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Thesis Summary

In number theory, rational points on algebraic varieties have been studied by many

people from the time of Diophantus of Alexandria. In particular, it is an important

problem to determine whether a given algebraic variety has a rational point or not. It is

obvious that an algebraic variety has no rational points if it has no local points. However,

it is a very deep problem to determine whether an algebraic variety with local points has a

rational point or not. In fact, many SPORADIC examples of algebraic varieties are known

to have local points but no rational points, i.e., violate the local-global principle. In this

thesis, we give two kinds of conjectural but UNIFORM constructions of algebraic varieties

which violate the local-global principle. More precisely, our UNIFORM construction of

algebraic varieties of specified dimension means an algorithm to obtain a non-singular

projective hypersurface of the projective space PN of every sufficiently large degree n� 1

which violates the local-global principle (N = 3 or 4 in this thesis).

In the first part of this thesis, we construct a family of non-singular curves of odd degree

n > 3 which violate the local-global principle under a certain mild hypothesis on the

degree n. In fact, we conjecture that EVERY odd integer n > 3 satisfies our hypothesis,

and we prove that our construction actually produces non-singular curves which violate

the local-global principle for at least 90% (if ordered by heights) of the odd degrees n > 3.

Moreover, for each fixed n, our construction gives infinitely many algebraic curves of

degree n which are not geometrically isomorphic to each other. Our construction gives a

vast generalization of Fujiwara’s quintic curve (1972).

The contents of the first part are based on the joint work [28] with Yosuke Shimizu, and

the author contributed to the major part including the formulations of the theorems and

the details of their proofs.

In the second part of this thesis, for every odd prime number p > 3 such that p ≡ 3

(mod 4), we construct a family of non-singular projective surfaces of degrees n = (p−1)/2
which violate the local-global principle. In fact, we construct non-singular projective

surfaces of both GENERAL odd and even degrees n ≥ 3 which violate the local-global

principle under a certain mild hypothesis that the arithmetic progression {1 + nr}r∈N
contains a sufficiently small prime number. Our construction gives a vast generalization

of (modified) Swinnerton-Dyer’s cubic surface (1962). The contents of the second part is

based on [26] and its generalization.
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Although there is a vast literature on the violation of the local-global principle, there is

no known such a uniform construction of non-singular homogeneous forms violating the

local-global principle before the results in this thesis.
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Part 0. Introduction



1. The local-global principle

In number theory, rational points on algebraic varieties have been studied by many

people from the time of Diophantus of Alexandria. More precise terminologies, it is one

of the most classical problems to determine the set of (usually tuples of) rational numbers

which satisfy given algebraic equations. In terms of algebraic geometry, this problem is

equivalent to determine the set of rational points on given algebraic varieties. In particular,

it is important as the first step to determine whether this set is empty or not.

Since the linear equations are trivial objects in this aspect, the first non-trivial objects

are quadratic equations, i.e., quadratic hypersurfaces of the projective space Pn. For this
class of algebraic varieties, a classical theorem of Minkowski and Hasse is formulated as

follows:

Theorem 1.1 (Hasse-Minkowski (cf. [60, Theorem 8, Ch. IV])). Let X ⊂ Pn be a

quadratic hypersurface. Then, X has a Q-rational point if (and only if) X has a Qv-

rational point for the completion Qv of Q with respect to every finite and infinite place v

of Q, namely the field of p-adic numbers Qp for every prime number p 1 and the field of

real numbers R = Q∞.

This is the so called local-global principle of quadratic hypersurfaces (or quadratic

forms). Since Theorem 1.1 is quite strong and useful in the study of the set of ratio-

nal points on quadratic hypersurfaces, it is natural to study possible generalizations of

this property. In this view point, we introduce the following terminology.

Definition 1.2 (local-global principle). Let X be an algebraic variety. Then, we say that

the local-global principle holds for X if it has a Q-rational point if and only if it has

a Qv-rational point with respect to every finite and infinite place v of Q. Contrarily, we

say that X violates the local-global principle if the local-global principle does not

hold for X.

By using certain analytic methods, for example the Hardy-Littlewood circle method,

we can prove that the local-global principle holds if the dimension of an algebraic variety

is sufficiently larger than the degree of its defining equation. For instance, the following

result was obtained by Browning and Heath-Brown [11].

1For the basic properties of Qp, we refer the reader to [23,60,61]. See also §19.



Theorem 1.3 (a part of [11, Theorem 1.1]). Let X ⊂ Pn be a geometrically integral and

non-singular variety defined over Q. Then, the local-global principle holds for X whenever

dim(X) ≥ (deg(X)− 1)2deg(X) − 1.

If X ⊂ Pn is a hypersurface, i,e., the case dim(X) = n − 1, then the above result had

been already obtained by Birch [5].

On the other hand, the most natural targets next to quadratic hypersurfaces treated in

Theorem 1.1 is cubic hypersurfaces of Pn. If we restrict our attention to them, then we

can prove more precise unconditional/conditional results.

Theorem 1.4 ([35,36], see also [29]). Let X ⊂ Pn be a non-singular cubic hypersurface

defined over Q. Then, the local-global principle holds for X whenever

n ≥ 8, i.e., dim(X) ≥ 7.

Moreover, under the Riemann hypothesis for certain Hasse-Weil L-functions, the same

conclusion holds whenever

n ≥ 7, i.e., dim(X) ≥ 6.

In [45], a similar unconditional result is obtained for non-singular quartic hypersurfaces

of dimension larger than or equal to 28. In fact, it is conjectured by several specialists

that, more generally, if d, n ∈ Z≥2, d ≤ n, and (d, n) 6= (3, 3), then the local-global

principle holds for every non-singular hypersurface X ⊂ Pn of degree d. An explicit

reference is [54, Conjecture 3.2]. See also [18] and [54, Remark 3.3 and Appendix A] for

the background in view of the Brauer-Manin obstruction.

Besides above deterministic results, there are also many probabilistic or statistical re-

sults. Among them, the following conjecture by Poonen and Voloch [54] has motivated

many researchers. In order to state their conjecture precisely, we introduce some notation.

For every d, n ∈ Z≥2, let Z[x0, . . . , xn]d denote the set of homogeneous polynomials of

degree d in Z[x0, . . . , xn]. Define the height h(f) of a non-zero polynomial f ∈ Z[x0, . . . , xn]
9



as the maximum of the absolute values of its coefficients. For every H ∈ R>0, set

Vtot
d,n(H) := {f ∈ Z[x0, . . . , xn]d | h(f) ≤ H} ,

Vglo
d,n(H) :=

{
f ∈ Vtot

d,n(H)
∣∣ ∃x ∈ Q⊕n+1 \ {0} such that f(x) = 0

}
,

Vloc
d,n(H) :=

{
f ∈ Vtot

d,n(H)
∣∣ ∃x ∈ Q⊕n+1

v \ {0} such that f(x) = 0 for every place v
}
,

ρd,n(H) :=
#Vglo

d,n(H)

#Vtot
d,n(H)

,

ρlocd,n(H) :=
#Vloc

d,n(H)

#Vtot
d,n(H)

.

In this setting, Poonen and Voloch [54, Theorem 3.6] showed that ρlocd,n(H) → cd,n for

some cd,n ∈ R>0 whenever (d, n) 6= (2, 2), and they formulated the following conjecture.

Conjecture 1.5 ([54, Conjecture 2.2]). (1) If d ≥ n + 2, then ρd,n(H) → 0. In

particular, the local-global principle does not hold for 100% of hypersurfaces of

Pn of degree d which have Qv-rational points for every place v.

(2) If d ≤ n and (d, n) 6= (2, 2), then ρlocd,n(H) − ρd,n(H) → 0. In particular, the

local-global principle holds for 100% of hypersurfaces of Pn of degree d.

Recently, Browning, Le Boudec, and Sawin [12] succeeded in proving the second part

of Conjecture 1.5 under the condition that (d, n) 6= (3, 3). For related results, see a nice

survey article [10].

On the other hand, the first part of Conjecture 1.5 is based on the long-standing folklore

that most algebraic varieties (especially of general type) violate the local-global principle.

In this thesis, we study this direction by constructing in certain uniform manners non-

singular ternary and quaternary forms, i.e., non-singular hypersurfaces of P2 and P3 which

violate the local-global principle.

2. Violation of the local-global principle in ternary forms

In the Part I of this thesis, we treat ternary forms, i.e., homogeneous polynomials in the

ring Z[X,Y, Z], which violate the local-global principle.

The first example of algebraic variety which violates the local-global principle is the

following curves of genus one, which was found first by Lind in his thesis [42] and inde-

pendently by Reichardt [55] shortly after that. The expository article [1] by Aitken and

Lemmermeyer is one of the best introduction papers to the violation of the local-global
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principle, which also contains some generalizations of the following example by Lind and

Reichardt.

Theorem 2.1 ([1,42,55]). The weighted homogeneous equation

X4 − 17Y 4 = 2Z2,

or equivalently the homogeneous equationX2 − 17Y 2 = 2Z2

XY = W 2

defines a non-singular curve over Q which violates the local-global principle.

Proof. See [1]. □

For hypersurface of Pn, the following example by Selmer is the most classical one.

Theorem 2.2 ([59]). The equation

3X3 + 4Y 3 + 5Z5 = 0,

or equivalently

X3 + 6Y 3 = 10Z3

defines a non-singular curve of degree 3 over Q which violates the local-global principle.

Proof. See [59] or [19]. □

By combining these examples in small degrees, we can construct many reducible ex-

amples in higher degree case, but the first example of (absolutely) irreducible curves of

higher odd degree is given by Fujiwara [24] as follows.

Theorem 2.3 ([24, Theorem 2]). The equation

(X3 + 5Y 3)(X2 +XY + Y 2) = 17Z5

defines a non-singular curve of degree 5 over Q which violates the local-global principle.

Proof. See [24]. □

For examples in higher degree but with singularities, see [25]. After [24, 25], several

examples of non-singular curves of degree 4 are discovered. For example, the following

equations are known to violate the local-global principle, which were found by Bremner-

Lewis-Morton, Schinzel, and Cassels respectively.
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Theorem 2.4 ([9, II (a)]). The equation

3X4 + 4Y 4 = 19Z4

defines a non-singular curve of degree 4 over Q which violates the local-global principle.

Proof. See [9, II (a)]. □

Theorem 2.5 ([57, Theorem 2]). The equation

X4 − 2Y 4 − 16Y 2Z2 − 49Z4 = 0

defines a non-singular curve of degree 4 over Q which violates the local-global principle.

Proof. See [57, Theorem 2]. □

Theorem 2.6 ([13]). The equation

−158711X4 + 100Y 4 + 29641Z4 + 4028X2Y 2 − 212014X2Z2 − 1732Y 2Z2 = 0

defines a non-singular curve of degree 4 over Q which violates the local-global principle.

Proof. See [13]. □

More recently, Cohen [16, Corollary 6.4.11] gave several equations of the form Xp +

bY p + cZp = 0 of degree p = 3, 5, 7, 11 with b, c ∈ Z which violate the local-global

principle. However, all of examples so far are sporadic, and we need a new idea to obtain

infinitely many examples at the same time.

Around the end of the last century, some people have studied infinite families of non-

singular plane curves which violate the local-global principle. In [17], the existence of

such a family of cubic curves was proven, and an explicit example was constructed first

by Poonen [53].

Theorem 2.7 ([53]). For any t ∈ Q, the equation

5X3 + 9Y 3 + 10Z3 + 12

(
t2 + 82

t2 + 22

)
(X + Y + Z)3 = 0

defines a plane curve C = Ct of degree 3 defined over Q which violates the local-global

principle. Moreover, there exists a set of t ∈ Q which gives infinitely many geometrically

non-isomorphic classes of such curves.

Proof. See [53]. □
12



Motivated by the above result by Poonen, Nguyen obtained many examples in higher

genus cases. In particular, by using such examples of hyperelliptic curves, he obtained

many plane curves of even degree which violate the local-global principle as follows.

Theorem 2.8 ([49, Theorem 1.1]). Let p, d,m be integers satisfying the following con-

ditions.

(1) p be a prime number such that p ≡ 1 (mod 16).

(2) q := d2 − pm2 is a prime number.

(3) d is a quadratic non-residue in F×
p and d ≡ 0,±2 (mod 5).

(4) m ≡ 1 (mod 2), m ≡ 0,±2 (mod 5), m ≡ ±3 (mod 13), m ≡ ±3,±6,±7,±8
(mod 17), m ≡ 0,±1,±2,±3,±7,±9,±13,±14 (mod 29), and m 6≡ d (mod 5),

Then, the equation

X4 − pY 4 = q(Y 2 + qZ2)2

defines a plane curve C = Cp,d,m of degree 4 defined over Q which violates the local-global

principle. Moreover, this violation is explained by the Brauer-Manin obstruction.

Proof. See [49]. □

Theorem 2.9 ([50, Theorem 1.4]). Let n = 2k with k ≥ 1. Take p, d,m, and α as

follows:

(1) p is a prime number such that p ≡ 1 (mod 8).

(2) d is an integer which is a quadratic non-residue in F×
p and prime to 2n.

(3) m is an even integer such that q := d2 + pm2 is a prime number.

(4) α is a rational number such that α ∈ Zl for every prime divisor l of dp and

α 6= 0, qp−k, qd−k, (m(d+ p)− 2q)((dp)k − dk − pk)−1.

Set A = q − αpk, B = q − αdk, and C = m(d + p)− 2q − α((dp)k − dk − pk). Then, the

equation

pq2X4k+2 + Y 4k−2(d(d+ p)X2 − qY 2)(pm2(d+ p)X2 − dqY 2)

− Z2(AX2k +BY 2k + CXkY k + αZ2k)2 = 0

defines a plane curve C = Cp,d,m,α of degree 4k+2 defined over Q which violates the local-

global principle. Moreover, this violation is explained by the Brauer-Manin obstruction.

Proof. See [50]. □
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Theorem 2.10 (a special case of [51, Theorem 3.1]). Let m,n ∈ Z≥1 such that m < n.

Let p be a prime number and α, β ∈ Z. Define a homogeneous polynomial d(X,Y ) ∈
Z[X,Y ] by

d(X,Y ) = Xm(p(X + Y ))n − (−Y )m(p(X + Y ) + Y )n.

Suppose that

(1) p ≡ 1 (mod 8).

(2) gcd(αβ, p) = 1.

(3) l is a quadratic residue in F×
p for any odd prime divisor of αd(α, β).

(4) β is a quadratic non-residue in F×
p .

(5) n−m 6≡ 0 (mod l) for any odd prime divisor l of β2 + p(α + β)2.

Then, there exists a family of explicit homogeneous polynomials Qζ = Qζ(X,Y, Z) ∈
Q[X,Y, Z] of degree 2n−1 parametrized by a rational number ζ ∈ Q such that the equation

Qζ(X,Y, Z)
2Z2 = p(αX2n + βY 2n)2 + Y 4n−4m((pα + (p+ 1)β)X2m − p(α + β)Y 2m)2

defines a plane curve C = Cp,α,β,ζ of degree 4n defined over Q which violates the local-global

principle. Moreover, this violation is explained by the Brauer-Manin obstruction.

Proof. See [51]. □

A remarkable character which the families obtained by Nguyen share is that each member

of these families covers a hyperelliptic curve which violates the local-global principle,

and the latter violation of the local-global principle is explained by the Brauer-Manin

obstruction by a certain Brauer class of degree 2. Note also that the recipe in Theorems 2.8

and 2.9 actually give infinitely many explicit counterexamples of degree 4 and 4k + 2 for

every k ≥ 1 respectively. On the other hand, Nguyen [51] claimed only for k 6= 1, 2, 4

that the recipe in Theorem 2.10 actually gives explicit counterexamples of degree 4k.

On the other hand, Nguyen’s method via hyperelliptic curves seems to have a drawback

that it gives no non-singular plane curves of odd degree which violate the local-global

principle. In this aspect, our first main result of the Part I of this thesis is striking,

which gives a UNIFORM construction of non-singular plane curves of ODD degree which

violate the local-global principle under a certain condition on the cubic fields Q(p1/3) and

Q((2p)1/3) with an odd prime number p. Here, a uniform construction for a specified

dimension (now 1-dimension) means an algorithm to obtain a non-singular projective

hypersurface of the projective space PN (now N = 2) of every sufficiently large degree

n� 1 which violates the local-global principle.
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Theorem 2.11 (Theorem 4.1, [28, Theorem 1.1]). Let p be an odd prime number. Set

P = p or 2p so that P 6≡ ±1 (mod 9). Let ε = α+βP 1/3+γP 2/3 ∈ R>1 be the fundamental

unit of Q(P 1/3) with α, β, γ ∈ Z. Set

ι =

1 except if β ≡ 0 (mod p) and γ 6≡ 0 (mod p)

2 if β ≡ 0 (mod p) and γ 6≡ 0 (mod p)
.

Let n ∈ Z≥5 be an odd integer divisible by pι. Then, there exist infinitely many (n− 3)/2-

tuples of pairs of integers (bj, cj) (1 ≤ j ≤ (n− 3)/2) satisfying the following condition:

For every j, the integer P ιb3j + c3j is a prime number congruent to 2 (mod 3), and there

exist infinitely many integers L such that every prime divisor l of L satisfies l ≡ 2 (mod 3)

and the equation

(1) (X3 + P ιY 3)

n−3
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = LZn

define non-singular plane curves of degree n which violate the local-global principle.

Moreover, for each n ≥ 5 divisible by pι, there exists a set of such (n − 3)/2-tuples

((bj, cj))1≤j≤(n−3)/2 which gives infinitely many geometrically non-isomorphic classes of

such curves of degree n.

In view of eq. (1), it is fair to say that our construction in Theorem 2.11 gives a vast

generalization of Theorems 2.2 and 2.3. For more detailed properties satisfied by (bj, cj)

and L, see Proposition 5.1 in §5 and the proof of Theorem 2.11 in §7.
In fact, as claimed before Theorem 2.11, our construction ensures that for every odd

degree n ≥ 5 divisible by pι with a prime number p, we have an algorithm to obtain

arbitrarily many explicit parameters (bj, cj) and L for which eq. (1) define non-singular

plane curves which violate the local-global principle. In this sense, we obtain a UNIFORM

construction of non-singular plane curves of odd degree n ≥ 5 which works well under the

hyposethis that ι = 1 for every odd prime number p (cf. Theorem 2.7 for n = 3). As a

consequence of the proof of Theorem 2.11, we can produce as many as we want explicit

examples of many odd degrees n ≥ 5 as explicit examples of degree 3 and 5 obtained by

Selmer (cf. Theorem 2.2) and Fujiwara (cf. Theorem 2.3) respectively. For example, we

obtain the following new example (cf. §8)

(X3 + 7Y 3)(X2 + 4XY + 16Y 2)(16X2 + 4XY + Y 2) = 2621934Z7

15



which defines a non-singular curve of degree 7 which violate the local-global principle. Note

also that the proof of the infinitude of the geometric isomorphy classes in Theorem 2.11

is based on the infinitude of prime numbers of the form P ιb3 + c3 with b, c ∈ Z satisfying

some additional conditions, where the latter is a consequence of a theorem of Heath-Brwon

and Moroz [33] (cf. Theorem 4.4).

Furthermore, we verified numerically the condition ι = 1 for all prime numbers p < 105

with a help of Magma [7] (cf. §23). This numerical verification ensures that, for at least

90% (if ordered by height) of the odd integers n ≥ 5, there exist infinitely many non-

singular plane curves of degree n which are defined by eq. (1) and violate the local-global

principle. In fact, we conjecture that ι = 1 for EVERY prime number p 6= 3 (and P = 6),

hence we actually have a UNIFORM construction of non-singular plane curves of EVERY

odd degree n ≥ 5. For more precise Conjecture 4.2 and its background, see §4.
Secondly, we obtain a similar result for non-singular plane curves of even degree. In

this case, however, we obtain the following unconditional construction. Note also that

Nguyen’s construction in Theorems 2.9 and 2.10 have already given many families of non-

singular plane curves of degree 4n+2 and 4n respectively. However, our construction has

an advantage that we can treat all even degrees n ≥ 8 in a uniform manner.

Theorem 2.12 (Theorem 9.1 (cf. [27, Theorem 1.7])). Let n ∈ Z≥8 be an even integer,

and m ∈ Z≥3 be an odd integer such that m < n. Then, there exist infinitely many

(n − 6)/2-tuples of pairs of integers (bj, cj) (1 ≤ j ≤ (n − 6)/2) satisfying the following

condition:

For every j ≥ 1, the integer 1582b3j+c
3
j is a prime number, and there exist infinitely many

prime numbers l and infinitely many pairs of integers (b0, c0) such that l ≡ 2 (mod 3) and

the equation

(2) (X3 + 1582Y 3)(b0X
3 − lc0Y 3)

(n−6)/2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = lmZn

define non-singular plane curves of degree n which violate the local-global principle.

Moreover, for each even n ≥ 8, there exists a set of such (n−4)/2-tuples ((bj, cj))0≤j≤(n−6)/2

which gives infinitely many geometrically non-isomorphic classes of such curves of degree

n.

For more detailed properties satisfied by (bj, cj) and l, see Proposition 10.1 in §10 and

the proof of Theorem 2.12 in §11.
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As its visual suggested, the family in Theorem 2.12 is a variant of the family of Theo-

rem 2.11. In fact, their proofs are quite similar. Moreover, for every even degree n ≥ 8, we

have an algorithm to obtain arbitrarily many explicit parameters (bj, cj) and l for which

eq. (2) define non-singular plane curves which violate the local-global principle. In this

sense, we again obtain a UNIFORM construction of non-singular plane curves of even de-

gree, but in this time our algorithm works unconditionally. As a consequence of the proof

of Theorem 2.12, we can produce as many as we want explicit examples of every even

degree n ≥ 8 as the above examples of degree 4 which were obtained by Bremner-Lewis-

Morton (cf. Theorem 2.4), Schinzel (cf. Theorem 2.5), and Cassels (cf. Theorem 2.6). For

example, we obtain the following new examples (cf. §12)

(X3 +1582Y 3)(671X3− 7583 · (−472) · Y 3)(X2 +7XY +72Y 2) = 7583mZ8 (m = 3, 5, 7)

each of which defines a non-singular plane curve of degree 8 which violates the local-global

principle. Note also that the proof of the infinitude of the geometric isomorphy classes

in Theorem 2.12 is again based on the infinitude of prime numbers of the form P ιb3 + c3

with b, c ∈ Z satisfying some additional conditions.

3. Violation of the local-global principle in quaternary forms

In the Part II of this thesis, we treat quaternary forms, i.e., homogeneous polynomials

in the ring Z[t, x0, x1, x2], which violate the local-global principle.

The first example of non-singular algebraic surface which violates the local-global prin-

ciple was discovered by Swinnerton-Dyer.

Theorem 3.1 ([62]). Let θ = θ7,3 = cos(2π/7). Then, the equation

t(t+ x0)(2t+ x0) = NQ(θ)/Q(x0 + θx1 + θ2x2)

defines a non-singular cubic surface over Q which violates the local-global principle.

Proof. See [62]. □

In his paper [62], Swinnerton-Dyer said that

“I guess that there are plenty of such examples: however, my arguments depends on a

series of lucky coincidences and I can find no surfaces other than the one given here for

which an argument of this type would work.” [62]

After the above examples, many cubic surfaces and more general del Pezzo surfaces

have been found to violate the local-global principle. For example, see e.g. [8,14,38,39,
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46]. Among them, Jahnel [39] gave a huge generalization as a certain axiomatization of

Theorem 3.1.

Theorem 3.2 ([39, Theorem 1.1]). Let p be a prime number such that p ≡ 1 (mod 3),

Kp,3 be the unique subfield of Q(ζp) such that [Kp,3 : Q] = 3, and τp,3 := TrQ(ζp)/Kp,3(1−ζp).
For a1, a2, d1, d2 ∈ Z, define the cubic surface S = Sa1,a2,d1,d2 ⊂ P3

Q by

t(a1x0 + d1t)(a2x0 + d2t) = NKp,3/Q(t+ τp,3x1 + τ 2p,3x2).

Let si ∈ Fp be the roots of the polynomial T (a1 + d1T )(a2 + d2T )− 1 ∈ Fp[T ]. Then, the

following hold.

(1) Suppose that d1d2 6≡ 0 (mod p) and gcd(d1, d2) = 1. If (a1 + d1si)/si ∈ F×
p \ F×3

p

for every i = 1, 2, 3 such that si ∈ Fp, then X has no Q-rational points.

(2) Suppose that d1d2 6≡ 0 (mod p) and that gcd(a1, d1) and gcd(a2, d2) contain only

prime divisors that completely split in Kp,3. Suppose further that T (a1+d1T )(a2+

d2T ) − 1 ∈ Fp[T ] has at least one simple zero in Fp. Then, X has Qv-rational

points for every place.

However, explicit examples of non-singular surfaces of higher degree, especially those

of general type, are poor. In this point of view, we obtain the following results on uni-

form construction of non-singular surfaces which violate the local-global principle. It is a

generalization of the main result of an article [26] by the author himself.

In order to state our results, let NK/F : K → F denotes the norm map for every field

extension K/F of finite degree. For every odd prime number p, we fix a primitive p-th

root of unity in the field C of complex numbers and denote it by ζp. Moreover, for every

integer d such that p ≡ 1 (mod d), Kp,d denotes the unique subfield of Q(ζp) such that

[Kp,d : Q] = d, and set θp,d = NQ(ζp)/Kp,d
(1− ζp).

Theorem 3.3 (Theorem 13.1 (cf. [26, Theorem 1])). Let d ∈ Z≥3 be an integer. Then,

the following statements hold.

(1) Suppose that d is odd. If there exists a prime number p such that p ≡ 1 (mod d)

and p < (d + 1)2, then there exist infinitely many integers β ∈ Z and infinitely

many homogeneous polynomials g(t, x0) ∈ Z[t, x0] of degree k = (d − 1)/2 such

that, for each of them, the equation

(3) tg(t, x0)(g(t, x0) + βtk) = NKp,d/Q(x0 + θp,dx1 + θ2p,dx2)

defines a non-singular surface of degree d which violates the local-global principle.
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(2) Suppose that d is even. If there exists a prime number p such that p ≡ 1 (mod d)

and p < (d/2 + 1)2, then there exist infinitely many integers β ∈ Z and infinitely

many homogeneous polynomials g(t, x0) ∈ Z[t, x0] of degree k = d/2 such that,

for each of them, the equation

(4) g(t, x0)(g(t, x0) + βtk) = NKp,d/Q(x0 + θp,dx1 + θ2p,dx2)

defines a non-singular surface of degree d which violates the local-global principle.

