reduce end-to-end delay of SFC execution. 

Proposed 

Methods 

Use computational delay aware SFC to gather node 

data to identify an optimal SFPs. 

Achievement 1) Implement SFP selection process that 

improves the end-to-end delay. 

2) Evaluate the results compared to other 

available algorithms. Results are 

published and presented. 

Chapter 7 Purpose Summarize the details of SCE platform and 

conclude the dissertation. 
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 Background study and 

related work 

2.1 Smart Community 

Smart cities and smart communities are gaining momentum because of the 

technological advancements in smart electronic devices and sensors [22]. According 

to the smart communities guidebook [23] by the State University of San Diego, a 

smart community is defined as “a geographical area ranging in size from a 

neighborhood to a multi-county region, whose residents, organizations, and 

governing institutions are using information technology to transform their region 

in significant ways. Cooperation among government, industry, educators, and the 

citizenry, instead of individual groups acting in isolation, are preferred. The 

technological enhancements undertaken as part of this effort should result in 

fundamental rather than incremental changes.” Smart communities are expected to 

realize a considerable increase in the number of electronic devices and sensors 

[24], also known as trillion sensors [25], for achieving cooperation through data 

exchange. These connected devices manage energy, information, communication 

technology(ICT), infrastructure, and citizens’ lifestyles. As an example, smart 

community energy management services uses sensors attached to smart houses. 

Similarly, transport services would use sensors attached to vehicles to monitor 

road activity. Therefore, sensors become an integrated component of the smart 

community to monitor and manage the ecosystem.  

 
The smart community ICT infrastructure uses these data to provide different 

 
 

Figure 2-1 Concept of smart community 
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services such as medical services, smart grid, smart energy management, and water 

infrastructure services, as shown in Figure 2-1. For example, the smart community 

utilizes smart energy management and smart grid service to collect live data to 

improve the electricity network’s efficiency and balance. Smart community 

services become an integral part of the daily life of the citizens of smart 

communities and smart cities. Therefore, the smart community should efficiently 

manage and utilize these services to improve citizens’ living standards while 

efficiently managing and utilizing the infrastructure and resources.                

2.2 SCE services 

The smart community and smart city ICT infrastructure and its related 

infrastructure require a significant amount of data processing and network 

transactions to smart community services. Therefore, the location of the 

execution of these services becomes a question, as shown in Figure 2-2. Cloud-

based data processing has been extensively researched for the provisioning of 

cloud-based application services[26]–[28]. However, the increase in smart 

community sensors has incentivized the shift of computing resources from the 

cloud to the edge/fog for increasing network efficiency. As with a typical delay-

sensitive application, a delay of less than 10 ms is permitted on the demand-

side resource management for ancillary services using a smart grid [29]. 

According to Lema et al.[30], typical remote control services require less than 

10 ms processing delay. Edge and fog computing bring computing resources closer 

to the network edge. Open Fog [31]–[34] is a category of service deployed closer 

to the terminal devices for improving the efficiency of the network 

infrastructure in next-generation networks. The edge and fog layer will act as 

 
 

Figure 2-2 Execution location problem at smart community networks 
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an additional processing layer between terminal devices and the cloud. In 

addition, decentralization and flexibility are the main advantages of edge/fog 

computing. 

Consequently, the fog layer will improve the service latency and distribution 

in networks [7]. In addition, edge/fog computing conserves network bandwidth, 

reduces operating cost, enhances security, improves reliability, and boosts 

agility. Edge/fog has usability in systems such as smart grid management. Smart 

cities must manage electricity demand by real-time electrical consumption data. 

This kind of data can be effectively captured at the edge to operate the smart 

grid efficiently. Therefore, SCE should support services that are susceptible 

to network latency closer. Data processing at the edge, data aggregation, and 

caching can reduce such services’ network delay.  SCE services can also provide 

add-on services such as data watermarking and anonymization at the edge to 

support weak IoT terminals that send clear text private information, as shown 

in Figure 2-3.    

The SCE services should be distributed on available nodes. This provides 

location flexibility to the services. However, the application services should 

handle the migration and sensor data to support such service migrations through 

the network.  Furthermore, smart community services commonly operate in chains 

to provide multiple add on services to the terminal devices without adding 

software or hardware upgrades to end terminals. In such cases, the SCE should 

support service chaining to process these requests. In addition to the 

application, location flexibility requires the end terminal traffic to travel 

through the available SCE nodes to efficiently support service chains. 

 

 
 

Figure 2-3 Sample applications for SCE 
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2.3 Related work 

2.3.1 Software-accelerated SCA 

 

Conventional routers and switches were designed to forward packets without 

intelligent payload analysis and inspection capabilities. The changes in network 

architecture, the introduction of electronic equipment and sensors, and big data 

require network equipment to be versatile enough to operate in smart community 

networks efficiently. Nishi laboratory initially proposed a simulation of a 

content-based router called Service-oriented Router[35] that could analyze the 

data streams travel through the network. SCE uses the SoR to implement its’ 

Stream Processing Layer(SPL) to process smart community sensor data. Advanced 

packet processing techniques were required to handle a 1/10Gbps line rate to 

analyze SCE traffic. Network manufacturers use application-specific integrated 

circuits (ASICs) to handle the required bandwidth and computational power 

requirements [36], [37]. However, this is not a cost-effective method to manage 

cutting-edge networks such as smart community networks because the SPL should 

work with conventional hardware systems to ensure easy implementation and 

adaptability. In Japan, customer premises internet bandwidth can range from 1Mbps 

to 1Gbps [38], and enterprise core level usually handles bandwidths of 10Gbps. 

Therefore, customer premises or building-based SPL deployment would require 1Gbps 

bandwidth, and enterprise core deployment to require at least 10Gbps bandwidth. 

Generally, packet processing applications in conventional servers are deployed 

in Linux using the Libpcap library, implementations of deep packet inspectors 

[39], and packet filters [40]. There are several examples of these 

implementations; however, there are limitations in performance when leveraging 

the Libpcap library due to its use of interrupt-driven NIC drivers. Furthermore, 

the implementation of multi-threading requires thread memory handling.  

As a solution, the studies [41] discussed using packet processing offloading to 

a general-purpose graphics processing unit (GPGPU). Even though The GPGPU based 

SoR implementation [41] achieved 1Gbps throughput, it required a 100ms stream 

buffer wait time. Additionally, it is known that high-performance GPGPU 

availability is limited in the case of conventional servers. Moreover, GPGPU has 

an overhead for copying data from kernel memory to GPGPU memory. Therefore, the 

use of GPGPU is not a feasible method for SPL. 

Additionally, compared to GPGPUs using Intel DPDK, [42] intel CPUs have the 

following advantages. The intel CPU cores have better performance compared to 

GPGPU kernel/processing elements. Additionally, one stream can be forwarded to a 

dedicated CPU to improve the cache-hit rate, thus improving the performance. 

Furthermore, the CPU cores can operate independently without memory transactions, 

whereas GPGPUs need memory transactions to transfer the data, and CPUs also have 



Chapter 2. Background study and related work 

17 

 

 

a higher memory bandwidth compared to GPGPUs, which is limited by the PCI memory 

bandwidth. 

The SPL SCA requires packet processing libraries and hardware that support 

direct memory access and poll mode driver technologies. DPDK [43], netmap[15], 

and PF_RING ZC [44] are the major frameworks developed to overcome the issue with 

the Linux network stack. Netmap exposes the packet buffers to the application and 

allows system calls to transfer data. Software Router Click [13]and virtual switch 

VALE[45] show an increased performance using netmap. The PF_RING ZC is leveraging 

the use of zero packet copy, similar to Intel DPDK. PF_RING ZC buffers allocations 

in specific memory regions for multi-core CPU direct access. A network probe, 

nProbe, uses the PF_RING ZC ability to increase its performance. However, compared 

to these two frameworks, Intel DPDK offers multi-core support, supports libraries 

for packet processing, and has the highest degree of reconfigurability among the 

three frameworks [46], as given in Table 2-1. Even though Software Router Click 

[13]and virtual switch VALE[45] uses DPDK to forward the traffic through zero-

copy buffers, they only forward packets without analyzing the payload. This limits 

their capability to analyze and support smart community services. Therefore, the 

SCE platform leverages the techniques of DPDK and integrate Hyperscan to analyze 

packet headers and payload to carry out SCA through zero-copy buffers of DPDK. 

  

Table 2-1 Summary of software-accelerated packet processing methods 

Method Advantages Limitations 

Libpcap 
 Availability of applications 

such as packet filters 

 Performance is limited due to 

interrupt driven drivers 

GPGPU 
 Improve the process 

offloading 

 Overhead for copying data 

from kernel memory to GPGPU 

memory 

 CPU cores have better 

performance compared to GPGPU 

kernel elements 

PF_RING 

ZC 

 Provide buffers allocations 

in specific memory regions 

for multicore CPU direct 

access 

 Limited multi-core support 

DPDK 

 Multicore support 

 Support libraries for packet 

processing  

 Provide highest degree of re-

configurability 

 Requires to use DPDK poll 

mode drivers 
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2.3.2 Software appliances for containerized services 

 

SPL was initially proposed to capture sensor data through conventional routers. 

SPL supports a single service on a conventional server using SCA. SPL runs a 

single service without the use of virtualization technology or SCA content 

isolation. Therefore, SPL is unable to support multiple services in a single 

conventional server or an edge node. Other research on software-based network 

applications on conventional hardware is mainly designed for routing, deep packet 

inspection (DPI), and NFV. Software-based routers use conventional hardware such 

as commodity computing servers. Software-based routers have gained momentum in 

recent years [11]–[16]. Although hardware-based packet forwarding has better 

bandwidth than software-based systems, software-based routers’ performance has 

improved because of the development of peripheral component interconnect 

technology and NIC designs [12]. The software-based routers were developed using 

solutions such as Intel DPDK [42], PF_RING [47], and Netmap [15]. DPDK and PF_RING 

use zero-copy packet processing to improve performance, while Netmap and other 

similar solutions focus on the modular processing of packets [48]. Studies on 

software-based routers provide an excellent platform for fast packet processing 

[11], [12]. However, these software-based routers do not carry out payload 

analysis and string matching of the sensor data. 

The software-based DPI was developed using PF_RING technology [39], DPDK, and 

Hyperscan technologies [49], as given in Table 2-2. Deri et al. [39] proposed 

nDPI using PF_RING technology focused on high-throughput DPI. However, nDPI does 

not support additional services except the nDPI program, although it captures 

data from the end devices. Therefore, it is not possible to support smart community 

services using PF_RING-based nDPI implementation. Similarly, Luca et al. [49] 

proposed nDPI using DPDK technology to classify and block unwanted traffic. Their 

nDPI platform provides a method to classify the network flows; however, it does 

not support software isolation for the application processes using VM or container 

technologies. Therefore, applications can directly access other processes of a 

host machine. Consequently, application code inspection is necessary for DPDK-

based nDPI solutions to guarantee the security and isolation of the nDPI program 

from multi-vendor applications [49]. Furthermore, These DPI methods only analyze 

the initial sections of the packets to identify the application flow. Therefore, 

their capability to continue capturing the in-transit traffic on the same flow 

is limited. These drawbacks limit the ability of nDPI in smart community 

environments. A service virtualization method is necessary to support edge service 

for multiple services at a single edge node. Furthermore, remote application 

deployment and migration without service isolation are not supported. These 

drawbacks limit the ability of nDPI to support multiple applications at the edge. 
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Virtualized DPI (vDPI) [50] uses DPDK technology and supports virtualized DPI 

applications using VMs. This implementation isolates the DPI instances through 

VMs and uses OpenVswitch [51] to share packets among the DPI nodes. Although this 

allows virtualization of DPI nodes, it is affected by the drawbacks of VM-based 

software isolation than container solutions. In addition, the use of a layer two 

switch to pipeline packets among vDPI applications causes all the vDPI instances 

to run stream reconstruction, which creates additional processing overhead by 

increasing network delay in the host machine. These drawbacks can be overcome by 

using SPL in place of the virtual switches. SCE platform proposes to runs SCA on 

the host machine using a distributed rule change method while sharing the captured 

content among service containers. Additionally, this allows for control over 

sensor data sharing, as the SPL can filter and share the sensor data among multi-

vendor applications accordingly. Therefore, although these DPI solutions provide 

software-based platforms for multiple DPI applications, they cannot be optimized 

for virtualized smart community services. 

