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Abstract
For camera or object pose estimation, discovering correspondence is vital to many
autonomous systems working in indoor and outdoor environments. Correspon-
dence discovery techniques and their applications are divided into three topics:
2D-2D, 2D-3D, and 3D-3D, in terms of input dimensions, where 2D and 3D
present RGB image and point cloud, respectively. Although many approaches
on each topic have been proposed, they face critical issues of scale ambigu-
ity, keyframe-based, time-consuming pre-learning, and initial sensitivity, because
they have input data constraints, real-time behavior priority, and non-fulfillment
of input data.

This thesis firstly proposes a framework of 2D-3D correspondence discov-
ery for estimating a camera pose with vehicle camera image and LiDAR point
cloud, which can process every frame (not selecting only keyframes) and calculate
the absolute camera pose (not having a scale ambiguity). The proposed method
employs an algorithm to unify the input data dimensions by generating candidate
images from the 3D point cloud for a feature space integration. This feature space
integration allows for the correspondence discovery between different dimensions’
data. This thesis experimentally demonstrates that the proposed method can ac-
curately estimate the vehicle pose and shows the possibility of integration with
conventional methods.

This thesis also proposes a novel deep learning-based 3D-3D correspon-
dence discovery method for point cloud registration called CorrespondenceNet
(CorsNet). In contrast to the conventional approaches, the proposed method inte-
grates feature spaces of global features with per-point local features to effectively
utilize point cloud information and regresses the point cloud correspondence. Due
to this feature space integration, the point correspondence is robustly estimated
without being affected by the initial perturbation. Through experiments, the pro-
posedmethod is trained as well as the latest conventional approach andwell-known
classical algorithms using a dataset, validating the accuracy of the seen and un-
seen category registration. This thesis also discusses the benefits obtained from
regressing the correspondence based on the experimental results.
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Chapter 1

Introduction

1.1 Overview

Autonomous driving technology has been actively developed for a safer automo-

tive society with the evolution of various devices. These systems need to grasp

the exact position and orientation of the vehicle and surrounding objects with

information from cameras and LiDAR. Besides, to navigate the visually chal-

lenged to their destination in indoor and outdoor scenes, the system must localize

and understand surrounding environments, helping accurate and safe navigation.

Therefore, researchers in robotics and computer vision communities have made

much effort to design frameworks that estimates a pose with some devices such as

RGB camera (2D) and LiDAR (3D). The pose estimation techniques are divided

for the primary three topics in terms of input dimensions correspondence: 2D-2D,

2D-3D, and 3D-3D, where 2D and 3D represent an RGB image and point cloud,

respectively. However, current pose estimation systems on each topic have some

1
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potential issues: scale ambiguity, keyframe-based, time-consuming pre-learning,

and initial sensitivity, due to input data constraints, real-time behavior priority,

and non-fulfillment of input data. This thesis proposes two frameworks for these

issues.

Regarding 2D-2D correspondence discovery, the feature detector and de-

scriptor of RGB image [48, 9] have been actively developed for many applications.

These techniques have been applied to camera pose estimation, especially in Si-

multaneous Localization and Mapping (SLAM), which is an important research

topic in robotics and computer vision fields, where simultaneously camera pose is

estimated and the 3D environment map is reconstructed.

The first monocular SLAM that recovers the 3D trajectory of a monoc-

ular camera was MonoSLAM developed by Davison et al. [16]. Since every

frame’s camera pose is estimated, it has the drawbacks of the computational cost

and estimation error accumulation. For these issues, Parallel Tracking and Map-

ping (PTAM) by Klein et al. [37] is a first work that is specifically designed for

tracking a hand-held camera for augmented reality applications in real-time using

only selected frame (keyframe-based working). Inspired by this, Mur-Artal et

al. presented ORB-SLAM [56] that is a feature-based real-time monocular SLAM

operating in small and large, indoor and outdoor environments. However, ORB-

SLAM [56] has even a drawback of using only keyframes for achieving real-time

processing. Moreover, monocular SLAM generally has a potential problem of

scale ambiguity because input data is only RGB images, not including any depth

information.
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For solving a scale ambiguity issue, Caselitz et al. [14] designed a frame-

work which localizes monocular camera in a 3D map by matching reconstructed

3D point cloud by ORB-SLAM [56] with LiDAR point cloud, which represents

2D-3D correspondence discovery. However, this approach does not overcome the

program of estimating only keyframes. Feng et al. presented 2D3D-MatchNet

[19] that achieves an end-to-end deep neural network architecture for learning the

descriptor for 2D (image) and 3D (large-scale point cloud), respectively, which can

solve both scale ambiguity and only selecting keyframe issues. On the other hand,

such deep learning-based approaches generally require large-scale data association

and a time-consuming learning process.

This thesis firstly proposes a framework for discovering 2D-3D correspon-

dence for camera pose estimation (including position and rotation) with vehicle

camera image and LiDAR point cloud through feature space integration, which

can process every frame (not selecting only keyframes) and calculate the absolute

camera pose (not having a scale ambiguity). The proposed method focuses on

estimating the camera pose by 2D-3D matching where depth information from

the 3D point cloud is utilized to consider an absolute scale. Contrary to some

conventional approaches, it can work without time-consuming learning steps and

accurately estimate all the absolute camera pose in the point cloud.

The fundamental strategy for obtaining 2D-3D correspondences is gener-

ating some candidate images from the point cloud in every frame to make the

dimensions of those data the same. This strategy is based on the awareness that

it is generally challenging to directly find the correspondences between 2D (im-



Chapter 1. Introduction 4

age) and 3D (point cloud) data. This approach carries a capability to estimate all

input frames’ camera pose, overcome a scale ambiguity, and achieve high accu-

racy, including an error within 1.5 m compared to Real-Time Kinematic - Global

Positioning System (RTK-GPS).

Concerning 3D-3D correspondence discovery for point cloud registration,

the point feature detector and descriptor [71, 99, 22, 23] has been developed

as the 3D point cloud is a recently popular and useful data format, owing to

the growing development of LiDAR, Microsoft Kinect devices [98], and stereo

cameras. Furthermore, the research topics such as RGBD-SLAM and its various

applications for autonomous systems have been the main ones in terms of pose

estimation, where the input is a point cloud.

The most popular and classic method for point cloud registration is the

iterative closest point (ICP) algorithm [10]. Although ICP achieves highly ac-

curate registration, the registration often fails by the local minimum, depending

enormously on its initial perturbation. Therefore, many works have tried to pro-

ceed with this problem [66, 30, 2] but they do not guarantee global optimality.

Though Go-ICP [92] employs a global optimal registration method that integrates

the bunch and bound scheme with the local ICP, its computational cost is very

high.

On the other hand, the inherent lack of structure has caused difficultieswhen

adopting the point cloud as direct input in deep learning architecture. Recent

breakthrough technologies, such as PointNet [62], overcomes these difficulties,

leading to the novel extensions [64, 61]. Recent research has also tried to utilize
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PointNet [62] for point cloud registration to estimate camera and object pose.

Inspired by this, a learning-based method has been developed to provide

accurate alignments and improve processing speed when point cloud features are

extracted by PointNet [62]. It is a general representation of an unstructured point

cloud that allowsmany object detection and segmentation techniques. PointNetLK

[5] is the latest deep learning-based registration approach with extracting point

features by PointNet [62]. PointNetLK [5] directly optimizes the distance of

aggregated features using the gradient method but does not consider local features.

This thesis also proposes a novel deep learning-based point cloud regis-

tration method called CorrespondenceNet (CorsNet). The proposed method feeds

global features from PointNet [62] to per-point local features to effectively use

point cloud information and regress point cloud correspondence, where feature

spaces are efficiently integrated. Through experimentation, the proposed network

is trained, as well as PointNetLK [5] using the ModelNet40 dataset [90], validat-

ing the accuracy of the seen and unseen category registration. This thesis also

discusses the benefits obtained from regressing the correspondence based on the

experimental results.

