
A Thesis for the Degree of Ph.D. in Engineering

Smart Community Edge Platform Providing

Stream Content Analysis, Service Migration,

and Service Chaining

February 2021

Graduate School of Science and Technology

Keio University

Wickramaarachchi A. Shanaka P. Abeysiriwardhana

i

Abstract

A smart community utilizes information technology to interconnect and manage

community infrastructures. These networks consist of many Internet of

Things(IoT) devices that provide different services to the end-users. In

conventional networks, these sensor data send to cloud services for processing

and management. However, cloud-based data processing introduces latency to the

services. Fog computing techniques have been introduced to support these services

at the network edge reducing the network latency. Smart community networks should

support latency-sensitive services such as smart grid systems at the edge. In

addition, Smart community services require service migration and service

chaining to manage and distribute multiple services. For example, the current

smart community edge(SCE) supports smart energy management services where data

anonymization and data aggregation services should be chained, and the services

should be migrated depending on the network’s location and network traffic.

SCE services can leverage generic hardware devices and network virtualization

technologies to deploy the services without proprietary middleware devices. The

current network virtualization methods mainly consider only core network

applications. In contrast, smart community services operate on application layer

data and process in-transit data to capture sensor data at the edge. Therefore,

data extraction edge nodes that support sensor data processing are required to

support these smart community services. A service-oriented container-based

solution that processes data streams from sensors using conventional hardware

will improve the applicability, compatibility, and latency of smart community

services.

To this end, a software-based edge node, namely, the SCE platform, was proposed

to support smart community services. SCE supports data-tapping applications,

especially for IoT devices, and has a stream processing feature with a

comparatively shorter processing delay. This tapping and processing function on

in-transit data was named stream content analysis(SCA). SCA captures in-transit

data through zero copy stream reconstruction and string matching process.

Afterward, SCE proposes a distributed rule application method to manage multiple

services and distribute matched data to the services. SCE supports services

through Docker containers to provide remote deployment, service migration, and

service isolation. The real world SCE platform implementation allows SCE services

to operate on 10Gbps links and apply 100 accumulated rules while maintaining

less than 1ms latency using commodity hardware devices.

To support SCE service migration, SCE proposes a consistently guaranteed

migration method to support service migration to distribute the services

depending on the nodes’ availability. The proposed migration technique is

designed to guarantee network consistency while migrating between nodes.

ii

Compared to existing container migration methods, the proposed migration reduces

the migration data transfer through container layers and migrating only the

streams affected by the migration application through SCA. The proposed container

migration methods reduced the network downtime by more than 10% compared to

conventional methods for containers with image sizes larger than 400MBs.

Furthermore, SCE services require chaining to distribute sensor data efficiently

to the edge nodes to apply multiple network services for a given traffic flow.

To this end, SCE introduces a service function chaining-based request

distribution method that utilizes proactive data collection and heuristics to

analyze the network traffic and to select optimal SCE nodes. The SCE request

distribution method reduces the end-to-end service latency by 10% compared to

the available algorithms. The SCE platform provides commodity hardware-based

SCA, distributed rule change application, service migration, and service

chaining to support SCE services.

iii

Acknowledgments
At various stages throughout the Ph.D. process, I had interesting discussions,

support, and valuable feedback from my supervisor Prof. Hiroaki Nishi. I would

like to express my sincere gratitude to him for the valuable guidance and support

throughout these years.

I would like to give my heartfelt gratitude to Mrs. Yuko Nishi for the endless

support during this study. Moreover, I would like to acknowledge all West

Laboratory members, especially Janaka Wijekoon, Rajitha Tennakoon, Yuchi

Nakamura, Tatsuki Miura, and Ryo Morishima, for their generous support and help

during the time I spent in West Laboratory. I want to acknowledge my friend

Kasun Prasanga and Maheshi Ruwanthika for the generous support.

A very special thanks go to my dearest parents and my dearest sister and

brother in law, for the courage and strength you guys gave me makes the man who

I am today.

Finally, I acknowledge the following people and institutions for the precious

contribution to this thesis’s success.

 For the valuable comments, guidelines, and, above all, advice to make the

dissertation a success.

 MEXT (Ministry of Education, Culture, Sports, Science, and Technology),

for financial support throughout the period at Graduate School of Science and

Technology, Keio University, Japan.

 KLL research grant and Keio University Doctorate Student Grant-in-Aid

program for support during the thesis study.

Wickramaarachchi A. Shanaka P. Abeysiriwardhana

January, 2021

iv

Contents

Chapter 1 Introduction .. 1

1.1 Motivation... 1

1.2 Research Directions .. 5

1.3 Dissertation structure ... 9

Chapter 2 Background study and related work 13

2.1 Smart Community... 13

2.2 SCE services.. 14

2.3 Related work.. 16

2.3.1 Software-accelerated SCA 16

2.3.2 Software appliances for containerized services 18

2.3.3 Service migration ... 21

2.3.4 Service Chaining .. 23

Chapter 3 Software-accelerated SCA for SCE 26

3.1 Introduction.. 26

3.2 Implementation of Software-accelerated SCA 27

3.2.1 Stream processing layer with Libpcap 28

3.2.2 Stream processing layer with Intel Data Plane Development Kit

and Hyperscan .. 29

3.3 Evaluation.. 33

3.4 Conclusion.. 38

Chapter 4 SCE node for containerized services 39

4.1 Introduction.. 39

4.2 Implementation of the SCE node 40

4.2.1 Stream processing layer implementation with SML communication 41

4.2.2 Service management layer 43

4.2.3 Service container API 46

4.3 Evaluation.. 48

4.4 Conclusion.. 53

Chapter 5 Consistency guaranteed service migration 54

5.1 Introduction.. 54

5.2 Implementation of consistency guaranteed migration 55

5.2.1 Consistency guaranteed migration 58

v

5.2.2 One to N consistency guaranteed migration 60

5.3 Evaluation.. 60

5.4 Conclusion.. 62

Chapter 6 Computational delay aware service function chaining 64

6.1 Introduction.. 64

6.2 Implementation of optimized service function chaining 66

6.3 Evaluation.. 70

6.4 Conclusion.. 74

Chapter 7 Summary of the study 75

7.1 SCE platform.. 75

7.2 Conclusion.. 75

vi

List of Figures

Figure 1-1 Application service hierarchy.. 2

Figure 1-2 Connected IoT devices .. 3

Figure 1-3 Smart community services hierarchy .. 4

Figure 1-4 Typical smart community application ... 5

Figure 1-5 SCE platform layers .. 7

Figure 1-6 The place the dissertation resides within the current context 8

Figure 1-7 Dissertation structure ... 10

Figure 2-1 Concept of smart community .. 13

Figure 2-2 Execution location problem at smart community networks 14

Figure 2-3 Sample applications for SCE ... 15

Figure 2-4 (1) OpenVSwitch and (2) f-stack ... 20

Figure 2-5 A simple illustration of a service function path 24

Figure 3-1 Libpcap single-threaded implementation of SPL 28

Figure 3-2 Libpcap multi-threaded implementation of SPL 29

Figure 3-3 DPDK based implementation of SPL .. 30

Figure 3-4 Hyperscan string matching process .. 31

Figure 3-5 DPDK library multi-core assignment .. 32

Figure 3-6 Execution time of Libpcap-based and DPDK-based SPL transmission and

receive cores... 35

Figure 3-7 Execution time of Libpcap-based and DPDK-based SPL string matching

process .. 36

Figure 3-8 Data anonymization using SPL .. 36

Figure 3-9 Application data identification through word2vec algorithm 37

Figure 4-1 Three layers on the SCE node .. 41

Figure 4-2 Implementation of SPL with SML communication 42

Figure 4-3 Implementation of service management layer ... 44

Figure 4-4 Runtime rule change process of MSSCA ... 45

Figure 4-5 Processors of SML .. 46

Figure 4-6 Process of a sample application ... 47

Figure 4-7 Runtime rule change time in MSSCA .. 50

Figure 4-8 MSSCA bandwidth for a different rule set sizes 51

Figure 4-9 MSSCA match rate for a different rule set sizes 52

Figure 4-10 SML content sharing bandwidth for multiple applications 52

Figure 5-1 Architecture of SCE based Docker migration .. 56

Figure 5-2 Process of LLM migration .. 57

Figure 5-3 Buffering of traffic before migration .. 58

file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974032
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974033
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974034
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974035
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974036
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974037
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974038
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974039
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974040
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974041
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974042
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974043
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974044
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974045
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974046
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974047
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974048
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974049
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974049
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974050
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974050
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974051
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974052
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974053
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974054
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974055
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974056
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974057
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974058
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974059
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974060
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974061
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974062
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974063
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974064
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974065

vii

Figure 5-4 Process of CGM migration ... 59

Figure 5-5 LLM migration results for BusyBox and original application 61

Figure 5-6 Comparison of conventional, CGM, and O2NCGM migration 62

Figure 6-1 SFC SFP periodic update collection ... 65

Figure 6-2 Proposed SFP process ... 67

Figure 6-3 Process of VNF allocation to SFs .. 69

Figure 6-4 Simulation environment of SFC distribution ... 71

Figure 6-5 SFP calculation time using logarithmic scale .. 72

Figure 6-6 SFC end-to-end delay .. 72

Figure 6-7 SFP calculation time against the number of nodes 73

Figure 6-8 SFC end-to-end delay against the number of nodes 73

Figure 7-1 Real-world applications of the SCE platform at UDCMi smart city 76

file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974066
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974067
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974068
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974069
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974070
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974071
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974072
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974073
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974074
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974075
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974076
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974077

viii

List of Tables

Table 1-1 Chapter description ... 11

Table 2-1 Summary of software-accelerated packet processing methods 17

Table 2-2 Summary of software-based DPI methods ... 19

Table 2-3 Summary of migration methods ... 22

Table 3-1 Experimental Results of SPL .. 33

Table 3-2 Packet Throughput of SPL .. 34

Table 4-1 SCE node and f-stack throughput for different core allocations 49

Table 4-2 Delay of the components of the SCE node ... 49

Table 5-1 Nomenclature for consistency guaranteed migration 58

Table 5-2 The amount of migration data of containers .. 60

Table 5-3 Details of the evaluation environment of container migration 61

Table 6-1 Nomenclature of SFC ... 68

Table 6-2 SFC chains used in the simulation .. 70

file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974132
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974133
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974134
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974135
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974136
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974137
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974140
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974141
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974142
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974143
file:///G:/Shared%20drives/westlab/PUB-KEIO/PhD/2020/Shanaka/Dissertation/Dissertation%20WA_Shanaka_final_v2.docx%23_Toc61974144

Chapter 1. Introduction

1

 Introduction

1.1 Motivation

Information technology integrates communication, processing, and computing

technologies to provide services such as healthcare, education. UNIVAC 1, the

first commercial computer [1], was developed by John Eckert and John W. Mauchly

in 1951. For the next few decades, enterprises developed mainframe computers to

store and process a large amount of information. The internet was started in the

1960s as a data transfer solution between large-sized immobile computers[2]. The

size of computers reduced around the 1980s to the size of minicomputers. The

ARPANET and Defense Data Network officially standardized internet communication

with TCP/IP protocol in 1983, and this day is considered the birthday of The

internet[2]. The connected devices on the internet have become smaller and

smaller to the current trend of IoT, Big data, and Smart cities.

Processing, computing, and communication of a large number of connected devices

required considerable processing power. Before the internet, mainframe computers

were initially used in enterprises to compute information in the 1950s[2].

Internet services required datacenters to process the information on connected

devices. The term cloud computing was introduced around 2006 to identify the new

paradigm in which people increasingly access software, computer power, and files

over the web instead of on their desktops[3]. In the cloud computing paradigm,

user traffic usually sends to data centers for processing. Commonly, the

Representational state transfer Application Programming Interface[4] (Rest API)

is used to communicate where users request data through a well-defined interface.

The client-server architecture was used by these services to execute end-user

requests in the cloud. Cloud computing also uses virtualization technologies to

deploy the services on bare metal servers. The data processing services are

usually packaged to virtual machines and executed within the data center. The

virtualization technologies improve the scalability, efficiency, and agility of

these networks.

Cloud services usually process application layer data of the communication.

However, network appliances process network-layer, transport layer, and data-

link layer data using services such as a firewall. These network appliances are

also moving from proprietary hardware devices to virtualized devices with the

development of virtualization technologies. ETSI introduced network function

virtualization(NFV) in 2012 in a conference on software-defined networking and

OpenFlow[5]. NFV provides a framework to manage virtualized network services.

The framework includes virtualized network functions(VNFs), network function

Chapter 1. Introduction

2

virtualization infrastructure(NFVI), and network function virtualization

management and orchestration(MANO). These three components allow service

providers to deploy, manage, and orchestrate network services. However, NFV is

designed toward network-layer applications, while cloud computing is designed

toward application layer services.

Edge and fog computing was introduced as an added computing layer between the

cloud and terminal devices[9]. Fog computing is a paradigm of distributed

computing. In contrast, cloud computing tends to be more centralized. Centralized

systems are easier to manage and deploy while they introduce longer access time

to users. On the other hand, a distributed system provides resilience, better

performance, and flexibility while causing high deployment and maintenance costs

due to the system’s geographical distribution. Therefore, fog computing has the

decentralized system’s advantages, while edge nodes’ deployment and management

become problematic in networks. Cloud computing has more extensive computation

capability compared to edge computing nodes. However, cloud computing data

centers are placed further away from the end-users. Fog computing is about

processing real-time data closer to the network edge, while cloud computing runs

end-user applications, as shown in Figure 1-1. Therefore, the fog layer should

capture in-transit IoT data to provide real-time smart community services. A fog

computing platform should be able to capture in transit IoT data from the line.

In contrast, cloud services usually process the end request; therefore, it could

operate in a standard client-server architecture. In contrast, fog computing

nodes carry out stream processing to process in-transit information.

Figure 1-1 Application service hierarchy

Chapter 1. Introduction

3

Fog and edge-based services could be used to process the information of a

rapidly increasing number of connected IoT devices[6], as shown in Figure 1-2.

According to current trends, this will increase to 75 billion devices in 2025[6].

However, these connected devices allow us to develop complex systems to monitor

and manage our community. However, with the increase of IoT sensors, it is

required to process these data closer to the network edge to reduce network

latency and traffic[7]. The smart community concept uses these devices to

efficiently manage the citizens’ infrastructure, ICT, energy, and lifestyle.

According to the Japan smart community alliance, “smart community is a community

where various next-generation technologies and advanced social systems are

effectively integrated and utilized, including the efficient use of energy,

utilization of heat and unused energy sources, improvement of local

transportation systems and transformation of the everyday lives of citizens”[8].

This requires smart community services and users to process data efficiently.

However, the application services and the computing location depend on the type

of capabilities required by the different services, as shown in Figure 1-1. For

example, a sensor network operates in a narrow area with limited computation and

security capabilities. In contrast, cloud services operate in a broader area

with unlimited computation capability. The fog layer operates in the middle to

provide services such as anonymization for these weak terminal devices before

the traffic transit into the cloud. Smart community services could leverage

commodity hardware devices between the cloud and the terminal devices to support

these services.

Figure 1-2 Connected IoT devices

Chapter 1. Introduction

4

 The smart community services can be differentiated according to the

application hierarchy, as shown in Figure 1-3. Services such as healthcare

monitoring, remote control, and grid control should be processed at the edge to

reduce the delay of the services. Smart community networks should process in-

transit traffic of the sensors to support smart community services. Smart

community services should capture the in-transit data and carry out device

identification through stream reconstruction of network traffic. For example, a

smart energy management service that anonymizes and aggregate sensor data should

capture the device identifier and data values by analyzing the network’s RestAPI

communications. Therefore, a platform that supports smart community services

should have the ability to analyze the terminal devices’ application layer data.

Smart community networks can leverage these methods to provide network

transparency, add-on services without updating or interacting with the terminal

devices. For example, the smart community can provide privacy encapsulation for

the network traffic by analyzing and watermarking in-transit data without

updating the terminal devices’ computation capabilities. However, smart

community networks should process the traffic at 1-10Gbps bandwidth to meet

Japanese households and enterprises’ typical requirements, such as 10G-EPON,

XGS-PON, and NG-PON2[9], [10], some of the popular optical passive optional

networks for last-mile connections. Therefore, smart community networks are

required to analyze the network traffic at 1-10Gbps bandwidth to support the

services.

Smart community services require services to migrate from cloud to edge and

edge to cloud depending on the network load. For example, the smart energy

Figure 1-3 Smart community services hierarchy

Chapter 1. Introduction

5

management service requires the service containers to migrate from cloud to edge

or one-N replicate to support the increasing network workloads, as shown in

Figure 1-4. Smart community service could be migrated closer to the terminal

devices or replicate into multiple locations to improve the latency and

throughput of the service. Therefore, service migration is an essential

requirement for these services. The migration process should also prevent the

data loss of any in-transit data under migration as loss of sensor data could

cause control problems such as a smart energy management system. Therefore,

consistently guaranteed service migration is required for smart community

services.

Smart community services commonly apply multiple services to the same network

flow in a chain to provide a complete set of services. For example, the smart

meter service first anonymizes the data, and then the data is sent to the

aggregate node to record the data of multiple smart meters for processing and

display, as shown in Figure 1-4. Therefore, smart community networks should

support service chaining to distribute sensor traffic to execute these services

in the required order. This requires smart community services to transit the

correct sensor through nodes that support these services while reducing the end-

to-end service delay of the network. Therefore, smart community networks should

analyze in-transit network content, provide service migration, and service

chaining to support SCE services.