NFV was proposed along with the development of software-defined networking (SDN) 

to support virtual network functions (VNFs) and deliver network services as 

software processors [52], [53]. Major backbone router providers such as Cisco, 

Juniper, and NEC have proposed NFV platforms [37], [54], [55] using application-

specific hardware. Although they achieve high-throughput packet forwarding, the 

hardware cost is high. Research on software-based NFV platforms [17], [18], [53] 

has been mainly with DPDK and SR-IOV [56] technologies. Intel SR-IOV allows 

hardware-based packet switching for VM-based VNFs. OpenVswitch [51] provides 

Table 2-2 Summary of software-based DPI methods 

Method Usage Limitations 

Deri et al. 
[37] nDPI using 

PF_RING 

 Focused on high-

throughput DPI 

 Does not support additional 

services except the nDPI 

program 

 Does not support software 

isolation for the application 

processes 

Luca et al. 
[46] nDPI using 

DPDK 

 Provides a method to 

classify the network 

flows 

 Applications can directly 

access other processes of a 

host machine  

 Does not support software 

isolation for the application 

processes 

Virtualized DPI 

(vDPI) [47] 

 Use OpenVswitch [48] 

to support DPI 

applications using 

VMs 

 The application rules applied 

at VM instance rather than 

using a distributed rule 

database at the packet 

forwarding layer 
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software-based packet switching, functioning as a software switch to support core 

network services shown in Figure 2-4(1). The OpenVswitch transfers the network 

traffic through the services, acting as a virtualization switch without processing 

packet payload data. Similar software-based packet sharing solutions have been 

developed by sharing the huge page memory among VNFs [17], [18]. The huge page 

sharing causes network latency in the forwarding path because of the packet 

pipeline through each VNF instance in a core node. The raw packets are shared 

among VNFs as core network services such as network address translation, and 

switching [57] requires layer two and layer three information of all packets. 

 
NFV does not provide smart community services requirements because its target 

is to optimize the core network. The use of NFV in the smart community requires 

implementing and interoperating the network stack for executing L7 service 

applications. Smart community services are different from the core services as 

 

 
(1) 

 
(2) 

Figure 2-4 (1) OpenVSwitch and (2) f-stack 
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they are applied to the application layer, where most IoT terminals use the HTTP 

protocol and publisher, subscriber methods for data transactions. f-stack [58] 

provides a DPDK network stack to support applications using DPDK, TCP/IP, and f-

stack SDK, as shown in Figure 2-4(2). The f-stack is designed to support web 

servers by improving its network throughput using the DPDK library. This allows 

the development of web services such as Nginx. However, f-stack was developed to 

replace the Linux network stack in web servers and does not support multiple 

services using virtualization technologies. 

As described above, the conventional software-based routers and DPI [11], [12], 

[49], [59] solutions are not designed to support multiple edge services. The 

extant research [17], [18], [51], [60] focuses on supporting core network services, 

improving the network stack, or managing packet routing through DPDK technology. 

Using the distributed rule change method to identify and share the sensor data 

among services can overcome the limitations of using virtualized switches or 

buffers to share raw packets. 

2.3.3 Service migration 

 

  Container migration is the process of moving a container between computers or 

storage devices. Migration technology has been developed to realize flexible 

services and to distribute services in the cloud dynamically. VM migration has been 

commonly used for the last decades in data centers. For instance, live migration 

of virtual machines was provided through VMware (vMotion), virtual disk migration 

by Storage vMotion [61], and live migration function of Xen and KVM [62] are used 

in VM migrations. These VM based migration techniques are developed as they operate 

entirely isolated from other VMs and physical hardware through hypervisors. 

Container virtualization uses similar techniques to migrate isolated containers. 

OpenVZ [63], LXC [64], Docker-runC [65] are some of the migration technologies used 

in typical container applications. These container migration technologies use Linux 

CRIU [66], where CRIU checkpoint and restore of containers are used in migration. 

CRIU enables us to save the state of the running container process to files using 

a checkpoint function. The container is restored in the migrated system using CRIU 

restore function. However, these techniques are not feasible for direct use of in-

network service containers as they share resources and shared memory data structures 

among the application services and the host system for packet transactions. 

Nadgowda et al. [20] proposed a migration architecture that supports the 

container running process and container storage migration through CRIU. This 

architecture speeds up the checkpoint function using a page server. Furthermore, 

the data transactions such as data copying are minimized using network-attached 

storage (NAS) [19] devices. NAS is used for storage sharing in containers in this 

implementation. However, it is challenging to use shared storage such as a NAS 
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in a software-based service management environment due to geographically 

widespread edge nodes. Furthermore, the smart community service platforms tend 

to operate using conventional hardware with limited processing power and lack 

attached middleware devices such as NAS. C. Dupont et al. [67] proposed migrations 

for IoT services in an edge computing environment. This method uses Docker [68] 

and Kubernetes [69] for containers and provides horizontal and vertical migration. 

Horizontal migration is used in IoT roaming, and vertical migration is used in 

IoT offloading. The horizontal migration performs application migration within 

the application layer; the vertical migration performs inter layer migration. 

However, these horizontal and vertical migrations are cold migration methods. 

Additionally, the system was designed toward stateless application migration 

through cold migration. Therefore, it is not possible to provide live migration 

or stateful application migration using this method. Smart community services 

such as ancillary services and traffic management are stateful services. Therefore, 

a novel migration method is needed for such services. 

Also, to live stateful migration, packet processing services should reduce the 

downtime for low latency services. Therefore, migration time should be reduced 

to minimize the overall downtime of application services. Some studies intend to 

decrease migration time by reducing bandwidth usage [70], [71]. They reduce 

bandwidth usage by separating the container layer’s image layer and container 

layer and transferring only the container layer toward to destination node. L. 

Ma et al. [70] propose a shared file system under a distributed environment that 

consists of nodes with limited resources. In addition, L. Ma et al. [70] proposed 

a method to decrease migration time by reducing the amount of transferred data 

Table 2-3 Summary of migration methods 

Method Usage Limitations 

Nadgowda et 

al. [20], L. 

Ma et al. 

[67], and A. 

Machen et 

al[68]  

 Data transactions such as 

data copying are 

minimized using NAS or 

share file systems 

 Challenging to use shared 

storage in distributed SCE 

nodes 

 Doesn’t consider 

application data management 

and data consistency 

required for network 

applications. 

Dupont et al. 

[64] 

 Provide horizontal and 

vertical migration for 

edge 

 Only support cold migration 

Gember-

Jacobson et 

al. [69] 

 Buffer all packets in 

transit on the network 

 Susceptible to buffer 

overflow as it doesn’t 

identify packets affected 

by migration flow before 

buffering. 
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using a shared file system. A. Machen et al. proposed a migration method that can 

provide low-latency services by leveraging LXC under Mobile Edge Clouds (MECs) 

[71]. This architecture leverages NAS storages and decided which layers of the 

container to migrate according to destination. However, these studies do not 

consider the transferred application data management and data consistency required 

for network applications. Therefore, these methods would cause packet loss and 

unordered packet streams. To resolve these in smart community services, we need 

a migration method that considers throughput and downtime while supporting latency 

reduction and data consistency. 

 Virtual network function migration was designed to reduce packet loss in 

network functions. A. Gember-Jacobson et al. proposed OpenNF, which controls 

forwarding rules and NF instances [72]. OpenNF achieved loss-free and order-

preserved migration by buffering all packets until the migration finishes and 

then resending the packets to the destination node. However, this causes 

additional overhead and increases the migration time due to the significant number 

of forwarded packets to a controller [73]. Furthermore, a buffer overflow can 

occur due to the increased migration time. Moreover, this technique is bandwidth-

consuming as it resending all packets from the source to the migration destination. 

L. Nobach et al. proposed the SliM, VNF migration method, which reduces bandwidth 

usage by transferring only the necessary packets [74]. However, these methods 

cannot support multiple services on a single node because it cannot detect the 

specific data flow. Furthermore, since these VNF migrations change the network 

flow, the other services run on the same node are affected by modifying the 

network flow. Therefore, a multi-service supported migration solution must support 

smart community services while minimizing the buffered data transactions.  

2.3.4 Service Chaining 

 

The service function chaining(SFC) can be used to chain multiple services for 

smart community networks. The SFC architecture can be separated into four layers 

[75]: service, overlay network, underlay network, and link. The service layer 

comprises SFC elements such as classifiers, SF forwarders (SFF), and SFC proxy. 

It uses the overlay network to ensure connectivity of SFC data plane elements. 

The overlay network uses overlay network technologies to interconnect SFC 

elements and works transparently to the service layer.  The underlay network 

comprises networking techniques such as IP and MPLS. Finally, the link-layer 

consists of link-layer technologies that allow physical connections of the 

network. 

The SFC is a service layer divided into operational, administrative, and 

management components (OAM) [75], including the SF, SFC, and classifier 

components. These components provide different services in SFC creation. The SF 
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component is an OAM solution that includes testing the SFs in any SFC-aware 

network devices such as classifiers and controllers.  The SFC component includes 

solutions for testing SFC and service function path(SFP) that monitor the SFC 

forwarding path for packet matching a particular SFC as shown in  

Figure 2-5. Classifiers are solutions for testing the validity of 

classification rules and detecting incoherence among different rules in 

different classifiers. These SFC components can be classified into management, 

control, and data planes based on their operation. Management elements include 

the SFC orchestrator, which is responsible for SF instances and SFC management. 

The Control plane creates the SFPs for SFCs by formulating forwarding rules. The 

Data plane includes the actual SFs, SF forwarders, and classifiers. 

 
SFP selection algorithms were developed using OpenDayLight (ODL) [76]. ODL 

implements round-robin, random, load balance, and shortest path first algorithms. 

The round-robin algorithm distributes SFs in the SFC among the next available 

instance from all the available VNF instances. The random algorithm randomly 

selects VNF instances for the SFC SF abstracts. These two techniques do not 

consider network delays or capabilities of the VNF instances. Load balance uses 

the VNF instance load to deploy the VNFs in the SF without considering the 

network delay. Therefore, the load balancing algorithm tends to select nodes 

with lower loads, even though the SFP would have to go through multiple nodes, 

increasing the overall SFP delay. Later, near-optimal service-function path 

algorithm (NSP) [77] and optimal path selection algorithm (OPS) [78] were 

developed to address these issues by using dynamic programming; however, they 

have certain problems. NSP algorithm considers all instances of VNFs while 

selecting the SFP. The SFP selector uses the local load data of VNFs and network 

delay between the VNFs to select the SFP. However, in the selection, the 

algorithm selects one of the possible paths rather than the best path. 

 
 

Figure 2-5 A simple illustration of a service function path 



Chapter 2. Background study and related work 

25 

 

 

Additionally, this algorithm does not consider the hardware resources of the 

VNF instance; this can lead to the poor performance of the SFs because the NSP 

assumes that all VNF instances have similar hardware resource allocations to 

complete the SF. OPS algorithm was designed to address this issue by reactively 

collecting the load and queue load from the VNF instances. However, this 

technique has a severe drawback when there is considerable network delay between 

the SFP selector and the nodes. The network delay can cause the SFP selection 

algorithm to wait until the data arrives from the nodes, causing a delay in SFP 

allocation. Therefore, an efficient SFP selection method that could proactively 

collect node data could significantly improve the smart community services end-

to-end delay. 
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 Software-accelerated SCA 

for SCE 

3.1 Introduction 

SPL provides services to end-users by performing SCA over network traffic flows. 

SCA is a new concept for providing services by analyzing stream contents, such 

as TCP streams using regular-expression-based string matching and extraction, 

rather than general IP packet analysis. Initially, SPL was to implement SCA using 

stream reconstruction, L7 decoding, and data inspection. The SPL provides contents 

analyzed using SCA hereafter, referring to SCA content to smart community services. 

However, SPL capabilities were tested during its initial development using the 

Hypertext Transfer Protocol (HTTP)[79] traffic. Analyzing HTTP streams in traffic 

and collecting useful data from HTTP transactions requires HTTP decoding and the 

gzip decoding process; therefore, the first implementation of SPL, while running 

on conventional hardware, faced several limitations.  

The most commonly used packet processing library is the Packet Capture library 

(Libpcap)[80]. The Libpcap library's use leads to interrupts and memory copy from 

a NIC device to kernel space and then from kernel space to user space, thus 

increasing the processing time. String matching function causes a considerable 

delay because it requires several complex memory accesses, thus lowering the 

performance level. These are the top two performance bottlenecks of Libpcap-based 

SPL. Using the Libpcap library for packet handling and string filtering based on 

Boyer–Moore algorithm can only handle 8Mbps throughput without packet loss.  