Table 1.1 summarize the proposed methods and the conventional methods

for 2D-2D, 2D-3D, and 3D-3D correspondence discovery from the four aspects of

scale ambiguity, keyframe-based, initial sensitivity, and pre-learning. As shown,

this thesis proposes correspondence discovery approaches for 2D-3D and 3D-3D

since this thesis’s goal is 3D pose estimation.
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Table 1.1: Thesis contributions compared with typical conventional methods. The
method with 4 in the column “Initial Sensitivity” on 3D-3D often fails to discover
correspondences due to a local minimum.
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2D-2D
MonoSLAM [16] © - ©

PTAM [37] - ©
ORB-SLAM [56] - ©

2D-3D

Caselitz et al. [14] © - ©
ORB-SLAM2 [57] © - ©

2D3D-MatchNet [19] © © -
This work (Chapter 3) © © - ©

3D-3D
ICP [10] © - ©

PointNetLK [5] © - 4
This work (Chapter 4) © - ©

1.2 Thesis Outline

Table 1.2: Input and approaches for pose estimation employed by the proposed
method in each chapter.

Method Approach Input
Chapter 3 2D-3D Matching Image (2D) and Point Cloud (3D)
Chapter 4 3D Registration Point Cloud (3D)

As shown in Table 1.2, this thesis starts by designing an efficient frame-

work for 3D camera pose estimation through 2D-3D correspondence discovery.

Additionally, the chapter 4 proposes a novel deep-based approach for 3D object
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pose estimation through 3D-3D correspondence discovery. Table 1.2 notes the

input and approaches for the proposed method’s pose estimation in each chapter.

In this thesis, The remainder of this thesis is organized as follows:

Chapter 2 introduces related works in 2D-2D, 2D-3D, and 3D-3D corre-

spondence discovery techniques for pose estimation and their applications.

Chapter 3 proposes an efficient technique for estimating an absolute cam-

era trajectory from the vehicle camera image and LiDAR point cloud. The pro-

posed method generates some candidate images from the point cloud to make

the dimension of an image and point cloud the same because it is challenging to

discover the correspondences between them without changing dimensions. Unlike

many previous 2D-2D or 2D-3D matching techniques, the proposed method can

estimate each frame’s poses based on an absolute scale. This thesis validates the

proposed method on the actual vehicle camera images and LiDAR point cloud

with the highly accurate measurement of RTK-GPS in terms of accuracy. It is

also quantitatively confirmed that the camera pose is correctly estimated by re-

generating images from a point cloud based on the estimated camera poses and

comparing them with the vehicle camera images. The content of this chapter is

based primarily on Kurobe et al. [38].

Chapter 4 presents a novel deep learning-based point cloud registration

method. The proposed method employs a network architecture that utilizes both

the global and local point cloud features and regresses point-wise correspondences

for high accuracy. The strategy of global features integrations notably improves

registration accuracy because of a local minimum. Moreover, the correspondences
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regressions carry a capability to handle initial values sensitivity strongly. This

thesis validates the proposed method’s accuracy and processing time through an

experiment with a state-of-the-art deep-based approach and baseline in terms of

registration accuracy. The content of this chapter is based primarily on Kurobe et

al. [39].

Finally, Chapter 5 summarizes this thesis and provides insights to direct

future research.



Chapter 2

Related Works

This section briefly reviews previousworks related to this study, aswell as introduc-

ing current efforts. This section first reviews prior attempts to design frameworks

of camera pose estimation through discovering 2D-2D correspondences and their

applications. Subsequently, this section reviews 2D-3D matching techniques for

pose estimation by integrating RGB-SLAM and LiDAR point cloud and using a

deep learning network architecture. Finally, this section reviews 3D-3D registra-

tion approaches for object and camera pose estimation, which employed a pattern

matching algorithm and the latest deep neural network technique.

2.1 2D-2D Correspondence Discovery for Pose Esti-
mation

This section surveys 2D-2D correspondence discovery approaches and their appli-

cations aiming at camera pose estimation, camera calibration, image registration,

9
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and object recognition.

2.1.1 Feature Detection and Description

Related works, focusing on 2D-2D correspondence discovery, are mainly feature

detection and description of RGB images for camera pose estimation on many

applications. The most classic feature detection and description technique are the

Scale Invariant Feature Transformation (SIFT) [48], the Speeded Robust Features

(SURF) [9], and other approaches [68, 13, 69, 93]. Moreover, a more robust and

efficient approach such as KAZE features [3] and AKAZE features [4] has been

actively researched within computer vision fields. Through such feature detection

and description, pointwise correspondences on images are detected and utilized

for each application’s purpose.

2.1.2 Applications of 2D-2D Correspondence Discovery

By using the above feature detection and description methods, camera pose can

be estimated and applied to many applications (e.g., scene understanding [47],

visual visual categorization [41], and Structure from Motion [1]). Simultaneous

Localization and Mapping (SLAM) has recently been extremely developed due

to its effectiveness of accurate camera pose estimation and real-time 3D environ-

mental mapping. The first monocular SLAM recovering the 3D camera pose of a

monocular camera was introduced by Davison et al. [16]. It has the drawbacks of

the computational cost and estimated liner error because it works on every input

frame. For solving these problems, Klein et al. [37] developed PTAM that is a first
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Figure 2.1: Estimated camera trajectory (blue line) and reconstructed 3D map by
ORB-SLAM2 [57]. Only selected keyframes’ poses are reconstructed.

keyframes-based attempt to design a real-time working framework for tracking

hand-held camera in AR applications. Some related technologies have also been

developed [60, 79, 46, 18]. Inspired by this, Mur-Artal et al. [56] presented ORB-

SLAM that is a feature-based real-time monocular SLAM operating in small and

large, indoor and outdoor environments. On the other hand, ORB-SLAM [56] has

even a drawback of scale ambiguity because input data does not include any depth

information, which is a potential issue of monocular SLAM. With the evolution

of devices capable of real scale measurements, research using both 3D data and

RGB images has become more and more popular in recent years.
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Figure 2.2: Qualitative visualization of 2D3D-MatchNet [19] estimation results.
Yellow camera: the ground truth. Red camera: estimated camera pose.

2.2 2D-3D Matching for 3D Pose Estimation

This section surveys 2D-3D correspondence discover techniques that solve a scale

ambiguity issue. 2D-3D correspondences discover approaches are first developed

by integrating SIFT features given the input images, and 3D scene model [72,

44, 42]. Global appearance-based localization techniques [86, 84] consider all

input images’ local features to a global descriptor. Some deep learning-based

methods for camera localization [88, 34, 78, 85, 12, 73, 95, 25, 27, 87] and person

identification [45, 24, 74]

For solving a scale ambiguity issue, Zhand et al. [96, 97] and Caselitz et

al. [14] designed a framework which localizes monocular camera in a 3D map by

matching reconstructed 3D point cloud by RGB-SLAM with LiDAR point cloud,
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which rep resents 2D-3D camera pose estimation. In addition, ORB-SLAM [56]

was extended to ORB-SLAM2 [57] system to handle RGB images and 3D point

clouds as input.

Feng et al. presented 2D3D-MatchNet [19] that achieves an end-to-end

deep neural network architecture for learning the descriptor for 2D (image) and 3D

(large-scale point cloud), respectively, which can solve both scale ambiguity and

only selecting keyframe issues. However, such deep learning-based approaches

generally require large-scale data association and a time-consuming learning pro-

cess. As shown in Table1.1, this thesis proposes a framework for 2D-3D corre-

spondence discovery, estimating every frame camera pose on an absolute scale

without the need for pre-learning.

2.3 3D Point Cloud Correspondence Discovery for
Registration

This section surveys 3D point cloud registration methods for camera and object

pose estimation.