1.2 Research Directions

SCE, a platform that provides SCA, service migration, service chaining, was

proposed to this end. SCE platform proposes SCA to capture sensor data in the

network. SCA is the process of stream reconstruction, application layer decoding,

and string matching to identify and segregate network streams containing sensor

data. SCA leverages the capabilities of packet forwarding and string matching

Figure 1-4 Typical smart community application

Chapter 1. Introduction

6

of data plane development kit (DPDK) and Hyperscan technologies to achieve 1-

10Gpbs throughput. SCE platform uses DPDK to manipulate header and data sections

of the packet to carry out SCA, while current software-based packet forwarding

research [11]–[16] only manipulates the header. The SCA provides an interface

for smart community services to access the sensor data. Furthermore, the SCE

platform proposes a distributed rule application change method using a multi-

layer architecture. SCE platform uses multiple layers to apply service rules to

network flows to segregate network streams compared to packets. Compared to NFV

[17], [18] research where virtual switches are used to segregate the packets,

the SCE platform proposes a distributed rule application that allows smart

community services to migrate through the smart community network without

affecting the network flows. The SCE platform uses a service management

layer(SML) to facilitate the distributed rule change process without affecting

the SCA in the network forwarding layer.

In addition to the distributed rule change, the SCE platform uses the SML to

facilitate multiple services. The management layer allows smart community

services to run multiple applications in isolated software environments.

Furthermore, the applications can directly capture data from the IoT terminal

devices without being aware of the network control plane. The SML allows services

to remote deployment and migration. SCE platform utilizes Docker containers to

isolate the application services, allowing application migration without

affecting the network flows. SCE platform proposed a consistency guarantee of

the migration(CGM) to resolve the above issues. SCE platform CGM provides

stateful application migration with data buffering to capture and store the

network data within the migration downtime.

In comparison to current research [19] [20], techniques such as network storage

devices improve the migration downtime. CGM uses container layer separation and

buffered data separation through distributed rule applications to reduce data

transfer and data buffering between the source and destination nodes. The SCE

management layer communicates with destination nodes to identify transit traffic

between the source and destination nodes. Afterward, the proposed method uses

temporary buffers to store the in-transit data until the container restores at

the destination node. Furthermore, the CGM can be used to provide one-many

migration(O2NCGM) to support service replication. The CGM performance was

compared with conventional methods through the hardware tests to evaluate CGM’s

effectiveness.

Furthermore, the SCE platform proposes a service function path(SFP) selection

process to distribute traffic through SCE service chains optimally. The current

path selection algorithms, such as the optimal path selection algorithm[21], use

reactive data collection to identify the optimal SFP. However, this method

consumes considerable network traffic and calculation time waiting for the nodes

to advertise their loads. To resolve this, SCE proposed an optimized SFP

selection method that periodically collects the load data to approximate the

Chapter 1. Introduction

7

system load within the advertisement period. The proposed SCE platform SFP

selection process uses calculation cost and network delay to calculate the SFP

cost. Then SFP calculation process calculates the cost of assigning all SFs to

a single node to identify whether the single node assignment yields a better

end-to-end delay. This method reduces the network traffic introduced by the node

advertisements while increasing the overall SCE nodes’ efficiency. The proposed

optimized path selection algorithm is evaluated using a Cloudsim simulation

environment compared to optimal and nearly-optimal SFP methods.

SCE platforms layered architecture provides the following capabilities and

supports the requirements of smart community services mentioned above, as shown

in Figure 1-5.

1. Software-accelerated SCA

2. SCE node for containerized services

3. Consistency guaranteed migration

4. Computational delay aware service function chaining

Figure 1-5 SCE platform layers

Chapter 1. Introduction

8

The place the dissertation resides in the current context is shown in Figure

1-6. The SCE node implementation is related to the network infrastructure layer

where physical and virtual network devices operate to support the services. The

SCE management layer and live container migration reside within the application

management and orchestration, where consistency guarantee migration supports

application orchestration. Finally, SFP selection resides in the application

layer, where application request distribution is managed.

Figure 1-6 The place the dissertation resides within the current context

Chapter 1. Introduction

9

1.3 Dissertation structure

The dissertation structure is illustrated in Figure 1-7. Table 1-1 denotes a

brief description of each chapter. As denoted in Figure 1-7, Chapter 2 explains

the background studies associated with this dissertation. It provides a detailed

explanation of the smart community, smart community services, service migration,

and service function chaining. Moreover, the chapter briefly explains the issues

with currently available methods and how the proposed methods will resolve those

issues using the SCE.

Chapter 3 introduces the software-accelerating for SCA through DPDK and

Hyperscan technology with the evaluation results. How the software-accelerated

SCA is used to create SCE is explained in chapter 4. The chapter explains the

components of the SCE node, the distributed rule change method, and its’ core

implementation details. In addition, it explains how the SCE application process

is carried out within the multi-layer architecture. The chapter is concluded

with the evaluation results of the SCE node comparison of the f-stack library.

Chapter 5 extends the ability of SCE by implementing CGM for services. This

chapter explains the architecture of Docker-based live migration. Explain the

implementation process of CGM through buffers. The evaluation results of CGM in

Intel NUC computers are provided at the end of the chapter. Chapter 6 further

extends the SCE platform by introducing the SFP selection method for service

chaining to smart community networks. The proposed SFP selection algorithm is

evaluated compared to currently available algorithms to identify its ability to

execute user requests efficiently.

Finally, Chapter 7 summarize and concludes the dissertation.

Chapter 1. Introduction

10

Figure 1-7 Dissertation structure

Chapter 1. Introduction

11

Table 1-1 Chapter description

Chapter 2 Purpose Background study and survey of related work.

Chapter 3 Purpose Implement and evaluate software-accelerated

stream processing of SPL.

Objectives 1) Find available methods to improve the

performance of the SCA.

2) Handle 1-10Gbps throughput in SCA.

Proposed

Methods

Use DPDK, and Hyperscan libraries to improve the

performance of SCA by using zero copy stream

processing.

Achievement 1) Implemented and evaluated SPL using DPDK

and Hyperscan Technology.

2) Achieve 1-10Gbps throughput in multi-core

server. The implementation and results

are published.

Chapter 4 Purpose Implement and evaluate SCE node to support

containerized services.

Objectives 1) Provide multi-service support for SCE

service.

2) Provide distributed rule change to

separate application traffic.

3) Handle 1-10Gbps throughput for multiple

services at sub millisecond latency.

Proposed

Methods

Use modular multilayer architecture to support

distributed rule change method that use of SPL

and SML. Use Docker containers to containerize

applications.

Achievement 1) Implement multi-service support, and

distributed rule change through SML.

2) Implement application API that support

applications through Docker containers.

3) Achieve 1-10Gbps throughput for multi-

service SCE platform while minimizing SCE

latency to 0.8ms. The implementation and

results are published.

Chapter 5 Purpose Implement and evaluate CGM to support data

consistency in Docker migration.

Objectives 1) Provide network data consistency to

Docker applications.

2) Reduce downtime of applications.

Proposed

Methods

Use container layer separation and application

based data separation to buffer data at SML to

guarantee data consistency of applications.

Achievement 1) Implement and evaluate CGM in hardware

platform.

Chapter 1. Introduction

12

Chapter 6 Purpose Implement a SFP selection process to reduce end-

to-end delay of SFCs.

Objectives 1) Reduce end-to-end delay of SFC execution.

Proposed

Methods

Use computational delay aware SFC to gather node

data to identify an optimal SFPs.

Achievement 1) Implement SFP selection process that

improves the end-to-end delay.

2) Evaluate the results compared to other

available algorithms. Results are

published and presented.

Chapter 7 Purpose Summarize the details of SCE platform and

conclude the dissertation.

Chapter 2. Background study and related work

13

 Background study and

related work

2.1 Smart Community

Smart cities and smart communities are gaining momentum because of the

technological advancements in smart electronic devices and sensors [22]. According

to the smart communities guidebook [23] by the State University of San Diego, a

smart community is defined as “a geographical area ranging in size from a

neighborhood to a multi-county region, whose residents, organizations, and

governing institutions are using information technology to transform their region

in significant ways. Cooperation among government, industry, educators, and the

citizenry, instead of individual groups acting in isolation, are preferred. The

technological enhancements undertaken as part of this effort should result in

fundamental rather than incremental changes.” Smart communities are expected to

realize a considerable increase in the number of electronic devices and sensors

[24], also known as trillion sensors [25], for achieving cooperation through data

exchange. These connected devices manage energy, information, communication

technology(ICT), infrastructure, and citizens’ lifestyles. As an example, smart

community energy management services uses sensors attached to smart houses.

Similarly, transport services would use sensors attached to vehicles to monitor

road activity. Therefore, sensors become an integrated component of the smart

community to monitor and manage the ecosystem.

The smart community ICT infrastructure uses these data to provide different

Figure 2-1 Concept of smart community

Chapter 2. Background study and related work

14

services such as medical services, smart grid, smart energy management, and water

infrastructure services, as shown in Figure 2-1. For example, the smart community

utilizes smart energy management and smart grid service to collect live data to

improve the electricity network’s efficiency and balance. Smart community

services become an integral part of the daily life of the citizens of smart

communities and smart cities. Therefore, the smart community should efficiently

manage and utilize these services to improve citizens’ living standards while

efficiently managing and utilizing the infrastructure and resources.

2.2 SCE services

The smart community and smart city ICT infrastructure and its related

infrastructure require a significant amount of data processing and network

transactions to smart community services. Therefore, the location of the

execution of these services becomes a question, as shown in Figure 2-2. Cloud-

based data processing has been extensively researched for the provisioning of

cloud-based application services[26]–[28]. However, the increase in smart

community sensors has incentivized the shift of computing resources from the

cloud to the edge/fog for increasing network efficiency. As with a typical delay-

sensitive application, a delay of less than 10 ms is permitted on the demand-

side resource management for ancillary services using a smart grid [29].

According to Lema et al.[30], typical remote control services require less than

10 ms processing delay. Edge and fog computing bring computing resources closer

to the network edge. Open Fog [31]–[34] is a category of service deployed closer

to the terminal devices for improving the efficiency of the network

infrastructure in next-generation networks. The edge and fog layer will act as

Figure 2-2 Execution location problem at smart community networks

Chapter 2. Background study and related work

15

an additional processing layer between terminal devices and the cloud. In

addition, decentralization and flexibility are the main advantages of edge/fog

computing.

Consequently, the fog layer will improve the service latency and distribution

in networks [7]. In addition, edge/fog computing conserves network bandwidth,

reduces operating cost, enhances security, improves reliability, and boosts

agility. Edge/fog has usability in systems such as smart grid management. Smart

cities must manage electricity demand by real-time electrical consumption data.

This kind of data can be effectively captured at the edge to operate the smart

grid efficiently. Therefore, SCE should support services that are susceptible

to network latency closer. Data processing at the edge, data aggregation, and

caching can reduce such services’ network delay. SCE services can also provide

add-on services such as data watermarking and anonymization at the edge to

support weak IoT terminals that send clear text private information, as shown

in Figure 2-3.

The SCE services should be distributed on available nodes. This provides

location flexibility to the services. However, the application services should

handle the migration and sensor data to support such service migrations through

the network. Furthermore, smart community services commonly operate in chains

to provide multiple add on services to the terminal devices without adding

software or hardware upgrades to end terminals. In such cases, the SCE should

support service chaining to process these requests. In addition to the

application, location flexibility requires the end terminal traffic to travel

through the available SCE nodes to efficiently support service chains.

Figure 2-3 Sample applications for SCE

Chapter 2. Background study and related work

16

2.3 Related work

2.3.1 Software-accelerated SCA

Conventional routers and switches were designed to forward packets without

intelligent payload analysis and inspection capabilities. The changes in network

architecture, the introduction of electronic equipment and sensors, and big data

require network equipment to be versatile enough to operate in smart community

networks efficiently. Nishi laboratory initially proposed a simulation of a

content-based router called Service-oriented Router[35] that could analyze the

data streams travel through the network. SCE uses the SoR to implement its’

Stream Processing Layer(SPL) to process smart community sensor data. Advanced

packet processing techniques were required to handle a 1/10Gbps line rate to

analyze SCE traffic. Network manufacturers use application-specific integrated

circuits (ASICs) to handle the required bandwidth and computational power

requirements [36], [37]. However, this is not a cost-effective method to manage

cutting-edge networks such as smart community networks because the SPL should

work with conventional hardware systems to ensure easy implementation and

adaptability. In Japan, customer premises internet bandwidth can range from 1Mbps

to 1Gbps [38], and enterprise core level usually handles bandwidths of 10Gbps.

Therefore, customer premises or building-based SPL deployment would require 1Gbps

bandwidth, and enterprise core deployment to require at least 10Gbps bandwidth.

Generally, packet processing applications in conventional servers are deployed

in Linux using the Libpcap library, implementations of deep packet inspectors

[39], and packet filters [40]. There are several examples of these

implementations; however, there are limitations in performance when leveraging

the Libpcap library due to its use of interrupt-driven NIC drivers. Furthermore,

the implementation of multi-threading requires thread memory handling.

As a solution, the studies [41] discussed using packet processing offloading to

a general-purpose graphics processing unit (GPGPU). Even though The GPGPU based

SoR implementation [41] achieved 1Gbps throughput, it required a 100ms stream

buffer wait time. Additionally, it is known that high-performance GPGPU

availability is limited in the case of conventional servers. Moreover, GPGPU has

an overhead for copying data from kernel memory to GPGPU memory. Therefore, the

use of GPGPU is not a feasible method for SPL.

Additionally, compared to GPGPUs using Intel DPDK, [42] intel CPUs have the

following advantages. The intel CPU cores have better performance compared to

GPGPU kernel/processing elements. Additionally, one stream can be forwarded to a

dedicated CPU to improve the cache-hit rate, thus improving the performance.

Furthermore, the CPU cores can operate independently without memory transactions,

whereas GPGPUs need memory transactions to transfer the data, and CPUs also have

Chapter 2. Background study and related work

17

a higher memory bandwidth compared to GPGPUs, which is limited by the PCI memory

bandwidth.

The SPL SCA requires packet processing libraries and hardware that support

direct memory access and poll mode driver technologies. DPDK [43], netmap[15],

and PF_RING ZC [44] are the major frameworks developed to overcome the issue with

the Linux network stack. Netmap exposes the packet buffers to the application and

allows system calls to transfer data. Software Router Click [13]and virtual switch

VALE[45] show an increased performance using netmap. The PF_RING ZC is leveraging

the use of zero packet copy, similar to Intel DPDK. PF_RING ZC buffers allocations

in specific memory regions for multi-core CPU direct access. A network probe,

nProbe, uses the PF_RING ZC ability to increase its performance. However, compared

to these two frameworks, Intel DPDK offers multi-core support, supports libraries

for packet processing, and has the highest degree of reconfigurability among the

three frameworks [46], as given in Table 2-1. Even though Software Router Click

[13]and virtual switch VALE[45] uses DPDK to forward the traffic through zero-

copy buffers, they only forward packets without analyzing the payload. This limits

their capability to analyze and support smart community services. Therefore, the

SCE platform leverages the techniques of DPDK and integrate Hyperscan to analyze

packet headers and payload to carry out SCA through zero-copy buffers of DPDK.

Table 2-1 Summary of software-accelerated packet processing methods

Method Advantages Limitations

Libpcap
 Availability of applications

such as packet filters

 Performance is limited due to

interrupt driven drivers

GPGPU
 Improve the process

offloading

 Overhead for copying data

from kernel memory to GPGPU

memory

 CPU cores have better

performance compared to GPGPU

kernel elements

PF_RING

ZC

 Provide buffers allocations

in specific memory regions

for multicore CPU direct

access

 Limited multi-core support

DPDK

 Multicore support

 Support libraries for packet

processing

 Provide highest degree of re-

configurability

 Requires to use DPDK poll

mode drivers

Chapter 2. Background study and related work

18

2.3.2 Software appliances for containerized services

SPL was initially proposed to capture sensor data through conventional routers.

SPL supports a single service on a conventional server using SCA. SPL runs a

single service without the use of virtualization technology or SCA content

isolation. Therefore, SPL is unable to support multiple services in a single

conventional server or an edge node. Other research on software-based network

applications on conventional hardware is mainly designed for routing, deep packet

inspection (DPI), and NFV. Software-based routers use conventional hardware such

as commodity computing servers. Software-based routers have gained momentum in

recent years [11]–[16]. Although hardware-based packet forwarding has better

bandwidth than software-based systems, software-based routers’ performance has

improved because of the development of peripheral component interconnect

technology and NIC designs [12]. The software-based routers were developed using

solutions such as Intel DPDK [42], PF_RING [47], and Netmap [15]. DPDK and PF_RING

use zero-copy packet processing to improve performance, while Netmap and other

similar solutions focus on the modular processing of packets [48]. Studies on

software-based routers provide an excellent platform for fast packet processing

[11], [12]. However, these software-based routers do not carry out payload

analysis and string matching of the sensor data.

The software-based DPI was developed using PF_RING technology [39], DPDK, and

Hyperscan technologies [49], as given in Table 2-2. Deri et al. [39] proposed

nDPI using PF_RING technology focused on high-throughput DPI. However, nDPI does

not support additional services except the nDPI program, although it captures

data from the end devices. Therefore, it is not possible to support smart community

services using PF_RING-based nDPI implementation. Similarly, Luca et al. [49]

proposed nDPI using DPDK technology to classify and block unwanted traffic. Their

nDPI platform provides a method to classify the network flows; however, it does

not support software isolation for the application processes using VM or container

technologies. Therefore, applications can directly access other processes of a

host machine. Consequently, application code inspection is necessary for DPDK-

based nDPI solutions to guarantee the security and isolation of the nDPI program

from multi-vendor applications [49]. Furthermore, These DPI methods only analyze

the initial sections of the packets to identify the application flow. Therefore,

their capability to continue capturing the in-transit traffic on the same flow

is limited. These drawbacks limit the ability of nDPI in smart community

environments. A service virtualization method is necessary to support edge service

for multiple services at a single edge node. Furthermore, remote application

deployment and migration without service isolation are not supported. These

drawbacks limit the ability of nDPI to support multiple applications at the edge.