For more detailed properties satisfied by β and g(t, x0), see Corollaries 16.3 and 16.6

and the proofs of Theorems 17.1 and 17.2.

In fact, our construction ensures that for every degree d ≥ 3 satisfies the condition

in Theorem 3.3, we have an algorithm to obtain arbitrarily many explicit integers β

and polynomials g(t, x0) for which eqs. (3) and (4) define non-singular hypersurfaces of P3

which violate the local-global principle. In this sense, we obtain a UNIFORM construction

of non-singular plane curves of even degree which works well under a hypothesis that the

arithmetic progressions {1 + dr}r∈N or {1 + (d/2)r}r∈N contains a prime number p such

that p < (d+1)2 or p < (d/2+1)2 according to whether d is odd or even (cf. Remark 3.5).

As a consequence of the proof of Theorem 3.3, especially the proofs of Theorems 17.1

and 17.2, we can produce as many as we want explicit examples of many degree n ≥ 3

as the above Swinnerton-Dyer’s cubic surface. For example, we obtain the following new

example of degree 4

(3N1t
2 + 5tx+ 5x2)((3N1 + 1)t2 + 5tx+ 5x2) = NQ(ζ5)/Q(x+ (1− ζ5)y + (1− ζ5)2z)

which violates the local-global principle, where N1 is the product of prime numbers l < 36

except for 5. Similarly, we also obtain the following new examples of degree 5

t(9N2t
2+11tx+11x2)((9N2+1)t2+11tx+11x2) = NQ(cos(2π/11))/Q(x+cos(2π/11)y+cos(2π/11)2z)

which again violates the local-global principle, where N2 is the product of prime numbers

l < 144 except for 11.

On the other hand, by applying Theorem 3.3 iteratively, we can prove the existence

of non-singular surface which violate the local-global principle for many degrees: For in-

stance, the followings are parts of immediate corollaries of Theorem 3.3. These corollaries

show how Theorem 3.3 actually works well unconditionally for many degrees.

Corollary 3.4. Let p be a prime number.
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(1) Suppose that p > 3. Then, there exist non-singular surfaces of degree p− 1 which

violate the local-global principle.

(2) Suppose that p > 5. Then, there exist non-singular surfaces of degree (p − 1)/2

which violate the local-global principle.

(3) Suppose that p > 7 and p ≡ 1 (mod 3). Then, there exist non-singular surfaces

of degree (p− 1)/3 which violate the local-global principle.

(4) Suppose that p > 9 and p ≡ 1 (mod 4). Then, there exist non-singular surfaces

of degree (p− 1)/4 which violate the local-global principle.

Proof of Corollary 3.4. (1) In this case, we have p = d + 1 < (d/2 + 1)2,

hence the assertion follows from Theorem 3.3.

(2) In this case, we have p = 2d+1 < (d+1)2, hence the assertion for p ≡ 3 (mod 4)

follows from Theorem 3.3. On the other hand, the assertion for p ≡ 1 (mod 4)

also follows from Theorem 3.3 because the inequality 2d + 1 < (d/2 + 1)2 holds

if d > 4.

(3) In this case, we have p = 3d + 1 with even d ∈ Z. On the other hand, the

inequality 3d+1 < (d/2+ 1)2 follows for d > 8. Therefore, by Theorem 3.3, it is

sufficient to consider the cases d = 4, 6. Indeed, the assertions for these cases are

the first assertion for p = 5, 7, which we have already proven.

(4) In this case, we have p = 4d + 1 < (d + 1)2 for d > 2, hence the assertion for

p ≡ 5 (mod 8) follows from Theorem 3.3. On the other hand, the assertion for

p ≡ 1 (mod 8) with p > 49 also follows from Theorem 3.3 because the inequality

4d + 1 < (d/2 + 1)2 holds if d > 12. Therefore, it is sufficient to consider the

cases d = 4, 10. Indeed, the assertions for these cases are the first assertion for

p = 5, 11, which we have already proven.

□

Remark 3.5. From the above proof of Corollary 3.4, it is natural to expect that we can

prove the following statement for every given integer r ≥ 1 in a similar manner:

“Suppose that p > 2r+1 and p ≡ 1 (mod r), i.e., d := (p− 1)/r is an integer such that

d > 2. Then, there exist non-singular surfaces of degree d which violate the local-global

principle.”

If this is the case, by Dirichlet’s theorem on arithmetic progression (cf. Theorem 21.3),

we obtain unconditionally non-singular surfaces of degree d which violate the local-global

principle for EVERY d ≥ 3, i.e., we obtain a UNIFORM construction! In fact, as we have

seen in the proof of Corollary 3.4, the expected proof works in the case d� r. However,
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there is an obstruction in the case where d is small, that is, we need to find sufficiently

small p such that p ≡ 1 mod d. This obstructing assumption is essentially equivalent to

the inequalities

p < (d+ 1)2 and p < (d/2 + 1)2

assumed in Theorem 2.12, and we cannot drop these assumptions at least by a technical

reason (cf. the proofs of Theorems 17.1 and 17.2). Here, note that, even under the

Generalized Riemann Hypothesis for Dirichlet L-functions, it is best possible to deduce

the well-known upper bound p = O(d2+ϵ) for the least prime number p in the arithmetic

progression {1 + dr}r∈N (cf. [15]), but even this conjectural estimate is strictly weaker

than the desired inequalities in Theorem 2.12. On the other hand, a stronger estimate

p = O(d1+ϵ) based on the prime number theorem with a heuristic argument is widely

believed since Chowla’s article [15]. For more information on these topics, see e.g. [30],

[41], and their references.

Outline of this thesis

In this thesis, we give proofs of Theorems 2.11, 2.12 and 3.3.

In the Part I, we treat non-singular ternary forms which violate the local-global principle.

A key ingredient of our construction is prime numbers of the form q = X3 + P ιY 3 where

P = p or 2p with a prime number p and ι = 1 or 2. The infinitude of such prime numbers

is a consequence of the monumental works by Heath-Brown and Moroz [32,33]. Under the

assumption that we have many such prime numbers, we start from an axiomatization of

Fujiwara’s example in Theorem 2.3 whose proof is based on Fujiwara’s original argument

in [24] and Hensel’s lemma. This reduces the problem to the study of primitive integral

solutions of the inhomogeneous equations of the form X3 + P ιY 3 = lmZpι with a prime

number l and an integer m ∈ Z≥1. After that, we prove that the primitive solutions of

these equations satisfy X ≡ Y ≡ 0 (mod l) under certain conditions on l, which assures

that the above axiomatic construction actually works well. The proof of the last step

is a combination of the argument of Fujiwara [24] and the analytic estimate of the class

number of Q(p1/3) and Q((2p)1/3), where the latter we also use a part of the cubic analogue

of Gauss’ genus theory.

In the Part II, we treat non-singular quaternary forms which violate the local-global

principle. We start from investigations of the condition for which our hypersurfaces are

non-singular. After that, we study local solubility and global unsolubility under certain

technical conditions. The proofs in these steps are based on Swinnerton-Dyer’s original
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proof of Theorem 3.1 given in [62], the Hasse-Weil bound on the number of rational points

on a non-singular projective curve defined over the finite field Fq with a prime number

q, and consideration on certain exponential equations modulo p. The last one is a new

contribution of this thesis and may be interesting itself. In the last section, we reduce

these technical conditions to the estimate of the size of a prime number in the given

arithmetic progression given by the congruent condition ≡ 1 (mod n).

Notation

The following notation is used in the whole of this thesis.

Let Z be the ring of integers and Q,R,C be the fields of rational numbers, real numbers,

and complex numbers respectively. For every prime number l, Ql denotes the field of

l-adic numbers and vl : Q×
l → Z be the additive l-adic valuation map normalized so that

vl(l) = 1. vl(1) = 0, and vl(0) = +∞.

For every commutative ring R, R× denotes the group of invertible elements.
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Part I

Construction of ternary forms which violate

the local-global principle



In the Part I, we exhibit how to construct non-singular plane curves which violate the

local-global principle in a uniform manner both in odd and even degree cases.

In §§4–7, we prove Theorem 2.11 (Theorem 4.1). After that, we give a concrete example

of degree 7 in §8.
In the sections 9–11, we prove Theorem 2.12 (Theorem 9.1). After that, we give a

concrete example of degree 8 in §12.

4. Main theorem in odd degree case and conjecture

The goal of §§4–7 is to prove the following Theorem 4.1. We should emphasize that

although it is unclear from the statement, our proof of Theorem 4.1 ensures that for every

odd degree n ≥ 5 divisible by pι with a prime number p, we have an algorithm to obtain

arbitrarily many explicit parameters (bj, cj) and L for which eq. (5) define non-singular

plane curves which violate the local-global principle. For detailed properties satisfied by

(bj, cj) and L, see Proposition 5.1 in §5 and the proof of Theorem 4.1 in §7. Note also that

the proof of the infinitude of the geometric isomorphy classes in Theorem 2.11 is based

on the infinitude of prime numbers of the form P ιb3 + c3 with b, c ∈ Z satisfying some

additional conditions (cf. Theorem 4.4, Proposition 5.1, and Lemma 7.1).

Theorem 4.1 (= [28, Theorem 1.1]). Let p be an odd prime number. Set P = p or 2p

so that P 6≡ ±1 (mod 9). Let ε = α + βP 1/3 + γP 2/3 ∈ R>1 be the fundamental unit of

Q(P 1/3) with α, β, γ ∈ Z. Set

ι =

1 except if β ≡ 0 (mod p) and γ 6≡ 0 (mod p)

2 if β ≡ 0 (mod p) and γ 6≡ 0 (mod p)
.

Let n ∈ Z≥5 be an odd integer divisible by pι. Then, there exist infinitely many (n− 3)/2-

tuples of pairs of integers (bj, cj) (1 ≤ j ≤ (n− 3)/2) satisfying the following condition:

For every j, the integer P ιb3j + c3j is a prime number congruent to 2 (mod 3), and there

exist infinitely many integers L such that every prime divisor l of L satisfies l ≡ 2 (mod 3)

and the equation

(5) (X3 + P ιY 3)

n−3
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = LZn

define non-singular plane curves of degree n which violate the local-global principle.



Moreover, for each n ≥ 5 divisible by pι, there exists a set of such (n − 3)/2-tuples

((bj, cj))1≤j≤(n−3)/2 which gives infinitely many geometrically non-isomorphic classes of

such curves of degree n.

As a consequence of the proof of Theorem 4.1, we can produce as many as we want

explicit examples of many odd degrees n ≥ 5 as Selmer’s example (cf. Theorem 2.2)

X3 + 6Y 3 = 10Z3

and Fujiwara’s example (cf. Theorem 2.3)

(X3 + 5Y 3)(X2 +XY + Y 2) = 17Z5.

For example, we obtain the following new example (cf. §8)

(X3 + 7Y 3)(X2 + 4XY + 16Y 2)(16X2 + 4XY + Y 2) = 2621934Z7

which defines a non-singular curve of degree 7 which violate the local-global principle.

Here, note that since we assume that P 6≡ ±1 (mod 9) in Theorem 4.1, the ring of

integers of K = Q(P 1/3) coincides with Z[π]. Hence, we see that α, β, γ ∈ Z (cf. Conjec-

ture 4.2).

For example, if p = 3, then we take P = 6. In this case, since ε = 109+60 ·61/3+33 ·62/3,
we see that ι = 1. Therefore, Theorem 4.1 implies that, for every odd n ≡ 0 (mod 3)

satisfying n ≥ 9, there exist infinitely many plane curves of degree n which violate the

local-global principle. This is a vast generalization of the case of cubic curves which was

established by Selmer (cf. Theorem 2.2).

Another example is the case of p = 5. Then, we take P = 5. In this case, since

ε = 41 + 24 · 51/3 + 14 · 52/3, we see that ι = 1. Therefore, Theorem 4.1 implies that,

for every odd n ≡ 0 (mod 5) satisfying n ≥ 5, there exist infinitely many plane curves of

degree n which violate the local-global principle. This is a vast generalization of the case

of quintic curves which was established by Fujiwara (cf. Theorem 2.3).

More generally, if β 6≡ 0 (mod p) for an odd prime number p ≥ 5, then we can produce

infinite family of explicit counterexamples for every odd degree n ≡ 0 (mod p). The

authors conjecture that this hypothesis is always true whenever p 6= 3: 2

2Note that Conjecture 4.2 holds if and only if Q(P 1/3) has a unit α0 + β0P
1/3 + γ0P

2/3 with α0, β0, γ0 ∈
(1/3)Z such that β0 6≡ 0 (mod p). The authors verified Conjecture 4.2 for all p < 105 by Magma [7]. For
the detail, see Appendix B.
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Conjecture 4.2. Let p 6= 3 be a prime number, P = p or 2p, and ε = α+βp1/3+γp2/3 ∈
R>1 be the fundamental unit of Q(P 1/3) with α, β, γ ∈ (1/3)Z. Then, we have β 6≡ 0

(mod p).

In fact, Conjecture 4.2 is a natural cubic field analogue of the following more classical

conjecture for the real quadratic field Q(p1/2), 3 whose origin goes back to Ankeny-Artin-

Chowla [2] for p ≡ 1 (mod 4) and Mordell [47] for p ≡ 3 (mod 4) respectively:

Conjecture 4.3. Let p 6= 2 be a prime number, and ε = α + βp1/2 ∈ R>1 be the funda-

mental unit of Q(p1/2) with α, β ∈ (1/2)Z. Then, we have β 6≡ 0 (mod p).

A key ingredient of our construction is the following theorem on the distribution of prime

numbers represented by binary cubic polynomials:

Theorem 4.4 ([33, Theorem 1]). Let f0 ∈ Z[X,Y ] be an irreducible binary cubic form,

ρ ∈ Z, (γ1, γ2) ∈ Z⊕2, and γ0 be the greatest common divisor of the coefficients of f0(ρx+

γ1, ρy+ γ2). Set f(x, y) := γ−1
0 f0(ρx+ γ1, ρy+ γ2). Suppose that gcd(f(Z⊕2)) = 1. Then,

the set f(Z⊕2) contains infinitely many prime numbers.

In §5, we give a recipe which exhibits how to construct counterexamples to the local-

global principle as in eq. (5) from certain Fermat type equations and prime numbers.

These objects are constructed in completely explicit manners via Theorem 4.4 in §6 and

§7 respectively. In §7, the proofs of Theorem 4.1 is done by combining these arithmetic ob-

jects with a geometric argument (Lemma 7.1) on the non-isomorphy of complex algebraic

curves defined by eq. (5). It should be emphasized that the infinitude in Theorem 4.1 is

a striking advantage of our construction based on analytic number theory and complex

algebraic geometry, which is contrast to those based on algebraic and computational tools

in e.g. [16, 24, 25]. In §8, we demonstrate how our construction works for each given

degree by exhibiting a concrete example of degree 7. 4

It is fair to say that thanks to Theorem 4.4 (and Lemma 6.4), which is one of the culmi-

nations of highly sophisticated modern analytic number theory, our proof of Theorem 4.1

is relatively elementary and almost covered by a standard first course of algebraic num-

ber theory (as in e.g. [16, Part I], [34, Ch. I – Ch. V], [44, Ch. I – Ch. V], and [56]).

Moreover, after one admits Theorem 4.1, it is quite easy to produce as many as we want

explicit counterexamples to the local-global principle.

3For numerical verification of Conjecture 4.3, see e.g. [64,65].
4For more examples, see [28, §5].
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Remark 4.5. Recently, the author [27, Theorem 1.8] succeeded in generalizing Theo-

rem 4.1 to the case where the degree n is divisible by p but not necessarily by p2. As

a consequence, we are released from the mysterious Conjecture 4.2, and we obtain an

unconditional algorithm to produce infinitely many counterexamples to the local-global

principle for non-singular plane curves of every odd degree n ≥ 5.

Notation for §§4–8

For every prime number p, P denotes p or 2p and ι = 1 or 2. In §5, the choice of P and

ι is arbitrary. However, in §6, the choice is restricted so that P 6≡ ±1 (mod 9). For the

detail, see the top of each section.

We say that a triple (x, y, z) ∈ Z⊕3 is primitive if gcd(x, y, z) = 1.

5. Construction from prime numbers and Fermat type equations

Let p be an odd prime number, P = p or 2p, and ι = 1 or 2. Here, we can take P

and ι independently of p. In this section, we prove the following proposition, which gives

explicit counterexamples to the local-global principle of degree n under the assumption

that we have

• sufficiently many prime numbers of the form P ιb3 + c3 with b, c ∈ Z and

• integers L such that the equation x3 + P ιy3 = Lzn has a specific property.

Proposition 5.1 (Recipe for odd degrees). Let n ∈ Z≥5 be an odd integer, p be a prime

number, P = p or 2p, ι = 1 or 2, and b1, . . . , b(n−3)/2, c1, . . . , c(n−3)/2, L ∈ Z satisfying the

following conditions:

(1) For every j, the integer P ιb3j + c3j is a prime number such that P ιb3j + c3j ≡ 2

(mod 3).

(2) For every prime divisor l of L, we have l ≡ 2 (mod 3), vl(L) < n, and gcd(l, bjcj) =

1 for every j.

(3) If P ≡ 0 (mod 2), then L ≡
∏

j b
2
j ≡ 1 (mod 2).

(4) If P 6≡ ±1 (mod 9), then L ≡
∏

j b
2
j 6≡ 0 (mod 3) and

∑
j b

−1
j cj 6≡ 0 (mod 3).

(5) If p ≡ 2 (mod 3), then L ≡
∏

j b
2
j 6≡ 0 (mod p) and

∑
j b

−1
j cj 6≡ 0 (mod p).

(6) For every primitive triple (x, y, z) ∈ Z⊕3 satisfying x3 + P ιy3 = Lzn, there exists

a prime divisor l of L such that x ≡ y ≡ 0 (mod l).
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Then, the equation

(X3 + P ιY 3)

n−3
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = LZn

violates the local-global principle.

This is a consequence of the following two lemmas.

Lemma 5.2 (local solubility for odd degrees). Let n ∈ Z≥5 be an odd integer, p be a prime

number, P = p or 2p, ι = 1 or 2, and b1, . . . , b(n−3)/2, c1, . . . , c(n−3)/2, L ∈ Z satisfying the

following conditions:

(1) If P ≡ 0 (mod 2), then L ≡
∏

j b
2
j ≡ 1 (mod 2).

(2) If P 6≡ ±1 (mod 9), L ≡
∏

j b
2
j 6≡ 0 (mod 3) and

∑
j b

−1
j cj 6≡ 0 (mod 3).

(3) If p ≡ 2 (mod 3), L ≡
∏

j b
2
j 6≡ 0 (mod p) and

∑
j b

−1
j cj 6≡ 0 (mod p).

Then, the equation

F (X,Y, Z) := (X3 + P ιY 3)

n−3
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2)− LZn = 0

has non-trivial solutions over R and Ql for every prime number l.

Proof. By Fujiwara’s argument (cf. Proposition 22.4), it is sufficient to consider the

solubility over Ql for l = 2, 3, p.

(1) If P ≡ 1 (mod 2), then X3 + P ιY 3 is decomposed in Z2[X,Y ]. On the other

hand, if P ≡ 0 (mod 2), then since F (1, 0, 1) ≡
∏

j b
2
j − L ≡ 0 (mod 2), and

(∂F/∂Z)(1, 0, 1) = nL 6≡ 0 (mod 2), we obtain a 2-adic lift of mod 2 solution

(1, 0, 1) by Hensel’s lemma.

(2) If P ≡ ±1 (mod 9), then X3 + P ιY 3 is decomposed in Z3[X,Y ]. On the other

hand, if P 6≡ ±1 (mod 9), then since F (1, 0, 1) ≡
∏

j b
2
j − L ≡ 0 (mod 3), and

(∂F/∂Y )(1, 0, 1) ≡ (
∏

j b
2
j) · (

∑
j b

−1
j cj) 6≡ 0 (mod 3), we obtain a 3-adic lift of

mod 3 solution (1, 0, 1) by Hensel’s lemma.

(3) If p ≡ 1 (mod 3), then b2jX
2 + bjcjXY + c2jY

2 is decomposed in Zp[X,Y ]. On

the other hand, if p ≡ 2 (mod 3), then since F (1, 0, 1) ≡
∏

j b
2
j − L ≡ 0 (mod p)

and (∂F/∂Y )(1, 0, 1) ≡ (
∏

j b
2
j) · (

∑
j b

−1
j cj) 6≡ 0 (mod p), we obtain a p-adic lift

of mod p solution (1, 0, 1) by Hensel’s lemma.

This completes the proof. □
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Lemma 5.3 (global unsolubility for odd degrees). Let n ∈ Z≥3 be an odd integer, and a,

b1, . . . , b(n−3)/2, c1, . . . , c(n−3)/2, L ∈ Z satisfying the following conditions:

(1) For every j, the integer ab3j+c
3
j is a prime number such that ab3j+c

3
j ≡ 2 (mod 3)

and gcd(a, cj) = 1.

(2) For every prime divisor l of L, we have l ≡ 2 (mod 3), vl(L) < n, and gcd(l, bjcj) =

1 for every j.

(3) For every primitive triple (x, y, z) ∈ Z⊕3 \ {(0, 0, 0)} satisfying x3 + ay3 = Lzn,

there exists a prime divisor l of L such that x ≡ y ≡ 0 (mod l).

Then, there is no triple (X,Y, Z) ∈ Z⊕3 satisfying

(6) (X3 + aY 3)

n−3
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = LZn.

Proof. We prove the assertion by contradiction. Let (X,Y, Z) ∈ Z⊕3 be a triple

satisfying eq. (6). We may assume that it is primitive. It is sufficient to deduce that

(7) gcd((X3 + aY 3)L, b2jX
2 + bjcjXY + c2jY

2) = 1 for every j.

Indeed, if eq. (7) holds, then we have some divisor z of Z satisfying X3 + aY 3 = Lzn.

Hence, the fourth assumption implies that X ≡ Y ≡ 0 (mod l) for some prime divi-

sor l of L. However, since vl(L) < n, we have Z ≡ 0 (mod l), which contradicts that

gcd(X,Y, Z) = 1. In what follows, we deduce eq. (7).

First, suppose that a prime divisor q of X3 + aY 3 divides b2jX
2 + bjcjXY + c2jY

2 for

some j. Then, q divides

b3j(X
3 + aY 3)− (bjX − cjY )(b2jX

2 + bjcjXY + c2jY
2) = (ab3j + c3j)Y

3.

Since gcd(X,Y, Z) = 1 and vq(L) < n, we see that Y 6≡ 0 (mod q). Hence, by the

first assumption, we have q = ab3j + c3j ≡ 2 (mod 3). In particular, the polynomial

b2jT
2 + bjcjT + c2j is irreducible in Zq[T ]. Since b2jX

2 + bjcjXY + c2jY
2 ≡ 0 (mod q) and

Y 6≡ 0 (mod q), we have cj ≡ 0 (mod q). However, q = ab3j + c3j implies that a must be

divisible by q, a contradiction.

Secondly, suppose that a prime divisor l ≡ 2 (mod 3) of L divides b2jX
2+bjcjXY +c2jY

2

for some j. Then, since T 2+T +1 is irreducible in Fl[T ], we have bjX ≡ cjY ≡ 0 (mod l).

On the other hand, since gcd(X,Y, Z) = 1 and vl(L) < n, we see that X 6≡ 0 (mod l) or

Y 6≡ 0 (mod l). However, if X 6≡ 0 (mod l) (resp. Y 6≡ 0 (mod l)), then bj ≡ 0 (mod l)

(resp. cj ≡ 0 (mod l)), which contradicts that gcd(L, bjcj) = 1.
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This completes the proof. □

6. Fermat type equations of the form X3 + P ιY 3 = LZpι

In this section, we take an odd prime number p and P = 2p or p so that P 6≡ ±1
(mod 9). We fix them through the whole of this section. Let π = P 1/3 ∈ R be the real

cubic root of P , K = Q(π) ⊂ R, and OK denotes the ring of integers in K. Since P 6≡ ±1
(mod 9), we see that OK = Z[π]. Let ε = α + βπ + γπ2 > 1 be the fundamental unit of

K with α, β, γ ∈ Z. Note that the Galois closure of K in C is K(ζ3), where ζ3 ∈ C is a

fixed primitive cubic root of unity. For basic properties of these objects, see §22 (cf. [3],

[22], and their references).

Set

ι =

1 if β 6≡ 0 (mod p) or β ≡ γ ≡ 0 (mod p)

2 otherwise
.

For example, if P = 3 or 6, then we have (α, β, γ) = (4, 3, 2) or (109, 60, 33), hence

ι = 2 or 1 respectively. On the other hand, if Conjecture 4.2 holds for p ≥ 5, then we

have ι = 1 for P = p and 2p.

In this section, we prove the following theorem.

Theorem 6.1. Let p be an odd prime number. Then, there exist infinitely many prime

numbers l and a positive even integer m < p satisfying the following conditions:

(1) l ≡ 2 (mod 3).

(2) lm ≡ 1 (mod p).

(3) Every primitive solution of x3 + P ιy3 = lmzp
ι
satisfies x ≡ y ≡ 0 (mod l).

In order to prove Theorem 6.1, we use Theorem 4.4. Suppose that p 6= 3. Let h(A,C) =

(3P ιA+ 1)3 + P 2ι(3P ιC + 1)3. Then, since gcd(f(Z⊕2)) = 1, 5 Theorem 4.4 implies that

there exist infinitely many prime numbers l of the form

l = a3 + P 2ιc3 with (a, c) = (3P ιA+ 1, 3P ιC + 1) ∈ Z⊕2.

5Note that

gcd(h(0, 0), h(1, 0), h(−1, 0)) = gcd(1 + P 2ι, 27P 3ι + 28P 2ι + 9P ι + 1,−27P 3ι + 28P 2ι − 9P ι + 1)

= gcd(1 + P 2ι,−18P ι − 27, 18P ι − 27) = gcd(4 + 4P 2ι, 2P ι + 3, 2P ι − 3)

= gcd(13, 6) = 1.
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On the other hand, if p = 3, we can use h(A,C) = (3A − 1)3 + P 2ι(3C + 1)3. 6 Thus,

Theorem 6.1 is reduced to the following proposition.

