
A Thesis for the Degree of Ph.D. in Engineering

Radical-based Representation Learning
for Japanese Processing

July 2020

Graduate School of Science and Technology
Keio University

Yuanzhi Ke

Contents

Abstract i

List of Notations iii

1 Introduction 1
1.1 Introduction . 1
1.2 Objective of Representation Learning . 3
1.3 Statistical Representation: TF-IDF . 3
1.4 Topic Models . 4

1.4.1 Latent Semantic Indexing . 4
1.4.2 Latent Dirichlet Allocation . 5
1.4.3 Hierarchical Dirichlet Processes . 5

1.5 Neural Language Model and Word Embeddings 6
1.5.1 Word2vec . 6
1.5.2 GloVe . 10
1.5.3 ELMo . 11
1.5.4 BERT . 13

1.6 Subword Approach . 17
1.6.1 Character-based Approaches . 17
1.6.2 Researches on Chinese and Japanese 17

1.7 Conclusion of This Chapter . 20

2 System of Radicals of Chinese Characters 21
2.1 History of Chinese Characters and Radicals 21
2.2 Composition of Chinese Characters . 23
2.3 Radicals and Human . 24
2.4 Challenges for AIs . 25

2.4.1 No Perfect Guide to Label Radicals 25
2.4.2 Confusing Characters for Image-based Methods 25
2.4.3 Original Meanings Are Sometimes Ignored 27

2.5 Conclusion of this Chapter . 27

3 CNN-based Chinese Radical Encoder 28
3.1 Motivation . 28
3.2 The Proposed Encoder . 29

3.2.1 Radical-level Representation . 29
3.2.2 Convolutional Encoder for the Local Features 31
3.2.3 Filters of Wide Strides . 31
3.2.4 RNN Encoder for the Global Feature 32

2

CONTENTS i

3.2.5 Highway Structures . 33
3.3 Sentiment Analysis . 33

3.3.1 Datasets and Tasks . 33
3.3.2 Baselines . 34
3.3.3 Hyperparameters . 35
3.3.4 Results . 35
3.3.5 Ablation Study . 37
3.3.6 Discussions . 39

3.4 Language Model . 41
3.4.1 Dataset and Task . 41
3.4.2 Results . 41
3.4.3 Discussions . 42

3.5 Conclusion of This Chapter . 43

4 Encoding Both Shapes and Radicals 45
4.1 Motivation . 45
4.2 The Proposed Method . 45

4.2.1 Radical-level embeddings, Structure Embeddings, and Position
Embeddings . 45

4.2.2 Encoder . 48
4.2.3 Downstream Classifier in the Experiment 49

4.3 Sentiment Analysis . 49
4.3.1 Environment . 49
4.3.2 Dataset . 50
4.3.3 Preprocessing . 52
4.3.4 Initialization . 52
4.3.5 Experimental Models . 52
4.3.6 Hyperparameters . 53

4.4 Results . 53
4.4.1 Effects on the Training Process . 53
4.4.2 Effects on the Testing Results . 53
4.4.3 Comparison with Related Works 56
4.4.4 Discussions . 57

4.5 Language Model . 57
4.5.1 Dataset . 57
4.5.2 Results . 58
4.5.3 Discussions . 59

4.6 Conclusion of This Chapter . 59

5 Conclusions 60

Acknowledgments 62

Abstract

Machines cannot process natural languages without transforming them into numeric
features. In the past, people extracted features of texts by models depended upon their
observations. For example, frequent words are often more important than the others
for an article. Recently, unsupervised trained distributed representations, e.g., the word
embeddings trained by word2vec, are proposed. They are trained by neural networks that
embed useful information into the word vectors or sometimes subword vectors via carefully
designed unsupervised training tasks. Such representations are becoming more and more
used and have achieved success in various natural language processing tasks. 　 For
early models to train the distributed representations, learning rare words is challenging.
Subword approaches have been proposed after that to learn rare words. They divide words
into n-gram characters to help the training for rare words. The subword approaches are
powerful tools for rare words in alphabetical languages. However, it is less effective for
character-rich languages such as Japanese because of the rare characters in the large
character set.

Japanese has a huge character set. Most of the characters in its character set are
the ideographic characters, “kanji”, originated from ancient China, or made similarly to
how ancient Chinese characters are made. “Kanji” can be further decomposed into basic
meaningful components—the radicals, which are shared by different characters.

Common characters and uncommon characters share the same set of radicals. Thus,
the radicals are useful to generalize the knowledge of learned characters to the unseen
characters. There have been some researches on the usage of radicals of Chinese characters
for natural language processing. However, the foregoing researches proposed using
words and characters with radicals and showed minor improvements without words and
characters. Such methods remained the issues of learning uncommon words and characters
unsolved. We discussed the weak points of the conventional methods and propose
to leverage convolutional neural networks as encoders to extract the most important
component and build the radical-based representations. Our proposed methods achieved
superior performance than conventional methods without using word embeddings or
character embeddings, especially for unknown characters.

The proposed convolutional encoder to learn the representations of Chinese characters
based on radicals is as follows: The convolutional layers extract the word-level features
and character-level features from the radicals (input as texts) by novel parallel organized
convolutional kernels with different widths and strides. Then max-pooling over each
character and gated connection over the radicals in each word is utilized to extract the
most important features and outputs vectors that be used as representations in down-
stream tasks. We also leverage positional and structural information to improve our
model’s robustness.

We evaluated our proposed encoder by sentiment analysis tasks and a text generation
task. The performance in the sentiment analysis task was on par with the state-of-the-art

i

ii CONTENTS

word embedding-based models, with much smaller vocabulary and fewer parameters. The
performance in the text generation task was not improved, but we observed significant
training cost reduction.

Our proposed approach presents a powerful and cost-effective representation for
Japanese natural language processing, especially for uncommon characters.

List of Notations

Notation Description

a A scalar

a A vector

A A matrix

A A Tensor

A A set

R The set of real numbers

Z The set of integers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b) The real interval excluding a and b

A⊙B The elementwise multiplication of A and B
A ⋆ B The convolution between A and B

A⊤ The transpose of A
∇xy Gradient of y with respect to x
P (a) A probability distribution over a discrete

variable

a ∼ P Random variable a has distribution P

iii

Chapter 1

Introduction

1.1 Introduction
Teaching machines to understand human languages is a basic and important mission

for artificial intelligence. And the prime question is how to transform our language into
numerical representations that machines can easily read and process.

For example, if we want to use a computer to classify a document, a straight-forward
approach is to count the word frequencies as the feature, and then train decision trees
to predict the class based on the word frequencies. The approach in the example above
is simple and often effective but has several weaknesses: firstly, it is difficult for such
approaches to address the rare words that are not included in the training corpora;
secondly, the frequency-based representations contain little semantic and contextual
information and are weak at advanced tasks such as text generation and machine
translation.

In 2000, Papadimitriou et al. [1] proposed latent semantic indexing(LSI). LSI assumes
that when a human writes a document, he has firstly some topics to talk, and then select
words about the topics. According to this assumption, words and documents are tied by
latent topics. Then LSI estimates the distribution of latent topics of words by performing
singular value decomposition (SVD) on the relation matrix of words and documents.
The distribution of latent topics computed in this way has also proved to be good word
representations for information retrieval [2] and recommendation systems [3]. In 2003,
Blei et al. [4] proposed another model to get the distribution of latent topics based on a
probabilistic generative process called latent Dirichlet analysis (LDA). LDA presents not
only the distribution of latent topics of words and documents but also an interpretable
model for text generation based on Bayesian inference. In 2011, Wang et al.[5] further
extend LDA to the hierarchical Dirichlet process (HDP), which automatically choose the
number of topics while LSI and LDA require a predefined number of topics.

In 2003, Bengio et al. [6] proposed an n-gram language model implemented by a
recurrent neural network. Unlike the previous approach, Bengio et al. let the neural
network learn the vector representations of words by itself. The word vectors were
randomly initialized and trained by gradient descent during back-propagation. The word
vectors trained in this way are called “word embeddings” because the features used by
the neural network are embedded in such word vectors.

In 2013, Mikolov et al. [7, 8] proposed a method to efficiently train the word
embeddings. He used a two-layer neural network instead of a recurrent neural network,
and tricks to simplify the computing of softmax. Thanks to his model, people became

1

2 INTRODUCTION

able to use large corpora to train word embeddings, which largely improved the word
embeddings. The word embeddings trained with large corpora in this way updated
state-of-the-art results in many tasks. They outperformed the conventional approaches
in Microsoft Sentence Completion Challenge [9], sentiment analysis tasks [10, 11], text
classification tasks [12], and named entity recognition tasks[13]. Word embeddings trained
by the methods proposed by Mikolov et al. have proved to be generally useful. Similarly,
Pennington et al. [14] proved another approach to train the word embeddings by fitting a
neural network model to the co-occurrence matrix. Some researchers prefer Pennington’s
word embeddings for question answering tasks [15, 16, 17].

In spite of their success, word embeddings have shortages of learning polysemous
words (words have several meanings) and out-of-vocabulary words. Recently, the issue
of polysemous words has been solved by some large language models [18, 19, 20]. The
models do not compute isolated word embeddings but take a sentence as the input, and
inference word embeddings for each word in the input sentence according to the contexts.
They use over 100 million parameters to compute the relationship between each word pair
in the sentence, which costs a lot of computational resources.

The out-of-vocabulary words in alphabetical languages such as English and French
are usually addressed by using character-based subword approaches that utilize character-
level n-grams [21] and byte pair encoding [22]. These approaches train the embeddings of
character-level sub-sequences of words instead of the words themselves. However, some
languages such as Japanese and Chinese hold a large set of characters, for which the
character-level approaches suffer the problem of out-of-vocabulary characters.

Table 1.1: Comparing our proposed approach and conventional approaches on the ability
to address out-of-vocabulary (OOV) words and characters.

OOV Word OOV Character
TF-IDF [19] X X
Word2vec [7] X X
GloVe [13] X X

FastText [17] O X
BPE [18] O X

BERT [15] O X
Ours O O

Our research objective is to find a method to learn word representations that is effective
and robust for out-of-vocabulary characters in Japanese. We achieve this by accessing
the components that compose the ideographic characters that are borrowed from the
ancient Chinese language. These Chinese characters make up most of the character set of
Japanese, but they are composed of a limited set of components, which are often related
to the characters’ meanings. In this dissertation, we call those meaningful components
the “radicals”. We propose to leverage them to address the out-of-vocabulary characters.

However, as we will introduce in Chapter 1 and Chapter 2, simply using the approach
for alphabetical languages to learn the radicals does not work well in some cases. It
is also hard to define which component is the radical in some characters due to a lack
of archaeological clues. For these issues, we propose to exploit an encoder based on a
convolutional neural network (CNN) that is trained to automatically choose the most
important input components and encode them into vector representations. Table 1.1
presents a brief comparison of our approach and previous works.

INTRODUCTION 3

We have roughly introduced the background of representation learning for natural
language processing (NLP). Then we would like to give a more detailed introduction of
conventional approaches to extract meaningful representations from texts.

1.2 Objective of Representation Learning
The objective of representation learning is to leverage the power of machine learning

to extract reasonable and informational representations for machines and AIs to process
data. When we process a piece of text, the first problem we need to solve is how to make
our machines read the characters, words, sentences. Nowadays the trend of NLP employs
numeric representations. One of the simplest among them is the one-hot vector. Let aw

denote the vector for the wth token in the vocabulary. The one-hot encoding of token w
is a vector aw ∈ {0, 1}n defined as follows,

aw = [a0, a1, a2, ...ai, ..., an], (1.1)

where,

ai =

{
1 i = w

0 i ̸= w
. (1.2)

For a document or a sentence, we can use the sum of the one-hot vectors of the tokens
in it. It results in a vector composed of the term frequencies of the tokens.

One-hot representations model each token as an isolated class. It is hard for such
representations to present the relationships of the words. For example, we may need the
information that which words are similar or not to evaluate a summary. In this case, if
we use one-hot representations, we need additional feature exploration and engineering
to provide our models with the similarities of words. It costs a lot of human labor and
requires experiences and sometimes good lucks. Thus, we want some representations
that provide as much useful information as possible. That is why we need representation
learning.

1.3 Statistical Representation: TF-IDF
Readers may think one-hot representations introduced in the previous section are too

simple. Let us introduce another kind of representation: term frequency-inverse document
frequency (TF-IDF) [23]. TF-IDF is the most widely used statistical representation
without using the power of deep learning.

TF-IDF is based on the following observations: if a word appears very frequent in
one document while less frequent in others, the word is more likely to be important for
the document; and if a word appears frequently in every document, it presents little
information of a certain document. TF-IDF models the features of the text document by
the term frequency (TF) and inverse document frequency of each word. Let i ∈W denote
the index of a token, j ∈ D denote the index of a document in corpus D, counti,j denote
the count of the occurrence of token i in document j. TF and IDF are defined as follows,

TFi,j =
counti,j∑

k∈W countk,j
, (1.3)

4 INTRODUCTION

IDFi = log |D|
|{j : i ∈ j}|

. (1.4)

Here, |{j : i ∈ j}| means the number of documents that contain word i. That is, the more
frequent the word occurs in one document, and the less it occurs in the other documents,
the more related is the word to the former document. After computation of TF and IDF,
we can get the TF-IDF representation of i by,

TF − IDFi,j = TFi,j × IDFi. (1.5)

Then, each text document can be represented by a vector v ∈ R|V |, where |V | is the size
of the vocabulary, and each element is the TF-IDF corresponding to each word.

TF-IDF presents the information about which word is representative of a document,
which is not provided by one-hot representations. It is useful and commonly-used for
document classification and retrieval [23, 24]. However, it has limitations on word-level
information, such as similarities of words, the relevance of word pairs in a sentence
(subject, objective, etc.), infections and derivations, etc. It cannot be used for the
tasks requiring access to word meanings like machine translation, and text generation.
Meanwhile, the size of a TF-IDF vector is often large because it is equal to the size of the
vocabulary, which consumes a lot of memory.

To represent the similarities of words, Brown et al., Kneser et al., and Niesler et al.
[25, 26, 27] proposed class-based language models. They clustered the words into classes
based on the co-occurrences frequencies and then used classes instead of words as the
inputs of their models. However, the usage of this approach is limited due to information
loss because it cannot tell differences of words in the same class.

1.4 Topic Models
Topic models are designed to estimate the topics of a word. The idea of topic

models is that when people write an article, they pick up words according to the article’s
topic. The topics of a word are useful representations for information retrieval [2] and
recommendation systems [3].

1.4.1 Latent Semantic Indexing
Latent semantic indexing (LSI) [28] employs singular value decomposition (SVD) [1]

to extract the topics of words and documents. The algorithm is as follows,

1. Consider each document as a bag of words and represent the corpus by a matrix
D ∈ Z|V |×|D|, where |V | is the size of the vocabulary and |D| is the size of the
corpus. A row in D corresponds to a document. Each element in D is the count of
the word in the document;

2. Decompose D into three matrices by SVD: U ∈ R|V |×|T |, Σ ∈ R|T |×|T |, and W ∈
R|D|×|T | that satisfies

D = UΣW⊤. (1.6)

Here, U is the left-singular vectors that can be regarded as the latent topic distributions
of words. W is the right-singular vectors that can be regarded as the latent topic
distributions of documents. Σ is a diagonal matrix composed of singular values.

INTRODUCTION 5

We can use the minimum of the degrees of D as |T |. However, in an NLP task, it is
often large. Thus, a smaller number that is tuned manually is often used. The optimal
value can be found by evaluating the clusters using the silhouette coefficient [29], topic
coherence measure [30], etc.

1.4.2 Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) [4] is a probabilistic generative topic model. While

LSI does not model the procedure of text generation, LDA defines text generation as word
sampling with respect to the distribution of the topic, and the topic is randomly sampled
from the topic distribution of the document. A Dirichlet distribution is the conjugate
prior of a multinominal distribution. LDA employs it to describe the topic distribution.
The topic distribution modeled in this way can be easily updated by the sample data with
respect to the multinominal distribution. The text generation procedure defined by LDA
is as follows,

1. Select a document di with respect to the distribution of documents P (di);

2. Sample the topic distribution θi, which is a multinominal distribution, from a
Dirichlet distribution Dir(α);

3. Sample the topic of the jth word zi,j from θi;

4. Sample the distribution of the words ϕzi,j , which is also a multinominal distribution,
for the topic zi,j from another Dirichlet distribution Dir(β);

5. Sample the word wi,j from ϕzi,j .

α and β are initialized according to the number of topics K. z, θ, ϕ are trained by Gibbs
Sampling [31].

1.4.3 Hierarchical Dirichlet Processes
The number of topics in the algorithms of LSI [28] and LDA [4] is manually defined.

Sometimes, it is not easy to decide the number of topics in advance. Hierarchical Dirichlet
Processes (HDP) [32] is proposed to automatically find the number of topics. HDP solves
the number of topics by a Dirichlet process mixture model called “Chinese restaurant
franchise” [33]. For the ith word in jth document denoted by wji, at first, HDP computes
the probability of which topic is assigned for it. The probability that the topic of wji

denoted as tji is an existing topic kjt computed by the conditional probability of the
words that belong to k. The more words in kjt, the higher probability wjt is assigned
to kjt. Then HDP randomly samples the results of assignments from the probability
computed in this way. If a word is not assigned to any topic after the sampling of all
existing topics, a new topic is created for it.

HDP models do not require a pre-defined number of topics. The estimation of the
number of topics is done by a random process model. However, it needs a large enough
corpus to achieve satisfying performance. In practical use, an HDP model often presents
lower performance than a well-tuned LDA model.