This chapter discusses foreseeable solutions for the problems described earlier 

using the DPDK and Hyperscan Library. The DPDK bypasses the kernel driver, thus 

avoiding interrupt triggers at packet arrival. Furthermore, it supports zero-copy 

that allows direct memory access in the user space, enabling high-speed packet 

access. This increases the layer-4 session-reconstruction performance by reducing 

the packet copying time. The packet filtration was developed using the Hyperscan 

library, which is optimized for Intel Xeon processors to match higher throughput 

strings. Even though it is not as highly parallel as GPGPU based implementations, 

the library achieves a high level of performance within the Intel processor 

architecture. Therefore, these two technologies can be used to solve performance 

bottlenecks without introducing any new network hardware.  

The contributions of this chapter can be identified as follows: 
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 The design and implementation of an SPL with SCA using Libpcap library. 

 The re-engineering of SPL using Intel DPDK and Hyperscan technology is 

explained, and SCA performance is benchmarked. 

 The performance of the DPDK-based SPL is compared with the Libpcap-based 

SPL. 

3.2 Implementation of Software-accelerated SCA 

SPL was developed to provide new services brought up by the smart community. As 

discussed in the introduction, smart community sensors such as IoT devices are 

small terminals with limited processing power and memories to be small enough to 

get installed anywhere. In some cases, it is difficult to install a new protocol 

or give security patches because of its limited function and update cost. Moreover, 

the privacy information needs to be either encapsulated or anonymized before the 

data gathered by sensors arrives at the servers in a cloud. 

SPL adds to the possibilities of smart community services. SPL enables the 

prevention of security attacks on the IoT devices by monitoring the communication 

streams leading to the devices. SPL can modify the streams without changing the 

IP headers. This function is called the SCA. The stream is selected, and the 

streamed contents are analyzed and updated if required. The implemented SPL 

consists of several modules, such as packet receiving, transmission, TCP stream 

reconstruction, L7 decode, static routing, stream filtration module, and 

information databases. 

SPL packet receiver module accesses the NIC and stores packets in a buffer to 

be processed by the TCP stream reconstruction module; the TCP reconstruction 

process of a single thread is shown in Figure 3-1. The TCP reconstruction module 

accesses the packets loaded by the receiver module and then reconstructs the 

packets into separate TCP streams. The reconstructed streams then pass it to the 

L7 decode module. Initially, the L7 decode module decodes the HTTP messages and 

identifies the HTTP transmission parameters, such as the encoding methods and 

their HTTP version. Afterward, it decodes the stream into HTTP messages to obtain 

clear text as HTTP traffic information. The reconstructed HTTP traffic then passes 

to the stream filtration module, which checks the stream payload for the L7 

transmission. The matched L7 traffic is then saved to the information databases 

for further processing by service applications such as data anonymization. Here, 

we suppose the web-based API or RESTful API to be the protocol between the IoT 

terminals and cloud servers. However, this function also extends to other 

protocols because the processes were designed using software algorithms. 

While the packet payload is processed using the above modules, the header is 

used by the routing module to route the packet. The packet filtration module 

applies rules to the routing module to determine whether the outbound interface 



28 

Chapter 3. Software-accelerated SCA for SCE 

 

 

packet should be forwarded. The transmission module then copies the processed 

packets to the NIC for transmission.  

3.2.1 Stream processing layer with Libpcap 

  

A Libpcap-based SPL is designed using the Packet Capture library. It uses the 

Libpcap offline-packet-dump file or physical network interface card in the 

promiscuous mode to input the packet receiver module. Simulations using packet 

dump files can be conducted using the pcap_open_offline function. We can access 

the interface traffic in live mode using the pcap_lookupnet function. 

The transmission module contains a Libpcap buffer to handle the packets. The 

default allocation of this buffer needs to be adjusted for complex stream 

processing applications. We can achieve the required custom allocation of this 

buffer via the pcap_set_buffer_size function. The transmission module accesses 

packets using the pcap_loop function. Once the packet processing is complete, the 

loop function automatically operates on the buffer’s next packet. 

 When the other modules consume the payload, the pcap_callback function 

separates the packet header and payload in the packet receiver module, as shown 

in Figure 3-2. The TCP reconstruction module identifies the five tuples of the 

packet and assigns the separated packets to various TCP streams. The packets are 

removed from the buffer after the streams expire in the time given by the stream 

timeout.  

 
The L7 decoding module decodes packet payload by analyzing the HTTP header 

information. The decoding process uses the HTTP version of the payload, and if 

it is compressed with the GZIP algorithm, it is first decompressed. The plain 

text is processed using the Boyer–Moore algorithm[81]. The Libpcap-based packet 

pre-filtering is applied at the SPL initialization stage to the interface packet 

buffer along with the pcap_compile and pcap_setfilter functions. The pcap_compile 

function precompiles the rule base to improve the packet filtration performance 

in the application. The filtered packets, after reconstruction and decoding, are 

then matched using the Boyer–Moore algorithm. 

In the Libpcap-based implementation, after the TCP stream reconstruction and 

filtration, the matched streams are stored in either the MySQL database[82] or 

on-memory databases, and the other streams are discarded after the TCP timeout. 

 

 
Figure 3-1 Libpcap single-threaded implementation of SPL 
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The database insertion would not affect the system’s total bandwidth, as the 

captured stream content is less than 10% of the total traffic flow. 

It is necessary to implement a multi-threaded Libpcap-based SPL instead of a 

single-threaded operation to improve the Libpcap-based SPL's performance. 

Therefore, a multi-threaded system was developed using the Linux POSIX thread 

library[83]. The packets need to be distributed into stream processing threads 

to prevent packet loss. A packet of the same stream is assigned to the same stream 

processing thread using the five tuples, and a stream process distribution is 

achieved. Moreover, it can avoid the inter-threaded share memory access that 

deteriorates the stream processing performance. 

In the threaded implementation, the pcap_callback function calculated the hash, 

then assigned the packet to a stream processing thread. Afterward, read the next 

packet in the Libpcap buffer as shown in Figure 3-2. When the selected thread 

buffer is full with packet processing, the pcap_callback function waits to select 

threads and assignment of a new packet until the last packet is processed and the 

buffer becomes available. 

 
Additionally, a thread operation of a single packet copy issued by the 

pcap_callbak function automatically cleans the memory. The callback function 

copies the packet data to the thread buffer if the thread buffer is empty, and 

the process then returns to the pcap_loop function to process the next packet. 

3.2.2 Stream processing layer with Intel Data Plane Development Kit 

and Hyperscan 

    

The DPDK-based SPL implementation with the DPDK library comprises all the SPL 

model components explained in the above section. The DPDK-based SPL process is 

illustrated in Figure 3-3, and the generic DPDK application processes are 

described in [54].  

The major architectural difference in the Intel DPDK-based and Libpcap-based 

SPL is the modularization and core assignment for different processes without the 

 
 

Figure 3-2 Libpcap multi-threaded implementation of SPL 
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kernel scheduler's involvement. The Intel DPDK-based implementation uses multi-

core support to allocate different modular processes to the CPU cores. In this 

architecture, the data transmission and receiving of NIC are allocated to two 

separate CPU cores that would poll and push packets toward a network without the 

intervention of Linux kernel system calls. The other cores are allocated toward 

the forwarding of packets and processing of payload to create streams. Furthermore, 

the string matching can be optimized using the Hyperscan library.  

 
In the DPDK-based SPL implementation, CPU cores are divided into worker cores, 

receiver cores, and transmission cores. These CPU cores are specifically isolated 

for the SPL functions using the isolcpu system call at the kernel scheduler. The 

DPDK-based SPL first parses the user application inputs required to initialize 

the DPDK runtime environment and SPL specifications. The parsed specifications 

are then used to initialize the SPL and DPDK runtime environment with the 

rte_eal_init system call. This sets up the DPDK ring buffers, CPU processors, and 

logs. 

The application initializes the Hyperscan library[84], as shown in Figure 3-4. 

The hs_compile compiles the rule base into a binary to use in the string 

matching[84]. Moreover, the compiled Hyperscan rule databases need scratch space 

to buffer and scan the strings. The scratch space allocation is completed with 

the hs_scratch function[84]. Finally, to scan the packet stream, the stream needs 

to be opened and scanned with the hs_open_stream and hs_scan function, 

respectively[85]. In the Hyperscan stream scan, it is possible to scan packets 

as they arrive because the hs_scan function saves the previous packet's match 

state to be used for the next packet scanning [85] without creating a copy of the 

packet. After matching the Hyperscan, stream matching can be closed and released 

using the hs_close_stream function [85]. Moreover, when a match is detected, 

Hyperscan calls the on_match function with the specified rule number, allowing 

 

 
 

Figure 3-3 DPDK based implementation of SPL 
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operation on the matched streams [85]. 

 

 
After initializing the Hyperscan and other libraries, such as MySQL, the main 

processes call the other modules using the rte_eal_remote_launch DPDK function 

[85]. The DPDK-based SPL processor cores are divided into receiver-cores, 

transmission-cores, and worker-cores, as shown in Figure 3-5. The transmission-

core will poll the NIC and share the packets to relevant worker cores through 

ring buffers. Similarly, receiver cores will receive packets from worker cores 

through ring buffers. Receiver cores then push the packets back to the NIC. The 

worker-cores are responsible for stream processing and analyzing functions other 

than packet receive and transmission. The DPDK enabled NICs to act as a poll mode 

driver because the NIC driver is directly mounted on the user space and the user 

program polls for packets from the huge page memory allocated for the NIC zero-

copy-packet access. The receiver core in the SPL implementation first polls the 

NIC for packet bursts, and then the packets are assigned to worker cores according 

to the five tuples, similar to the multi-threaded implementation. 

The worker core contains the TCP stream reconstruction, L7 decoding, and string 

matching module, along with a database insertion. The packets are first decoded, 

similar to the Libpcap-based SPL, and then assigned to Hyperscan-based string 

matching. The Hyperscan rule base is precompiled before the runtime for 

performance, and the TCP streams that match the Hyperscan rules are saved to 

databases housing the stream information. The packet routing is processed using 

another module that takes the packet header and updates the MAC address for 

forwarding. According to the Patricia tree algorithm, the packet routing module 

 
Figure 3-4 Hyperscan string matching process 
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forwards the packets, which sends the packets into the packet transmission module 

according to the forwarding and access control. The packet transmission module 

copies the packets back to the NIC memory, then forwards the packets to the output 

port. 

 
  

 
 

Figure 3-5 DPDK library multi-core assignment 
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3.3 Evaluation 

The SPL performance was tested using a Dual CPU workstation configured with the 

following specifications: 

• Server Type: HPC workstation 

• Processor 1: Xeon ES-2620 v4 2.10 GHz 

• Number of cores: 8 

• Number of threads: 16 

• Random Access Memory NUMA 1: 16 GB 

• Processor 2: Xeon ES-2620 v4 2.10 GHz  

• Number of cores: 8 

• Number of threads: 16 

• Random Access Memory NUMA 2: 16 GB 

• Operating System: Centos 7.2 

• Kernel version: Linux v3.1 

 

 

The hardware usage was constrained in DPDK implementations using the DPDK 

environment abstraction layer. SPL is expected to work as routers capable of 

working as customer premises equipment (CPE) with 1Gbps of bandwidth and 

enterprise core at 10Gbps. Therefore, the setup was tested with a minimal hardware 

requirement. A 100GB packet dump was collected from Interop Tokyo 2016 Day 1.  

 

Table 3-1 shows the results of single and multi-threaded implementations tests 

for different line rates. The initial testing found that the single-threaded 

Libpcap-based SPL implementation could only handle 8Mbps without any packet loss. 

The throughput limitation in the worker subprocess is given in Table 3-2, where 

the string matching algorithm was operated, and the TCP reconstruction took place. 

This reduced the throughput of Libpcap-based SPL, causing packet loss in the 

Libpcap buffer. The multi-threaded Libpcap-based SPL implementation was developed 

 

Table 3-1 Experimental Results of SPL 

 

Test 

String 

Matching 

Algorithm 

SPL 

Bandwidth 

Average 

Packet 

Rate 

# 

Threads 

Memory 

Usage 

# String 

Matching 

Threads 

# CPU 

Cores 

Libpcap single 

thread 

Boyer–

Moore 
8Mbps 1.5kpps 1 640MB 1 1 

Libpcap multi-

thread 

Boyer–

Moore 
150Mbps 29kpps 16 640MB 15 16 

Libpcap multi-

thread 

Aho–

Corasick 
160Mbps 31kpps 16 640MB 15 16 

DPDK-based SPL 
Aho–

Corasick 
1Gbps 200kpps 6 4GB 2 6 

DPDK-based SPL Hyperscan 1Gbps 200kpps 6 4GB 2 6 

DPDK-based SPL Hyperscan 10Gbps 1200kpps 16 16GB 14 16 
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to avoid these limitations, which improved the Libpcap-based SPL bandwidth to 

150Mbps and used all 16 CPU cores, as given in Table 1. However, the test 

performance was not adequate for the traffic speeds required for a CPE. 