Proposition 6.2. Let p be an odd prime number and l ≡ 2 (mod 3) be a prime number

prime to P . Suppose that there exist a, b, c ∈ Z satisfying the following conditions:

(1) l = a3 + P ιb3 + P 2ιc3 − 3P ιabc.

(2) a ≡ ±1 (mod p), b ≡ 0 (mod p), and c 6≡ 0 (mod p).

(3) If p = 5, then additionally c 6≡ −a (mod 5).

(4) If P = 3, then additionally c ≡ −a (mod 3).

Then, there exists a positive even integer m < p such that every primitive solution of

x3 + P ιy3 = lmzp
ι
satisfies x ≡ y ≡ 0 (mod l).

First, we prove the following proposition as an intermediate step.

Proposition 6.3. Let p be a prime number, l be a prime number such that l is prime to

P and l ≡ 2 (mod 3), and m ∈ Z≥1. Assume that there exist a + bπι + cπ2ι ∈ OK with

a, b, c ∈ Z satisfying the following conditions:

(1) l = a3 + b3P ι + c3P 2ι − 3abcP ι. 7

(2) If we define Ak, Bk, Ck ∈ Z by

Ak +Bkπ
ι + Ckπ

2ι = εk(a+ bπι + cπ2ι)m (k ∈ Z),

then we have Ck 6≡ 0 (mod p) for every k ∈ Z.
Then, every primitive solution of x3 + P ιy3 = lmzp

ι
satisfies x ≡ y ≡ 0 (mod l).

We prove Proposition 6.3 along a classical idea as given in [24], where Fujiwara proved

that the Fermat type equation x3 + 5y3 = 17z5 has no primitive solutions. We use the

following lemma.

Lemma 6.4 (Lemma 22.5). Let p be a prime number.

(1) The class number of K = Q(p1/3) is smaller than p.

(2) The class number of K = Q((2p)1/3) is prime to p.

For the proof, see Lemma 22.5 in Appendix A.

6Note that
gcd(h(0, 0), h(1, 0)) = gcd(−1 + P 2ι, 8 + P 2ι) = gcd(−1 + P 2ι, 9) = 1.

7Since l ≡ 2 (mod 3), OK has prime ideals pl and pl2 of norms of degree 1 and 2 respectively. Therefore,
the first condition holds (up to signature) if and only if pl is generated by a+ bπ + cπ2.
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Proof of Proposition 6.3. We prove the assertion by contradiction. Suppose that

there exists a primitive triple (x, y, z) ∈ Z⊕3 such that x3 + P ιy3 = lmzp
ι
, and either x or

y is prime to l.

First, note that since either x or y is prime to l and gcd(l, 3P ) = 1, x2 − xyπι + y2π2ι

cannot be divisible by l. Moreover, l ≡ 2 (mod 3) splits to the product of two prime ideals

pl and pl2 of degree 1 and 2 respectively. Suppose that x + yπι is divisible by pl2 . Then,

the product of its conjugates (x+ ζ3yπ
ι)(x+ ζ23yπ

ι) = x2−xyπι+ y2π2ι is divisible by l, a

contradiction (cf. the following argument for q ≡ 2 (mod 3)). Therefore, x2−xyπι+y2π2ι

is divisible by pml2 but not divisible by pl. Accordingly, x+ yπι is divisible by pml but not

divisible by pl2 .

Next, suppose that x + yπι is divisible by a prime ideal above a prime divisor q of z.

Then, since (x, y, z) is primitive, neither x + yπι nor x2 − xyπι + y2π2ι is divisible by q

itself. Therefore, by the definition of P 6≡ ±1 (mod 9), the possible decomposition types

of q in K are as follows:

(1) (q) = pq,1pq,2pq,3, i.e., q ≡ 1 (mod 3) and P (mod q) ∈ F×3
q

(2) (q) = pqpq2 , i.e., q ≡ 2 (mod 3) and P 6≡ 0 (mod q)

(3) (q) = p3q, i.e., P ≡ 0 (mod q), or q = 3 and P 6≡ ±1 (mod 9).

In each case, we have the following conclusion:

(1) If x+ yπι is divisible by distinct two prime ideals above q, say pq,1 and pq,2, then

x2 − xyπι + y2π2ι is divisible by (pq,1pq,3) · (pq,2pq,3), hence by q, a contradiction.

Therefore, x + yπι is divisible by p
pιvq(z)
q,1 but not by pq,2 nor pq,3 if we replace

pq,1, pq,2, pq,3 to each other if necessary.

(2) In this case, q is decomposed in K(ζ3) so that pq = Pq2,1 and pq2 = Pq2,2Pq2,3.

If x + yπι is divisible by pq2 , then x
2 − xyπι + y2π2ι is divisible by (Pq2,1Pq2,2) ·

(Pq2,1Pq2,3), hence by q, a contradiction. Therefore, x+yπι is divisible by p
pιvq(z)
q

but not by pq2 .

(3) In this case, since x3 + P ιy3 is divisible by p3p
ι

q , x+ yπι is divisible by pp
ι

q . Since

pι ≥ 3, and πι cannot be divisible by q, both x and y are divisible by q. It

contradicts that (x, y, z) is primitive.

As a consequence, we see that there exists an integral ideal w of OK such that

(x+ yπι) = pml w
pι and (p,w) = 1.

Since the first assumption implies that pl is generated by a+ bπι+ cπ2ι, wpι is a principal

ideal. Moreover, Lemma 6.4 implies that w is also generated by a single element w0 +
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w1π + w2π
2 ∈ OK with w0, w1, w2 ∈ Z. 8 Therefore, there exists k ∈ Z such that

x+ yπι = εk(a+ bπι + cπ2ι)m(w0 + w1π + w2π
2)p

ι

.

Hence, by applying Lemma 11.3 and the definition of Ak, Bk, Ck, we have

x+ yπι ≡ Akw0 +Bkw0π
ι + Ckw0π

2ι (mod π2ι+1).

In particular, we have Ckw0 ≡ 0 (mod p). On the other hand, since (p,w) = 1, we

have w0 6≡ 0 (mod p). Therefore, Ck ≡ 0 (mod p) for some k, which contradicts the

assumption. This completes the proof for odd p. □

Now, we can prove Proposition 6.2. In what follows, suppose that p is odd. Set

ρ(X,Y, Z) := Y/2X − Z/Y ∈ Q(X,Y, Z)

and

δ(X,Z) :=

ρ(α, β, γ)2 − 2Z/X if β 6≡ 0 (mod p)

ρ(α, γ, p−1β)2 − 2Z/X if β ≡ 0 (mod p) and γ 6≡ 0 (mod p)

∈ Q(X,Z).

In what follows, let p = pp be the unique prime ideal of K above p. Then, we see that

p3 = pOK , and π is a uniformizer of the p-adic completion of OK .

Lemma 6.5. Let a, c ∈ Z. Let (Ak, Bk, Ck) ∈ Z⊕3 (k ∈ Z) such that

Ak +Bkπ
ι + Ckπ

2ι ≡ εk(a+ cπ2ι) (mod pι).

(1) Suppose that β 6≡ 0 (mod p) or β ≡ 0 (mod p) and γ 6≡ 0 (mod p). Then,

Ck 6≡ 0 (mod p) for every k if and only if δ(a, c) is not a quadratic residue

modulo p.

(2) Suppose that β ≡ γ ≡ 0 (mod p). Then, Ck 6≡ 0 (mod p) for every k if and only

if c 6≡ 0 (mod p).

Proof. First, note that π is divisible by p, and α is prime to p because ε = α+βπ+γπ2

is the fundamental unit of K. Therefore, by a simple induction on k ∈ Z, we have

εk

αk
≡


1 + k · β

α
π + k ·

(
k − 1

2
· β

2

α2
+
γ

α

)
π2 (mod p3) if ι = 1

1 + k · γ
α
π2 + k ·

(
k − 1

2
· γ

2

α2
+
p−1β

α

)
π4 (mod p6) if ι = 2

8Note that if p = 3, then we can take w0, w1, w2 ∈ Z.
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for every k ∈ Z. This implies that

Ck
αk
≡


β2

2α2
ak2 −

(
β2

2α2
− γ

α

)
ak + c (mod p) if ι = 1

γ2

2α2
ak2 −

(
γ2

2α2
− p−1β

α

)
ak + c (mod p) if ι = 2

for every k ∈ Z. Therefore, Ck 6≡ 0 (mod p) for every k if and only if the above quadratic

polynomial of k has no zeros in Fp. This implies the assertion. □

Proof of Proposition 6.2. First, note that Lemma 6.5 shows that the assertion

holds if β ≡ γ ≡ 0 (mod p).

Suppose that β 6≡ 0 (mod p), or β ≡ 0 (mod p) and γ 6≡ 0 (mod p). For every m ∈ Z,
define (a(m), b(m), c(m)) ∈ Z⊕3 by

a(m) + b(m)πι + c(m)π2ι = (a+ cπ2ι)m.

Then, by the assumption, we have (a, b, c) ≡ (±1+pA, pB, c) (mod p2) with some A,B ∈
Z, hence (a(m), b(m), c(m)) ≡ ((±1)m, 0,±c) (mod p). Therefore, for every positive even

integer m < p, we have

δ(a(m), c(m)) ≡

ρ(α, β, γ)2 ∓ 2cm (mod p) if β 6≡ 0 (mod p)

ρ(α, γ, p−1β)2 ∓ 2cm (mod p) if β ≡ 0 (mod p) and γ 6≡ 0 (mod p)
.

Suppose that p ≥ 7 and β 6≡ 0 (mod p). Then, by taking into account of Proposition 6.3

and Lemma 6.5, what we have to prove is that{
ρ(α, β, γ)2 − 4cm′ (mod p)

∣∣∣∣ 1 ≤ m′ ≤ p− 1

2

}
contains a quadratic non-residue. In particular, it is sufficient to prove that

B :=

{
− 1

4c
ρ(α, β, γ)2 +m′ (mod p)

∣∣∣∣ 1 ≤ m′ ≤ p− 1

2

}
contains both quadratic residues and non-residues, i.e.,∣∣∣∣∣∑

n∈B

(
n

p

)∣∣∣∣∣ < p− 3

2
,

where (n/p) is the quadratic residue symbol. If p = 19, 23, 31 or p ≥ 37, then the above

inequality follows from an explicit version of the Pólya-Vinogradov inequality, e.g. the
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following one due to Pomerance [52]:

∣∣∣∣∣ ∑
M≤n≤N

(
n

p

)∣∣∣∣∣ ≤

(

2

π2
log p+

4

π2
log log p+

3

2

)
p1/2 if p ≡ 1 (mod 4)(

1

2π
log p+

1

π
log log p+ 1

)
p1/2 if p ≡ 3 (mod 4),

For p = 11, 13, 17, 29, we can check that B contains both quadratic residues and non-

residues. In fact, we have the following table, which implies the desired inequality. Here,

note that (−n/p) ≡ (−1)(p−1)/2(n/p).

n 0 1 2 3 4 5 6 7 8 9 10(
n
11

)
0 1 −1 1 1 1 −1 −1 −1 1 −1

n 0 1 2 3 4 5 6 7 8 9 10 11 12(
n
13

)
0 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

n 0 1 2 3 4 5 6 7 8 9 . . . 16(
n
17

)
0 1 1 −1 1 −1 −1 −1 1 1 . . . 1

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . 29(
n
29

)
0 1 −1 −1 1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 . . . 1

If P = 7, then we have ε = 4 + 2 · 71/3 + 72/3, so β 6≡ 0 (mod 7) and ρ(α, β, γ) ≡ 1

(mod 7). Therefore, we have δ(a(m), c(m)) ≡ 1 − 2acm (mod 7). Suppose that a ≡ 1

(mod 7). In this case, if c ≡ 1, 2, 3, 4, 5, 6 (mod 7), then we can take m = 6, 4, 2, 2, 4, 2

respectively. Suppose that a ≡ −1 (mod 7). In this case, if c ≡ 1, 2, 3, 4, 5, 6 (mod 7),

then we can take m = 2, 4, 2, 2, 4, 6 respectively according to the case of a ≡ 1 (mod 7).

If P = 14, then we have ε = 1 + 2 · 71/3 − 72/3, so β 6≡ 0 (mod 7) and ρ(α, β, γ) ≡ 5

(mod 7). Therefore, we have δ(a(m), c(m)) ≡ 4 − 2acm (mod 7). Suppose that a ≡ 1

(mod 7). In this case, if c ≡ 1, 2, 3, 4, 5, 6 (mod 7), then we can take m = 4, 2, 2, 6, 2, 4

respectively. The case of a ≡ −1 (mod 7) is similar.

If P = 5, then we have ε = 41+ 24 · 51/3 +14 · 52/3, so β 6≡ 0 (mod 5) and ρ(α, β, γ) ≡ 1

(mod 5). Suppose that a ≡ 1 (mod 7). In this case, if c ≡ 1, 2, 3 (mod 5), then we can

take m = 2, 2, 4. (Note, however, that if c ≡ 4 (mod 5), then we cannot take even m.)

The case of a ≡ −1 (mod 5) is similar.

If P = 6, then since β ≡ γ ≡ 0 (mod 3) we obtain the conclusion. If P = 3, then by

assumption, we have a ≡ 2 (mod 3), hence (a(2), c(2)) ≡ (1, c) (mod 3). Since ε = 2−32/3,
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we have β = 0 and ρ(α, γ, 3−1β) ≡ 2 (mod 3). Therefore, we have

δ(a(2), c(2)) ≡ 1− 2c (mod 3),

which is quadratic non-residue if and only if c ≡ 1 (mod 3). The case of a ≡ −1 (mod 3)

is similar. This completes the proof in the case of β 6≡ 0 (mod p). The case where β ≡ 0

(mod p) and γ 6≡ 0 (mod p) is similar. □

7. Proof of the main theorem

Proof of Theorem 4.1. First, suppose that p 6= 3 and ι = 1. Let f(X,Y ) =

P (3PX±1)3+(3PY +1)3 and g(X,Y ) = P (3PX∓1)3+(3PY +3)3 according to P ≡ ±1
(mod 3). 9 Then, since gcd(f(0, 0), f(0, 1), f(0,−1)) = gcd(g(0, 0), g(0, 1), g(0,−1)) = 1,

we have gcd(f(x, y) | (x, y) ∈ Z⊕2) = gcd(g(x, y) | (x, y) ∈ Z⊕2) = 1. Therefore,

by Theorem 4.4, there exist infinitely many distinct prime numbers of the form q =

f(B,C) or g(B,C) with (B,C) ∈ Z⊕2 such that q ≡ 2 (mod 3). Among them, we can

take distinct (n− 3)/2 prime numbers qj = f(Bj, Cj) or g(Bj, Cj) (1 ≤ j ≤ (n− 3)/2) so

that gcd(3P,
∑

j b
−1
j cj) = 1, where (bj, cj) := (3PBj+1, 3PCj+1) or (3PBj+1, 3PCj+3)

according to whether qj = f(Bj, Cj) or g(Bj, Cj). Note that if P ≡ 0 (mod 2), then

the condition
∏

j bj ≡ 1 (mod 2) in Proposition 5.1 holds for arbitrary (n − 3)/2-tuple

((bj, cj))1≤j≤(n−3)/2 taken as above.

For each (n− 3)/2-tuple ((bj, cj))1≤j≤(n−3)/2 taken as above, by Theorem 6.1, there exist

infinitely many prime numbers l ≡ 2 (mod 3) and a positive even integer m < p such that

l > max{p, bj, cj | j = 1, 2, . . . , (n−3)/2} and every primitive solution of x3+P ιy3 = lmzn

satisfies x ≡ y ≡ 0 (mod l). Therefore, Proposition 5.1 implies that the equation

(X3 + P ιY 3)

n−3
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = lmZn

violates the local-global principle. The non-singularity follows from the fact that qj and

qk are distinct prime numbers, hence [bj : cj] 6= [bk : ck] for any j 6= k. The infinitude of

the non-isomorphy classes follows from the following Lemma 7.1.

Next, suppose that p 6= 3 and ι = 2. Let f(X,Y ) = P 2(3PX + 1)3 + (3PY +

1)3 and g(X,Y ) = P 2(3PX − 1)3 + (3PY + 3)3. Then, since gcd(f(0, 0), f(0,±1)) =

gcd(g(0, 0), g(0,±1)) = 1, we have gcd(f(x, y) | (x, y) ∈ Z⊕2) = gcd(g(x, y) | (x, y) ∈
Z⊕2) = 1. The rest part is the same as the above argument.

9In fact, we can use more general polynomials to produce bj , cj with small absolute values. Here, we take
f and g so that the proof of the infinitude gets simple.
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Finally, suppose that p = 3. Then, we combine f±(X,Y ) = P ι(PX ± 1)3 + (PY − 1)3

to produce (bj, cj) so that we can apply Proposition 5.1 with a help of Theorem 6.1. This

completes the proof. □

Lemma 7.1. Let n ∈ Z≥5 be an odd integer, a ∈ Z \ {0}. Let P ⊂ Z⊕2 be an infinite

set of 2-dimensional integral vectors (b, c) such that [b : c] 6= [b′ : c′] as a rational point

of the projective line P1 for each distinct (b, c), (b′, c′) ∈ P. For each (n − 3)/2-tuple

v = (bj, cj)1≤j≤(n−3)/2 ∈ P
n−3
2 , let C(a,v) be the plane curve defined by

(X3 + aY 3)

n−3
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = Zn.

Then, the set

Ca,n :=
{
C(a,v)

∣∣∣ v ∈ P n−3
2

}
contains infinitely many non-singular curves non-isomorphic to each other over C.

Proof. Let C be a non-singular curve in Ca,n. Then, since its genus (n−2)(n−1)
2

> 1,

Schwarz’ theorem [58] ensures that the automorphism group Aut(C) of C is a finite group.
10 In particular, the set

Quot(C) :=
{
(C/〈ϕ〉)nb

∣∣ ϕ ∈ Aut(C)
}

contains finitely many n-punctured lines (i.e., P1 minus n points). Here, C/〈ϕ〉 denotes
the quotient of C by the cyclic group 〈ϕ〉 generated by ϕ, and (C/〈ϕ〉)nb denotes its

non-branched locus, i.e., the image of the points each of whose ϕ-orbit consists of exactly

#〈ϕ〉 distinct points.
On the other hand, for each (n − 3)/2-tuple v = (bj, cj)1≤j≤(n−3)/2 ∈ P

n−3
2 , let L(a,v)

be a punctured line defined by

(X3 + aY 3)

n−3
2∏
i=1

(b2jX
2 + bjcjXY + c2jY

2) 6= 0.

Then, we can prove that the set consisting of them

L≤n
a :=

{
L(a,v)

∣∣∣ v ∈ P n−3
2

}
contains infinitely many non-isomorphic n-punctured lines. Indeed, for each v ∈ P n−3

2 ,

there exist at most n(n − 1)(n − 2) tuples v′ ∈ P n−3
2 such that L(a,v′) is isomorphic

10In fact, Hurwitz’ theorem [37] gives an explicit bound #Aut(C) ≤ 84(g − 1).
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to L(a,v) because such an isomorphism is extended to an element of Aut(P1), which is

uniquely determined from the images of three points, say those satisfying X3 + aY 3 = 0.

As a consequence, we see that the set L≤n
a / 'C contains infinitely many isomorphism

classes of n-punctured lines over C.
Finally, note that we have a natural injection

L≤n
a / 'C ↪→

 ⋃
C∈Ca,n

Quot(C)

/ 'C

induced by L(a,v) 7→ (C(a,v)/〈ϕ〉)nb, where ϕ([X : Y : Z]) = [X : Y : ζnZ] with a fixed

primitive n-th root of unity ζn ∈ C. Therefore, Ca,n contains infinitely many isomorphism

classes of non-singular curves over C as claimed. □

8. A concrete example of degree 7

In this section, we demonstrate that the proof of Theorem 4.1 actually gives explicit

parameters (b1, c1; b2, c2;L) for which the equation

(X3 + 7Y 3)(b21X
2 + b1c1XY + c21Y

2)(b22X
2 + b2c2XY + c22Y

2) = LZ7

defines a non-singular plane curve which violates the local-global principle.

First of all, since the fundamental unit of Q(71/3) is ε = 4+2 ·71/3+72/3, Conjecture 4.2

is verified for p = 7. Hence, we have ι = 1, and so we can actually take n = 7 in

Theorem 4.1.

In order to produce the coefficients (b1, c1; b2, c2), we can use the cubic polynomial

f(X,Y ) = 7(3X + 1)3 + (3Y + 1)3 in the proof of Theorem 4.1. Indeed, by Theorem 4.4,

the set f(Z⊕2) contains infinitely many prime numbers, for example,

71 = 7 · (3 · 0 + 1)3 + (3 · 1 + 1)3,

449 = 7 · (3 · 1 + 1)3 + (3 · 0 + 1)3,

503 = 7 · (3 · 11 + 1)3 + (3 · (−22) + 1)3,

... etc.

Among such (bj, cj) = (3X + 1, 3Y + 1), we can take, for example, (b1, c1) = (1, 4) and

(b2, c2) = (4, 1).

For each choice of the above coefficients, we can take L = lm with a prime number

l > max{p, b1, c1, b2, c2}(= 7) and even integer m ∈ Z≥2 so that every primitive solution
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of x3 + 7y3 = lmz7 satisfies x ≡ y ≡ 0 (mod l) (cf. condition (6) in Proposition 5.1). In

fact, as in the proof of Theorem 6.1, we can produce such l as integral values of another

cubic polynomial g(A,C) = (21A+ 1)3 + 49(21C + 1)3. For example,

262193 = (21 · 3 + 1)3 + 49(21 · 0 + 1)3,

452831 = (21 · (−2) + 1)3 + 49(21 · 1 + 1)3,

521753 = (21 · 0 + 1)3 + 49(21 · 1 + 1)3,

... etc.

Here, we take l = 262193 with (a, c) := (21A+ 1, 21C + 1) = (64, 1).

Finally, to produce the exponentm, we use Proposition 6.3 and Lemma 6.5. They ensure

that every primitive solution of x3 + 7y3 = 262193mz7 satisfies x ≡ y ≡ 0 (mod 262193)

whenever δ(a,mc) ≡ δ(1,m) ≡ 4− 2m (mod 7) is a non-quadratic residue. Thus, we can

take m = 4.

As a consequence, we obtain an explicit counterexample to the local-global principle:

(X3 + 7Y 3)(X2 + 4XY + 16Y 2)(16X2 + 4XY + Y 2) = 2621934Z7.

9. Main theorem in even degree case

The goal of §§9–11 is to prove the following Theorem 9.1. Similarly to Theorem 4.1, we

should emphasize the following point: Although it is unclear from the statement, our proof

of Theorem 9.1 ensures that for every even degree n ≥ 8, we have an algorithm to obtain

arbitrarily many explicit parameters (bj, cj) and l for which eq. (8) define non-singular

plane curves which violate the local-global principle. For detailed properties satisfied by

(bj, cj) and l, see Proposition 10.1 in §10 and the proof of Theorem 9.1 in §11. Note also

that the proof of the infinitude of the geometric isomorphy classes in Theorem 9.1 is based

on the infinitude of prime numbers of the form 158b3 + c3 with b, c ∈ Z satisfying some

additional conditions (cf. Theorem 4.4, Lemma 7.1, and Proposition 10.1).

Theorem 9.1. Let n ∈ Z≥8 be an even integer, and m ∈ Z≥3 be an odd integer such

that m < n. Then, there exist infinitely many (n− 6)/2-tuples of pairs of integers (bj, cj)

(1 ≤ j ≤ (n− 6)/2) satisfying the following condition:

For every j ≥ 1, the integer 1582b3j+c
3
j is a prime number, and there exist infinitely many

prime numbers l and infinitely many pairs of integers (b0, c0) such that l ≡ 2 (mod 3) and
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the equation

(8) (X3 + 1582Y 3)(b0X
3 − lc0Y 3)

(n−6)/2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = lmZn

define non-singular plane curves of degree n which violate the local-global principle.

Moreover, for each even n ≥ 8, there exists a set of such (n−4)/2-tuples ((bj, cj))0≤j≤(n−6)/2

which gives infinitely many geometrically non-isomorphic classes of such curves of degree

n.

As a consequence of the proof of Theorem 9.1, we can produce as many as we want

explicit examples as Bremner-Lewis-Morton’s example (cf. Theorem 2.4)

3X4 + 4Y 4 = 19Z4

and Schinzel’s example (cf. Theorem 2.5)

X4 − 2Y 4 − 16Y 2Z2 − 49Z4 = 0.

For example, we obtain the following new examples (cf. §12)

(X3 +1582Y 3)(671X3− 7583 · (−472) · Y 3)(X2 +7XY +72Y 2) = 7583mZ8 (m = 3, 5, 7)

each of which defines a non-singular plane curve of degree 8 which violates the local-global

principle.

A key ingredient of our construction is again Theorem 4.4. However, the construction

in §§4–7 does not work for p = 2. One of the major obstructions is the fact that the

congruence

(a+ bp1/3 + cp2/3)p ≡ a (mod p) (a, b, c ∈ Z)

does not hold for p = 2. In these setting, a standard compromise method in number

theory is to use “p = 4” in place of p = 2, that is,

(a+ b · 21/3 + c · 22/3)4 ≡ a (mod 2) (a, b, c ∈ Z).

If one avoids the above obstruction by this compromise method, however, the crucial

obstruction arises from the fundamental unit of K = Q(21/3) if one uses the cubic form

X3+2ιY 3 in place of X3+P ιY 3 (ι = 1, 2), that is, there is no prime numbers l satisfying

the conditions in Proposition 6.3 for p = 2.

In order to avoid these obstructions at the same time, we use an auxiliary odd prime

number p and the associated nice cubic field Q((2p)1/3). In some sense, we reverse the
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roles of odd prime numbers p and the even prime number 2 in the case of p ≡ ±1 (mod 9)

in Theorem 4.1. In fact, we take p = 79 in Theorem 9.1 here, but there are possible other

choices. For the arithmetic background of this subtlety, see Theorem 11.1.

In §10, we give a recipe which exhibits how to construct counterexamples to the local-

global principle as in eq. (8) from certain Fermat type equations and prime numbers.