2.3.1 Local Registration Method

ICP [10] is a well-known classical point cloud registration method that iteratively

estimates point cloud correspondences and performs a least squares optimization.

Though ICP achieves highly accurate registration, this method has drawbacks,

including robustness to data uncertainties and being too sensitive to initial pertur-
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Figure 2.3: Results of PointNetLK [5]. Iterative point cloud registration progress.

bation. ICP is designed to decrease an objective function measuring alignment,

causing it to fall into a local minimum frequently. Several variants [70, 76, 11] of

ICP have been developed for non-robustness and various approaches [31, 6, 94]

have been designed to improve computational efficiency and accuracy. However,

these approaches still have fundamental drawbacks, including being sensitive to

the initial condition and being difficult to incorporate in deep learning frameworks.

2.3.2 Global Registration Method

Local ICP algorithms [10, 70, 76, 11] have a potential problem with the initial

condition, often falling into a local minimum. In response, Yang et al. [92]

developed Go-ICP, globally optimal registration that utilizes bunch and bound

optimization to obtain a global rigid transform. Moreover, some approaches
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[26, 52, 67, 29] are designed to relieve convex, using other optimization. Although

Go-ICP [92] and its variants improve the local minimum drawback, they also

increase computational times considerably.

2.3.3 Interest Point and Alternative Representation Method

To improve the enormous complexity, several works related to the interest point

method were developed, such as the point feature local descriptor [71, 99, 22, 23],

point signatures [15], and isometric matching [59]. In addition, other representa-

tion [67, 29, 34, 90, 8, 55, 83, 32] and its applications [82, 54, 81, 63, 53, 91, 65, 43]

have been introduced. However, it is difficult to adapt these approaches to general

registration because each method has its own appropriate problem character.

2.3.4 Deep Learning-based Registration Method

As local and global registration methods have fundamental drawbacks, including

a local minimum and large computational complexity, Aoki et al. [5] developed

PointNetLK. This deep learning-based registration method achieves fast and ac-

curate registration by improving on the Lucas and Kanade (LK) algorithm [50] to

circumvent the need for convolution on the PointNet representation. PointNetLK

[5] achieves higher accuracy and lower complexity than the non-deep learning-

based approaches above. However PointNetLK [5] often falls into a local solution

for symmetric objects because it has a mechanism for iteratively processing reg-

istration. This proposes a deep learning-based and non-interactive method for

point cloud registration by correspondence regression and compares the proposed
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method with PointNetLK [5] as a state-of-the-art approach.

2.3.5 Applications of 3D-3D Correspondence Discovery

3D point cloud registration through 3D-3D correspondence discover can be applied

to many real-time 3D reconstruction techniques [58, 75, 89, 35, 51, 33]. Such as

RGBD-SLAM systems have been actively developed within computer vision and

robotics communities towards the realization of more efficient and accurate camera

pose estimation and 3D environment map reconstruction.

2.4 Feature Space Integration

Since feature space integration is a fundamental technique for utilizing the input

information, some methods also employ it to achieve accurate recognition and

segmentation. Semantic segmentation approaches with PointNet [62] concatenate

global features with local features for feature space integration to make the most

of the information of the input point cloud. Auston et al. proposes a deep learn-

ing approach for improving the reconstruction of 3D objects with audio-visual

information, where audio and visual features space are integrated for more flex-

ible representation [80]. SoundNet [7] also adopts the feature space integration

approach for multi-modal processing. As described, integrating feature space is

a revolutionary idea that enables multiple inputs and accurate segmentation and

classification. Inspired by these methodologies, such concepts are applied to the

two proposals in this thesis.
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Camera Pose Estimation by Vehicle
Camera Images and 3D Point Cloud

3.1 Introduction

The police reconstruct the vehicle’s trajectory after a traffic accident based on the

brakemarks left on the road and damage to the surroundings. However, it is difficult

to estimate vehicle pose correctly through such information because of being

affected by the circumstances before and after an accident. In computer vision

communities, camera pose estimation with some sensors is an essential technology

for many applications, such as augmented reality, driving assistance systems,

and autonomous driving. The analysis of vehicle trajectories associated with

accident databases collection has also contributed significantly to these systems’

development.

Global Positioning System (GPS) is an innovative and standard technol-

ogy for estimating vehicle position by the satellite positioning system. Langley

17
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[40], which utilizes Real-Time Kinematic (RTK)-GPS, achieves an accurate vehi-

cle position estimation within 10 cm of error. However, since RTK-GPS requires

the installation of a few million yen for each base station and mobile station, the

initial cost is very high, and the measurement accuracy depends significantly on

the satellite’s reception intensity. Additionally, these GPS systems cannot grasp

the vehicle pose, including roll, pitch, and yaw, which are essential information

for on-site inspection and autonomous applications. As a solution to these prob-

lems, Simultaneous Localization and Mapping (SLAM) has been developed for

an accurate camera pose estimation with only RGB cameras. SLAM with only an

RGB camera is called monocular SLAM, which simultaneously reconstructs 3D

environmental maps and estimates camera pose. However, there are two potential

problems with a lot of monocular SLAM.

Firstly, the estimated result is based on an unknown scale defined in the

monocular SLAM processing. In other words, only relative estimation results are

calculated because the input data does not include any depth information. The

estimation results required in real situations, such as on-site inspections, are the

absolute scale trajectories based on real-scale input data. Secondly, all the vehicle

trajectories cannot be obtained through monocular SLAM because in monocular

SLAM focusing on real-time processing, only the keyframes, which are judged to

be a key among given input sequence images, are estimated. Although it depends

on settings such as the parameter’s threshold for selecting the keyframes, in ORB-

SLAM [56] about seven frames in ten frames are selected as a keyframe. Hence,

when reconstructing a vehicle trajectory after an accident, it is difficult to obtain
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accurate estimation if one frame, which is an important scene, is not regarded as

a keyframe.

Caselitz et al. [14] resolves the scaling indeterminacy by matching the 3D

environmental map reconstructed byORB-SRAM2 [56] with a 3D point cloud pre-

viously acquired by LiDAR using an ICP algorithm [10] based on the assumption

that the rough position and rotation of the initial frame has been given. However,

this approach is not practical when ORB-SLAM [56] does not work well in terms

of initialization and does not resolve its keyframe problem. In addition to this

problem, the accuracy of ORB-SLAM [56] is not very high due to the importance

of real-time processing.

This thesis proposes a 2D (RGB camera) - 3D (LiDAR)matching technique

by utilizing the generated image from a 3D point cloud based on a camera pose

for estimating accurate vehicle trajectories of all frames. This matching technique

is based on the idea of integrating 2D feature space (features on RGB images)

and 3D feature space (features of 3D point clouds). In the evaluation experiment,

the proposed method is applied to a camera mounted on a vehicle traveling about

40 m. Regarding the position in the estimation results, it is compared with the

highly accurate measurement of RTK-GPS. The images are generated from the

point group based on the estimation results and qualitatively compare with the

corresponding vehicle camera image to verify the accuracy.
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Figure 3.1: Overview of the proposed method

3.2 Method

Figure 3.1 shows an overview of the proposed method, consisting of three parts.

The first is generating candidate images from a 3D point cloud based on a rough

initial condition. The second is the part for matching vehicle camera images with

generated images from a 3D point cloud. The last is the part for estimating the

camera pose matrix based on the image matching results. Each processing is

described in detail below.

3.2.1 Generating Candidate Images

In this section, the part that generates 2D RGB images from the 3D point cloud

measured byLiDAR is described. The proposedmethod is based on the assumption
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that the rough vehicle position information in the initial frame of the vehicle camera

image can be obtained from GPS and that the initial value is manually given for

the posture. To generate RGB images from a 3D point cloud, it is necessary

to define position and rotation parameters. The projective transformation matrix

containing these six parameters is shown in Equation 3.1. R and t represents the

rotation and position of a vehicle in a 3D point cloud, respectively. As mentioned

in the previous section, the proposed method is based on the assumption that the

vehicle’s approximate position in the initial frame t, and the rotation R, are given

by GPS or manually. However, these values contain errors and are not sufficiently

accurate for actual on-spot inspection or development of a driver assistance system.