Additionally, the TCP streams usually arrive in bursts, overloading a single 

core operating on that TCP stream. This causes waiting in the receiver module and 

packet loss beyond 160Mbps. Both the single and multi-threaded Libpcap-based SPLs 

required 1GB of memory, which is caused by the initial buffer size allocation of 

512MB corresponding to the bandwidth and latency of the SPL. 

The DPDK-based SPL was then developed to handle the 1-10Gbps bandwidth with 

less than 16 CPU cores facilitating the SPL application to function in the fog 

as a CPE. The DPDK-based implementation performance and resource consumption were 

measured with test data with a line rate of 1Gbps and 10Gbps, as given in Table 

3.1. The SPL handled the required 1Gbps line rate without any packet loss using 

2GB of huge page allocation and 6 CPU cores. Additionally, the DPDK-based SPL 

with Hyperscan library could handle a 10Gpbs line rate without any packet loss 

using 16 CPU cores and 16GB of memory.  

The DPDK packet buffers can handle a large number of packets, and the buffering 

is efficient than the Libpcap packet accessing method. The default page size is 

set to be 1GB to increase the performance of the memory access [60] in the SPL. 

Additionally, the SPL bandwidth was increased due to the poll mode driver. The 

isolcpu command allows user programs to be executed in isolated CPUs. Therefore, 

the worker modules operate in isolated CPUs without the intervention of the kernel 

scheduler. This increases the operating speed of the worker module. Furthermore, 

the Hyperscan string matching algorithm is faster than the other software-based 

algorithms [61]. This further increases the bandwidth of DPDK-based 

implementations. Though the DPDK-based implementations outperform Libpcap-based 

SPL, the CPUs are isolated from the kernel scheduler, causing them to be 

inaccessible for other operating system processes. Moreover, the memory allocation 

is dominated by the initial DPDK buffer allocation. The allocation is larger than 

the Libpcap-based allocation, as the DPDK buffer should handle the NIC buffers 

directly by the allocated huge page memories. 
 

Table 3-2 Packet Throughput of SPL 
 

Process Packet Throughput 

LibPcap thread sub process 1.7kpps 

DPDK Aho-coarcisk worker core 190kpps 

DPDK Hyperscan worker core 420kpps 

LibPcap I/O thread allocation for packet 32kpps 

DPDK I/O packet polling core 2400kpps 
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The DPDK-based and Libpcap-based SPL improvements are analyzed in terms of NIC 

access and packet thread allocation times. The yielded results are depicted in 

Figure 3-6. The average value of time is depicted by the horizontal bar. The 

Libpcap packet access time is considerably slower than DPDK, where the DPDK 

library polls the NIC in an average time of 0.0042ms compared to Libpcap 0.073ms. 

This is a considerable improvement from Libpcap when we consider the DPDK library 

poll all the buffer packets at this rate. Therefore, the DPDK library zero-copy 

capabilities can improve the NIC polling time to 0.0042ms and reduce the latency 

by 0.068ms for SPL. 

Then the string matching was executed in SPL, and the obtained results are given 

in Figure 3-7. The Boyers–Moore, and Aho–Corasick average time needed to process 

a packet in Libpcap-based SoR was 0.143ms and 0.106ms, respectively. The worker 

core's average time for Libpcap-based implementation is higher than the DPDK 

implementation due to lockless buffer access and CPU isolation provided by the 

DPDK library. The Hyperscan library-based stream processing time is better than 

other algorithms, where 0.05ms reduce average execution time compared to the Aho- 

Corasick implementation. This improvement is essential as the Hyperscan process 

reduces the maximum time spent on a stream to 0.013ms, resulting in an improvement 

of 420kpps per core packet throughput as given in Table 3-2. 

 

 
 

Figure 3-6 Execution time of Libpcap-based and DPDK-based SPL transmission and 

receive cores 
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The DPDK-based SoR was demonstrated and tested in Interop 2017 Tokyo [62], 

ShowNet [63], and Network and Global City Team Challenge (GCTC) 2017 [64]. In 

these demonstrations, we displayed the user preference identification, security, 

and elastic location services. In particular, SPL could handle over 10Gbps of the 

traffic of relevant internet access of the Interop 2017 users in ShowNet. 

 
DPDK-based SPL is currently operated under the UDCMi project [66] to deploy 

smart city services. The usage and operation of DPDK-based SPL were demonstrated 

in GCTC [67] by providing privacy for end IoT terminal devices. As shown in Figure 

3-8, the DPDK-based SPL captured the personal energy usage data and sent the data 

for anonymization and watermarking. Anonymization protects personal information 

 

 
 

Figure 3-7 Execution time of Libpcap-based and DPDK-based SPL string matching 

process 

Libpcap Bayers Moore Libpcap Aho-corasick DPDK-Ahocorasick DPDK Hyperscan

Max 4 3.8 0.2842 0.013547

Average 0.143 0.106 0.053 0.0026

Min 0.0001 0.0001 0.000011 0.000011
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Figure 3-8 Data anonymization using SPL 
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in energy usage data. Watermarking protects the anonymized data from being 

published elsewhere. The watermark is used to identify the energy data that was 

anonymized by the service. The anonymized and watermarked payload was then sent 

to the remote servers. In this transaction, the SPL and the IoT terminal devices 

that handled all the privacy-preserving mechanisms were not required to perform 

any additional data processing. 

DPDK-based SPL was used to identify the type of user in the ShowNet network in 

Interop 2017 Tokyo[62]. The implementation contained a service that ran on the 

SPL and identified the user types and preferences by the HTTP words and word2vec 

algorithm [65], as shown in Figure 3-9. This implementation was carried out in 

16 worker cores at a line rate of 10Gbps. 

In summary, Libpcap-based SPL implementations are limited by the 160Mbps 

throughput and packet access and thread allocation throughput of 32kpps. The DPDK-

based SPL implementations reduce the packet access delay by more than 90%. DPDK-

based SPL implementations require an intel processor with 8 CPU cores and 4GBs 

of memory to handle 1Gbps of line speeds and 16 CPU cores and 16GBs of memory to 

handle 10Gbps line speeds. In 10Gbps line rates, it is recommended to change the 

system default huge page size to 1GBs [60] that increases the page access 

performance of DPDK programs. Additionally, the Intel CPUs with SSSE3+ instruction 

extension is required to support Hyperscan implementations. The NICs selected for 

such a system should also support the DMA technology of the DPDK library [58]. 

The SPL bandwidth scalability is limited by the per core packet throughput of 

0.4Mpps as the reader-writer cores can handle higher packet throughput than worker 

cores. 

 
  

 

 
Figure 3-9 Application data identification through word2vec algorithm 
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3.4 Conclusion 

This chapter summarized the implementation, experiments, and test results of 

upgrading the SPL to use the Intel DPDK and Hyperscan technology. The results 

demonstrate that the upgraded SPL can perform SCA at 1Gbps line rates using only 

eight cores. SPL realized this by using DPDK and Hyperscan to carry out SCA in 

zero-copy packet buffers. This is a 0.8Gbps throughput increase compared to the 

older versions of Libpcap-based SPL. Moreover, upgraded DPDK-based SPL achieved 

a 10Gbps line rate with 16 CPU cores. The DPDK-based SPL was demonstrated in 

ShowNet to prove its capability to work in core ISP networks. 

Moreover, the SPL was demonstrated in GCTC to provide anonymization services 

using electrical power usage data. Therefore, the experiments discussed above 

and the obtained results demonstrate that the DPDK-based SPL can work as a 

gateway device to perform SCA in smart community networks. However, SPLs 

applicability was limited as it cannot provide distributed rule change for 

multiple smart community services. Furthermore, SPL should support service 

virtualization techniques to provide SCA content for multiple services. 
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 SCE node for containerized 

services 

4.1 Introduction 

This chapter proposes an SCE node using multi-service SCA (MSSCA) to support 

smart community services in conventional hardware systems. SCE node is designed 

to execute L7 services without affecting network flows. Therefore, SCE services 

can capture and operate on sensor data independent of the network protocols, 

location, and IoT nodes. SCE nodes aim to acquire and separate the information 

required by different services through MSSCA and then transform it into smart 

community services. MSSCA requires SCE nodes to monitor the data streams and use 

string matching to acquire the L7 data, that is, the SCA content. Although MSSCA 

acquires SCA content from network traffic. it provides additional capabilities 

than SCA. MSSCA is designed to support multiple services, remote deployment, and 

runtime changes in services. Therefore, MSSCA allows the SCE node to initiate, 

terminate, or migrate services at runtime by supporting runtime distributed string 

matching regular expression changes. In addition, MSSCA identifies and tags MSSCA 

content according to services that allow data isolation. The proposed SCE node 

will act as an edge node for separating and sharing the SCA content among the 

service containers. SCE node uses conventional and compatible virtualization 

through Docker containers for service isolation, deployment, and migration. SCE 

node consists of a modular architecture that encompasses a management layer, which 

provides service management and deployment. 

According to the data format, current IoT protocols use XML-based data 

descriptions. Popular smart community-oriented protocols such as IEEE1888 [86] 

and OpenADR [87] are composed in XML. It is assumed that an SCE node using human-

readable protocols is required to handle at least four services. Running these 

services at the network edge removes the round trip network delay in a cloud-

based deployment. As an example, a text-based protocol such as OpenADR requires 

approximately 50 parameters to achieve demand control. Therefore, an edge node 

should extract approximately 10–100 parameters for sensing and controlling 

dedicated facilities' current status. 

 For high-throughput, low-latency network stream data handling, the SCE node 

uses a DPDK [42] and Hyperscan [84] library. Furthermore, the service management 

layer (SML) and the service application programming interface (API) use Docker 

[88] container technology for service management. SCE nodes leverage DPDK with 

SML to increase the packet access and forwarding performance of an SPL  through 
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direct memory access (DMA) of packets and service isolation from the packet 

forwarding layer. MSSCA string matching is carried out using the Hyperscan library 

[85], [89]. SCE platform MSSCA supports runtime rule change, data tagging, and 

data separation using SML and shared memories. This enables faster MSSCA for 

containerized services. MSSCA proposes a distributed Hyperscan dictionary change 

method using shared memories to support dynamic regular expression changes from 

multiple services. Smart community services are supported using Docker containers 

because of their deployment speed over virtual machines (VMs) [90]. SML manages 

the MSSCA content transfer between the SML and services through inter-process 

communication using shared memories. Finally, the service layer API allows the 

services to access the MSSCA content to acquire IoT data. 

In summary, this chapter makes the following contributions: 

 The SCE node's architecture is proposed, which supports smart community 

network services using conventional hardware devices. 

 MSSCA is proposed, and its implementation and functionality are explained, 

which supports distributed regular expression dictionary switching 

capabilities at runtime through Hyperscan and shared memory techniques 

without interrupting the packet flow. 

 MSSCA-based edge node fulfills the requirement of 10 ms maximum delay 

for service provisioning over eight services at one node and over 100 

string matches to support all target services parameters. 

4.2 Implementation of the SCE node 

SCE node was implemented to provide MSSCA and service management for deploying 

services. SCE node contains three main layers: SPL, SML, and an application layer 

comprising a service API. The layered architecture isolates services from the 

packet forwarding flow. The layered architecture allows packet forwarding without 

any interference from the services. These functionalities are provided by three 

major components in the SCE node, as shown in Figure 4-1. SPL processes the 

packets, creates the stream data for services, and routes the packets. SML manages 

the services and works as a gateway between the services and SPL. The service API 

supports the deployment of services by providing library functions to access SPL 

and SML. SPL and SML interact to transfer SCA content toward the applications and 

regular expressions to SPL. SML interacts with services to transfer the 

application of regular expressions and MSSCA content to applications. SML regular 

expression transfer allows SPL to operate without being aware of the application 

services. 
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4.2.1 Stream processing layer implementation with SML communication 

 

SPL is designed to forward the packets while supporting TCP reconstruction and 

string matching for MSSCA. SPL is separated from SML such that it allows regular 

expression dictionary change at runtime without any significant disturbance to 

the routing layer. SPL is designed to provide the following functionalities: 

 Static routing 

 MSSCA, according to regular expressions of the services 

 Pushing MSSCA content toward the SML 

 Provides a virtual interface for services to access the network. 