These objects are constructed in completely explicit manners via Theorem 4.4 in §11.
The proofs of Theorem 9.1 is done in §11 by combining these arithmetic objects with a

geometric argument on the non-isomorphy of complex algebraic curves defined by eq. (8),

where the latter we can prove exactly in a similar manner to Lemma 7.1. In §12, we
demonstrate how our construction works well by exhibiting a concrete example of degree

8.

Remark 9.2. Recently, the author [27, Theorem 1.7] succeeded in generalizing Theo-

rem 9.1. For the detail, see the cited article.

Notation for §§9–12

For every prime number p, P denotes 2p and ι = 1 or 2. We use these notation for

the comparison of the contents of §§9–12 with those of §§4–8. However, in order to prove

Theorem 9.1, ι = 2 is sufficient.

We say that a triple (x, y, z) ∈ Z⊕3 is primitive if gcd(x, y, z) = 1.

10. Construction from prime numbers and Fermat type equations

Let p be an odd prime number, P = 2p, and ι = 1 or 2. For simplicity, we assume

that p 6≡ ±4 (mod 9), i.e., P 6≡ ±1 (mod 9). In this section, we prove the following

proposition, which gives explicit counterexamples to the local-global principle of even

degree n under the assumption that we have

• sufficiently many prime numbers of the form P ιb3 + c3 with b, c ∈ Z and

• integers L such that the equation x3 + P ιy3 = Lzn has a specific property.

In what follows, for each prime number l, vl(n) denotes the additive l-adic valuation of

n ∈ Z.

Proposition 10.1 (Recipe for even degree). Let n ∈ Z≥8 be an even integer, p be a prime

number, P = 2p, and ι = 1 or 2. Let b0, . . . , b(n−6)/2, c0, . . . , c(n−6)/2,m ∈ Z and l be a

prime number satisfying the following conditions:
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(1) P ιb0 − lc0 = ±3k for some k ≥ 0. Moreover, if P 6≡ ±2,±4 mod 9 (i.e., p = 3),

then k = 0.

(2) For every j ≥ 1, the integer P ιb3j + c3j is a prime number such that P ιb3j + c3j ≡ 2

(mod 3) and gcd(P, cj) = 1.

(3) l ≡ 2 (mod 3) and gcd(l, bjcj) = 1 for every j ≥ 0.

(4) b0 ≡ 1 (mod 2).

(5) If P 6≡ ±1 (mod 9), lm ≡ b0
∏

j≥1 b
2
j 6≡ 0 (mod 3) and

∑
j≥1 b

−1
j cj 6≡ 0 (mod 3).

(6) If p ≡ 2 (mod 3), lm ≡ b0
∏

j≥1 b
2
j 6≡ 0 (mod p) and

∑
j≥1 b

−1
j cj 6≡ 0 (mod p).

(7) 2 ≤ m < n.

(8) For every primitive triple (x, y, z) ∈ Z⊕3 satisfying x3 + P ιy3 = lmzn, we have

x ≡ y ≡ 0 (mod l).

Then, the equation

(X3 + P ιY 3)(b0X
3 + lc0Y

3)

n−6
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = lmZn

violates the local-global principle.

Lemma 10.2 (local solubility for even degrees). Let n ∈ Z≥8 be an even integer, p be

a prime number, P = 2p, and ι = 1 or 2. Let a, b0, . . . , b(n−6)/2, c0, . . . , c(n−6)/2, L ∈ Z
satisfying the following conditions:

(1) b0, c0 ≡ 1 (mod 2).

(2) If P 6≡ ±1 (mod 9), L ≡ b0
∏

j≥1 b
2
j 6≡ 0 (mod 3) and

∑
j≥1 b

−1
j cj 6≡ 0 (mod 3).

(3) If p ≡ 2 (mod 3), L ≡ b0
∏

j≥1 b
2
j 6≡ 0 (mod p) and

∑
j≥1 b

−1
j cj 6≡ 0 (mod p).

Then, the equation

F (X,Y, Z) := (X3 + P ιY 3)(b0X
3 + c0Y

3)

n−6
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2)− LZn = 0

has non-trivial solutions over R and Ql for every prime number l.

Proof. By Fujiwara’s argument (cf. Proposition 22.4), it is sufficient to consider the

solubility over Ql for l = 2, 3, p.

(1) b0X
3 + c0Y

3 is decomposed in Z2[X,Y ].

(2) If P ≡ ±1 (mod 9), then X3 + P ιY 3 is decomposed in Z3[X,Y ]. On the other

hand, if P 6≡ ±1 (mod 9), then since F (1, 0, 1) ≡ b0
∏

j≥1 b
2
j − L ≡ 0 (mod 3),
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and (∂F/∂Y )(1, 0, 1) ≡ (b0
∏

j≥1 b
2
j) · (

∑
j≥1 b

−1
j cj) 6≡ 0 (mod 3), we obtain a

3-adic lift of mod 3 solution (1, 0, 1) by Hensel’s lemma.

(3) If p ≡ 1 (mod 3), then b2jX
2+ bjcjXY + c2jY

2 is decomposed in Zp[X,Y ]. On the

other hand, if p ≡ 2 (mod 3), then since F (1, 0, 1) ≡ b0
∏

j≥1 b
2
j −L ≡ 0 (mod p)

and (∂F/∂Y )(1, 0, 1) ≡ (b0
∏

j≥1 b
2
j) · (

∑
j≥1 b

−1
j cj) 6≡ 0 (mod p), we obtain a

p-adic lift of mod p solution (1, 0, 1) by Hensel’s lemma.

This completes the proof. □

Lemma 10.3 (global unsolubility for even degrees). Let n ∈ Z≥8 be an even integer, a,

b0, . . . , b(n−6)/2, c0, . . . , c(n−6)/2, m ∈ Z, and l be a prime number satisfying the following

conditions:

(1) ab0 − lc0 = ±3k with some k ≥ 0. Moreover, if a 6≡ ±2,±4 mod 9, then k = 0.

(2) For every j ≥ 1, the integer ab3j + c3j is a prime number such that ab3j + c3j ≡ 2

(mod 3) and gcd(a, cj) = 1.

(3) l ≡ 2 (mod 3) and gcd(l, bjcj) = 1 for every j ≥ 0.

(4) 2 ≤ m < n.

(5) For every primitive triple (x, y, z) ∈ Z⊕3 satisfying x3 + P ιy3 = lmzn, we have

x ≡ y ≡ 0 (mod l).

Then, there exist no triples (X,Y, Z) ∈ Z⊕3 \ {(0, 0, 0)} satisfying

(9) (X3 + aY 3)(b0X
3 + lc0Y

3)

n−6
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = lmZn.

Proof. We prove the assertion by contradiction. Let (X,Y, Z) ∈ Z⊕3 be a triple

satisfying eq. (9). We may assume that it is primitive. It is sufficient to prove that

(10) gcd((X3 + aY 3)l, (b0X
3 + lc0Y

3)(b2jX
2 + bjcjXY + c2jY

2)) = 1 for every j ≥ 1.

Indeed, if eq. (10) hold, then we have some divisor z of Z satisfying X3 + aY 3 = lmzn,

hence X ≡ Y ≡ 0 (mod l). However, since m < n, we also have Z ≡ 0 (mod l), which

contradicts that gcd(X,Y, Z) = 1. In what follows, we prove eq. (10) by contradiction.

First, suppose that a prime divisor q of X3 + aY 3 divides b2jX
2 + bjcjXY + c2jY

2 for

some j ≥ 1. Then, q divides

b3j(X
3 + aY 3)− (bjX − cjY )(b2jX

2 + bjcjXY + c2jY
2) = (ab3j + c3j)Y

3.

Since gcd(X,Y, Z) = 1 and m < n, we see that Y 6≡ 0 (mod q). Hence, we have q =

ab3j + c3j ≡ 2 (mod 3). In particular, the polynomial b2jT
2 + bjcjT + c2j is irreducible in
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Zq[T ]. Since b2jX
2 + bjcjXY + c2jY

2 ≡ 0 (mod q) and Y 6≡ 0 (mod q), we have cj ≡ 0

(mod q). However, the equality q = ab3j + c3j implies that a must be divisible by q, which

contradicts the assumption that gcd(a, cj) = 1.

Secondly, suppose that l divides b2jX
2 + bjcjXY + c2jY

2 for some j ≥ 1. Then, since

l ≡ 2 mod 3 and gcd(l, bjcj) = 1, we have X ≡ Y ≡ 0 mod l. However, since vl(L) < n,

we see that Z ≡ 0 mod l, which contradicts that gcd(X,Y, Z) = 1.

Thirdly, suppose that a prime divisor q of X3 + aY 3 divides b0X
3 + lc0Y

3. Then, since

gcd(X,Y, Z) = 1 and m < n, we see that Y 6≡ 0 (mod q). On the other hand, since q

divides

b0(X
3 + aY 3)− (b0X

3 + lc0Y
3) = (ab0 − lc0)Y 3 = ±3kY 3,

we have q = 3 and k ≥ 1, hence a ≡ ±2,±4 mod 9. However, X3+aY 3 ≡ 0 mod 3 implies

that X ≡ aY ≡ 0 mod 3, which contradicts that Y 6≡ 0 mod 3 and a ≡ ±2,±4 mod 9.

Finally, suppose that l divides b0X
3 + lc0Y

3. Then, we have X ≡ 0 (mod l). Since

m ≥ 2, we have (a · lc0
∏

j≥1 c
2
j)Y

n ≡ 0 mod l2. On the other hand, since ab0 − lc0 =

±3k, we have gcd(l, a) = 1. Moreover, since gcd(l, cj) = 1 for every j ≥ 0, we have

gcd(l, ac0
∏

j≥1 c
2
j) = 1 for every j ≥ 0, hence Y ≡ 0 mod l. However, since m < n, we

have Z ≡ 0 mod l, which contradicts that gcd(X,Y, Z) = 1. This completes the proof.

□

11. Reduction to the Fermat type equations X3 + P ιY 3 = lmZn

In this section, let p be an odd prime number, P = 2p, π = P 1/3 ∈ R be the real cubic

root of P , K = Q(π) ⊂ R, and OK denotes the ring of integers in K. Suppose that

p 6≡ ±4 (mod 9) so that OK = Z[π]. Let ε = α + βπ + γπ2 > 1 be the fundamental unit

of K with α, β, γ ∈ Z. Note that the Galois closure of K in C is K(ζ3), where ζ3 ∈ C is a

fixed primitive cubic root of unity. For basic properties of these objects, see §22 (cf. [3],

[22], and their references).

In this section, we prove Theorem 9.1 by using the following theorem.

Theorem 11.1. In the above setting, further suppose that β ≡ γ ≡ 0 (mod 2), and the

class number of K is odd. Then, for every even integer n ∈ Z≥4 and every odd integer

m ∈ Z≥1, there exist infinitely many odd prime numbers l ≡ 2 (mod 3) such that for every

primitive triple (x, y, z) ∈ Z⊕3 satisfying x3 + P 2y3 = lmzn, we have x ≡ y ≡ 0 (mod l).

Proof of Theorem 9.1 under Theorem 11.1. Let p = 79 and P = 2p = 158.

Then, we can check directly the conditions in Theorem 11.1. Let f(X,Y ) = P 2(3X+1)3+
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(3Y + 1)3 and g(X,Y ) = P 2(3X − 1)3 + (3Y )3. Then, since gcd(f(0, 0), f(0, 1)) = 1 and

gcd(g(0, 0), g(0, 1)) = 1, we have gcd(f(x, y) | (x, y) ∈ Z⊕2) = 1 and gcd(g(x, y) | (x, y) ∈
Z⊕2) = 1 respectively. Therefore, by Theorem 4.4, there exist infinitely many distinct

prime numbers of the forms q = f(B,C) (resp. q = g(B,C)) with (B,C) ∈ Z⊕2. Among

such prime numbers q, take distinct (n− 6)/2 prime numbers qj = f(Bj, Cj) or g(Bj, Cj)

with (Bj, Cj) ∈ Z⊕2 (1 ≤ j ≤ (n− 6)/2) so that
∑

j b
−1
j cj 6≡ 0 (mod 3), where (bj, cj) :=

(3Bj + 1, 3Cj + 1) or (3Bj − 1, 3Cj) according to whether qj = f(Bj, Cj) or g(Bj, Cj).

For each (n − 6)/2-tuple ((bj, cj))1≤j≤(n−6)/2 taken as above, we have infinitely many

prime numbers l > max{p, bj, cj | j = 1, 2, . . . , (n−6)/2} satisfying the properties claimed

in Theorem 11.1. We fix such l arbitrarily. Then, we have lm ≡ 2 (mod 3). Since

gcd(l, 3P ) = 1, there exist infinitely many pairs (b, c0) ∈ Z⊕2 such that 6P 2b−lc0 = 1−P 2l

and gcd(l, c0) = 1. Take such a pair (b, c0) and set b0 = l + 6b. Then, we see that b0

is odd, lm ≡ b0
∏

j≥1 b
2
j ≡ 2 (mod 3), and gcd(l, b0c0) = 1. Therefore, Proposition 10.1

implies that the equation

(X3 + P 2Y 3)(b0X
3 + lc0Y

3)

n−6
2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = lmZn

violates the local-global principle. The non-singularity follows from the following two

facts:

(1) qj and qk are distinct prime numbers, hence [bj : cj] 6= [bk : ck] for any distinct

j, k ≥ 1.

(2) Since all of l, b0, c0 are odd, X
3+1582Y 3 and b0X

3+ lc0Y
3 cannot have a common

root in C.

The non-isomorphy follows from the same argument as in the proof of Lemma 7.1. This

completes the proof. □

In order to prove Theorem 11.1, we use Theorem 4.4. Let p (6= 3) be a prime number

satisfying the conditions in Theorem 11.1. Let h(A,B) = (6A+1)3+P (6B∓1)3 according
to p ≡ ±1 (mod 3). Then, since gcd(h(0, 0), h(1, 0), h(−1, 0)) = 1, we have gcd(h(Z⊕2)) =

1. Therefore, Theorem 4.4 implies that there exist infinitely many prime numbers l of the

form

l = a3 + Pb3 ≡ 2 (mod 3) with (a, b) = (6A+ 1, 6B ∓ 1) ∈ Z⊕2.

Thus, Theorem 11.1 is obtained from the case of (ι, ν) = (2, 1) in the following proposition.
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Proposition 11.2. Let p be a prime number satisfying the conditions in Theorem 11.1

and (ι, ν) = (1, 2) or (2, 1). Let l 6= 2, p be a prime number such that l ≡ 2 (mod 3).

Assume that there exist a + bπ + cπ2 ∈ OK with a, b, c ∈ Z and m ∈ Z≥1 satisfying the

following conditions:

(1) l = a3 + b3P + c3P 2 − 3abcP . 11

(2) (a) If ι = 1, then m 6≡ 0 (mod 4). Moreover, if m ≡ 1 (resp. 2, 3) (mod 4),

then c (resp. b, b+ c) is odd.

(b) If ι = 2, then both m and b are odd.

Then, for every integer n ∈ Z≥3 divisible by 2ν and every primitive triple (x, y, z) ∈ Z⊕3

satisfying x3 + P ιy3 = lmzn, we have x ≡ y ≡ 0 (mod l).

Proof of Proposition 11.2. We prove the assertion by contradiction. Suppose

that there exists a primitive triple (x, y, z) ∈ Z⊕3 such that x3 + P ιy3 = lmzn, and either

x or y is prime to l.

First, note that since either x or y is prime to l and gcd(l, 3P ) = 1, x2 − xyπι + y2π2ι

cannot be divisible by l. Moreover, l ≡ 2 (mod 3) splits to the product of two prime ideals

pl and pl2 of degree 1 and 2 respectively. Suppose that x + yπ is divisible by pl2 . Then,

the product of its conjugates (x+ ζ3yπ
ι)(x+ ζ23yπ

ι) = x2−xyπι+ y2π2ι is divisible by l, a

contradiction (cf. the following argument for q ≡ 2 (mod 3)). Therefore, x2−xyπι+y2π2ι

is divisible by pml2 but not divisible by pl. Accordingly, x+ yπι is divisible by pml but not

divisible by pl2 .

Next, suppose that x + yπι is divisible by a prime ideal above a prime divisor q of z.

Then, note that if gcd(q, P ) = 1 and x + yπι or x2 − xyπι + y2π2ι is divisible by q itself,

then we have x ≡ y ≡ 0 (mod q), which contradicts that (x, y, z) is primitive. On the

other hand, since P 6≡ ±1 (mod 9), the possible decomposition types of q in K are as

follows:

(1) (q) = pq,1pq,2pq,3, i.e., q ≡ 1 (mod 3) and P (mod q) ∈ F×3
q

(2) (q) = pqpq2 , i.e., q ≡ 2 (mod 3) and P 6≡ 0 (mod q)

(3) (q) = p3q, i.e., P ≡ 0 (mod q), or q = 3 and P 6≡ ±1 (mod 9).

In each case, we have the following conclusion:

(1) If x+ yπι is divisible by distinct two prime ideals above q, say pq,1 and pq,2, then

x2 − xyπι + y2π2ι is divisible by (pq,1pq,3) · (pq,2pq,3), hence by q, a contradiction.

11Since l ≡ 2 (mod 3), OK has prime ideals pl and pl2 of norms of degree 1 and 2 respectively. Therefore,
the first condition holds up to signature if and only if pl is generated by a+ bπ + cπ2.
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Therefore, x + yπι is divisible by p
nvq(z)
q,1 but not by pq,2 nor pq,3 if we replace

pq,1, pq,2, pq,3 to each other if necessary.

(2) In this case, q is decomposed in K(ζ3) so that pq = Pq2,1 and pq2 = Pq2,2Pq2,3.

If x + yπι is divisible by pq2 , then x
2 − xyπι + y2π2ι is divisible by (Pq2,1Pq2,2) ·

(Pq2,1Pq2,3), hence by q, a contradiction. Therefore, x+ yπι is divisible by p
nvq(z)
q

but not by pq2 .

(3) In this case, since x3 + P ιy3 is divisible by p3nq , x + yπι is divisible by pnq . Since

n ≥ 3, and πι cannot be divisible by q, both x and y are divisible by q. It

contradicts that (x, y, z) is primitive.

As a consequence, we see that there exists an integral ideal w of OK such that

(x+ yπι) = pml w
n and (P,w) = 1.

Then, since the first assumption implies that pl is generated by a + bπ + cπ2, wn is a

principal ideal. Moreover, since we assume that the class number of K is odd, the ideal

wn/2ν is also generated by a single element w0 + w1π + w2π
2 ∈ OK with w0, w1, w2 ∈ Z.

12 Therefore, there exists k ∈ Z such that

x+ yπι = εk(a+ bπ + cπ2)m(w0 + w1π + w2π
2)2

ν

.

Since we assume that β ≡ γ ≡ 0 (mod 2), and gcd(l, P ) = 1 implies that a ≡ 1 (mod 2),

by using Lemma 11.3, we have

x+ yπι ≡
(
1 +mbπ +

((
m

2

)
b2 +mc

)
π2

)
(w0 + w1π

2ν ) (mod 2).

Here, note that since gcd(P,w) = 1, we see that w0 6≡ 0 (mod 2).

If ι = 1, then since we assume that ν = 2, the above congruence between the coefficients

of π2 contradicts the assumption on the parities of b, c, b+ c.

If ι = 2, then the above congruence between the coefficients of π contradicts the as-

sumption that both m and b are odd. This completes the proof. □

Lemma 11.3. Let p be a prime number, d be a cube-free integer such that d ≡ 0 (mod p),

π = d1/3 ∈ R≥1 be the real cubic root of d, and K = Q(π) ⊂ R be the number field generated

by π. Let p be the (unique) prime ideal of K above p. Then, for every w0+w1π+w2π
2 ∈ OK

with w0, w1, w2 ∈ (1/3)Z, we have

(w0 + w1π + w2π
2)p ≡ w0 + w1π

p (mod p)

12Note that if p = 3, then we can take w0, w1, w2 ∈ Z.
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and

(w0 + w1π + w2π
2)p

2 ≡ w0 + w1π
p2 (mod p5).

Proof. First, note that π3 ≡ 0 (mod p).

Suppose that p is odd. Then, the first congruence follows from p ≥ 3,
(
p
1

)
≡
(
p
2

)
≡ 0

(mod p), and wp0 ≡ w0 (mod p). The second congruence follows from p2 ≥ 6,
(
p2

1

)
≡(

p2

2

)
≡ 0 (mod p2),

(
p2

3

)
≡
(
p2

4

)
≡ 0 (mod p), and wp

2

0 ≡ w0 (mod p2).

Next, suppose that p = 2. Then, the first congruence follows from
(
2
1

)
≡ 0 (mod 2) and

w2
i ≡ w0 (mod 2). The second congruence follows from 4 ≥ 3,

(
4
1

)
≡
(
4
3

)
≡ 0 (mod 4),(

4
2

)
≡ 0 (mod 2), and w4

i ≡ w0 (mod 4). □

It is obvious that we obtain a counterpart of Theorem 11.1 from the case of (ι, ν) = (1, 2)

in Proposition 11.2. For instance, we obtain the following corollary by applying the exactly

same argument as the proof of Theorem 11.1 (with the exactly same polynomial h(A,B)).

Corollary 11.4. Let p 6≡ ±4 (mod 9) be a prime number. Suppose that β ≡ γ ≡ 0

(mod 2), and the class number of K is odd. Then, there exist infinitely many odd prime

numbers l ≡ 2 (mod 3) such that there exist no primitive solution of x3 + Py3 = l2z4.

Moreover, it is also obvious that we obtain a variant of Theorem 11.5 by combining

Corollary 11.4 and appropriate prime generating polynomials. For instance, if p ≡ ±1
(mod 3), then by taking f(X,Y ) = P (3PX ∓ 1)3 + (3PY +1)3 and g(X,Y ) = P (3PX ±
1)3 + (3PY + 3)3 in place of f and g in the proof of Theorem 9.1, and b0 = l2 + 3Pb in

place of b0 = l + 6b, we obtain the following. 13

Theorem 11.5. Let n ∈ Z≥8 be an integer such that n ≡ 0 (mod 4), and p be as in

Corollary 11.4. Then, there exist infinitely many (n − 6)/2-tuples of pairs of integers

(bj, cj) (1 ≤ j ≤ (n − 6)/2) such that for each tuple there exist infinitely many prime

numbers l and infinitely many pairs of integers (b0, c0) such that the equation

(11) (X3 + PY 3)(b0X
3 − lc0Y 3)

(n−6)/2∏
j=1

(b2jX
2 + bjcjXY + c2jY

2) = l2Zn

define non-singular plane curves which violate the local-global principle. Moreover, for

each n, there exist infinitely many such curves geometrically non-isomorphic to each other.

13In fact, if p ≡ 1 (mod 3), then the original f and g, namely f(X,Y ) = P (3X − 1)3 + (3Y + 1)3 and
g(X,Y ) = P (3X+1)3+(3Y +3)3 with b0 = l2+6b also work well. Moreover, since b0 = l2+6b is odd, it
is sufficient to search b0 of the form b0 = 1+6b with b ∈ Z, where the latter saves the cost of calculation.
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12. Concrete examples of degree 8

In this section, we demonstrate that the proofs of Theorems 9.1 and 11.5 actually gives

explicit equations for non-singular plane curve which violates the local-global principle.

We emphasize that our construction has a character contrasted with examples obtained by

Nguyen in [50,51] (cf. Theorems 2.9 and 2.10). Recall that Nguyen constructed infinitely

many plane curves of even degree which violate the local-global principle but explained

by the Brauer-Manin obstruction on certain hyperelliptic curves covered by the plane

curves. Here, we give two concrete examples for Theorems 9.1 and 11.5 respectively, both

of which are Z/4Z-coverings of hyperellitpic curves with Q-rational points. Therefore,

the violation of the local-global principle for the former plane curves cannot be explained

by the Brauer-Manin obstruction on the latter hyperelliptic curves. On the other hand,

we should note that Nguyen’s construction in [50,51] actually gives an algebraic family

of such plane curves of even degree, which has an advantage over our purely arithmetic

construction.

12.1. Example for Theorem 9.1. First, we construct an example for Theorem 9.1

in the case of n = 8. By using f(X,Y ) = 1582(3X + 1)3 + (3Y + 1)3, we obtain a prime

number 25307 = f(0, 2) = 1582 · 13 + 73, hence (b1, c1) = (1, 7). Note that gcd(P, c1) = 1.

Moreover, by using h(A,B) = (6A + 1)3 + 158(6B − 1)3, we obtain a prime number

l = 7583 = h(−4, 1) = (−23)3 + 158 · 53 > max{79, 1, 7}. Finally, in order to produce the

coefficients b0 = 7583 + 6b and c0, we solve the equation

1582(7583 + 6b)− 7583c0 = ±3k.

It has a solution (b0, c0,±3k) = (671, 472,−3). Therefore, for every m = 3, 5, 7, the

equation

(X3 + 1582Y 3)(671X3 + 7583 · 472Y 3)(X2 + 7XY + 72Y 2) = 7583mZ8

defines a non-singular plane curve which violates the local-global principle. However, its

quotient by the automorphism Z → ζ4Z gives a hyperelliptic curve defined by

(X3 + 1582Y 3)(671X3 + 7583 · 472Y 3)(X2 + 7XY + 72Y 2) = 7583mZ2,

which has a Q-rational point [X : Y : Z] = [0 : 1 : 7 · 158 · 47/7583(m−1)/2].

12.2. Example for Theorem 11.5. Next, we construct an example for Theorem 11.5

again for n = 8 and p = 79. By using f(X,Y ) = 158(3X − 1)3 + (3Y + 1)3, we obtain
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a prime number 19751 = f(2, 0) = 158 · 53 + 13, hence (b1, c1) = (5, 1). Note that

gcd(P, c1) = 1. Moreover, by using h(A,B) = (6A+1)3+158(6B−1)3, we obtain a prime

number l = 4919 = h(−10, 2) = (−59)3 + 158 · 113 > max{79, 1, 5}. Then, by solving the

equation

158(49192 + 6b)− 4919c0 = ±3k

with b0 = 49192 + 6b, we obtain a solution (b0, c0,±3k) = (2712, 2359,−35). Therefore,

the equation

(X3 + 158Y 3)(2712X3 + 4919 · 2359Y 3)(52X2 + 5XY + Y 2) = 49192Z8

defines a non-singular plane curve which violates the local-global principle. However, its

quotient by the automorphism Z → ζ4Z gives a hyperelliptic curve defined by

(X3 + 158Y 3)(2712X3 + 4919 · 2359Y 3)(52X2 + 5XY + Y 2) = 49192Z2,

which again has a Q-rational point [X : Y : Z] = [1 : 0 : 5 · 271/4919].
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Part II

Construction of quaternary forms which

violate the local-global principle



13. Main theorem

The goal of §§13–18 is to prove the following theorem. As in the Part I, we should

emphasize that although it is unclear from the statement, in the proof, we shall exhibit

how to produce parameters in the following equations. In other words, we obtain an

algorithm to produce as many as we want explicit counterexample to the local-global

principle for non-singular hypersurface of P3 of degree d under the hypothesis that the

arithmetic progression {1 + dr}r∈N contains a sufficiently small prime number p.