Chapter 2. Background study and related work

19

Virtualized DPI (vDPI) [50] uses DPDK technology and supports virtualized DPI

applications using VMs. This implementation isolates the DPI instances through

VMs and uses OpenVswitch [51] to share packets among the DPI nodes. Although this

allows virtualization of DPI nodes, it is affected by the drawbacks of VM-based

software isolation than container solutions. In addition, the use of a layer two

switch to pipeline packets among vDPI applications causes all the vDPI instances

to run stream reconstruction, which creates additional processing overhead by

increasing network delay in the host machine. These drawbacks can be overcome by

using SPL in place of the virtual switches. SCE platform proposes to runs SCA on

the host machine using a distributed rule change method while sharing the captured

content among service containers. Additionally, this allows for control over

sensor data sharing, as the SPL can filter and share the sensor data among multi-

vendor applications accordingly. Therefore, although these DPI solutions provide

software-based platforms for multiple DPI applications, they cannot be optimized

for virtualized smart community services.

NFV was proposed along with the development of software-defined networking (SDN)

to support virtual network functions (VNFs) and deliver network services as

software processors [52], [53]. Major backbone router providers such as Cisco,

Juniper, and NEC have proposed NFV platforms [37], [54], [55] using application-

specific hardware. Although they achieve high-throughput packet forwarding, the

hardware cost is high. Research on software-based NFV platforms [17], [18], [53]

has been mainly with DPDK and SR-IOV [56] technologies. Intel SR-IOV allows

hardware-based packet switching for VM-based VNFs. OpenVswitch [51] provides

Table 2-2 Summary of software-based DPI methods

Method Usage Limitations

Deri et al.
[37] nDPI using

PF_RING

 Focused on high-

throughput DPI

 Does not support additional

services except the nDPI

program

 Does not support software

isolation for the application

processes

Luca et al.
[46] nDPI using

DPDK

 Provides a method to

classify the network

flows

 Applications can directly

access other processes of a

host machine

 Does not support software

isolation for the application

processes

Virtualized DPI

(vDPI) [47]

 Use OpenVswitch [48]

to support DPI

applications using

VMs

 The application rules applied

at VM instance rather than

using a distributed rule

database at the packet

forwarding layer

Chapter 2. Background study and related work

20

software-based packet switching, functioning as a software switch to support core

network services shown in Figure 2-4(1). The OpenVswitch transfers the network

traffic through the services, acting as a virtualization switch without processing

packet payload data. Similar software-based packet sharing solutions have been

developed by sharing the huge page memory among VNFs [17], [18]. The huge page

sharing causes network latency in the forwarding path because of the packet

pipeline through each VNF instance in a core node. The raw packets are shared

among VNFs as core network services such as network address translation, and

switching [57] requires layer two and layer three information of all packets.

NFV does not provide smart community services requirements because its target

is to optimize the core network. The use of NFV in the smart community requires

implementing and interoperating the network stack for executing L7 service

applications. Smart community services are different from the core services as

(1)

(2)

Figure 2-4 (1) OpenVSwitch and (2) f-stack

Chapter 2. Background study and related work

21

they are applied to the application layer, where most IoT terminals use the HTTP

protocol and publisher, subscriber methods for data transactions. f-stack [58]

provides a DPDK network stack to support applications using DPDK, TCP/IP, and f-

stack SDK, as shown in Figure 2-4(2). The f-stack is designed to support web

servers by improving its network throughput using the DPDK library. This allows

the development of web services such as Nginx. However, f-stack was developed to

replace the Linux network stack in web servers and does not support multiple

services using virtualization technologies.

As described above, the conventional software-based routers and DPI [11], [12],

[49], [59] solutions are not designed to support multiple edge services. The

extant research [17], [18], [51], [60] focuses on supporting core network services,

improving the network stack, or managing packet routing through DPDK technology.

Using the distributed rule change method to identify and share the sensor data

among services can overcome the limitations of using virtualized switches or

buffers to share raw packets.

2.3.3 Service migration

 Container migration is the process of moving a container between computers or

storage devices. Migration technology has been developed to realize flexible

services and to distribute services in the cloud dynamically. VM migration has been

commonly used for the last decades in data centers. For instance, live migration

of virtual machines was provided through VMware (vMotion), virtual disk migration

by Storage vMotion [61], and live migration function of Xen and KVM [62] are used

in VM migrations. These VM based migration techniques are developed as they operate

entirely isolated from other VMs and physical hardware through hypervisors.

Container virtualization uses similar techniques to migrate isolated containers.

OpenVZ [63], LXC [64], Docker-runC [65] are some of the migration technologies used

in typical container applications. These container migration technologies use Linux

CRIU [66], where CRIU checkpoint and restore of containers are used in migration.

CRIU enables us to save the state of the running container process to files using

a checkpoint function. The container is restored in the migrated system using CRIU

restore function. However, these techniques are not feasible for direct use of in-

network service containers as they share resources and shared memory data structures

among the application services and the host system for packet transactions.

Nadgowda et al. [20] proposed a migration architecture that supports the

container running process and container storage migration through CRIU. This

architecture speeds up the checkpoint function using a page server. Furthermore,

the data transactions such as data copying are minimized using network-attached

storage (NAS) [19] devices. NAS is used for storage sharing in containers in this

implementation. However, it is challenging to use shared storage such as a NAS

Chapter 2. Background study and related work

22

in a software-based service management environment due to geographically

widespread edge nodes. Furthermore, the smart community service platforms tend

to operate using conventional hardware with limited processing power and lack

attached middleware devices such as NAS. C. Dupont et al. [67] proposed migrations

for IoT services in an edge computing environment. This method uses Docker [68]

and Kubernetes [69] for containers and provides horizontal and vertical migration.

Horizontal migration is used in IoT roaming, and vertical migration is used in

IoT offloading. The horizontal migration performs application migration within

the application layer; the vertical migration performs inter layer migration.

However, these horizontal and vertical migrations are cold migration methods.

Additionally, the system was designed toward stateless application migration

through cold migration. Therefore, it is not possible to provide live migration

or stateful application migration using this method. Smart community services

such as ancillary services and traffic management are stateful services. Therefore,

a novel migration method is needed for such services.

Also, to live stateful migration, packet processing services should reduce the

downtime for low latency services. Therefore, migration time should be reduced

to minimize the overall downtime of application services. Some studies intend to

decrease migration time by reducing bandwidth usage [70], [71]. They reduce

bandwidth usage by separating the container layer’s image layer and container

layer and transferring only the container layer toward to destination node. L.

Ma et al. [70] propose a shared file system under a distributed environment that

consists of nodes with limited resources. In addition, L. Ma et al. [70] proposed

a method to decrease migration time by reducing the amount of transferred data

Table 2-3 Summary of migration methods

Method Usage Limitations

Nadgowda et

al. [20], L.

Ma et al.

[67], and A.

Machen et

al[68]

 Data transactions such as

data copying are

minimized using NAS or

share file systems

 Challenging to use shared

storage in distributed SCE

nodes

 Doesn’t consider

application data management

and data consistency

required for network

applications.

Dupont et al.

[64]

 Provide horizontal and

vertical migration for

edge

 Only support cold migration

Gember-

Jacobson et

al. [69]

 Buffer all packets in

transit on the network

 Susceptible to buffer

overflow as it doesn’t

identify packets affected

by migration flow before

buffering.

Chapter 2. Background study and related work

23

using a shared file system. A. Machen et al. proposed a migration method that can

provide low-latency services by leveraging LXC under Mobile Edge Clouds (MECs)

[71]. This architecture leverages NAS storages and decided which layers of the

container to migrate according to destination. However, these studies do not

consider the transferred application data management and data consistency required

for network applications. Therefore, these methods would cause packet loss and

unordered packet streams. To resolve these in smart community services, we need

a migration method that considers throughput and downtime while supporting latency

reduction and data consistency.

 Virtual network function migration was designed to reduce packet loss in

network functions. A. Gember-Jacobson et al. proposed OpenNF, which controls

forwarding rules and NF instances [72]. OpenNF achieved loss-free and order-

preserved migration by buffering all packets until the migration finishes and

then resending the packets to the destination node. However, this causes

additional overhead and increases the migration time due to the significant number

of forwarded packets to a controller [73]. Furthermore, a buffer overflow can

occur due to the increased migration time. Moreover, this technique is bandwidth-

consuming as it resending all packets from the source to the migration destination.

L. Nobach et al. proposed the SliM, VNF migration method, which reduces bandwidth

usage by transferring only the necessary packets [74]. However, these methods

cannot support multiple services on a single node because it cannot detect the

specific data flow. Furthermore, since these VNF migrations change the network

flow, the other services run on the same node are affected by modifying the

network flow. Therefore, a multi-service supported migration solution must support

smart community services while minimizing the buffered data transactions.

2.3.4 Service Chaining

The service function chaining(SFC) can be used to chain multiple services for

smart community networks. The SFC architecture can be separated into four layers

[75]: service, overlay network, underlay network, and link. The service layer

comprises SFC elements such as classifiers, SF forwarders (SFF), and SFC proxy.

It uses the overlay network to ensure connectivity of SFC data plane elements.

The overlay network uses overlay network technologies to interconnect SFC

elements and works transparently to the service layer. The underlay network

comprises networking techniques such as IP and MPLS. Finally, the link-layer

consists of link-layer technologies that allow physical connections of the

network.

The SFC is a service layer divided into operational, administrative, and

management components (OAM) [75], including the SF, SFC, and classifier

components. These components provide different services in SFC creation. The SF

Chapter 2. Background study and related work

24

component is an OAM solution that includes testing the SFs in any SFC-aware

network devices such as classifiers and controllers. The SFC component includes

solutions for testing SFC and service function path(SFP) that monitor the SFC

forwarding path for packet matching a particular SFC as shown in

Figure 2-5. Classifiers are solutions for testing the validity of

classification rules and detecting incoherence among different rules in

different classifiers. These SFC components can be classified into management,

control, and data planes based on their operation. Management elements include

the SFC orchestrator, which is responsible for SF instances and SFC management.

The Control plane creates the SFPs for SFCs by formulating forwarding rules. The

Data plane includes the actual SFs, SF forwarders, and classifiers.

SFP selection algorithms were developed using OpenDayLight (ODL) [76]. ODL

implements round-robin, random, load balance, and shortest path first algorithms.

The round-robin algorithm distributes SFs in the SFC among the next available

instance from all the available VNF instances. The random algorithm randomly

selects VNF instances for the SFC SF abstracts. These two techniques do not

consider network delays or capabilities of the VNF instances. Load balance uses

the VNF instance load to deploy the VNFs in the SF without considering the

network delay. Therefore, the load balancing algorithm tends to select nodes

with lower loads, even though the SFP would have to go through multiple nodes,

increasing the overall SFP delay. Later, near-optimal service-function path

algorithm (NSP) [77] and optimal path selection algorithm (OPS) [78] were

developed to address these issues by using dynamic programming; however, they

have certain problems. NSP algorithm considers all instances of VNFs while

selecting the SFP. The SFP selector uses the local load data of VNFs and network

delay between the VNFs to select the SFP. However, in the selection, the

algorithm selects one of the possible paths rather than the best path.

Figure 2-5 A simple illustration of a service function path

Chapter 2. Background study and related work

25

Additionally, this algorithm does not consider the hardware resources of the

VNF instance; this can lead to the poor performance of the SFs because the NSP

assumes that all VNF instances have similar hardware resource allocations to

complete the SF. OPS algorithm was designed to address this issue by reactively

collecting the load and queue load from the VNF instances. However, this

technique has a severe drawback when there is considerable network delay between

the SFP selector and the nodes. The network delay can cause the SFP selection

algorithm to wait until the data arrives from the nodes, causing a delay in SFP

allocation. Therefore, an efficient SFP selection method that could proactively

collect node data could significantly improve the smart community services end-

to-end delay.

26

Chapter 3. Software-accelerated SCA for SCE

 Software-accelerated SCA

for SCE

3.1 Introduction

SPL provides services to end-users by performing SCA over network traffic flows.

SCA is a new concept for providing services by analyzing stream contents, such

as TCP streams using regular-expression-based string matching and extraction,

rather than general IP packet analysis. Initially, SPL was to implement SCA using

stream reconstruction, L7 decoding, and data inspection. The SPL provides contents

analyzed using SCA hereafter, referring to SCA content to smart community services.

However, SPL capabilities were tested during its initial development using the

Hypertext Transfer Protocol (HTTP)[79] traffic. Analyzing HTTP streams in traffic

and collecting useful data from HTTP transactions requires HTTP decoding and the

gzip decoding process; therefore, the first implementation of SPL, while running

on conventional hardware, faced several limitations.

The most commonly used packet processing library is the Packet Capture library

(Libpcap)[80]. The Libpcap library's use leads to interrupts and memory copy from

a NIC device to kernel space and then from kernel space to user space, thus

increasing the processing time. String matching function causes a considerable

delay because it requires several complex memory accesses, thus lowering the

performance level. These are the top two performance bottlenecks of Libpcap-based

SPL. Using the Libpcap library for packet handling and string filtering based on

Boyer–Moore algorithm can only handle 8Mbps throughput without packet loss.

This chapter discusses foreseeable solutions for the problems described earlier

using the DPDK and Hyperscan Library. The DPDK bypasses the kernel driver, thus

avoiding interrupt triggers at packet arrival. Furthermore, it supports zero-copy

that allows direct memory access in the user space, enabling high-speed packet

access. This increases the layer-4 session-reconstruction performance by reducing

the packet copying time. The packet filtration was developed using the Hyperscan

library, which is optimized for Intel Xeon processors to match higher throughput

strings. Even though it is not as highly parallel as GPGPU based implementations,

the library achieves a high level of performance within the Intel processor

architecture. Therefore, these two technologies can be used to solve performance

bottlenecks without introducing any new network hardware.

The contributions of this chapter can be identified as follows:

27

Chapter 3. Software-accelerated SCA for SCE

 The design and implementation of an SPL with SCA using Libpcap library.

 The re-engineering of SPL using Intel DPDK and Hyperscan technology is

explained, and SCA performance is benchmarked.

 The performance of the DPDK-based SPL is compared with the Libpcap-based

SPL.

3.2 Implementation of Software-accelerated SCA

SPL was developed to provide new services brought up by the smart community. As

discussed in the introduction, smart community sensors such as IoT devices are

small terminals with limited processing power and memories to be small enough to

get installed anywhere. In some cases, it is difficult to install a new protocol

or give security patches because of its limited function and update cost. Moreover,

the privacy information needs to be either encapsulated or anonymized before the

data gathered by sensors arrives at the servers in a cloud.

SPL adds to the possibilities of smart community services. SPL enables the

prevention of security attacks on the IoT devices by monitoring the communication

streams leading to the devices. SPL can modify the streams without changing the

IP headers. This function is called the SCA. The stream is selected, and the

streamed contents are analyzed and updated if required. The implemented SPL

consists of several modules, such as packet receiving, transmission, TCP stream

reconstruction, L7 decode, static routing, stream filtration module, and

information databases.

SPL packet receiver module accesses the NIC and stores packets in a buffer to

be processed by the TCP stream reconstruction module; the TCP reconstruction

process of a single thread is shown in Figure 3-1. The TCP reconstruction module

accesses the packets loaded by the receiver module and then reconstructs the

packets into separate TCP streams. The reconstructed streams then pass it to the

L7 decode module. Initially, the L7 decode module decodes the HTTP messages and

identifies the HTTP transmission parameters, such as the encoding methods and

their HTTP version. Afterward, it decodes the stream into HTTP messages to obtain

clear text as HTTP traffic information. The reconstructed HTTP traffic then passes

to the stream filtration module, which checks the stream payload for the L7

transmission. The matched L7 traffic is then saved to the information databases

for further processing by service applications such as data anonymization. Here,

we suppose the web-based API or RESTful API to be the protocol between the IoT

terminals and cloud servers. However, this function also extends to other

protocols because the processes were designed using software algorithms.

While the packet payload is processed using the above modules, the header is

used by the routing module to route the packet. The packet filtration module

applies rules to the routing module to determine whether the outbound interface

28

Chapter 3. Software-accelerated SCA for SCE

packet should be forwarded. The transmission module then copies the processed

packets to the NIC for transmission.

3.2.1 Stream processing layer with Libpcap

A Libpcap-based SPL is designed using the Packet Capture library. It uses the

Libpcap offline-packet-dump file or physical network interface card in the

promiscuous mode to input the packet receiver module. Simulations using packet

dump files can be conducted using the pcap_open_offline function. We can access

the interface traffic in live mode using the pcap_lookupnet function.

The transmission module contains a Libpcap buffer to handle the packets. The

default allocation of this buffer needs to be adjusted for complex stream

processing applications. We can achieve the required custom allocation of this

buffer via the pcap_set_buffer_size function. The transmission module accesses

packets using the pcap_loop function. Once the packet processing is complete, the

loop function automatically operates on the buffer’s next packet.

 When the other modules consume the payload, the pcap_callback function

separates the packet header and payload in the packet receiver module, as shown

in Figure 3-2. The TCP reconstruction module identifies the five tuples of the

packet and assigns the separated packets to various TCP streams. The packets are

removed from the buffer after the streams expire in the time given by the stream

timeout.

The L7 decoding module decodes packet payload by analyzing the HTTP header

information. The decoding process uses the HTTP version of the payload, and if

it is compressed with the GZIP algorithm, it is first decompressed. The plain

text is processed using the Boyer–Moore algorithm[81]. The Libpcap-based packet

pre-filtering is applied at the SPL initialization stage to the interface packet

buffer along with the pcap_compile and pcap_setfilter functions. The pcap_compile

function precompiles the rule base to improve the packet filtration performance

in the application. The filtered packets, after reconstruction and decoding, are

then matched using the Boyer–Moore algorithm.

