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Abstract

Since the development of laser technology, light-matter interactions, and rele-
vant applications have been intensively studied. In particular, the optical mi-
croresonator is known to be a device that enables the ultimate enhancement of
optical density by confining light with a small mode volume, resulting in the
appearance of various optical nonlinearities. Recently, a microresonator-based
optical frequency comb, which is known as a microcomb, has been attracting a
lot of attention.

One requirement for the development of a microcomb is dispersion engi-
neering. Specifically, dispersion plays a vital role as regards the phase-matching
condition for optical parametric oscillation. Proper control of microresonator
dispersion has the potential to allow the expansion of the microcomb bandwidth
and the mode-locking operation.

This thesis describes a study of the dispersion engineering of high-Q optical
microresonators, which influences optical frequency comb generation, featuring
monolithic whispering gallery mode microresonators. This study demonstrates
the expansion of the microcomb bandwidth based on sophisticated dispersion
engineering, which became possible by employing high-Q microresonators fab-
ricated with precision machining.

Chapter 1 provides the background and objective of this thesis.
Chapter 2 introduces the fundamental theory of third-order nonlinearity, fab-

rication, and the pros and cons of different high-Q microresonators from the
perspective of microcomb formation.

Chapter 3 explains basic theory, calculation, and measurement with regard
to the dispersion of a microresonator for a frequency comb. In particular, it
highlights the relationship between a microcomb and higher-order dispersion,
and reveals the dispersion geometry design strategy.

Chapter 4 discusses the ultraprecision machining fabrication of dispersion-
engineered optical microresonators with aQ exceeding 108. Moreover, an octave-
wide optical parametric oscillation was demonstrated in a machined magnesium
fluoride resonator.

Chapter 5 describes a blue light emission realized via cascade four-wave mix-
ing and third-harmonic generation in dispersion-engineered on-chip silica mi-
croresonators. This chapter also reveals that precise dispersion engineering can
be used to generate visible light deterministically.

Chapter 6 describes the numerical modeling of the anti-mode crossing-induced
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microcomb generation. It is shown that this model is particularly powerful for
simulating mode-locked pulse formation in a normal-dispersion regime in a rig-
orous way.

Chapter 7 summarizes the thesis and describes the future outlook.
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Chapter 1

Introduction and motivation

1.1 Introduction to optical microresonators

A laser named as an acronym for "light amplification by stimulated emission of
radiation" is one of the greatest inventions in human history. In 1960, the first
laser was demonstrated by Theodore H. Maiman [1] based on the theoretical
studies by Charles H. Townes and Arthur L. Schawlow [2]. Compared to the
conventional light source, such as a lamp and light bulb, the emitted light from
lasers shows spatial and temporal coherent properties, making it possible to pro-
vide various applications. In 2020, lasers have become an essential technology
for our lives and celebrate its 60th anniversary.

A resonator, sometimes called a cavity, is the main element that composes the
laser, based on a cylinder with two highly refractive mirrors to confine light. This
type is the most conventional resonator known as a Fabry-Pérot resonator, and
it serves as a feedback system that light goes through a gain medium for several
times. The light trapped in the resonator travels back and forth between two
reflectors, as being amplified through the round trip. This mechanism is known
as stimulated emission, which creates coherent new photons as the photons of
incident waves. In general, one mirror is partially transparent to let output from
the resonator escape. In addition to Fabry-Pérot, a spherical shape is also an
attractive candidate for optical resonators. The light travels along the resonator’s
circumference, whereas it is technically difficult to form such types of resonators
with mirrors. Alternatively, dielectric materials offer a fascinating way to confine
the light into tiny space by utilizing the difference of refractive indices. In these
types of resonators, there is no limit for the direction of laser emission. Moreover,
it is possible to reduce the size of the resonator by using droplets, polymers, and
glasses to micro-meter scale [3]. This light guiding structure is the original idea
of microresonators mainly discussed in this thesis.

Whispering gallery mode (WGM) resonators confine light by total internal
reflection where the refractive index of the resonator materials is higher than
that of surrounding materials. WGM is originated from the sound waves in the
whispering gallery of St Paul’s Cathedral in London. In the case of WGM, the
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light must be kept on a circular trajectory along the resonator’s circumference.
The light guided on the resonator is inherently lossy due to material absorp-
tion, scattering, radiation, etc. Therefore, utilizing low loss optical materials
is straightforward to fabricate high quality (Q) factor WGM microresonators.
Another approach for achieving ultrahigh-Q is to reduce the surface roughness.
The first demonstration of ultrahigh-Q WGM microresonator was reported in
1989 [4] by melting the tip of silica optical fiber using laser annealing, which
forms spherical shape resonator exhibiting small roughness thanks to the sur-
face tension of melted silica. There is a wide variety of material candidates for
WGM microresonators including fused silica [4–6], fluoride materials [7], poly-
mer [8], sapphire [9], silicon [10], and lithium niobate [11]. Besides the choice
of materials, various kinds of resonator shapes have been proposed [12], such as
microtoroids [5], microdisks [13], microrods [14,15], and microbubbles [16].

In contrast to WGM microresonators, waveguide resonators have a different
structure to confine the propagated light. The core region, which is a rectan-
gular shape typically, is surrounded by cladding material, guiding the light as
a waveguide mode. The waveguide resonator is no longer necessarily a circu-
lar trajectory because of its tight confinement by surrounding structure from all
sides [12]. Waveguide resonators are commonly-used platforms since they have
a small footprint and can be fabricated by CMOS-compatible processes, which
enables the achievement of precise structure control and integration of external
waveguides on the same chip. The variety of waveguide resonators include sili-
con (Si) [17], silicon nitride (Si3N4) [18], high-index doped silica (Hydex) [19],
aluminium nitride (AlN) [20], aluminium gallium arsenide (AlGaAs) [21], and
diamond [22].

The applications of optical microresonators cover numerous fields including
signal processing [23], high-precision sensing [24], cavity quantum electrody-
namics (QED) [25, 26], cavity optomechanics [27] and frequency comb gen-
eration [28]. Even though there are several potential applications, this thesis
focuses the light on the microresonator-based frequency comb.

1.2 Introduction tomicroresonator frequency comb

An optical frequency comb has a set of equidistantly spaced optical frequency
lines, which looks like a comb in the frequency domain, and the mutually coher-
ent comb lines correspond to ultrashort optical pulses in the time domain [29–
31]. The evolution of the optical frequency comb has drastically developed
the research fields of ultrafast lasers and have created novel ideas and appli-
cations [32]. In 2005, the Nobel Prize in physics was awarded to two scien-
tists, Theodor W. Hänsch and John L. Hall, for the contribution to the develop-
ment of optical frequency comb technique [33]. The optical frequency comb
simultaneously links several frequency scales; optical frequencies (∼sub-PHz),
comb bandwidth (∼THz), repetition rate (∼GHz), and carrier offset frequency
(∼MHz). Therefore, an optical frequency comb provides a frequency ruler cov-
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ering from radio-frequency (RF) to optical frequency domain, which strongly
impacts on optical frequency metrology. Absolute frequency measurement is
one example. Before the development of optical frequency comb, measuring the
optical frequency required a complex frequency chain system and many profes-
sional scientists. Nevertheless, the present systematic frequency comb technique
enabled the obtainment of the frequency information in a few seconds on a small
table.

The microresonator based frequency comb has been explored by T. Kippen-
berg et al. in 2007 for the first time [34]. A strongly enhanced optical field
inside a high-Q optical microresonator enables the conversion of a CW laser
pump to the broadband and equally spaced comb via cascaded four-wave mixing
(FWM) [28,35–38]. The critical difference from the conventional laser is that a
passive microresonator device generates new frequencies as a result of nonlinear
frequency conversion thanks to Kerr nonlinearity. Since the mode spacing of fre-
quency comb is scaled downwith the cavity size, microresonator frequency comb
has readily achieved the large mode spacing exceeding several tens to hundreds
of GHz, which has been an unexplored domain for the conventional frequency
comb sources. Besides, the tiny mode volume of microresonator, which some-
times can be integrated on a chip, also contributed to reducing the required
pump power to generate a frequency comb. Microresonator frequency combs
rely on Kerr nonlinearity of dielectric microresonator material, and therefore,
they are called Kerr frequency comb or microcomb [39].