Therefore, the proposed method generates multiple RGB images from a 3D point

cloud set based on the position and rotation information, including these errors.
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To generate several candidate images, R in Equation 3.1 which represents

the vehicle rotation in the 3D point cloud, is randomly changed in a particular

range. The number of image matching points between the vehicle camera image

and candidate generated image by changing each element of k, q, and \ within

a defined threshold, because various features can be extracted at even the same

feature points. Therefore, the proposed method fixes the position t and changes

the rotation R for generating several candidate images. Figure 3.2 shows examples

of candidate images generated from the point cloud. The images generated by ran-

domly changing the camera angle generally contain the best images for matching,

as shown in the top left image.

The transformation from a 3D point cloud to an image coordinate is per-

formed by the Equation 3.2. The above process shows that multiple candidates’

RGB images are generated from the vehicle’s rough position and rotation infor-

mation. Suppose a projective transformation of the Equation 3.2 is applied to all

elements of 3D point clouds. In that case, some point cloud behind the vehicle may

be projected, and several 3D points may be projected onto the same pixel. Hence,

in the proposed method, to make the matching process more stable when applying

the projective transformation to the 3D point cloud, the following constraints are

imposed.

• Projection transformation is applied only to a 3D point ahead of the vehicle.
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• The image coordinates after the projection are converted to an integer.

• If there are multiple 3D points projected on the same image coordinate, the

point closest to the vehicle is adopted.

3.2.2 Selecting Most Suitable Image

Multiple viewpoint candidate images are generated from GPS information. In the

next step, these generated images are matched with vehicle camera images based

on the RANSAC robust estimation method [20]. All the corresponding points and

distance of corresponding are calculated. AKAZE feature [4] is used to match

the generated candidate images and vehicle camera images. The AKAZE feature

[4] employs an algorithm that improves the KAZE feature’s processing speed

[3]. It has been learned empirically that the images that do not have many feature

points robustly, like images generated from the 3D point cloud, successfully match.

Figure 3.4 and 3.5 show the imagematching results between vehicle camera images

and candidate images on scene 1 and scene 2, respectively. Those images imply

that matching RGB values measured on different devices is a challenging task.

3.2.3 Estimating Vehicle Pose

The corresponding feature points in the image coordinate system can be acquired

by matching the most suitable generated image and vehicle camera image. In

addition, with the inverse operation of the Equation 3.2, the 3D position (-,., /)

can be uniquely determined. By the above calculation, the number of successfully
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Figure 3.2: Candidate images generated from point cloud
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Figure 3.3: Relationship between vehicle camera image (2D) and point cloud (3D)

matched 2D-3D correspondences between the image coordinates (D1′, E1′) and

the corresponding 3D points (-1, .1, /1) can be obtained. Finally, the vehicle’s

position and rotation are estimated from these correspondences by solving the

Perspective-n-Point (PnP) problem.

3.3 Evaluation

This section presents the experiments conducted to evaluate the effectiveness of

the proposed method. In this experiment, after estimating the vehicle camera’s

trajectory by the proposed method, the position estimation was quantitatively

evaluated by comparison with RTK-GPS, and the posture was quantitatively by

and qualitatively evaluated.
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Figure 3.4: Image matching results between vehicle camera images and candidate
images on scene 1
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Figure 3.5: Image matching results between vehicle camera images and candidate
images on scene 2
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Figure 3.6: Input images (upper: scene 1, lower: scene 2)

3.3.1 Settings

For the 3D point cloud, LiDARs with terrestrial laser scanning (TLS) and mobile

mapping system (MMS) were used for evaluation.

The experimental environment is as follows:

• CPU: Intel Core i7-5820K 3.30GHz,

• RAM: 64GB,

• Vehicle Camera: KENWOOD DRV-610,

• LiDAR (TLS): Z+F IMAGER 5010C 3D Laser Scanner,

• LiDAR (MMS): RIEGL VQ250.

The input images on scene 1 and scene 2, vehicle, and LiDAR (MMS)

used in the experiment are shown in Figure 3.6 and 3.7. In this experiment, since
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the vehicle position information is assumed to be acquired from the GPS that

is installed in many vehicles with an error of about 1.5 meters, the RTK-GPS

position information with a randomly added error in the following range (as shown

in Equation 3.6) is regarded as the initial value.

−1.5< ≤ G ≤ 1.5<.

−1.5< ≤ H ≤ 1.5<.

−1.5< ≤ I ≤ 1.5<.

(3.6)

For generating 75 candidate images from a 3D point cloud, the position t is fixed,

and the rotation R is independently changed by ticking the following ranges at

equal intervals. In other words, 25 candidate images are generated for each change

of one rotation axis.

−10◦ ≤ k ≤ 10◦.

−10◦ ≤ q ≤ 10◦.

−10◦ ≤ \ ≤ 10◦.

(3.7)

3.3.2 Quantitative Evaluation of Vehicle Trajectory Estimation

In the quantitative evaluation, the validity was confirmed by comparing the estima-

tion results with RTK-GPS values. As for the rotation, since it cannot be obtained

directly from RTK-GPS, the ground truth was calculated from the difference vec-

tor of position data between the two frames obtained from RTK-GPS. Figure 3.8,
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LiDAR
camera

Figure 3.7: Evaluation vehicle

Table 3.1: Detail of estimation error on scene 1 (using LiDAR (MMS)) (Note:
STDDEV = standard deviation)

LiDAR (MMS)
Axis Average error [m] Max error [m] STDDEV [m]
- 0.197 0.954 0.298
. 0.296 0.721 0.256
/ 0.379 0.911 0.242

3.10 and 3.9 show the evaluation and RTK-GPS measurement vlaues of vehicle

position, respectively. Moreover, Table 3.1, 3.2, and 3.3 show averaged error,

maximum error, and standard deviation with LiDAR (MMS) and LiDAR (TLS) of

each axis on scene 1 and scene 2, respectively. It can be seen that the estimation

is accurate within 1m for all frames and the fact that the standard deviation is less

than 0.3m also indicates that all frames are correctly estimated on average. In

Figure 3.11, it is confirmed that all frames can be estimated accurately in each

experiment with each 3D device (LiDAR (MMS) and LiDAR (TLS)) by mapping

both estimated vehicle trajectory (red) and RTK-GPS measurement (blue).
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Table 3.2: Detail of estimation error on scene 1 (using LiDAR (TLS)) (Note:
STDDEV = standard deviation)

LiDAR (TLS)
Axis Average error [m] Max error [m] STDDEV [m]
- 0.207 0.967 0.297
. 0.308 0.793 0.247
/ 0.385 0.926 0.267

Table 3.3: Detail of estimation error on scene 2 (using LiDAR (MMS)) (Note:
STDDEV = standard deviation)

LiDAR (MMS)
Axis Average error [m] Max error [m] STDDEV [m]
- 0.415 0.913 0.286
. 0.458 1.204 0.292
/ 0.601 1.441 0.462

Figure 3.8: Estimation results on scene 1 (usingLiDAR (MMS), upper: translation,
lower: rotation)
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Figure 3.9: Estimation results on scene2 (using LiDAR (MMS), upper: translation,
lower: rotation)

Figure 3.10: Estimation results on scene 1 (usingLiDAR (TLS), upper: translation,
lower: rotation)
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：LiDAR

Figure 3.11: Mapping results on scene 1 (left: LiDAR (MMS), center: LiDAR
(TLS), right: LiDAR (MMS)+ORB-SLAM [56])

3.3.3 Qualitative Evaluation of Vehicle Rotation Estimation

The qualitative evaluation was performed by visually confirming the image re-

generated from the estimated position and rotation results and the vehicle camera

image regarding the vehicle’s rotation. Figure 3.12 and 3.13 show the images

regenerated from the 3D point cloud measured by LiDAR (MMS) based on the

estimation result and the corresponding vehicle camera images on scene 1 and

scene 2, respectively. It can be seen that accurate estimation is achieved in each

frame.