6 INTRODUCTION

1.5 Neural Language Model and Word Embeddings
Word embeddings are distributed representations of words learned by neural language

models, often with large corpora. These representations have a very useful feature: The
representations of similar words are close to each other but are still distributed slightly
differently. So that by using this kind of representation, AIs can automatically recognize
similar words and generalize knowledge of them. Figure 1.1 shows the positions of similar
words to the word “monkey” and the word “money” in the learned word embedding space.
We can see that similar words are gathered together. Unlike the class-based language
models [25, 26, 27] introduced in Section 1.3, word embeddings keep the uniqueness of
each word in the same class.

Here we would like to simply introduce how the word embeddings can be obtained by
neural language models. Let et denote the word embedding of word xt in position t in
the corpus. Neural language models are trained to maximize the probability of the next
word given the previous words, formally,

P (xt|e(xt−n+1), e(xt−n+2), ..., e(xt−1)), (1.7)

or to maximize each sentence in the corpus, formally,

P (xt−n+1, xt−n+2, ..., xt−1|e(xt−n+1), e(xt−n+2), ..., e(xt−1)). (1.8)

Earlier works such as the work by Bengio et al. [6], Mnih et al. [34, 35], Collobert et al.
[36], and Mikolov et al. [7, 8]. The latter models are called auto-encoding models. They
are popular in recent years for better performance in sentence-level tasks. Representative
works include the works by Jozefowicz et al. [37], Melis et al. [38], Merity et al. [39], Peter
et al. [18], Devlin et al. [19]. Meanwhile, the two kind models can also be combined like
the XL-Net model proposed by Yang et al. [40]. By back-propagation of loss, the word
embeddings are trained as a part of the model. Then they can be employed to provide
the input features for downstream tasks. The neural language models trained in this way
can recognize whether two words are similar without losing their distinct information,
unlike the class-based models. The common features of similar words can be learned and
embedded in the word embeddings. In the space of the word embeddings trained this way,
the vectors of related words are gathered together. It is also possible to share information
between frequent words and infrequent words.

This section would like to introduce Word2vec, GloVe, ELMo, BERT, which are the
representative models to train the word embeddings.

1.5.1 Word2vec
Word2vec is a project by Mikolov et al. [7, 8]. It contains two models: the continuous

bag-of-words (CBOW) model and the skip-gram model. Figure 1.2 shows the two models.
A CBOW model learns P (xt|e(xt−n+1), e(xt−n+2), ..., e(xt−1)) by maximizing the condi-
tional probability of the target words on the context words, P (xt|xt−w, ..., xt−1, xt+1, ..., xt+w).
A skip-gram model learns it by maximizing the conditional probability of the context
words given the target word, P (xt−w, ..., xt−1, xt+1, ..., xt+w|xt).

Let d denote the dimension of the word embeddings. The steps of training a CBOW
model are as follows:

1. Randomly select a word xt in the corpus;

INTRODUCTION 7

(a) The word “monkey” and its related words in the word embedding space.

(b) The word “money” and its related words in the word embedding space.

Figure 1.1: The word embedding space trained by Word2vec on the most frequent 10,000
words from Wikipedia, mapped into the two-dimensional space by principal component
analysis (PCA). Related words are closer to each other than unrelated words.

8 INTRODUCTION

Figure 1.2: Models proposed in the word2vec project: continuous bag-of-words (CBOW)
model and skip-gram model.

INTRODUCTION 9

2. Select the words around xt in window w, i.e., xt−w, ..., ...xt−1;xt+1, ..., xt+w, as the
context words;

3. Get the one-hot vectors v ∈ {0, 1}|V | of the context words;

4. Input the matrix of the vectors V to the embedding layer, which maps V into a
matrix of embeddings E ∈ Rd×l, where l is the length of the input;

5. Project ME into the distribution of the words P ∈ Rd×|V | in the vocabulary by
parameters MW

d×|V |
p , and compute the probability of the target word P (xt) by

softmax regression;

6. Compute the negative log-likelihood of P (xt), i.e., the cross-entropy loss between
P (xt) and 1. That is L = − logP (xt);

7. Compute the gradients of each element in MWp and ME, update them by gradient
descent to minimize L, which will maximize P(xt).

The steps of training a skip-gram model are as follows,

1. Randomly select a word xt in the corpus;

2. Select the words around xt in window w, i.e., xt−w, ..., ...xt−1;xt+1, ..., xt+w, as the
context words;

3. Get the one-hot vector v ∈ 0, 1|V | of the target word;

4. Input the V v to the embedding layer, which maps v into a vector e ∈ Rd;

5. Project V e into the distribution of the words P ∈ Rd×|V | in the vocabulary by
parameters MW

d×|V |
p , and compute the probability of each context word by softmax

regression;

6. Select the first context word;

7. Compute the negative log-likelihood of the context word;

8. Compute the gradients of each element in MWp and V e, update them by gradient
descent to minimize the negative log-likelihood;

9. Repeat 7-8 until MWp and V e are updated for all the context words.

Because of the large size of MP , Pn(xt) is expensive to compute by softmax regression.
Mikolov et al. proposed alternative softmax functions to speed up the training: the
hierarchical softmax and negative sampling.

Instead of the probability of the target word itself, hierarchical softmax computes the
path of the word’s corresponding leaf on a Huffman tree [41]. As a binary tree, the depth
of a Huffman tree is log 2|V | + 1, shorter than |V |. In this way, the time complexity is
reduced from O(|V |) to O(log(|V |).

On the other hand, the idea of negative sampling is to sample another K negative
words. And then train the model to output 0 for the negative words, and 1 for the original
word. Thus, the problem changes from |V |-classes classification to binary classification.

Although hierarchical softmax and negative sampling do not directly compute the
language model, the word embeddings trained by hierarchical softmax and negative

10 INTRODUCTION

Table 1.2: An example of the co-occurrence probability ratios when three words i, j, k are
in different relationships. The numbers are taken from the original paper of GloVe [14].

k = solid k = gas k = water k = fashion
P (k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−4

P (k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

P (k|ice)/P (k|steam) 8.9 8.5× 10−2 1.36 0.96

sampling have proved to be empirically effective. The word embeddings trained in these
ways have been successfully applied to various downstream tasks, such as sentiment
classification [10, 11], text classification [12], named entity recognition [13], and urban
planning [42].

1.5.2 GloVe
Word2vec has shown the power of pre-trained distributed representations in the

downstream tasks. However, word2vec has the following drawbacks [14]:

1. It only sees the local relationship in the context, regardless of the global statistical
information;

2. It is hard to optimize the word embeddings of rare words.

Global Vectors for Word Representation (GloVe) [14] is proposed to estimate more
optimized word embeddings by using global co-occurrence information. The model is
based on the observation of the relationship of the co-occurrence probability among
different words. The observation is as follows: let P (k|i) denote the co-occurrence
probability of k in the context window of i. P (k|i)/P (k|j) will be close to one if i, j, k
are not related, otherwise, it will be much larger than one if k is related to i, or much
less than one if k is related to j. An example is shown in Table 1.2. Thus, the model
can be trained by mapping the word embeddings to match the ratio of co-occurrence
probabilities of words in the corpus. In details, GloVe trains two set of word vectors, W
and W′, and for three words i, j, k, the model defines

F (wi,wj,w′
k) =

ew⊤
i w′

k

ew⊤
j w′

k

=
P (k|i)
P (k|j)

, (1.9)

where wi and wj are the word vectors of i and j in W, respectively, w′
k is that of k in W′.

Let c(k|i) denote the count of k in the context window of i. The solution of Equation
(1.9) is

w⊤
i w′

k = logP (k|i) = log c(k|i)∑|V |
l ̸=i c(l|i)

= log(c(k|i))− log(
|V |∑
l ̸=i

c(l|i)). (1.10)

∑|V |
l ̸=i c(l|i) is the sum of the co-occurrence counts of i and any other word, where |V | is

the size of the vocabulary, which is independent of k. It can be absorbed into bias bi and
b′k:

w⊤
i w′

k + bi + b′
k = log(c(k|i)). (1.11)

Then we can train the model by minimize (w⊤
i w′

k + bi + b′
k − log(c(k|i)))2. However, if

c(k|i) is zero, it results in a catastrophic outcome. To computes the model when c(k|i) is

INTRODUCTION 11

zero, a smoothing function f(x) is introduced for training. The final objective function
to be minimized is,

L =

|V |∑
i,j

f(c(k|i))(w⊤
i w′

k + bi + b′
k − log(c(k|i)))2, (1.12)

where

f(x) =

{
(x/K)α if x < K

1 if x ≥ K.
(1.13)

Pennington et al. [14] suggests using K = 100 and α = 0.75. After training, w̃i = wi+w′
i

is used as the word embedding of i for downstream tasks.
The time complexity of training is between O(|C|) and O(|V 2|), where |C| is the size

of the corpus, because of the symmetry of co-occurrence. The word embeddings trained
by GloVe perform much better for semantic analogy [14]. They have been very successful
in various tasks that require the model to extract the textual meanings, such as reading
comprehension [15, 43, 44], part-of-speech tagging [45], named entity recognition [45, 46],
open-domain question answering [16], aspect-based sentiment analysis [47] and so on.

1.5.3 ELMo
The word embeddings trained by word2vec or GloVe are static in the downstream tasks

regardless of the contexts wherever the words are. Because of that, the polysemous words,
i.e., the words that have more than one meaning, are confusing for the word embeddings
trained in this way. Early works tried to train multiple word embeddings for such words
[48, 49, 50, 51]. However, it remained difficult to recognize the correct meaning and choose
the correct word embedding of a polysemous word in a certain context in the downstream
tasks.

Peters, et al. [18] proposed the usage of the hidden states of a recurrent network
language model with bi-directional long short-term memories (BiLSTMs) as word embed-
dings. The method is called ELMo (Embedding from Language Models). It leverages a
BiLSTM to extract the context-depending features by computing the hidden states for the
inputs one by one from left to right and from right to left at the same time. By using BiL-
STM to learn P (xt−n+1, xt−n+2, ..., xt−1|e(xt−n+1), e(xt−n+2), ..., e(xt−1)), the model learns
both P (xt|e(xt−n+1), e(xt−n+2), ..., e(xt−1)) and P (xt|e(xt+1), e(xt+2), ..., e(xt+n−1)). By
enhancing the word embeddings with the hidden states from the two directions, the
embeddings can fit the context. Thus, ELMo can output the word embeddings according
to the context for the polysemous words for downstream tasks.

Figure 1.3 shows the method to obtain ELMo embeddings. The embeddings are input
into two j-layer LSTMs. One of them reads the input from left to right, and the other reads
the input from right to left. The ELMo model is trained by maximizing the prediction of
each word in the input sentence.

Unlike word2vec and GloVe, the word embedding of a certain word k is not static but
depends on its context. After training, the ELMo embedding of a word k in a sentence is
extracted as follows,

1. Input all the words in the sentence;

2. Each layer of the LSTMs outputs a left-to-right hidden state
−→
hj
k, and a right-to-left

hidden state
←−
hj
k for word k in the input text;

12 INTRODUCTION

Figure 1.3: The computation of ELMo embeddings. The ELMo embeddings are weighted
sums of the concatenated hidden states of the forward and backward recurrent network
(i.e., [

−→
hj
k;
←−
hj
k]) in each layer j. Weight sj is normalized by softmax, which can be trained

for the downstream task. γ scales the ELMo embeddings, specified for the downstream
task as well. For the downstream task, the authors [18] suggest using the concatenation
of the static word embeddings and the ELMo embeddings as the input features.

INTRODUCTION 13

3. The ELMo embedding for the downstream task for word k is the weighted sum of
the hidden states for all the j layers in the LSTMs, defined as ek = γ

∑L
j=0 sj[

−→
hj
k;
←−
hj
k],

where γ is to scale the ELMo embedding, sj is the weight for layer j.

By solving the disambiguation of the polysemous words, ELMo-enhanced models are
able to improve the performance in various semantic tasks such as question answering,
textual entailment, semantic role labeling, coreference resolution, named entity extraction,
fine-grained sentiment analysis, and in addition, trained more efficiently with small dataset
[18]. ELMo generally improves the downstream model’s ability to understand the meaning
of the natural language.

However, the improvement brought by ELMo heavily depends on γ and sj, which need
to be tuned specifically for downstream tasks. The performance is much worse without
tuning [18]. Moreover, the tuning needs to be done before the training of the downstream
model in advance, which can be an uphill struggle for noisy data.

1.5.4 BERT
The difficulty of tuning hyperparameters makes ELMo knotty to use. BERT (Bidi-

rectional Encoder Representations from Transformers) [19] is based on a similar idea
to ELMo but with no need to tune additional hyper-parameters like ELMo. BERT
learns and stores the contextual knowledge by the parameters of the attention weight
matrix. Additional tricks are utilized to force the neural network to learn the bi-directional
contextual information in training.

BERT is based on multi-head self-attention. Self-attention models the relationship
of all word pairs in a sentence. It is derived from “attention weight” that computes the
relationship of words in two sentences, which has been successfully used for neural machine
translation [52] and machine reading comprehension [15]. For sequential input V v, when
the output is also related to the query vector q and key vector k, the attention weight for
V v is modeled by

Watt(q, k) = softmax
(

QK⊤
√
dk

)
. (1.14)

Here,
Q = qWq, Wq ∈ R|q|×dk , (1.15)
K = kWk, Wk ∈ R|k|×dk . (1.16)

Then the weighted output is

vatt(q, k) = Attention(Q,K,V) = Watt(q, k)V = softmax
(

QK⊤
√
dk

)
V, (1.17)

where
V = vWv, Wv ∈ R|v|×dk , (1.18)

When q = k = v, it is called self-attention.
Multi-head attention borrows the idea of ensemble learning to improve the performance

of the attention model. That is, instead of performing a one-time computation of Equation
(1.17), projecting Q,K, V to lower dimensions (dk/h) and parallel performing h times.
Each small projections are learned independently, and their outputs are concatenated.

vmulti-head att(q, k) = [h1;h2; ...;hh], (1.19)

14 INTRODUCTION

where

hi = Attention(QWQ
i ,KWK

i ,VWV
i) = softmax

(
QK⊤√
dk/h

)
V. (1.20)

Here,
WQ

i ,WK
i ,WV

i ∈ Rdk×(dk/h). (1.21)
Similarly, when q = k = v, it is called multi-head self-attention.

Figure 1.4 shows the architecture and training process of the BERT model. Devlin et
al. [19] trained two BERT models: BERTBase and BERTLarge. BERTBase has 12-layer self-
attention layers, each of which consists of 12 heads. BERTLarge 24 self-attention layers,
each of which is comprised of 16 layers. Both of them are very deep neural networks.
Residual connections [53], layer normalization [54], dropout[55], and label smoothing [56]
are used to protect the model from overfitting and improve the generalization ability.

The residual connections [53] mean that the output of each hidden layer is vmulti-head att+
v instead of vmulti-head att. Due to this, the hidden layers of the neural network learn
the residual between the target outputs and the inputs. It makes the layers easier to
be optimized and alleviates the degradation after the accuracy gets saturated when the
neural network is very deep.

Layer normalization [54] is one of the normalization methods for neural networks
used to keep the inputs and outputs of each hidden layer approximately independent and
identically distributed (i.i.d.). The marginal distribution of the inputs and the outputs
of layers will be different when the neural networks have many layers. It leads to the
changes in the distribution of the outputs of the bottom layers for each mini-batch in a
training epoch. It will let the top layers busy to adapt to the new distributions and stuck
in the saturated regime of the non-linearity [57]. The normalization methods transform
the inputs of each hidden layer to a normal distribution. In this way, the distribution of
the inputs of each hidden layer is approximately independent and identically distributed.
Layer normalization uses the mean and variance of the layer inputs,

h = f
[g
σ
(x− µ) + b

]
, µ =

1

H

H∑
i

xi, σ =

√√√√ 1

H

H∑
i

(xi − µ)2. (1.22)

Dropout [55] is applied to the outputs of each hidden layer before it is added to the
inputs (residual connections), and the attention weights. Label smoothing is applied only
to the training phase.

The self-attention does not encode the positional information, and neither recognizes
which sentence each token belongs to. BERT encodes them by the position embeddings
and the segment embeddings learned together with the model. For each token in
the inputs, a position embedding corresponding to the position is added to the token
embedding to represent the position. For the two sentences in a sentence pair input, two
learned segment embeddings, sentence A embedding for the first sentence, and sentence
B embedding for the second sentence, are added to every token of the two sentences,
respectively. The input embeddings are the sum of the token embeddings, segment
embeddings, and position embeddings.

To learn the left-to-right and right-to-left contextual information, rather than employ-
ing a bidirectional language model task like Elmo [18], BERT uses two tailored tasks to
force the model to capture the bidirectional contextual information: masked language
model task and next sentence prediction task.

INTRODUCTION 15

Figure 1.4: The training process of a BERT model. Each input sequence is a pair
of sentences, which are converted into the sum of the token embeddings, position
embeddings, and segment embeddings. Position embeddings are used to learn positional
information. Segment embeddings and “[SEP]” tokens are used to differentiate the two
sentences. “[CLS]” token is used to fine-tune the BERT model for classification tasks.

16 INTRODUCTION

Table 1.3: The time cost to pre-train the word embeddings reported in the previous
works. CBOW and Skip-gram [8] employed the Huffman tree-based hierarchical softmax
to alleviate the computational cost, and the parallel technology to accelerate the training;
the BERT models [19] employed the recently developed AI accelerator “tensor processing
units” (TPUs). However, it still took days to train them. There are other models to train
the word embeddings [6, 36, 14, 18], but we do not list them here because we failed to
find the report of the time cost in the papers.