However, as opposed to the conventional mode-locked lasers, the output of
microcomb in the time domain does not necessarily guarantee optical pulse for-
mation. In order to achieve a mode-locked state in a continuously driven non-
linear resonator, it is needed to satisfy several conditions governed by a mean
field model describing a dissipative system [40]. The first observation of tem-
poral soliton in optical microresonators, which is called a dissipative Kerr soli-
ton (DKS), has been reported in 2013 [41]. This discovery made it possible
to explore a high-coherence, stable soliton microcomb, as a result of the bal-
ance between parametric gain and loss and between dispersion and nonlinear-
ity [40]. By now, DKSs have been successively demonstrated in a wide variety
of microresonators, ranging from silica [42], MgF2 crystalline [41], silicon ni-
tride [43, 44], silicon [45], aluminum nitride [46], and lithium niobate [47].
Different platforms have different advantages (e.g., high Q-factor, nonlinearity,
chip-integration), and many groups are developing and proposing newmaterials
and structures for microresonators.

1.3 Research overview related to the thesis

Ultra-precision machining of crystalline microresonators

The development of ultra-high quality factor (Q) optical microresonators en-
abled us to explore a universe of optics. In particular, crystalline microresonators
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offer potential applications such as laser stabilization, quantum manipulation,
and optical frequency comb owing to extremely long photon storage time. In-
deed, several applications rely on the ultrahigh-Q up to 109 and corresponding
to a resonance linewidth of hundreds of kilohertz. The fundamental limit of the
Q-factor in crystalline resonators is ∼1013 [48] (Q > 1011 as observed in the
experiment [49]), and this value surpasses that of resonators made with other
materials (e.g., silica, silicon, etc.). Especially, magnesium fluoride (MgF2) and
calcium fluoride (CaF2) are Kerr nonlinear materials that are commonly used
for fabricating crystalline microresonators thanks to their quality, commercial
availability, and optical properties. Very recently, lithium niobate (LiNbO3) and
lithium tantalate (LiTaO3) crystals exhibiting the second-order nonlinearity are
attracting interest with respect to the variety of optical properties (e.g., Pockels
effect, piezoelectric effect, etc.).

A polishing and machining process is usually employed to fabricate the crys-
tallinemicroresonators, which are particularly non-integrated and bulk resonators.
They are accomplished either with a motion-controlled machine or manually.
A hard diamond tool enables us to fabricate WGM structures initially, but it
is needed to employ subsequent manual polishing with diamond slurry to im-
prove theQ-factor of the microresonator. Precision machining readily overcomes
the geometrical limitation of the manual process; therefore, precise computer-
controlled machining has achieved the pre-designed, sophisticated mode struc-
tures, for example, single-mode [50,51] and dispersion engineered resonators to
generate broadband microresonator frequency combs [52–54]. However, a sig-
nificant challenge remains because it is essential to employ additional hand pol-
ishing after the diamond turning process due to the relatively low Q of 106∼107

at best when using machining alone [50,52,53,55]. This value is not usually suf-
ficient to generate a Kerr frequency comb in which the threshold power follows
the scaling factor∼ V/Q2 [56]. Indeed, the additional polishing improves theQ;
nevertheless, a subsequent polishing deforms the precisely fabricated structures
in spite of the engineered dispersion realized by the programmed motion of the
lathe [50]. Then, a strong motivation of this study is to fabricate ultrahigh-Q
crystalline microresonators with only precision machining.

Although an automated ultra-precision machining technique is highly com-
patible with dispersion engineering, the achievement of ultrahigh-Q factor has
been the bottleneck encounteredwith conventional fabrication techniques. There-
fore, the reliable production of high-Q crystalline microresonators by using pre-
cision machining is highly required so far. Such a technique also supports recent
advances in the integration of crystalline microresonators with photonic waveg-
uides towards a wide range of future applications [57–60].
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Large frequency shift optical parametric oscillation and clus-
tered comb

As an independent study on the fabrication of high-Q microresonators, phase-
matched FWM in optical microresonators driven by a continuous wave (CW)
laser has been attracting interests. Not only in regard to a microresonator fre-
quency comb in an anomalous dispersion regime, but also comb generation in
a weak normal dispersion regime is proceeding recently. Since normal disper-
sion usually does not allow modulation instability (MI) near the pump, phase-
matched FWM is generally considered to occur only in an anomalous disper-
sion system. In the case of fiber optics, nevertheless, a unique phase-matching
scheme assisted by higher-order dispersions has been employed to achieve the
resonant MI process even in the normal dispersion regime [61]. It is namely
that higher-order dispersion, particularly even orders of dispersion, enables the
phase-matching process far from the pump mode, and moreover, the large fre-
quency shift oscillation frequencies can be widely tunable depending on pump
frequency. Since it is necessary to pump near the zero-dispersion wavelength,
standard silica fibers [61, 62] and photonic crystal fibers [63] have been em-
ployed as the platform.

Recent studies have demonstrated the large frequency shift optical paramet-
ric generation and subsequent comb generation via a FWM process in an optical
microresonator system including MgF2 [64–66], silica (SiO2) [67], aluminum
nitride (AlN) [68], and silicon nitride (Si3N4) [69] ring resonators. The micro-
comb, characterized by FWM generation with large shift parametric sidebands,
is called Kerr clustered combs since the pump and primary sidebands form comb
clusters around them. Such clustered combs have the potential to utilize a mi-
croresonator comb source covering the visible to mid-infrared wavelength region
when only tuning a single CW laser frequency to pump the resonances. More-
over, the oscillation wavelength is also highly tunable, relying on the microres-
onator dispersion; and thus, this study is compatible with the technique of cavity
geometric dispersion engineering. For both cases of a pure parametric oscilla-
tion with a pair of signal and idler light and a clustered comb, the oscillation
wavelengths are essential and interesting subjects for investigation with regard
to dispersion engineering in optical microresonators. A bandwidth expansion
of the frequency shift via the phase-matched FWM process is one of the recent
hot topics in the field of microresonator dispersion engineering, so many stud-
ies have been reported using various platforms and wavelength bands. Despite
a number of experimental demonstration, the dispersion engineering, from the
standpoint of precise fabrication, has not been well explored yet. In particular,
the precise fabrication of whispering gallery mode resonators (e.g., crystalline-
based and fused silica-based) is a critical issue regarding dispersion engineering
of higher-order dispersion.
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Visible light emission via second and third-harmonic genera-
tion

Optical microresonators have attracted considerable interest as compact plat-
forms in the field of nonlinear harmonic generation for obtaining visible light
from infrared light. There have been many studies on harmonic frequency con-
version by using optical microresonators since such frequency-mixing processes
via second- and third-order optical nonlinearities occur efficiently in microres-
onators as a result of large optical field enhancement owing to a high-Q and a
small mode volume. In particular, the second-harmonic process [i.e., second-
harmonic generation (SHG), and sum-frequency generation (SFG)] and third-
harmonic process [i.e., third-harmonic generation (THG), and third-order sum-
frequency generation (TSFG)] enable a direct frequency up-conversion to the
visible wavelength regime from the near-infrared wavelength regime.