Recall that NK/F : K → F denotes the norm map for every field extension K/F of

finite degree. For every odd prime number p, we fix a primitive p-th root of unity in the

field C of complex numbers and denote it by ζp. Moreover, for every integer d such that

p ≡ 1 (mod d), Kp,d denotes the unique subfield of Q(ζp) such that [Kp,d : Q] = d, and

set θp,d = NQ(ζp)/Kp,d
(1− ζp). The following is our main result in the Part II.

Theorem 13.1. Let d ∈ Z≥3 be an integer. Then, the following statements hold.

(1) Suppose that d is odd. If there exists a prime number p such that p ≡ 1 (mod d)

and p < (d + 1)2, then there exist infinitely many integers β ∈ Z and infinitely

many homogeneous polynomials g(t, x0) ∈ Z[t, x0] of degree k = (d − 1)/2 such

that, for each of them, the equation

tg(t, x0)(g(t, x0) + βtk) = NKp,d/Q(x0 + θp,dx1 + θ2p,dx2)

defines a non-singular surface of degree d which violates the local-global principle.

(2) Suppose that d is even. If there exists a prime number p such that p ≡ 1 (mod d)

and p < (d/2 + 1)2, then there exist infinitely many integers β ∈ Z and infinitely

many homogeneous polynomials g(t, x0) ∈ Z[t, x0] of degree k = d/2 such that,

for each of them, the equation

g(t, x0)(g(t, x0) + βtk) = NKp,d/Q(x0 + θp,dx1 + θ2p,dx2)

defines a non-singular surface of degree d which violates the local-global principle.

Remark 13.2. In fact, for every integer d with a prime number p satisfying the as-

sumption, by taking a polynomial g appropriately, we can obtain non-singular curves of

degree d as the hyperplane section of the above surface along x2 = 0 which violate the

local-global principle. This gives another conjectural uniform construction of non-singular

curves which violate the local-global principle (cf. the Part I).



Remark 13.3. It is plausible that our counterexamples may be explained by the Brauer-

Manin obstruction (cf. [39]).

The Part II is organized as follows: In the next section §14, we study the singularities on

our surface or more general hypersurfaces of higher dimensions. The argument is standard

one in projective algebraic geometry. In §15, we prove that our surfaces have local points
by using the Hasse-Weil bound on the number of Fl-rational points on a non-singular curve

over Fl. In §16, we construct hypersurfaces of degree d having no global points under the

assumption that we have a prime number p, an integer β, and a polynomials g = g(t, x0)

satisfying certain technical conditions. Our construction is based on Swinnerton-Dyer’s

original proof for cubic surfaces in Theorem 3.1 with a new observation on certain modulo

p exponential equations. Finally, in the fourth section, we prove that the existence of

desired β is reduced to the upper bound of the least prime number p in a given arithmetic

progression, hence we complete the proof of Theorem 13.1.
14

Notation for §§13–18

For every field extension K/F of finite degree, NK/F : K → F denotes the norm map.

For every odd prime number p, we fix a primitive p-th root of unity in the field C of

complex numbers and denote it by ζp. Moreover, for every integer d such that p ≡ 1

(mod d), Kp,d denotes the unique subfield of Q(ζp) such that [Kp,d : Q] = d, and set

θp,d = NQ(ζp)/Kp,d
(1 − ζp). We often abbreviate Kp,d and θp,d to K and θ respectively if

there is no fear of confusion.

14. Singularities

In this section, we consider the condition under which our hypersurface is non-singular.

Let f(t, x0) ∈ C[t, x0] be a polynomial such that d := deg(f) ≥ 2 and f(t, 0) 6= 0,

θ1, . . . , θd ∈ C be non-zero distinct numbers, and γ ∈ Z≥1. Define a hypersurface Xγ
f =

Xγ
f (θ1, . . . , θd) of Pγ+1 by

f(t, x0)−
d∏

m=1

γ∑
i=0

θimxi = 0.

Proposition 14.1. The hypersurface Xγ
f is irreducible over C. Moreover, the following

hold.

14The core of our proof of the global unsolubility is exactly the same as that given by Swinnerton-Dyer
(cf. §2) although our counterexamples do not contain his counterexample itself. 15
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(1) Suppose that f(t, 1) has no multiple roots. Then, Xγ
f is non-singular if γ = 1, 2,

but singular on a codimension 3 locus if γ ≥ 3.

(2) Suppose that f(t, 1) has a multiple root. Then, Xγ
f is non-singular if γ = 1, but

singular on a codimension 2 locus for every γ ≥ 2.

Proof. First, note that since the irreducibility of Xγ
f follows from the latter state-

ments on singularities because a reducible hypersurface of Pγ+1 has a singular locus of

codimension 2 in Pγ+1. Therefore, it is sufficient to prove the statements on singularities.

If we set

Mk :=
∏

1≤m≤d
m̸=k

γ∑
i=0

θimxi

for every k such that 1 ≤ k ≤ d, then the simultaneous vanishing condition of the xi-

derivatives (1 ≤ i ≤ γ) of the defining polynomial of Xγ
f is given by the following linear

equation of Mi:

(12)


θ1 θ2 . . . θd

θ21 θ22 . . . θ2d
...

...
...

θd1 θd2 . . . θdd



M1

M2

...

Md

 = 0.

On the other hand, since we assume that θm (1 ≤ m ≤ d) are non-zero complex numbers

distinct to each other, the Vandermonde determinant (up to the non-zero factor θ1 · · · θd)

det


θ1 θ2 . . . θd

θ21 θ22 . . . θ2d
...

...
...

θd1 θd2 . . . θdd

 = θ1 · · · θd · (−1)
d(d−1)

2

∏
1≤l<m≤d

(θl − θm)

does not vanish. Therefore, eq. (12) implies that Mk = 0 for every k and that Xγ
f is

non-singular outside the linear subspaces of Pγ+1 of codimension 2 defined by

γ∑
i=0

θilxi =

γ∑
i=0

θimxi = 0 (1 ≤ l < m ≤ d).

In particular, Xγ
f is non-singular outside the locus where f(t, x0) = 0.

If f(t, 1) has no multiple root, then the only intersection of (∂f/∂t)(t, x0) = 0 and

f(t, x0) = 0 is the locus where t = x0 = 0. Hence, Xγ
f is non-singular outside the
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following codimensional 3 loci:

t = x0 =

γ∑
i=1

θilxi =

γ∑
i=1

θimxi = 0 (1 ≤ l < m ≤ d).

Conversely, these codimension 3 loci on Xγ
f are exactly its singular loci.

On the other hand, if f(t, 1) has a multiple root which defines a hyperplane t+αx0 = 0,

then the above argument works if we replace t = x0 = 0 to t+αx0 = 0. In particular, the

singular loci of Xγ
f are codimension 2 loci given by

t+ αx0 =

γ∑
i=0

θilxi =

γ∑
i=0

θimxi = 0 (1 ≤ l < m ≤ d).

This completes the proof. □

Remark 14.2. As a consequence of Proposition 14.1, the hypersurface Xγ
f is singular

whenever γ ≥ 3. On the other hand, it is known (cf. [54, Proposition A.1]) that there is

no Brauer-Manin obstruction on every non-singular complete intersection X of dimension

≥ 3 of a projective space because the natural morphism H2
et(Spec(Q),Gm)→ H2

et(X,Gm)

is isomorphic (especially surjective). This difficulty for construction of higher dimensional

non-singular (Fano) hypersurface associated with norm form may be explained by the

conjecture that the violation of the local-global principle for rationally connected varieties

of dimension larger than or equal to 3 are explained only by the Brauer-Manin obstruction.

For this topic, see e.g. [18] and [54, Remark 3.3 and Appendix A].

Remark 14.3. If f has a multiple root of multiplicity m, then the local analytic model

corresponding this multiple root is given

xm = (w2
1 + w2

2)

γ∏
i=3

wi

In particular, if γ = 2, then this is the rational double singularity of type Am−1.

15. Local solubility

In this section, we prove the following theorem, which implies that our surfaces in

Theorem 13.1 have R- and Ql-rational points for every prime number l.

Proposition 15.1. Let d ∈ Z≥2 and p be a prime number such that p ≡ 1 (mod d). Let

k, n ∈ Z≥1 and m ∈ Z≥0 such that d = m+ k(n+ 1). Let β ∈ Z and g =
∑k

i=0 αit
k−ixi0 ∈

Z[t, x0] be homogeneous polynomials of degrees k. Let S be the algebraic surface defined
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by

f(t, x0, x1, x2) := tmg(t, x0)(g(t, x0)
n + βtkn)−NKp,d/Q(x0 + θp,dx1 + θ2p,dx2) = 0.

Assume that

(1) α0(α
n
0 +β) is divisible by every prime number smaller than (d−1)2(d−2)2 except

for p.

(2) The polynomial f(t, 1, 0, 0)− 1 (mod p) has a simple root in Fp.
(3) gcd(α0, β) = gcd(α1, α0(α

n
0 + β)) = 1.

Then, S has a Ql-rational point for every prime number l. Moreover, if α0(α
n
0 + β) > 0,

then S has an R-rational point.

Proof. First, note that S has a Ql-rational point whenever l satisfies l ≥ (d−1)2(d−
2)2 and gcd(l, pα0(α

n
0+β)) = 1: Indeed, since the hyperplane section of S by x0 = 0 defines

a non-singular curve of genus (1/2)(d−1)(d−2) over Fl (cf. Proposition 14.1), the Hasse-

Weil bound (cf. [6], [66]) ensures that it has an Fl-rational point. Therefore, Hensel’s

lemma (Theorem 19.1) ensures that S has a Ql-rational point. Thus, it is sufficient to

consider the cases where l < (d − 1)2(d − 2)2 or l divides pα0(α
n
0 + β). The first case is

included in the second case by our assumption.

Suppose that l 6= p divides α0. Then, since gcd(l, α1) = gcd(α0, α1) = 1, gcd(l, β) =

gcd(α0, β) = 1, and d ≥ 2, the polynomial

f(1, x0, 0, 0) ≡ α1βx0 + (higher degree terms) (mod l)

in Fl[x0] has a simple root x0 = 0. Therefore, Hensel’s lemma ensures that S has a

Ql-rational point. The case where l divides αn0 + β is similar.

Suppose that l = p. Then, by the assumption, the polynomial f(t, 1, 0, 0) − 1 (mod p)

has a simple root. Therefore, by Hensel’s lemma, S has a Qp-rational point.

Finally, for R-rational points, it is sufficient to note that S has an R-point [t : x0 : x1 :
x2] = [1 : 0 : (α0(α

n
0 + β)p−1)1/d : 0]. This completes the proof. □

We can also prove the following refinement to the hyperplane section of the above surface

S along x2 = 0, which is helpful when we construct non-singular plane curves which violate

the local-global principle.

Proposition 15.2. Let d ∈ Z≥2 and p be a prime number such that p ≡ 1 (mod d). Let

k,m, n ∈ Z≥1 such that d = m+ k(n+ 1). Let β ∈ Z and g =
∑k

i=0 αit
k−ixi0 ∈ Z[t, x0] be

homogeneous polynomials of degrees k such that tmg(t, 1)(g(t, 1)n + βtkn) has no multiple
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roots. Let C be the algebraic curve defined by

f(t, x0, x1) := tmg(t, x0)(g(t, x0)
n + βtkn)−NKp,d/Q(x0 + θp,dx1) = 0.

Assume that

(1) α0(α
n
0 +β) is divisible by every prime number smaller than (d−1)2(d−2)2 except

for p and every prime number at which C has bad reduction except for p.

(2) The polynomial f(t, 1, 0) (mod p) has a simple root in Fp.
(3) gcd(α0, β) = gcd(α1, α0(α

n
0 + β)) = 1.

Then, C has a Ql-rational point for every prime number l. Moreover, if α0(α
n
0 + β) > 0,

then C has an R-rational point.

Since we can apply the Hasse-Weil bound for prime numbers prime to α0(α
n
0+β), we can

prove Proposition 15.2 by a completely parallel manner to the proof of Proposition 15.1.

16. Global unsolubility

In this section, we prove the following theorem, which implies that our hypersurface in

Theorem 13.1 have no Q-rational points if the degree d of our hypersurface is even and

the defining polynomial satisfies certain technical conditions. These technical conditions

are reduced to the size of a prime number p in the next section.

Theorem 16.1. Let d ∈ Z≥2 and p be a prime number such that p ≡ 1 (mod d). Let

k, n ∈ Z≥1 such that d = k(n + 1), and take a generator ξ of (Z/pZ)×. Let β ∈ Z
and g =

∑k
i=0 αit

k−ixi0 ∈ Z[t, x0] be a homogeneous polynomial of degree k satisfying the

following properties:

(1) gcd(p, α0(α
n
0 + β)) = 1. 16

(2) Every prime divisor of β is totally inert in Kp,d/Q and prime to α0.

(3) αk is divisible by p and every prime divisor of αk except for p is totally inert in

Kp,d/Q.

(4) There exist no integers a, b, c ∈ Z such that (±ξd)a − (±ξd)b ≡ βξkc (mod p).

Then, the projective hypersurface of degree d defined by

g(t, x0)(g(t, x0)
n + βtkn)−NKp,d/Q

(
d−1∑
i=0

θip,dxi

)
= 0

has no Q-rational points.

16In fact, the condition vp(α(α
n + 1)) ≡ 0 (mod d) is sufficient.
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Proof. We prove our assertion by contradiction. Suppose that our hypersurface has

a Q-rational point [t : x0 : · · · : xd−1] 6= [0 : 0 : · · · : 0].
First, we prove that t 6= 0 by contradiction. Suppose that t = 0. Then, since we assume

that αk is divisible by p, we have

p2Mxd0 = NK/Q

(
x0 + θ

d−1∑
i=1

θi−1xi

)
with some non-zero integer M . We may assume that xi ∈ Z (0 ≤ i ≤ d − 1) and

gcd(x0, . . . , xd−1) = 1. Then, since

NK/Q(θ) = NQ(ζp)/Q(1− ζp) = p,

we can check that each xi (i ≥ 0) is divisible by p by induction on i. However, it contradicts

that gcd(x0, . . . , xd−1) = 1. Therefore, t 6= 0 as claimed.

Moreover, we can prove also that x0 6= 0 by a similar manner by noting the assumption

that gcd(p, α0(α
n
0 +β)) = 1. Therefore, we may assume that t and x0 are coprime integers

by multiplying simultaneously t, x0, ..., xd−1 by a suitable rational number. Here, note

that x1, ..., xd−1 are not necessarily integers, but
∑d−1

i=0 θ
ixi is an algebraic integer in K.

Next, we prove that
∑d−1

i=0 θ
ixi is prime to p by contradiction. Suppose that it is divisible

by p. Then, since
∑d−1

i=0 θ
ixi is an algebraic integer in K, we see that the (additive) θ-adic

valuation of
∑d−1

i=0 θ
ixi is non-negative. In particular, x1, ..., xd−1 are θ-adic integers, and

x0 is divisible by p. Moreover, since we assume that gcd(p, α0(α
n
0 + β)) = 1, we see that

t is also divisible by p. However, it contradicts that gcd(t, x0) = 1. Therefore,
∑d−1

i=0 θ
ixi

is prime to p as claimed.

Moreover, we can prove that gcd(g(t, x0), β) = 1 by contradiction. Suppose that a

prime divisor q of β divides g(t, x0). Set v = min0≤i≤d−1(vq(xi)). If v ≥ 0, then we

have NK/Q(
∑d−1

i=0 θ
ixi) ≡ 0 (mod q) with q-adic integers x0, . . . , xd−1. Since we assume

that q is totally inert in K/Q, (θi (mod q))0≤i≤d−1 forms an Fq-basis of Fq(θ (mod q)).

Therefore, we have x0 ≡ · · · ≡ xd−1 ≡ 0 (mod q), hence α2
0t
d ≡ 0 (mod q). On the other

hand, we know that gcd(α0, β) = 1 and gcd(t, x0) = 1, a contradiction. If v < 0, then we

have
∑

i≥0 θ
i(q−vxi) ≡ 0 (mod q1−v) with q-adic integers q−vx0, . . . , q

−vxd−1. Therefore,

we have q−vxi ≡ 0 (mod q), i.e., vq(xi) ≥ v + 1 for each i, a contradiction.

In exactly similar manner, we can prove also that gcd(t, αk) = 1 by contradiction. As a

consequence, we have

gcd(g(t, x0), g(t, x0)
n + βtkn) = gcd(g(t, x0), βt

kn) = gcd(g(t, x0), β) gcd(αkx0, t) = 1.
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On the other hand, since the product of g(t, x0) and g(t, x0)
n + βtkn is a norm of an

algebraic integer
∑d−1

i=0 θ
ixi prime to p, each of themselves is the absolute value of the

norm of an integral ideal of K prime to p up to signature. By Corollary 21.2, we have

g(t, x0), g(t, x0)
n + βtkn ≡ ±1 in (Z/pZ)×/〈ξd〉.

Therefore, we see that there exist some a, b, c ∈ Z such that

(±ξd)a − (±ξd)bn ≡ (g(t, x0)
n + βtkn)− g(t, x0)n = βtkn ≡ β(ξc)kn (mod p),

which contradicts the assumption. This completes the proof. □

Remark 16.2. We use the condition gcd(α0, β) = 1 for the validity of gcd(g(t, x0), β) = 1.

On the other hand, we have also used the same condition in the proof of Proposition 15.1

for the validity of (mod l)-solubility of our hypersurface for small prime numbers l.

In the setting of Theorem 16.1, assume further that (p− 1)/k is even. For example, this

is the case when n = 1. Then, we see that −1 (mod p) ∈ 〈ξk〉, hence ±ξd (mod p) ∈ 〈ξk〉.
In particular, there exist no integers a, b, c ∈ Z such that

(±ξd)a − (±ξd)b ≡ βξkc (mod p)

if there exist no integers a, b ∈ Z such that

ξka + ξkb ≡ β (mod p).

By noting this fact and Proposition 15.1, we obtain the following:

Corollary 16.3. Let d = 2k ∈ Z≥4 and p be a prime number such that p ≡ 1 (mod d).

Take a generator ξ of (Z/pZ)×. Let β ∈ Z and g =
∑k

i=0 αit
k−ixi0 ∈ Z[t, x0] be a homoge-

neous polynomial of degree k satisfying the following properties:

(1) Every prime divisor of β is larger than (d−1)2(d−2)2 and totally inert in Kp,d/Q.

(2) α0 is divisible by every prime number q < (d− 1)2(d− 2)2 except for p, and α0 is

prime to β.

(3) α0(α0 + β) is positive and prime to α1.

(4) αk is divisible by p and every prime divisor of αk except for p is totally inert in

Kp,d/Q.

(5) g(t, 1)(g(t, 1) + βtk)− 1 (mod p) has a simple root in Fp.
(6) There exist no integers a, b ∈ Z such that ξka + ξkb ≡ β (mod p).
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Then, the projective hypersurface of degree d defined by

g(t, x0)(g(t, x0) + βtk)−NKp,d/Q

(
d−1∑
i=0

θip,dxi

)
= 0

has local points but no Q-rational points, i.e., violates the local-global principle.

Remark 16.4. In fact, the above corollary is TRUE also for d = 2. In this case, we must

take k = 1, however, we cannot find β such that there exist no integers a, b ∈ Z such

that ξa + ξb ≡ β (mod p). More precisely, there exist no integers a, b, c ∈ Z such that

(±ξ2)a − (±ξ2)b ≡ βξc (mod p) because βξc (mod p) attains arbitrary values in F×
p .

On the other hand, we can prove also the following theorem, which implies that our

hypersurface in Theorem 13.1 have no Q-rational points if the degree d of our hypersurface

is even and the defining polynomial satisfies certain technical conditions.

Theorem 16.5. Let d ∈ Z≥3 and p be a prime number such that p ≡ 1 (mod d). Let

k, n ∈ Z≥1 such that d = 1 + k(n + 1), and take a generator ξ of (Z/pZ)×. Let β ∈ Z
and g =

∑k
i=0 αit

k−ixi ∈ Z[t, x0] be a homogeneous polynomial of degree k satisfying the

following properties:

(1) gcd(p, α0(α
n
0 + β)) = 1. 17

(2) Every prime divisor of β is totally inert in Kp,d/Q and prime to α0.

(3) Every prime divisor of αk is equal to p or totally inert in Kp,d/Q.

(4) There exist no integers a, b ∈ Z such that (±ξd)a − (±ξd)b ≡ β (mod p).

Then, the projective hypersurface defined by

tg(t, x0)(g(t, x0)
n + βtkn)−NKp,d/Q

(
d−1∑
i=0

θip,dxi

)
has no Q-rational points.

Proof. The proof is completely parallel except for the last step. In this time, we do

not need to assume that αk is divisible by p thanks to the factor t in the first summand

of the defining polynomial of our hypersurface.

We prove our assertion by contradiction. Suppose that our hypersurface has a Q-rational

point [t : x0 : · · · : xd−1] 6= [0 : 0 : · · · : 0].

17Again, the condition vp(α(α
n + 1)) ≡ 0 (mod d) is sufficient.

60



First, we prove that t 6= 0 by contradiction. Suppose that t = 0. Then, we have

0 = NK/Q

(
d−1∑
i=0

θixi

)
.

Since (θi)0≤i≤d−1 forms a Q-basis of K, we see that x0 = · · · = xd−1 = 0, a contradiction.

Moreover, we can prove also that x0 6= 0 again by contradiction. Suppose that x0 = 0.

Then, we have

α0(α
n
0 + β)td = NK/Q

(
θ

d−1∑
i=1

θi−1xi

)
.

We may assume that t, xi ∈ Z (1 ≤ i ≤ d− 1) and gcd(t, x1, . . . , xd−1) = 1. Then, since

NK/Q(θ) = NQ(ζp)/Q(1− ζp) = p,

and we assume that gcd(p, α0(α
n
0 + β)) = 1, we see that t is divisible by p. Hence, we can

check that each xi (i ≥ 1) is divisible by p by induction on i. However, it contradicts that

gcd(t, x0, . . . , xd−1) = 1.

Therefore, we may assume that t and x0 are coprime integers by multiplying simulta-

neously t, x0, ..., xd−1 by a suitable rational number. Here, note that x1, ..., xd−1 are not

necessarily integers, but
∑d−1

i=0 θ
ixi is an algebraic integer in K.

Next, we prove that
∑d−1

i=0 θ
ixi is prime to p by contradiction. Suppose that it is divisible

by p. Then, since
∑d−1

i=0 θ
ixi is an algebraic integer in K,, we see that the (additive) θ-adic

valuation of
∑d−1

i=0 θ
ixi is non-negative. In particular, x1, ..., xd−1 are θ-adic integers, and

x0 is divisible by p. Moreover, since we assume that gcd(p, α0(α
n
0 + β)) = 1, we see that

t is also divisible by p. However, it contradicts that gcd(t, x0) = 1. Therefore,
∑d−1

i=0 θ
ixi

is prime to p as claimed.

Moreover, we can prove that gcd(g(t, x0), β) = 1 by contradiction. Suppose that a

prime divisor q of β divides g(t, x0). Set v = min0≤i≤d−1(vq(xi)). If v ≥ 0, then we

have NK/Q(
∑d−1

i=0 θ
ixi) ≡ 0 (mod q) with q-adic integers x0, . . . , xd−1. Since we assume

that q is totally inert in K/Q, (θi (mod q))0≤i≤d−1 forms an Fq-basis of Fq(θ (mod q)).

Therefore, we have x0 ≡ · · · ≡ xd−1 ≡ 0 (mod q), hence α2
0t
d ≡ 0 (mod q). On the other

hand, we know that gcd(α0, β) = 1 and gcd(t, x0) = 1, a contradiction. If v < 0, then we

have
∑

i≥0 θ
i(q−vxi) ≡ 0 (mod q1−v) with q-adic integers q−vx0, . . . , q

−vxd−1. Therefore,

we have q−vxi ≡ 0 (mod q), i.e., vq(xi) ≥ v + 1 for each i, a contradiction.
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In exactly similar manner, we can prove also that gcd(t, αk) = 1. As a consequence, we

have

gcd(t, g(t, x0)
n + βtkn) = gcd(t, g(t, x0)) = gcd(t, αk) = 1,

and

gcd(g(t, x0), g(t, x0)
n + βtkn) = gcd(g(t, x0), βt) = gcd(g(t, x0), β) gcd(αkx0, t) = 1.

On the other hand, since the product of t, g(t, x0), and g(t, x0)
n + βtkn is a norm of an

algebraic integer
∑d−1

i=0 θ
ixi prime to p, each of themselves is the (absolute) norm of an

integral ideal of K prime to p up to signature. By Corollary 21.2, we have

t, g(t, x0), g(t, x0)
n + βtkn ≡ ±1 in (Z/pZ)×/〈ξd〉.

Therefore, we see that there exist some a, b, c ∈ Z such that

(±ξd)a − (±ξd)bn ≡ (g(t, x0)
n + βtkn)− g(t, x0)n = βtkn ≡ β(±ξd)knc (mod p),

which contradicts the assumption. This completes the proof. □

In the setting of Theorem 16.5, assume further that (p− 1)/d is even. For example, this

is the case when d is odd. Then, we see that −1 (mod p) ∈ 〈ξd〉. In particular, there exist

no integers a, b, c ∈ Z such that

(±ξd)a − (±ξd)b ≡ β (mod p)

if there exist no integers a, b ∈ Z such that

ξda + ξdb ≡ β (mod p).