Model Corpus Size Platform Time Cost
(words) (days)

NNLM [8] 6× 109 180 CPU Cores 14
CBOW [8] 6× 109 140 CPU Cores 2
Skip-gram [8] 6× 109 120 CPU Cores 3
BERTbase [19] 3.2× 109 4 TPU Pods 4
BERTlarge [19] 3.2× 109 16 TPU Pods 4

The masked language model task is to predict the randomly masked tokens in the
sentence, which were 15% of the tokens in the corpus in the experiments by Devlin et
al. [19]. Moreover, rather than always masking a random word, 10% of the time, Devlin
et al. [19] replaced the word with a random word, and another 10% of the time, all the
words were unchanged. The authors argued that because the model does not know which
word is to be predicted and which word is replaced, it is forced to keep the contextual
representation of every input token. The results reported by the authors show that the
model needs more steps to converge for this task than the conventional task, but the
performance improvement is large.

The next sentence prediction task is designed to improve the performance of the
downstream tasks based on the relationship between two sentences such as question
answering and natural language inference. The tasks choose pairs of sentences from the
corpus. 50% of the pairs are the sentences that the first is followed by the second in the
corpus. The other 50% of the pairs are not. The model is trained to predict whether
the second sentence is the next sentence of the first. The task is empirically beneficial to
question answering and natural language inference [19].

Devlin et al. [19] trained his BERT model on subword-level vocabulary compressed
by byte pair encoding (BPE). For Chinese characters in Chinese and Japanese (Hanzi
and Kanji), he made every single character as a subword. Although there is no special
mechanism for novel characters, he built a large model of 110,000,000 parameters for
multi-language, trained it on a very large corpus containing over 3,200,000,000 words,
and achieved good results on even rare words. It took 4 days using 4 cloud TPU pods
1 with 256 GB memories in total. The total computational cost was about 2.5 ∗ 1021
floating-point operations. Fine-tuning the pre-trained model even requires 64 GB RAM
on cloud TPU. So we can see it is heavy and expensive, not affordable for many companies
and labs. All the conventional models to train the word embeddings are much more costly
than traditional frequency-based models as shown in Table 1.3. Efficient methods are still
an issue.

1https://cloud.google.com/tpu

INTRODUCTION 17

1.6 Subword Approach

1.6.1 Character-based Approaches
Besides the problem of learning polysemous words, another issue of word embeddings

is how to learn the rare words that are not covered by training corpora. Fortunately, using
characters instead of words has been proved to be effective in learning the rare words for
alphabetic languages.

Zhang et al. [58] showed that character-level convolutional neural networks (CNNs)
are highly accurate for text classification. Karpathy [59] showed that character-level
recurrent neural networks (RNNs) can be used as language models and generate reasonable
texts. Visualization of the hidden states showed that even though the RNN only gets the
characters, it can recognize high-level patterns such as words and quotes. The character-
level model has also proved to be useful for machine translation [60, 61, 62]. The character
embeddings also achieved state-of-the-art results with much fewer parameters for RNN
language models [63].

Splitting words into the combinations of some characters such as the stem, prefix,
and suffix is also useful. Such an approach is called a subword approach. Joulin, et al.
[21] tokenized the input texts into characters and encoded the subword information by
summing the character embeddings. It was simple and fast but not optimal. Sennrich, et
al. [22] proposed to use the byte pair encoding (BPE) algorithm to compress the word
vocabulary into an optimal subword vocabulary of arbitrary length to tokenize the inputs.
Then each word was represented by several subword tokens. The generalization ability of
their translation model gained significant improvement by this method. Meanwhile, the
size of the vocabulary can be adjusted to adapt to computational resources. This subword
approach optimized by BEP has been widely used for machine translation [22, 64].

1.6.2 Researches on Chinese and Japanese
Despite the success of character-level approaches for alphabetic languages, in Chinese

and Japanese, there are thousands of characters, whose frequencies are unbalanced,
making their character embeddings difficult to learn like the word embeddings. Figure
1.5 shows the histogram of the character frequencies in a Japanese online market review
dataset of 64,000,000 reviews provided by Rakuten, Inc.2, as an example of the distribution
of characters in Japanese. We can see that the long tail of the less frequent characters
exists like what often happens in a word vocabulary.

Most of the less frequent characters in Japanese are Chinese characters. There are
2,136 regular-use Chinese characters in Japanese3, and in Chinese, there are 3,500 regular-
use Chinese characters and 4,605 less regular ones4. The large Chinese character sets make
character embeddings less efficient for the two languages.

Chinese characters, e.g., “hanzi” in Chinese, “Kanji” in Japanese, and “Hanja” in
Korean, are comprised of interpretable components. Some of them provide clues on the
meanings of characters. They are called “radicals”. Figure 1.6 is an example of the
relationship between a character and its radicals. ‘君” (“monarch”) is composed of radical
“尹” (the upper part) and radical “口” (the lower part). “尹” is the ideograph of a scepter,

2https://rit.rakuten.co.jp/data_release_ja/
3http://www.bunka.go.jp/kokugo_nihongo/sisaku/joho/joho/kijun/naikaku/pdf/joyokanjihyo_20101130.pdf
4http://www.gov.cn/zwgk/2013-08/19/content_2469793.htm

18 INTRODUCTION

Figure 1.5: The histogram of the character frequency of the characters in the Rakuten
Ichiba online market review dataset.

Figure 1.6: An example of a Chinese character that can be translated to “monarch” in
English. (Left) The ancient form (oracle bone script). (Right) The modern form. The
upper part is the radical “尹”, which is the ideograph of a scepter, the symbol of the
power. The lower part is the radical “口”, which is the ideograph of a mouth. The two
radicals express the concept that “君” is the person whose words rule the country.

INTRODUCTION 19

the symbol of power. “口” is the ideograph of a mouth. The two radicals express the
concept that “君” is the person who uses his or her words to rule the country.

Psycho-linguistic researches have shown that the radicals of Chinese characters are
useful for human beings to recognize characters, like the letters in alphabetic languages
[65, 66].

Some researchers have proposed some methods to take advantage of the radicals [67,
68, 33]. They picked the radicals of each character in the corpus according to a dictionary
called “Xinhua Zidian” [69] and treated the radicals just like subword units in alphabetic
languages. They jointly trained the embeddings of the words, characters, and radicals:
all kinds of the embeddings were summed and fed to the hidden layer of a skip-gram
model or a CBOW model and updated by back-propagation together. In these works, the
probability of a word Pn(wt) that contains J characters and K radicals is computed as,

Pn(wt) = fNLM(wt−n+1, ..., xt−1; c0, ..., cj, ...ck; r0, ..., rk, ..., rK). (1.23)

Here, cj and rk is a character and a radical, respectively. However, Karpinska et al. [70]
performed experiments on Japanese and reported that the method above is not effective
in learning the meanings of words and sentences in Japanese.

There is also works to evaluate the effectiveness of the radical-level approach in
language model tasks. Nguyen, et al. [71] reported that a language model predicting the
distribution of radicals achieved better perplexity than the word-based ones for Japanese.

Some researchers access the sub-character-level information in other ways such as
the image-based approach. The image-based approach learns to output embeddings by
images of characters. Some authors showed that such approaches were effective for text
classification [72, 73]. Shao et al. [74] similarly leveraged n-gram of encoded character
images for POS tagging and dependency parsing tasks. Dai et al. [75] utilized the
visual features extracted from the images of Chinese characters for word segmentation
and character sequence generating task (character-level language model). They found
that the visual features worked fine for word segmentation task but worse than just using
character embeddings to generate the characters.

There are several instinctive difficulties to recognize Chinese characters for conven-
tional image-based methods. For example, some Chinese characters have similar shapes
but mean different things. “人” means “human” while “入” means “enter”. They may
confuse an image-based approach. More issues and examples will be discussed in Chapter
2.

For machine translation, Zhang and Komachi [76] reported that using the radical-
level subwords is useful for machine translation in some situations. They compared
the character-level, radical-level and stroke-level subwords for Chinese-English-Japanese
neural machine translation tasks, and reported improvements brought by radical-level
subwords on English-Chinese and Chinese-English machine translation tasks. However,
they reported that radicals are not useful under other situations as well.

There are also some arguments on the difference between the Chinese characters in
Chinese and Japanese. For Japanese Language, Karpinska et al. [70] reported that while
the word embeddings trained in this way is effective for some morphological analogy task,
they performed worse for semantic analogy task and text classification.

Recently, Meng et al. [77] showed that utilizing various images in different fonts
for each Chinese character, especially the ancient fonts, is very helpful for the neural
language model to leverage the radical-level features. They reported very exciting results
on sentence labeling tasks, sentence classification tasks, sentence pair classification tasks,

20 INTRODUCTION

semantic role labeling tasks, and dependency parsing tasks. However, the results are
limited in classification and labeling. The performance in sentence generation tasks was
not reported, leaving such tasks unconquered by radical-level features.

1.7 Conclusion of This Chapter
In this chapter, we firstly gave a brief introduction of our works and the reason why

we need representation learning and the objective of representation learning. Then we
introduced statistical representations, topic models, and word embeddings trained by
neural language models. Word embeddings trained by neural language models present
many features that statistical representations and topic models cannot provide. For
example, word embeddings tell the similarities of words that were difficult to be estimated
by statistical representations and topic models. By bridging the similarities of words,
models using word embeddings can generalize knowledge from training data better than
previous approaches. However, for the words that are not included by the training corpus
and the very rare words, there are not enough contexts for them to learn well. We also have
introduced the character-based subword approach to learning the rare words for alphabetic
languages and conventional radical-based methods to learn the rare words in Chinese
and Japanese. Chinese/Japanese writing system uses large numbers of characters. The
rare characters are also difficult to learn as the rare words. Character-based approaches
cannot address them. The conventional methods for Chinese and Japanese mainly employ
conventional models originally proposed for alphabetic languages, while the conventional
methods for alphabetic languages encounter some difficulties because of the differences
between the Chinese/Japanese writing system and alphabetic writing system. In the next
chapter, we will give a detailed introduction to the writing system of Chinese characters
in Chinese and Japanese, and the challenges to learn them.

The remaining part of this dissertation is organized as follows: In Chapter 2, we
introduce the prior knowledge of Chinese characters and the challenges for artificial
intelligence (AI) to correctly extract the features from the radicals. Chapter 3 introduces
our CNN-based approach and its usage for end-to-end supervised sentiment analysis
learning and text generation. Chapter 4 introduces our improved method that further
improves our proposed model by leveraging radical position information and character
structure information. Chapter 5 concludes this dissertation.

Chapter 2

System of Radicals of Chinese
Characters

In the previous chapter, we have introduced the related works in learning the semantic
features from words and the remaining issues for Chinese and Japanese, which used the
characters that originate from ancient Chinese characters: the large character set and
hard-to-learn rare characters.

Let us collectively call “Kanji” in Japanese and “Hanzi” in Chinese the “Chinese
characters”. In this chapter, we would like to firstly trace back to the history of Chinese
characters, and show how they are useful for humans and why they are so hard to be
correctly learned by conventional machine learning approaches.

2.1 History of Chinese Characters and Radicals
The oldest Chinese characters were carved on bones and bronze vessels. The characters

on bones are often called “jiaguwen” (means “characters on bones”). The characters on
bronze vessels are often called “jinwen” (means “characters on bronze”). The most ancient
characters among them were pictograms of objects. We can read their meanings from their

shapes easily. For example, a mountain was represented by “ ”, a bird was represented

by “ ”, the rain was represented by “ ” and a child was represented by “ ”.
Besides the objects, we also need characters to represent abstract concepts, for

example, actions and divination results. In these cases, related objects and combinations
of them were used. However, it was much difficult to remember the meaning and correct

form for such characters. For example, “ ” means to scry, used by the most divination
records. The shape denotes a crucible, often used in divination, similar to the crystal
balls used in western countries in the past. At the same time, the crucible itself should

be written in “ ”. This problem led to many writing misses. The fault characters were
then copied by others again and again. As a result, there were several different forms for
a character. Figure 2.1 shows an example.

The various forms made the ancient Chinese characters even harder to remember and
recognize, resulted in some mistaken words and lead to the revolution of the forms later.
In 221 BC, Qin Shi Huang conquered all the other states. In order to stop people from
writing the various forms, the prime minister of Qin, Li Si, published a new official index

21

22 SYSTEM OF RADICALS OF CHINESE CHARACTERS

(a) The character “予”
on a bronze kettle
dated about B.C. 300
[78].

(b) The character “予”
on a bronze spear-like
dated about B.C. 371
[78].

(c) The character “予”
on a bronze crucible
dated about B.C. 300
[79].

Figure 2.1: The character “予” in different forms on relics dated about B.C. 300.

of characters and unified the writing of the characters. To help people learn characters
and for the ease of making new characters, Li Si carried out a new system: besides the
primitive pictograms and the combinations of them, for anything hard to be represented
well by the conventional method, its corresponding character is a component indicating the
pronunciation and a component indicating the meaning or category. In this dissertation,
we call the meaningful components “radicals”.

The characters composed in this way are much easier to learn. People benefited a
lot from this system, and after that, more characters are created under this system. The
index published by Li Si had 3, 300 characters. Now, a dictionary called Zhonghua Zihai
[80] published in 1994 includes 85, 568 characters. The Chinese character nowadays still
roughly following Li Si’s proposed system.

Then the writing forms were simplified later from about B.C. 200. Before that, the
ancient characters have many curves and unrestrained forms. They are hard to write
in daily works. For ease of writing and learning, people simplified some strokes in daily
writing. The new script is called “kaishu (楷書)” and has become the regular script
nowadays. The curves and strokes in old forms are absorbed into eight simple strokes:
“点” (a dot written as “ ”), “横” (a horizontal line written as “ ”), “竪” (a vertical
line written as “ ”), “撇” (a left diagonal line written as “ ”), “捺” (a right diagonal
line written as “ ”), “提” (a short upward horizontal line written as “ ”), “折” (any
turned line such as “ ”), “鉤” (hooks at the end of lines, such as the hook in “ ”).

During the simplification, some components in certain characters are also simplified for
the ease of daily writing. For example, the ancient form of “昏” (“sunset”) was composed
by “氐” (“low”) and “日” (“sun”), but then the dot of “氐” was absorbed by “日”. Some
hard-to-write components were almost simplified to totally different appearances. A

representative example is “ ” which is a pictogram of paths in a town and used by
the characters whose meanings are related to the concept of a town or a village [81]. But
it is now written as “ ”, which is not like “paths” at all. One of the frequently used
characters using this component as a radical is “郷”, which means “countryside”. Figure
2.2 shows the change of “郷” in the past 3,000 years.

SYSTEM OF RADICALS OF CHINESE CHARACTERS 23

(a) The charac-
ter “郷” on a
piece of bone [82],
before B.C. 1046.

(b) The character “郷”
on a bronze vessel [83],
before B.C. 1046.

(c) The character “郷”
written on a bamboo
slip [84], B.C. 217.

(d) The character “郷”
nowadays.

Figure 2.2: The change of the appearance of the character “郷” (means “countryside”
nowadays) in history.

2.2 Composition of Chinese Characters

In A.D. 121, Xu Shen proposed a classification of Chinese characters in his book
Shuowen Jiezi (“Explaining Graphs and Analyzing Characters”) [81, 85]. He classified
Chinese characters into four classes by the way how the character is composed. The
classification is still commonly used nowadays.

The first category is the pictograms (“象形字”). They are the drawing of the
represented objects such as “山” (“mountain”), “川” (“river”), “人” (“person”), “羊”
(“goat”), etc.

The second is the ideograms (“指事字”). They are the indicative symbols that express
an abstract idea. For example, a single horizontal line “一” expresses “one”, two horizontal
lines “二” express “two” and three horizontal lines “三” express “three”.

The third is the logical aggregates (“会意字”). They are the compounds of two or
more pictographs or ideograms. For example, “看” (“watch”) is a hand (“手”) above an
eye (“目”), and “林” (“grove”) is composed of two trees (“木”).

The fourth is the phono-semantic compound characters (“形声字”). The characters
are composed of a phonetic element representing the pronunciation, and a semantic
element providing the information about the meaning. In some characters, the phonetic
components are meaningless. For example, in “淋” (“to pour”), the phonetic element is
“林” (“grove”) and the semantic element is “氵” (“water”). “林” here does not represent
any meaning but acts as the indicator of the pronunciation. Meanwhile, the phonetic
components of the other characters are meaningful as well as the semantic components.
For example, “菜” (“vegetable”) is composed of “艹” (“plant”) and “采” (“harvest”).
Here, “采” provides both the pronunciation and an element of meaning. Such words are
often called phono-semantic logical aggregates (“会意形声字”).

Note that phonetic elements may not be related to the meanings of characters. It
means that some phonetic elements are not radicals we want. It is challenging because
there is not a deterministic rule to distinguish phono-semantic compound characters and
phono-semantic logical aggregates for AI without a knowledge database of the radicals of
all characters.