The first demonstration of continuous wave (CW) third-harmonic emission
in an optical microresonator was reported in 2007 by using a silica toroid WGM
microresonator [70]. The work by T. Carmon et al. triggered many studies on
the visible light emission via frequency up-conversion in optical microresonators
for the past decades. Not only a harmonic generation from a pump light but also
multi-color emission via TSFG has been demonstrated in a silica microresonator
[71], and comb-like spectrum generation at visible wavelengths has been re-
ported using waveguide resonators [72–74]. Sincemicrocomb generation is usu-
ally inhibited due to strong material dispersion at the visible wavelength regime,
these frequency up-conversion processes have been expected to realize a visible
microcomb with near-infrared pumping.

In addition, interactions between several nonlinear processes are attracting a
lot of attention. For example, a silica microtoroid easily emits multi-color visible
light (e.g., blue, green, yellow, and red) with a high pump power. However,
third-harmonic generation permits only green light (517 nm) with 1550 nm
pumping. These are mysterious and interesting observations, and they provide
the motivation to discover what is occurring inside the resonator.

Normal dispersion Kerr frequency comb and dark pulse forma-
tion

A study on normal dispersion microresonator frequency combs began following
intensive research on Kerr comb generation with anomalous dispersion. This is
because the nonlinear propagation, particularly in single-mode optical fibers,
usually exhibits modulation instability (MI) only with anomalous dispersion.
This limitation can be unleashed by using a cavity system; however, most micro-
comb studies have been conducted using microresonators exhibiting anomalous
dispersion since the phase-matching condition for optical parametric oscillation
is easy to satisfy in this regime. Still, there have been several demonstrations of
Kerr comb generation in the normal dispersion regime, and they offer practical
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advantages over anomalous dispersion microcombs. One of them is a conver-
sion efficiency, which is known as a weakness of the microcomb. In contrast to
a bright soliton pulse in anomalous dispersion, a mode-locked state in normal
dispersion (i.e., a dark pulse) makes it possible to realize a much higher con-
version efficiency than 30% in the infrared wavelength regime [75]. Also, it
admits more deterministic approaches to mode-locking state [76]. Notably, its
better power efficiency and low noise figure are highly attractive for a specific
application such as a light source of coherent optical telecommunications.

Thus far, reliable approaches to obtaining normal dispersion microcombs are
as follows: engineering the geometric dispersion to overcome strong material
dispersion, utilizing the anti-mode crossing effect to induce a local anomalous
dispersion, and the use of both techniques. Notably, the utilization of avoided
mode crossing is more attractive with a view to the controllability of a mode
spacing of the comb. Subsequently, many works have focused on revealing the
underlying physics of Kerr frequency comb generation in the normal dispersion
regime [76–78]. These works paved the way for normal dispersionmicrocomb to
extend the spectral bandwidth and to realize stably propagating pulse operation.
However, the complex dynamics of normal dispersion microcombs has not been
well understood, including the development of numerical modeling and analysis.

1.4 Thesis outline and objective

This thesis investigates the dispersion engineering of high-Q optical microres-
onators for optical frequency comb generation. Dispersion engineering, based
on the design and fabrication of microresonators, is a crucial technique for ob-
taining a mode-locked state, namely a dissipative Kerr soliton, and for expanding
the bandwidth of microresonator frequency combs. The thesis addresses this is-
sue with a view to designing the geometry of microresonators. Since the goal
of this thesis is to study dispersion engineering and its application to microres-
onator frequency combs, the fundamental theory, techniques and strategy are
introduced in Chapter 2 and Chapter 3. The developed simulation method and
dispersion measurement techniques described in Chapter 3 are used to design
and evaluate microresonator dispersion. Then, the role of dispersion in micro-
comb generation is briefly described. The author uses precision machining for
crystalline microresonator fabrication since it is a powerful tool for dispersion
engineering. Chapter 4 mainly describes fabrication using precision machining
with the goal of realizing dispersion-engineered microcomb applications. Ultra-
precision machining has a great advantage as regards geometry controllability
because it is a fully computer-controlled system. However, a low Q-factor im-
posed by large surface roughness is a critical limitation in relation to nonlinear
optics applications. To overcome this problem, the author confronts the opti-
mization of the fabrication conditions to make it possible to manage both a high
Q and geometry dispersion engineering. As a result, parametric oscillation is
demonstrated in a machine-made crystalline resonator in which the dispersion
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is evaluated with the techniques described in Chapter 3. The phase-matching
scheme described in Chapter 4 can be applied to silica-based resonators. Here,
the author highlights phenomena in a silica microtoroid resonator that have been
observed but not explained. The emission of various colors, in particular blue
light, is explained well by dispersion engineering and the coexistence of third-
order nonlinear effects. This study provides a deep insight into cascaded para-
metric oscillation in optical microresonators. Although “geometry” dispersion
engineering is the main concern of this thesis, another dispersion engineering
method is also dealt with in Chapter 6, namely anti-mode-crossing induced mi-
crocomb generation. The use of mode coupling eases the difficulty of geometry
dispersion engineering, particularly in a strong normal dispersion regime, and
this approach paves the way to deterministic mode-locking operation. Rigorous
modeling and a more practical simulation are the objectives of this chapter. The
chapter overviews are as follows,

Chapter2
High-Q optical microresonators have been developed along with an evolution
of microresonator frequency combs. Dynamics and underlying physics of mi-
crocombs have been revealed owing to great efforts over the years, which also
contributed to induce the big wave in the field of nonlinear optics as well as
nanophotonics. Chapter 2 introduces the study on optical microresonator based
frequency comb generation while reviewing the background, theory, simula-
tions, fabrication, and experiments with essential previous literature.

Chapter 3
Dispersion engineering is one of the essential techniques for microcomb genera-
tion. Chapter 3 describes how to simulate and design the microresonator disper-
sion precisely, featuring whispering gallery mode microresonators that exhibit a
significant difference in the strategy of resonator geometry design from waveg-
uide resonators. Besides, the precise dispersion measurement methods will be
introduced with the comparative experiment. A role of dispersion, particularly
of higher-order dispersion, in the Kerr frequency comb spectrum, is highlighted
in this chapter.

Chapter 4
Chapter 4 presents ultrahigh-Q crystalline microresonator fabrication for the first
time by the all-precision machining process. A cutting condition has been thor-
oughly addressed by considering crystal anisotropy, resulting inQ exceeding 100
million with a machining process solely. This work makes a major breakthrough
for dispersion engineering due to the fabrication accuracy and freedom of geom-
etry design, both of which are the critical drawbacks of the conventional fabri-
cation method. This chapter also describes the other significant demonstration,
namely an octave-wide optical parametric oscillation in crystalline microres-
onators. With a continuous-wave pump, oscillation frequencies were widely
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tuned, and subsequent comb clusters around 1.1 µm and 2.4 µm wavelengths
were also observed for the first time in this work.

Chapter 5
Third-harmonic generation can be observed in optical microresonators, even
though the process is independent of four-wave mixing. However, mutual inter-
action among other χ (3)-nonlinearity processes allows the bandwidth extension
of the optical spectrum. This chapter reports a continuous blue light emission
via third-harmonic generation, for the first time, upon a dispersion engineered
optical parametric generation. A chain of χ (3) process enables generating broad-
band optical spectrum covering visible to near-infrared wavelengths in a chip-
integrated microresonator with only a continuous-wave pump.

Chapter 6
Dispersion engineering is a key technique for microresonator frequency comb
generation including but not limited to geometric tailoring, a variety of resonator
material, and a fusion of them. A mode coupling induced resonance shift makes
it possible to create anomalous dispersion in a specific region, which becomes
a starting point of four-wave mixing. This method enables a normal dispersion
mode-locked comb generation, namely dark-pulse generation, deterministically.
This chapter proposes a rigorousmodel of Kerr comb generation inmode coupled
microresonators, and numerically investigates the behavior with the analysis of
phase-matching condition from the standpoint of dispersion engineering.