By noting this fact and Proposition 15.1, we obtain the following:

Corollary 16.6. Let d = 2k + 1 ∈ Z≥3 and p be a prime number such that p ≡ 1

(mod d). Take a generator ξ of (Z/pZ)×. Let β ∈ Z and g =
∑k

i=0 αit
k−ixi0 ∈ Z[t, x0] be

a homogeneous polynomial of degree k satisfying the following properties:

(1) Every prime divisor of β is larger than (d−1)2(d−2)2 and totally inert in Kp,d/Q.

(2) α0 is divisible by every prime number q < (d− 1)2(d− 2)2 except for p, and α0 is

prime to β.

(3) α0(α0 + β) is positive and prime to α1.

(4) Every prime divisor of αk is equal to p or totally inert in Kp,d/Q.

(5) tg(t, 1)(g(t, 1) + βtk)− 1 (mod p) has a simple root in Fp.
(6) There exist no integers a, b ∈ Z such that ξda + ξdb ≡ β (mod p).
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Then, the projective hypersurface of degree d defined by

tg(t, x0)(g(t, x0) + βtk)−NKp,d/Q

(
d−1∑
i=0

θip,dxi

)
= 0

has local points but no Q-rational points, i.e., violates the local-global principle.

Remark 16.7. In fact, the whole of the arguments in this section works also if we replace

p to its power pr with r ≥ 1 and take d as a positive divisor of (p− 1)pr−1.

17. Reduction to small prime numbers in arithmetic progressions

In this section, we reduce the technical conditions in Theorems 16.1 and 16.5 to the

estimate of the prime numbers of the form p ≡ 1 (mod d). For this purpose for even d, it

is sufficient to prove the following theorem. For odd d, see Theorem 17.2.

Theorem 17.1. Let k ∈ Z≥2. Suppose that there exists a prime number p and an integer

β satisfying the following conditions:

(1) p ≡ 1 (mod 2k).

(2) Every prime divisor of β is larger than (2k − 1)2(2k − 2)2 and totally inert in

K2k/Q.

(3) β2 + 4 is a quadratic residue modulo p.

(4) There exist no integers a, b ∈ Z such that ξka + ξkb ≡ β (mod p).

Then, there exist infinitely many homogeneous polynomials g(t, x0) ∈ Z[t, x0] of degree k
such that the equation

g(t, x0)(g(t, x0) + βtk) = NK2k/Q(x0 + θx1 + θ2x2)

defines a non-singular surface of degree 2k over Q which violates the local-global principle.

In particular, the above conclusion holds if there exists a prime number p such that p ≡ 1

(mod 2k) and p < (k + 1)2.

Proof. For the given β, define

Ã := {α ∈ Z \ pZ | α ≡ 0 (mod l) for every prime number l < (2k − 1)2(2k − 2)2 except for p} ,

Aβ :=
{
α ∈ Ã

∣∣∣ gcd(α, β) = 1 and α 6≡ −β (mod p)
}
.

Then, since p < (d−1)2(d−2)2, there is a prime number l which is smaller than (d−1)2(d−
2)2 totally inert in Kp,d/Q. Hence, we see that Aβ (mod p) = F×

p \ {−β (mod p)}. For

arbitrary α0 ∈ Aβ, we can take α1, αk ∈ Z so that α0(α0+β) > 0, gcd(α1, α0(α0+β)) = 1,
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and αk is a power of the prime number p. Conversely, every such triple (α0, α1, αk) with

the given β satisfies the conditions (1), (2), (3), (4), and (6) in Corollary 16.3.

For the validity the condition (5), we take α1, . . . , αk from pZ. This is possible because

the only constraint for α0, α1, . . . , αk (mod p) is that α0(α0 + β) 6≡ 0 (mod p), which

follows from the definition of Aβ. For every α1, . . . , αk ∈ pZ satisfying the conditions so

far, we can check that, for every α0 ∈ Aβ such that α0 ≡ (−β±
√
β2 + 4)/2 (mod p), the

polynomial g(t, 1)(g(t, 1) + βtk)− 1 ≡ α0(α0 + β)td − 1 (mod p) has a simple root t = 1

in Fp. Since p is odd, we have (−β ±
√
β2 + 4)/2 6≡ −β (mod p). Therefore, the above

choice of α0 ∈ Aβ is actually possible.

Finally, we consider the condition on the non-singularity of our surface. In view of

Proposition 14.1, it is sufficient to take α0, . . . , αk so that for some sufficiently large prime

numbers q1 and q2, the two polynomials g(t, x0) (mod q1) and g(t, x0)+βtk (mod q2) are

separable. In fact, this is possible by the Chinese remainder theorem, and the fact that

g(t, x0) and g(t, x0) + βtk has no common roots in C because αk, β 6= 0. This completes

the proof of the former statement.

For the latter statement, set

B̃ :=
{
β ∈ Z

∣∣∣ every prime divisor of β is larger than (2k − 1)2(2k − 2)2

and totally inert in Kp,d/Q

}
,

B :=
{
β ∈ B̃

∣∣∣ there exist no a, b ∈ Z such that ξka + ξkb ≡ β (mod p)
}
.

Then, it is sufficient to prove that

#
({
β ∈ F×

p

∣∣∣ β2
+ 4 ∈ F×2

p ∪ {0}
}
∩ (B (mod p))

)
> 0.

Since p < (k + 1)2, we have B̃ (mod p) = F×
p , hence

#(F×
p \B (mod p)) ≤ 1

2
· p− 1

k
·
(
p− 1

k
− 1

)
.

On the other hand, since (p − 1)/k is even, and β 6∈ B (mod p) if and only if ξkβ 6∈ B
(mod p), the above estimate can be refined to

#(F×
p \B (mod p)) ≤ 1

2
· p− 1

k
·
(
p− 1

k
− 2

)
.

Since

#
{
β ∈ F×

p

∣∣∣ β2
+ 4 ∈ F×2

p ∪ {0}
}
=


p− 1

2
p ≡ 1 (mod 4)

p− 3

2
p ≡ 3 (mod 4)

,
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we have an estimate

#
({
β ∈ F×

p

∣∣∣ β2
+ 4 ∈ F×2

p ∪ {0}
}
∩ (B (mod p))

)
≥ p− 3

2
− 1

2
· p− 1

k
·
(
p− 1

k
− 2

)
.

The right hand side is positive, for instance, if k ≥ 4 and p < k2 +2k− 5. By considering

another condition p ≡ 1 (mod 2k), the above condition p < k2 + 2k − 5 follows from the

given condition p < (k + 1)2 for every k ≥ 7. Therefore, by direct calculations for k ≤ 6,
18 we obtain the assertion for every k ≥ 2. □

Theorem 17.2. Let d = 2k + 1 ∈ Z≥5 with k ∈ Z≥2. Suppose that there exists a prime

number p and an integer β satisfying the following conditions:

(1) p ≡ 1 (mod d).

(2) Every prime divisor of β is larger than (d−1)2(d−2)2 and totally inert in Kp,d/Q.

(3) β2 + 4 or β2 − 4 is a quadratic residue modulo p.

(4) There exist no integers a, b ∈ Z such that ξda + ξdb ≡ β (mod p).

Then, there exist infinitely many homogeneous polynomials g(t, x0) ∈ Z[t, x0] of degree k
such that the equation

tg(t, x0)(g(t, x0) + βtk) = NKp,d/Q(x0 + θx1 + θ2x2)

defines a non-singular surface of degree d = 2k + 1 over Q which violates the local-global

principle. In particular, the above conclusion holds if there exists a prime number p such

that p ≡ 1 (mod d) and p < (d+ 1)2.

Proof. The proof is completely parallel to the proof of Theorem 17.2.

For the given β, define

Ã := {α ∈ Z \ pZ | α ≡ 0 (mod p) for every prime number l < (d− 1)2(d− 2)2 except for p} ,

Aβ :=
{
α ∈ Ã

∣∣∣ gcd(α, β) = 1 and α 6≡ −β (mod p)
}
,

Then, since p < (d − 1)2(d − 2)2, there is a prime number l which is smaller than (d −
1)2(d−2)2 totally inert in Kp,d/Q. Hence, we see that Aβ (mod p) = F×

p \{−β (mod p)}.
For arbitrary α0 ∈ Aβ, we can take α1, αk ∈ Z so that gcd(α1, α0(α0 + β)) = 1 and αk is

a power of the prime number p. Conversely, every such triple (α0, α1, αk) with the given

β satisfies the conditions (1), (2), (3), (4), and (6) in Corollary 16.6.

For the validity the condition (5), we take α1, . . . , αk from pZ. This is possible because

the only constraint for α0, α1, . . . , αk (mod p) is that α0(α0 + β) 6≡ 0 (mod p), which

18For k = 2, 3, 4, 5, 6, we can use e.g. (p, β (mod p)) = (5, 1), (13, 5), (17, 4), (11, 1), (13, 3) respectively.
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follows from the definition of Aβ. For every α1, . . . , αk ∈ pZ satisfying the conditions

so far, we can check the following: Suppose that β2 + 4 is a quadratic residue modulo

p. Then, for every α0 ∈ Aβ such that α0 ≡ (−β ±
√
β2 + 4)/2 (mod p), the polynomial

tg(t, 1)(g(t, 1)+βtk)−1 ≡ α0(α0+β)t
d−1 (mod p) has a simple root t = 1 in Fp. Since p

is odd, we have (−β±
√
β2 + 4)/2 6≡ −β (mod p). Therefore, the above choice of α0 ∈ Aβ

is actually possible.

The case where β2 − 4 is a quadratic residue modulo p is exactly similar if we consider

t = −1 in place of t = 1. Here, note that d is odd.

Finally, we consider the condition on the non-singularity of our surface. In view of

Proposition 14.1, it is sufficient to take α0, . . . , αk so that for some sufficiently large prime

numbers q1 and q2, the two polynomials g(t, x0) (mod q1) and g(t, x0)+βtk (mod q2) are

separable. In fact, this is possible by the Chinese remainder theorem, and the fact that

g(t, x0) and g(t, x0) + βtk has no common roots in C because αk, β 6= 0. This completes

the proof of the former statement.

This completes the proof of the former statement.

For the last statement, set

B̃ := {β ∈ Z | every prime divisor of β is larger than (d− 1)2(d− 2)2 and totally inert in Kp,d/Q} ,

B :=
{
β ∈ B̃

∣∣∣ there exist no a, b ∈ Z such that ξda + ξdb ≡ β (mod p)
}
.

Then, it is sufficient to prove that

#
({
β ∈ F×

p

∣∣∣ β2
+ 4 ∈ F×2

p ∪ {0}
}
∩ (B (mod p))

)
> 0.

Since p < (d+ 1)2, we have B̃ (mod p) = F×
p , hence

#(F×
p \B (mod p)) ≤ 1

2
· p− 1

d
·
(
p− 1

d
− 1

)
.

On the other hand, since (p − 1)/d is even, and β 6∈ B (mod p) if and only if ξdβ 6∈ B
(mod p), the above estimate can be refined to

#(F×
p \B (mod p)) ≤ 1

2
· p− 1

d
·
(
p− 1

d
− 2

)
.

Since

#
{
β ∈ F×

p

∣∣∣ β2
+ 4 ∈ F×2

p ∪ {0}
}
=


p− 1

2
p ≡ 1 (mod 4)

p− 3

2
p ≡ 3 (mod 4)

,
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we have an estimate

#
({
β ∈ F×

p

∣∣∣ β2
+ 4 ∈ F×2

p ∪ {0}
}
∩ (B (mod p))

)
≥ p− 3

2
− 1

2
· p− 1

d
·
(
p− 1

d
− 2

)
.

The right hand side is positive, for instance, if p < d2 + 2d − 5. By considering another

condition p ≡ 1 (mod d), the above condition p < d2 + 2d − 5 follows from the given

condition p < (d + 1)2 for every d ≥ 7. Therefore, by direct calculations for d = 5, 19 we

obtain the assertion for every d = 2k + 1 ≥ 5. □

18. Concrete examples of Theorem 13.1

In this section, we demonstrate that the proof of Theorem 13.1 actually gives explicit

equations for non-singular plane curves which violates the local-global principle. As a

demonstration, we focus on the cases of degree 4 and 5.

18.1. Example of degree 4. In this subsection, we consider the case of degree d = 4.

In this case, we have k = 2.

First, we search prime numbers p < (4/2 + 1)2 = 9 such that p ≡ 1 (mod 4). There is

only one such prime number, that is, p = 5. Hence, we consider the norm with respect

to K5,4/Q = Q(θ5,4)/Q with θ5,4 = ζ5 = exp(2πi/5). Moreover, we can take ξ = 2 as a

generator of F×
5 .

Next, we search integers β such that β2 + 4 is square modulo 5. This is the case if and

only if β ≡ 0,±1 (mod 5). However, in order to verify the condition that there exist no

integers a, b ∈ Z such that 22a + 22b ≡ β (mod 5), we should take β so that β ≡ ±1
(mod 5). Conversely, if β ≡ ±1 (mod 5), then there exist no integers a, b ∈ Z such that

22a + 22b ≡ β (mod 5). For simplicity, we take β = 1, which obviously ensures that every

prime divisor of β is totally inert in K5,4/Q.

Finally, we take a polynomial g(t, x) = α0t
2+α1tx+α2x

2 ∈ Z[t, x] satisfying the following
conditions:

(1) α0 ≡ (−β ±
√
β2 + 4)/2 ≡ 2 (mod 5).

(2) α0 is divisible by every prime number l < (4− 1)2(4− 2)2 = 36 except for p = 5,

i.e., divisible by l = 2, 3, 7, 9, 11, 13, 17, 19, 23, 29, 31.

(3) gcd(α1, α0(α0 + 1)) = 1.

(4) Both of α1 and α2 are divisible by p = 5 and α2 is a power of p = 5.

(5) Both of g(t, x) and g(t, , x) + t2 have no multiple roots.

19For d = 5, i.e., k = 2, we can use e.g. (p, β (mod p)) = (11, 1).
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Here, if we set N as the product of prime numbers l < 36 except for p = 5, then we have

N ≡ 4 (mod 5). Hence, for example, we can take α0 = 3N ≡ 2 (mod 5), α1 = α2 = 5.

Indeed, for the last condition, it is sufficient to note that both of g(t, x) and g(t, , x) + t2

are 5-adic Eisenstein polynomials up to 5-adic unit factor α0. Therefore, then the quartic

surface defined by the following equation violates the local-global principle:

(3Nt2 + 5tx+ 5x2)((3N + 1)t2 + 5tx+ 5x2) = NQ(ζ5)/Q(x+ (1− ζ5)y + (1− ζ5)2z).

18.2. Example of degree 5. Next, we consider the case of degree d = 5.

First, we search prime numbers p < (5+1)2 = 36 such that p ≡ 1 (mod 5). There are two

such prime numbers, that is, p = 11, 31. We take p = 11. Hence, we consider the norm

with respect to K11,5/Q = Q(θ11,5)/Q with θ11,5 = NQ(ζ11)/K11,5(1 − ζ11) = cos(2π/11).

Moreover, we can take ξ = 2 as a generator of F×
11.

Next, we search integers β such that β2 + 4 is square modulo 11. This is the case if

and only if β ≡ 0,±1,±4 (mod 11). However, in order to verify the condition that there

exist no integers a, b ∈ Z such that 25a + 25b ≡ β (mod 11), we should take β so that

β ≡ ±1,±4 (mod 11). Conversely, if β ≡ ±1,±4 (mod 11), then there exist no integers

a, b ∈ Z such that 25a+25b ≡ β (mod 11). For simplicity, we take β = 1, which obviously

ensures that every prime divisor of β is totally inert in K11,5/Q.

Finally, we take a polynomial g(t, x) = α0t
2+α1tx+α2x

2 ∈ Z[t, x] satisfying the following
conditions:

(1) α0 ≡ (−β ±
√
β2 + 4)/2 ≡ 3, 7 (mod 11).

(2) α0 is divisible by every prime number l < (5−1)2(5−2)2 = 144 except for p = 11.

(3) gcd(α1, α0(α0 + 1)) = 1.

(4) Both of α1 and α2 are divisible by p = 11 and α2 is a power of p = 11.

(5) Both of g(t, x) and g(t, , x) + t2 have no multiple roots.

Here, if we set N as the product of prime numbers l < 144 except for p = 11, then we have

N ≡ 4 (mod 11). Hence, for example, we can take α0 = 9N ≡ 3 (mod 11), α1 = α2 = 11.

Indeed, for the last condition, it is sufficient to note that both of g(t, x) and g(t, , x) + t2

are 11-adic Eisenstein polynomials up to 11-adic unit factor α0. Therefore, the quintic

surface defined by the following equation violates the local-global principle:

t(9Nt2+11tx+11x2)((9N+1)t2+11tx+11x2) = NQ(cos(2π/11))/Q(x+cos(2π/11)y+cos(2π/11)2z).
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Appendix A : Basic tools



Notation

We call an extension field of Q of finite degree as a number field. For every number

field K, we denote the group of roots of unity in K by µ(K). The ring of integers in K

is the subring of K consisting of elements whose monic minimal polynomial over Q have

coefficients in Z. In other words, it is the integral closure of Z in K. We denote this ring

by OK . In what follows, we often call an ideal of OK just as an ideal of K. Accordingly,

we often call the ideal class group Cl(OK) of OK just as the ideal class group of K and

denote it by Cl(K).

For every maximal ideal p of K, we denote the (additive) p-adic valuation map by

vp : K
× → Z, and for every fractional ideal a of K, we abbreviate min{vp(x) | x ∈ a\{0}}

to vp(a). We assume that every p-adic valuation map is normalized so that vp(p) = 1.

We denote the completion of K by vp by Kp and the residue field OK/p by k(p). The

field k(p) is a finite field of cardinality NK/Q(p). Here and after, for evert finite extension

L/K of number fields, NL/K : L→ K denotes the norm map, and for every ideal A of L,

NL/K(A) denotes the ideal {NL/K(a) ∈ K | a ∈ A} of K. Moreover, for every ideal a of

K, we often abbreviate the ideal aOL to a if there is no fear of confusion.

If there is unique field homomorphism from K to R, we denote it by ∞K or ∞ if there

is no confusion.

Finally, we often abbreviate an ideal mZ of Z to m for simplicity.

19. Basic properties of p-adic and finite fields

In this appendix, we recall some basic theorems around p-adic numbers which we use in

the body of this thesis.

19.1. Hensel’s lemma. First, recall that a discrete valuation ring R = (R, v) is

an integral domain with a surjective homomorphism v : (Q(R), ·) → (Z ∪ {+∞},×) of

multiplicative monoids, where Q(R) is the quotient field of R, such that

v(x+ y) ≥ min{v(x), v(y)} (∀x, y ∈ Q(R)).

Hence, a discrete valuation ring (R, v) has a canonical topological ring structure defined

by a metric, say d(x, y) := e−v(x−y) with some e ∈ R>1, and is said to be complete if

it is complete with respect to such a metric. A unifromizer u of discrete valuation ring

(R, v) is an element of R such that v(u) = 1, i.e., a generator of the unique maximal ideal

{x ∈ R | v(x) ≥ 1} of R.



The ring Zp of p-adic integers is defined by the completion of the ring Z of rational

integers with respect to the p-adic valuation vp(x) := sup{v ∈ Z | x/pv ∈ Z} ∈ Z∪{+∞}.
Equivalently, this ring is constructed as the projective limit lim←−n Z/p

nZ of the finite rings

Z/pnZ. Anyway, the ring Zp is a complete discrete valuation ring with a uniformizer p,

and the field Qp of p-adic numbers is defined as the quotient field of Zp.
The following theorem is the most fundamental analytic property of complete discrete

valuation rings, which has many arithmetic applications.

Theorem 19.1 (Hensel’s lemma (cf.

[60, Corollary 1, Ch. II])). Let O be a complete discrete valuation ring such that O ⊃ Z,
π be its uniformizer, and f(x) be a polynomial in O[x]. Suppose that there exist v ∈ Z≥1

and x0 ∈ O such that

f(x0) ≡ 0 (mod π2v−1) and
df

dx
(x0) 6≡ 0 (mod πv).

Then, there exists x1 ∈ O such that x1 ≡ x0 (mod πv) and f(x1) = 0.

Since we assume that O is complete, Theorem 19.1 is obtained by applying the following

lemma for more general discrete valuation rings iteratively.

Lemma 19.2. Let O be a discrete valuation ring such that O ⊃ Z, π be its uniformizer,

and f(x) be a polynomial in O[x]. Suppose that there exists x0 ∈ O such that

f(x0) ≡ 0 (mod π2v−1) and
df

dx
(x0) 6≡ 0 (mod πv).

Then, there exists x1 ∈ O such that

x1 ≡ x0 (mod πv), f(x1) ≡ 0 (mod π2v+1), and
df

dx
(x1) 6≡ (mod πv+1).

Proof of Lemma 19.2. First, note that for every n ∈ Z≥0, we have

1

n!

dnf

dxn
(x) ∈ O[x].

Therefore, there exists a (unique) polynomial y(x) ∈ O[x] such that

(13) f(x) = f(x0) +
df

dx
(x0) · (x− x0) + (x− x0)2y(x).

In particular, for every x ∈ O such that x ≡ x0 (mod πv), the following congruence holds:

(14) f(x) ≡ f(x0) +
df

dx
(x0) · (x− x0) (mod π2v).
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On the other hand, since we assume that f(x0) ≡ 0 (mod π2v−1) and (df/dx)(x0) 6≡ 0

(mod πv), by setting x′0 = x0 − (df/dx)(x0)
−1f(x0) ∈ O, we have

x′0 ≡ x0 (mod πv),

hence

f(x′0) ≡ 0 (mod π2v).

Moreover, by considering the differentials of the both sides of eq. (13), we see that the

following congruence holds:

df

dx
(x′0) ≡

df

dx
(x0) 6≡ 0 (mod πv).

Set x1 := x′0 − (df/dx)(x′0)
−1f(x′0) ∈ O. Then, by the above arguments, we have

x1 ≡ x′0 (mod πv+1).

Therefore, by applying eq. (14) to (x1, x
′
0, v + 1) in place of (x, x0, v), we obtain the

congruence

f(x1) ≡ 0 (mod π2v+2).

In particular, we obtain the desired congruences

x1 ≡ x0 (mod πv), f(x1) ≡ 0 (mod π2v+1), and
df

dx
(x1) 6≡ (mod πv+1).

□

By applying Theorem 19.1 to polynomials f(x) = x3−u (u ∈ Zp) and f(x) = x2+x+1,

we obtain the following corollary.

Corollary 19.3. Let p be a prime number.

(1) Let µ(p−1)/3 ⊂ Z×
p be the group of (p− 1)/3-th roots of unity. Then, we have

Z×3
p =


µ(p−1)/3 × pZp if p ≡ 1 (mod 3)

Z×
p if p ≡ 2 (mod 3)

±1 + 9Z3 if p = 3

.

(2) The polynomial x2+x+1 is irreducible in Zp[x] if and only if p ≡ 0,−1 (mod 3).

In other words, the ring Zp contains a primitive third root of unity if and only if

p ≡ 1 (mod 3).

19.2. Hasse-Weil bound for curves and its application to p-adic solubility.
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Theorem 19.4 (Hasse-Weil bound [66]). Let p be a prime number and C be a non-

singular projective curve of genus g defined over Fp. Then, we have

|#C(Fp)− (p+ 1)| ≤ 2g
√
p.

Proof. See [66] or [6]. □

Corollary 19.5. Let p be a prime number and C be a non-singular projective curve of

genus g defined over Q. Suppose that p ≥ (2g)2 and C has a good reduction at p. Then,

C (mod p) has an Fp-rational point. In particular, C has a Qp-rational point.

Proof. The former statement is a consequence of the following estimate of #C(Fp):

#C(Fp) ≥ p+ 1− 2g
√
p ≥ 1.

The latter statement is a consequence of Theorem 19.1: In order to describe the detailed

argument, we assume for simplicity that C is a plane curve defined by F (x, y, z) = 0

with some homogeneous polynomial F ∈ Z[x, y, z] and the good reduction model of C

(mod p) is defined by F (x, y, z) ≡ 0 (mod p). 20 Then, by the former statement, C

(mod p) has an Fp-rational point [X : Y : Z] = [x0 : y0 : z0] with some x0, y0, z0 ∈ Fp.
Moreover, since C (mod p) is non-singular, one of X,Y, Z-derivatives of F does not vanish

at [X : Y : Z] = [x0 : y0 : z0]. We may assume that (∂F/∂X)(x0, y0, z0) 6= 0 in Fp.
Then, by fixing some y1, z1 ∈ Zp so that y1 ≡ y0 (mod p) and z1 ≡ z0 (mod p) and

by applying Theorem 19.1 to the polynomial f(x) = F (x, y1, z1) ∈ Zp[x], we see that

there exists some x1 ∈ Zp such that F (x1, y1, z1) = 0, i.e., C has a Qp-rational point

[X : Y : Z] = [x1 : y1 : z1]. □

20This special case is sufficient for the application to the body of this thesis.
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20. Arithmetic of global fields

In this section, we give a summary of arithmetic of number fields. We especially focus

on the ideal theory of number fields, which plays a central role in the body of this thesis.

20.1. Decomposition of prime ideals and Artin symbols. In this subsection,

we give a summary on the decomposition of prime ideals in finite extension of number

fields and define the Artin symbols associated with prime ideals. The contents of this

subsection is based on [40, Ch. III], [56, Ch. V], and [61, Part I].

Let L/K be a finite extension of number fields and p be a prime ideal of K. Then, since

OL is a Dedekind domain, there exist distinct prime ideals P1, . . . ,Pg(p) of L and integers

e(Pi/p) such that

pOL =

g(p)∏
i=1

P
e(Pi/p)
i .

In this situation, we say that each prime ideal Pi lies above p, and we call the integer

e(Pi/p) as the ramification index of Pi in L/K. If e(Pi/p) = 1 (resp. > 1), we say that

Pi is unramified (resp. ramified) in L/K. For the integer g(p), we have another equality

[L : K] =

g(p)∑
i=1

[LPi
: Kp].

On the other hand, if we define the integer f(Pi/p) = [k(Pi) : k(p)], then we have an

equality

[LPi
: Kp] = e(Pi/p)f(Pi/p),

hence

[L : K] =

g(p)∑
i=1

e(Pi/p)f(Pi/p).

We call the integer f(Pi/p) as the residual degree of Pi in L/K.