24 SYSTEM OF RADICALS OF CHINESE CHARACTERS

2.3 Radicals and Human
Compound Chinese characters share components and humans can follow the radicals

to recognize the meanings of characters. People who have learned the Chinese characters
can recognize the meaning of a word no matter how they speak the characters only if the
word is written in Chinese characters. This particular writing system depending on the
meaning has helped people from different parts of China that spoke different dialects to
understand each other for thousands of years. It is also borrowed by Japanese and Korean
to present a more clear meaning of polysemous words. For example, one of the meanings
of “うつ (utsu)” in Japanese is “hit”. When it means “hit”, it is written as “打つ”, e.g.,
“ボールを打つ” (“hit a ball”). Here, the Chinese character “打” that originally means
“hit” is used. Another meaning of “うつ (utsu)” is “defeat”, which is often written as
“討つ”, e.g., “敵軍を討つ” (“defeat the enemy”). “討”, originally means “defeat” is used
here to indicate the precise meaning. Similarly, in Korean, when people want to avoid
ambiguity, e.g., writing law texts, People also use Chinese characters.

Chen et al. [65] have studied the effect of radicals in Chinese characters on human
readers’ word recognition. They performed their experiments as follows: Subjects were
sitting in front of a monitor where pairs of characters were displayed. A pair of characters
were displayed for 0.5 seconds and then disappeared. After that there was a further
interval of 0.5 seconds then waited for the subject to answer whether the two characters
were the same. There were three kinds of characters to be displayed: real Chinese
characters, pseudo characters that replace components in real characters with others,
and non-characters that further change the positions of components in pseudo characters.
Chen et al. studied the reaction times of the subjects and found a relationship between the
proportion of different components in a character and the reaction time for the subjects
to judge: the more components are different, the less time cost for the subjects to judge
whether the two characters are the same. The finding shows that the components show
functional roles in the process of how we recognize the meaning of the characters.

We have seen that the radicals are helpful for humans to recognize the meaning of
words. Thus, it is reasonable for us to hypothesize that components, especially radicals,
in Chinese characters are also helpful for AIs to learn word meanings. But if the set of
radicals is also huge, we may encounter the similar predicament we have met when we use
word embeddings. To make sure that leaning radicals can help, we analyzed the ISO/IEC
10646-1:2000, which is the character set of the basic Chinese characters used in Japanese,
Chinese, and Korean. As shown in Figure 2.3, we found that 98.93% of the Chinese
characters are compound characters. The compounds are the characters comprised of two
or more radicals. And then we checked how many different words, characters, components
are in the dataset. We found that the size of the word vocabulary, character vocabulary,
and the component vocabulary are about 35,314, 21,294, 2,487, respectively. There are a
small number of components despite so many different characters. Thus, the radicals are
easier to be covered, leaving fewer unseen ones, and helping machines learn most of the
Chinese characters.

SYSTEM OF RADICALS OF CHINESE CHARACTERS 25

Figure 2.3: We count the percentage of the simple and compound Chinese characters
among the basic Chinese characters (from U+4E00 to U+9FA5) of ISO/IEC 10646-1:2000,
and found that most of them are compound characters that can be split into radicals.

2.4 Challenges for AIs

2.4.1 No Perfect Guide to Label Radicals
Although it seems just fine to follow a dictionary to label radicals like some conven-

tional works did [67, 68], sometimes even professional etymology researchers are not sure
what is the correct radical of a character. For example, Xinhua Zidian, a dictionary used
by some previous works [67, 68], labels “月” as the radical of “勝”, while Shuowen Jiezi
[81] and Kangorin [86] label “力” as the radical of “勝” because it is more related to the
meaning of “勝” although its position is usually not for a radical. That is why we consider
it is the bottleneck to use the radical labeled by a dictionary. Instead, we prefer utilizing
machine learning algorithms to pick the most important components from all the radicals.

2.4.2 Confusing Characters for Image-based Methods
Then if we use image-based methods, there are additionally challenging characters.

Some characters are not the same, however, their forms have become very similar so far.
For example, “兔” (“rabbit”) and “免” (“unnecessary”) are not similar at all in the ancient
days, but the difference is only a point nowadays. Another example is “人” (“human”)
and “入” (“enter”). Their ancient form is also different, but nowadays they look like
mirror images as shown in Figure 2.4.

Besides, the decomposition of some characters is quite special and different from most
characters. This challenge can be further divided into three cases. In the first case, the
character looks like a compound character but is an ideogram or vice versa. For example,
“幻” is not a compound character whose ancient form looks like an inverted “予” as shown
in Figure 2.5. And the ancient form of “及” is combined “又” and “人” while “及” looks
unbreakable as shown in Figure 2.6. Second, the decomposition sometimes does not follow
the rules. For example, the correct decomposition of “聖” is “耳” and “呈”, not “耳口”
and “王”. This issue is also especially difficult for image-based methods.

26 SYSTEM OF RADICALS OF CHINESE CHARACTERS

(a) Comparing the ancient
forms (the first row) of
“兔” (“rabbit”) and “免”
(“unnecessary”) in B.C. 217
[84] and the forms nowadays
(the second row).

(b) Comparing the ancient
forms (the first row) of “人”
(“human”) and “入” (“en-
ter”) in B.C. 217 [84] and
the forms nowadays (the
second row).

Figure 2.4: Some different characters have become similar.

Figure 2.5: The change of the appearance of “幻”. Left: “幻” on Shu Duo Fu Gui, a
bronze vessel made during the Zhou dynasty [87]. Right: “幻” nowadays. “幻” is not a
compound character whose ancient form looks like an inverted “予”, but its modern form
looks like a compound character.

人

又

Figure 2.6: The change of the appearance of “及”. Left: “及” on a bronze bottle made
during the Zhou dynasty [87], comparing with the ancient forms of “人” and “又” [82].
Right: “及” nowadays. The ancient form of “及” is combined “又” and “人” while “及”
looks unbreakable.

SYSTEM OF RADICALS OF CHINESE CHARACTERS 27

Another challenge is that a part of some elements has been absorbed into the other
elements or dropped in the modern form. Sometimes, it leads to misleading forms. For
example, “食” (“food”) looks like “良” (“good”) under “人” (“human”) but is originally
“皀” (“grains”) in “亼” (“box”) [81].

Meanwhile, sometimes the role of an element in some characters may not be the same
as in the other characters. For example, in “鐵” (“iron”), “銅” (“copper”), “銀” (“silver”),
“鉛” (“lead”) and “錫” (“tin”), “金” (“gold”) in the left is a radical that refers to metals.
However in “錦” (“brocade”), “金” is a phonetic element.

2.4.3 Original Meanings Are Sometimes Ignored
Finally, there is another type of challenge: sometimes people use Chinese characters

regardless of their original meanings. Although Chinese characters are made ideographic,
people sometimes use them to present the pronunciation regardless of their original
meanings, like how they use alphabets. It often happens in a proper noun, a place name,
a person name, a company name, etc. For example, “露西亜” is used to spell “Russia” in
Japanese, while it is not related to the original meaning of either “露” (“dew”) or “亜”
(“sub”).

Meanwhile, some characters that were not frequently used are then employed to denote
a different meaning. For example, “ ” originally means “bright”, but is often used to
represent a sad face nowadays. This kind of usage change happens not only in modern
Chinese and Japanese but also during the history of Chinese characters. For example,
“逆” is originally a variant form of “迎” (“welcome”). But now it is means “against”.
Dated in A.D. 121, Xu Shen discussed these phenomena and classified such characters
into two cases called phonetic loan characters (“假借字”) and derivative cognates (“轉注
字”) [81].

In these cases, the actual meaning of a character can be far away from its form.
Without contexts, machine learning models probably cannot correctly recognize the
correct meanings of such words. And in these cases, if we plan to train radical embeddings
and use them as inputs for downstream tasks just like word2vec [7, 8], we need to control
the update of the radical embeddings of these characters whose usage is unrelated to their
composition to prevent the system from confusing the usage of this kind of characters.

2.5 Conclusion of this Chapter
In this chapter, we have introduced the history of Chinese characters and the

difficulties for machine learning models to learn their radicals. For the ease of writing,
Chinese characters have been simplified during their long history. Such simplification
changes the appearance of many components, which makes conventional image-based
approaches difficult to learn them because similar input image features are not always
from similar characters. The changes of the characters also result in many characters
for which we are not sure which components are meaningful and which components are
just phonetic elements. This issue makes it challenging for the approach that relies on
dictionaries. Meanwhile, some characters are nowadays used to denote different things
from their original meanings, which requires us to pay attention to the contexts to address
these characters. In the next chapter, we will introduce our proposed approach that
addresses these issues.

Chapter 3

CNN-based Chinese Radical Encoder

3.1 Motivation

As we introduced in Chapter 2, to avoid the issues of the radicals in dictionaries and
the confusing characters for image-based methods, we would like to propose a learning
method that automatically picks the radicals from the bag of components instead of using
dictionaries or the images of characters.

We proposed a CNN-based encoder. At first, since the changes in the forms of Chinese
characters, similar image signals do not always mean similar characters as we have stated
in the previous chapter, we do not propose to use the character images but propose to
take component tokens as inputs. For each different component, we assign it a randomly
initialized embedding and update it during training. Secondly, we leverage the power
of convolution and max-pooling to find the most important signals among the input
radicals of components and update the parameters in an end-to-end manner. In this way,
our proposed encoder can learn to extract the most meaningful components as radicals
without relying on a dictionary. Thirdly, we propose to use multi-granularity filters that
extract the most important radicals at both the word-level and the character-level. The
model learns what is the most important component for each character and what is the
most important character for each word, and then, learns how to blend them in the
output representation vector. In this way, our proposed model accesses the contexts and
is able to address the characters that do not represent their original meanings. Finally,
thanks to the shared weights of the CNN, high-dimensional outputs can be generated
from low-dimensional radical-level inputs. In the experiments, we found 12-dimensional
radical-level embeddings are enough to work well, which resulted in a very slim model.

Our proposed CNN-based encoder achieved better performance in sentiment analysis
and a balance between performance and computational cost. In the sentiment classifica-
tion task, for randomly sampled texts and the texts that contain unknown characters, the
proposed model outperformed the state-of-the-art word and character embedding-based
models with 91% fewer parameters, and the character image-based model with 40% fewer
parameters. For the texts that contain unknown words but do not contain unknown
characters, the proposed model was on par with the state-of-the-art models.

Besides, the proposed encoder is the first reported attempt to combine convolutional
filters of different strides in one layer to extract features at different levels for natural lan-
guage processing to the best of the authors’ knowledge, and we argued such combination
is effective to improve the encoding of the radical-level representation.

28

CNN-BASED CHINESE RADICAL ENCODER 29

3.2 The Proposed Encoder
The proposed encoder model has a hierarchical architecture as shown in Figure 3.1.

Instead of using radical labels from a dictionary or images of characters, we leverage
a CNN encoder to automatically extract the important components. The input is the
randomly initialized radical embeddings of the components of the characters in the text.
Since sometimes the meaning of a character depends on its context, we also let the
proposed model consider n-gram character-level information and word-level character
information. To achieve this, we propose to use both radical-character-level convolutional
filters with various widths and character-word convolutional filters implemented by using
tailored strides. The outputs of all the filters are merged together by a higher layer that
stabilizes the training process. Then the outputs of the highway layer are used as the
word embeddings. They are further input into the recurrent neural network to obtain the
global feature of the whole text for the downstream task.

3.2.1 Radical-level Representation
The Chinese characters (“Kanji” in Japanese) are composed of shared components as

we have introduced in Chapter 2. Some of the components are related to the meanings of
characters. Here, we call such meaningful components as “radicals”. They are functional
in character recognition of human beings, like the letters in alphabetic languages [65].
Inspired by the psycho-linguistic findings, we propose the radical-level representation.

As we have shown in Chapter 2, 98.93% of the Chinese characters are compounds that
comprised of two or more radicals, we are sure that a radical embedding-based representa-
tion is available for most of the Chinese characters. Based on these observations, we train
radical embeddings for the compound Chinese characters. That is, for any compound
Chinese character, the sequence of its components is input into an encoder instead of
the character itself. The encoder transforms and selects the most important features
from the components and presents a vector representation for the character. For the
other characters including simple Chinese characters, kanas of Japanese, alphabets, digits,
punctuation marks, and special characters, we use character embeddings. Furthermore,
to ensure the output representations can consider the context of the whole word, since the
detailed meanings of some characters may change in different word1, additionally word-
level encoders, pooling layers, and a dense layer that cover all the inputs from a word
are utilized to compute the final output representations from the character-level radical
inputs. As all the inputs are processed at the same level as the radicals in the proposed
model, we use “radical-level embeddings” to collectively call the radical embeddings and
the character embeddings of simple Chinese characters, kanas of Japanese, alphabets,
digits, punctuation marks, and special characters.

We use a sequence of n radical-level embeddings to represent a character. For a
compound Chinese character, it is the sequence of the radical embeddings. We split the
compound Chinese characters according to the CHISE character structure information
database2. It is a database about how the Chinese characters are constructed. Because a
component of a character in the database may be also comprised of several radicals, we
recursively split such components until there are only basic radicals. Then each of the
compound Chinese characters is represented by the sequence of the radicals from the left

1For example, the original meanings of characters in proper nouns are often ignored.
2http://www.chise.org/ids/

30 CNN-BASED CHINESE RADICAL ENCODER

Figure 3.1: Architecture of the proposed model. The model is a hierarchical CNN-RNN
neural network model. The radical-level embeddings are encoded into the word vectors
by the CNN encoder, which are then inputted into the RNN encoder to obtain the text
feature.

CNN-BASED CHINESE RADICAL ENCODER 31

Figure 3.2: We split the Chinese characters into radicals from the left to the right, the
top to the bottom.

to the right, the top to the bottom as shown in Figure 3.2. The sequences are zero-padded
to the same length.

When it comes to the other characters, it is the sequence comprised of the correspond-
ing character embedding and n − 1 zero vectors. We zero-pad the sequences of all the
characters to align the lengths.

3.2.2 Convolutional Encoder for the Local Features
CNNs [88] have been used for various NLP tasks and shown effective [36, 89, 63].

For NLP, CNNs can extract the temporal features, reduce the parameters, alleviate over-
fitting, and improve generalization ability. We also take advantage of the weight sharing
technology of CNNs to learn the shared features of the characters.

Let C be the radical-level vocabulary that contains the radicals, simple Chinese char-
acters, kanas of Japanese, alphabets, digits, punctuation marks, and special characters,
Q ∈ Rd×|C| be the matrix of all the radical-level embeddings, d be the dimension of
each radical-level embedding. Assume that each character is represented by a sequence
of radical-level embeddings of length n. Thus, a word k composed of m characters is
represented by a matrix Ck ∈ Rd×(m×n), each column of which is a radical-level embedding.

We apply convolution between Ck and several filters (convolution kernels). For each
filter h, we apply a nonlinear activation function g and a max-pooling on the output to
obtain a feature vector. Let r be the stride, w be the window, Hh be the hidden weight
of a filter, respectively. The feature vector of k obtained by h is given by:

xk
h = maxpool(g(Ck ⋆ Hh + b)), (3.1)

where ⋆ is the convolution operator. The pooling window is m×n
r
− w + 1 to obtain the

most important information of word k. If we train the model in a semantic task, we can
expect pooling layers to pick out the components that most related to the meanings of
the characters. Thus, we can consider the outputs of the pooling layers are the features
of radicals.

After the max-pooling layer, we concatenate and flatten all of the outputs through all
of the filters as the feature vector of the word.

3.2.3 Filters of Wide Strides
Unlike the conventional character-level model where all the filters share the same

stride, the proposed model has filters with different strides for different levels in the single

32 CNN-BASED CHINESE RADICAL ENCODER

convolutional layer: (1) the filters with stride r = 1 to obtain radical-level features; (2)
the filters with stride r = n (the length of the radical sequence) to obtain character-level
features. The reason why we design the latter ones is as the followings:

1. For the compound Chinese characters, they read the relationship of the radicals
in different characters of a word, which may be also related to the categorical
information of the word.

2. For the simple Chinese characters, kanas, alphabets, punctuations, and other simple
characters, they work like the filters of the conventional character-level models
because the zeros in the tail will be cut by pooling. In this way, we “embed”
the character-based approach in the same layer.

3. The gradients of the radical-level filters designed in this way can be independent of
the character-level filters in the back-propagation. The categorical information of
the radical-level can be learned from the word-level directly.

The effectiveness will be discussed in Section 3.3.5.

3.2.4 RNN Encoder for the Global Feature
A recurrent neural network (RNN) is a kind of neural network designed to learn

sequential data. The output of an RNN unit at time t depends on the output at time
t − 1. Bi-directional RNNs [90] are able to extract the past and future information for
each node in a sequence. They have shown effective for Machine Translation [52] and
Machine Comprehension [91].

A Long Short-term Memory (LSTM) [92] unit is a kind of unit for RNN that keeps
information from long-range contexts. We use a bi-directional RNN of LSTM to encode
the document feature from the sequence of the word features.

An LSTM unit contains a forget gate ft to decide whether to keep the memory, an
input gate it to decide whether to update the memory and an output gate ot to control
the output. Let xt, ht, γ̃t, and γt be the input, output, candidate cell state, and output
cell state at time step t, respectively. They are given by:

ft = σ (Wf [ht−1,xt] + bf) ,

it = σ (Wi [ht−1,xt] + bi) ,

γ̃t = tanh (Wc [ht−1,xt] + bc) ,

γt = ft ∗ γt−1 + it ∗ γ̃t,
ot = σ (Wo [ht−1,xt] + bo) ,

ht = ot ∗ tanh (γt) ,

(3.2)

where σ (·) and ∗ are the element-wise sigmoid function and multiplication operator,
respectively.