Chapter 7
This chapter summarizes the thesis and gives an outlook with a view to plotting
a new landscape for the microresonator frequency comb.
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Chapter 2

Microresonator based optical
frequency comb

2.1 Fundamentals of optical microresonators

2.1.1 Basic characteristics of microresonators

Resonance frequencies

Optical microresonators have equidistantly spaced resonance frequencies deter-
mined by:

ωm =
2πmc
neffL

(2.1)

λm =
neffL
m

(2.2)

where m is the mode number (m ∈ N), ωm is the angular frequency of the m-
th mode (λm is the wavelength), neff is the effective index, L is the roundtrip
length of the resonator, and c is the speed of light. Here, the roundtrip time
tR is expressed as the inverse of the free-spectral range (FSR) of the resonator
tR = 1/FSR. Figure 2.1 shows schematics of optical microresonators with a
roundtrip length L and corresponding optical resonances. It should be noted
that the FSR is the frequency-dependent value due to the material and geometric
dispersion of the medium.

Microresonator dispersion

The dispersion of the microresonator is determined by both contributions of the
material dispersion and geometric dispersion. Material dispersion expresses the
dependence of the refractive index on frequency, and geometric dispersion in-
cludes the effect of the resonator structure. Total microresonator dispersion ap-
pears as the deviation of resonance frequencies from equidistance and results
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in frequency-dependent mode spacings. The resonance frequencies of arbitrary
mode ωµ can be expressed with a relative mode number µ (µ ∈ Z) as,

ωµ =ω0 + D1µ+ D2µ
2 + D3µ

3 + · · · . (2.3)

The equidistant frequency grid (FSR) at the center frequency ω0 corresponds to
D1/2π, and D2 describes the deviation of FSR in terms of the center frequency.
Also, D2 and D3 correspond to the second- and third-order dispersion, respec-
tively. Dispersion has a critical influence on the frequency comb generation,
particularly its bandwidth, and phase-matching condition. The further details of
microresonator dispersion will be introduced in Chapter 3.

Quality factor and decay rate

Quality factor is an important parameter to characterize the property of the res-
onator. The intensity of light stored in the resonator shows an exponential decay,
passing through amediummainly due to material absorption and scattering loss.
Here, an attenuation coefficient α of the electric filed amplitude with respect to
1-roundtrip in the resonator is introduced:

α= exp(−αr · L) (2.4)

where αr is the attenuation per unit of length, and the attenuation per unit of
time is described as αt = cαr . Cavity lifetime τp is defined as the time at which
the electric field amplitude decays to 1/

p
e of the original amplitude (electric

field intensity decays to 1/e (∼ 37%) with respect to the original intensity) as
follows,

τp =
1

2αt
=

1
2cαr

. (2.5)

ν

FSR

γ/2π
L/2π

L/2

(a) (b) (c)
FSR

Fig. 2.1: (a) Ring-type optical microresonator with a round-trip length L. (b)
Fabry-Pérot resonator with a round-trip length of 2L, consisting of two
reflective mirrors. (c) Resonant spectrum characterized by an equidis-
tant free-spectral range (FSR) and full-width of half-maximum (FWHM)
linewidth.
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Thus, the decay of electric field amplitude at an arbitrary time is described as,

α= exp

�
− t
2τp

�
. (2.6)

Quality factor is well related to the above discussion in terms of decay time of the
optical field, and can be evaluated by the relation between the stored energy Ecav

and dissipated energy per oscillation cycle Ediss, which corresponds to dissipated
power Pdiss = νEdiss (ν is the frequency):

Q = 2π
Ecav

Ediss
= 2πν

Ecav

Pdiss
=ωτp =

ω

γ
. (2.7)

The optical resonance has a certain linewidth given by the cavity decay rate γ.
The decay rate corresponds to the full-width of half-maximum (FWHM) of the
linewidth in frequency domain, and relates to the cavity lifetime as γ= τ−1p . Be-
sides, the linewidth is also given by ∆λ= (c/2πν2)γ in the unit of wavelength.
The resonance linewidth can be directly obtained from the resonator transmis-
sion spectrum in the experiment, and the cavity lifetime is also a measurable
parameter in time domain measurements.

Table. 2.1: Comparison of basic characteristics of different microresonators.

Q-factor γ/2π ∆λ lifetime τp
1× 106 193.4 MHz 1.55 pm 0.823 ns

2× 106 96.71 MHz 0.775 pm 1.646 ns

5× 106 38.68 MHz 0.310 pm 4.114 ns

1× 107 19.34 MHz 0.155 pm 8.23 ns

2× 107 9.671 MHz 77.5 nm 16.46 ns

5× 107 3.868 MHz 31.0 nm 41.14 ns

1× 108 1.934 MHz 15.5 nm 82.3 ns

2× 108 967.1 kHz 7.75 nm 164.6 ns

5× 108 386.8 kHz 3.10 nm 411.4 ns

Effective mode area

The effective mode area is derived from the mode profile of the intensity orthog-
onal to the propagation direction:

Aeff =
(
∫ |E|2dA)2∫ |E|4dA , (2.8)

where |E|2 is light intensity (|E| is the magnitude of the electric field) and A
is defined as the integral area. The effective mode volume is given by Veff =
AeffL. The effective mode volume is related to the threshold power for nonlinear
frequency conversion.
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2.1.2 Theory of optical coupling to microresonator

Coupled mode equation

sin sout

γint

γext
waveguide

mode field

intrinsic decay rate

coupling rate

A0(t)

Fig. 2.2: Waveguide-microresonator optical coupling system via evanescent field.
A0(t) is the intracavity optical field, sin and sin denote the input and out-
put fields, respectively. γint and γext are the intrinsic decay rate and cou-
pling rate, respectively.

A coupled mode equation describes an optical coupling between a resonator
and an external coupler through an evanescent field as shown in Fig. 2.2. When
adopting slowly varying envelope approximation, the time evolution of a light
field at the resonance frequency ω0, Ã0(t), can be written as [79,80]

dÃ0(t)
d t

= −γ
2
Ã0(t)− jω0Ã0(t) +

p
γextsin(t)exp (− jωp t), (2.9)

where sin is the driving field and ωp is the pump frequency. The decay rate γ is
given by the sum of the intrinsic decay rate γint and the coupling rate γext to the
waveguide. It should be noted that the field amplitude Ã0(t) is normalized to
the number of intracavity photon at the resonance as |Ã0(t)|2. Here, Eq. (2.9)
can be rewritten by adopting the phase transformation A0(t) = Ã0(t)exp ( jωp t)
as follows,

dA0(t)
d t

= −
�γ
2
+ j(ω0 −ωp)
�
A0(t) +
p
γextsin(t). (2.10)

Assuming the steady state (dA0(t)/d t = 0), the field amplitude is expressed as,

A0 =
p
γext

γ/2+ j(ω0 −ωp)
sin, (2.11)

hence, the number of photons stored inside the resonator is given with the pho-
ton flux in the waveguide |s2in|:

|A0|2 = γext
γ2/4+ (ω0 −ωp)2

|sin|2. (2.12)

24



2.1. FUNDAMENTALS OF OPTICAL MICRORESONATORS

The relation between the driving field and the transmission field is described as

sout = −sin +pγextA0 (2.13)

and the transmittance defined as t = sout/sin and T = |sout/sin|2 yield
t =

sout
sin
=
(γext − γint)/2− j(ω0 −ωp)

(γext + γint)/2+ j(ω0 −ωp)
, (2.14)

T =

����soutsin

����2 = (γext − γint)2/4+ (ω0 −ωp)2

(γext + γint)2/4+ (ω0 −ωp)2
. (2.15)

From the view of energy conservation, the difference between the output pho-
tons |sout|2 and the input photons yields the dissipated photons inside the res-
onator as,

|sout|2 = |sin|2 − γint|A0|2 =
�
1− γintγext
γ2/4+ (ω0 −ωp)2

�
|sin|2 (2.16)

=
(γext − γint)2/4+ (ω0 −ωp)2

(γext + γint)2/4+ (ω0 −ωp)2
|sin|2,

which is consistent with Eq. (2.15). When zero detuning (ω0 −ωp = 0) is as-
sumed, the maximum dip of transmission T0 is expressed as,

T0 =
�
Qint −Qext

Qext +Qint

�2
. (2.17)

Here, T0 = 0, which means the full extinction of transmittance, occurs under the
critical coupling condition Qint = Qext (γint = γext), and then the loaded Q be-
comes half of the intrinsic and coupling Q (the decay rate γ becomes twice the
intrinsic decay rate γint and coupling rate γext). The optical coupling condition is
classified into three conditions: under couplingQint <Qext (γint > γext), over cou-
plingQint >Qext (γint < γext), and critical coupling described above. The coupling
ratio is defined as η = γext/γ, namely η = 0.5 for critical coupling condition. In
general, the coupling ratio can be controlled by changing the gap between the
resonator and the waveguide. Figure 2.3 shows the minimum transmission for
different coupling rates and the corresponding normalized transmission.