In what follows, we assume that L/K is a Galois extension. Then, the prime ideals

P1, . . . ,Pg(p) of L above p are Gal(L/K)-conjugate to each other. Therefore, both e(Pi/p)

and f(Pi/p) are independent of i and determined by p. In this situation, we denote them

by e(p) and f(p), which we call as the ramification index and the residual degree of p

in L/K respectively. Moreover, we say that p is uniamified (resp. ramified) in L/K if

e(p) = 1 (resp. > 1). As a consequence, we have a simplified equality

[L : K] = e(p)f(p)g(p).
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Furthermore, for each prime ideal Pi above p, we obtain a distinguished subgroup of

Gal(L/K) consisting of the elements preserving Pi, which we call the decomposition

group of Pi in L/K and denote it by D(Pi) = D(L/K;Pi). Note that the groups

D(Pi) (1 ≤ i ≤ g(p)) are Gal(L/K)-conjugate to each other, and the Pi-adic completion

L ↪→ LPi
induces a canonical isomorphism

Gal(LPi
/Kp) ' D(Pi)(⊂ Gal(L/K)).

On the other hand, the modulo Pi operation OL → k(Pi) induces a canonical group

homomorphism

D(Pi)→ Gal(k(Pi)/k(p)).

By Hensel’s lemma, it is surjective. The kernel of this homomorphism is called the inertia

group of Pi, which we denote by T (Pi). Note that #T (Pi) = e(Pi/p) = e(p).

If Pi is untamified in L/K, then the above homomorphism D(Pi) → Gal(k(Pi)/k(p))

is bijective. If this is the case, D(Pi) is cyclic, and there exists a unique element
(
L/K
Pi

)
∈

D(Pi) such that (
L/K

Pi

)
x ≡ x#k(p) (mod Pi)

for every x ∈ OL. We call this element as the Artin symbol of Pi with respect to L/K.

Finally, note that if L/K is abelian, then the decomposition group D(Pi) ⊂ Gal(L/K)

is independent of i. In particular, the Artin symbol
(
L/K
Pi

)
is independent of i and

determined by p. In this situation, we denote it by
(
L/K
p

)
∈ Gal(L/K), which we call as

the Artin symbol of p with respect to L/K.

20.2. Class field theory. In this subsection, we summarize a part of main theorems

of class field theory which we use in this thesis. The contents of this subsection are based

on [40, Ch. III and Ch. V] and [63]

Let K be a number field. A modulus of K is the formal product of a non-zero fractional

ideal m0 of K and the formal product m∞ = σ1 · · ·σs of some distinct embeddings σi :

K → R of K into the field R of real numbers (i.e., real embeddings of K). Therefore, we

may regard moduli of K are generalizations of ideals of K enhanced with additional data

on Archimedean valuations.

Let m be a modulus of K and L/K be a finite extension. Then, we identify the modulus

M of L with m, where M0 = m0OK and σ divides M∞ if and only if σ|K divides m∞.

Further, we say that a real embedding σ : K → R is ramified in L/K if there exists an

embedding σ̃ : L→ C such that σ̃|K = σ and σ̃(L) 6⊂ R.
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Suppose further that L/K is abelian and m is divisible by all prime ideals and real

embeddings of K ramified in L/K. Let ImK be the free abelian group generated by all

non-zero prime ideals of K prime to m0. Then, by means of Artin symbols, we can define

a map

ArtL/K : ImK → Gal(L/K); a 7→
∏
p

(
L/K

p

)vp(a)
.

We call this map as the Artin reciprocity map with respect to L/K. By the definition of

Artin symbols, this map is characterized as the unique group homomorphism such that

the following congruence holds for every prime ideal p ∈ ImK and every x ∈ OL:

ArtL/K(p)(x) ≡ x#k(p) (mod p).

Therefore, the Artin reciprocity map has the following functorial property:

Theorem 20.1. Let L/K and be a finite abelian extension of number fields and E be

a finite extension of K. Let m be a modulus of Kdivisible by all prime ideals ramified in

L/K. Then, the following diagram is commutative.

ImE
ArtEL/E

//

NE/K

��

Gal(EL/E)

ResEL/L

��
ImK

ArtL/K
// Gal(L/K)

Here, ResEL/L is the natural map defined by the restriction to L. In particular, the map

ArtL/K induces a homomorphism ImK/NL/K(I
m
L )→ Gal(L/K).

Proof. By the definition of the Artin reciprocity map, it is sufficient to prove that(
EL/E

P

)∣∣∣∣
L

x ≡
(

L/K

NE/K(P)

)
x (mod P)

for every prime ideal P ∈ ImE and every x ∈ OL. Let p = P ∩K. Then, we have

NE/K(P) = pf(P/p),

hence the above congruence is equivalent to

x#k(P) ≡ x#k(p)
f(P/p)

(mod P),

which follows from the definition of the residual degree f(P/p) = [k(P) : k(p)]. □
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Let m = m0m∞ be a modulus of K. Then, we obtain the subgroup Km,1 of K
× consisting

of the element a/b ∈ K× with a, b ∈ OK satisfying the following conditions:

• ab is prime to m0 and vp(a/b− 1) ≥ vp(m0) for every prime ideal p dividing m0.

• σ(a/b) > 0 for every real place σ : K → R dividing m∞.

We denote the image of the natural map Km,1 → ImK ;x 7→ xOK by Pm
K and call the

quotient group ImK/P
m
K as the ray class group of modulus m. Note that I1K/P

1
K is noth-

ing but the ideal class group Cl(K), and if m ⊂ n, we have a natural surjective map

ImK/P
m
K → InK/P

n
K as a consequence of the approximation theorem (cf. [40, §1, Ch. IV]).

The following theorem states that the Galois group Gal(L/K) of a given abelian extension

L/K is completely described by the ray class group ImK/P
m
K (purely intrinsic data) with a

modification by the image NL/K(I
m
L ) of the norm map (auxiliary extrinsic data).

Theorem 20.2 (Reciprocity law). Let L/K be a finite abelian extension of number

fields and m be a modulus of K divisible by all prime ideals and real embeddings which

are ramified in L/K. Suppose that the ideal m0 is sufficiently small. Then, the map

ArtL/K : ImK → Gal(L/K) induces an isomorphism

ImK/P
m
KNL/K(I

m
L ) ' Gal(L/K).

Proof. See [40, Theorem 5.8, Ch. V]. □

Remark 20.3. The assumption on the size of m is necessary to ensure the well-definedness

of the (induced) isomorphism map. This well-definedness is the core of the proof of

Theorem 20.2, which is reduced to the so called fundamental equality

[ImK : Pm
KNL/K(I

m
L )] = [L : K]

(cf. [40, Theorems 3.10 and 4.4, Ch. V]). We can describe some sufficient conditions for

the validity of this equality in more explicit manner. For instance, Janusz [40, Corollary

3.7] gave such an explicit condition, that is, the following inequality holds for every prime

ideal p ramified in L/K which lies above a prime number p:

vp(m0) > vp(e(p)) + vp(f(p)) +
vp(p)

p− 1
.

In particular, if [L : K] is prime to m0, then the above condition is simplified to

vp(m0) >
vp(p)

p− 1
.
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On the other hand, if one formulates the class field theory in terms of the idèle (class)

group, such an algebraic ambiguity arising from the choice of the modulus disappears due

to the hugeness of the idèle group or its sufficiently fine topology. (See [63].)

We conclude this subsection with the following existence theorem in class filed theory.

Theorem 20.4 (Existence theorem). Let K be a number field, m be a modulus of K, and

H be a subgroup of ImK containing Pm
K . Then, there exists a unique abelian extension L/K

such that all prime ideals and real embeddings ramified in L/K divides m and the Artin

reciprocity map ArtL/K : ImK → Gal(L/K) indues an isomorphism ImK/H → Gal(L/K).

Proof. See [40, Theorems 9.9 and 11.11, Ch. V]. □

20.3. Ring class fields. Let K be a number field. In this subsection, we recall the

ring class filed theory, which gives an isomorphism between the Picard groups of certain

subrings of the ringOK of integers inK and the Galois groups of special abelian extensions

of K. The contents of this subsection is based on [43] and [48, §12, Ch. I].
A subring of K whose Z-rank is [K : Q] is called an order of K. An order O of K is

a Dedekind domain if and only if O = OK , however, we can associate an arbitrary order

to the Picard group which is a generalization of the ideal class group Cl(K) = Cl(OK) of
K. In order to define the Picard group Pic(O) of O, we introduce some terminologies.

A finitely generated O-supmodule a of K is called as a fractional ideal of O, and it is

said to be invertible if there exists another fractional ideal b of O such that ab = O. We

denote the group of invertible fractional ideals of O by IO, which includes the subgroup

PO consisting of (principal) fractional ideals xO with x ∈ K×. Then, the Picard group

Pic(O) ofO is defined as the quotient group Pic(O) := IO/PO. Note that the Picard group

Pic(OK) of the ring OK of integers in K is nothing but the ideal class group Cl(OK) of
OK .
On the other hand, every order O of K has another important invariant f = f(O), the

so called conductor, which is defined by f := {f ∈ OK | fOK ⊂ O}. Note that since the

conductor f of O is a non-zero hence invertible ideal of OK , the group I fK is well-defined.

Let P f
O be the subgroup of I fK generated by principal ideals xOK of K with x ∈ O such

that xO + f = O (i.e., “x is prime to f” in this sense). Then, we can describe the Picard

group Pic(O) of each order O as a modified ideal class group of the Dedekind domain

OK .

Theorem 20.5. Let O be an order of K with conductor f. Then, the scalar extension

induces a natural isomorphism Pic(O) ' I fK/P
f
O.
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Proof. See [43, Theorems 3.8 and 3.11]. □

Since P f
O contains the group P f

K , Theorem 20.4 implies the following theorem.

Theorem 20.6 ([43, Theorem 4.2]). Let K be a number field and O be an order

of K with conductor f. Then, there exists a unique abelian extension HO of K such

that all prime ideals of K ramified in HO/K divide f and the Artin reciprocity map

ArtHO/K : I fK → Gal(HO/K) induces an isomorphism I fK/P
f
O ' Gal(HO/K), hence

Pic(O) ' Gal(HO/K).

The last isomorphism is useful in the study of certain Diophantine problems related with

prime ideals of special form. For example, Cox [21] studied prime numbers of the form

l = x2 + ny2

with x, y, n ∈ Z≥1, and Lv and Deng generalized this study by Cox to the case x, y ∈ OK
with an imaginary quadratic field K. In section 22, we apply the above isomorphism in

the study of prime numbers of the form

l = a3 + pb3 + p2c3 − 3pabc

with a prime number p and a, b, c ∈ (1/3)Z such that b ≡ 0 (mod p) and c 6≡ 0 (mod p).

20.4. Analytic class number formula. In this subsection, we recall the analytic

class number formula, which reduce the estimate of the class numbers of number fields

to the estimate of certain analytic objects. The contents of this subsection are based on

[40, Ch. I, IV, and V] and [56, Ch. IV and V].

Let L/K be finite extension of number fields of degree [L : K] = r. First, we introduce

the discriminant ideals of L/K, which is useful to determine the prime ideals ramified in

L/K.

Definition 20.7. For every K-basis (xi)1≤i≤r of L, we define the discriminant of L/K

with respect to (xi)1≤i≤r as det(TrL/K(xixj)1≤i,j≤r). Moreover, we define the discriminant

ideal DL/K of L/K as the ideal of OK generated by the discriminants with respect to

all K-basis of L consisting of elements of OL. If K = Q, the unique positive generator

of the discriminant ideal DL/Q is called the (absolute) discriminant of L and denoted by

Disc(L).

Theorem 20.8 (Dedekind’s criterion). A prime ideal p of K is ramified in L/K if and

only if p divides DL/K.
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Proof. See [40, Theorem 7.3, Ch. I] or [56, Theorem 1, §5.3, Ch. V]. □

Next, we recall the finiteness of the ideal class group, which we have already encountered

in Theorem 20.4 in more general setting.

Theorem 20.9 (Finiteness of ideal class group). For every number field K, the ideal

class group Cl(K) is a finite abelian group.

Proof. See [56, Theorem 2, §4.3, Ch. IV]. For a generalization to ray class groups,

see [40, Corollary 1.6, Ch. III]. □

We call the order of Cl(K) as the class number of K.

Besides the above finiteness of the ideal class group, the following unit theorem of Dirich-

let is also a distinguished property of number fields. This theorem states that the group

O×
K of invertible elements of OK is a finitely generated abelian group, and the rank of this

abelian group is explicitly described by means of the fields of real and complex numbers.

Let σ : K → C be a homomorphism of fields. Then, we say that σ is real or complex

according to whether its image Im(σ) is contained in the field R of real numbers or not.

Since we have the canonical involution ρ on C, namely the complex conjugation automor-

phism, we see that there exist even number of complex embeddings for every number field

K. Let r1 be the number of real embeddings K → R and 2r2 be the number of complex

embeddings K → C. Then, Dirichlet’s unit theorem states as follows:

Theorem 20.10 (Dirichlet’s unit theorem). For every number field K, we have the

following isomorphism:

O×
K ' µ(K)× Z⊕r1+r2−1.

Proof. See [56, Theorem 1, §4.4, Ch. IV]. For a generalization with moduli (i.e.,

S-units), see [40, Theorem 8.2, Ch. V]. □

From Theorem 20.10, we can further define an interesting analytic invariant, the so

called regulator of a number field K, which is defined as follows. Let σi : K → C
(i = 1, . . . , r1+2r2) be distinct r1+2r2 homomorphisms of fields labeled so that σ1, . . . , σr1
are real and σr1+r2+j = ρ ◦ σr1+j for j = 1, . . . , r2. Then, the regulator Reg(K) of K is

defined as the volume of the fundamental domain of the r1 + r2 − 1-dimensional lattice

obtained as the image of the group homomorphism

O×
K → Rr1+r2 ;x 7→ (log |σ1(x)|, . . . , log |σr1(x)|, log |σr1+1(x)|2, . . . , log |σr1+r2(x)|2).
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More explicitly, if we take a system (εi)1≤i≤r1+r2−1 of elements of O×
K so that their images

in the quotient group O×
K/µ(K) span the whole of the latter group, then we can express

Reg(K) as follows:

Reg(K) =
∣∣∣det((Ni log |σi(εj)|)1≤i,j≤r1+r2−1

)∣∣∣ ,
where Ni = 1 or 2 according to whether 1 ≤ i ≤ r1 or not.

In order to describe the connection of the above number theoretic invariants of K,

namely

• the discriminant Disc(K),

• the class number #Cl(K), and

• the regulator Reg(K),

we introduce the Dedekind zeta function ζK(s) of K. This function is defined by the

Dirichlet series

ζK(s) =
∑

0̸=a⊂OK

NK/Q(a)
−s (s ∈ C and <(s) > 1).

Here, a in the summation runs over all non-zero ideals of OK . Since OK is a Dedekind

domain, ζK(s) has the following product representation of Euler-type

ζK(s) =
∏

p⊂OK

(1−NK/Q(p)
−s)−1 (s ∈ C and <(s) > 1),

which converges uniformly (cf. [40, Theorem 4.2, Ch. IV]). Here, p in the product runs

over all maximal ideals of OK . Through this complex analytic function ζK , the above

number-theoretic characters of K are connected to each other as follows:

Theorem 20.11 (analytic class number formula). For every number field K, the Dedekind

zeta function ζK(s) has a meromorphic extension on C with a simple pole at s = 1. More-

over, the residue of ζK(s) at s = 1 is given by

Ress=1 ζK(s) =
#Cl(K)

#µ(K)
· 2

r1(2π)r2 Reg(K)√
Disc(K)

.

Proof. For the equality, see [40, Theorem 2.12, Ch. IV]. For the meromorphic con-

tinuation to the whole cimplex plane C, see [48, Corollary 5.11, Ch. VII]. □

In the study of Diophantine equations, we often encounter with the problem to estimate

#Cl(K) for a certain number field K of special form. In particular, we are interested in

the p-divisibility of #Cl(K) for a certain prime number p, hence an explicit upper bound
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of #Cl(K) is desirable in many case. For instance, one of the long-standing obstructions

against the proof of Fermat’s Last Theorem was the p-divisibility of #Cl(Q(ζp)) for some

“irregular” prime numbers.

Since the discriminants Disc(K) often has an explicit formula convenient for the calcu-

lation, the equality in Theorem 20.11 shows that in order to obtain an upper bound of the

class number #Cl(K), it is sufficient to give an upper bound of the residue Ress=1 ζK(s)

and a lower bound of the regulator Reg(K). In section 22, we carry out this task for pure

cubic fields K = Q(p1/3),Q((2p)1/3) with a prime number p and prove that #Cl(K) is

prime to p. This is a key ingredient of the study of Diophantine equations of the form

X3 + P ιY 3 = LZpι , where P = p or 2p, ι = 1, 2, and L ∈ Z.
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21. Cyclotomic fields

In this section, we recall some basic theorems around cyclotomic fields, which we use in

the body of the thesis. Let m ∈ Z≥1 be an integer and ζm = exp(2πi/m) ∈ C be the fixed

primitive m-th root of unity.

21.1. Galois groups of cylclotomic extensions. First, we give an elementary

description of the Galois group Gal(Q(ζm)/Q) by using class field theory.

Theorem 21.1. The Artin reciprocity map ArtQ(ζm)/Q induces an isomorphism ψm :

(Z/mZ)× ' Gal(Q(ζm)/Q), which maps the class (p (mod m)) to the Artin symbol(
Q(ζm)/Q

p

)
for every prime number p prime to m.

Proof. SinceQ(ζm)/Q is unramified outsidem∞, we have a surjective map ArtQ(ζm)/Q :

Im∞
Q = ImQ → Gal(Q(ζm)/Q). Suppose that an ideal (a/b)Z ∈ Im∞

Q lies in the kernel of

this map. We may assume that gcd(m, ab) = 1. Then, we have an equality of the Artin

symbols ∏
p

(
Q(ζm)/Q

p

)vp(a)
=
∏
p

(
Q(ζm)/Q

p

)vp(b)
,

where p runs over all prime numbers prime to m. Here, note that since the Artin symbol(
Q(ζm)/Q

p

)
is characterized by the congruence(

Q(ζm)/Q
p

)
x ≡ xp (mod p)

for every x ∈ OQ(ζm) and every prime ideal p of Q(ζm) above p, and the Gal(Q(ζm)/Q)-

conjugates of ζm has the form ζkm with some k ∈ Z, we have an equality(
Q(ζm)/Q

p

)
ζm = ζpm,

which holds in Q(ζm). Hence, we have

ζ |a|m = ζ |b|m .

Since we take a, b ∈ Z so that a, b > 0, the above equality shows that KerArtQ(ζm)/Q ⊂
Pm∞
Q .

On the other hand, since each element of Gal(Q(ζm)/Q) is determined by its action on

ζm, we see that KerArtQ(ζm)/Q consists of non-zero fractional ideals (a/b)Z = (|a|/|b|)Z
with some integers a, b ∈ Z such that gcd(m, ab) = 1 and |a| ≡ |b| (mod m). Hence, we
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obtain an equality KerArtQ(ζm)/Q = Pm∞
Q . Since Im∞

Q /Pm∞
Q ' (Z/mZ)×, we complete

the proof. □

The above description gives an interesting Diophantine consequence as follows.

Corollary 21.2. Let m ≥ 2 be an integer and H ⊂ (Z/mZ)× be a subgroup. Let ψm :

(Z/mZ)× ' Gal(Q(ζm)/Q) be the isomorphism in Theorem 21.1 and KH be the subfield

of Q(ζm) fixed by ψm(H). Then, for every integer x such that xZ ∈ NKH/Q(I
m∞
KH ), there

exists some h ∈ H such that x ≡ ±h (mod m).

Proof. By Theorems 20.1 and 21.1, we obtain the following commutative diagram,

which implies that there exists some h ∈ H such that |x| ≡ h (mod m) as claimed.

Im∞
KH

//

N
KH/Q

��

H
ψm

≃
//

� _

��

Gal(Q(ζm)/K
H)

� _

��
Im∞
Q

// Im∞
Q /Pm∞

Q ≃
// (Z/mZ)×

ψm

≃
// Gal(Q(ζm)/Q)

□

The above result is used in the proof of Theorems 16.1 and 16.5.

21.2. Prime numbers in arithmetic progressions. We start from the following

one of the most classical results in the theory of distribution of prime numbers.

Theorem 21.3 (Dirichlet’s theorem on arithmetic progressions). Let a,m be positive

integers such that gcd(a,m) = 1. Then, there exist infinitely many prime numbers p such

that p = mx+ a with some x ∈ Z.

Proof. See [40, Theorem 5.9, Ch. IV] or [60, Theorem 2, Ch. VI]. □

For a more precise quantitative statement by means of the density of prime numbers,

see e.g. [40, Theorem 5.8, Ch. IV] or [60, Ch. VI].

Corollary 21.4. Let m be a positive integer such that the multiplicative group (Z/mZ)×

is cyclic. Then, there exist infinitely many prime numbers p such that the residual degree

f(p) coincides with the degree [Q(ζm) : Q], i.e., p is totally inert in Q(ζm)/Q.

Proof. By definition, a prime number p is totally inert in Q(ζm)/Q if and only if it

is unramified in Q(ζm)/Q and the order of the Artin symbol
(

Q(ζm)/Q
p

)
∈ Gal(Q(ζm)/Q)

coincides with the degree [Q(ζm) : Q]. By Theorem 21.1, p is totally inert in Q(ζm)/Q if
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and only if the order of (p (mod m)) coincides with #(Z/mZ)× = φ(m). On the other

hand, since we assume that (Z/mZ)× is cyclic, there exists an integer a whose image in

(Z/mZ)× has order φ(m). By Theorem 21.3, there exist infinitely many prime numbers

p such that p ≡ a (mod m). This implies the desired conclusion. □

For more general abelian extensions, see [40, Corollary 5.4, Ch. IV].
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22. Pure cubic fields

In this section, we recall some basic theorems around pure cubic fields, which we use in

the body of the thesis.

22.1. Integer rings of pure cubic fields. First, we recall the structure of the ring

of integers in a pure cubic field. The main reference is [22].

Let d = d1d
2
2 be a positive cube-free integer with square-free integer d1, d2 ∈ Z, π1 :=

d1/3 ∈ R>0 be the real cubic root of d, K = Q(π1) be the associated pure cubic field, and

OK be the ring of integers in K. We also set π2 := d1d2/π1, which is a cubic root of d21d2,

and π3 := (1 + d1π1 + d2π2)/3. Recall that the discriminant Disc(K) of K is the unique

positive generator of the ideal DK/Q (cf. Definition 20.7).

Definition 22.1. The cubic field K is called a pure cubic field of the first or second kind

according to whether d21 − d22 is not divisible by 9 or divisible by 9.

Here, note that since gcd(d1, d2) = 1, d21−d22 is divisible by 9 if and only if gcd(3, d1d2) = 1

and d21d2 ≡ d32 (mod 9), i.e., d ≡ ±1 (mod 9).

Proposition 22.2. (1) Suppose that K is of the first kind. Then, we have OK =

Z[π1, π2], and there exists a unique prime ideal p3 of K such that 3OK = p33.

Moreover, we have Disc(K) = 27d21d
2
2.

(2) Suppose that K is of the second kind. Then, we have OK = Z[π1, π3]. Moreover,

there exist two prime ideals p3,1 and p3,2 of K such that 3OK = p3,1p
2
3,2. Moreover,

we have Disc(K) = 3d21d
2
2.

Proof. See [22, §§3–4]. □

As a consequence, the analytic class number formula (Theorem 20.11) for pure cubic

fields can be reduced to the following simple form:

Corollary 22.3. Let ε be the fundamental unit of OK. Then, the following formulae hold:

Ress=1 ζK(s) =


#Cl(K) · 2π log ε

d1d2
√
3

if d ≡ ±1 (mod 9)

#Cl(K) · 2π log ε
3d1d2

√
3

if d 6≡ ±1 (mod 9)
.

Turning to the algebraic side, in view of the local-global principle, the following theorem

is interesting.
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Proposition 22.4 (Fujiwara’s trick (cf.

[24])). Let d ∈ Z be a cube-free integer. Then, the polynomial fd(x) := (x3−d)(x2+x+1)

has a linear factor over Qp if p is prime to 3d. In particular, if d ≡ 1 (mod 9) and every

prime divisor l of d satisfies l ≡ 1 (mod 3), then the polynomial fd(x) violates the local-

global principle over Q.

Proof. First, recall that the minimal splitting field Kd of fd is a Galois extension of

Q whose Galois group is isomorphic to the symmetric group of order 3. Since the residual

degree of every prime number is 1, 2, or 3, we see that fd has a linear factor in Ql[x] if

l is unramified in Kd/Q. Therefore, the former statement holds from Theorem 20.8 and

Proposition 22.2. The latter statement is a consequence of the former and Corollary 19.3.

□

22.2. Estimate of the class numbers of Q(p1/3) and Q((2p)1/3). In this subsec-

tion, we prove the following lemma, which is a key ingredient of the proof of Theorem 4.1.

Lemma 22.5. Let p be a prime number.

(1) The class number of K = Q(p1/3) is smaller than p.

(2) The class number of K = Q((2p)1/3) is prime to p.

For this purpose, we combine an upper bound of the residue Ress=1 ζK(s) and a lower

bound of the regulator Reg(K) = log ε, both of which are known as follows.

Theorem 22.6 ([4, Théorème 1 and Corollarie 2]). Let p be a prime number, k = Q(ζp).

Let d ≥ 2 be a positive p-th power free integer and K = Q(d1/p) be the associated number

field of degree p. Then, there exists an explicit constant Bp determined by p such that

Ress=1 ζK(s) ≤
1

2
(Ress=1 ζk(s)) (log Disc(K) +Bp)

and expBp ≤ p4−2pDisc(K). As a consequence, for p = 3, the following explicit inequality

holds:

#Cl(K) ≤
√

Disc(K) log Disc(K)

12
√
3Reg(K)

.

Theorem 22.7 ([20, Theorem 3]). Let K be a cubic field such that r1 = r2 = 1. Then,

the following inequality holds:

Reg(K) ≥ 1

3
log

(
Disc(K)

27

)
.
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By combining above estimates, we obtain an explicit upper bound of the class number

of pure cubic fields.

Corollary 22.8. Let d ≥ 2 be a positive cube-free integer and K = Q(d1/3) be the asso-

ciated cubic field. Then, the following inequality holds:

#Cl(K) ≤
√
Disc(K) log Disc(K)

4
√
3 (logDisc(K)− 3 log 3)

.