In the Libpcap-based implementation, after the TCP stream reconstruction and

filtration, the matched streams are stored in either the MySQL database[82] or

on-memory databases, and the other streams are discarded after the TCP timeout.

Figure 3-1 Libpcap single-threaded implementation of SPL

29

Chapter 3. Software-accelerated SCA for SCE

The database insertion would not affect the system’s total bandwidth, as the

captured stream content is less than 10% of the total traffic flow.

It is necessary to implement a multi-threaded Libpcap-based SPL instead of a

single-threaded operation to improve the Libpcap-based SPL's performance.

Therefore, a multi-threaded system was developed using the Linux POSIX thread

library[83]. The packets need to be distributed into stream processing threads

to prevent packet loss. A packet of the same stream is assigned to the same stream

processing thread using the five tuples, and a stream process distribution is

achieved. Moreover, it can avoid the inter-threaded share memory access that

deteriorates the stream processing performance.

In the threaded implementation, the pcap_callback function calculated the hash,

then assigned the packet to a stream processing thread. Afterward, read the next

packet in the Libpcap buffer as shown in Figure 3-2. When the selected thread

buffer is full with packet processing, the pcap_callback function waits to select

threads and assignment of a new packet until the last packet is processed and the

buffer becomes available.

Additionally, a thread operation of a single packet copy issued by the

pcap_callbak function automatically cleans the memory. The callback function

copies the packet data to the thread buffer if the thread buffer is empty, and

the process then returns to the pcap_loop function to process the next packet.

3.2.2 Stream processing layer with Intel Data Plane Development Kit

and Hyperscan

The DPDK-based SPL implementation with the DPDK library comprises all the SPL

model components explained in the above section. The DPDK-based SPL process is

illustrated in Figure 3-3, and the generic DPDK application processes are

described in [54].

The major architectural difference in the Intel DPDK-based and Libpcap-based

SPL is the modularization and core assignment for different processes without the

Figure 3-2 Libpcap multi-threaded implementation of SPL

30

Chapter 3. Software-accelerated SCA for SCE

kernel scheduler's involvement. The Intel DPDK-based implementation uses multi-

core support to allocate different modular processes to the CPU cores. In this

architecture, the data transmission and receiving of NIC are allocated to two

separate CPU cores that would poll and push packets toward a network without the

intervention of Linux kernel system calls. The other cores are allocated toward

the forwarding of packets and processing of payload to create streams. Furthermore,

the string matching can be optimized using the Hyperscan library.

In the DPDK-based SPL implementation, CPU cores are divided into worker cores,

receiver cores, and transmission cores. These CPU cores are specifically isolated

for the SPL functions using the isolcpu system call at the kernel scheduler. The

DPDK-based SPL first parses the user application inputs required to initialize

the DPDK runtime environment and SPL specifications. The parsed specifications

are then used to initialize the SPL and DPDK runtime environment with the

rte_eal_init system call. This sets up the DPDK ring buffers, CPU processors, and

logs.

The application initializes the Hyperscan library[84], as shown in Figure 3-4.

The hs_compile compiles the rule base into a binary to use in the string

matching[84]. Moreover, the compiled Hyperscan rule databases need scratch space

to buffer and scan the strings. The scratch space allocation is completed with

the hs_scratch function[84]. Finally, to scan the packet stream, the stream needs

to be opened and scanned with the hs_open_stream and hs_scan function,

respectively[85]. In the Hyperscan stream scan, it is possible to scan packets

as they arrive because the hs_scan function saves the previous packet's match

state to be used for the next packet scanning [85] without creating a copy of the

packet. After matching the Hyperscan, stream matching can be closed and released

using the hs_close_stream function [85]. Moreover, when a match is detected,

Hyperscan calls the on_match function with the specified rule number, allowing

Figure 3-3 DPDK based implementation of SPL

31

Chapter 3. Software-accelerated SCA for SCE

operation on the matched streams [85].

After initializing the Hyperscan and other libraries, such as MySQL, the main

processes call the other modules using the rte_eal_remote_launch DPDK function

[85]. The DPDK-based SPL processor cores are divided into receiver-cores,

transmission-cores, and worker-cores, as shown in Figure 3-5. The transmission-

core will poll the NIC and share the packets to relevant worker cores through

ring buffers. Similarly, receiver cores will receive packets from worker cores

through ring buffers. Receiver cores then push the packets back to the NIC. The

worker-cores are responsible for stream processing and analyzing functions other

than packet receive and transmission. The DPDK enabled NICs to act as a poll mode

driver because the NIC driver is directly mounted on the user space and the user

program polls for packets from the huge page memory allocated for the NIC zero-

copy-packet access. The receiver core in the SPL implementation first polls the

NIC for packet bursts, and then the packets are assigned to worker cores according

to the five tuples, similar to the multi-threaded implementation.

The worker core contains the TCP stream reconstruction, L7 decoding, and string

matching module, along with a database insertion. The packets are first decoded,

similar to the Libpcap-based SPL, and then assigned to Hyperscan-based string

matching. The Hyperscan rule base is precompiled before the runtime for

performance, and the TCP streams that match the Hyperscan rules are saved to

databases housing the stream information. The packet routing is processed using

another module that takes the packet header and updates the MAC address for

forwarding. According to the Patricia tree algorithm, the packet routing module

Figure 3-4 Hyperscan string matching process

32

Chapter 3. Software-accelerated SCA for SCE

forwards the packets, which sends the packets into the packet transmission module

according to the forwarding and access control. The packet transmission module

copies the packets back to the NIC memory, then forwards the packets to the output

port.

Figure 3-5 DPDK library multi-core assignment

33

Chapter 3. Software-accelerated SCA for SCE

3.3 Evaluation

The SPL performance was tested using a Dual CPU workstation configured with the

following specifications:

• Server Type: HPC workstation

• Processor 1: Xeon ES-2620 v4 2.10 GHz

• Number of cores: 8

• Number of threads: 16

• Random Access Memory NUMA 1: 16 GB

• Processor 2: Xeon ES-2620 v4 2.10 GHz

• Number of cores: 8

• Number of threads: 16

• Random Access Memory NUMA 2: 16 GB

• Operating System: Centos 7.2

• Kernel version: Linux v3.1

The hardware usage was constrained in DPDK implementations using the DPDK

environment abstraction layer. SPL is expected to work as routers capable of

working as customer premises equipment (CPE) with 1Gbps of bandwidth and

enterprise core at 10Gbps. Therefore, the setup was tested with a minimal hardware

requirement. A 100GB packet dump was collected from Interop Tokyo 2016 Day 1.

Table 3-1 shows the results of single and multi-threaded implementations tests

for different line rates. The initial testing found that the single-threaded

Libpcap-based SPL implementation could only handle 8Mbps without any packet loss.

The throughput limitation in the worker subprocess is given in Table 3-2, where

the string matching algorithm was operated, and the TCP reconstruction took place.

This reduced the throughput of Libpcap-based SPL, causing packet loss in the

Libpcap buffer. The multi-threaded Libpcap-based SPL implementation was developed

Table 3-1 Experimental Results of SPL

Test

String

Matching

Algorithm

SPL

Bandwidth

Average

Packet

Rate

Threads

Memory

Usage

String

Matching

Threads

CPU

Cores

Libpcap single

thread

Boyer–

Moore
8Mbps 1.5kpps 1 640MB 1 1

Libpcap multi-

thread

Boyer–

Moore
150Mbps 29kpps 16 640MB 15 16

Libpcap multi-

thread

Aho–

Corasick
160Mbps 31kpps 16 640MB 15 16

DPDK-based SPL
Aho–

Corasick
1Gbps 200kpps 6 4GB 2 6

DPDK-based SPL Hyperscan 1Gbps 200kpps 6 4GB 2 6

DPDK-based SPL Hyperscan 10Gbps 1200kpps 16 16GB 14 16

34

Chapter 3. Software-accelerated SCA for SCE

to avoid these limitations, which improved the Libpcap-based SPL bandwidth to

150Mbps and used all 16 CPU cores, as given in Table 1. However, the test

performance was not adequate for the traffic speeds required for a CPE.

Additionally, the TCP streams usually arrive in bursts, overloading a single

core operating on that TCP stream. This causes waiting in the receiver module and

packet loss beyond 160Mbps. Both the single and multi-threaded Libpcap-based SPLs

required 1GB of memory, which is caused by the initial buffer size allocation of

512MB corresponding to the bandwidth and latency of the SPL.

The DPDK-based SPL was then developed to handle the 1-10Gbps bandwidth with

less than 16 CPU cores facilitating the SPL application to function in the fog

as a CPE. The DPDK-based implementation performance and resource consumption were

measured with test data with a line rate of 1Gbps and 10Gbps, as given in Table

3.1. The SPL handled the required 1Gbps line rate without any packet loss using

2GB of huge page allocation and 6 CPU cores. Additionally, the DPDK-based SPL

with Hyperscan library could handle a 10Gpbs line rate without any packet loss

using 16 CPU cores and 16GB of memory.

The DPDK packet buffers can handle a large number of packets, and the buffering

is efficient than the Libpcap packet accessing method. The default page size is

set to be 1GB to increase the performance of the memory access [60] in the SPL.

Additionally, the SPL bandwidth was increased due to the poll mode driver. The

isolcpu command allows user programs to be executed in isolated CPUs. Therefore,

the worker modules operate in isolated CPUs without the intervention of the kernel

scheduler. This increases the operating speed of the worker module. Furthermore,

the Hyperscan string matching algorithm is faster than the other software-based

algorithms [61]. This further increases the bandwidth of DPDK-based

implementations. Though the DPDK-based implementations outperform Libpcap-based

SPL, the CPUs are isolated from the kernel scheduler, causing them to be

inaccessible for other operating system processes. Moreover, the memory allocation

is dominated by the initial DPDK buffer allocation. The allocation is larger than

the Libpcap-based allocation, as the DPDK buffer should handle the NIC buffers

directly by the allocated huge page memories.

Table 3-2 Packet Throughput of SPL

Process Packet Throughput

LibPcap thread sub process 1.7kpps

DPDK Aho-coarcisk worker core 190kpps

DPDK Hyperscan worker core 420kpps

LibPcap I/O thread allocation for packet 32kpps

DPDK I/O packet polling core 2400kpps

35

Chapter 3. Software-accelerated SCA for SCE

The DPDK-based and Libpcap-based SPL improvements are analyzed in terms of NIC

access and packet thread allocation times. The yielded results are depicted in

Figure 3-6. The average value of time is depicted by the horizontal bar. The

Libpcap packet access time is considerably slower than DPDK, where the DPDK

library polls the NIC in an average time of 0.0042ms compared to Libpcap 0.073ms.

This is a considerable improvement from Libpcap when we consider the DPDK library

poll all the buffer packets at this rate. Therefore, the DPDK library zero-copy

capabilities can improve the NIC polling time to 0.0042ms and reduce the latency

by 0.068ms for SPL.

Then the string matching was executed in SPL, and the obtained results are given

in Figure 3-7. The Boyers–Moore, and Aho–Corasick average time needed to process

a packet in Libpcap-based SoR was 0.143ms and 0.106ms, respectively. The worker

core's average time for Libpcap-based implementation is higher than the DPDK

implementation due to lockless buffer access and CPU isolation provided by the

DPDK library. The Hyperscan library-based stream processing time is better than

other algorithms, where 0.05ms reduce average execution time compared to the Aho-

Corasick implementation. This improvement is essential as the Hyperscan process

reduces the maximum time spent on a stream to 0.013ms, resulting in an improvement

of 420kpps per core packet throughput as given in Table 3-2.

Figure 3-6 Execution time of Libpcap-based and DPDK-based SPL transmission and

receive cores

36

Chapter 3. Software-accelerated SCA for SCE

The DPDK-based SoR was demonstrated and tested in Interop 2017 Tokyo [62],

ShowNet [63], and Network and Global City Team Challenge (GCTC) 2017 [64]. In

these demonstrations, we displayed the user preference identification, security,

and elastic location services. In particular, SPL could handle over 10Gbps of the

traffic of relevant internet access of the Interop 2017 users in ShowNet.

DPDK-based SPL is currently operated under the UDCMi project [66] to deploy

smart city services. The usage and operation of DPDK-based SPL were demonstrated

in GCTC [67] by providing privacy for end IoT terminal devices. As shown in Figure

3-8, the DPDK-based SPL captured the personal energy usage data and sent the data

for anonymization and watermarking. Anonymization protects personal information

Figure 3-7 Execution time of Libpcap-based and DPDK-based SPL string matching

process

Libpcap Bayers Moore Libpcap Aho-corasick DPDK-Ahocorasick DPDK Hyperscan

Max 4 3.8 0.2842 0.013547

Average 0.143 0.106 0.053 0.0026

Min 0.0001 0.0001 0.000011 0.000011

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e
(m

s)

Figure 3-8 Data anonymization using SPL

37

Chapter 3. Software-accelerated SCA for SCE

in energy usage data. Watermarking protects the anonymized data from being

published elsewhere. The watermark is used to identify the energy data that was

anonymized by the service. The anonymized and watermarked payload was then sent

to the remote servers. In this transaction, the SPL and the IoT terminal devices

that handled all the privacy-preserving mechanisms were not required to perform

any additional data processing.

DPDK-based SPL was used to identify the type of user in the ShowNet network in

Interop 2017 Tokyo[62]. The implementation contained a service that ran on the

SPL and identified the user types and preferences by the HTTP words and word2vec

algorithm [65], as shown in Figure 3-9. This implementation was carried out in

16 worker cores at a line rate of 10Gbps.

In summary, Libpcap-based SPL implementations are limited by the 160Mbps

throughput and packet access and thread allocation throughput of 32kpps. The DPDK-

based SPL implementations reduce the packet access delay by more than 90%. DPDK-

based SPL implementations require an intel processor with 8 CPU cores and 4GBs

of memory to handle 1Gbps of line speeds and 16 CPU cores and 16GBs of memory to

handle 10Gbps line speeds. In 10Gbps line rates, it is recommended to change the

system default huge page size to 1GBs [60] that increases the page access

performance of DPDK programs. Additionally, the Intel CPUs with SSSE3+ instruction

extension is required to support Hyperscan implementations. The NICs selected for

such a system should also support the DMA technology of the DPDK library [58].

The SPL bandwidth scalability is limited by the per core packet throughput of

0.4Mpps as the reader-writer cores can handle higher packet throughput than worker

cores.

Figure 3-9 Application data identification through word2vec algorithm

38

Chapter 3. Software-accelerated SCA for SCE

3.4 Conclusion

This chapter summarized the implementation, experiments, and test results of

upgrading the SPL to use the Intel DPDK and Hyperscan technology. The results

demonstrate that the upgraded SPL can perform SCA at 1Gbps line rates using only

eight cores. SPL realized this by using DPDK and Hyperscan to carry out SCA in

zero-copy packet buffers. This is a 0.8Gbps throughput increase compared to the

older versions of Libpcap-based SPL. Moreover, upgraded DPDK-based SPL achieved

a 10Gbps line rate with 16 CPU cores. The DPDK-based SPL was demonstrated in

ShowNet to prove its capability to work in core ISP networks.

Moreover, the SPL was demonstrated in GCTC to provide anonymization services

using electrical power usage data. Therefore, the experiments discussed above

and the obtained results demonstrate that the DPDK-based SPL can work as a

gateway device to perform SCA in smart community networks. However, SPLs

applicability was limited as it cannot provide distributed rule change for

multiple smart community services. Furthermore, SPL should support service

virtualization techniques to provide SCA content for multiple services.

39

Chapter 4. SCE node for containerized services

 SCE node for containerized

services

4.1 Introduction

This chapter proposes an SCE node using multi-service SCA (MSSCA) to support

smart community services in conventional hardware systems. SCE node is designed

to execute L7 services without affecting network flows. Therefore, SCE services

can capture and operate on sensor data independent of the network protocols,

location, and IoT nodes. SCE nodes aim to acquire and separate the information

required by different services through MSSCA and then transform it into smart

community services. MSSCA requires SCE nodes to monitor the data streams and use

string matching to acquire the L7 data, that is, the SCA content. Although MSSCA

acquires SCA content from network traffic. it provides additional capabilities

than SCA. MSSCA is designed to support multiple services, remote deployment, and

runtime changes in services. Therefore, MSSCA allows the SCE node to initiate,

terminate, or migrate services at runtime by supporting runtime distributed string

matching regular expression changes. In addition, MSSCA identifies and tags MSSCA

content according to services that allow data isolation. The proposed SCE node

will act as an edge node for separating and sharing the SCA content among the

service containers. SCE node uses conventional and compatible virtualization

through Docker containers for service isolation, deployment, and migration. SCE

node consists of a modular architecture that encompasses a management layer, which

provides service management and deployment.

According to the data format, current IoT protocols use XML-based data

descriptions. Popular smart community-oriented protocols such as IEEE1888 [86]

and OpenADR [87] are composed in XML. It is assumed that an SCE node using human-

readable protocols is required to handle at least four services. Running these

services at the network edge removes the round trip network delay in a cloud-

based deployment. As an example, a text-based protocol such as OpenADR requires

approximately 50 parameters to achieve demand control. Therefore, an edge node

should extract approximately 10–100 parameters for sensing and controlling

dedicated facilities' current status.

 For high-throughput, low-latency network stream data handling, the SCE node

uses a DPDK [42] and Hyperscan [84] library. Furthermore, the service management

layer (SML) and the service application programming interface (API) use Docker

[88] container technology for service management. SCE nodes leverage DPDK with

SML to increase the packet access and forwarding performance of an SPL through

40

Chapter 4. SCE node for containerized services

direct memory access (DMA) of packets and service isolation from the packet

forwarding layer. MSSCA string matching is carried out using the Hyperscan library

[85], [89]. SCE platform MSSCA supports runtime rule change, data tagging, and

data separation using SML and shared memories. This enables faster MSSCA for

containerized services. MSSCA proposes a distributed Hyperscan dictionary change

method using shared memories to support dynamic regular expression changes from

multiple services. Smart community services are supported using Docker containers

because of their deployment speed over virtual machines (VMs) [90]. SML manages

the MSSCA content transfer between the SML and services through inter-process

communication using shared memories. Finally, the service layer API allows the

services to access the MSSCA content to acquire IoT data.