Furthermore, T0 can be rewritten in terms of Q-factor,

T0 =

����1− 2Qtot

Qint

����2 , (2.18)

Qint =
2

1±pT0Qtot, (2.19)

where the sign expresses under coupling (plus) and over coupling (minus), re-
spectively. It should be noted that Qtot is given by QintQext/(Qint +Qext). These
relations give the intrinsic and coupling Q from the result of the measurement
of the transmission spectrum.
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Fig. 2.3: Minimum transmission T0 for different γext/γint. γext/γint = 1 corre-
sponds to critical coupling condition, and γint > γext (γint < γext) are
under (over) coupling condition. Insets show normalized transmission
for each coupling condition.

Circulating power and Finesse

The photon number translates into the intracavity circulating power by multi-
plying the photon energy ħhωp and devision by the roundtrip time tR:

Pcav = ħhωp|A0|2/tR = γext
γ2/4+ (ω0 −ωp)2

· Pin
tR

, (2.20)

where ħh is Dirac’s constant, and the input power Pin = ħhωp|sin|2. The finesse F
is defined as the ratio between the mode spacing (FSR) and linewidth, and the
circulating power Pcav under the case of zero detuning and critical coupling is
described as

F = FSR
γ/2π

, (2.21)

Pcav =
F
π

Pin, (2.22)

which corresponds to the enhancement factor in terms of intracavity power.

2.1.3 Scheme for coupling to microresoantor

In contrast to the case of a Fabry-Pérot resonator, which has a partially transmit-
ting mirror for output, an evanescent field is used in order to couple the light into
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the microresonators. There are several methods for achieving efficient coupling,
such as prism coupling, angle cleaved (pigtailed) fiber coupling, side polished
fiber coupling, waveguide coupling, and tapered fiber coupling. In particular,
prism and tapered fiber coupling are widely employed to couple the light into
WGM microresonators due to their low-loss nature and high-coupling efficiency.
In the case of waveguide resonators, an integrated waveguide in the same chip
is used as a coupler. Here, these three methods are reviewed.

Tapered optical fiber coupling

One of the significant advantages of the tapered fiber coupling is a low propa-
gation loss [81–83]. Figure 2.4 shows schematics and the setup of tapered fiber
coupling. The tapered fiber is fabricated by heating and stretching a standard
optical fiber with a diameter of ∼125 µm. Since this process is adiabatically
operated above the melting point of silica, the additional loss is suppressed after
the fabrication. For stretching the fiber, there are several types of heaters, such
as propane/oxygen gas, hydrogen gas, and a ceramic microheater. Typically,
the conventional single-mode fiber (SMF-28) clamped by fiber brackets is pro-
longed during the heating by moving two translation stages, and the cladding
and core (slightly higher refractive index) region become one material whose
refractive index is much larger than that of the surrounding air. After starting
the taper stretching, the cladding modes are excited, resulting in oscillations in
the transmission signal. The oscillation stops when the tapered fiber becomes
single-mode again, and it indicates the end of the fabrication for a single-mode
tapered fiber. The loss of the tapered fiber is less than one percent if the param-
eters, such as stretching speed, the temperature of the heater, and the alignment
of the fiber, are appropriately optimized. The single-mode condition for an op-
tical fiber is given by

Vfiber =
πϕfiber

q
n2
i − n2

o

λ
< 2.405, (2.23)

where ϕfiber is the diameter of the fiber, λ is wavelength, and ni, no are the
refractive indice of core and cladding material, respectively. From the relation,
ϕfiber equals 1.15 µm with ni = 1.44, no = 1.0, and λ = 1.55 µm under the
single mode condition.

Another advantage of a tapered fiber is the tunability of the propagation
constant and coupling strength. The former is controlled by the diameter of the
tapered region by optimizing tapering conditions or changing the fiber position
of coupling to the resonator. The latter corresponds to changing the gap between
the tapered fiber and the resonator. The careful tuning of the coupling condition
enables high ideality of light coupling (i.e., critical coupling) [80].
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Fig. 2.4: (a) Schematic of tapered optical fiber coupling system. (b) Setup for
tapered fiber fabrication. (c) Transmission for tapered fiber fabrication
while translation stages are pulling heated optical fiber. (d) Experimental
tapered fiber coupling system. Coupling strength is determined by a gap
between a tapered fiber and a microresonator.

Prism coupling

Prism coupling has been initially proposed for the light coupling to a silica mi-
crosphere [84]. The incident light from the slope face of a prism undergoes
total internal reflection on the coupling face, and couples into a resonator via
an evanescent field as presented in Fig. 2.5. The transmission goes again to free
space through the prism. AN objective lens or gradient-index (GRIN) lens is usu-
ally used to focus the spot on the coupling point. The angle of the incident beam
must be satisfied with the condition of total internal reflection, and it critically
affects the coupling efficiency [85]. The advantages of prism coupling are the
robustness and the compatibility of high refractive index resonator material. It is
clear that bulky optical elements ensure the robustness of the system, although
careful free space alignment of the beam is necessary. There are several choices
of prism materials, including BK7 [84], SF11 [86], diamond [87], silicon [88],
rutile [89], and sapphire [90], for the case of couping with high refractive in-
dex resonators, which have the difficulty of coupling even with a silica optical
tapered fiber. The coupling efficiency reaches as high as 80% by optimizing the
alignment, whereas operating in the strongly overcoupled regime is not easily
achieved.
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Prism
(a) (b)

Fig. 2.5: (a) Schematic of prism coupling system. The incident light is coupled
into the resonator via an evanescent field. (b) Setup for prism coupling
using a GRIN lens as a beam focuser. Output beam can be detected with
either a free space photodetector or a fiber collimator.

Waveguide coupling

Waveguide coupling is a way to couple the light into waveguide resonators (e.g.,
silicon nitride microring) that are fully integrated. Figure 2.6 shows a schematic
andmicrograph of waveguide coupling. This schememaintains a stable coupling
condition, which can be prepared in the fabrication step by designing the waveg-
uide dimension (e.g., straight bus and pulley-style) and the gap between the
waveguide and resonator such that the resonator structure is designed [57,91].
On the other hand, there is less tunability of coupling strength after the fabrica-
tion because it is not possible to change the gap in the same manner as a tapered
fiber and prism coupling.

Recent studies have demonstrated highly efficient coupling between a WGM
microresonator and waveguide coupler [57–60]. Even though the integration
of WGM resonators to a photonic chip is a challenge because of the significant
difference of refractive index, the manipulation of photonic waveguides allows
for efficient coupling to a wide range of microresonators, including crystalline
and fused silica materials.