The above upper bound of the class number of a pure cubic field K = Q(d1/3) is suf-

ficiently strong so that the proof of the first part of Lemma 22.5 is reduced to a small

computer calculation. However, we cannot deduce a similar upper bound

#Cl(Q(2p)1/3) < p

for the second part in general. Thus, we have to combine the above upper bound in

Corollary 22.8 and the following 3-divisibility result, where the latter is a consequence of

the rational cubic genus theory in [3].

Lemma 22.9 ([3, Corollary 4.2.1]). Let m be a cube-free integer and K = Q(m1/3) be the

associated pure cubic field. Then, the class number #Cl(K) of K is divisible by 3 except

for possibly when

m = 3, 9, p1, p
2
1, 3p1, 9p

2
1, 9p1, 3p

2
1, p1p2, p

2
1p

2
2, p

2
3p4, p3p

2
4,

where the prime numbers pi ≡ 2 (mod 3) and p1p2 ≡ 1 (mod 9) or p3 ≡ p4 (mod 9).

Proof of Lemma 22.5. (1) If p ≡ ±1 (mod p) (resp. 6≡ ±1 (mod 9), then we

have DiscK = 3p2 (resp. 27p2). Therefore, by applying Theorems 22.6 and 22.7,

we obtain the following upper bound for #Cl(K)

#Cl(K) ≤ 1

4
p · 2 log p+ log 3

2 log p− log 9

(
resp.

3

4
p · 2 log p+ log 27

2 log p

)
,

from which we can deduce the desired upper bound for p ≥ 16. 21 For p < 140,

we can check the desired upper bound directly (e.g. by using Magma [7]).

21In order to deduce
2 log p+ log 3

2 log p− log 9
< 4,

it is sufficient to assume that log(39) < log p6, i.e., p ≥ 6. On the other hand, in order to deduce

2 log p+ log 27

2 log p
<

4

3
,

it is sufficient to assume that log(39) < log p2, i.e., p ≥ 141.
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(2) If p ≡ ±4 (mod 9) (resp. 6≡ ±4 (mod 9), then we have DiscK = 12p2 (resp.

108p2). Therefore, by applying Theorems 22.6 and 22.7, we obtain the following

upper bound for #Cl(K)

#Cl(K) ≤ 1

2
p · 2 log p+ log 12

2 log p− log(9/4)

(
resp.

3

2
p · 2 log p+ log 108

2 log p+ log 4

)
.

If p ≡ ±4 (mod 9) and p ≥ 8, the above upper bound implies that #Cl(K) < p.
22 For p = 5, we can check that #Cl(K) = 1 directly (e.g. by using Magma [7]).

On the other hand, if p 6≡ ±4 (mod 9) and p 6= 2, 3, Lemma 22.9 implies thet

#Cl(K) is divisible by 3. Thus, we have

#Cl(K)

3
≤ 1

2
p · 2 log p+ log 108

2 log p+ log 4
.

from which we can deduce that #Cl(K)/3 < p, hence #Cl(K) is prime to p. 23

For p = 2, 3, we can check that #Cl(K) = 1 directly (e.g. by using Magma [7]).

□

The following is the program which we used in the proof of Lemma 22.5.

P<x> := PolynomialRing(Rationals ());

for p in [1..140] do;

if IsPrime(p) then

K1 := NumberField(x^3-p);

if ClassNumber(K1) gt p-1 then

> <p, K1 >;

end if;

end if;

end for;

>>

P<x> := PolynomialRing(Rationals ());

for p in [1..8] do;

22In order to deduce
2 log p+ log 12

2 log p− log(9/4)
< 2,

it is sufficient to assume that log(243/4) < log p2, i.e., p ≥ 8.
23In order to deduce

2 log p+ log 108

2 log p+ log 4
< 2,

it is sufficient to assume that log(27/4) < log p2, i.e., p ≥ 3.
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if IsPrime(p) then

K2 := NumberField(x^3-2*p);

> <p, ClassNumber(K2)>;

end if;

end for;

>>

<2, 1>

<3, 1>

<5, 1>

<7, 3>

22.3. More plane curves of odd degrees. Let p be a prime number and P =

p or 2p such that P 6≡ ±1 (mod 9). In this subsection, we discuss how to obtain more

plane curves which violate the local-global principle as stated in Theorem 4.1. More

precisely, we discuss on how to produce relatively small L for every fixed odd degree n ≥ 5

divisible by p and for every fixed (n− 3)/2-tuples (b1, c1), . . . , (b(n−3)/2, c(n−3)/2) ∈ Z⊕2.

For simplicity, suppose that ι = 1. In view of the proof of Theorem 4.1, in order to obtain

sufficiently many desired plane curves it is sufficient to find sufficiently many integers L

satisfying the following condition gives

• L is prime to bj and cj (1 ≤ j ≤ (n− 3)/2).

• L ≡ 1 (mod p) and L is a product of an even number m < n of (possibly same)

prime numbers l1, . . . , lm such that li ≡ 2 (mod 3).

• There exists no (x, y, z) ∈ Z⊕3 such that gcd(x, y, z) = 1 and x3 + Py3 = Lzn.

The following Proposition 22.10, which is a generalization of Proposition 6.2, reduce

the above problem to another problem of finding prime numbers associated with norms

and satisfying some congruences. The proof of the original Proposition 6.2 works also in

this generalized form in the exactly same manner because its proof depends only on the

assumption li ≡ 2 (mod 3) and the property of (ai, bi, ci) ∈ (Z/pZ)⊕3.

Proposition 22.10. In the above setting, further suppose that there exist (possibly same)

p− 1 prime numbers l1, . . . , ln−1 ≡ 2 (mod 3) such that there exist ai, bi, ci ∈ Z satisfying

the following conditions:

(1) li = a3i + Pb3i + P 2c3i − 3Paibici.

(2) (ai, bi, ci) ∈ (Z/pZ)⊕3 is independent of i, and ai ≡ ±1 (mod p), bi ≡ 0 (mod p),

and ci 6≡ 0 (mod p).
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(3) If p = 5, then additionally c 6≡ −a (mod 5).

Then, there exist a positive even integer m < n such that if we set L =
∏m

i=1 li, then every

primitive solution of x3 + Py3 = Lzn satisfies x ≡ y ≡ 0 (mod li) for some 1 ≤ i ≤ m.

In the proof of Theorem 4.1, we restricted us to the special case l1 = · · · = ln−1 = l

with a prime number l produced by Theorem 4.4. This restriction made the proof of the

infinitude of L simpler, however, the resulting L should be quite large in principle. As a

consequence, such L forms a quite small set of integers.

The goal of this subsection is to prove the following Proposition 22.11. It gives relatively

small prime numbers l of positive density (cf. the last of the proof of Proposition 22.12),

to some of which we can apply Proposition 22.10. As a consequence, we can expect that

these integers L form a relatively large set of integers.

More precisely, in order to apply Proposition 22.10 to the prime numbers l in Propo-

sition 22.11, it is sufficient to check that a ≡ ±1 (mod p) or not and classify the prime

numbers l associated with a ≡ ±1 (mod p) by the modulo p equivalence class of (a, c).

Here, note that for any given infinite subset S of Z⊕3, at least one of the equivalence

classes in (Z/pZ)⊕3 contains infinitely many triples in S by the pigeon hole principle.

In what follows, let π = P 1/3 ∈ R>1 be the real cubic root, K = Q(π), OK be the ring of

integers in K, and ε = α+ βπ+ γπ2 be the fundamental unit of K with α, β, γ ∈ (1/3)Z.

Proposition 22.11. Suppose that β 6≡ 0 (mod p). Then, there exist infinitely many

principal prime ideals of OK generated by some elements of the form λ = a+bπ+cπ2 ∈ OK
with a, b, c ∈ (1/3)Z such that

b ≡ 0 (mod p), c 6≡ 0 (mod p), and l := NK/Q(λ) ≡ 2 (mod 3).

Here, note that since λOK is a prime ideal, the congruence NK/Q(λ) ≡ 2 (mod 3)

implies that NK/Q(λ) is a prime number. We should emphasize that the prime ideals

λOK in Proposition 22.11 form a set of prime ideals of K with positive density (cf. the

last of the proof of Proposition 22.12). This fact ensures that we can obtain sufficiently

small and many prime numbers l = NK/Q(λ).

Let O = Z + pOK . In principle, the whole of the following arguments can be easily

generalized to more general orders, but we restrict us to O = Z + pOK for simplicity of

description.

Since pOK ⊂ O but π2 6∈ O[1/2], the conductor f := {a ∈ OK | aOK ⊂ O} of O
coincides with pOK . Let λ ∈ O prime to f = pOK . Then, we see that µ ∈ OK satisfies

λµ ∈ O only if µ ∈ O. Indeed, if we take a, b, c ∈ (1/3)Z so that λ = a + bπ + cπ2 ∈ O,
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then we have a 6≡ 0 (mod p) and b ≡ c ≡ 0 (mod p), hence λµ ≡ aµ (mod p). Thus, we

have λOK ∩ O ⊂ λO, hence λOK ∩ O = λO.
We have a natural group homomorphism Pic(O) → Pic(OK) = Cl(K) associated with

the scalar extension of ideals. Then, it is surjective by the approximation theorem (cf.

[40, §1, Ch. IV]). The following proposition is a key step of the proof of Proposition 22.11.

Proposition 22.12. There exist infinitely many prime ideals Λ of OK such that

(1) Λ ∩ Z = NK/Q(Λ) is generated by a prime number l ≡ 2 (mod 3) and

(2) Λ is a principal ideal of OK prime to p but Λ ∩ O is not a principal ideal of O.

Proof. First, note that a prime number l satisfies l ≡ 2 (mod 3) if and only if the

Artin symbol
(

Q(ζ3)/Q
l

)
in Gal(Q(ζ3)/Q) is non-trivial. Moreover, a prime number l prime

to P satisfies l ≡ 2 (mod 3) if and only if there exist two prime ideals Λl,1 and Λl,2 of K

whose norms are l and l2 respectively. By the functoriality of the Artin reciprocity maps

(Theorem 20.1), we see that
(
K(ζ3)/K

Λl,1

)
is non-trivial and

(
K(ζ3)/K

Λl,2

)
is trivial. Since each

prime ideal Λ above a prime number l ≡ 1 (mod 3) has norm l, we see that
(
K(ζ3)/K

Λ

)
is

trivial. As a consequence, we see that a prime ideal Λ of OK satisfies the first condition in

the statement if its Artin symbol
(
K(ζ3)/K

Λ

)
defines a non-trivial element of Gal(K(ζ3)/K).

Next, let HK be the maximal unramified abelian extension of K, and HO be the ring

class field associated with O. Then, the Artin reciprocity map induces an isomorphism

Ker(Pic(O)→ Cl(K)) ' Ker(Gal(HO/K)→ Gal(HK/K)) ' Gal(HO/HK)

(cf. Theorems 20.1 and 20.6). Here, note that the second condition in the statement holds

if and only if the ideal Λ ∩ O of O defines a non-trivial class of Ker(Pic(O)→ Cl(K)).

By combining the above arguments, every prime ideal of K whose Artin symbol in

Gal(HO(ζ3)/K) lies in the following subset S satisfy the desired conditions:

S := Gal(HO(ζ3)/K(ζ3))
c ∩Gal(HO(ζ3)/HK) ∩Gal(HO(ζ3)/HO)

c

= Gal(HO(ζ3)/HK) ∩Gal(HO(ζ3)/HK(ζ3))
c ∩Gal(HO(ζ3)/HO)

c

= Gal(HO(ζ3)/HK) \ (Gal(HO(ζ3)/HK(ζ3)) ∪Gal(HO(ζ3)/HO)) .

Here, note that ζ3 6∈ HK because K(ζ3)/K is ramified at a prime ideal above 3 (which is

unique if P 6≡ ±1 (mod 9)) but HK/K is unramified at every prime ideal. Therefore, if

we set δ = 0 or 1 according to whether ζ3 ∈ HO or not, we can calculate the above three

subgroups of Gal(HO(ζ3)/Q) as follows:

• #Gal(HO(ζ3)/HK) = 2δ#Ker(Pic(O)→ Cl(K)).
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• #Gal(HO(ζ3)/HK(ζ3)) = (1/2)#Gal(HO(ζ3)/HK).

• #Gal(HO(ζ3)/HO) = 2δ.

Thus, we can conclude that S 6= ∅ whenever Pic(O) 6' Cl(K), which follows from the fol-

lowing Lemma 22.13. Therefore, the assertion follows from Chebotarev’s density theorem

(cf. [40, Theorem 10.4, Ch. V]), which actually ensures that such prime ideals Λ form a

set of prime ideals of K with positive density #S/2δ#Pic(O). □

Lemma 22.13. We have O×
K/O× ' 1 or Z/pZ according to whether O× = O×

K or not.

Moreover, if we set r so that (O×
K/O×) ' (Z/pZ)⊕r, then we have

Ker(Pic(O)→ Cl(K)) ' (Z/pZ)⊕2−r.

Proof. The fist statement is an immediate consequence of Dirichlet’s unit theorem

(Theorem 20.10): Indeed, we see that O×
K/{±1} is cyclic, and ηp ∈ O for every η ∈ OK

because p ≥ 3.

For the second statement, we start from the exact sequence

1→ O×
K/O

× → (OK/f)×/(O/f)× → Pic(O)→ Cl(K)→ 1

induced by natural homomorphisms (cf. [48, Theorem 12.12, Ch. I]).

Since η = a + bπ + cπ2 ∈ OK with a, b, c ∈ (1/3)Z 24 is prime to p if and only if a is

prime to p, we have

(OK/pOK)× ' (Z/pZ)× × (Z/pZ)⊕2

Similarly, we have (O/pOK)× ' (Z/pZ)×, hence

(OK/pOK)×/(O/pOK)× ' (Z/pZ)⊕2.

This implies the desired conclusion. □

Example 22.14. If P = 3, then since ε = 4+ 3π+2π2 6∈ O×, we have O× = O×3
K , hence

Ker(Pic(O) → Cl(K)) ' Z/3Z. If P = 6, then since ε = 109 + 60π + 33π2 ∈ O×, we

have O× = O×
K , hence Ker(Pic(O) → Cl(K)) = (Z/3Z)⊕2. For more general p ≥ 3, see

Corollary 22.16.

Remark 22.15. On the other hand, if P = p = 2, then we haveε = 1 + π + π2, f =

2OK , O×
K/O× ' Z/4Z, and (OK/pOK)×/(O/pOK)× ' (OK/pOK)× ' Z/4Z. As a

consequence, we have Pic(O) ' Cl(K) ' 1.

24If p = 3, then a.b, c ∈ Z.
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Proof of Proposition 22.11. By Proposition 22.12, there exist infinitely many

prime ideals of OK generated by some λ = a + bπ + cπ2 ∈ OK with a, b, c ∈ (1/3)Z such

that NK/Q(λ) = 2, 25 λ is prime to p (i.e., a 6≡ 0 (mod p)), and λOK ∩O is not a principal

ideal of O. For such λ, define (ak, bk, ck) ∈ (1/3)Z⊕3 (k ∈ Z) by ak + bkπ + ckπ
2 = εkλ.

Then, we have bk ≡ αk−1βak + αkb (mod p) inductively. Since we assume that β 6≡ 0

(mod p), if we take an integer K ∈ Z such that K ≡ −bα/aβ (mod p), then we have

bK ≡ 0 (mod p). On the other hand, if bK ≡ cK ≡ 0 (mod p), then εKλ ∈ O, hence
λOK ∩O = εKλO is a principal ideal of O, a contradiction. Therefore, by replacing λ to

εKλ if necessary, we obtain the desired conclusion. □

By the way, Lemma 22.13 gives the following purely ideal/Galois theoretic consequence

of Conjecture 4.2 which states that β 6≡ 0 (mod p).

Corollary 22.16. Suppose that β 6≡ 0 (mod p) or γ 6≡ 0 (mod p). Then, we have

Pic(O)⊗ Zp ' Gal(HO/K)⊗ Zp ' Z/pZ.

Proof. First, recall that by Lemma 22.5 #Cl(K) is prime to p. Hence, we have a

natural isomorphism

Ker(Pic(O)→ Cl(K))⊗ Zp ' Pic(O)⊗ Zp.

On the other hand, the fundamental unit ε = α + βπ + γπ2 belongs to O if and only if

β ≡ γ ≡ 0 (mod p). Therefore, Lemma 22.13 implies the desired conclusion. □

22.4. Prime numbers represented by cubic polynomials. In the previous sub-

section, we have proven that there are infinitely many prime numbers which arise as

norms of special element of a pure cubic field. Its proof is almost algebraic and reduced to

the problem of counting Artin symbols of the associated prime ideals due to Chebotarev

density theorem. However, if we want to obtain prime numbers which arise as norms

of more special elements in a cubic field, we encounter highly hard analytic problems.

The following theorems due to Heath-Brown and Moroz are the break through in this

direction.

Theorem 22.17 ([31, Theorem] for X3 + 2Y 3, [32, Theorem 1.1] in general). Let

f(X,Y ) ∈ Z[X,Y ] be a binary cubic form which is irreducible in Z[X,Y ]. Then, there are

infinitely many prime numbers p of the form p = f(x, y) with some (x, y) ∈ Z⊕2 unless

25Recall that a prime number l ≡ 2 (mod 3) is decomposed to lOK = Λl,1Λl,2 so that NK/Q(Λl,i) = li.
Therefore, Λl,1 is principal if and only if Λl,2 is so.
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f(x, y) us divisible by 2 for each (x, y) ∈ Z⊕2, in which case there are infinitely many

prime numbers p of the form p = (1/2)f(x, y) with some (x, y) ∈ Z⊕2.

Proof. See [31,32]. □

For more precise quantitative statement, see the original articles [31, Theorem] and

[32, Theorem 2.1 and Corollary 2.2].

Heath-Brown and Moroz generalized Theorem 22.17 on cubic forms to more general

cubic polynomials as follows.

Theorem 22.18 ([33, Theorem 1]). Let f0(X,Y ) ∈ Z[X,Y ] be a binary cubic form

which is irreducible in Z[X,Y ]. For every d ∈ Z and γ = (γ1, γ2) ∈ Z⊕2, let the positive

integer γ0 be the greatest common divisor of the coefficients of f0 and set the polynomial

f(x, y) := γ−1
0 f0(dx+γ1, dy+γ2). Suppose, moreover, that gcd f(Z⊕2) = 1. Then, the set

f(Z⊕2) contains infinitely many prime numbers.

Proof. See [33]. □
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Appendix B : Numerical examinations



23. A cubic analogue of the Ankeny-Artin-Chowla-Mordell conjecture

In this appendix, we summarize the results of numerical examinations around Conjec-

ture 4.2. Recall that this conjecture states as follows:

Conjecture 23.1. (Conjecture 4.2) Let p 6= 3 be a prime number and P = p or2p. Let

π = P 1/3 ∈ R be the real cubic root of P , K = Q(π) be the associated pure cubic field,

and ε = α + βπ + γπ2 ∈ R>1 with α, β, γ ∈ (1/3)Z be the fundamental unit of K. Then,

β 6≡ 0 (mod p).

We can easily verify this conjecture numerically. In fact, by using Magma [7], we have

verified this conjecture for both P = p and 2p in the range p < 105. For example, the

following program returns that there exist no counterexamples of the above conjecture for

P = p in the range p < 104. Here, recall that Conjecture 23.1 holds for P if the order

Z[π] ⊂ OK has a unit α + βπ + γπ2 with α, β, γ ∈ (1/3)Z such that β 6≡ 0 (mod p). In

fact, for every element ε1 ∈ Z[π]×, we have ε1 = ε or ε3. The latter case may happen only

if P ≡ ±1 (mod 9) and if this is the case, we have ε1 ≡ α3 + 3αβπ (mod π2).

Zx <x> := PolynomialRing(Integers ());

for p in [1..10^4] do; // the range for search

if IsPrime(p) then

O := EquationOrder(x^3-p); // create the order O := Z[p^{1/3}]

U,phi := UnitGroup(O);

// U.1 := -1 and U.2 := another generator of the unit group of O;

Fpy <y> := PolynomialRing(FiniteField(p));

// y is a formal parameter in place of π

h := hom < O -> Fpy | y >;

// represent each element of O mod pO

// as a polynomial of y = p^{1/3}

if Coefficient(h(phi(U.2)), 1) eq 0 then;

// if the coefficient of p^{1/3} for U.2 is 0 mod p, then

> <p, h(phi(U.2))>;

// return such a prime number p and the corresponding U.2

end if;

end if;

end for;

>>

<3, 2*y^2 + 2>



Note that the return p = 3 is the conjectural unique exception.

Moreover, the above numerical experiment implies that there exist non-singular plane

curves of degree n which violate the local-global principle for “most” odd integers n in

the sense of natural density: Let N := Z≥1, and Nodd be the set of positive odd integers.

Set

P := {p : prime number} ,

BP :=
{
p ∈ P | p < 105

}
,

M :=
{
n ∈ N | n 6≡ 0 (mod p) for all p ∈ BP and n 6≡ 0 (mod p2) for all p ∈ P

}
,

N := N \ (M ∪ {1}),

Nodd := {n ∈ N | n is an odd integer},

Nodd := N ∩ Nodd,

then Theorem 4.1 and the above numerical verification of Conjecture 23.1 (with Poonen’s

construction Theorem 2.7 for n = 3) ensures that we can construct infinitely many explicit

non-singular plane curves of degree n which violates the local-global principle for each

n ∈ Nodd. Moreover, if we denote the natural density of S ⊂ N by d(S) (if it exists), then

we have

d(M) =
∏
p∈BP

(1− p−1)×
∏

p∈P\BP

(1− p−2) =
∏
p∈BP

(1 + p−1)−1 × ζ(2)−1

< 0.0487529

and

d(Nodd) =
1

2
,

hence

d(Nodd)

d(Nodd)
= 1− d(M)

d(Nodd)
> 0.90249

Therefore, at least 90% of odd integers lie in Nodd. For the above numerical estimate, we

use the following program carried out by Magma:

function g(p)

if IsPrime(p) then

return 1/(1+1/p);
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else

return 1;

end if;

end function;

function G(k, n)

if n eq 0 then

return 1;

else

return G(k, n-1)*g(5*(k -1)*10^3+n);

end if;

end function;

function F(k)

if k eq 0 then

return 1;

else

return F(k-1)*G(k, 5*10^3);

end if;

end function;

R := RealField (6);

Zeta2 := (1/6)* Pi(R)^2;

> R!F(20);

> R!(1/ Zeta2 );

> R!(F(20)/ Zeta2 );

> R!(1-2*F(20)/ Zeta2 );

>>

0.0801953

0.607926

0.0487528

0.902494

On the other hand, Conjecture 23.1 has the following obvious cousins.

Question 23.2. Let n be a positive integer and p be a prime number. Suppose that P = np

is not a cubic. Let π = P 1/3 ∈ R be the real cubic root of P and ε = α+ βπ + γπ2 ∈ R>1
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with α, β, γ ∈ Z be the fundamental unit of the order Z[π]. Then, is it true that β 6≡ 0

(mod p)?

However, the above question is negative in general. For the search of such counterexam-

ples for n ≤ 24, we carried out the similar program to the above numerical examination

by Magma. In this time, we searched such counterexamples in the range p < 104. The

following table is the summary of this numerical examination.

n Small p for which β ≡ 0 (mod p) holds

1 3
2 3
3 2, 5, 13, 9377
4 3, 37
5 2, 3, 5, 17, 59
6 2, 3, 7
7 2, 3, 5, 7, 71
8 2, 3
9 67, 1303
10 3, 5
11 3, 11
12 3, 313, 701, 4273
13 3, 53
14 3, 7, 4079
15 3, 5, 11, 31, 79, 4229
16 2, 3
17 2, 3, 17, 101
18 3, 107, 389, 647
19 3, 19, 61
20 2, 3, 5, 3529
21 2, 7, 13, 479, 2239
22 3, 5, 11
23 2, 3, 5, 23, 7043
24 2, 3, 5, 13, 19, 9377

The above table suggests the following conjectures.

Conjecture 23.3. Let p ≥ 5 be a prime number, π = p1/3 ∈ R be the real cubic root of p,

and ε = α+ βπ2 + γπ4 ∈ R>1 with α, β, γ ∈ Z be the fundamental unit of the order Z[π2].

Then, the congruence β ≡ 0 (mod p) holds.

We verified Conjecture 23.3 in the range p < 2000 by a similar program carried out by

Magma. Although this range is quite shorter than the range p < 105 where Conjecture 23.1
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is verified, it should be noted that under the uniform distribution the probability that a

randomly taken integer is divisible by p, is just 1/p. Hence, our numerical verification for

Conjecture 23.3 in the range p < 2000 suggests that Conjecture 23.3 itself is plausibile

more strongly than our numerical verification of Conjecture 23.1 in the range p < 105

does.

Recall that we proved in Lemma 22.13 and Corollary 22.16 (cf. Lemma 22.5) that

Pic(Z + pOK) ⊗ Zp ' (Z/pZ)2−r with r = vp([O×
K : (Z + pOK)×]) ∈ {0, 1}. Moreover,

note that Conjecture 23.1 implies that r = 1. By the same argument as Lemma 22.13

and Corollary 22.16, we can prove also the following: If we set s = vp([O×
K : Z[π2]×]) ∈

{0, 1}, then Pic(Z[π2])⊗ Zp ' (Z/pZ)⊕1−s, i.e., s = 1 if and only if the abelian extension

of K = Q(p1/3) of conductor p2/3 is trivial. Here, note that the conductor of Z[π2] is

pi3 ·π2OK or π2OK according to whether p ≡ ±1 (mod 9) or not, where p3 is a prime ideal

above 3 and does not affect on Pic(Z[π2])⊗ Zp because we assume that p ≥ 5.

Proposition 23.4. If s = 1, then Conjecture 23.3 holds. Moreover, Conjecture 23.1

implies that s = 1. As a consequence, Conjecture 23.1 implies Conjecture 23.3.

Besides the above p-adic property for every prime number p, the following 3-adic property

is also plausible in view of the above table.

Conjecture 23.5. Let n 6= 3 be a positive cube-free integer prime to 3, P = 3n, π =

P 1/3 ∈ R be the real cubic root of P , and ε = α+ βπ + γπ2 ∈ R>1 with α, β, γ ∈ Z be the

fundamental unit of the order Z[π]. Then, the congruence β ≡ 0 (mod 3) holds.
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