In summary, this chapter makes the following contributions:

 The SCE node's architecture is proposed, which supports smart community

network services using conventional hardware devices.

 MSSCA is proposed, and its implementation and functionality are explained,

which supports distributed regular expression dictionary switching

capabilities at runtime through Hyperscan and shared memory techniques

without interrupting the packet flow.

 MSSCA-based edge node fulfills the requirement of 10 ms maximum delay

for service provisioning over eight services at one node and over 100

string matches to support all target services parameters.

4.2 Implementation of the SCE node

SCE node was implemented to provide MSSCA and service management for deploying

services. SCE node contains three main layers: SPL, SML, and an application layer

comprising a service API. The layered architecture isolates services from the

packet forwarding flow. The layered architecture allows packet forwarding without

any interference from the services. These functionalities are provided by three

major components in the SCE node, as shown in Figure 4-1. SPL processes the

packets, creates the stream data for services, and routes the packets. SML manages

the services and works as a gateway between the services and SPL. The service API

supports the deployment of services by providing library functions to access SPL

and SML. SPL and SML interact to transfer SCA content toward the applications and

regular expressions to SPL. SML interacts with services to transfer the

application of regular expressions and MSSCA content to applications. SML regular

expression transfer allows SPL to operate without being aware of the application

services.

41

Chapter 4. SCE node for containerized services

4.2.1 Stream processing layer implementation with SML communication

SPL is designed to forward the packets while supporting TCP reconstruction and

string matching for MSSCA. SPL is separated from SML such that it allows regular

expression dictionary change at runtime without any significant disturbance to

the routing layer. SPL is designed to provide the following functionalities:

 Static routing

 MSSCA, according to regular expressions of the services

 Pushing MSSCA content toward the SML

 Provides a virtual interface for services to access the network.

SPL's core modules and dataflow are shown in Figure 4-2. SPL uses the DPDK

library DMA to avoid interrupts and memory copy system calls generated by generic

NIC drivers. DPDK-based SPL improves packet access bandwidth and supports lockless

multicore processing of packets. Additionally, the DPDK-based multicore modular

architecture provides scalability by allowing instruction scheduling on a given

processor core without a kernel scheduler. SPL core modules are allocated as

transmission (Tx) cores, receive (Rx) cores, and worker cores. The SPL can adapt

to bandwidth requirements by increasing the number of worker cores.

Figure 4-1 Three layers on the SCE node

42

Chapter 4. SCE node for containerized services

The operation of Rx and Tx cores of SPL is similar to that of the Rx and Tx

cores of chapter 3 implementation. The worker cores are designed to provide

routing and MSSCA and share the data with SML. SPL uses the longest prefix matching

(LPM) rule to calculate the exit port of the packets. The LPM is implemented

through DPDK LPM functions, allowing developers to define static routes for

forwarding packets to different Tx ports. The worker core accesses packets through

the Rx core to worker core ring buffers. The packets are then assigned to an

MSSCA process according to five-tuple information and client-server communication

information through layers with two, three, and four headers. MSSCA uses a stream

reconstruction process similar to chapter 3 implementation. However, the string

matching and multi-service content capture and separation are different from the

SPL SCA.

To achieve faster MSSCA, the SPL scans each arriving packet using the Hyperscan

stream scanning technique. The first decoded packet in a stream is assigned to a

Hyperscan hs_stream_t object. The Hyperscan hs_stream_t object allows the string

matching functions to track the last string matching the stream’s state. The

Hyperscan hs_stream_t object is then called to scan a new packet in the stream

using the hs_scan_stream function. If a match occurs, it will execute a call back

function. The call back function identifies the SCA content through a unique

identifier—a rule identifier (ID) associated with the regular expressions applied

by different services. The MSSCA content is then transferred to the management

Figure 4-2 Implementation of SPL with SML communication

43

Chapter 4. SCE node for containerized services

layer through the SHM buffer of the worker core with the associated rule ID.

Prototype SPL implementation supports TCP and HTTP protocols because IoT

transactions commonly use the HTTP protocol. The captured SCA content will push

into the SML ring buffers. SPL and SML are separated using ring buffers to allow

uninterrupted packet forwarding at SPL. Finally, Tx cores will read the ring

buffers connecting worker cores for forwarded packets and write the packets back

into the NIC using the rte_ring_sc_dequeue_bulk function.

4.2.2 Service management layer

SML is designed as a separate entity to allow SPL to operate without

interruptions and the knowledge of services. Additionally, this allows for a

faster regular expression compilation and switching mechanism without disturbing

SPL. SML provides the following functionalities:

 Pre-compiling and managing regular expression dictionary

 Communication and management of SPL

 Facilitating communication for services using shared memory and UNIX sockets

 Sorting and distributing MSSCA content into relevant services

 Facilitating service initialization, termination, and migration

SML contains three main threads for MSSCA content sorting, rule management, and

service communication, as shown in Figure 4-5 Processors of SML. The processes

are isolated using threading for continuous delivery of MSSCA content to services

without any interruptions. Additionally, a separate communication thread is

required to communicate with multiple services and detect new service deployments.

Fast string-matching libraries such as Hyperscan use precompiled regular

expression dictionaries to improve performance. Therefore, rule pre-compilation

prevents dynamic runtime rule change in a string-matching library without stopping

the string matching and packet forwarding processes. In addition, regular

expression management and rule pre-compilation require significant processing

time. This becomes a significant issue for network applications such as SCE

services, where multiple services try to change the string matching rules of the

network flow. SCE node resolves this by separating regular expression dictionary

management and string matching to SML and SPL, respectively. The layer separation

allows SPL to process and forward packets without being aware of the management

and pre-compilation of regular expression dictionaries.

The proposed remote dictionary change method separates stream processing and

dictionary compilation from SPL and SML's isolated processors. However, the

compiled dictionary is shared with SPL through shared memory buffers of SHM active

rule DB and SHM standby rule DB, as shown in Figure 4-3. The proposed rule change

44

Chapter 4. SCE node for containerized services

method is shown in Figure 4-4. Once an application adds or removes a regular

expression rule, SML will add or remove its rule manager rule. Then, the SML rule

manager requests SPL to release the SHM standby DB shared memory.

Further, the SML process compiles the regular expressions with the hs_compile

function to generate an hs_database structure. However, this structure needs to

be serialized in order to be shared with a remote process. Therefore, the compiled

rule DB is serialized on the SHM standby DB shared memory location. Then, the SML

process informs SPL about the regular expression dictionary change. The SML

dictionary change allows the SPL process to de-serialize the new rule database

and allocates a scratch space for string matching with the new rule DB. Finally,

SPL changes the SHM standby rule DB to the active state and the SHM active rule

DB to the standby state. This methodology allows remote dictionary change in SCE

nodes without any significant interruptions to the string matching process.

The rule manager's primary processors, stream sorter, and communication threads

are shown in Figure 4-5. The SML allows continuous content delivery and

communication through multi-threading. The communication thread continuously

listens to socket communication from the services. It also initializes the

services and creates shared memory for communication and MSSCA content management.

Further, the communication thread stores any service requests in a shared

structure. The rule manager thread consumes the requests in the shared structure.

Figure 4-3 Implementation of service management layer

45

Chapter 4. SCE node for containerized services

Services that need to acquire MSSCA content for a given rule set should initially

communicate with SML to apply the ruleset to SPL. Then, the rule manager thread

pre-compiles the Hyperscan database and updates the rule database. Following

initialization and rule application, the communication thread sends a reply to

the service. Once the application receives this message, it can use threaded API

calls to communicate with SML without interrupting the service application. The

stream sorter thread sorts the MSSCA content according to the service using the

app information. The rule manager thread is separated from the stream sorter

thread because of the higher processing time of dictionary pre-compilation. Stream

sorter and communication threading allow multi-service communication and

continuous MSSCA content delivery to the services.

Figure 4-4 Runtime rule change process of MSSCA

46

Chapter 4. SCE node for containerized services

4.2.3 Service container API

A Docker container environment provides service isolation, lightweight service

development, and migration for applications. The service API is designed to enable

easy deployment and access to network traffic with threaded UNIX socket

communication. Additionally, the API automatically converts the stream content

into a readable format that allows quick filtration of the SCA content. The

service API provides the following main functionalities:

 Communication with SML

 Maintain signaling with the SML

 Pull stream content from ring buffers

 Support for sockets and share memory.

In a typical service deployment, the API InitClient function initializes the

service by creating a UNIX socket toward the SML socket server, sending

application initialization requests, and listening to SML's acceptance and

completion responses in the sample application process of Figure 4-6. Subsequently,

applications can add any regular expressions to the network flow by the SendRule

function. The SendRule function sends the regular expressions to SML, and if the

Figure 4-5 Processors of SML

47

Chapter 4. SCE node for containerized services

regular expression is compatible with the Hyperscan library, SML will reply with

a rule-accepted acknowledgment. Once this is received, the application can

initiate data processing functions. Then, the data processing functions can access

the sensor data through the SML buffers. The application program then uses API

calls to access the MSACSA content for processing. The MSSCA content is associated

with a structure to identify its information, such as five-tuple data. The MSSCA

content structure allows services to identify network flow details and sensor

details for data manipulation or communication with the sensor or cloud services

through virtual interfaces. Furthermore, the API contains additional support

functions to create sockets and other ring buffers for service-to-service data

buffering.

Figure 4-6 Process of a sample application

48

Chapter 4. SCE node for containerized services

4.3 Evaluation

The SCE node was tested to confirm its scalability and limitations in supporting

IoT services at 1–10 Gbps line rates. The SCE node performance was tested using

a dual CPU workstation with the following configuration:

 Server Type: HPC workstation

 Processor: Xeon ES-2620 v4 2.10 GHz x2

o Number of cores: 8

o Number of threads: 16

 Random-access memory NUMA 1: 16 GB

 Operating System: Centos 7.2

 Kernel version: Linux v3.1

The SCE nodes performance was compared with the f-stack node, which uses DPDK

for network applications in the host machine. The f-stack node provides a DPDK-

based network stack for Linux servers. Additionally, the f-stack library is

scalable with DPDK core assignment, similar to the SCE node. Therefore, a fstack-

based web server [58] is selected to compare SCE nodes’ for measuring performance

under different numbers of DPDK CPU core assignments. The results of the f-stack

server and SCE node are given in Table 4.1. In this test, the SCE node ran a

single service to gather all HTTP traffic and classified 10 HTML tags. SCE node

and f-stack require four CPU cores to achieve a 1 Gbps line rate. The f-stack

node can achieve 1.43 Gbps throughput using four CPU cores, whereas the SCE node

can only achieve 1.0 Gbps. The performance limitation of SCE under four core

assignments is because of its architecture. In the SCE platform architecture, two

cores are always assigned to NIC transmission and reception. The core assignment

allows the SCE node to poll the NIC without any interruptions from the stream

processors. Therefore, in four core assignments, only two cores are used for the

MSSCA analysis, while the others are assigned for NIC polling. The Rx and Tx core

assignments limit the performance of SCE in four core assignments. However, the

results show that SCE achieved the required 1 Gbps bandwidth with only four CPU

cores. Therefore, it is possible to run SCE on machines with four CPU cores to

handle a line rate of 1 Gbps.

Furthermore, SCE achieves a 10 Gbps line rate using 16 CPU cores, whereas the

f-stack only achieves 5.15 Gbps, illustrating the scalability of the SCE for a

higher number of CPU cores. The scalability is considerably improved in SCE as

it uses a modular architecture to support MSSCA. However, when compared with DPI

solutions, SCE shows a limited performance than nDPI in reference [49], which

provides a 10 Gbps packet capturing throughput for a single-core Xeon processor.

However, nDPI does not offer any software isolation techniques such as VMs or

containers that generate overhead on the nDPI performance. In addition, IoT

49

Chapter 4. SCE node for containerized services

services require service isolation through containers or VMs to provide security

for service applications. In contrast, the container-based SCE node outperforms

VM-based vDPI, with its bandwidth limited to 864.77 Mbps [50] per instance.

Additionally, the vDPI-based solution would require DPI processing in each VM,

causing overhead because of the DPI of the same packets in multiple VMs that run

different services.

Table 4-1 SCE node and f-stack throughput for different core allocations

CPU

cores

Memory

Allocation

F-Stack

throughput

SCE

throughput

4 4 GB 1.43 Gbps 1.0 Gbps

16 16 GB 5.15 Gbps 9.8 Gbps

SCE node’s MSSCA reduces the data transfer for services by filtering other L7

protocols. The experimental results show the MSSCA content results in around 10%

of the total traffic under testing, as packets contain unrelated data that will

not match any MSSCA rules, such as XML tags. Therefore, the SPL-based architecture

reduces the amount of data transfer toward the services to the percentage of

sensor data in the line rate. This is an advantage over packet sharing methods,

where all packets need to be routed through all services. Additionally, the MSSCA

content provides L7 streams of IoT traffic directly used by smart community

services.

Table 4-2 Delay of the components of the SCE node

Component
Average

Latency

Maximum

Latency

SPL 0.07 ms 0.09 ms

SPL to SML 0.1 ms 0.12 ms

SML to service 0.3 ms 0.5 ms

Total service latency 0.47 ms 0.71 ms

SCE node should be able to support latency-sensitive services at the SCE.

Therefore, the latency of the SCE node was measured to verify the delay of each

of its components. The results show that SPL stream reconstruction and Hyperscan-

based string matching have a maximum delay of approximately 0.09 ms. Additionally,

a 0.4 ms delay was needed to sort and transfer data from the SPL to a service.

The 0.4 ms delay is caused by the MSSCA content buffer between the SPL and service.

The total latency of the SCE node for a service to capture SCA content from NIC

is 0.71 ms, as given in Table 4.2. Therefore, the results demonstrate the SCE

50

Chapter 4. SCE node for containerized services

node’s capability to support delay-sensitive services with latencies less than

1 ms. SCE node’s latency can be further reduced by reducing the SPL to SML and

SML to service buffer sizes. As an example of a smart grid service, IEC 61000-4

permits a 10 ms delay in control, with 9 ms for request transmission, reply

transmission, and service application, as the SCE node only needs 1 ms time to

extract and provide MSSCA content to the service.

The proposed distributed runtime dictionary change mechanism's performance was

measured to determine its effect on the MSSCA. The performance was measured using

HTTP packet filtering, where SML would change the string matching rules at runtime

to produce a new rule dictionary and measure the time when the MSSCA was

interrupted. The Hyperscan runtime compilation takes approximately 100 ms.

Therefore, rule compilation would cause significant delays in the MSSCA. However,

the proposed method compiles the rules in SML, allowing continuous MSSCA. The

compiled rule database is serialized and de-serialized at the shared memory

between SML and SPL.

The MSSCA analysis was interrupted only for the dictionary change in the proposed

method. The interruption time in the SML and SPL to change the ruleset was measured

for different rule sizes, as shown in Figure 4-7. The proposed method changes the

database between 50 µs to 300 µs for a rule set size ranging from 100–1500. The

time taken for dictionary change linearly increased, as expected, because of the

increase in dictionary size and serialized database size. However, the actual

delay of 0.3 ms is negligible, as only 0.2 Mb of the packet buffer would be

Figure 4-7 Runtime rule change time in MSSCA

51

Chapter 4. SCE node for containerized services

consumed for a 1 Gb link within the dictionary change process. The signaling time

between SPL and SML has an additional overhead of approximately 20 µs because of

the time to read and write the completion flags and other control information to

and from the shared memory. The signaling time is also negligible and does not

significantly affect the performance of SML. Therefore, the proposed Hyperscan

distributed rule change allows multiple applications to dynamically apply regular

expression rules for scanning any disturbance to the packet flow.

The MSSCA performance under regular expression dictionaries of different sizes

was measured to confirm the limitations in the SCE node for a different number

of rules. The results show that the rule set size is inversely proportional to

the scanning rate, as shown in Figure 4-8 and Figure 4-9. The rule match rate

increases from 0.2023 matches/kB to 0.4095 matches/kB for 100 rules and 1500

rules, or 10 to 150 regular expressions per service for ten services, respectively,

as shown in Fig. 4-8. Therefore, the SCA throughput drops from 10 Gbps to 6 Gbps

for a total of 1500 rules. This drop is expected because of the increase in the

rule-matching rate. However, the results confirm that the SCE node can operate

at 10 Gbps for ten services with ten rules per service or 100 accumulated service

rules. Furthermore, the SCE node can manage the throughput of 6 Gbps for 1500

accumulated service rules.

Finally, the transfer of MSSCA content from SPL to services was tested to measure

the service support capability of the SCE node. It was measured by adding a

default rule dictionary to transfer all data to all SCE node services. The SCE

Figure 4-8 MSSCA bandwidth for a different rule set sizes

52

Chapter 4. SCE node for containerized services

node’s MSSCA content transfer rate is around 1.1 Gbps per service, and the data

rate drops to 500 Mbps when eight services require the same data, as shown in

Figure 4-10. The decline in bandwidth was caused by the eight copies generated

Figure 4-9 MSSCA match rate for a different rule set sizes

Figure 4-10 SML content sharing bandwidth for multiple applications

53

Chapter 4. SCE node for containerized services

for the same MSSCA content. This transfer rate is adequate for MSSCA content

handling because the content rate is expected to be about 10% of the line rate,

as the content matched by regular expressions in the tested traffic was lower

than the total traffic in the line. Moreover, the results confirm that the system

can share data at the required 1 Gbps line rate when services use different MSSCA

content.