SPL's core modules and dataflow are shown in Figure 4-2. SPL uses the DPDK 

library DMA to avoid interrupts and memory copy system calls generated by generic 

NIC drivers. DPDK-based SPL improves packet access bandwidth and supports lockless 

multicore processing of packets. Additionally, the DPDK-based multicore modular 

architecture provides scalability by allowing instruction scheduling on a given 

processor core without a kernel scheduler. SPL core modules are allocated as 

transmission (Tx) cores, receive (Rx) cores, and worker cores. The SPL can adapt 

to bandwidth requirements by increasing the number of worker cores. 

 
Figure 4-1 Three layers on the SCE node 
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The operation of Rx and Tx cores of SPL is similar to that of the Rx and Tx 

cores of chapter 3 implementation. The worker cores are designed to provide 

routing and MSSCA and share the data with SML. SPL uses the longest prefix matching 

(LPM) rule to calculate the exit port of the packets. The LPM is implemented 

through DPDK LPM functions, allowing developers to define static routes for 

forwarding packets to different Tx ports. The worker core accesses packets through 

the Rx core to worker core ring buffers. The packets are then assigned to an 

MSSCA process according to five-tuple information and client-server communication 

information through layers with two, three, and four headers. MSSCA uses a stream 

reconstruction process similar to chapter 3 implementation. However, the string 

matching and multi-service content capture and separation are different from the 

SPL SCA. 

To achieve faster MSSCA, the SPL scans each arriving packet using the Hyperscan 

stream scanning technique. The first decoded packet in a stream is assigned to a 

Hyperscan hs_stream_t object. The Hyperscan hs_stream_t object allows the string 

matching functions to track the last string matching the stream’s state. The 

Hyperscan hs_stream_t object is then called to scan a new packet in the stream 

using the hs_scan_stream function. If a match occurs, it will execute a call back 

function. The call back function identifies the SCA content through a unique 

identifier—a rule identifier (ID) associated with the regular expressions applied 

by different services. The MSSCA content is then transferred to the management 

 

 
 

Figure 4-2 Implementation of SPL with SML communication 
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layer through the SHM buffer of the worker core with the associated rule ID. 

Prototype SPL implementation supports TCP and HTTP protocols because IoT 

transactions commonly use the HTTP protocol. The captured SCA content will push 

into the SML ring buffers. SPL and SML are separated using ring buffers to allow 

uninterrupted packet forwarding at SPL. Finally, Tx cores will read the ring 

buffers connecting worker cores for forwarded packets and write the packets back 

into the NIC using the rte_ring_sc_dequeue_bulk function. 

4.2.2 Service management layer 

 

SML is designed as a separate entity to allow SPL to operate without 

interruptions and the knowledge of services. Additionally, this allows for a 

faster regular expression compilation and switching mechanism without disturbing 

SPL. SML provides the following functionalities: 

 Pre-compiling and managing regular expression dictionary 

 Communication and management of SPL 

 Facilitating communication for services using shared memory and UNIX sockets 

 Sorting and distributing MSSCA content into relevant services 

 Facilitating service initialization, termination, and migration 

SML contains three main threads for MSSCA content sorting, rule management, and 

service communication, as shown in Figure 4-5 Processors of SML. The processes 

are isolated using threading for continuous delivery of MSSCA content to services 

without any interruptions. Additionally, a separate communication thread is 

required to communicate with multiple services and detect new service deployments. 

Fast string-matching libraries such as Hyperscan use precompiled regular 

expression dictionaries to improve performance. Therefore, rule pre-compilation 

prevents dynamic runtime rule change in a string-matching library without stopping 

the string matching and packet forwarding processes. In addition, regular 

expression management and rule pre-compilation require significant processing 

time. This becomes a significant issue for network applications such as SCE 

services, where multiple services try to change the string matching rules of the 

network flow. SCE node resolves this by separating regular expression dictionary 

management and string matching to SML and SPL, respectively. The layer separation 

allows SPL to process and forward packets without being aware of the management 

and pre-compilation of regular expression dictionaries. 

 

The proposed remote dictionary change method separates stream processing and 

dictionary compilation from SPL and SML's isolated processors. However, the 

compiled dictionary is shared with SPL through shared memory buffers of SHM active 

rule DB and SHM standby rule DB, as shown in Figure 4-3. The proposed rule change 
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method is shown in Figure 4-4. Once an application adds or removes a regular 

expression rule, SML will add or remove its rule manager rule. Then, the SML rule 

manager requests SPL to release the SHM standby DB shared memory. 

 

 
Further, the SML process compiles the regular expressions with the hs_compile 

function to generate an hs_database structure. However, this structure needs to 

be serialized in order to be shared with a remote process. Therefore, the compiled 

rule DB is serialized on the SHM standby DB shared memory location. Then, the SML 

process informs SPL about the regular expression dictionary change. The SML 

dictionary change allows the SPL process to de-serialize the new rule database 

and allocates a scratch space for string matching with the new rule DB. Finally, 

SPL changes the SHM standby rule DB to the active state and the SHM active rule 

DB to the standby state. This methodology allows remote dictionary change in SCE 

nodes without any significant interruptions to the string matching process. 

The rule manager's primary processors, stream sorter, and communication threads 

are shown in Figure 4-5. The SML allows continuous content delivery and 

communication through multi-threading. The communication thread continuously 

listens to socket communication from the services. It also initializes the 

services and creates shared memory for communication and MSSCA content management. 

Further, the communication thread stores any service requests in a shared 

structure. The rule manager thread consumes the requests in the shared structure. 

 
 

Figure 4-3 Implementation of service management layer  
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Services that need to acquire MSSCA content for a given rule set should initially 

communicate with SML to apply the ruleset to SPL. Then, the rule manager thread 

pre-compiles the Hyperscan database and updates the rule database. Following 

initialization and rule application, the communication thread sends a reply to 

the service. Once the application receives this message, it can use threaded API 

calls to communicate with SML without interrupting the service application. The 

stream sorter thread sorts the MSSCA content according to the service using the 

app information. The rule manager thread is separated from the stream sorter 

thread because of the higher processing time of dictionary pre-compilation. Stream 

sorter and communication threading allow multi-service communication and 

continuous MSSCA content delivery to the services. 

 

 
Figure 4-4 Runtime rule change process of MSSCA 
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4.2.3 Service container API 

 

A Docker container environment provides service isolation, lightweight service 

development, and migration for applications. The service API is designed to enable 

easy deployment and access to network traffic with threaded UNIX socket 

communication. Additionally, the API automatically converts the stream content 

into a readable format that allows quick filtration of the SCA content. The 

service API provides the following main functionalities: 

 Communication with SML 

 Maintain signaling with the SML 

 Pull stream content from ring buffers 

 Support for sockets and share memory. 

In a typical service deployment, the API InitClient function initializes the 

service by creating a UNIX socket toward the SML socket server, sending 

application initialization requests, and listening to SML's acceptance and 

completion responses in the sample application process of Figure 4-6. Subsequently, 

applications can add any regular expressions to the network flow by the SendRule 

function. The SendRule function sends the regular expressions to SML, and if the 

 
 

Figure 4-5 Processors of SML 
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regular expression is compatible with the Hyperscan library, SML will reply with 

a rule-accepted acknowledgment. Once this is received, the application can 

initiate data processing functions. Then, the data processing functions can access 

the sensor data through the SML buffers. The application program then uses API 

calls to access the MSACSA content for processing. The MSSCA content is associated 

with a structure to identify its information, such as five-tuple data. The MSSCA 

content structure allows services to identify network flow details and sensor 

details for data manipulation or communication with the sensor or cloud services 

through virtual interfaces. Furthermore, the API contains additional support 

functions to create sockets and other ring buffers for service-to-service data 

buffering. 

 

 
  

 
Figure 4-6 Process of a sample application 
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4.3 Evaluation 

The SCE node was tested to confirm its scalability and limitations in supporting 

IoT services at 1–10 Gbps line rates. The SCE node performance was tested using 

a dual CPU workstation with the following configuration: 

 Server Type: HPC workstation 

 Processor: Xeon ES-2620 v4 2.10 GHz x2 

o Number of cores: 8 

o Number of threads: 16 

 Random-access memory NUMA 1: 16 GB 

 Operating System: Centos 7.2 

 Kernel version: Linux v3.1 

 

The SCE nodes performance was compared with the f-stack node, which uses DPDK 

for network applications in the host machine. The f-stack node provides a DPDK-

based network stack for Linux servers. Additionally, the f-stack library is 

scalable with DPDK core assignment, similar to the SCE node. Therefore, a fstack-

based web server [58] is selected to compare SCE nodes’ for measuring performance 

under different numbers of DPDK CPU core assignments. The results of the f-stack 

server and SCE node are given in Table 4.1. In this test, the SCE node ran a 

single service to gather all HTTP traffic and classified 10 HTML tags. SCE node 

and f-stack require four CPU cores to achieve a 1 Gbps line rate. The f-stack 

node can achieve 1.43 Gbps throughput using four CPU cores, whereas the SCE node 

can only achieve 1.0 Gbps. The performance limitation of SCE under four core 

assignments is because of its architecture. In the SCE platform architecture, two 

cores are always assigned to NIC transmission and reception. The core assignment 

allows the SCE node to poll the NIC without any interruptions from the stream 

processors. Therefore, in four core assignments, only two cores are used for the 

MSSCA analysis, while the others are assigned for NIC polling. The Rx and Tx core 

assignments limit the performance of SCE in four core assignments. However, the 

results show that SCE achieved the required 1 Gbps bandwidth with only four CPU 

cores. Therefore, it is possible to run SCE on machines with four CPU cores to 

handle a line rate of 1 Gbps. 

Furthermore, SCE achieves a 10 Gbps line rate using 16 CPU cores, whereas the 

f-stack only achieves 5.15 Gbps, illustrating the scalability of the SCE for a 

higher number of CPU cores. The scalability is considerably improved in SCE as 

it uses a modular architecture to support MSSCA. However, when compared with DPI 

solutions, SCE shows a limited performance than nDPI in reference [49], which 

provides a 10 Gbps packet capturing throughput for a single-core Xeon processor. 

However, nDPI does not offer any software isolation techniques such as VMs or 

containers that generate overhead on the nDPI performance. In addition, IoT 
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services require service isolation through containers or VMs to provide security 

for service applications. In contrast, the container-based SCE node outperforms 

VM-based vDPI, with its bandwidth limited to 864.77 Mbps [50] per instance. 

Additionally, the vDPI-based solution would require DPI processing in each VM, 

causing overhead because of the DPI of the same packets in multiple VMs that run 

different services. 

 

Table 4-1 SCE node and f-stack throughput for different core allocations 

 

CPU 

cores 

Memory 

Allocation 

F-Stack 

throughput 

SCE 

throughput 

4 4 GB 1.43 Gbps 1.0 Gbps 

16 16 GB 5.15 Gbps 9.8 Gbps 

 

SCE node’s MSSCA reduces the data transfer for services by filtering other L7 

protocols. The experimental results show the MSSCA content results in around 10% 

of the total traffic under testing, as packets contain unrelated data that will 

not match any MSSCA rules, such as XML tags. Therefore, the SPL-based architecture 

reduces the amount of data transfer toward the services to the percentage of 

sensor data in the line rate. This is an advantage over packet sharing methods, 

where all packets need to be routed through all services. Additionally, the MSSCA 

content provides L7 streams of IoT traffic directly used by smart community 

services. 

 

Table 4-2 Delay of the components of the SCE node 

 

Component 
Average 

Latency 

Maximum 

Latency 

SPL 0.07 ms 0.09 ms 

SPL to SML 0.1 ms 0.12 ms 

SML to service 0.3 ms 0.5 ms 

Total service latency 0.47 ms 0.71 ms 

  

SCE node should be able to support latency-sensitive services at the SCE. 

Therefore, the latency of the SCE node was measured to verify the delay of each 

of its components. The results show that SPL stream reconstruction and Hyperscan-

based string matching have a maximum delay of approximately 0.09 ms. Additionally, 

a 0.4 ms delay was needed to sort and transfer data from the SPL to a service. 

The 0.4 ms delay is caused by the MSSCA content buffer between the SPL and service. 