3.4 Scale Estimation of Monocular SLAM

Though it was confirmed that the proposed method can estimate the vehicle tra-

jectory with high accuracy through evaluation experiments, the proposed method

requires approximately 20 seconds to calculate the position and rotation of one

vehicle camera image. Therefore, to shorten the processing time, the proposed
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Figure 3.12: Estimation results on scene 1 (first and third row: drive recorder
image, second and forth row: image generated from estimation)
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Figure 3.13: Estimation results on scene 2 (first and third row: drive recorder
image, second and forth row: image generated from estimation)
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method tries to estimate the monocular SLAM scale by the proposed method.

Monocular SLAM fails to track if a sufficient number of feature points are not

detected in the scene to be estimated. Still, tracking between scenes is successful,

except for its scale ambiguity. It is one of the powerful methods for camera pose

estimation.

3.4.1 Method

The proposed method employed ORB-SLAM [56] for monocular SLAM whose

estimation is based on a scale defined in the processing. The initial frame of

the estimated position tORB_init and rotation RORB_init is initialized as shown in

Equation 3.8 and 3.9.

tORB_init = O. (3.8)

RORB_init = I. (3.9)

First, the vehicle’s position and rotation corresponding to the initial frame estimated

by ORB-SLAM [56] is estimated by the proposed method. The coordinate system

of ORB-SLAM [56] is unified with 3D point cloud coordinate system by Equation

3.10.

Restimated_i = RORB_iRLiDAR_init. (3.10)
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where 8 and RLiDAR_init present each frame number among all frames and initial

frame estimated result by the proposed method.

U =
|tLiDAR_init − tLiDAR_n |

|Restimated_inittORB_init − Restimated_ntORB_n |
. (3.11)

where = presents one specific frame number used for calculating a scale U among

all frames .

testimated_i = URLiDAR_itORB_i + tLiDAR_init. (3.12)

Next, the estimated frames’ position and rotation other than the initial frame

is calculated using the proposed method. Here, the case of the scale transformation

using the = frame for the sake of explanation is described. The scale is calculated

using Equation 3.11 and 3.12, and then by applying the calculated scale to the

results of the ORB-SLAM [56] estimation, the absolute position and rotation of

vehicle is estimated. In the evaluation experiments, the 3Dpoint cloudmeasured by

LiDAR (MMS) and the initial and final frames were used to scale the images shown

in Figure 3.6. Integration of ORB-SLAM [56] and the proposed method required

about 20 seconds to estimate every input frame, which achieves a significant

reduction of the processing time. In the accuracy evaluation, frames that were not

estimated by ORB-SLAM [56] were estimated by linear interpolation.
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Table 3.4: Detail of estimation error (using LiDAR (MMS) with ORB-SLAM
[56]) (Note: STDDEV = standard deviation)

ORB-SLAM [56]+LiDAR (MMS)
Axis Average error [m] Max error [m] STDDEV [m]
- 0.209 0.412 0.111
. 0.495 0.891 0.330
/ 0.440 1.294 0.325

3.4.2 Quantitative Evaluation of Vehicle Trajectory Estimation

In Figure 3.14, the estimated position and rotation by the proposed method with

ORB-SLAM [56] and RTK-GPS measurement are plotted. From this figure, it can

be seen that the position and rotation are estimated correctly in almost all frames.

Furthermore, Table 3.4 shows the averaged error, maximum error, and standard

deviation with LiDAR (MMS) point cloud. It indicates that the proposed method

can also be applied to scale estimation of a monocular SLAM. On the other hand,

there are some estimated frames whose maximum error exceeds 1 m. Since this

may be due to the low estimation accuracy of ORB-SLAM [56], it can be solved

by estimating the target frame using the proposed method.

3.5 Discussion

3.5.1 Point Cloud Density

In the evaluation experiment, sequential vehicle camera images were input, and

the position and rotation of the vehicle were estimated using the corresponding 3D

point cloud measured by LiDAR (MMS) and LiDAR (TLS). Table 3.1 shows that
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Figure 3.14: Estimation results (using LiDAR (MMS) with ORB-SLAM [56] and
linear interpolation, upper: translation, lower: rotation)

the error is smaller when using the 3D point cloud measured by LiDAR (MMS).

This difference in estimation accuracy is thought to be due to the occlusion of

the measured 3D point cloud. Additionally, since LiDAR (MMS) measures a 3D

point cloud using a device mounted on a vehicle, the entire point cloud’s density

is relatively uniform. On the other hand, concerning LiDAR (TLS), since the

equipment is installed at multiple locations around the road for measurement, the

point cloud’s density decreases as the distance from the installed location increases.

Hence, the area around the measurement point is exceptionally dense, and some

parts cannot be measured in other places, so the density of the entire point cloud

tends to be highly biased. Since the vehicle trajectory is estimated by matching

the image generated from the 3D point cloud with the vehicle camera image, if

the point cloud’s density is not uniform, a missing part will occur in the generated
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image, which will adversely affect the matching accuracy.

3.5.2 Constraints in Candidate Image Generation

As described in Section 3.2.1, the proposed method has three constraints in gener-

ating candidate images from a 3D point cloud. In this thesis, these constraints’ ef-

fectiveness is validated by comparing the proposed method with the unconstrained

image generation. Fig 3.17 and 3.18 show a comparison of image matching with

candidate images generated from a point cloud with and without constraints in two

scenes. The generated images with constraints are successful in image matching

at many feature points, whereas the unconstrained generated images fail to match

at any feature points. In each scene, it is confirmed that the constraints allow for

the generation of appropriate images for matching.

3.5.3 Scalability

As shown in Figure 3.1 and 3.3, it can be seen that the error of scene 2 is smaller

than that of scene 1 on each axis. Comparing the input images of scene1 and

scene2 in Figure 3.6, it implies that scene 1 is a scene of straight-ahead followed

by a left turn, while scene 2 is a straight-ahead scene only. The number of

feature points is expected to increase due to the change in the surrounding objects’

appearance by turning left. On the other hand, there is not much change in the

extracted feature points when the surrounding scenery is almost unchanged only by

going straight. These differences are expected to have a significant impact on the

accuracy of image matching. To further clarify the proposed method’s scalability,
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Figure 3.15: CALRA: open-source simulator for autonomous driving research
[17]

it is necessary to conduct many experiments and analyses in the scenes that the

proposed method is not good at, as described above.

Since it is difficult to collect such scenes, some simulators, such as CARLA

[17] and AirSim [77], that generate virtual environment have been proposed for

autonomous driving development. In addition to the above described, virtual

traffic accident scenes where the vehicle overturns allow validation for the accident

database collections.
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Figure 3.16: AirSim: high-fidelity visual and physical simulation for autonomous
vehicles [77]

3.6 Summary

This thesis proposed a 2D-3D correspondence discovery technique for camera

pose estimation with vehicle camera image and LiDAR point cloud, which avoids

a direct correspondence discovery between RGB camera image (2D) and LiDAR

point cloud (3D) by generating some candidate images from point cloud to make

the input dimensions the same. In contrast to the problems of conventional meth-

ods such as scale ambiguity, keyframe-based, and time-consuming processing, our

method achieves a non-deep camera pose estimation for all frames at an absolute

scale. Through experiments, the proposed method’s accuracy was quantitatively

evaluated by comparing the estimation results with the RTK-GPS measurements.