Our proposed model employes bi-directional RNNs that read document data from
different directions. Let s be a document composed of l words. One of the RNN layers
reads the document from the first word to the lth word, the other reads the document
from the lth word to the first word. Let −→h 1,

−→h 2, ...
−→h l be the outputs of the former RNN

layer and ←−h 1,
←−h 2, ...

←−h l be the outputs of the latter. The final output of each time step
is,

hi =
−→h i ⌢

←−h i, (3.3)

CNN-BASED CHINESE RADICAL ENCODER 33

where ⌢ refers to the concatenation operator. Then the document feature z is obtained
as,

z =
l∑

i=1

ai (hi) . (3.4)

Here, ai is the additive soft attention [52] of time-step i, which is defined as,

ai =
exp(u⊤

i ua)∑l
i=1 exp(u⊤

i ua)
. (3.5)

Here, ua is the softmax parameter to compute the importance of each time-step, ui is a
hidden representation for time-step i to learn the importance of i, obtained by,

ui = tanh (Wahi + ba) , (3.6)

where Wa and ba are the parameters for the transformation.
After that, we apply an affine transformation and a softmax to obtain the prediction

of the sentiment labels:

Pr (ŷ = i|s) =
exp

(
Wi

pz + bi
p

)∑
i′∈E exp

(
Wi′

p z + bi′
p

) , (3.7)

where ŷ is the estimated label of the document, i is one of the labels in the label set E .
We minimize the cross-entropy loss to train the model. Let S be the set of all the

documents, and y be the true label of document s, the loss is given by:

L = −
∑
s∈S

(log Pr(ŷ = y|s)) . (3.8)

3.2.5 Highway Structures
Replacing vanilla fully connected layer with the highway structures [93] has been

reported effective for NLP tasks such as language models [63] and text generation [94].
The highway is a structure that learns whether a transformation should be applied

to the input. The process is controlled by a transform gate. Denote f (·) as the
transformation, gT as the transform gate, x, and y as the input and output here, the
output of the highway is defined as:

y = gTf (x) + (1− gT)x. (3.9)

gT is obtained by logistic regression:

gT = σ (Wgx + bg) . (3.10)

3.3 Sentiment Analysis
3.3.1 Datasets and Tasks

In the experiments, we used the dataset provided by Rakuten, Inc. It contains
64,000,000 Japanese reviews of the products in Rakuten Ichiba3. The reviews are labeled

3http://www.rakuten.co.jp/

34 CNN-BASED CHINESE RADICAL ENCODER

Table 3.1: The statistics of the datasets. |S0| and |S1| are the number of the negative and
positive samples in each dataset respectively; |V| = the size of the radical-level vocabulary;
|C| = the size of the character-level vocabulary; |W| = the size of the word vocabulary;
Tk = the number of the Chinese characters; Tc = the number of all kinds of characters;
Tw = the number of the words. The radical-level vocabulary contains radicals, simple
Chinese characters, kanas, alphabets, digits, punctuation marks, and special characters.

Dataset |S0| |S1| |V| |C| |W| Tk Tc Tw

Training 10k 10k 1k 3k 25k 462k 2,009k 1,218k
Tuning 1k 1k 1k 2k 9k 49k 214k 129k
Validation 1k 1k 1k 2k 8k 44k 195k 117k
Test(Normal) 1k 1k 1k 2k 8k 45k 197k 119k
Test(Unknown Words) 1k 1k 1k 2k 12k 67k 291k 176k
Test(Unknown Characters) 1k 1k 1k 3k 16k 93k 368k 225k

with 6-point evaluation of 0-5. To avoid the noise in the ambiguous reviews labeled with
3-4 points for a fair validation, we excluded the reviews of 3-4 points and labeled the
reviews of less than 2 points as the negative samples, and labeled the 5-point reviews as
the positive samples.

In order to investigate the performance for unknown words and characters (those do
not show in the training set), we prepared three test sets: the normal set, the set where
every review contains an unknown word, and the set where every review contains an
unknown character.

At first, we randomly drew 10, 000 positive and 10, 000 negative reviews from the whole
dataset as the training set. Then, from the rest reviews, we randomly selected three sets
of 1, 000 positive and 1, 000 negative reviews as the tuning set, the validation set, and the
normal test set, respectively. Afterward, we randomly picked a review from the remaining
ones and checked whether all of the words in it had shown in the training set. We kept
the ones that contained at least one unknown word until we got another 1, 000 positive
and 1, 000 negative reviews as the unknown-word test set. Finally, we similarly picked
1, 000 positive and 1, 000 negative reviews that contained an unknown character as the
unknown-character test set.

The detailed information of the preprocessed datasets is shown in Table 3.1.
The task is to label the reviews as positive or negative. The metric is the cross-entropy

error between the system outputs and the real labels, which indicates the difference
between the predicted distribution and the real distribution. Besides, we also collected
the accuracies to see the performance more intuitively.

3.3.2 Baselines
We compared the proposed model with FastText [21] as the baseline. It is the state-

of-the-art baseline for text classification, which simply takes n-gram features and classifies
sentences by hierarchical softmax. We used the unigram word embedding version as the
same as the other models in our experiments.

Besides the comparison with the baseline, we also compared the performance of the
proposed model with the conventional approach that jointly trains word embeddings,
character embeddings, and radical embeddings with a dictionary [68]. When we imple-
mented it, we used the components in CHISE as well as our proposed model.

CNN-BASED CHINESE RADICAL ENCODER 35

Table 3.2: The setup of the hyperparameters of the embedding-based models tuned for
the experiments. w = the filter width; r = the filter stride; a = the number of the
output channels, as a function of w

r
; g = the nonlinear activation function; dc = the

dimensions of the radical-level embeddings; dx = the dimension of the word embedding,
or the output of the CNN encoder; dz = the dimension of the document feature vector.
The hyperparameters of the proposed model and FastText were tuned on the tuning set.
The image-based model follows the hyperparameters described in [73].

The proposed FastText [21]
w [1, 2, 3, 3, 6, 9] -
r [1, 1, 1, 3, 3, 3] -
a [50 · w

r
] -

dc 15 -
dx 600 600
dz 300 300
g ReLU Linear

Meanwhile, we compared our proposed model with the image-based character-level
convolutional neural network [73], which was proposed to encode the radicals in an
image-based approach. It is a model that processes the images of characters as their
representations to obtain the information from radicals. To implement the approach,
we used an image process package, Pillow4 to convert each character to a gray-scale in
Mincho font. The sizes of the input images and layers followed the settings of [73].

3.3.3 Hyperparameters
The hyperparameters are shown in Table 3.2. We aligned the dimensions of the

feature vectors of the words and documents in the three embedding-based models for a
fair comparison. All the embeddings are initialized randomly with uniform distribution.
The image-based model processes the document differently from the others. Hence we
did not align the dimension of vectors for it but followed the setting in [73].

All of the models except the image-based model were trained by RMSprop [95] with
mini-batches of 100 samples. The image-based model was trained with mini-batches of
32 samples because of memory issues. The learning rate and decay term were set as 0.001
and 0.9, respectively, also tuned on the tuning set.

3.3.4 Results
Figure 3.3 compares the averaged accuracies of five runs by the baselines and the

proposed model on the normal test set. Figure 3.4 shows the number of parameters of
the models.

The accuracy of the proposed model is similar to the conventional radical-based
approach that jointly employs word embeddings, character embeddings, and radical
embeddings. But note that our proposed model does not involve word embeddings
and character embeddings, the number of parameters used by the proposed model is
only 5.57% of those by the conventional radical-based approach. If we compare our
proposed model and the conventional radical-based approach in the case that only

4https://github.com/python-pillow/Pillow

36 CNN-BASED CHINESE RADICAL ENCODER

Averaged Accuracy (%)

86

88

90

92

94

87.95

86.90

93.00
92.65

93.10

Prop
osed

FastT
ext [2

2]

Word +
 Char

acter

Yin, e
t al. 2

016 [
69]

Word +
 Char

acter
 + Ra

dical

Yin, e
t al. 2

016 [
69]

Radic
al
Shim

ada,
et al.

 2016
 [74]

Chara
cter I

mage

Figure 3.3: The averaged accuracies of five runs achieved by different models for the
normal test set. The higher is better.

Number of Parameters (thousands)

0

10000

20000

30000

40000

3,312

14,430

35,460

21,030

1,974

Prop
osed

FastT
ext [2

2]

Word +
 Char

acter

Yin, e
t al. 2

016 [
69]

Word +
 Char

acter
 + Ra

dical

Yin, e
t al. 2

016 [
69]

Radic
al
Shim

ada,
et al.

 2016
 [74]

Chara
cter I

mage

Figure 3.4: The number of parameters of the models. The lower is better.

CNN-BASED CHINESE RADICAL ENCODER 37

Averaged Accuracy for Reviews that Contain Unseen Words (%)

87

89

90

92

93

87.95

87.05

92.5592.35
91.90

Prop
osed

FastT
ext [2

2]

Word +
 Char

acter

Yin, e
t al. 2

016 [
69]

Word +
 Char

acter
 + Ra

dical

Yin, e
t al. 2

016 [
69]

Radic
al
Shim

ada,
et al.

 2016
 [74]

Chara
cter I

mage

Figure 3.5: The averaged accuracies of five runs achieved by different models for the
unknown word test set. The higher is better.

radical embeddings are used, our proposed model is 6.2 percent points better than the
conventional approach. Meanwhile, our proposed model slightly outperforms FastText
by approximately 0.45 percent points and significantly outperforms the image-based
approach by 5.45 percent points.

The proposed model is also the smallest model that contains much fewer parameters
than others. It has 91%, 94%, 86%, and 40% fewer parameters than FastText, the conven-
tional radical-based approach that uses word embeddings and character embeddings, the
conventional radical-based approach that only uses radical embeddings and image-based
approach, respectively.

Figure 3.5 shows the averaged accuracies of five runs by the baselines and the
proposed model on the unknown word test set. In this case, the proposed model slightly
underperforms FastText and the conventional radical-based approach that also uses
word embeddings and character embeddings. However, note that our proposed model
does not use word embeddings and character embeddings. The proposed model still
significantly outperforms the other approaches that do not use word embeddings and
character embeddings.

Figure 3.6 presents the averaged accuracies of five runs by the baselines and the
proposed model on the unknown character test set. In this experiment, our proposed
model significantly outperforms all the other models.

3.3.5 Ablation Study
Then we investigate how each part of our proposed model affects the performance.

Firstly, we investigated the effects of the proposed CNN encoder for the task. We

38 CNN-BASED CHINESE RADICAL ENCODER

Averaged Accuracy for Reviews that Contain Unseen Characters (%)

82

84

87

89

91

82.9582.95

89.3589.45

90.85

Prop
osed

FastT
ext [2

2]

Word +
 Char

acter

Yin, e
t al. 2

016 [
69]

Word +
 Char

acter
 + Ra

dical

Yin, e
t al. 2

016 [
69]

Radic
al
Shim

ada,
et al.

 2016
 [74]

Chara
cter I

mage

Figure 3.6: The averaged accuracies of five runs achieved by different models for the
unknown character test set. The higher is better.

removed the proposed CNN encoder and input the radical-level embeddings directly to
the recurrent neural network. We trained this new model again and compared the result
with our proposed model with the proposed CNN encoder. The result is shown in Figure
3.7. We can see that when we skipped the proposed CNN encoder and directly input the
radical-level embeddings to the RNN, we lost 1.60 percent points, 1.15 percent points, and
3.50 percent points of accuracy, for normal test set, unknown word test set and unknown
character set, respectively. It indicates that the proposed CNN is generally effective for
normal samples and the samples that contain unknown words and characters.

Then we further evaluated the radical-level filters and the character-level filters. We
removed either radical-level filters or character-level filters and employed only one of them
and saw how the averaged accuracy of five runs for each testing set changed. Figure 3.8
shows the results. The accuracy for the normal test set dropped by 1.60 percent points
after radical-level filters were removed, and by 1.80 percent points after character-level
filters were removed. Meanwhile, the accuracy for the unknown character test set dropped
by 2.5 percent points without radical-level filters, and by 2.45 percent points without
character-level filters. There was no significant change in the accuracy for the unknown
word test set where the unknown words contain few unknown characters after radical-level
filters were removed. But when the character-level filters were removed, the accuracy for
the unknown character test set dropped slightly by 0.55 percent points. The results show
that both the radical-level filters and the character-level filters play an important role
in analyzing normal samples and the samples containing unknown characters, while the
radical-level filters are less important for the unknown words without unknown characters.
The reason is probably that the unknown words comprised of seen characters are often
proper nouns such as human names, location names, brand names, etc. Such words often

CNN-BASED CHINESE RADICAL ENCODER 39

Averaged Accuracy (%)

87

89

91

92

94

Proposed No CNN Encoder

87.35

90.85
90.35

91.50 91.50

93.10 Normal Test Set
Unknown Word Test Set
Unknown Character Test Set

Figure 3.7: The averaged accuracies of five runs before and after the proposed CNN
encoder was removed.

only borrow the pronunciation of Chinese characters as we have introduced in Chapter 2.
In such words, the original meanings of Chinese characters are often less related to the
words. It makes the radical-to-character information learned by the radical-level filters
less critical to analyze the meaning of the words.

Finally, we evaluated the effects of the highway layer. We removed the highway layers
from the proposed model and then re-trained and tested it to see how the results changed.
Figure 3.9 shows the results. After the highway layers were removed, the accuracy for the
normal test set, the unknown word test set, and the unknown character test set dropped
by 5.05 percent points, 4.55 percent points, and 7.10 percent points, respectively. The
results show that the highway layers are very effective to improve the performance of the
proposed model since the back-propagation in our model has a long path.

3.3.6 Discussions
The fully-equipped proposed model outperformed the word embedding and character

embedding based baselines for the normal set, which indicated that the proposed model
is generally more effective for Japanese.

Especially, it significantly outperformed the word-level and character-level baselines
for unknown characters. It indicates that radical-level representation is effective for better
generalization of unknown characters.

At the same time, the proposed model has much fewer parameters than the baselines.
We see that the proposed model is more slim and cost-effective than conventional models.

The proposed model outperformed the image-based approach in all the tests, with
much fewer parameters. It indicates that the proposed radical-level embedding represen-

40 CNN-BASED CHINESE RADICAL ENCODER

Averaged Accuracy (%)

88

90

91

93

94

Proposed No Radical-level No Character-level

88.4088.35

90.85 90.95
91.3591.50

91.30
91.50

93.10 Normal Test Set
Unknown Word Test Set
Unknown Character Test Set

Figure 3.8: The averaged accuracies of five runs before and after either radical-level filters
or character-level filters in the proposed CNN encoder was removed.

Averaged Accuracy (%)

83

86

89

91

94

Proposed No Highway Layer

83.75

90.85

86.95

91.50

88.05

93.10 Normal Test Set
Unknown Word Test Set
Unknown Character Test Set

Figure 3.9: The averaged accuracies of five runs before and after the highway layer is
removed.

CNN-BASED CHINESE RADICAL ENCODER 41

tation is also more effective for the sentiment classification task than the image-based
representation.

From the difference of the performance with or without the radical-level and character-
level filters, we can see that the combination of filters with different strides improves the
performance for all the sets.

The model with only radical-level filters is slightly better than that with only
character-level filters. It indicates that the radical-level filters which have shallow strides
generalize the words and characters better, benefiting from the full use of the radical-level
information. The signals from the character-level filters with wide strides can provide
categorical relatedness across different characters, and address the words where the
characters do not show their original meanings. We believe that is why the combination
of the two kinds of filters worked better in the experiment.

3.4 Language Model
3.4.1 Dataset and Task

In this section, we introduce our evaluation of our proposed model for the language
model task. Here, we evaluated the proposed model with a character-level language model
following the conventional work that evaluated image-based Chinese character encoder
with a character-level language model [75].

We used 10, 000 sentences from the Japanese Wikipedia to train our model. The
dataset contains 1, 774, 960 characters in total. We added a start token “<s>” at the
beginning of each sentence. In the training phase, we inputted at most 32 characters
before the target character and maximized the log-likelihood of the target character for
each character as the target character. For the end of each sentence, we trained the model
to output an end token “<e>” to tell the end of the output text. In the testing phase,
we recurrently inputted the whole dataset and let the model to recurrently output the
original text, as shown in Figure 3.10.

We evaluated the proposed model by log-perplexity, which can be regarded as the
log-performed expectation of the number of trials to sample out the correct original text
from the output distribution. Formally, let s denote the original text, let {c1, c2, ..., ci}
denote the character sequence from the first character c1 to the ith character ci, and let
m denote the length of s, the log-perplexity on s is computed as follows,

logPerplexity(s) = − 1

m

m∑
i=1

log p(ci|c1, c2, c3, ..., ci−1), (3.11)

which is the joint probability of every character on the previous character sequence
normalized by the length of the original text.

We compared our proposed model with a character-based recurrent neural network
language model (RNNLM) where the inputs are the character embeddings instead of the
outputs of the proposed encoder, and the conventional image-based encoder proposed by
Dai, et al. [75].

3.4.2 Results
Figure 3.11 shows the average log-perplexity when the proposed encoder, the image-

based encoder, and the character embeddings were used as the input for the RNNLM. Both

42 CNN-BASED CHINESE RADICAL ENCODER

Figure 3.10: Our proposed model used in a character-level language model for the
evaluation with the language model task. ’RNNLM’ here means a recurrent neural
network language model. The first input is a start token telling the language model
to output the first character. Following the start token was the characters in the original
text. Then the model was tried to output the original text. The last output is an end
token showing the end of the output.

the proposed encoder and the image-based encoder failed to outperform the character
embeddings. It is similar to the result reported by Dai, et al. [75]. Meanwhile, the
performance with the proposed encoder was better than the image-based encoder when
both of them were used without character embeddings. It indicates that the proposed
model performs better than the image-based encoder for the language model as a single
model. However, the ensemble model of the image-based encoder and the character
embeddings achieved a better log-perplexity than the ensemble model of the proposed
encoder and the character embeddings. It is probably because that the image-based
encoder provides more different features from the character embeddings.