(a) (b)

Fig. 2.6: (a) Schematic of a waveguide coupling system. The incident light is in-
jected into the waveguide by using a lensed fiber or a focusing lens. (b)
Micrograph of a waveguide integrated silicon nitride microresonator. The
bus waveguide and the microring are highlighted in red.
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2.1.4 Quality factor measurement

Measurement of quality factor is one of the most fundamental experiments to
evaluate a microresonator. The optical resonances are detected by measuring
the transmittance through the coupler using a photodetector, and the linewidth
corresponds to the quality factor of the resonance mode (frequency domain mea-
surement). However, particularly in the case of ultrahigh-Q, the observed trans-
mittance directly reflects a cavity lifetime, namely time-domain measurement.
The commonly used experimental setup is presented in Fig. 2.7. Here, two mea-
surement methods and the results are introduced.

Tunable ECDL Microresonator

Fiber MZIFunc�on 
generator

Polariza�on
controller Photodetector

Oscilloscope

Fig. 2.7: Experimental setup for Q-factor measurement. A fiber Mach-Zehnder in-
terferometer (MZI) is used to calibrate the frequency axis of a recorded
spectrum. ECDL, external cavity diode laser.

Frequency domain measurement

The resonance mode typically shows a Lorentzian shape as a function of the
frequency in a transmission spectrum [Fig. 2.8(a)]. Therefore, it is a useful way
to record the transmission while the laser frequency is scanned using a frequency
tunable laser, and theoretical Lorentz fitting gives the linewidth of a particular
resonance. Then, the frequency (wavelength) axis should be correctly calibrated
since the axis works as a ruler for the recorded spectrum. There are several ways
to make the frequency axis; however, it is simple to use the output signal of a
tunable laser, which gives reliable information about frequency. Such a function
is often available in a commercial laser system (e.g., Santec TSL series laser, New
focus Velocity series laser). Otherwise, the interference signal from the Mach-
Zehnder interferometer (MZI) and a phase-modulator would be useful choices
with respect to simplicity and accuracy.

Time domain measurement

The quality factor can be measured in the time domain by monitoring the trans-
mission from the resonator. When the laser frequency is scanned quickly across
the resonance, the scanning laser and the output from the resonator interfere
with each other due to their long photon time. This phenomenon induces an
oscillation signal of the transmitted light that decays exponentially. Another
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approach is to use a squared modulation signal as input instead of continuous-
wave light. By applying the square modulation, the squared pulse kicks the input
out at the end of the pulse. Afterward, the stored light flows out from the res-
onator, exhibiting exponential decay as the previous case. The fitted exponential
function gives the cavity lifetime, as shown in Fig. 2.8(b). Since a long photon
lifetime is a key to obtaining a clear signal, these measurements are compatible
with ultrahigh-Q resonators (Q≫ 108).
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Fig. 2.8: (a) Q-factor measurement in the frequency domain. The blue dots and
the solid red line represent the experimental and the fit, respectively. The
frequency axis is calibrated by using a fiber MZI spectrum (green) with
an FSR of 20 MHz. The FWHM of the transmission spectrum γ/2π yields
aQ of 7.4×107. (b) Measurement result in the time domain, called cavity
ring-downmethod. The fitted curve (red line) represents the cavity decay
rate, yielding ultrahigh-Q of 2.2× 109.

2.1.5 Fabrication of microresonators used in this work

Silica toroid microresonators

A fused silica toroid microresonator (microtoroid) works as one of the platforms
in this thesis. A silica microtoroid has the major advantages of small mode
volume and high Q-factor, which reduces the threshold power for nonlinear
frequency conversion, and moreover, it is possible to integrate onto a silicon
chip [5]. Figure 2.9(a) shows the fabrication steps for the microtoroids. The
main process can be classified into the following four steps: 1. Photolithography
with an oxidized silicon wafer, 2. Hydrofluoric acid (HF) wet etching, 3. Xenon
difluoride (XeF2) dry etching, 4. Carbon dioxide (CO2) laser reflow.

First, an oxidized silicon wafer with a thickness of the oxidized layer on the
order of a few micrometers is prepared. The thickness of the oxidized silica layer
is related to the final size of the resonator because it influences the flow of heat
radiation in the laser reflow process. The next step is the UV-photolithography
process, which forms a circular resist pattern with a desired diameter on the
substrate, and HF etching is subsequently applied to the sample in order to re-
move unnecessary silica layer except for the protected pattern with circular re-
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sist. A XeF2 dry etching is performed to undercut disk structure thanks to the
high etch selectivity of silicon compared to silica, namely 1000:1. After this pro-
cess, a disk structure supported by a silicon post can be formed on a silicon wafer.
The formed silica disk can be already used as a microresonator (i.e., microdisk),
whereas the final process of CO2 laser reflow melts and shrinks the outer edge of
the silica disk. As a result, a microtoroid resonator with a donut-shaped toroidal
structure can be formed, and it exhibits a high-Q due to its smooth surface. The
degradation of Q occurs mainly due to OH− bonds within the SiO2. In order to
circumvent the OH− bonding, laser reflow under a nitrogen environment is a
way to achieve ultrahigh-Q up to 109, which corresponds to the absorption limit
of fused silica. Figures 2.9(b) and 2.9(c) show SEM images of a silica microdisk
and a microtoroid, respectively*a.

2. HF etching 3. XeF2 etching 4. CO2 laser reflow1. Photolithography

30 µm 50 µm

(a)

(b) (c)

Si SiO2 Resist

Fig. 2.9: (a) Fabrication process of a silica toroid microresonator. (b) Scanning
electron microscope (SEM) image showing a microdisk resonator. The
thickness of the silica disk is 8 µm. (c) SEM image of a silica microtoroid
fabricated from a silicon wafer with an oxidized SiO2 thickness of 2 µm.
A CO2 laser reflow forms the toroidal cross-sectional shape by melting
the outer edge of the SiO2 disk.

Crystalline fluoride microresonators

Crystalline fluoride microresonators have been developed as an attractive plat-
form, exhibiting an exceptionally high Q value compared with other resonator

*aThe silica microresonators in Fig. 2.9 were fabricated by R. Imamura.
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materials (e.g., silica, silicon, etc.). The limit of Q-factor in crystalline microres-
onators is exceptionally high, up to ∼1013, which is imposed by material ab-
sorption [48], and moreover, they have a broad transparent window in the visi-
ble to mid-infrared wavelength region, which expands the available bandwidth
for several applications. On the other hand, these crystalline resonators are of
millimeter-scale dimension, and hence generally incompatible with chip inte-
gration. Crystalline fluoride materials, including magnesium fluoride (MgF2)
and calcium fluoride (CaF2) are major candidates for fabricating WGMmicrores-
onators due to their crystal quality and commercial availability.

The crystalline microresonators are usually fabricated by abrasive polishing
after creating the resonator form with a diamond paper or diamond turning. A
hard diamond tool enables us to fabricate WGM structures, and a gradual man-
ual, sometimes mechanical, polishing process with diamond slurry greatly im-
proves the Q-factor of the microresonators. An alternative method is computer-
controlled precise machining. Such precision lathes readily overcome the geo-
metrical limitation of handicraft, and they have substantial advantages with re-
spect to designing the resonator structure. However, there remains a significant
challenge so far because it is difficult to achieve high-Q by diamond turning solely
due to the large surface roughness on the scale of a few micron. Figures 2.10
presents hand-polished and a precision-machined MgF2 crystalline resonators

*b.
Chapter 4 reports a novel approach of diamond turning and crystalline mi-

croresonator fabrication with a Q exceeding 108 by all-precision-machining pro-
cess.

100 µm

(b)(a)

Fig. 2.10: (a) Magnesium fluoride (MgF2) crystalline microresonator fabricated
by a manual polishing process. A diameter of the resonator is approxi-
mately 2.8 mm. (b) A precision machined (MgF2) crystalline microres-
onator. A resonator diameter is approximately 500 µm.