4.4 Conclusion

This chapter summarized the architecture and performance of the proposed SCE

node using DPDK, Hyperscan, and Docker technologies. The proposed SCE node employs

MSSCA and container technology to support multiple smart community services at

the edge. SCE node allowed MSSCA content to be directly transferred to services

without network packet processing at the service containers. The SCE node’s MSSCA

achieved a throughput of 1–10 Gbps with 4–16 CPU cores in conventional hardware

systems. In addition, the SCE platform proposed a distributed rule change method

for the Hyperscan library to change regular expression without affecting network

flow. The SCE node achieved a 10 Gbps SCA throughput for 100 accumulated rules,

which allowed more than ten rules per service. In addition, the proposed

dictionary change method needs less than 0.3 ms to execute and does not affect

the performance of SPL network flows. SCE node supported eight similar services

while providing a 500 Mbps MSSCA content bandwidth for each service, where each

service can support 5000 sensors with a 100 kbps bandwidth. Additionally, the

total maximum delay of the SCE node is maintained at less than 1 ms, allowing

delay-sensitive services to operate at SCE nodes. Therefore, SCE nodes show

adequate performance and applicability in smart community networks to support

multiple smart community services at the network edge using MSSCA.

54

Chapter 5. Consistency guaranteed service migration

 Consistency guaranteed

service migration

5.1 Introduction

Container migration is the process of moving a container between computers or

storage devices. Migration technology has been developed to realize flexible

services and to distribute services in the cloud dynamically. In live stateful

container migration, packet processing services should reduce the downtime for low

latency services. Therefore, migration time should be reduced to minimize the

overall downtime of application services. Some studies intend to decrease migration

time by reducing bandwidth usage [70], [71]. They reduce bandwidth usage by

separating the container layer's image layer and container layer and transferring

only the container layer toward to destination node. To resolve these in smart

community services, we need a migration method that considers throughput and

downtime while supporting latency reduction and data consistency. It is assumed

that downtime below 10s is acceptable for container live migration at fog[91].

The currently available migration methods cannot support multiple services on

a single node because it cannot detect the specific data flow. Furthermore, since

VNF migration methods change the network flow, the other services run on the same

node are affected by modifying the network flow. Therefore, a multi-service

supported migration solution is required to support smart community services while

minimizing the buffered data. Fog nodes such as SCE nodes could dynamically

distribute services to multiple nodes to accommodate network loads. The migration

of service containers is required to achieve dynamic reconfiguration in smart

community networks. The available container migration techniques focused on

resource utilization and bandwidth management[70], [71]. However, SCE should

support consistency guaranteed one to N migration for containerized network

services.

A novel migration method must support SC service migration and provide data

consistency, network flow preservation, and one-to-many migration to resolve the

above issues. This chapter proposes multiple migration methods for the above

scenarios on SCE platforms. The proposed stateful migration does not modify the

existing network flow or affecting other services. Moreover, in hierarchical smart

community networks, one-to-many migration is supported to handle overloading

conditions. The proposed adaptive migration method consists of the following

migration methods.

 Consistency Guaranteed Migration (CGM)

 One to N Consistency Guaranteed Migration (O2NCGM)

55

Chapter 5. Consistency guaranteed service migration

CGM and O2NCGM use Layer Leveraging Migration (LLM), a method designed to

minimize the migration time and network bandwidth usage for container migration

by reducing image layers transmitted to destination nodes. The LLM minimizes the

downtime by separating the container and image layers. The CGM was designed to

guarantee network consistency by communicating and buffering network flows between

a source node and destination nodes using the SCE service management layer.

Through CGM, and O2NCGM is created to support a multi-client or one-to-many

consistency guaranteed migration. The contributions of the section are the

following.

 Provides a container migration technique that reduces migration time and

guarantees service consistency without affection for other services in a

node.

 One-to-many migration method to handle dynamic loads The proposed container

migration method offers migration without modifying the existing network

flows.

These migration methodologies expect to achieve guaranteed service consistency

without affecting network flows. CGM strategy guarantees network consistency.

O2NCGM provides one-to-many migration with all the above features. The strategies

are separated to provide easy applicability in different network scenarios.

5.2 Implementation of consistency guaranteed

migration

SCE platform and Docker migration architecture are shown in Figure 5-1. The

system consists of four main components: SPL, SML, Docker daemon interface (DDI),

and APP service API. IoT sensor information and data tags are used in the scanning

process to differentiate the data. The matched streams are transferred to the

service buffer. This process prevents any changes to network flows even under

migration as the migration process uses the service buffer to manage the network

consistency. SML manages the service containers in a single host and executes

commands such as container deployment through sockets. SML manages the state

information of services and the state of traffic flow toward the service. DDI

contains an API to control images and containers in a node. DDI RESTful API allows

administrators to deploy, terminate, or migrate the services using SML.

In the prototype implementation, SPL matches any stream with a rule such as

“XML,” “<title,” and “measurement.” SPL captures any associate streams with

these keywords and transfers them into the service buffers. The captured streams

contain five-tuple information, layer four-stream information, and time stamp

data to identify the flow information. The service buffers use a shared memory

structure to communicate between the user space and the network flow. Service

buffers are similar to network packet buffers that exist in NFV infrastructure

nodes. The proposed approach such system containers to migrate with shared

structures with the host machine while keeping the network consistency.

56

Chapter 5. Consistency guaranteed service migration

LLM minimizes data transfer between the migrating of container image layers in

source and destination nodes. Figure 5-2 shows the migration flow of LLM. LLM

consists of two steps: layer ID remapping and container layer extraction. The

layer ID remapping is used to reduce the migration time of the live migration.

Additionally, container images are already distributed to target nodes through

the Docker registry to quickly execute container layer extraction without image

transfer between the source and destination nodes.

In the Docker migration process, the container should send the container image

to the destination node to restore it in the last state. The Docker containers

are unable to restore checkpoints on a different host with only container image

information. If the container restores in a different host, it causes a mismatch

of layer IDs, thus failing the destination node's restoration process. The layer

ID is a unique local ID of containers with different states of layers in their

host machine. In the run time, a cache ID is used instead of a layer ID. These

two ids are generated through SHA256, and Docker daemon use cache ID in the

restoration process. Therefore, this ID should be similar in the destination node

to restore the container. In this method, the Docker container cache IDs are

remapped with layer IDs in the source. The remapped layer ID can then be directly

used to check the image and layer availability in the target node for the migrating

Docker container. The overlay2 storage requires relinking the symbolic links

generated using the new layer ID. Finally, the Docker daemon is restarted in the

source node to update this information in the migrating container. Before

migration, the remapped cache IDs are updated in the target Docker node allowing

correct restoration of the container file system after migration.

Figure 5-1 Architecture of SCE based Docker migration

57

Chapter 5. Consistency guaranteed service migration

Once the layer ID remapping is completed, the Docker host could start the

migration process. The process starts with checkpoint the live container. Docker

checkpoint freezes the state of the container state. However, the checkpoint

container cannot directly migrate without the container configuration files, layer

files, file mount information, and directories containing volumes. Docker has

different directories about the image layer and the container layer. LLM copies

container running state, layer, mount information, and volume files to the

destination node, then relinks the files to the correct location using layer ID

mappings. Afterward, the destination node will restore the container using already

available container images and layers using the relinked symbolic links. In

conventional migration, source and destination should send container image and

all the layers for migration, causing high overhead on the source-destination

link. This method reduces the bandwidth consumption, downtime, and migration time

by minimizing the data transaction between the source and destination nodes.

Figure 5-2 Process of LLM migration

58

Chapter 5. Consistency guaranteed service migration

5.2.1 Consistency guaranteed migration

The smart community services should handle network stream consistency under the

migration. Therefore, Docker migration should handle shared MSSCA content and

service states to migrate and process data consistently. The packets are

identified on the SML buffers using stream identifiers. In the proposed method,

packets already passed the source and still has not arrived at the destination

should be stored and handled to guarantee consistency, as shown in Figure 5-3.

Figure 5-3 example shows i number of packets upstream from source to destination

and j number of packets downstream from destination to source. In CGM, sources

and destination nodes identify the read and write offset values of services

buffers using the SML and APP information.

Additionally, SML creates temporary buffers to store the streams before the

migration. This preserves the consistency of streams and avoids packet loss.

Furthermore, the layered design of SCE continuously forwards the network flows

Figure 5-3 Buffering of traffic before migration

Table 5-1 Nomenclature for consistency guaranteed migration

Symbol Description

Bsrc App. Service buffer at src

Bdst App. Service buffer at dest

Pdir(i) Network packet i in a direction (s2d: src-dest, d2s:dest-src)

qdir Destination buffer packet (s2d: src-dest, d2s:dest-src)

x Buffer upstream offset at src

y Buffer downstream offset at src

59

Chapter 5. Consistency guaranteed service migration

while buffering packets in SML for services in temporary buffers. Network stream

unique identifiers and saved offset values are used by the migrated services when

selecting the buffers' initial offset values.

Figure 5-4 shows the complete migration flow of CGM. The CGM flow contains

additional steps to guarantee consistency. CGM initially gather state metadata

of service applications to create temporary service buffers in the destination

node. Afterward, the destination SCE applies the stream capturing rules in the

destination node and stores the SML buffers' network streams until the service

is migrated and initialized at the destination node. SML removes temporary service

buffers and application rules once the buffer is synchronized in source to

destination and destination to source flows. Afterward, LLM migration starts as

the service at the source node stops accessing the IoT data buffers. After the

LLM migration, the migrated Docker service will use the state information to

remove duplicate IoT data and restore the correct offset values using IP flow

information. In comparison to the VNF migration SCE platform reduce the network

flows that buffers under migration by service-based flow identification.

Furthermore, container layer separation reduces the migration bandwidth further

by reducing the downtime under migration.

Figure 5-4 Process of CGM migration

60

Chapter 5. Consistency guaranteed service migration

5.2.2 One to N consistency guaranteed migration

O2NCGM extends CGM allowing migration from one to multiple hosts. In O2NCGM.

The proposed method first uses multiple threads to gather state information of

applications and IoT data buffers through SML similar to CGM. Then SCE SML creates

IoT data buffers on all destination nodes and stores new packets on the same IP

flows on the temporary buffers similar to CGM. Afterward, the system sends the

buffered traffic to all the target nodes. The target nodes remove the duplicate

traffic using their local offset values and IP traffic flow details. Finally, the

system initialized the migrated containers through LLM using multiple socket

connections.

5.3 Evaluation

The proposed CGM and O2NCGM methods were evaluated using three SCE nodes with

the specification given under Table 5-2.

The network consists of two edge nodes and one cloud node connected in a hub-

spoke architecture. First, the effects of the LLM method is evaluated for

migration time and service downtime. LLM and conventional migration resource usage

were evaluated using three different sizes, as shown in Table 5-3. The busy box

container is a lightweight service container, while the elastic search and

original application are extensive memory-intensive services. The original

application reads data of IoT temperature sensors in the network. Conventional

migration methods consume additional data in migrating due to container image

layer migration. LLM reduces this data usage by only transferring the container

layer and memory data between the target nodes. Therefore, LLM can be used to

reduce the overall data transaction in container migration.

Migration time and service downtime under the different bandwidths were

Table 5-2 The amount of migration data of containers

(KB) Methods Total Image
Container

FS Checkpoint Mount Others

Busybox
LLM 203 1,160 0.14 195 0.20 8.57

Conservative 1,357 1,160 193 0.00

Elasticsearch
LLM 2,357,931 486,000 33.72 2,357,886 0.20 10.65

Conservative 2,847,739 486,000 2,361,739 0.00

Original App
LLM 618 1,070,000 1.24 311 305.50 0.20

Conservative 1,070,311 1,070,000 311 0.00

61

Chapter 5. Consistency guaranteed service migration

evaluated to compare LLM and conventional methods' performance. Link bandwidth

was limited to 10, 100, 1000 Mbps, respectively, and the migration performance

was evaluated.

Figure 5-5(a) shows the comparison of the migration time of Busy-box. LLM has a

1.8s longer migration time than the conventional method, and service downtime was

increased by 2.62. The downtime is caused by the smaller size of the container

image where the LLM container isolation and reload process cause more overhead

than the amount of data reduced by the layered migration. Layer migration shows

that the LLM causes additional overhead for shared buffer isolation in a container

for small image sizes. However, LLM provides superior performance in the case of

large containers such as elastic search Docker containers.

Figure 5-5(b) shows the comparison of the migration time of Elasticsearch. LLM's

migration time was 10.8% or around 200s lower than the conventional method.

The migration time of LLM was 5.61 sec on average, while conventional methods

were 307sec (10 Mbps), 34.7 sec (100 Mbps), and 17.7 sec (1000 Mbps). In the LLM

(a) Busy Box (b) Original data collection application

Figure 5-5 LLM migration results for BusyBox and original application

Table 5-3 Details of the evaluation environment of container migration

Sensor App Intel NUC

CPU Intel® CoreTM i3-6100U CPU @ 2.30 GHz

Total memory 8GB

OS Ubuntu 16.04.4 LTS

Intermediate node Shuttle DH310

CPU Intel® CoreTM i7-8700U CPU @ 3.20 GHz

Total memory 32GB

OS Ubuntu 18.04.1 LTS

Docker 17.09.1-ce

Criu 3.7

62

Chapter 5. Consistency guaranteed service migration

method, the original network application only migrates the packet buffers and the

packet processing program compared to the large container image with all

programming libraries. Therefore, LLM can considerably reduce the migration time

compared to conventional methods when container applications contain more than

400MB images.

Finally, all CGM and O2CGM methods were compared with conventional methods at

1Gbps, as shown in Figure 5-6.CGM and O2NCGM reduce service downtime compared to

the conventional method. The proposed method reduces migration time using layer

migration, where conventional migration pushes and pulls a full container image

between the target nodes. However, the proposed migration methods incur overhead

in container reloading due to the LLM's complex reload process. Furthermore, the

proposed CGM and O2CGM increase migration time due to data synchronization. In

addition, O2CGM migrates a single service to two nodes causing additional overhead

in data transactions and buffer synchronization. However, the proposed methods

provide better migration time compared to conventional container migration.

Additionally, the proposed CGM and O2NCGM migration achieve zero data loss without

affecting the network flows.

5.4 Conclusion

This chapter proposed the CGM and O2NCGM migration that supports consistency

guaranteed multi-container migration for smart community services. The proposed

migration method handled network consistency without affecting the network flows.

Container layer separation was used to reduce data transactions between the nodes

in container image layers. Furthermore, CGM was applied with LLM to achieve zero

packet loss while reducing the network downtime by more than 10% compared to

Figure 5-6 Comparison of conventional, CGM, and O2NCGM migration

63

Chapter 5. Consistency guaranteed service migration

conventional methods. The CGM migration used container layer separation and

service-based flow identification to reduce the data transfer between the source

and destination SCE platforms. The overall results show that the CGM and O2CGM

reduce the migration time by more than 10% for containers with image size higher

than 400MBs. Additionally, O2CGM provides consistency guaranteed one to N

migration to support service distribution under different network loads. Through

CGM and O2NCGM, the SCE platform improved its applicability to support smart

community services.

64

Chapter 6. Computational delay aware service function chaining

 Computational delay aware

service function chaining

6.1 Introduction

SFC has shown an increased interest due to mobile edge computing [99] and fog

computing [10], where computing resources are placed closer to the network edge

to improve network services' performance and efficiency. SFC classifiers

differentiate the traffic based on requested services and other predefined rules.

The SF instance selection for a particular traffic flow can be complicated

because there can be multiple SFs in the network due to the reliability, locality,

and load distribution of smart community networks. The SFF is used to forward

these packets to the next SF through the network according to the encapsulated

SFP data. The SF proxy is used when VNFs/SFs do not understand the SFC header;

here, the proxy handles the SFC header data, forwards the packet to the SF for

task completion, and applies processes to the SFC header once the packet returns

from the SF instance. SFC traffic is steered using a single classifier and per-

hop classifier techniques. One classifier is used in a single classifier to

steer the traffic through the SFC using special headers. The per-hop classifier

steers the traffic per SF [92]. The SCE service chaining operates as a data

plane SF forwarding rather than management plane orchestration and

classification functionalities.

SCE nodes should manage the distributed computing resources to provide optimal

performance using services run as VNFs, considering the sensor traffic generated

through terminal devices. SCE service VNFs are distributed in multiple data

centers or SCE nodes to create efficient network performance considering the

latency, cost, and network locality [93]. SCE service VNFs can be distributed

among available SCE nodes to create a dynamic system with distributed service

nodes.

The distribution of multiple VNFs in multiple fog nodes or data centers causes

complexity in creating SFCs. Although a single data center is usually homogenous,

an environment with multiple data centers and fog nodes create a heterogeneous

computation resource with different data centers and fog nodes having hardware

resources with different capabilities. Therefore, simple selection such as

round-robin or random selection can lead to the overloading of some VNFs

instances lacking proper computational capabilities. These overloads can cause

service level agreement (SLA) violations and lead to the poor performance of

VNFs. Additionally, the distribution of SFs requests without considering the

network infrastructure can lead to unnecessary overheads on the network traffic

65

Chapter 6. Computational delay aware service function chaining

where VNFs further away from the source path get selected for the SFCs. With the

rapid growth of IP traffic over networks, overhead network traffic has become

an essential factor. Furthermore, this additional traffic and NFVI techniques

require proper management of hardware resources to provide reliable services.

An optimal SFC selection algorithm that provides reliable services.

In fog and multi-data center environments such as smart communities,

computation resources are distributed among datacenters or SCE nodes. The data

centers are usually separated by long distances and create network delays when

the traffic transfers between the data centers. In contrast, SCE nodes have

lower network delay in between each other. Therefore, an SFP selection can cause

traffic to be transferred through one of the VNF instances, causing intra-node

or inter-node traffic. Traffic flow depends on the SFP creation algorithm. This

section considers an equal VNF distribution among all the SCE nodes for

performance measurement of the proposed algorithm without considering dynamic

management and orchestration of VNF instances. The SFC algorithm distributes the

requests to different VNFs by finding the best SFP.