Besides, in the experiment, we found that our proposed encoder costs less time to
complete learning and testing than the image-based encoder because of the relatively tiny
input. On our machine with Intel i7-7900k CPU and Nvidia GeForce GTX1080 GPU,
it took about averagely 10 seconds to train each epoch of the language model with the
proposed encoder or the character embeddings. At the same time, it took about averagely
159 seconds to train each epoch of the language model with the image-based encoder.

3.4.3 Discussions
From the results, we have seen that the proposed encoder outperforms the image-

based approach as a single model for the language model. However, the proposed encoder
cooperates with the character embeddings slightly worse than the image-based encoder
does.

A probable reason is that the image-based encoder is more complementary for the
character embeddings, in this case, it probably provides more information about the
inputs. However, both the image-based encoder and the proposed encoder deteriorate the
results by the character embeddings. Thus, both the proposed encoder and the image-
based encoder are not effective for the language model. It indicates that the radical-level

CNN-BASED CHINESE RADICAL ENCODER 43

Averaged Log-perplexity (Lower is Be6er)

0

7

14

21

28

13.80
15.43

17.93

26.34

20.81

Pro
pos

ed
Enc

ode
r

Cha
ract

er E
mb

edd
ings

Ima
ge-

bas
ed

Ecn
ode

r

(Da
i 17

 [76
])

Pro
pos

ed
Enc

ode
r

+ C
har

acte
r Em

bed
din

gs

Ima
ge-

bas
ed

Ecn
ode

r

+ C
har

acte
r Em

bed
din

gs

(Da
i 17

 [76
])

Figure 3.11: The averaged log-perplexity of the language model using different encoders.
The lower is better.

approaches are probably more suitable for analyzing tasks such as the sentiment analysis
task, the tagging tasks [74], and segmentation tasks [75] in the conventional works than
the text generation tasks such as language models. Since the inputs of the language
models using radical-based encoders are components or character images, such language
models are doing a translation task that translates the radicals to the characters. On
the contrary, both the inputs and the outputs of the language model using the character
embeddings are characters. It is easier to recover the input texts using the character
embeddings than the radical-based encoders since the inputs and the outputs are from
the same distribution.

Meanwhile, since our goal is to evaluate the proposed encoder, we used a relatively
simple recurrent language model. A more tailored model for radical inputs can bring
better results such as a recurrent network with a conditional random field layer.

Conclusively, despite the results that both the proposed encoder and the image-
based encoder failed to outperform the character embeddings for the character-level
language model task, the results have shown that the proposed encoder outperforms the
conventional image-based encoder when the character embeddings are not used.

3.5 Conclusion of This Chapter
For a slimmer model and better generalization for unknown words and characters,

we proposed the radical-level representation and a CNN-RNN-based model to encode it,

44 CNN-BASED CHINESE RADICAL ENCODER

inspired by the experimental findings of the radical-based recognition route of native
Chinese readers. In the experiments, we explored the model and compared it with
the conventional state-of-the-art word embedding-based and character embedding-based
models. In the experiments, the proposed model outperformed the others for both normal
samples and samples of unknown characters, and was on par with the sate-of-the-arts for
unknown words, with much fewer parameters. The results indicate that the proposed
method is more cost-effective than conventional methods for Japanese.

Besides, this research is the first exploration of the combination of convolutional
filters with different strides for natural language processing. The combination showed
effectiveness in the experiments.

With the smaller size and powerful performance on unknown characters, the proposed
method can be expected to be applied to the scenes where the memory is limited such as
mobile applications, and to process data that contains many infrequent characters such
as classical documents without additional knowledge resources.

Chapter 4

Encoding Both Shapes and Radicals

4.1 Motivation
In Chapter 3, we have introduced our proposed CNN-based encoder for radicals. In

this chapter, we would like to introduce our study improving the proposed CNN-based
encoder with positional information.

At first, we would like to introduce why we need positional information for the radical-
based approach. In many ideographic characters, the differences in the positions of certain
elements can lead to different meanings. Some characters have exactly the same radicals
but have totally different meanings because the positions of their components are different.
For example, the components comprising “唄” (to sing) and “員” (member) are the same,
but their meanings are different.

Some previous works learned the characters from images, using 2D convolutional
neural networks [73, 74, 72], allowing the 2D shape information to be learned. However,
as we have introduced in Chapter 2, imaged-based methods encounter some crucial
problems. For example, “人” and “入” are two regularly used characters that have very
similar shapes, but “人” means human, whereas “入” means to enter. The image-based
approaches will be confused by such characters.

In this chapter, we will discuss a non-image-based approach to encode the positional
information of the components in the ideographic characters by using embeddings that
correspond to the structure type and each element’s position. We allocate a learnable
embedding for each of the shape categories and add it to the sequential position
embedding. Then the enhanced position embedding and the radical-level embedding
are summed and input into the proposed convolutional encoder to obtain the word-level
representation, following the framework proposed in Chapter 3.

4.2 The Proposed Method

4.2.1 Radical-level embeddings, Structure Embeddings, and Po-
sition Embeddings

In this section, we would like to introduce our proposed method to leverage the planar
structure information. It is a simple and effective non-image-based method. It utilizes
the radical-level information and the structure information sourced from the character

45

46 ENCODING BOTH SHAPES AND RADICALS

Figure 4.1: The proposed model for encoding the word vectors. The radical-level
embeddings are the learnable vectors of the components in each character in the input
word. The structure embeddings represent the corresponding structure category of
each character. The position embeddings represent the position index of each element,
following Gehring et al. [96]. These embeddings are added together before they are input
into the encoder. We use multiple CNN encoders to encode the input vectors in a parallel
manner and then concatenate the output as the word vector for the downstream task,
following Kim et al. and Ke et al. [63, 97]. The embeddings and the encoder are trained
in an end-to-end manner.

ENCODING BOTH SHAPES AND RADICALS 47

Figure 4.2: The categories of the ideographic structures classified by the Unicode standard
[99]. The first row is the indexes of the categories. The second row presents the symbols
for describing the structure, called “ideographic description characters (IDCs)”, used by
the Unicode standard to describe the CJK ideographs, i.e., the ideographs in Chinese,
Japanese and Korean (CJK) scripts. The third row shows examples of each category.

structure information database of the CHISE project1 [98]. It provides the ideographic
information about 70, 000 characters. In this database, each character is annotated with a
sequence that contains the ideographic description characters that correspond to certain
structure types (see Figure 4.2) and the components.

Figure 4.1 shows our proposed method to encode the word vectors. The input consists
of three parts: the components, the structure category, and the position indexes.

The radical-level embeddings are assigned for the components. The parameters of the
radical-level embedding layer are a matrix Wsub ∈ R|Vsub|×|demb|, where |Vsub| is the size
of the set of the components. |demb| is the dimension of each embedding. For each input
component, the model looks for the corresponding embedding from Wsub.

The structure embeddings represent the structure types (see Figure 4.2). Similarly, the
parameters of the structure embedding layer are a matrix Widc ∈ R|Vidc+1|×|demb|, where
|Vidc| is the size of the set of the ideographic description characters, i.e., the number
of different structure types in the corpus. Some characters are not annotated by any
ideographic description characters. The additional last row in Widc is for such characters,
stands for “simple type”. For each character annotated with more than one ideographic
description character in the database, its first ideographic description character is used to
decide the character’s structure embedding. That is, the first ideographic description is
input into the layer, and the model looks for the corresponding embedding from Widc. For
characters that are not annotated with ideographic descriptions and unseen characters
in testing, we annotate them as “simple type” and assign the last row in Widc as the
embedding to that type.

The position embeddings are used to represent the position of each component from
left to right and from top to down. Following Gehring et al. [96], the position embeddings
are learnable parameters Wpos ∈ R|Lchar|×|demb|. Here, |Lchar| is the maximum length of
component sequences in the corpus. By leveraging both the position embeddings and the
structure embeddings above, the model is able to recognize the planar coordinates of the
components and the differences in meaning.

The radical-level embeddings, structure embeddings, and position embeddings are
summed before they are input to the encoders to force the model to leverage all the
information. This procedure was inspired by the positive reports in the previous works for
machine translation [96, 100, 19], in which the position embeddings and word embeddings
are summed before being input to the next layers; the authors reported improvements
on various tasks. We found that this approach results in better performance than
concatenating the embeddings.

1http://www.chise.org/ids/index.ja.html

48 ENCODING BOTH SHAPES AND RADICALS

Figure 4.3: The detailed encoder settings used in our experiments. “Dimension” here
refers to the dimensions of the output vectors. For example, the first kernel performs a 1×1
convolution and encodes the 15-dimensional input embeddings to 50-dimensional output
vectors. The output vectors of the kernels are concatenated; then, a feed-forward layer
transforms them into 600-dimensional vectors. In our experiments, these 600-dimensional
vectors form the input to the LSTM classifier.

The sequences of the components of the characters are padded to the same length.
Thus, the encoders can recognize the border of each character. The radical-level
embedding, structure embedding, and position embedding of the pad tokens are set to
zero and not updated during training.

Any character that does not appear in the structure information database in our
experiments including non-kanji characters and out-of-vocabulary characters is treated
as a nondecomposable character whose component is itself, and a unique radical-level
embedding will be assigned to it during training. During testing, a randomly initialized
“unknown” token will be assigned to such characters. Its structure type will be “simple
type” and only the position embedding of “Position 1” is used in both the training and
testing phases.

In our experiments, the embeddings are trained in an end-to-end manner without
pre-training.

4.2.2 Encoder
We encode the sum of the radical-level embeddings, structure embedding, and position

embeddings by CNN kernels arranged in a parallel manner. The architecture follows
our previous model which allows us to evaluate the effects of the structure and position
embeddings without architectural influences. In addition, this wide architecture forces the

ENCODING BOTH SHAPES AND RADICALS 49

model to learn the information under our desired contexts. Previous works have shown
that wide architectures that perform convolution within different window sizes in a single
layer are useful for image classification [101] and character-level language models [63]. To
accelerate the training process, we additionally use batch normalization [57] after each
convolution layer in the experiments.

For each filter in the convolutional layers, we apply a rectified linear unit (ReLU) [102]
activation function denoted by g and a max-pooling operation to the normalized output
to obtain a feature vector. Let X be the input vectors, r be the stride, w be the window
size, and W be the hidden weight of a filter. The output vector v ∈ Rdv is as follows:

v = maxpool(g(BN(W⊗X + b))), (4.1)

where, ⊗ is the convolution operator, and BN refers to batch normalization [57]. dv is
the dimension of the output vector. There is no need to be the same with demb and dv of
each convolutional layer can be different.

Then, let m denote the number of characters in a word, including the padding tokens,
and n denote the length of the padded component sequence of each character. The pooling
window size is m×n

r
− w + 1, allowing it to pool over the entire word.

The concatenated filter output is input into a feed-forward layer that extracts the
word vector vw ∈ Rdw for the word. dw is the dimension of the word vector. In this
study, because the input of the feedforward layer is large, L2 regularization is used to
help prevent the gradient from vanishing during training.

Figure 4.3 shows the settings of the CNN encoder in our experiments. As the same
as in Chapter 3, we used six convolutional kernels with different settings to extract
features from different granularities. The six convolution kernels respectively output a 50-
dimensional vector, a 100-dimensional vector, a 150-dimensional vector, a 100-dimensional
vector again, a 200-dimensional vector and a 300-dimensional vector after pooling. The
outputs are concatenated into a 900-dimensional vector and input into a feed-forward
layer. The feed-forward layer transforms the vector into a 600-dimensional vector as the
input to the next layer.

4.2.3 Downstream Classifier in the Experiment
In the experiment, we evaluate the performance of the proposed model on a text

classification task. Thus, the word vector is input into a unidirectional recurrent neural
network (RNN) consisting of long short-term memory units (LSTMs) for label prediction.

4.3 Sentiment Analysis

4.3.1 Environment
The experiments were performed on NVIDIA Tesla V100 GPUs on the Google Cloud

Platform2. We implemented the models using Keras 2.1.63 and executed them on the
TensorFlow 1.6.04 backend.

2https://cloud.google.com/
3https://keras.io/
4https://www.tensorflow.org/

50 ENCODING BOTH SHAPES AND RADICALS

Table 4.1: Average numbers of unseen words and unseen characters in the testing datasets.
|wunk| = the average number of unseen words in the samples. |wall| = the average number
of words in the samples. |cunk| = the average number of unseen characters in the samples.
|call| = the average number of characters in the samples.

Dataset |wunk| |wall| |cunk| |call|
Normal Set 0.68 59 0.02 97

Unseen Word Set 1.96 88 0.07 143
Unseen Char Set 3.98 112 1.37 181

4.3.2 Dataset

The goal is to evaluate the effects on both seen and unseen words and characters.
In particular, performing an evaluation for the unseen characters is difficult because of
the lack of metrics for judging the quality of a single character vector. Thus, instead
of evaluating the character vectors themselves, we evaluated the model performances on
unseen words that include unseen characters.

We used the same datasets in Chapter 3. There are a training dataset, a validation
dataset, and three different testing datasets to evaluate the respective model performances
on the seen words, unseen words, and unseen characters.

The datasets are built from product reviews posted to Rakuten Ichiba5. The samples
are drawn from the Rakuten Data Release6, which contains 64, 000, 000 Japanese product
reviews. Each review is accompanied by a product rating ranging from zero to five. The
task is to classify each testing sample as either a positive review or a negative review.
The ground truth is based on the ratings: when a reviewer gave five stars to a product,
the corresponding review is labeled as positive; and when a reviewer awarded less than
two stars, the corresponding review is labeled as negative. Neutral reviews (between two
stars and four stars, inclusive), were excluded.

The training set contained 10, 000 positive and 10, 000 negative reviews. It is
purposefully kept relatively small so that it covers fewer words and characters to leave
enough unseen words and characters to build the testing datasets. The validation set
contained 1, 000 positive and 1, 000 negative reviews from the remaining samples. The
testing datasets comprised three different datasets used to test the models from different
aspects: (1) the normal testing set contained 1, 000 positive and 1, 000 negative reviews,
randomly drawn from the remaining samples; (2) the unknown word testing set contained
1, 000 positive and 1, 000 negative reviews and every sample included at least one unseen
word; and (3) the unknown character testing set contained 1, 000 positive and 1, 000
negative reviews in which every sample included at least one unseen character. Table
4.1 shows the average numbers of unseen words and unseen characters in the testing
datasets. Figure 4.4 presents the distributions of the unseen words and unseen characters
in the testing datasets. The results on these testing datasets indicate the performance
on previously seen words and characters, random unseen words, and unseen characters,
respectively.

5http://www.rakuten.co.jp/
6https://rit.rakuten.co.jp/data_release

ENCODING BOTH SHAPES AND RADICALS 51

(a) Distributions of unseen words and unseen characters in the normal testing set comprised
of randomly drawn samples.

(b) Distributions of unseen words and unseen characters in the testing set where every
sample contains at least a random unseen word.

(c) Distributions of unseen words and unseen characters in the testing set where every sample
contains at least a random unseen word.

Figure 4.4: Distributions of unseen words and unseen characters in the testing datasets.

52 ENCODING BOTH SHAPES AND RADICALS

Table 4.2: Hyperparameters of the experimental models. demb is the dimension of each
of the radical-level embeddings, structure embeddings, and position embeddings. The
dimensions of them are the same. d1v, d

2
v, d

3
v, d

4
v, d

5
v, d

6
v are the dimensions of the output

vectors of the CNN kernels, respectively. We used six CNN kernels whose output vectors
are in different dimensions. w1, w2, w3, w4, w5, w6 are the window sizes of the kernels.
r1, r2, r3, r4, r5, r6 are the kernels’ strides. dw is the dimension of the output word vector
of the feed-forward layer, which is the final layer of the CNN encoder, as shown in Figure
4.3.

Hyperparameter Value
demb 15

d1v, d
2
v, d

3
v, d

4
v, d

5
v, d

6
v 50, 100, 150, 100, 200, 300

w1, w2, w3, w4, w5, w6 1, 2, 3, 3, 6, 9
r1, r2, r3, r4, r5, r6 1, 1, 1, 3, 3, 3

dw 600
Dimension of LSTM 300

Learning Rate 0.001

4.3.3 Preprocessing

We used Janome7 for word segmentation. The lengths of the sentences, words, and
component sequences of characters were zero-padded to 500, 4, and 3, respectively. The
radical-level information and the structure information were sourced from the character
structure information database of the CHISE project8 [98]. We arranged the components
of the characters from left to right, top to down, and outside to inside. The order is the
same as they appear in the database.

4.3.4 Initialization

The embeddings were randomly initialized from a uniform distribution between
(− 1

2×demb
, 1
2×demb

), where demb is the size of each embedding. All the other weights were
initialized from a Xavier uniform distribution [103]. All the biases were initialized to
zeros. The learnable parameters of batch normalization β and γ were initialized to zeros
and ones, respectively.

4.3.5 Experimental Models

In addition to our proposed model that adds the structure and position embeddings
to the radical-level embeddings, as baselines, we also implemented a model that uses
only the radical-level embeddings (subcharacter-only baseline), a model that adds
only the structure embeddings (subcharacter + structure baseline) and a model that
adds only the position embeddings (subcharacter + position baseline) to evaluate
the effectiveness of the structure embeddings.