The proposed method is also evaluated qualitatively by regenerating images from
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Figure 3.17: Comparisons of generated images and matching on constraints in
scene 1
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Figure 3.18: Comparisons of generated images and matching on constraints in
scene 2
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a point cloud based on the estimation results and comparing them with the ve-

hicle camera images. Furthermore, it was suggested that the proposed method

could be integrated with monocular SLAM by calculating the scale. Finally, the

point cloud’s density bias on the estimation accuracy and the effectiveness of the

proposed method’s three constraints are discussed.



Chapter 4

3D Point Cloud Registration by
Deep Neural Network

4.1 Introduction

The 3D point cloud is a recently popular data format, owing to the growing

development of LiDAR, Microsoft Kinect devices [98], and stereo cameras. Thus,

the research topics, including object tracking, segmentation, and mapping, have

been the main topics, where the input is point clouds. However, the inherent lack

of structure has caused difficulties when adopting point clouds as direct input in

deep learning architecture. Recent breakthrough technologies, such as PointNet

[62], overcomes these difficulties, leading to the novel extensions [64, 61]. Recent

research has also tried to utilize PointNet [62] for point cloud registration, which

is also a key research topic for the robotics and computer vision communities.

The most popular and classic method for point cloud registration is the

iterative closest point (ICP) algorithm [10]. ICP calculates the rigid motion

46
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based on a fixed correspondence between one point cloud and another, updating

the correspondence to minimize the point-to-point distances. Although ICP can

achieve highly accurate registration, the registration often fails by falling into the

local minimum. In other words, the registration accuracy of ICP depends strongly

on its initial perturbation [10]. For this initial sensitivity problem, initial alignment

of point cloud with feature descriptors, such as [71, 99, 22, 23], has also developed

with ICP algorithms. However, these approaches still fail registration because of

the local minimum, where input point cloud appearance is symmetrical.

Many works have tried to proceed with this problem. Rangarajan et al. [66]

proposed a SoftAssign algorithm that was robust to the local minimum by assign-

ing Gaussian weights to the points and applying deterministic annealing to the

Gaussian variance. The spin image algorithm [30] is a global registration method

and invariant under specific transforms. Aiger et al. [2] proposed a 4PCS algo-

rithm that utilized random sampling schemes for direct point cloud registration.

However, these approaches cannot guarantee global optimality. Go-ICP [92] is a

global optimal registration method that integrates the bunch and bound scheme

with the local ICP. However, the computational cost of Go-ICP [92] is very high

because the complexity is O(=2).

Learning-based methods have been developed recently to provide accurate

alignments and improvement of processing speed when point cloud features are

extracted by PointNet [62]. PointNet is a general representation of an unstructured

point cloud that allows object detection, segmentation, and so on. PointNetLK

[5] is the latest deep learning-based registration techniques using PointNet [62].
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PointNetLK directly optimizes the distance of aggregated features using the gra-

dient method. This approach overcomes computational speed and local minimum

problems, but the simplest network architecture may be one that directly regresses

the pose between point clouds. In this thesis, such a simplistic approach, “Direct-

Net” as a baseline method, is proposed. However, it is thought that PointNetLK

and DirectNet do not consider local features, falling to utilize the point cloud

information fully.

This thesis proposes a novel point cloud registration method based on deep

learning called CorrespondenceNet (CorsNet). The proposed method feeds global

features from PointNet [62] to per-point local features to make effective use of

point cloud information with a feature space integration. The end-to-end network

architecture consists of the main three parts: (1) extracting global features of

point clouds with PointNet, (2) concatenating global features with local features

of the source point cloud and outputting the correspondences of each point via

fully connected layers 512, 256, 128, 3, and (3) estimating a rigid transform

with singular value decomposition (SVD). The SVD part is also included in the

end-to-end network architecture.

Through experimentation, the proposed CorsNet is trained as well as Point-

NetLK, and DirectNet using the ModelNet40 dataset [90], validating the accuracy

of the seen and unseen category registration quantitatively. It is also qualitatively

shown that the proposed method is more accurate in registration than existing

methods, using several models as examples, where existing methods fail regis-

trations due to local minimum. This thesis also discusses the proposed method
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efficiency and the benefits obtained from regressing the correspondence compared

with other architecture that does not consider point cloud global features.

Contributions: The proposed method’s main contributions can be summarized

as follows:

• This thesis proposes a highly accurate registration architecture concatenating

the local point features with the global features to regress the point cloud

correspondence.

• This thesis evaluates the accuracy of the seen and unseen category in terms

of rotation and translation.

• This thesis analyzes the proposed method compared with other methods,

including ICP, DirectNet, and PointNetLK, in terms of accuracy due to

correspondence regression.

4.2 Problem Statement

In this section, the overview of the problem setup is described, referring to Point-

NetLK [5]. A point cloud is represented as a set of 3D points {P : %8 |8 = 1, ..., =} ⊂

R3, whose each point %8 is a vector of its (G, H, I) coordinate. In Figure 4.2, the

red PS and blue PT point clouds represent the source and template point clouds,
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ICP

DirectNet

PointNetLK

CorsNet
(Proposal)

Figure 4.1: Registration results. Green: source, Blue: template, Red: trans-
formed point cloud. Only the proposed method achieves accurate registration
regardless of the initial perturbations.
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respectively. The proposed method find the rigid transform G ∈ (� (3), which

includes the alignment between PS and PT. The transform G is represented by an

exponential map as follows:

G = exp

(∑
8

b8T8

)
/ = (b1, b2, ..., b6)T , (4.1)

where T8 are the generators of the exponential map with twist parameters / ∈ R6.

Therefore, this thesis goal is to estimate the G that satisfies the following equation:

4.3 Method (CorsNet)

4.3.1 Network Architecture

Figure 4.2 shows the architecture of the proposed network in detail. The model

mainly consists of three components: (i) Global feature extraction, (ii) Correspon-

dence estimation, and (iii) SVD.

Global feature extraction: The requirement for point clouds mainly includes

three factors: (i) invariance in the order of the point clouds, (ii) acquisition of local

features, and (iii) invariance in rotation. PointNet is an innovative approach that

allows raw point clouds to be treated as an input for segmentation and classification

tasks, satisfying the three requirements. PointNet has achieved high accuracy

and low computational complexity in various benchmarks and has been applied

to many applications. Therefore, the proposed method adopts PointNet for the
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Figure 4.2: CorsNet architecture. Let PS and PT be the source point cloud and
the template point cloud, respectively. The proposed architecture consists of main
three segments: (i) global feature extraction (extracted by PointNet [62]), (ii)
correspondence estimation, and (iii) singular value decomposition (SVD). This
architecture takes = points as the input, extract global features with max pooling,
and feeds it to the per-point features by concatenating the global feature with
each of the point features. Then, they are converted to = × 3, which means the
correspondence between PS and PT. Subsequently, the proposed method applies
this correspondence to PS and calculate the rigid transform with SVD. The above
figure shows that the proposedmethod consists of a deep-learning technique. Note:
MLP = multi-layer perceptron.
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high-dimensional embedding of point clouds, as shown in the feature transform

processing in Figure 4.2. The output of PointNet [62] is global features consisting

of 1 × 1024 vectors from max pooling for some multi-layer perceptrons (mlp1,

mlp2).

Correspondence estimation: After computing the global features of the source

point cloud and template point cloud, the proposed method feeds it back to per

point local features by concatenating the global feature with each of the point

features. This feature space integration contributes to making the most of the

point cloud information globally and locally.

The network then outputs the = × 3 matrix, as shown in Figure 4.2. Let

ΔPS be this = × 3 matrix. By adding this ΔPS to PS, the proposed method can

calculate tentative transform destination P̂T as follows:

P̂T = PS + ΔPS. (4.2)

The proposed method regresses correspondences ΔPS and estimates a rigid trans-

form based on the estimated correspondences using SVD.