The total latency of the SCE node for a service to capture SCA content from NIC 

is 0.71 ms, as given in Table 4.2. Therefore, the results demonstrate the SCE 
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node’s capability to support delay-sensitive services with latencies less than 

1 ms. SCE node’s latency can be further reduced by reducing the SPL to SML and 

SML to service buffer sizes. As an example of a smart grid service, IEC 61000-4 

permits a 10 ms delay in control, with 9 ms for request transmission, reply 

transmission, and service application, as the SCE node only needs 1 ms time to 

extract and provide MSSCA content to the service. 

 
The proposed distributed runtime dictionary change mechanism's performance was 

measured to determine its effect on the MSSCA. The performance was measured using 

HTTP packet filtering, where SML would change the string matching rules at runtime 

to produce a new rule dictionary and measure the time when the MSSCA was 

interrupted. The Hyperscan runtime compilation takes approximately 100 ms. 

Therefore, rule compilation would cause significant delays in the MSSCA. However, 

the proposed method compiles the rules in SML, allowing continuous MSSCA. The 

compiled rule database is serialized and de-serialized at the shared memory 

between SML and SPL. 

The MSSCA analysis was interrupted only for the dictionary change in the proposed 

method. The interruption time in the SML and SPL to change the ruleset was measured 

for different rule sizes, as shown in Figure 4-7. The proposed method changes the 

database between 50 µs to 300 µs for a rule set size ranging from 100–1500. The 

time taken for dictionary change linearly increased, as expected, because of the 

increase in dictionary size and serialized database size. However, the actual 

delay of 0.3 ms is negligible, as only 0.2 Mb of the packet buffer would be 

 
Figure 4-7 Runtime rule change time in MSSCA 
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consumed for a 1 Gb link within the dictionary change process. The signaling time 

between SPL and SML has an additional overhead of approximately 20 µs because of 

the time to read and write the completion flags and other control information to 

and from the shared memory. The signaling time is also negligible and does not 

significantly affect the performance of SML. Therefore, the proposed Hyperscan 

distributed rule change allows multiple applications to dynamically apply regular 

expression rules for scanning any disturbance to the packet flow. 

 
The MSSCA performance under regular expression dictionaries of different sizes 

was measured to confirm the limitations in the SCE node for a different number 

of rules. The results show that the rule set size is inversely proportional to 

the scanning rate, as shown in Figure 4-8 and Figure 4-9. The rule match rate 

increases from 0.2023 matches/kB to 0.4095 matches/kB for 100 rules and 1500 

rules, or 10 to 150 regular expressions per service for ten services, respectively, 

as shown in Fig. 4-8. Therefore, the SCA throughput drops from 10 Gbps to 6 Gbps 

for a total of 1500 rules. This drop is expected because of the increase in the 

rule-matching rate. However, the results confirm that the SCE node can operate 

at 10 Gbps for ten services with ten rules per service or 100 accumulated service 

rules. Furthermore, the SCE node can manage the throughput of 6 Gbps for 1500 

accumulated service rules. 

Finally, the transfer of MSSCA content from SPL to services was tested to measure 

the service support capability of the SCE node. It was measured by adding a 

default rule dictionary to transfer all data to all SCE node services. The SCE 

 
Figure 4-8 MSSCA bandwidth for a different rule set sizes 
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node’s MSSCA content transfer rate is around 1.1 Gbps per service, and the data 

rate drops to 500 Mbps when eight services require the same data, as shown in 

Figure 4-10. The decline in bandwidth was caused by the eight copies generated 

 
Figure 4-9 MSSCA match rate for a different rule set sizes 

 

 

 
Figure 4-10 SML content sharing bandwidth for multiple applications 
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for the same MSSCA content. This transfer rate is adequate for MSSCA content 

handling because the content rate is expected to be about 10% of the line rate, 

as the content matched by regular expressions in the tested traffic was lower 

than the total traffic in the line. Moreover, the results confirm that the system 

can share data at the required 1 Gbps line rate when services use different MSSCA 

content.  

4.4 Conclusion 

This chapter summarized the architecture and performance of the proposed SCE 

node using DPDK, Hyperscan, and Docker technologies. The proposed SCE node employs 

MSSCA and container technology to support multiple smart community services at 

the edge. SCE node allowed MSSCA content to be directly transferred to services 

without network packet processing at the service containers. The SCE node’s MSSCA 

achieved a throughput of 1–10 Gbps with 4–16 CPU cores in conventional hardware 

systems. In addition, the SCE platform proposed a distributed rule change method 

for the Hyperscan library to change regular expression without affecting network 

flow. The SCE node achieved a 10 Gbps SCA throughput for 100 accumulated rules, 

which allowed more than ten rules per service. In addition, the proposed 

dictionary change method needs less than 0.3 ms to execute and does not affect 

the performance of SPL network flows. SCE node supported eight similar services 

while providing a 500 Mbps MSSCA content bandwidth for each service, where each 

service can support 5000 sensors with a 100 kbps bandwidth. Additionally, the 

total maximum delay of the SCE node is maintained at less than 1 ms, allowing 

delay-sensitive services to operate at SCE nodes. Therefore, SCE nodes show 

adequate performance and applicability in smart community networks to support 

multiple smart community services at the network edge using MSSCA. 
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 Consistency guaranteed 

service migration 

5.1 Introduction 

Container migration is the process of moving a container between computers or 

storage devices. Migration technology has been developed to realize flexible 

services and to distribute services in the cloud dynamically. In live stateful 

container migration, packet processing services should reduce the downtime for low 

latency services. Therefore, migration time should be reduced to minimize the 

overall downtime of application services. Some studies intend to decrease migration 

time by reducing bandwidth usage [70], [71]. They reduce bandwidth usage by 

separating the container layer's image layer and container layer and transferring 

only the container layer toward to destination node. To resolve these in smart 

community services, we need a migration method that considers throughput and 

downtime while supporting latency reduction and data consistency. It is assumed 

that downtime below 10s is acceptable for container live migration at fog[91]. 

The currently available migration methods cannot support multiple services on 

a single node because it cannot detect the specific data flow. Furthermore, since 

VNF migration methods change the network flow, the other services run on the same 

node are affected by modifying the network flow. Therefore, a multi-service 

supported migration solution is required to support smart community services while 

minimizing the buffered data. Fog nodes such as SCE nodes could dynamically 

distribute services to multiple nodes to accommodate network loads. The migration 

of service containers is required to achieve dynamic reconfiguration in smart 

community networks. The available container migration techniques focused on 

resource utilization and bandwidth management[70], [71]. However, SCE should 

support consistency guaranteed one to N migration for containerized network 

services. 

A novel migration method must support SC service migration and provide data 

consistency, network flow preservation, and one-to-many migration to resolve the 

above issues. This chapter proposes multiple migration methods for the above 

scenarios on SCE platforms. The proposed stateful migration does not modify the 

existing network flow or affecting other services. Moreover, in hierarchical smart 

community networks, one-to-many migration is supported to handle overloading 

conditions. The proposed adaptive migration method consists of the following 

migration methods. 

 Consistency Guaranteed Migration (CGM) 

 One to N Consistency Guaranteed Migration (O2NCGM) 
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CGM and O2NCGM use Layer Leveraging Migration (LLM), a method designed to 

minimize the migration time and network bandwidth usage for container migration 

by reducing image layers transmitted to destination nodes. The LLM minimizes the 

downtime by separating the container and image layers. The CGM was designed to 

guarantee network consistency by communicating and buffering network flows between 

a source node and destination nodes using the SCE service management layer. 

Through CGM, and O2NCGM is created to support a multi-client or one-to-many 

consistency guaranteed migration. The contributions of the section are the 

following. 

 Provides a container migration technique that reduces migration time and 

guarantees service consistency without affection for other services in a 

node. 

 One-to-many migration method to handle dynamic loads The proposed container 

migration method offers migration without modifying the existing network 

flows.  

 

These migration methodologies expect to achieve guaranteed service consistency 

without affecting network flows. CGM strategy guarantees network consistency. 

O2NCGM provides one-to-many migration with all the above features. The strategies 

are separated to provide easy applicability in different network scenarios. 

 

5.2 Implementation of consistency guaranteed 

migration 

 

SCE platform and Docker migration architecture are shown in Figure 5-1. The 

system consists of four main components: SPL, SML, Docker daemon interface (DDI), 

and APP service API. IoT sensor information and data tags are used in the scanning 

process to differentiate the data. The matched streams are transferred to the 

service buffer. This process prevents any changes to network flows even under 

migration as the migration process uses the service buffer to manage the network 

consistency. SML manages the service containers in a single host and executes 

commands such as container deployment through sockets. SML manages the state 

information of services and the state of traffic flow toward the service. DDI 

contains an API to control images and containers in a node. DDI RESTful API allows 

administrators to deploy, terminate, or migrate the services using SML.  

In the prototype implementation, SPL matches any stream with a rule such as 

“XML,” “<title,” and “measurement.” SPL captures any associate streams with 

these keywords and transfers them into the service buffers. The captured streams 

contain five-tuple information, layer four-stream information, and time stamp 

data to identify the flow information. The service buffers use a shared memory 

structure to communicate between the user space and the network flow. Service 

buffers are similar to network packet buffers that exist in NFV infrastructure 

nodes. The proposed approach such system containers to migrate with shared 

structures with the host machine while keeping the network consistency. 
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LLM minimizes data transfer between the migrating of container image layers in 

source and destination nodes. Figure 5-2 shows the migration flow of LLM. LLM 

consists of two steps: layer ID remapping and container layer extraction. The 

layer ID remapping is used to reduce the migration time of the live migration. 

Additionally, container images are already distributed to target nodes through 

the Docker registry to quickly execute container layer extraction without image 

transfer between the source and destination nodes. 

In the Docker migration process, the container should send the container image 

to the destination node to restore it in the last state. The Docker containers 

are unable to restore checkpoints on a different host with only container image 

information. If the container restores in a different host, it causes a mismatch 

of layer IDs, thus failing the destination node's restoration process. The layer 

ID is a unique local ID of containers with different states of layers in their 

host machine. In the run time, a cache ID is used instead of a layer ID. These 

two ids are generated through SHA256, and Docker daemon use cache ID in the 

restoration process. Therefore, this ID should be similar in the destination node 

to restore the container. In this method, the Docker container cache IDs are 

remapped with layer IDs in the source. The remapped layer ID can then be directly 

used to check the image and layer availability in the target node for the migrating 

Docker container. The overlay2 storage requires relinking the symbolic links 

generated using the new layer ID. Finally, the Docker daemon is restarted in the 

source node to update this information in the migrating container. Before 

migration, the remapped cache IDs are updated in the target Docker node allowing 

correct restoration of the container file system after migration. 

 
Figure 5-1 Architecture of SCE based Docker migration 
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Once the layer ID remapping is completed, the Docker host could start the 

migration process. The process starts with checkpoint the live container. Docker 

checkpoint freezes the state of the container state. However, the checkpoint 

container cannot directly migrate without the container configuration files, layer 

files, file mount information, and directories containing volumes.  Docker has 

different directories about the image layer and the container layer. LLM copies 

container running state, layer, mount information, and volume files to the 

destination node, then relinks the files to the correct location using layer ID 

mappings. Afterward, the destination node will restore the container using already 

available container images and layers using the relinked symbolic links. In 

conventional migration, source and destination should send container image and 

all the layers for migration, causing high overhead on the source-destination 

link. This method reduces the bandwidth consumption, downtime, and migration time 

by minimizing the data transaction between the source and destination nodes. 

  

 
 

Figure 5-2 Process of LLM migration 
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5.2.1 Consistency guaranteed migration 

 

The smart community services should handle network stream consistency under the 

migration. Therefore, Docker migration should handle shared MSSCA content and 

service states to migrate and process data consistently. The packets are 

identified on the SML buffers using stream identifiers. In the proposed method, 

packets already passed the source and still has not arrived at the destination 

should be stored and handled to guarantee consistency, as shown in Figure 5-3. 

Figure 5-3 example shows i number of packets upstream from source to destination 

and j number of packets downstream from destination to source. In CGM, sources 

and destination nodes identify the read and write offset values of services 

buffers using the SML and APP information.  

 
Additionally, SML creates temporary buffers to store the streams before the 

migration. This preserves the consistency of streams and avoids packet loss. 