ENCODING BOTH SHAPES AND RADICALS 53

4.3.6 Hyperparameters
Table 4.2 shows the hyperparameters. As we have described in Section 4.2.2, we use

six CNN kernels. The dimension of the outputs, the windows, and the strides are different
to extract and weight the information in different granularities. The objective function
is the cross-entropy loss of the classifier. RMSprop [95] was used for optimization. The
models are trained in an end-to-end manner without pretraining the input embeddings.

4.4 Results
4.4.1 Effects on the Training Process

We compare the results of the model that uses the radical-level embeddings only, the
model that adds the structure embeddings, the model that adds the position embeddings,
and the model that adds both the structure and position embeddings.

Figure 4.5 shows the average cross-entropy error and accuracy from five different
random seeds after each epoch on the training set and validation set during training. The
large gap between the training and validation curves of the subcharacter-only baseline
(the blue dashed and solid lines in Figure 4.5(a) and Figure 4.5(b)) shows that the input
features (i.e., only the components) are not sufficiently representative for the task. Adding
the structure embeddings causes the training and validation curves to become stable
and more similar (the red dashed and solid lines in Figure 4.5(a) and Figure 4.5(b)).
However, the gap between the training and validation accuracies (the red dashed and
solid lines in Figure 4.5(b)) at the end of training is still large, which indicates that
sufficiently representative features are still lacking. Using position embeddings without
structure embeddings results in more variations in the validation curve (the green dashed
and solid lines in Figure 4.5(a) and Figure 4.5(b)). This result is probably also due to
unrepresentative inputs.

The final training cross-entropy error and accuracy of the proposed model that uses
both structure embeddings and position embeddings (the yellow dashed line in Figure
4.5(a) and Figure 4.5(b)) are significantly better than the subcharacter + position baseline
and the subcharacter + structure baseline. The proposed model’s error on the validation
set (the yellow solid line in Figure 4.5(a)) is unfortunately also unstable, reaching levels
similar to those of the subcharacter-only baseline. However, our model achieves the
highest final validation accuracy on the validation set (the yellow solid line in Figure
4.5(b)) although it is not particularly noticeable because all the models achieved high
validation accuracies (over 92%). Besides, the proposed model achieved the best results
on the normal testing set as shown in Section 4.4.2. These findings above suggest that
our model overfitted less on the training set.

4.4.2 Effects on the Testing Results
Figure 4.6 shows the averaged classification performance of the proposed model and

the baselines on the testing datasets after 40 epochs of training from five different random
seeds. On the normal testing dataset composed of randomly drawn samples, the precision
of the model using both structure embeddings and position embeddings is 0.53 percent

7http://mocobeta.github.io/janome/
8http://www.chise.org/ids/index.ja.html

54 ENCODING BOTH SHAPES AND RADICALS

0 5 10 15 20 25 30 35 40

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

C
ro

s
s
 E

n
tr

o
p

y
 E

rr
o

r

subcharacter-only t raining

subcharacter-only validat ion

+ st ructure t raining

+ st ructure validat ion

+ posit ion t raining

+ posit ion validat ion

+ st ructure + posit ion t raining

+ st ructure + posit ion validat ion

(a) The averaged cross-entropy error from five different random seeds after each epoch
on the training dataset and validation dataset during training. Cross-entropy error
indicates how the predicted likelihood for the true positive label is close to one. Lower
values are better.

0 5 10 15 20 25 30 35 40

Epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
c
c
u

ra
c
y

subcharacter-only t raining

subcharacter-only validat ion

+ st ructure t raining

+ st ructure validat ion

+ posit ion t raining

+ posit ion validat ion

+ st ructure + posit ion t raining

+ st ructure + posit ion validat ion

(b) The averaged accuracy from five different random seeds after each epoch on the training
dataset and validation dataset during training. Accuracy indicates how many samples are
correctly labeled. Higher values are better.

Figure 4.5: The changes in cross-entropy error and accuracy on the training and validation
sets during training.

ENCODING BOTH SHAPES AND RADICALS 55

93.71

92.40

93.05 93.10

92.64

91.90

92.27 92.30
92.51 92.60 92.55 92.55

93.18

94.20

93.68 93.65

90.00

90.50

91.00

91.50

92.00

92.50

93.00

93.50

94.00

94.50

95.00

Precision (%)

%

%

%

%

%

%

%

%

%

%

%

Recall (%) F-score (%) Accuracy (%)

Subcharacter Only + Structure + Posi!on + Structure + Posi!on

(a) Results on the normal testing set comprised of randomly drawn samples.

91.96

90.30

91.12 91.20

92.80

91.50

92.15 92.2192.29

91.00

91.64 91.70
91.92

92.10 92.01 92.00

88.00

89.00

90.00

91.00

92.00

93.00

94.00

Precision (%) Recall (%) F-score (%) Accuracy (%)

Subcharacter Only + Structure + Posi!on + Structure + Posi!on

%

%

%

%

%

%

%

(b) Results on the testing set where every sample contained at least a random unseen word.

90.23

87.70

88.95 89.10

90.47

87.30

88.85
89.05

87.34

89.00

88.16 88.05

89.46

88.30

88.88 88.95

84.00

85.00

86.00

87.00

88.00

89.00

90.00

91.00

92.00

Precision (%) Recall (%) F-score (%) Accuracy (%)

Subcharacter Only + Structure + Posi!on + Structure + Posi!on

%

%

%

%

%

%

%

%

%

(c) Results on the testing set where every sample contained at least a random unseen character.

Figure 4.6: The classification performance on the testing datasets. We report the average
scores from five different random seeds. The short error bars on the score bars present
the standard error.

56 ENCODING BOTH SHAPES AND RADICALS

Table 4.3: A comparison of our experimental results and those reported results by previous
works. We compare the reported results in Chapter 3. Here, “Normal”, “UnkWord” and
“UnkChar” refer to the normal testing set, the set with unseen words, and the set with
unseen characters, respectively.

Model Accuracy (%)
Normal UnkWord UnkChar

Reported results in Chapter 3
FastText [21] 92.65 92.35 89.45

Character-aware CNN [63] 92.30 91.85 88.85
Image-based [73] 89.95 87.35 82.95

Our experimental results
Subcharacter Only 93.10 91.20 89.10

Subcharacter + Structure 92.30 92.21 89.05
Subcharacter + Position 92.55 91.70 88.05

Subcharacter + Structure + Position 93.65 92.00 88.95

points below that of the baseline using only the radical-level embeddings, but its recall,
F-score and accuracy are 1.8 percent points, 0.63 percent points, and 0.55 percent points
higher, respectively. Also, the precision, recall, F-score, and accuracy are all better
than those of the models that use either only the structure embeddings or the position
embeddings. This improvement is significant because the baseline already achieved high
scores (over 92%). The results show that the proposed model generalizes better since the
proposed model achieved higher recall with almost the same precision than the baseline
which means more true positive decisions were made.

For the testing set, in which every sample contains at least one random unseen word,
the model that adds structure embeddings achieves a high precision score, 0.51 percent
points higher than the second-best model that adds only position embeddings, and it also
achieves the best F-score, and accuracy. The best recall is again achieved by the model
that adds both structure and position embeddings to the radical-level embeddings.

For the testing set, in which every sample contains at least one random unseen
character, the model that adds only position embeddings achieves the best recall but
the worst precision, F-score and accuracy. It suggests that the model with only position
information made more false positives. The best precision is again achieved by the model
that only adds structure embeddings. The best F-score and accuracy are achieved by the
subcharacter-only baseline, but the models that add structure embeddings are both close
to the baseline.

4.4.3 Comparison with Related Works
Table 4.3 compares our experimental results with the reported results of previous

works, including FastText [21], Character-aware CNN [63], the image-based approach
[73], and the subcharacter-based CNN encoder [97] on the same dataset. Our proposed
model outperforms the models proposed by the previous works on the normal testing
dataset, which is composed of randomly selected samples.

On the testing dataset, in which every sample contains at least one random unseen
word, our model achieved higher accuracy than the subcharacter-based method proposed
in Chapter 3. However, on the testing dataset, in which every sample contains at least one

ENCODING BOTH SHAPES AND RADICALS 57

unseen character, our model’s accuracy is lower. This result probably occurs because the
unseen characters contain some unseen combinations of components and structure types.
Our subcharacter-only model also underperforms compared to the previous subcharacter-
based model. As discussed above, there is a large gap between the training loss and
validation loss of the subcharacter-only model (see Figure 4.5(a)) that often indicates
unrepresentative input features. In this case, randomness can greatly affect the results.
Thus, we believe that the decrease is probably due to unstable training and randomness.

4.4.4 Discussions
The major findings so far are as follows:

1. Adding structure embeddings leads to smaller gaps between the training and
validation curves, which often indicates more representative features.

2. Adding both structure embeddings and position embeddings to the radical-level
embeddings leads to generally higher recall, F-score, and accuracy.

3. Adding only structure embeddings to the radical-level embeddings can implicitly
improve the precision for the classification task on unseen words and characters,
but it decreases the overall performance on previously seen words and characters.

4. Adding only position embeddings reduces training stability and leads to worse
results.

By adding the structure embeddings to learn the planar structure information, our
results showed improvement on previously seen words and characters. The boosted recall
with consistent precision indicates that adding the structure information and positional
information at the same time brings more true positives. However, because we depended
on the structure information database, the unseen patterns limit the performance in
generalizing for some unseen words and characters.

4.5 Language Model

4.5.1 Dataset
We also performed experiments on the language model task to confirm whether our

new proposed methods improve our original proposed CNN encoder introduced in Chapter
3 for the language model task.

The same 10,000 sentences from the Japanese Wikipedia used in the experiments in
Chapter 3 were used to train an RNNLM whose input layer was our proposed encoder
with structure embeddings and positional embeddings. The dataset contains 1,774,960
characters in total. A start token was added at the beginning of each input sentence.
And then we trained the model to output the input sentence without the start token
character by character. At the end of the output, we trained the model to output an
end token to indicate the end. We compared our proposed model with and without
structure embeddings and positional embeddings, the conventional image-based encoder,
and a baseline model that used a character embedding layer as the input of the RNNLM.

58 ENCODING BOTH SHAPES AND RADICALS

Averaged Log-perplexity (Lower is Be6er)

0

7

14

21

28

13.8
15.43

17.9318.09

26.34

20.8121.80

Pro
po
sed

 En
co
de
r

(N
o S
tru
c, N

o P
os
)

Ch
ara
cte
r E
mb
ed
din
gs

Im
ag
e-b
ase
d E
cn
od
er

(D
ai
17
 [7
6])

Pro
po
sed

 En
co
de
r

(N
o S
tru
c, N

o P
os
)

+ C
ha
rac
ter
 Em

be
dd
ing
s

Im
ag
e-b
ase
d E
cn
od
er

+ C
ha
rac
ter
 Em

be
dd
ing
s

(D
ai
17
 [7
6])

Pro
po
sed

 En
co
de
r

(W
ith
 St
ruc
 +
Po
s)

Pro
po
sed

 En
co
de
r

(W
ith
 St
ruc
 +
Po
s)

+ C
ha
rac
ter
 Em

be
dd
ing
s

Figure 4.7: The averaged log-perplexity of the recurrent language models using different
encoders as the input layers. The lower is better. ’Struc’ refers to the structure
embeddings. ’Pos’ refers to the positional embeddings.

We evaluated the models by log-perplexity as follows,

logPerplexity(s) = − 1

m

m∑
i=1

log p(ci|c1, c2, c3, ..., ci−1), (4.2)

where s means the input text, m refers to the length of the whole input, ci denotes the
ith character in the input text.

4.5.2 Results
Figure 4.7 shows the results of the RNNLM with different encoders. Unfortunately,

while the structure embeddings and positional embeddings improved the performance
of the sentiment analysis model, they failed to improve the RNNLM. The proposed
encoder with the structure embedding and positional embeddings got slightly higher
log-perplexity than the one without structure embeddings and positional embeddings.
The ensemble model of the proposed encoder with structure embeddings and positional
embeddings performed similarly to the ensemble model of the proposed encoder using
only subcharacter embeddings. Similar to the result in Section 3.4.2, Chapter 3, the single
model result of the proposed encoder largely outperformed the image-based encoder, but
the ensemble result was worse. Again, similar to the result in Section 3.4.2, Chapter 3, all
the proposed encoders and the image-based encoder failed to achieve better results than
the character embeddings.

ENCODING BOTH SHAPES AND RADICALS 59

4.5.3 Discussions
Adding structure and positional embeddings does not improve the performance of the

proposed CNN encoder for a recurrent language model.
A probable reason for the limitations of the proposed encoder and the image-based

encoder is the difference between the inputs and the outputs. The language model using
the radical-based encoders is more like a translation model, while the language model
using the character embeddings is an auto-encoder. Although the radical-based approach
tries to recover the character information, it is more difficult for the language model to
map their outputs to the character distributions because of heterogeneity.

Another probable reason is the increased layers make the model more difficult to fit.
The language model needs to output as many labels as the vocabulary size while the
sentiment analysis model only needs to output two classes. In this case, the training
samples for each target label are much fewer. Thus, the large models suffer the label
bias brought by the distributions of the characters in the training samples. Using a much
larger corpus to train the models may lead to different results. However, unfortunately,
training language models on large corpus costs numerous computation resources.

4.6 Conclusion of This Chapter
The conventional token-based radical-level models are blind to planar structural infor-

mation, and the image-based models are weak concerning the ideographic characters that
share similar shapes but have completely different meanings. To address this situation,
we explored non-image-based methods of encoding the planar structural information of
ideographic characters.

In this paper, we discussed a method to encode planar structural information by
learning the embeddings of the categories of structure types. In our proposed model, the
structure embeddings are added to the radical-level embeddings before they are input into
the encoder. We also leverage the position embeddings to learn the different meanings
when the elements are located at different planar coordinates.

We evaluated the method on a text classification task. In the experiment, the
embeddings are encoded by a CNN encoder and then input into an LSTM classifier to
classify input product reviews as positive or negative. We compared the proposed model
with models that use only the radical-level embeddings, the structure embeddings, or
the position embeddings. The results indicate that adding both structure embeddings
and position embeddings results in richer and more representative features and improves
learning.

However, there are still gaps between the training loss and the validation loss of the
proposed model, indicating that the features are not yet perfectly representative. Relying
on the information from a character information dataset also resulted in slightly worse
performance on unseen characters. In future work, we plan to delve deeper into the
radical-level information of the ideographic characters and investigate solutions to the
above issues.

Chapter 5

Conclusions

In the past few years, the development of neural language models has presented us
the word embeddings, a kind of distributed representations in a continuous space where
similar words gather together. Compared with the classical text encodings such as one-
hot representations, TF-IDF vectors, or topic vectors, the word embeddings are more
informative and easier to be used by machines. Word embeddings have been widely
used for natural language processing (NLP) tasks and improved the state-of-art results
for many datasets. The rare words are difficult to train for the early word embedding
models. Recently, subword models have been proposed to learn rare words at the character
level. They have achieved success in many English tasks. Unfortunately, for some other
languages that use non-alphabetic systems, the character vocabulary can be also large.
Chinese and Japanese, two of the most widely used non-alphabetic languages, contain
large numbers of ideographs: hanzi of Chinese and kanji of Japanese. The character
vocabulary can be as scalable as the word vocabulary. Their rare characters are hard to
be learned unless we use a very large corpus and a huge model. The problem motivated
us to propose a novel approach for Japanese.

We paid our attention to the meaningful components that compose the ideographic
Chinese characters in Japanese. People who have learned the Chinese characters can
recognize the meaning of a word no matter from Chinese, Japanese, or Korean if the word
is written in Chinese characters in most cases.

According to composition, Chinese characters can be categorized as the pictograms
(“象形字”), the ideograms (“指事字”), the phono-semantic compound characters (“形声
字”), the logical aggregates (“会意字”), and the phono-semantic logical aggregates (“会
意形声字”). Most of the characters are the phono-semantic compound characters (“形
声字”), the logical aggregates (“会意字”), or the phono-semantic logical aggregates (“会
意形声字”), which can be decomposed into lower-ordered meaningful components - the
radicals. The compound characters form the bulk of Chinese characters. Using radicals
instead of characters as inputs can both help generalization and reduce the number of
parameters. There have been some researches about employing the information of the
radicals for natural language processing.

However, the radicals are more difficult to be understood for machines due to the
changes in usages and meanings in the history of Chinese characters. Some previous
works rely on the radicals record in dictionaries, but different dictionaries sometimes
label different components as the radials of a character. There have not been agreements
on what is the correct radicals of some characters yet due to archaeological issues.

Other previous works employ the images of characters, but the shapes of Chinese

60

CONCLUSIONS 61

characters are sometimes confusing: Some characters that look similar represent very
different meanings. That is why we propose to utilize a CNN encoder to extract the
radical-level information from all the components instead of relying on dictionaries or
character images.

We proposed a CNN-based encoder. The encoder employs multiple filters to extract
the word-level features and character-level features from the radicals. We compared the
proposed radical-level model with word embedding-based models and conventional radical-
based models in sentiment analysis tasks and a text generation task. The proposed model
is on par with the state-of-the-art models with much fewer parameters. Especially for the
samples that contained unknown characters, the proposed model outperformed all the
other models in the sentiment analysis experiments.