GPS = PT. (4.3)

SVD: The source point cloud is now aligned with the template point cloud using
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the proposed network model’s output, as shown in Figure 4.2. Next, the approach

for calculating a rigid transform with SVD is described.

Define the centroids of PS and P̂T as

PS =
1
=

=∑
8=1

PS and P̂T =
1
n

n∑
i=1

P̂T, (4.4)

and then, the cross-covariance matrix H is calculated by

H =

#∑
8=1

(
P̂T − P̂T

) (
PS − PS

)T
. (4.5)

The proposed method uses SVD to decompose H to U,V ∈ ($ (3):

[U, S,V] = SVD(H). (4.6)

Subsequently, the proposed method extract the rigid transform elements, estimated

rotation, Rest ∈ ($ (3) and translation, test ∈ R3:

Rest = VUT. (4.7)
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test = −RP̂T + PS. (4.8)

Let q denote function q : (� (3) → R6, for estimated rigid transformGest ∈ (� (3)

and the twist parameters /est ∈ R6. The rigid transform G ∈ (� (3) and twist

parameters / ∈ R6 are generated as follows:

Gest =

(
Rest test
0 1

)
. (4.9)

/est = q (Gest) . (4.10)

4.3.2 Loss

By the derivation above, estimated rigid transform Gest and twist parameters /est

are calculated. Because source point cloud PS is given from the ModelNet40

dataset [90] directly, PS and Ggt are defined as

PT = GgtPS. (4.11)

Then, the proposed method set the correspondence between one point cloud to

another as Cors, especially estimated one Corsest and ground-truth one Corsgt as

Corsgt = PT − PS. (4.12)
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Corsest = P̂T − PS. (4.13)

Subsequently, three kinds of loss elements using previously values are defined.

loss1 = | | (Gest)−1Ggt − I4 | |F. (4.14)

loss2 = | |/gt − /est | |2. (4.15)

loss3 = | |Corsgt − Corsest | |2. (4.16)

For ablation study, the four version loss functions are defined as

Lossv1 = loss1. (4.17)

Lossv2 = loss2. (4.18)

Lossv3 = loss1 + loss2. (4.19)

Lossv4 = loss2 + loss3. (4.20)
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Equations (4.17) and (4.18) represent the loss functions where only the rigid

transformG and / are the losses, respectively. Moreover, (4.19) and (4.20) employ

the loss adding the Cors loss to Lossv1 and Lossv2, respectively. By doing this, the

proposed method can confirm the effectiveness of regressing the correspondence.

In summary, this thesis verified the effectiveness of each loss functions above

(4.17), (4.18), (4.19), and (4.20) with experiments.

4.4 Method (DirectNet)

The proposed CorsNet regresses the point cloud correspondence, not the pose

directly between point clouds. That being said, the proposed method develop

a novel network architecture that directly regresses the pose, including rotation

Reuler ∈ R3 (euler angle) and translation t ∈ R3, as shown in Figure 4.3. In this

thesis, this network architecture is called “DirectNet”.

DirectNet consists of two parts: (i) global feature extraction and (ii) global

estimation. The global feature extraction is identical to CorsNet, that is, the

structure of PointNet. After the global features of PS and PT are extracted, these

global features are concatenated and converted to 1 × 6 vector. The output 1 × 6

vectors is [Geuler, Heuler, Ieuler, Gt, Ht, It]T. The first half of this vector is represented

as Reuler = [Geuler, Heuler, Ieuler]T. This Reuler is converted into Rest ∈ ($ (3) as

follows:
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Figure 4.3: DirectNet architecture. Let PS and PT be the source point cloud and
template point cloud, respectively. DirectNet is a simpler network architecture
than CorsNet, which directly estimates rotation R and translation t. This consists
of main two segments: (i) global feature extraction (extracted by PointNet [62])
and (ii) global estimation. This architecture also takes = points as the input,
extracts the global feature withmax pooling, and concatenates these global features
horizontally. Then, they are converted to = × 6, which means rotation R ∈ R3 and
translation t ∈ R3.
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xmat =
©­«

1 0 0
0 cos Geuler − sin Geuler
0 sin Geuler cos Geuler

ª®¬ . (4.21)

ymat =
©­«

cos Heuler 0 sin Heuler
0 1 0

− sin Heuler 0 cos Heuler

ª®¬ . (4.22)

zmat =
©­«

cos Ieuler − sin Ieuler 0
sin Ieuler cos Ieuler 0

0 0 1

ª®¬ . (4.23)

Rest = xmat · ymat · zmat. (4.24)

Moreover, test is described as:

test = [Gt, Ht, It]T. (4.25)

Therefore, Gest and /est are calculated according to equations (4.9) and (4.10). In

DirectNet, two loss functions for Gest and /est are also set up as stated by equation

(4.14) and (4.15).

Lossv1 = | | (Gest)−1Ggt − I4 | |F. (4.26)

Lossv2 = | |/gt − /est | |2. (4.27)
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4.5 Experiment

In this thesis, the deep-learning-based point cloud registration method CorsNet,

which regresses a correspondence between point clouds, is developed. To show

the accuracy of the proposed network architecture, we compared it with ICP

[10], PointNetLK [5], and DirectNet. The ModelNet40 dataset [90] is used,

which includes various point clouds with 40 categories. In experiments with

PointNetLK, PointNetLK [5] network are trained and tested using source codes

released on Github. This thesis followed the experimental settings of PointNetLK

[5], normalizing the point cloud into a unit box at the origin [0, 1]3 and uniformly

sampling 1024 points from each model’s outer surface. The root means square

error (RMSE) of rotation R and translation t for each experimental setting are

measured. The training setup is as follows:

• Optimizer: Adam optimizer [36],

• Learning rate: 0.0001 divided by 10 at 75, 150 and 200 epochs for 300

epochs training,

• Epochs: 300.

4.5.1 Train and Test of Same Categories

First, this thesis evaluates the accuracy of the proposed network architectures on

the same categories. The CorsNet and DirectNet were trained on each of the loss
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functions (equations (4.17, 4.18, 4.19, 4.20) and (4.17, 4.18), respectively) on the

training set for 20 categories and test on the test set for the same categories.

Random Ggt with rotation angles [0, 45] degrees about arbitrarily chosen

axes and translation [0, 0.8] are used. On the testing, initial perturbations were in

the range [0, 90] degrees in 10 degrees increments, and initial translations are in

the range of [0, 0.3].

Table 4.1 shows the evaluation results the performance of all models,

including networks based on the loss of rigid transform G and twist parameter /.

The results show that the proposed CorsNet whose loss function is G achieved

the highest accuracy in terms of translation. Figure 4.5 plots the progression

of the averaged estimation error with respect to the initial angles of DirectNet,

PointNetLK [5], and CorsNet.

4.5.2 Train and Test of Different Categories

To verify the robustness of the categories, this thesis evaluated the proposed

network architecture like Section 4.5.1, on using different categories for training

and testing.