*bThe hand-polished MgF2 resonator was diligently fabricated by K. Wada; the precision-
machined MgF2 resonator was fabricated in collaboration with Kakinuma group (Keio Univer-
sity).
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Silicon nitride microresonators

Silicon nitride (Si3N4)microresonators are fabricated in a CMOS-compatible pro-
cess, and the planar resonator structure is formed by chemical vapor deposition
on a SiO2 substrate. The general fabrication steps and micrographs are shown in
Fig. 2.11*c. The advantage of Si3N4 microresonators is integration on a chip with
a waveguide coupler and the high refractive index and small mode area, which
compensates the relatively lowQ-factor compared with a silica and fluoride crys-
talline microresonators. Furthermore, electron-beam (EB) lithography makes it
possible to design the waveguide shape precisely and assure the reproducibility.
Recently, high-Q Si3N4 microresonators up to 107 have been demonstrated by
addressing the fabrication technique and procedure [92–94].

Si SiO2 SiN Resist

2. EB lithography 3. Dry etching 4. Cladding1. SiN deposi�on

500 µm 50 µm

(a)

(b) (c)

Fig. 2.11: (a) Fabrication process of a silicon nitride (SiN) microresonator. After
the deposition of SiN to the desired thickness, lithography and etch-
ing processes pattern the designed waveguide with a SiN layer. A silica
cladding can be performed to protect the resonator from the surround-
ing environment. (b) and (c) Micrographs showing SiN waveguide and
microring after dry etching (reactive ion etching, RIE) process.

2.2 Optical nonlinearity in microresonators

2.2.1 Third-order nonlinearities in microressonators

Optical nonlinearity, in particular the response of nonlinear medium to an ex-
ternally applied electrical (optical) field E(z, t), can be described with the time
dependent polarization P(z, t) in scalar formulation as [95]:

*cThe micrographs of SiN resonators were kindly provided by S. Zhang and P. Del’Haye (Max
Planck Institute for the Science of Light).
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Table. 2.2: Comparison of material properties used in this thesis. The values of
MgF2 are for ordinary polarized mode.

Fused SiO2 MgF2 CaF2 Si3N4

Typical Q 107-108 108-109 108-109 106-107

Typical FSR [GHz] 20-1000 15-100 15-100 50-1000

Transparency [µm] 0.3-2.6 0.13-8.0 0.15-8.5 0.40-7.5

n 1.44 1.37 1.43 1.98

n2 [×10−20 m2/W] 2.2 0.9 1.9 25

(1/L)dL/dT [×10−6 /K] 0.55 9.0 18.9 3.3

(1/n)dn/dT [×10−6 /K] 7.3 0.6 −8.0 30

P = ϵ0(χ
(1)E +χ (2)E2 +χ (3)E3 + · · · ), (2.24)

where ϵ0 is the vacuum permittivity, χ (1), χ (2) and χ (3) are the linear, second- and
third-order susceptibility, respectively. Higher-order terms are less important as
long as the optical field does not become extremely high-power scale (e.g., ultra-
short pulse lasers). The term of second order nonlinearity can be excluded from
Eq. (2.24) because of inversion symmetry of the dielectric materials used in this
thesis (i.e, silica, MgF2, CaF2, and Si3N4). Therefore, the nonlinear polarization
PN L can be rewritten as,

PN L = ϵ0χ
(3)E3, (2.25)

where the electric fields with three different frequencies are introduced as,

E =
1
2
(Ek exp{ j(kkz−ωk t)}+El exp{ j(klz−ωl t)}+Em exp{ j(kmz−ωm t)}+c.c.).

(2.26)
By substituting Eq. (2.26) into Eq. (2.25), nonlinear polarization is described as,

PN L =
1
2

∑
n

Pn(ωn)exp{ j(knz −ωn t)}+ c.c., (2.27)

and then Pn consists of a large number of terms (total 44 different frequency
components) describing possible interactions,

Pn(ωn) =
ϵ0χ

(3)

4
[(3|Ek|2 + 6|El |2 + 6|Em|2)Ekexp( jωk t) + . . . (2.28)

+ 3E2
kE
∗
l exp{ j(2ωk −ωl)t}+ 6EkElE

∗
mexp{ j(ωk +ωl −ωm)t}+ . . . (2.29)

+ 3E2
kElexp{ j(2ωk +ωl)t}+ 6EkElEmexp{ j(ωk +ωl +ωm)t}+ . . . (2.30)

+ E3
kexp{ j(3ωk)t)}]. (2.31)

The relation of wavenumber kn,k,l,m can be always written in the same manner
as angular frequency ωn,k,l,m (i.e., phase-matching condition).
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Kerr effect (self- and cross-phase modulation)

SPM(×1) XPM(×2)XPM(×2)Kerr material

∆n ~ Pin n2

(a) (b)

Fig. 2.12: Schematic of optical Kerr effect (self- and cross-phase modulation). (a)
An effective refractive index can be modulated by strong pump power
via self-phase modulation (SPM) and cross-phase modulation (XPM).
(b) In the case of optical resonances, resonance frequencies are shifted
by the influence of the nonlinear phase shift.

The optical Kerr effect is a phenomenon in which the nonlinear phase shift is in-
duced by high-intensity light field. Kerr medium, which experiences light propa-
gation, shows an intensity-dependent refractive index, as shown in Fig. 2.12(a).
The self-induced phase shift is referred to as self-phase modulation (SPM) and
the phase shift induced by different optical fields is referred to as cross-phase-
modulation (XPM). Eq. (2.28) represents SPM and XPM, and one can see that
the XPM effect works twice as much as the SPM effect. The change of refractive
index is expressed with optical light intensity Ik,l,m as

∆n= n2Ik + 2n2(Il + Im) (2.32)

where n2 is the nonlinear refractive index defined as,

n2 =
3

4n2
0ϵ0c
χ (3). (2.33)

When the light circulates inside a microresonator, the wavelength shift of the
pumped resonance via SPM can be described as,

∆λm =
∆nL
m
=

n2PcavL
mAeff

+
2n2P

′
cavL

mAeff
= λm

�
n2Pcav
nAeff

+
2n2P

′
cav

nAeff

�
(2.34)

where Pcav and P ′cav represent circulating powers contributing to SPM and XPM,
respectively [Fig. 2.12(b)].

Four-wave mixing

Four-wave mixing (FWM) is the optical process to create new photons with
annihilation of incident photons. In the case of degenerate FWM, annihilated
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two photons with the same frequencies 2ωk create two photons with different
frequencies ωn and ωm, namely the first term of Eq. (2.29). Non-degenerate
FWM corresponds to the process in which two photons of frequency ωk and ωm

generate two photons of frequency ωn and ωl described in the second term of
Eq. (2.29). These processes require the phase matching condition as,

kn = 2kk − kl (degenerate),

kn = kk − kl + km (non-degenerate).

The threshold pump power for degenerate FWM is given by [56,96],

PFWM
th =

γ2n2Veff
8ηω0cn2

. (2.35)

Figure 2.13 shows the observed optical spectrum of FWM in a silica toroid mi-
croresonator.
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Fig. 2.13: Measured optical spectrum of FWM in a silica microtoroid. Pump light
creates primary signal and idler photons via degenerate FWM pro-
cess, and subsequently sidebands are generated in cascade via non-
degenerate process. The inset shows the energy diagram of degenerate
and non-degenerate FWM.

Third-order sum-frequency generation

Third-order sum-frequency generation (TSFG) is the phenomenon based on the
annihilation of three photons at frequency 2ωk and ωl , and the creation of new
photon at frequency ωn described in the first term in Eq. (2.30). There is the
other process in which annihilated three photons at three different frequencies
ωk, ωl , and ωm create new photon at frequency ωn, namely second term in
Eq. (2.30). Although the number and frequency of photons are the same as
the case of FWM, the difference between FWM and TSFG can be seen in the
wavevectors.
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Third harmonic generation

Third-harmonic generation (THG) occurs when parametric conversion satisfies
the condition of Eq. (2.31). Pump light at frequency ωk is converted into triple-
frequency light of 3ωk, where the phase-matching condition is satisfied. THG
can be simply interpreted as the combination of three same frequencies in the
case of TSFG. Figure 2.14 shows the observed spectra of the pump and THG
light.
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Wavelength (nm)

Pow
er (20 dB/div)

C
ou

nt
 (a

.u
.)