Furthermore, the layered design of SCE continuously forwards the network flows 

 
Figure 5-3 Buffering of traffic before migration 

 

Table 5-1 Nomenclature for consistency guaranteed migration 

 

Symbol Description 

Bsrc App. Service buffer at src 

Bdst App. Service buffer at dest 

Pdir(i) Network packet i in a direction (s2d: src-dest, d2s:dest-src) 

qdir Destination buffer packet (s2d: src-dest, d2s:dest-src) 

x Buffer upstream offset at src 

y Buffer downstream offset at src 
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while buffering packets in SML for services in temporary buffers. Network stream 

unique identifiers and saved offset values are used by the migrated services when 

selecting the buffers' initial offset values.  

Figure 5-4 shows the complete migration flow of CGM. The CGM flow contains 

additional steps to guarantee consistency. CGM initially gather state metadata 

of service applications to create temporary service buffers in the destination 

node. Afterward, the destination SCE applies the stream capturing rules in the 

destination node and stores the SML buffers' network streams until the service 

is migrated and initialized at the destination node. SML removes temporary service 

buffers and application rules once the buffer is synchronized in source to 

destination and destination to source flows. Afterward, LLM migration starts as 

the service at the source node stops accessing the IoT data buffers. After the 

LLM migration, the migrated Docker service will use the state information to 

remove duplicate IoT data and restore the correct offset values using IP flow 

information. In comparison to the VNF migration SCE platform reduce the network 

flows that buffers under migration by service-based flow identification. 

Furthermore, container layer separation reduces the migration bandwidth further 

by reducing the downtime under migration. 

 
  

 
Figure 5-4 Process of CGM migration 
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5.2.2 One to N consistency guaranteed migration 

 

O2NCGM extends CGM allowing migration from one to multiple hosts. In O2NCGM. 

The proposed method first uses multiple threads to gather state information of 

applications and IoT data buffers through SML similar to CGM. Then SCE SML creates 

IoT data buffers on all destination nodes and stores new packets on the same IP 

flows on the temporary buffers similar to CGM. Afterward, the system sends the 

buffered traffic to all the target nodes. The target nodes remove the duplicate 

traffic using their local offset values and IP traffic flow details. Finally, the 

system initialized the migrated containers through LLM using multiple socket 

connections. 

5.3 Evaluation 

The proposed CGM and O2NCGM methods were evaluated using three SCE nodes with 

the specification given under Table 5-2.  

The network consists of two edge nodes and one cloud node connected in a hub-

spoke architecture. First, the effects of the LLM method is evaluated for 

migration time and service downtime. LLM and conventional migration resource usage 

were evaluated using three different sizes, as shown in Table 5-3. The busy box 

container is a lightweight service container, while the elastic search and 

original application are extensive memory-intensive services. The original 

application reads data of IoT temperature sensors in the network. Conventional 

migration methods consume additional data in migrating due to container image 

layer migration. LLM reduces this data usage by only transferring the container 

layer and memory data between the target nodes. Therefore, LLM can be used to 

reduce the overall data transaction in container migration. 

Migration time and service downtime under the different bandwidths were 

Table 5-2 The amount of migration data of containers 

  

(KB) Methods Total Image 
Container 

FS Checkpoint Mount Others 

Busybox 
LLM 203 1,160 0.14 195 0.20 8.57 

Conservative 1,357 1,160  193  0.00 

Elasticsearch 
LLM 2,357,931 486,000 33.72 2,357,886 0.20 10.65 

Conservative 2,847,739 486,000  2,361,739  0.00 

Original App 
LLM 618 1,070,000 1.24 311 305.50 0.20 

Conservative 1,070,311 1,070,000  311  0.00 
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evaluated to compare LLM and conventional methods' performance. Link bandwidth 

was limited to 10, 100, 1000 Mbps, respectively, and the migration performance 

was evaluated.  

Figure 5-5(a) shows the comparison of the migration time of Busy-box. LLM has a 

1.8s longer migration time than the conventional method, and service downtime was 

increased by 2.62. The downtime is caused by the smaller size of the container 

image where the LLM container isolation and reload process cause more overhead 

than the amount of data reduced by the layered migration. Layer migration shows 

that the LLM causes additional overhead for shared buffer isolation in a container 

for small image sizes. However, LLM provides superior performance in the case of 

large containers such as elastic search Docker containers.  

Figure 5-5(b) shows the comparison of the migration time of Elasticsearch. LLM's 

migration time was 10.8% or around 200s lower than the conventional method. 

 

 
The migration time of LLM was 5.61 sec on average, while conventional methods 

were 307sec (10 Mbps), 34.7 sec (100 Mbps), and 17.7 sec (1000 Mbps). In the LLM 

 
 

(a) Busy Box         (b) Original data collection application 

 

Figure 5-5 LLM migration results for BusyBox and original application 

 

Table 5-3 Details of the evaluation environment of container migration  

 

Sensor App Intel NUC 

CPU Intel® CoreTM i3-6100U CPU @ 2.30 GHz 

Total memory 8GB 

OS Ubuntu 16.04.4 LTS 

Intermediate node Shuttle DH310 

CPU Intel® CoreTM i7-8700U CPU @ 3.20 GHz 

Total memory 32GB 

OS Ubuntu 18.04.1 LTS 

Docker 17.09.1-ce 

Criu 3.7 
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method, the original network application only migrates the packet buffers and the 

packet processing program compared to the large container image with all 

programming libraries. Therefore, LLM can considerably reduce the migration time 

compared to conventional methods when container applications contain more than 

400MB images.  

 
Finally, all CGM and O2CGM methods were compared with conventional methods at 

1Gbps, as shown in Figure 5-6.CGM and O2NCGM reduce service downtime compared to 

the conventional method. The proposed method reduces migration time using layer 

migration, where conventional migration pushes and pulls a full container image 

between the target nodes. However, the proposed migration methods incur overhead 

in container reloading due to the LLM's complex reload process. Furthermore, the 

proposed CGM and O2CGM increase migration time due to data synchronization. In 

addition, O2CGM migrates a single service to two nodes causing additional overhead 

in data transactions and buffer synchronization. However, the proposed methods 

provide better migration time compared to conventional container migration. 

Additionally, the proposed CGM and O2NCGM migration achieve zero data loss without 

affecting the network flows. 

5.4 Conclusion 

This chapter proposed the CGM and O2NCGM migration that supports consistency 

guaranteed multi-container migration for smart community services. The proposed 

migration method handled network consistency without affecting the network flows. 

Container layer separation was used to reduce data transactions between the nodes 

in container image layers. Furthermore, CGM was applied with LLM to achieve zero 

packet loss while reducing the network downtime by more than 10% compared to 

 
Figure 5-6 Comparison of conventional, CGM, and O2NCGM migration 
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conventional methods. The CGM migration used container layer separation and 

service-based flow identification to reduce the data transfer between the source 

and destination SCE platforms. The overall results show that the CGM and O2CGM 

reduce the migration time by more than 10% for containers with image size higher 

than 400MBs. Additionally, O2CGM provides consistency guaranteed one to N 

migration to support service distribution under different network loads. Through 

CGM and O2NCGM, the SCE platform improved its applicability to support smart 

community services.  
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 Computational delay aware 

service function chaining 

6.1 Introduction 

SFC has shown an increased interest due to mobile edge computing [99] and fog 

computing [10], where computing resources are placed closer to the network edge 

to improve network services' performance and efficiency. SFC classifiers 

differentiate the traffic based on requested services and other predefined rules. 

The SF instance selection for a particular traffic flow can be complicated 

because there can be multiple SFs in the network due to the reliability, locality, 

and load distribution of smart community networks. The SFF is used to forward 

these packets to the next SF through the network according to the encapsulated 

SFP data. The SF proxy is used when VNFs/SFs do not understand the SFC header; 

here, the proxy handles the SFC header data, forwards the packet to the SF for 

task completion, and applies processes to the SFC header once the packet returns 

from the SF instance. SFC traffic is steered using a single classifier and per-

hop classifier techniques. One classifier is used in a single classifier to 

steer the traffic through the SFC using special headers. The per-hop classifier 

steers the traffic per SF [92]. The SCE service chaining operates as a data 

plane SF forwarding rather than management plane orchestration and 

classification functionalities.  

SCE nodes should manage the distributed computing resources to provide optimal 

performance using services run as VNFs, considering the sensor traffic generated 

through terminal devices. SCE service VNFs are distributed in multiple data 

centers or SCE nodes to create efficient network performance considering the 

latency, cost, and network locality [93]. SCE service VNFs can be distributed 

among available SCE nodes to create a dynamic system with distributed service 

nodes. 

The distribution of multiple VNFs in multiple fog nodes or data centers causes 

complexity in creating SFCs. Although a single data center is usually homogenous, 

an environment with multiple data centers and fog nodes create a heterogeneous 

computation resource with different data centers and fog nodes having hardware 

resources with different capabilities. Therefore, simple selection such as 

round-robin or random selection can lead to the overloading of some VNFs 

instances lacking proper computational capabilities. These overloads can cause 

service level agreement (SLA) violations and lead to the poor performance of 

VNFs. Additionally, the distribution of SFs requests without considering the 

network infrastructure can lead to unnecessary overheads on the network traffic 
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where VNFs further away from the source path get selected for the SFCs. With the 

rapid growth of IP traffic over networks, overhead network traffic has become 

an essential factor. Furthermore, this additional traffic and NFVI techniques 

require proper management of hardware resources to provide reliable services. 

An optimal SFC selection algorithm that provides reliable services. 

 
In fog and multi-data center environments such as smart communities, 

computation resources are distributed among datacenters or SCE nodes. The data 

centers are usually separated by long distances and create network delays when 

the traffic transfers between the data centers. In contrast, SCE nodes have 

lower network delay in between each other. Therefore, an SFP selection can cause 

traffic to be transferred through one of the VNF instances, causing intra-node 

or inter-node traffic. Traffic flow depends on the SFP creation algorithm. This 

section considers an equal VNF distribution among all the SCE nodes for 

performance measurement of the proposed algorithm without considering dynamic 

management and orchestration of VNF instances. The SFC algorithm distributes the 

requests to different VNFs by finding the best SFP.  

The proposed algorithm uses VNF instances’ computation capabilities, load, 

and network delay for SFC's optimal execution. It uses periodic proactive data 

gathering, as shown in Figure 6-1. The systematic data collection reduces the 

end-to-end delay introduced by a completely reactive VNF data gathering algorithm 

such as the OPS  [78]. Additionally, such an algorithm improves the performance 

compared to a completely passive algorithm such as the round-robin algorithm 

using the computational capability data of the VNF instances. The algorithm was 

tested in the CloudSim [94] simulation environment and compared with the Nearly-

optimal service-function path algorithm (NSP) [77] and the optimal path selection 

algorithm (OPS) [78].  

 

 
 

Figure 6-1 SFC SFP periodic update collection 
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The contributions of this chapter can be identified as follows: 

 Provide an implementation of a novel SFP selection process for SCE 

 Evaluate and compare SFP creation methods in cloudsim environment  

6.2 Implementation of optimized computational 

delay aware service function chaining 

The convention of symbols used in this chapter is described in Table 6-1. The 

cloud environment contains the set of nodes: Y. Each SCE node y ∈ Y is considered 

to be situated at a known distance from each other with a static average network 

delay. Each SCE node would likely consider having a complete fiber network inside 

it; therefore, the inter container delay is considered zero. In SCE nodes, inter 

VNF is zero as it would be a host on a single machine. The nodes support instances 

of different SFs. Each SF x ∈ X has at least one or multiple instances of VNFs 

in each fog nodes y, known as Sxyj. Each instance is executed on a different 

container, and the VNF has an allocated computation rate of Cxyj. The total 

calculation capacity of a node for an SF x is given as Cxy. 

Similarly, the load values of a VNF instance and fog nodes for SF x is given 

as Lxyj and Lxy, respectively. This study assumes that each node y contains 

homogenous VNF instances of SFx. Different nodes allocate heterogeneous resources 

for VNF instances of SFx.  

The proposed algorithm operates as a request manager/broker in the CloudSim 

environment. The cloud manager receives the SFC requests with different SF 

lengths and SFs, such as SF1 →SF3 →SF2. The cloud manager contains the network 

delay within itself and between the nodes. Additionally, the cloud manager 

periodically requests computation rates from node managers for different SF 

types in X. The cloud manager requests computation rate data from all the known 

nodes y ∈ Y for each SF x ∈ X. This data includes the total allocated 

computation rate of a node for SF x and a list of VNFs, and their individually 

allocated computation rates in ascending order. After the initialization, the 

cloud manager periodically requests the computation rates to check for any SCE 

node changes.  
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Figure 6-2 Proposed SFP process 
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The proposed algorithm uses a computation rate based number of requests to 

calculate the approximate task completion rate for a particular node and for 

VNFs using Equation 6-1 and Equation 6-2. The load is updated when a new SFP 

calculation is carried out. 