Table 4.2 shows the proposed and related methods’ performance evaluation

results. Rotation and translation are estimated most accurately by CorsNet, whose

loss function was rigid and transformedG and twist parameters /. Table 4.2 shows

that CorsNet can estimate rotation and translation accurately even if the objects

used in training and testing were different.
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Table 4.1: Comparisons of same categories (Note: RMSE = root mean square
error, STDDEV = standard deviation)

Method (LossType) RMSE (R) STDDEV (R) RMSE (t) STDDEV (t)
ICP [10] 46.4628 20.9234 0.26144 0.1124
DirectNet -v1 19.4791 8.1516 0.01218 0.0042
DirectNet -v2 20.9916 8.0848 0.00790 0.0003
PointNetLK [5] 14.4796 6.5190 0.01690 0.0071
CorsNet -v1 18.6482 8.9915 0.01574 0.0043
CorsNet -v2 17.9941 7.1414 0.00725 0.0056
CorsNet -v3 18.8303 9.2457 0.00632 0.0037
CorsNet -v4 16.2356 7.0018 0.00696 0.0038

Table 4.2: Comparisons of different categories (Note: RMSE = root mean square
error, STDDEV = standard deviation)

Method (LossType) RMSE (R) STDDEV (R) RMSE (t) STDDEV (R)
ICP [10] 45.8016 20.0761 0.28369 0.1316
DirectNet -v1 20.8310 9.0432 0.01983 0.0102
DirectNet -v2 22.0024 10.2138 0.01712 0.0958
PointNetLK [5] 21.0866 9.4052 0.03525 0.0203
CorsNet -v1 20.2198 9.3181 0.02401 0.0117
CorsNet -v2 20.3712 9.7817 0.02396 0.0119
CorsNet -v3 19.4610 9.0152 0.02288 0.0103
CorsNet -v4 16.7927 7.1731 0.01398 0.0073
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Figure 4.4: Results for Section 4.5.1. Each line shows the transition of a root mean
square error with respect to the initial angles.
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Figure 4.5: Results for Section 4.5.2. Each line shows the transition of a root mean
square error with respect to the initial angles.
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Figure 4.6: Registration results (green: source, blue: template, red: transformed).
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4.5.3 Efficiency

Processing time was measured with the following experimental setups:

• CPU: Intel Core i7-4980HQ 2.7GHz,

• RAM: 16GB,

• GPU: GeForce GTX 1080 GPU.

Inference time was measured in seconds and computed by averaging 100 results.

Table 4.3 shows that DirectNet was the fastest method among the comparing

methods.

Table 4.3: Comparison of inference times

ICP [10] PointNetLK [5] DirectNet -v1 CorsNet -v1
0.004781 0.0556 0.00212 0.03972

4.6 Discussion

The superiority of the proposed method has been proven qualitatively and quanti-

tatively. Table 4.4 summarizes the methods in terms of loss functions and output.

Since the proposed method focused on the fact that PointNetLK and DirectNet do

not take local features into account, and the pose is directly regressed, the proposed

CorsNet concatenates the local features with the global features and regresses the

point cloud correspondence. Tables 4.1 and 4.2 show the quantitative results of



Chapter 4. 3D Point Cloud Registration 67

Baseline PointNetLK ICP Proposal

Figure 4.7: Comparisons with DirectNet, PointNetLK [5], and ICP [10] (green:
source, blue: template, red: transformed).
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Table 4.4: Comparison of loss functions and output

Method Loss function Output
ICP [10] Nearest neighbor distance Correspondence
DirectNet -v1 G ∈ (� (3) Pose
DirectNet -v2 / ∈ R6 Pose
PointNetLK [5] / ∈ R6 Pose
CorsNet -v1 G ∈ (� (3) Correspondence
CorsNet -v2 / ∈ R6 Correspondence
CorsNet -v3 G + Cors Correspondence
CorsNet -v4 / + Cors Correspondence

the registrations, indicating how the proposed method achieves the most accurate

registration, especially given in the different categories. Furthermore, CorsNet

-v3 and -v4 ware appreciably more accurate than CorsNet -v1 and -v2, depending

on whether the correspondence loss is included in the loss function. As such,

considering the correspondence is effective. Figure 4.1 and 4.7 show the caption

images of the registration results for the proposed method, DirectNet, PointNetLK,

and ICP in the bookshelf category. Only the proposed method successfully aligns

the point clouds without falling into the local minimum, especially where the input

point clouds include the repeating structures. It is thought that this is because only

the proposed method links the local features to the global features and regresses

the correspondence based on these integrated features, making the most of the

local and global point cloud information. RE Regarding to the standard deviation,

there was no significant bias in the estimation accuracy for each method.

As shown in Tables 4.1 and 4.2, it shows that the proposed method achieves

better accuracy for different categories. This can be regarded as a highly versatile
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Figure 4.8: ApolloScape open dataset for autonomous driving and its application
[49].

network architecture that can be incorporated into various applications in practice.

In this experiment, the proposed method is applied to no partial and no noisy point

cloud. However, it may be valuable to analyze these experiments to develop better

network architectures, which will be considered future work.

For more practical applications, experiments with LiDAR point cloud,

such as KITTI [21], and ApolloScape dataset [28, 49] as shown in Figure 4.8, are

essential to validate the proposed method’s scalability. The network architecture

may need to be improved to estimate the position and orientation of a vehicle or

robot by aligning it to the input of a continuous LiDAR point cloud. It is also

crucial for future work to investigate whether to regressing the correspondence or
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the loss of position and posture will yield better accuracy.

4.7 Summary

In this thesis, a novel network architecture for point cloud registration, CorsNet,

concatenates the global features with the local features and regresses point cloud

correspondence. Through experiments, the effectiveness of regressing the corre-

spondence by comparing CorsNet with ICP [10], PointNetLK [5], and DirectNet,

are demonstrated and discussed qualitatively and quantitatively.



Chapter 5

Conclusion and Outlook

This thesis proposed two frameworks to resolve critical issues of current 2D-3D and

3D-3D correspondences discovery approaches: a time-consuming process, scale

ambiguity, keyframe-based, and initial values sensitivity. This chapter restates the

contributions and speculates on promising directions for future work.

This thesis has first contributed two novel approaches of 2D-3D corre-

spondences discovery for camera pose estimation with vehicle camera image and

LiDAR point cloud. The proposed method generates some candidate images from

the LiDAR point cloud to solve the time-consuming process of making the input

dimensions the same through point cloud rendering. Through this feature space

integration, 2D-3D correspondences are calculated for vehicle pose estimation.

Experimentation has confirmed that the proposed method estimates every

input query image’s camera pose within 1.5 m error compared to a very accurate

RTK-GPS measurement. Moreover, it was confirmed that the proposed method

could accurately and efficiently estimate the camera pose by fusing with RGB-

71
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SLAM.

Moreover, to solve initial value sensitivity problems due to a local min-

imum, this thesis has also contributed to the end-to-end deep learning-based

network architecture for discovering 3D-3D correspondences, enabling efficient

integration of point clouds global features for avoiding local minimum. The

experiments demonstrated that the proposed method could successfully estimate

object pose for point cloud registration more accurately than the well-known and

state-of-the-art approaches. The experiments further showed that the additional

baseline method clarified the effectiveness of integrating global features. The two

methods proposed in this thesis can make significant contributions to many robots

and automated systems.

As described in Chapter 1, an autonomous control system needs to accu-

rately understand its position and posture under real-world conditions, as well as

the postures of surrounding objects. Many systems are equipped with RGB cam-

eras and LiDARs, and their information can be effectively used for pose estimation

and route setting and nursing care. Hence, it can be argued that this technology

will be crucial in the world of the future, where labor shortages are expected to

occur due to an aging population.

Future Work: Since this thesis proposed the 2D-3D / 3D-3D correspondence

discovery technique for pose estimation, many interesting future directions for

research are available. One such direction would be to develop more robust 3D-

3D correspondence discovery approaches for full object models and partial objects.
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Although the proposed method receives two full point cloud object models of a

dataset [90], the applications for outdoor scenes require LiDAR sensors as input

devices that measure point cloud for each frame as it moves. Therefore, the

proposed network architecture needs to be improved to accept partial 3D point

clouds as input.

Another interesting direction for future research would be to design 2D-3D

/ 3D-3D integrated systems that utilize each strength point. The methods proposed

in Chapter 3 and 4 work entirely independently, where the input is vehicle camera

image - point cloud and point cloud - point cloud, respectively. However, in

outdoor navigation tasks, the systems are expected to be even more robust by

selecting and switching the better 2D-3D / 3D-3D correspondence discovery for

each frame, rather than using only single methods. In this manner, it is necessary to

consider how situations each correspondence discovery technique would be useful

for autonomous systems.
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