We also discussed the usage of structural and positional information. The experimental
results show that adding both structure embeddings and position embeddings leads to
more rich and representative features and better fitting on the dataset. Especially, they
bring much higher recalls and F-1 scores on the known words. It presents a powerful
alternative when known words are more important than the unknown ones.

In conclusion, the proposed CNN encoder-based methods show reliable performance
with few parameters. Nowadays, people have begun to use deep learning for mobile
devices and chips. Our proposed methods can be helpful for such application scenes for
their friendly computational cost.

Further exploration of using radicals for text generation can be a research topic of
future works. In our experiments, we used a relatively simple recurrent language model.
Using more tailored language models may bring better results.

Acknowledgments

I would like to thank my advisor Prof. Masafumi Hagiwara for the continuous support
of my Ph.D. study. He provided me lots of research resources, inspiring advice, and
encouragement, which have helped me in all the time of research in the past 8 years.

I would like to also thank Prof. Imai, Prof. Saito, and Prof. Shinozawa, for their
reviews on this dissertation.

I would like to thank the Keio Leading-edge Laboratory of Science and Technology.
They provided me the KLL Research Grant for Ph.D. Program, which helped me very
much on research fees.

I would like to thank Watanuki International Scholarship Foundation. The scholarship
provided by them made it possible for me to concentrate on research without doing part-
time jobs.

I would like to acknowledge Rakuten, Inc. and the Advanced Language Information
Forum (ALAGIN) generously provided the Rakuten Ichiba data for our research.

Finally, I would like to thank my family members for supporting me throughout the
Ph.D. course.

62

Bibliography

[1] Michael E. Wall, Andreas Rechtsteiner, and Luis M. Rocha. “Singular value
decomposition and principal component analysis”. In A Practical Approach to
Microarray Data Analysis, pp. 91–109, Springer, 2003.

[2] David Hull. “Improving text retrieval for the routing problem using latent semantic
indexing”. In Proceedings of the Special Interest Group on Information Retrieval,
pp. 282–291, 1994.

[3] Peter W. Foltz. “Using latent semantic indexing for information filtering”. ACM
SIGOIS Bulletin, vol. 11, no. 2-3, pp. 40–47, 1990.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet allocation”.
Journal of Machine Learning Research, vol. 3, no. Jan, pp. 993–1022, 2003.

[5] Chong Wang, John Paisley, and David Blei. “Online variational inference for
the hierarchical dirichlet process”. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pp. 752–760, 2011.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. “A neural
probabilistic language model”. Journal of Machine Learning Research, vol. 3, pp.
1137–1155, 2003.

[7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean.
“Distributed representations of words and phrases and their compositionality”. In
Advances in Neural Information Processing Systems 26, pp. 3111–3119, 2013.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient estimation
of word representations in vector space”. arXiv preprint arXiv:1301.3781, 2013.

[9] Geoffrey Zweig and Christopher J. C. Burges. “The microsoft research sentence
completion challenge”. Technical report, Microsoft Research, 2011.

[10] Bai Xue, Chen Fu, and Zhan Shaobin. “A study on sentiment computing and
classification of sina weibo with word2vec”. In Proceedings of IEEE International
Congress on Big Data, pp. 358–363, 2014.

[11] Dongwen Zhang, Hua Xu, Zengcai Su, and Yunfeng Xu. “Chinese comments
sentiment classification based on word2vec and svmperf”. Expert Systems with
Applications, vol. 42, no. 4, pp. 1857 – 1863, 2015.

[12] Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. “Support vector machines and
word2vec for text classification with semantic features”. In Proceedings of IEEE
14th International Conference on Cognitive Informatics & Cognitive Computing,
pp. 136–140, 2015.

63

64 BIBLIOGRAPHY

[13] Scharolta Katharina Sienčnik. “Adapting word2vec to named entity recognition”.
In Proceedings of the 20th Nordic Conference of Computational Linguistics, pp.
239–243, 2015.

[14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global
vectors for word representation”. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pp. 1532–1543, 2014.

[15] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi.
“Bidirectional attention flow for machine comprehension”. In International
Conference on Learning Representations, 2017.

[16] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. “Reading wikipedia
to answer open-domain questions”. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, vol. 1, pp. 1870–1879, 2017.

[17] Phu M. Htut, Samuel R. Bowman, and Kyunghyun Cho. “Training a ranking
function for open-domain question answering”. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Student Research Workshop, pp. 120–127, 2018.

[18] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. “Deep contextualized word representations”. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, vol. 1, pp. 2227–
2237, 2018.

[19] Jacob Devlin, Ming W. Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-
training of deep bidirectional transformers for language understanding”. arXiv
preprint arXiv:1810.04805, 2018.

[20] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. “Language models are unsupervised multitask learners”. Technical
report, OpenAI, 2019.

[21] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. “Bag of
tricks for efficient text classification”. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics, vol. 2, pp.
427–431, Association for Computational Linguistics, 2017.

[22] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural machine translation
of rare words with subword units”. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, vol. 1, pp. 1715–1725, 2016.

[23] Juan Ramos. “Using tf-idf to determine word relevance in document queries”. In
Proceedings of the First Instructional Conference on Machine Learning, vol. 242,
pp. 133–142, 2003.

[24] Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. “Crowd sensing of traffic
anomalies based on human mobility and social media”. In Proceedings of the
21st ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 344–353, 2013.

BIBLIOGRAPHY 65

[25] Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. D. Pietra, and
Jenifer C. Lai. “Class-based n-gram models of natural language”. Computational
Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[26] Reinhard Kneser and Hermann Ney. “Improved clustering techniques for class-
based statistical language modelling”. In Third European Conference on Speech
Communication and Technology, 1993.

[27] Thomas R. Niesler, Edward W. D. Whittaker, and Philip C. Woodland.
“Comparison of part-of-speech and automatically derived category-based language
models for speech recognition”. In Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 177–180, 1998.

[28] Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh
Vempala. “Latent semantic indexing: A probabilistic analysis”. Journal of Computer
and System Sciences, vol. 61, no. 2, pp. 217–235, 2000.

[29] Peter J. Rousseeuw. “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”. Journal of computational and applied mathematics,
vol. 20, pp. 53–65, 1987.

[30] Michael Röder, Andreas Both, and Alexander Hinneburg. “Exploring the space of
topic coherence measures”. In Proceedings of the 8th ACM International Conference
on Web Search and Data Mining, pp. 399–408, 2015.

[31] Stuart Geman and Donald Geman. “Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images”. In Readings in Computer Vision, pp. 564–584,
Elsevier, 1987.

[32] Yee W. Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. “Sharing
clusters among related groups: Hierarchical dirichlet processes”. In Advances in
Neural Information Processing Systems 18, pp. 1385–1392, 2005.

[33] Jinxing Yu, Xun Jian, Hao Xin, and Yangqiu Song. “Joint embeddings of chinese
words, characters, and fine-grained subcharacter components”. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
286–291, 2017.

[34] Andriy Mnih and Geoffrey E. Hinton. “A scalable hierarchical distributed language
model”. In Advances in Neural Information Processing Systems 22, pp. 1081–1088,
2009.

[35] Andriy Mnih and Yee W. Teh. “A fast and simple algorithm for training neural
probabilistic language models”. In Proceedings of the 29th International Coference
on International Conference on Machine Learning, 2012.

[36] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. “Natural language processing (almost) from scratch”. Journal of
Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[37] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
“Exploring the limits of language modeling”. arXiv preprint arXiv:1602.02410, 2016.

66 BIBLIOGRAPHY

[38] Gábor Melis, Chris Dyer, and Phil Blunsom. “On the state of the art of evaluation in
neural language models”. In International Conference on Learning Representations,
2018.

[39] Stephen Merity, Nitish Shirish K., and Richard Socher. “Regularizing and
optimizing LSTM language models”. In International Conference on Learning
Representations, 2018.

[40] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. “Xlnet: Generalized autoregressive pretraining for language
understanding”. arXiv preprint arXiv:1906.08237, 2019.

[41] David A. Huffman. “A method for the construction of minimum-redundancy codes”.
Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[42] Yao Yao, Xia Li, Xiaoping Liu, Penghua Liu, Zhaotang Liang, Jinbao Zhang, and
Ke Mai. “Sensing spatial distribution of urban land use by integrating points-
of-interest and google word2vec model”. International Journal of Geographical
Information Science, vol. 31, no. 4, pp. 825–848, 2017.

[43] Swabha Swayamdipta, Ankur P. Parikh, and Tom Kwiatkowski. “Multi-mention
learning for reading comprehension with neural cascades”. In International
Conference on Learning Representations, 2018.

[44] Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan Lyu, Hua Wu, Sujian Li, and
Haifeng Wang. “Multi-passage machine reading comprehension with cross-passage
answer verification”. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, vol. 1, pp. 1918–1927, 2018.

[45] Xuezhe Ma and Eduard Hovy. “End-to-end sequence labeling via bi-directional
lstm-cnns-crf”. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, vol. 1, pp. 1064–1074, 2016.

[46] Jason P. C. Chiu and Eric Nichols. “Named entity recognition with bidirectional
lstm-cnns”. Transactions of the Association for Computational Linguistics, vol. 4,
pp. 357–370, 2016.

[47] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. “Attention-based lstm
for aspect-level sentiment classification”. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 606–615, 2016.

[48] Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng.
“Improving word representations via global context and multiple word prototypes”.
In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics, vol. 1, pp. 873–882, 2012.

[49] Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. “A unified model for word sense
representation and disambiguation”. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, pp. 1025–1035, 2014.

[50] Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tieyan
Liu. “A probabilistic model for learning multi-prototype word embeddings”. In

BIBLIOGRAPHY 67

Proceedings of the 25th International Conference on Computational Linguistics:
Technical Papers, pp. 151–160, 2014.

[51] Yuanzhi Ke and Masafumi Hagiwara. “Alleviating overfitting for polysemous words
for word representation estimation using lexicons”. In 2017 International Joint
Conference on Neural Networks, pp. 2164–2170, 2017.

[52] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine
translation by jointly learning to align and translate”. In International Conference
on Learning Representations, 2015.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition”. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[54] Jimmy L. Ba, Jamie R. Kiros, and Geoffrey E. Hinton. “Layer normalization”. arXiv
preprint arXiv:1607.06450, 2016.

[55] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: a simple way to prevent neural networks from
overfitting”. Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

[56] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. “Rethinking the inception architecture for computer vision”. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

[57] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. arXiv preprint arXiv:1502.03167,
2015.

[58] Xiang Zhang, Junbo Zhao, and Yann Lecun. “Character-level convolutional
networks for text classification”. In Advances in Neural Information Processing
Systems 28, 2015.

[59] Andrej Karpathy. “The unreasonable effectiveness of recurrent neural networks”.
Andrej Karpathy Blog, vol. 21, 2015.

[60] Marta R. Costa-jussà and José A. R. Fonollosa. “Character-based neural machine
translation”. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, vol. 2, pp. 357–361, 2016.

[61] Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. “A character-level decoder
without explicit segmentation for neural machine translation”. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp.
1693–1703, 2016.

[62] Jason Lee, Kyunghyun Cho, and Thomas Hofmann. “Fully character-level neural
machine translation without explicit segmentation”. Transactions of the Association
for Computational Linguistics, vol. 5, pp. 365–378, 2017.

68 BIBLIOGRAPHY

[63] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. “Character-
aware neural language models”. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence, 2016.

[64] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. “Google’s
neural machine translation system: Bridging the gap between human and machine
translation”. arXiv preprint arXiv: 609.08144, 2016.

[65] Yi P. Chen, Alan Allport, and John C. Marshall. “What are the functional
orthographic units in chinese word recognition: The stroke or the stroke pattern?”
The Quarterly Journal of Experimental Psychology Section A, vol. 49, no. 4, pp.
1024–1043, 1996.

[66] Clay Williams and Thomas Bever. “Chinese character decoding: a semantic bias?”
Reading and Writing, vol. 23, no. 5, pp. 589–605, 2010.

[67] Yanran Li, Wenjie Li, Fei Sun, and Sujian Li. “Component-enhanced chinese
character embeddings”. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, 2015.

[68] Rongchao Yin, Quan Wang, Peng Li, Rui Li, and Bin Wang. “Multi-granularity
chinese word embedding”. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 2016.

[69] Jiangong Wei. Xinhua Zidian. Commercial Press, 2003.

[70] Marzena Karpinska, Bofang Li, Anna Rogers, and Aleksandr Drozd. “Subcharacter
information in japanese embeddings: When is it worth it?” In Proceedings of the
Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP,
pp. 28–37, 2018.

[71] Viet Nguyen, Julian Brooke, and Timothy Baldwin. “Sub-character neural language
modelling in japanese”. In Proceedings of the First Workshop on Subword and
Character Level Models in NLP, pp. 148–153, 2017.

[72] Frederick Liu, Han Lu, Chieh Lo, and Graham Neubig. “Learning character-level
compositionality with visual features”. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, 2017.

[73] Daiki Shimada, Ryunosuke Kotani, and Hitoshi Iyatomi. “Document classification
through image-based character embedding and wildcard training”. In 2016 IEEE
International Conference on Big Data, pp. 3922–3927, 2016.

[74] Yan Shao, Jörg Tiedemann, Christian Hardmeier, and Joakim Nivre. “Character-
based joint segmentation and pos tagging for chinese using bidirectional rnn-crf”.
In Proceedings of the 8th International Joint Conference on Natural Language
Processing, pp. 173–183, 2017.

BIBLIOGRAPHY 69

[75] Falcon Dai and Zheng Cai. “Glyph-aware embedding of chinese characters”. In
Proceedings of the First Workshop on Subword and Character Level Models in NLP,
pp. 64–69, 2017.

[76] Longtu Zhang and Mamoru Komachi. “Neural machine translation of logographic
language using sub-character level information”. In Proceedings of the Third
Conference on Machine Translation, pp. 17–25, Association for Computational
Linguistics, Belgium, Brussels, 2018.

[77] Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li, Qinghong
Han, Xiaofei Sun, and Jiwei Li. “Glyce: Glyph-vectors for chinese character
representations”. arXiv preprint arXiv:1901.10125, 2019.

[78] Lianchi Dong. Xin Jinwen Bian. Writers Publishing House, 2011.

[79] Zhibiao Tang. San Jin Wen Zi Bian. Writers Publishing House, 2013.

[80] Yulong Leng. Zhonghua Zihai. Chung Hwa Book Company, 1994.

[81] Yucai Duan. Shuowen Jiezi Zhu. Shanghai Guji Publishing House, 1815.

[82] Haibo Sun. Jiaguwen Bian. Chung Hwa Book Company, 1965.

[83] Geng Rong. Jinwen Bian. Chung Hwa Book Company, 1985.

[84] Shuozhong Zhang. Shuihudi Qinjian Wenzi Bian. Wenwu Chubanshe, 1994.

[85] Françoise Bottéro and Christoph Harbsmeier. “The shuowen jiezi dictionary and
the human sciences in china”. Asia Major, pp. 249–271, 2008.

[86] Tadashi Kamata and Toratarou Yoneyama. Shin Kangorin 2nd Edition. Taishukan
Shoden, 2011.

[87] Yachu Zhang. Yinzhou Jinwen Jicheng Yinde. Chung Hwa Book Company, 2001.

[88] Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne Hubbard, and Lawrence D. Jackel. “Backpropagation applied to
handwritten zip code recognition”. Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[89] Yoon Kim. “Convolutional neural networks for sentence classification”. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, 2014.

[90] Mike Schuster and Kuldip K. Paliwal. “Bidirectional recurrent neural networks”.
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[91] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. “Text
understanding with the attention sum reader network”. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, 2016.

[92] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

70 BIBLIOGRAPHY

[93] Rupesh K. Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Training very deep
networks”. In Advances in Neural Information Processing Systems 28, 2015.

[94] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz,
and Samy Bengio. “Generating sentences from a continuous space”. In Proceedings of
the 20th SIGNLL Conference on Computational Natural Language Learning, 2016.

[95] Geoffrey E. Hinton, Nitish Srivastava, and Kevin Swersky. “Lecture 6a: Overview
of mini-batch gradient descent”. In COURSERA: Neural Networks for Machine
Learning, 2012.

[96] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
“Convolutional sequence to sequence learning”. In Proceedings of Machine Learning
Research, vol. 70, pp. 1243–1252, 2017.

[97] Yuanzhi Ke and Masafumi Hagiwara. “Cnn-encoded radical-level representation for
japanese processing”. Transactions of the Japanese Society for Artificial Intelligence,
vol. 33, no. 4, pp. D–I23, 2018.

[98] Tomohiko Morioka. “Chise kanji kouzou jouhou database (chise kanji structure
information database)”. In Touyougakuheno Konpyutariyou Dai 17 Kai Kenkyu
Semina (the 17th Research Seminar of Computer-based Orientalics), pp. 93–103,
2006.

[99] Julie D. Allen, Deborah Anderson, Joe Becker, Richard Cook, Mark Davis, Peter
Edberg, Michael Everson, Asmus Freytag, Laurentiu Iancu, Richard Ishida, John H.
Jenkins, Ken Lunde, Rick McGowan, Lisa Moore, Eric Muller, Addison Phillips,
Roozbeh Pournader, Michel Suignard, and Ken Whistler. The Unicode Standard.
The Unicode Consortium, 2007.

[100] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Ł ukasz Kaiser, and Illia Polosukhin. “Attention is all you need”.
In Advances in Neural Information Processing Systems 30, pp. 5998–6008, 2017.

[101] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going
deeper with convolutions”. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1–9, 2015.

[102] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks”. In Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics, pp. 315–323, 2011.

[103] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics, pp. 249–256, 2010.