 

𝐿𝑥𝑦𝑗 = {
𝐿𝑥𝑦𝑗 − (∆𝑇)𝐶𝑥𝑦𝑗 , 𝐿𝑥𝑦𝑗 − (∆𝑇)𝐶𝑥𝑦𝑗 > 0

0, 𝐿𝑥𝑦𝑗 − (∆𝑇)𝐶𝑥𝑦𝑗 ≤ 0
    Equation 6-1 

 

𝑅𝑥𝑦 =
( 𝐿𝑥𝑦+1)

𝐶𝑥𝑦
 , 𝑅𝑥𝑦𝑗 =

 (𝐿𝑥𝑦𝑗+1)

𝐶𝑥𝑦𝑗
     Equation 6-2 

 

The load values are stored locally in the cloud manager. Rxyj is set to MaxDouble 

when a node does not support SFx. The approximate task completion rate is used 

to load balance and approximate the SFC completion time.  

The cloud manager calculates the network delay between two SFs using network 

delay between the nodes, as shown in Equation 6-3. The cloud manager ignores the 

delay within a node because it is negligible compared to the nodes' delay. 

 

Table 6-1 Nomenclature of SFC 

 

Symbol  Description 

X Set of SFs in SFC 

Y Set of nodes in the Environment 

Ix Instruction Length of SF x 

Sxy Set of SF abstracts of x ∈ X  in node y ∈ Y 

Sxyj SF instance j of type x ∈ X in node  y 

Cxy Computation rate of node y for all SFx instances 

Cxyj Computation rate of SF instance SFxyj 

Lxy Load of node y for all SFx 

Lxyj A load of SF instance SFxyj 

Txx’ Communication Delay in between SFx and SFx’ 

Tyy’ Communication Delay in between node  y and y’ 

Rxy Approximate task completion rate of node y for SFx 

Rxyj Approximate task completion rate of SF instance SFxyj 

Pxy Path cost for SFx if node y selected for SFx 
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 𝑇𝑥𝑥′ = {
𝑇𝑦𝑦′       𝑖𝑓 𝑦 ≠ 𝑦′

0            𝑖𝑓 𝑦 = 𝑦′
      Equation 6-3 

 

The network delay is created using BRITE in the CloudSim environment. SFP 

algorithm contains a path cost value for all possible combinations of the SCE 

nodes and data centers as given in Equation 6-4.  

 

𝑃𝑥𝑦 = 𝑃(𝑥−1)𝑦′ + 𝑇𝑥𝑥′ + 𝑅𝑥𝑦     Equation 6-4 

 
The cloud manager creates an empty array for each of the SFs and nodes possible 

combinations. Additionally, these elements manage the parent-child relationship 

to find the path through the SFC. SFP algorithm creates a path from the cloud 

manager to the end of SFC using the best child node for each SF, as shown in 

Figure 6-3. 

The proposed algorithm starts with the first SF in the chain and calculates 

P1y ∈ Y. Further, it selects the lowest P1y node y for the SF1 task and assigns 

 

 
Figure 6-3 Process of VNF allocation to SFs 
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that node to the first node variable, and further assigns the cloud manager as 

its parent. Further, the algorithm moves to the next SFx and calculates the cost 

using the best y selected for SFx-1, and assigns SF(x-1)y as the parent of all the 

SFx node combinations. Once the lowest cost node y’ is selected, the algorithm 

assigns SFxy’ as the child of SF(x-1)y . If the new best node y’ is different from 

the old selected node y, the SFP selection algorithm starts to calculate new 

costs from P1y’ to Pxy’ assuming that all the SFs up to SFxy’ are allocated to node 

y’, and updates y’ costs if the new cost values are lower than the old path 

cost values. The proposed algorithm would change the first node variable to y’ 

if the new node y’ based cost is lower than the P(x-1)y  based cost. Once the SFP 

algorithm reaches the last SF in SFC, it assigns the path by retiring child 

values starting from the first node, as shown in Figure 6-3.  

6.3 Evaluation 

The algorithm performance was measured in the CloudSim simulation environment. 

The simulation consists of four SCE nodes with network delays, as shown in Figure 

6-4. Each node contains a single host machine that runs VMs for different VNF 

types. CloudSim environment was modified to handle SFC and deploy SFCs/cloudlets 

at given delays to create consistent load toward the cloudlet manager. Inter-

node SFC transfer methods were implemented such that the network delay would be 

added to such operations. The simulation was carried out, and the proposed 

algorithm's performance was measured compared to NSP and OPS algorithms.  

Three types of SFCs were generated, and 1000 SFC instances of three types of 

SFCs were sent to the cloudlet manager for SFP allocation. The different SFC 

types are listed in Table 6-2. The nodes contain four different types of VNFs 

to support each SF type. CloudSim environment was modified to implement VNFs and 

deploy them according to the simulation environment. The network delay between 

the nodes was defined using BRITE network topology links.  

The end-to-end delay for different SFCs was measured in the simulation 

environment, as shown in Figure 6-5. The proposed algorithm exhibits better 

performance compared to NSP and OPS algorithms. The proposed algorithm performs 

better than NSP because NSP only uses local load values and selects the VNF with 

the lowest load values without considering the VNF computation rates. The 

Table 6-2 SFC chains used in the simulation 

  

SFC Type  SFC chain 

1 SF1 →SF2 →SF3 

2 SF1 →SF2 →SF3 →SF4 

3 SF1 →SF2 
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proposed algorithm performs better than OPS because OPS reactive data collection 

incurs additional network overhead on each SFP selection, causing an extra delay 

in the SFP creation, even though the algorithm creates an optimal path. The 

proposed algorithm exhibits better performance because it improves the 

performance using proactive computation rate usage while minimizing any delay 

caused by the reactive live data collection. 

 

 

The computational overhead generated by OPS reactive data collection can be 

seen in Figure 6-5, which shows the computation time of different algorithms. 

NSP and the proposed algorithm can compute the SFP path relatively quickly than 

the OPS algorithm because OPS live reactive data collection causes a significant 

network delay in the calculation. Additionally, the OPS type method can create 

network overhead with reactive data collection traffic when there is a 

considerably large SFC traffic. Finally, the proposed algorithm was tested on a 

large scale model with 100 SCE nodes in a full mesh environment. The calculation 

time and SFC end to end delay are shown in Figures 6-5 and 6-6. The NSP algorithm 

calculation outperforms the proposed algorithm. However, the calculation time 

is negligible compare to the end-to-end delay of the network. Therefore, the 

proposed algorithm improves end-to-end SFC delay, even with the increased number 

of SCE nodes. 

 

 
 

Figure 6-4 Simulation environment of SFC distribution 
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Figure 6-5 SFP calculation time using logarithmic scale 

 
 

Figure 6-6 SFC end-to-end delay 



73 

Chapter 6. Computational delay aware service function chaining 

 

 

 

 

 
Figure 6-7 SFP calculation time against the number of nodes 
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Figure 6-8 SFC end-to-end delay against the number of nodes 
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6.4 Conclusion 

This chapter proposed a novel service SFP allocation algorithm using data 

collection, network delay, and performance-based on the SF instance selection 

method. This method can be used in the SCE platform to support and distribute 

network flows to support service chaining. The proposed algorithm resolves 

proactive data collection issues and local queue time calculation using 

systematic data collection and queue time approximation method. In addition, the 

path selection uses heuristics to assign SFCs to a single node, if possible, to 

execute multiple services through the same node. The proposed algorithm minimizes 

the end-to-end delay by more than 10% compared to available SFP path selection 

algorithms. The proposed algorithm shows its ability to improve the end-to-end 

delay of the smart community services by distributing the requests through the 

SCE nodes. This would allow SCE nodes to chain and route user requests to support 

the smart community services.  
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 Summary of the study 

7.1 SCE platform 

The SCE platform integrates SPL, and SCE containerized service with 

consistency-guaranteed migration and service chaining to support smart community 

services. The SCE platform was implemented and evaluated through DPDK, Hyperscan, 

and Docker container technology. The SCE platform provided SCA and distribute 

rule change method to support multiple services using Docker containers. The SCE 

platform can use SCA to analyze in-transit data by using a distributed rule 

application to provide data to multiple services. Furthermore, the SCE platform 

can provide a live container migration that allows smart community services to 

migrate without affecting the network flows. The SCE’s consistency guaranteed 

migration method used the SML and Docker container API of the SCE platform to 

buffer the packets to support loss-free live container migration. In addition, 

The SCE platform can route user request through computational delay aware service 

function chaining. The SCE platform integrates the service function chaining to 

reduce the end-to-end network delay of the user requests. The SCE platform 

integrates SCA, containerized services, service migration, and service chaining 

to support smart community services while reducing network delay for the end-

users. 

7.2 Conclusion 

This study summarized the architecture, implementation, and performance of the 

proposed SCE platform using DPDK, Hyperscan, and Docker technologies. Chapter 3 

summarized the implementation, experiments, and test results of upgrading the 

SPL to use the Intel DPDK and Hyperscan technology by using SCA on zero-copy 

packet buffers. The results demonstrate that the upgraded SPL can perform SCA 

at 1Gbps line rates using only eight cores. This is a 0.8Gbps throughput increase 

compared to the older versions of Libpcap-based SPL. Moreover, upgraded DPDK-

based SPL achieved a 10Gbps line rate with 16 CPU cores. Moreover, the SPL was 

demonstrated in GCTC to provide anonymization services using electrical power 

usage data. Therefore, the experiments discussed above and the obtained results 

demonstrate that the DPDK-based SPL can work as a gateway device to perform SCA 

in smart community networks. 

In Chapter 4, the SCE node was proposed with the use of SPL. The proposed SCE 

node employed MSSCA and container technology to support multiple smart community 
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services. SCE platform allowed MSSCA content to be directly transferred to 

services without network packet processing at the service containers. The SCE 

node’s MSSCA achieved a throughput of 1–10 Gbps with 4–16 CPU cores in 

conventional hardware systems. In addition, the SCE platform proposed a 

distributed rule change method for the Hyperscan library to change regular 

expression without affecting network flow. The SCE node achieved a 10 Gbps SCA 

throughput for 100 accumulated rules, which allowed more than ten rules per 

service. The proposed distributed rule change method needs less than 0.3 ms to 

execute and does not affect SPL network flows' performance. SCE node supported 

eight similar services while providing a 500 Mbps MSSCA content bandwidth for 

each service, where each service can support 5000 sensors with a 100 kbps 

bandwidth. Additionally, the total maximum delay of the SCE node is maintained 

at less than 1 ms, allowing delay-sensitive services to operate at SCE nodes. 

In Chapter 5, the SCE platform’s capabilities were extended by introducing CGM 

and O2NCGM migration that supports consistency guaranteed multi-container 

migration for smart community services. The proposed migration method handled 

network consistency without affecting the network flows. Container layer 

separation was used to reduce data transactions between the nodes in container 

image layers. Furthermore, CGM was applied with LLM to achieve zero packet loss 

while reducing the network downtime by more than 10% compared to conventional 

methods. The overall results show that the CGM and O2CGM reduce the migration 

time by more than 10% for containers with image size higher than 400MBs. 

Additionally, O2CGM provides consistency guaranteed one to N migration to support 

service distribution under different network loads. 

 

The SCE capability of user request distribution was improved with a novel 

 

 
 

Figure 7-1 Real-world applications of the SCE platform at UDCMi smart city 
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service SFP allocation algorithm using systematic data collection, network delay, 

and computational delay-based on the SF instance selection method. This method 

can be used in the SCE platform to support and distribute IoT requests at the 

SCE. The proposed algorithm minimized the end-to-end delay by more than 10% 

compared to available SFP path selection algorithms showing the applicability 

to use at SCE. 

Finally, the SCE platform is applied in the real world at UDCMi smart city[95] 

as a 1Gbps edge server. In this real-world application, the SCE platform was 

used to support different smart community services such as health care data 

management, smart building management, and smart house management, as shown in 

Figure 7-1. The SCE platform provides anonymization, watermarking, and 

aggregation to remove any personal information collected by the sensors by 

applying these multiple services to the network flow. The UDCMi SCE platform 

also provides aggregate smart energy data and provides recommendations to users. 

The SCE platform operation in UDCMi shows the applicability of the SCE platform 

in the real world. 

This dissertation presented a real-world implementation of the SCE platform 

that is able to support smart community services while providing consistency, 

guaranteed service migration, and efficient user request distribution through 

service chaining. 
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