The proposed algorithm uses VNF instances’ computation capabilities, load,

and network delay for SFC's optimal execution. It uses periodic proactive data

gathering, as shown in Figure 6-1. The systematic data collection reduces the

end-to-end delay introduced by a completely reactive VNF data gathering algorithm

such as the OPS [78]. Additionally, such an algorithm improves the performance

compared to a completely passive algorithm such as the round-robin algorithm

using the computational capability data of the VNF instances. The algorithm was

tested in the CloudSim [94] simulation environment and compared with the Nearly-

optimal service-function path algorithm (NSP) [77] and the optimal path selection

algorithm (OPS) [78].

Figure 6-1 SFC SFP periodic update collection

66

Chapter 6. Computational delay aware service function chaining

The contributions of this chapter can be identified as follows:

 Provide an implementation of a novel SFP selection process for SCE

 Evaluate and compare SFP creation methods in cloudsim environment

6.2 Implementation of optimized computational

delay aware service function chaining

The convention of symbols used in this chapter is described in Table 6-1. The

cloud environment contains the set of nodes: Y. Each SCE node y ∈ Y is considered

to be situated at a known distance from each other with a static average network

delay. Each SCE node would likely consider having a complete fiber network inside

it; therefore, the inter container delay is considered zero. In SCE nodes, inter

VNF is zero as it would be a host on a single machine. The nodes support instances

of different SFs. Each SF x ∈ X has at least one or multiple instances of VNFs

in each fog nodes y, known as Sxyj. Each instance is executed on a different

container, and the VNF has an allocated computation rate of Cxyj. The total

calculation capacity of a node for an SF x is given as Cxy.

Similarly, the load values of a VNF instance and fog nodes for SF x is given

as Lxyj and Lxy, respectively. This study assumes that each node y contains

homogenous VNF instances of SFx. Different nodes allocate heterogeneous resources

for VNF instances of SFx.

The proposed algorithm operates as a request manager/broker in the CloudSim

environment. The cloud manager receives the SFC requests with different SF

lengths and SFs, such as SF1 →SF3 →SF2. The cloud manager contains the network

delay within itself and between the nodes. Additionally, the cloud manager

periodically requests computation rates from node managers for different SF

types in X. The cloud manager requests computation rate data from all the known

nodes y ∈ Y for each SF x ∈ X. This data includes the total allocated

computation rate of a node for SF x and a list of VNFs, and their individually

allocated computation rates in ascending order. After the initialization, the

cloud manager periodically requests the computation rates to check for any SCE

node changes.

67

Chapter 6. Computational delay aware service function chaining

Figure 6-2 Proposed SFP process

68

Chapter 6. Computational delay aware service function chaining

The proposed algorithm uses a computation rate based number of requests to

calculate the approximate task completion rate for a particular node and for

VNFs using Equation 6-1 and Equation 6-2. The load is updated when a new SFP

calculation is carried out.

𝐿𝑥𝑦𝑗 = {
𝐿𝑥𝑦𝑗 − (∆𝑇)𝐶𝑥𝑦𝑗 , 𝐿𝑥𝑦𝑗 − (∆𝑇)𝐶𝑥𝑦𝑗 > 0

0, 𝐿𝑥𝑦𝑗 − (∆𝑇)𝐶𝑥𝑦𝑗 ≤ 0
 Equation 6-1

𝑅𝑥𝑦 =
(𝐿𝑥𝑦+1)

𝐶𝑥𝑦
 , 𝑅𝑥𝑦𝑗 =

 (𝐿𝑥𝑦𝑗+1)

𝐶𝑥𝑦𝑗
 Equation 6-2

The load values are stored locally in the cloud manager. Rxyj is set to MaxDouble

when a node does not support SFx. The approximate task completion rate is used

to load balance and approximate the SFC completion time.

The cloud manager calculates the network delay between two SFs using network

delay between the nodes, as shown in Equation 6-3. The cloud manager ignores the

delay within a node because it is negligible compared to the nodes' delay.

Table 6-1 Nomenclature of SFC

Symbol Description

X Set of SFs in SFC

Y Set of nodes in the Environment

Ix Instruction Length of SF x

Sxy Set of SF abstracts of x ∈ X in node y ∈ Y

Sxyj SF instance j of type x ∈ X in node y

Cxy Computation rate of node y for all SFx instances

Cxyj Computation rate of SF instance SFxyj

Lxy Load of node y for all SFx

Lxyj A load of SF instance SFxyj

Txx’ Communication Delay in between SFx and SFx’

Tyy’ Communication Delay in between node y and y’

Rxy Approximate task completion rate of node y for SFx

Rxyj Approximate task completion rate of SF instance SFxyj

Pxy Path cost for SFx if node y selected for SFx

69

Chapter 6. Computational delay aware service function chaining

 𝑇𝑥𝑥′ = {
𝑇𝑦𝑦′ 𝑖𝑓 𝑦 ≠ 𝑦′

0 𝑖𝑓 𝑦 = 𝑦′
 Equation 6-3

The network delay is created using BRITE in the CloudSim environment. SFP

algorithm contains a path cost value for all possible combinations of the SCE

nodes and data centers as given in Equation 6-4.

𝑃𝑥𝑦 = 𝑃(𝑥−1)𝑦′ + 𝑇𝑥𝑥′ + 𝑅𝑥𝑦 Equation 6-4

The cloud manager creates an empty array for each of the SFs and nodes possible

combinations. Additionally, these elements manage the parent-child relationship

to find the path through the SFC. SFP algorithm creates a path from the cloud

manager to the end of SFC using the best child node for each SF, as shown in

Figure 6-3.

The proposed algorithm starts with the first SF in the chain and calculates

P1y ∈ Y. Further, it selects the lowest P1y node y for the SF1 task and assigns

Figure 6-3 Process of VNF allocation to SFs

70

Chapter 6. Computational delay aware service function chaining

that node to the first node variable, and further assigns the cloud manager as

its parent. Further, the algorithm moves to the next SFx and calculates the cost

using the best y selected for SFx-1, and assigns SF(x-1)y as the parent of all the

SFx node combinations. Once the lowest cost node y’ is selected, the algorithm

assigns SFxy’ as the child of SF(x-1)y . If the new best node y’ is different from

the old selected node y, the SFP selection algorithm starts to calculate new

costs from P1y’ to Pxy’ assuming that all the SFs up to SFxy’ are allocated to node

y’, and updates y’ costs if the new cost values are lower than the old path

cost values. The proposed algorithm would change the first node variable to y’

if the new node y’ based cost is lower than the P(x-1)y based cost. Once the SFP

algorithm reaches the last SF in SFC, it assigns the path by retiring child

values starting from the first node, as shown in Figure 6-3.

6.3 Evaluation

The algorithm performance was measured in the CloudSim simulation environment.

The simulation consists of four SCE nodes with network delays, as shown in Figure

6-4. Each node contains a single host machine that runs VMs for different VNF

types. CloudSim environment was modified to handle SFC and deploy SFCs/cloudlets

at given delays to create consistent load toward the cloudlet manager. Inter-

node SFC transfer methods were implemented such that the network delay would be

added to such operations. The simulation was carried out, and the proposed

algorithm's performance was measured compared to NSP and OPS algorithms.

Three types of SFCs were generated, and 1000 SFC instances of three types of

SFCs were sent to the cloudlet manager for SFP allocation. The different SFC

types are listed in Table 6-2. The nodes contain four different types of VNFs

to support each SF type. CloudSim environment was modified to implement VNFs and

deploy them according to the simulation environment. The network delay between

the nodes was defined using BRITE network topology links.

The end-to-end delay for different SFCs was measured in the simulation

environment, as shown in Figure 6-5. The proposed algorithm exhibits better

performance compared to NSP and OPS algorithms. The proposed algorithm performs

better than NSP because NSP only uses local load values and selects the VNF with

the lowest load values without considering the VNF computation rates. The

Table 6-2 SFC chains used in the simulation

SFC Type SFC chain

1 SF1 →SF2 →SF3

2 SF1 →SF2 →SF3 →SF4

3 SF1 →SF2

71

Chapter 6. Computational delay aware service function chaining

proposed algorithm performs better than OPS because OPS reactive data collection

incurs additional network overhead on each SFP selection, causing an extra delay

in the SFP creation, even though the algorithm creates an optimal path. The

proposed algorithm exhibits better performance because it improves the

performance using proactive computation rate usage while minimizing any delay

caused by the reactive live data collection.

The computational overhead generated by OPS reactive data collection can be

seen in Figure 6-5, which shows the computation time of different algorithms.

NSP and the proposed algorithm can compute the SFP path relatively quickly than

the OPS algorithm because OPS live reactive data collection causes a significant

network delay in the calculation. Additionally, the OPS type method can create

network overhead with reactive data collection traffic when there is a

considerably large SFC traffic. Finally, the proposed algorithm was tested on a

large scale model with 100 SCE nodes in a full mesh environment. The calculation

time and SFC end to end delay are shown in Figures 6-5 and 6-6. The NSP algorithm

calculation outperforms the proposed algorithm. However, the calculation time

is negligible compare to the end-to-end delay of the network. Therefore, the

proposed algorithm improves end-to-end SFC delay, even with the increased number

of SCE nodes.

Figure 6-4 Simulation environment of SFC distribution

72

Chapter 6. Computational delay aware service function chaining

Figure 6-5 SFP calculation time using logarithmic scale

Figure 6-6 SFC end-to-end delay

73

Chapter 6. Computational delay aware service function chaining

Figure 6-7 SFP calculation time against the number of nodes

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

0.0001

10 20 30 40 50 60 70 80 90 100

SFP path calculation time (ms)

NSP Proposed

Figure 6-8 SFC end-to-end delay against the number of nodes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50 60 70 80 90 100

SFC end-to-end delay (s)

NSP Proposed

74

Chapter 6. Computational delay aware service function chaining

6.4 Conclusion

This chapter proposed a novel service SFP allocation algorithm using data

collection, network delay, and performance-based on the SF instance selection

method. This method can be used in the SCE platform to support and distribute

network flows to support service chaining. The proposed algorithm resolves

proactive data collection issues and local queue time calculation using

systematic data collection and queue time approximation method. In addition, the

path selection uses heuristics to assign SFCs to a single node, if possible, to

execute multiple services through the same node. The proposed algorithm minimizes

the end-to-end delay by more than 10% compared to available SFP path selection

algorithms. The proposed algorithm shows its ability to improve the end-to-end

delay of the smart community services by distributing the requests through the

SCE nodes. This would allow SCE nodes to chain and route user requests to support

the smart community services.

75

Chapter 7. Summary of the study

 Summary of the study

7.1 SCE platform

The SCE platform integrates SPL, and SCE containerized service with

consistency-guaranteed migration and service chaining to support smart community

services. The SCE platform was implemented and evaluated through DPDK, Hyperscan,

and Docker container technology. The SCE platform provided SCA and distribute

rule change method to support multiple services using Docker containers. The SCE

platform can use SCA to analyze in-transit data by using a distributed rule

application to provide data to multiple services. Furthermore, the SCE platform

can provide a live container migration that allows smart community services to

migrate without affecting the network flows. The SCE’s consistency guaranteed

migration method used the SML and Docker container API of the SCE platform to

buffer the packets to support loss-free live container migration. In addition,

The SCE platform can route user request through computational delay aware service

function chaining. The SCE platform integrates the service function chaining to

reduce the end-to-end network delay of the user requests. The SCE platform

integrates SCA, containerized services, service migration, and service chaining

to support smart community services while reducing network delay for the end-

users.

7.2 Conclusion

This study summarized the architecture, implementation, and performance of the

proposed SCE platform using DPDK, Hyperscan, and Docker technologies. Chapter 3

summarized the implementation, experiments, and test results of upgrading the

SPL to use the Intel DPDK and Hyperscan technology by using SCA on zero-copy

packet buffers. The results demonstrate that the upgraded SPL can perform SCA

at 1Gbps line rates using only eight cores. This is a 0.8Gbps throughput increase

compared to the older versions of Libpcap-based SPL. Moreover, upgraded DPDK-

based SPL achieved a 10Gbps line rate with 16 CPU cores. Moreover, the SPL was

demonstrated in GCTC to provide anonymization services using electrical power

usage data. Therefore, the experiments discussed above and the obtained results

demonstrate that the DPDK-based SPL can work as a gateway device to perform SCA

in smart community networks.

In Chapter 4, the SCE node was proposed with the use of SPL. The proposed SCE

node employed MSSCA and container technology to support multiple smart community

76

Chapter 7. Summary of the study

services. SCE platform allowed MSSCA content to be directly transferred to

services without network packet processing at the service containers. The SCE

node’s MSSCA achieved a throughput of 1–10 Gbps with 4–16 CPU cores in

conventional hardware systems. In addition, the SCE platform proposed a

distributed rule change method for the Hyperscan library to change regular

expression without affecting network flow. The SCE node achieved a 10 Gbps SCA

throughput for 100 accumulated rules, which allowed more than ten rules per

service. The proposed distributed rule change method needs less than 0.3 ms to

execute and does not affect SPL network flows' performance. SCE node supported

eight similar services while providing a 500 Mbps MSSCA content bandwidth for

each service, where each service can support 5000 sensors with a 100 kbps

bandwidth. Additionally, the total maximum delay of the SCE node is maintained

at less than 1 ms, allowing delay-sensitive services to operate at SCE nodes.

In Chapter 5, the SCE platform’s capabilities were extended by introducing CGM

and O2NCGM migration that supports consistency guaranteed multi-container

migration for smart community services. The proposed migration method handled

network consistency without affecting the network flows. Container layer

separation was used to reduce data transactions between the nodes in container

image layers. Furthermore, CGM was applied with LLM to achieve zero packet loss

while reducing the network downtime by more than 10% compared to conventional

methods. The overall results show that the CGM and O2CGM reduce the migration

time by more than 10% for containers with image size higher than 400MBs.

Additionally, O2CGM provides consistency guaranteed one to N migration to support

service distribution under different network loads.

The SCE capability of user request distribution was improved with a novel

Figure 7-1 Real-world applications of the SCE platform at UDCMi smart city

77

Chapter 7. Summary of the study

service SFP allocation algorithm using systematic data collection, network delay,

and computational delay-based on the SF instance selection method. This method

can be used in the SCE platform to support and distribute IoT requests at the

SCE. The proposed algorithm minimized the end-to-end delay by more than 10%

compared to available SFP path selection algorithms showing the applicability

to use at SCE.

Finally, the SCE platform is applied in the real world at UDCMi smart city[95]

as a 1Gbps edge server. In this real-world application, the SCE platform was

used to support different smart community services such as health care data

management, smart building management, and smart house management, as shown in

Figure 7-1. The SCE platform provides anonymization, watermarking, and

aggregation to remove any personal information collected by the sensors by

applying these multiple services to the network flow. The UDCMi SCE platform

also provides aggregate smart energy data and provides recommendations to users.

The SCE platform operation in UDCMi shows the applicability of the SCE platform

in the real world.

This dissertation presented a real-world implementation of the SCE platform

that is able to support smart community services while providing consistency,

guaranteed service migration, and efficient user request distribution through

service chaining.

Chapter 7. Summary of the study

References

[1] “History of ICT - CS1105 Group Reports 2008 - Wiki.nus.”

https://wiki.nus.edu.sg/display/cs1105groupreports/History+of+ICT (accessed Nov.

18, 2020).

[2] “A Brief History of the Internet.”

https://www.usg.edu/galileo/skills/unit07/internet07_02.phtml (accessed Nov. 18,

2020).

[3] “Who Coined 'Cloud Computing'?,” MIT Technology Review.
https://www.technologyreview.com/2011/10/31/257406/who-coined-cloud-computing/

(accessed Nov. 18, 2020).

[4] “What is REST - REST API Tutorial.” https://restfulapi.net/ (accessed Nov. 18,

2020).

[5] “ETSI - Standards for NFV - Network Functions Virtualisation | NFV Solutions.”

https://www.etsi.org/technologies/nfv (accessed Nov. 18, 2020).

[6] “Number of IoT devices 2015-2025,” Statista.
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/ (accessed Nov. 18, 2020).

[7] gk, “Open Fog Computing and Mobile Edge Cloud Gain Momentum | Y.I Readings.”

http://yucianga.info/?p=938 (accessed Jul. 07, 2017).

[8] “Home - JSCA Japan Smart Community Alliance.” https://www.smart-

japan.org/english/ (accessed Nov. 18, 2020).

[9] “OSA | PON Roadmap [Invited].”

https://www.osapublishing.org/jocn/abstract.cfm?URI=jocn-9-1-a71 (accessed Jul.

18, 2019).

[10] K. Tanaka, A. Agata, and Y. Horiuchi, “IEEE 802.3av 10G-EPON Standardization

and Its Research and Development Status,” J. Light. Technol., vol. 28, no. 4,
pp. 651–661, Feb. 2010, doi: 10.1109/JLT.2009.2038722.

[11] S. Gallenmüller, P. Emmerich, R. Schönberger, D. Raumer, and G. Carle,

“Building Fast but Flexible Software Routers,” in Proceedings of the Symposium
on Architectures for Networking and Communications Systems, Piscataway, NJ, USA,
2017, pp. 101–102, doi: 10.1109/ANCS.2017.21.

[12] Y. Ohara, Y. Yamagishi, S. Sakai, A. D. Banik, and S. Miyakawa, “Revealing the

Necessary Conditions to Achieve 80Gbps High-Speed PC Router,” in Proceedings of
the Asian Internet Engineering Conference, New York, NY, USA, 2015, pp. 25–31,
doi: 10.1145/2837030.2837034.

[13] J. Kim, S. Huh, K. Jang, K. Park, and S. Moon, “The Power of Batching in the

Click Modular Router,” in Proceedings of the Asia-Pacific Workshop on Systems,
New York, NY, USA, 2012, p. 14:1-14:6, doi: 10.1145/2349896.2349910.

[14] L. Rizzo, L. Deri, and A. Cardigliano, “10 Gbit/s Line Rate Packet Processing

Using Commodity Hardware: Survey and new Proposals,” p. 8.

[15] “netmap: A Novel Framework for Fast Packet I/O | USENIX.”

https://www.usenix.org/node/168897 (accessed Feb. 27, 2018).

[16] S. Higginbotham, “In a distributed world cache is king. Why routers are

becoming the new server.,” Jan. 31, 2014. https://gigaom.com/2014/01/31/in-a-

Chapter 7. Summary of the study

distributed-world-cache-is-king-why-routers-are-becoming-the-new-server/

(accessed Jul. 07, 2017).

[17] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker, “NetBricks:

Taking the V out of NFV,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, Berkeley, CA, USA, 2016, pp. 203–
216, Accessed: Apr. 04, 2017. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3026877.3026894.

[18] J. Soares, M. Dias, J. Carapinha, B. Parreira, and S. Sargento, “Cloud4NFV: A

platform for Virtual Network Functions,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), Oct. 2014, pp. 288–293, doi:
10.1109/CloudNet.2014.6969010.

[19] G. A. Gibson and R. Van Meter, “Network attached storage architecture,”

Commun. ACM, vol. 43, no. 11, pp. 37–45, 2000.
[20] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete Container

State Migration,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), Jun. 2017, pp. 2137–2142, doi: 10.1109/ICDCS.2017.91.

[21] M. R. Islam, M. M. S. Pahalovim, T. Adhikary, M. A. Razzaque, M. M. Hassan, and

A. Alsanad, “Optimal Execution of Virtualized Network Functions for

Applications in Cyber-Physical-Social-Systems,” IEEE Access, vol. 6, pp. 8755–
8767, 2018, doi: 10.1109/ACCESS.2018.2805890.

[22] G. P. Hancke, B. de Carvalho e Silva, and G. P. Hancke, “The Role of Advanced

Sensing in Smart Cities,” Sensors, vol. 13, no. 1, pp. 393–425, Dec. 2012, doi:
10.3390/s130100393.

[23] Smart Communities Guidebook: Building Smart Communities, how California’s
Communities Can Thrive in the Digital Age. International Center for
Communications, College of Professional Studies and Fine Arts, San Diego State

University, 1997.

[24] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community: an

internet of things application,” IEEE Commun. Mag., vol. 49, no. 11, pp. 68–75,
Nov. 2011, doi: 10.1109/MCOM.2011.6069711.

[25] J. Bryzek, “Trillion sensors: Foundation for abundance, exponential

organizations, Internet of Everything and mHealth,” Sens. Mag., 2014.
[26] J. Biswas et al., “Processing of wearable sensor data on the cloud - a step

towards scaling of continuous monitoring of health and well-being,” in 2010
Annual International Conference of the IEEE Engineering in Medicine and Biology,
Aug. 2010, pp. 3860–3863, doi: 10.1109/IEMBS.2010.5627906.

[27] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li, “Big Data Processing in Cloud

Computing Environments,” in 2012 12th International Symposium on Pervasive
Systems, Algorithms and Networks, Dec. 2012, pp. 17–23, doi: 10.1109/I-
SPAN.2012.9.

[28] R. Hummen, M. Henze, D. Catrein, and K. Wehrle, “A Cloud design for user-

controlled storage and processing of sensor data,” in 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings, Dec. 2012, pp.
232–240, doi: 10.1109/CloudCom.2012.6427523.

[29] H. Nishi, “Information and communication platform for providing smart community

services: System implementation and use case in Saitama city,” in 2018 IEEE
International Conference on Industrial Technology (ICIT), Feb. 2018, pp. 1375–
1380, doi: 10.1109/ICIT.2018.8352380.

[30] M. A. Lema et al., “Business Case and Technology Analysis for 5G Low Latency

Applications,” IEEE Access, vol. 5, pp. 5917–5935, 2017, doi:

Chapter 7. Summary of the study

10.1109/ACCESS.2017.2685687.

[31] “OpenFog Consortium.” https://www.openfogconsortium.org/#fog-computing

(accessed Jul. 27, 2017).

[32] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in

the Internet of Things,” in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, New York, NY, USA, 2012, pp. 13–16, doi:
10.1145/2342509.2342513.

[33] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A Platform for

Internet of Things and Analytics,” in Big Data and Internet of Things: A
Roadmap for Smart Environments, Springer, Cham, 2014, pp. 169–186.

[34] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Applications and

Issues,” in Proceedings of the 2015 Workshop on Mobile Big Data, New York, NY,
USA, 2015, pp. 37–42, doi: 10.1145/2757384.2757397.

[35] J. Wijekoon, E. Harahap, and H. Nishi, “Service-oriented Router Simulation

Module Implementation in NS2 Simulator,” Procedia Comput. Sci., vol. 19, pp.
478–485, Jan. 2013, doi: 10.1016/j.procs.2013.06.064.

[36] J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. Kim, “A multi-gigabit

rate deep packet inspection algorithm using TCAM,” in GLOBECOM ’05. IEEE
Global Telecommunications Conference, 2005., Dec. 2005, vol. 1, p. 5 pp.-, doi:
10.1109/GLOCOM.2005.1577667.

[37] “NFV – Network Functions Virtualization,” Cisco.
http://www.cisco.com/c/en/us/solutions/service-provider/network-functions-

virtualization-nfv/index.html (accessed Jul. 07, 2017).

[38] “U.S. vs. Japan: Residential Internet Service Provision Pricing,” New America.
https://www.newamerica.org/oti/policy-papers/us-vs-japan-residential-internet-

service-provision-pricing/ (accessed Apr. 03, 2018).

[39] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-source high-

speed deep packet inspection,” in 2014 International Wireless Communications
and Mobile Computing Conference (IWCMC), Aug. 2014, pp. 617–622, doi:
10.1109/IWCMC.2014.6906427.

[40] “Wireshark · Go Deep.” https://www.wireshark.org/ (accessed Jul. 07, 2017).

[41] K. Ikeuchi, J. Wijekoon, S. Ishida, and H. Nishi, “GPU-based multi-stream

analyzer on application layer for service-oriented router,” presented at the

2013 IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-

Chip, MCSoC 2013, 2013, doi: 10.1109/MCSoC.2013.34.

[42] “DPDK.” https://dpdk.org/ (accessed Apr. 25, 2018).

[43] Red Hat, Inc, “about DPDK.” http://dpdk.org/about (accessed Jul. 07, 2017).

[44] “Introducing PF_RING ZC (Zero Copy),” ntop, Apr. 14, 2014.
https://www.ntop.org/pf_ring/introducing-pf_ring-zc-zero-copy/ (accessed Feb.

27, 2018).

[45] L. Rizzo and G. Lettieri, “VALE, a switched ethernet for virtual machines,” in

Proceedings of the 8th international conference on Emerging networking
experiments and technologies, Nice, France, Dec. 2012, pp. 61–72, doi:
10.1145/2413176.2413185.

[46] S. Gallenmüller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “Comparison

of Frameworks for High-Performance Packet IO,” in Proceedings of the Eleventh
ACM/IEEE Symposium on Architectures for Networking and Communications Systems,
Washington, DC, USA, 2015, pp. 29–38, Accessed: Feb. 27, 2018. [Online].

Available: http://dl.acm.org/citation.cfm?id=2772722.2772729.

[47] “PF_RING,” ntop, Aug. 04, 2011. https://www.ntop.org/products/packet-

Chapter 7. Summary of the study

capture/pf_ring/ (accessed Apr. 25, 2018).

[48] T. Konstantina, Betreuer, W. Florian, and R. Daniel G, “A Survey of Trends in

Fast Packet Processing,” in Proceedings of the Seminars Future Internet (FI)
and Innovative Internet Technologies and Mobile Communications (IITM), 2014, pp.
41–48.

[49] D. Luca, “DPDK Summit North America 2018: Using nDPI over DPDK to Classify and

Block Unwanted Traffic.”

https://dpdksummitnorthamerica2018.sched.com/event/IhhK/using-ndpi-over-dpdk-to-

classify-and-block-unwanted-network-traffic-luca-deri-ntop (accessed May 30,

2019).

[50] “DPDK PRC Summit 2018: Multiple vDPI Functions using DPDK and H...”

https://dpdkprcsummit2018.sched.com/event/EsPY/multiple-vdpi-functions-using-

dpdk-and-hyperscan-on-ovs-dpdk-platform (accessed May 30, 2019).

[51] “The Design and Implementation of Open vSwitch | USENIX.”

https://www.usenix.org/node/188961 (accessed Feb. 27, 2018).

[52] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization:

Challenges and opportunities for innovations,” IEEE Commun. Mag., vol. 53, no.
2, pp. 90–97, Feb. 2015, doi: 10.1109/MCOM.2015.7045396.

[53] F. Callegati, W. Cerroni, C. Contoli, R. Cardone, M. Nocentini, and A.

Manzalini, “SDN for dynamic NFV deployment,” IEEE Commun. Mag., vol. 54, no.
10, pp. 89–95, Oct. 2016, doi: 10.1109/MCOM.2016.7588275.

[54] “Enterprise Network Functions Virtualization (NFV),” Cisco.
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-

functions-virtualization-nfv/index.html (accessed Apr. 25, 2018).

[55] “NFV (Network Functions Virtualization) Solution - Juniper Networks.”

https://www.juniper.net/us/en/solutions/nfv/ (accessed Apr. 25, 2018).

[56] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High performance

network virtualization with SR-IOV,” J. Parallel Distrib. Comput., vol. 72, no.
11, pp. 1471–1480, Nov. 2012, doi: 10.1016/j.jpdc.2012.01.020.

[57] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba,

“Network Function Virtualization: State-of-the-Art and Research Challenges,”

IEEE Commun. Surv. Tutor., vol. 18, no. 1, pp. 236–262, Firstquarter 2016, doi:
10.1109/COMST.2015.2477041.

[58] F-stack, “F-Stack | High Performance Network Framework Based On DPDK.”

http://www.f-stack.org/ (accessed Jan. 21, 2019).

[59] L. Rizzo, M. Carbone, and G. Catalli, “Transparent acceleration of software

packet forwarding using netmap,” in 2012 Proceedings IEEE INFOCOM, Mar. 2012,
pp. 2471–2479, doi: 10.1109/INFCOM.2012.6195638.

[60] N. ISG, “Network Functions Virtualisation (NFV)-Network Operator Perspectives

on Industry Progress,”,” ETSI Tech, 2013.
[61] S. Sreekanth, “VMware vSphere 5.1 vMotion Architecture, Performance and Best

Practices,” White Pap. VMware Inc Palo Alto CA USA, 2012.
[62] V. Medina and J. M. García, “A Survey of Migration Mechanisms of Virtual

Machines,” ACM Comput Surv, vol. 46, no. 3, p. 30:1-30:33, Jan. 2014, doi:
10.1145/2492705.

[63] F. Romero and T. J. Hacker, “Live Migration of Parallel Applications with

OpenVZ,” in 2011 IEEE Workshops of International Conference on Advanced
Information Networking and Applications, Mar. 2011, pp. 526–531, doi:
10.1109/WAINA.2011.156.

[64] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes,” IEEE

Chapter 7. Summary of the study

Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014, doi: 10.1109/MCC.2014.51.
[65] opencontainers, opencontainers/runc. Open Container Initiative, 2019.
[66] S. Pickartz, N. Eiling, S. Lankes, L. Razik, and A. Monti, “Migrating LinuX

Containers Using CRIU,” in High Performance Computing, 2016, pp. 674–684.
[67] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in IoT context:

Horizontal and vertical Linux container migration,” in 2017 Global Internet of
Things Summit (GIoTS), Jun. 2017, pp. 1–4, doi: 10.1109/GIOTS.2017.8016218.

[68] “What is Docker,” Docker, May 14, 2015. https://www.docker.com/what-docker
(accessed Apr. 07, 2017).

[69] The Kubernetes Authors, “Production-Grade Container Orchestration,” Sep. 19,

2019. https://kubernetes.io/ (accessed Sep. 19, 2019).

[70] L. Ma, S. Yi, and Q. Li, “Efficient Service Handoff Across Edge Servers via

Docker Container Migration,” in Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, New York, NY, USA, 2017, p. 11:1-11:13, doi:
10.1145/3132211.3134460.

[71] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live Service

Migration in Mobile Edge Clouds,” IEEE Wirel. Commun., vol. 25, no. 1, pp. 140–
147, Feb. 2018, doi: 10.1109/MWC.2017.1700011.

[72] A. Gember-Jacobson et al., “OpenNF: Enabling Innovation in Network Function

Control,” in Proceedings of the 2014 ACM Conference on SIGCOMM, New York, NY,
USA, 2014, pp. 163–174, doi: 10.1145/2619239.2626313.

[73] M. Peuster, H. Küttner, and H. Karl, “Let the state follow its flows: An SDN-

based flow handover protocol to support state migration,” in 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft), Jun. 2018, pp. 97–
104, doi: 10.1109/NETSOFT.2018.8460007.

[74] L. Nobach, I. Rimac, V. Hilt, and D. Hausheer, “SliM: Enabling efficient,

seamless NFV state migration,” in 2016 IEEE 24th International Conference on
Network Protocols (ICNP), Nov. 2016, pp. 1–2, doi: 10.1109/ICNP.2016.7784459.

[75] J. Halpern and C. Pignataro, “Service function chaining (sfc) architecture,”

2015.

[76] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards a Model-

Driven SDN Controller architecture,” in 2014 IEEE 15th International Symposium
on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM)(WOWMOM),
Jun. 2014, pp. 1–6, doi: 10.1109/WoWMoM.2014.6918985.

[77] A. M. Medhat, G. Carella, C. Lück, M. I. Corici, and T. Magedanz, “Near optimal

service function path instantiation in a multi-datacenter environment,” in 2015
11th International Conference on Network and Service Management (CNSM), Nov.
2015, pp. 336–341, doi: 10.1109/CNSM.2015.7367379.

[78] M. M. S. Pahalovi, M. R. Islam, T. Adhikary, and M. A. Razzaque, “Optimal

execution of virtualized network functions in a multi-data-center cloud,” in

2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Dec. 2017, pp.
602–605, doi: 10.1109/R10-HTC.2017.8289032.

[79] R. Fielding et al., “Hypertext Transfer Protocol -- HTTP/1.1,” 1999, Accessed:

Jul. 07, 2017. [Online]. Available: http://www.rfc-editor.org/info/rfc2616.

[80] “Manpage of PCAP.” http://www.tcpdump.org/manpages/pcap.3pcap.html (accessed

Jul. 07, 2017).

[81] “Boyer-Moore algorithm.” http://www-igm.univ-mlv.fr/~lecroq/string/node14.html

(accessed Jul. 27, 2017).

[82] “MySQL :: MySQL Community Edition.” https://www.mysql.com/products/community/

(accessed Jul. 07, 2017).

Chapter 7. Summary of the study

[83] “POSIX Threads Programming.” https://computing.llnl.gov/tutorials/pthreads/

(accessed Jul. 07, 2017).

[84] INTEL CORPORATION, “Hyperscan,” 01.org, Sep. 17, 2015.
https://01.org/hyperscan (accessed Jul. 07, 2017).

[85] “Regex Set Scanning with Hyperscan and RE2::Set,” 01.org, Jun. 20, 2017.
https://01.org/hyperscan/blogs/jpviiret/2017/regex-set-scanning-hyperscan-and-

re2set (accessed Apr. 25, 2018).

[86] “IEEE 1888-2014 - IEEE Standard for Ubiquitous Green Community Control Network

Protocol.” https://standards.ieee.org/standard/1888-2014.html (accessed Jul.

18, 2019).

[87] C. McParland, “OpenADR open source toolkit: Developing open source software for

the Smart Grid,” in 2011 IEEE Power and Energy Society General Meeting, Jul.
2011, pp. 1–7, doi: 10.1109/PES.2011.6039816.

[88] “What is Docker,” Docker, May 14, 2015. https://www.docker.com/what-docker
(accessed Apr. 07, 2017).

[89] Intel technologies, “Accelerating Snort* IPS Throughput Performance Using

Hyperscan Pattern-Matching Software.” Intel technologies, 2017, Accessed: Jul.

27, 2017. [Online]. Available:

https://www.intel.com/content/dam/www/public/us/en/documents/solution-

briefs/hyperscan-scalability-solution-brief.pdf.

[90] “Containers vs VMs: Which is better for Cloud Deployments?,” SDxCentral.
https://www.sdxcentral.com/cloud/containers/definitions/containers-vs-vms/

(accessed Sep. 28, 2017).

[91] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and A. Puliafito,

“Container Migration in the Fog: A Performance Evaluation,” Sensors, vol. 19,
no. 7, Art. no. 7, Jan. 2019, doi: 10.3390/s19071488.

[92] P. Quinn and J. Guichard, “Service Function Chaining: Creating a Service Plane

via Network Service Headers,” Computer, vol. 47, no. 11, pp. 38–44, Nov. 2014,
doi: 10.1109/MC.2014.328.

[93] “Why distribution matters in NFV.” Collaborative White Paper between Alcatel-

Lucent and Telefonica, Aug. 2014.

[94] “CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms - Calheiros -

2011 - Software: Practice and Experience - Wiley Online Library.”

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.995 (accessed Jul. 18,

2018).

[95] “共通プラットフォームさいたま版の開発・実証｜プロジェクト｜UDCMi｜アーバンデザ

インセンターみその,” UDCMi｜アーバンデザインセンターみその. http://www.misono-

tm.org/udcmi/projects/61.html (accessed Jan. 24, 2019).