THG Third-order
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THG ωn

Fig. 2.14: Observed third-harmonic light at 516 nm generated from pump light at
1548 nm in a silica microtoroid. The inset picture shows the captured
image with a top camera. The energy diagram of THG and TSFG are
also shown in the inset.

Stimulated Raman scattering

Stimulated Raman scattering (SRS) is an inelastic scattering process where pho-
tons of pump field ωp interact with optical phonons ΩR. In contrast to the Kerr
effect, the mechanism of SRS is attributed to the molecular vibration inside the
material. SRS can be explained as a nonlinear phenomenon in which the Stokes
light multiplies inside the medium under the strong pump condition. It exists
in all the dielectric materials, including crystals with all symmetries and glasses,
and therefore SRS is a non-negligible optical nonlinear process when describing
third-order nonlinear effects in optical microresonators. The energy conserva-
tion of SRS can be written as,

ωS =ωp −ΩR (2.36)

whereωS andωp, respectively, are a Stokes and pump photon, and ΩR is known
as the Raman shift (Stokes shift). The Raman shift ΩR is typically on the order of
10 THz, and the bandwidth of Raman gain in silica is also large (up to 40 THz),
whereas the bandwidth can be much narrower in crystalline materials (∼1 THz).
Moreover, SRS is not a parametric process in contrast to FWM and can be gen-
erated in both clockwise and counter-clockwise directions. The threshold power
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for SRS under the critical coupling condition can be expressed as [97],

PSRS
th ≈ 2π2n2Veff

gR(max)λpλRQpQR
, (2.37)

where gR(max) is the maximum Raman gain in units of m/W, λp and λR are the
wavelengths of the pump and Raman modes, Qp and QR are the loaded Q-factor
of the pump and Raman modes, respectively. In a fused silica, gR(max) and ΩR are
approximately 0.6×10−13 m/W and 13 THz, respectively. Figure 2.15(a) shows
the cascaded SRS light, where each frequency shift corresponds to ∼13 THz,
in a silica microresonator. Also, an SRS process can coexist along with FWM
generation in the vicinity of the pump [Fig. 2.15(b)]

1400 1500 1600 1700 1800 1900 2000 2100

1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700

Wavelength (nm)

Po
w

er
 (2

0 
dB

/d
iv

)

Wavelength (nm)

Po
w

er
 (2

0 
dB

/d
iv

)

1st SRS 2nd SRS 3rd SRS
Pump

Raman comb

Pump

(a)

(b)

FWM

Fig. 2.15: (a) Measured optical spectrum of SRS in a silica toroid microresonator
in which cascaded SRS processes are observed. The frequency shift of
1st SRS corresponds to the Raman gain peak at around 13 THz. (b) Ob-
served optical spectrum in a silica rod microresonator. The 1st Raman
gain forms an SRS envelope at around 1670 nm, and FWM is simulta-
neously observed in the vicinity of the pump.

Stimulated Brillouin scattering

Brillouin scattering (SBS) is also an inelastic scattering where acoustic phonons
ΩB take part in the interaction with photons ωp. The pump light induces a
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traveling density wave, which acts as a refractive index grating and scatters the
pump laser in a preferable direction (usually 1st Stokes of SBS can be scattered
backward). The pump field and induced Stokes fields inside the cavity can be
enhanced in a way shown in the following energy diagram,

ωS =ωp −ΩB (2.38)

where ΩB is called the Brillouin shift. The Brillouin shift is typically 10 GHz
order (e.g., 11 GHz for silica). However, the bandwidth of SBS is very narrow
(∼100 MHz) compared to SRS. The threshold power for SBS is given similar to
the SRS case [98],

PSBS
th ≈ 2π2n2Veff

gB(max)λpλBQpQB
, (2.39)

where gB(max) is the maximum Brillouin gain (e.g., 4.5× 10−11 m/W for silica),
λB and QB are the wavelength and Q-factor of Brillouin mode, respectively.

Competition and interaction of third-order nonlinearities

In practice, third-order nonlinearities compete and coexist inside the microres-
onator since the circulating power reaches the threshold and satisfies the phase-
matching condition simultaneously. Cascaded and simultaneous frequency con-
version processes enable us to generate new light covering a broad bandwidth.
The nonlinear processes in optical microresonators are mutually resonant, hence
appear as discrete frequency components. In this thesis, the phenomenon de-
scribed in Chapter 5 is based on the interaction between FWM, THG, and TSFG.
In addition to the coexistence of nonlinear interactions, the gain competition is a
unique feature in optical microresonators, particularly between Kerr effects and
Raman effects. While these processes can coexist in microresonators, the gain
competition and thereby the switching occurs in a relatively large-FSR microres-
onator due to a broad Raman gain in fused silica. As shown in Fig. 2.16, the FWM
gain is shifted with increasing the pump power, whereas the position of Raman
gain is insensitive to the pump; the difference induces the gain competition and
switching in a microresonator system. The investigation on the gain competition
in a silica microtoroid is presented in Appendix. A in more detail. Figure 2.17
shows experimentally observed optical spectra in silica microresonators. The co-
existence of third-order nonlinearities brings a variety of observed spectra with
the only single-frequency pump.
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Fig. 2.16: Comparison of FWM gain and Raman gain in fused silica. The gain peak
of FWM shifts away from the pump frequency with increasing pump
power, but the Raman shift is insensitive to the pump power. The gain
competition originates from the difference of the gain profiles.
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Fig. 2.17: Experimentally observed optical spectra in silica microtoroids. (a)
Equidistant THG and TSFG as generated from the pump and SRS light.
(b) Cascaded SRS generates multi-color visible light via TSFG. (c) The
broad visible light generated from the nonlinear interaction of FWM and
SRS in near-infrared regime.
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2.2.2 Thermal nonlinearity in optical microresonators

Thermal resonance shift

Stored light inside the resonators heats them up as a result of thermal loss in
the same manner as other energy dissipation systems. Thermal effects cannot
be neglected in optical microresonators, and have strong influences on reso-
nance shift and stability of the microresonator system. When a high power
pump laser is scanned across the resonance, the Lorentzian shaped resonance
is distorted by the thermal effects [99]. In particular, when the laser scan is per-
formed from a shorter wavelength (a higher frequency) to a longer wavelength
(a lower frequency), the resonance exhibits triangular-shaped transmission in-
stead of Lorentzian resonance dip as shown in Fig. 2.18. This phenomenon
indicates that the resonance is pushed by the scanning laser from the original
position and suddenly comes back when the laser crosses over the shifted res-
onance. Such a triangular thermal shift can be observed with a higher pump
power experiment and used to stabilize optical coupling, called thermal self-
locking described later.

The thermal shift occurs as the result of two contributions, namely thermo-
optic and thermal expansion effect. Former effect originates from the change of
effective refractive index by the heat (dn/dT), and latter one induces the change
of cavity length (dL/dT). The thermal wavelength shift can be estimated as,

∆λm ≈ nL
m

�
∆L
L
+
∆n
n

�
= λm

�
1
L
dL
dT
∆T +

1
n
dn
dT
∆T
�
, (2.40)

where∆T represents the induced temperature change of the resonator material.

Thermal stability and instability

As the thermal shift follows Eq. (2.40), the value and sign of thermal coeffi-
cients play a critical role in the stability of thermal-locking. In many cases,
for commonly-used resonator materials (e.g., silica, MgF2, Si3N4), both thermal
coefficients are positive, which means that thermal locking can be achieved in
the blue-detuned regime (i.e., pump laser is in the shorter wavelength regime
against the resonance). However, for the thermal locking, it should be noted that
the laser has to be swept from a shorter wavelength (a higher frequency) side due
to the thermal bistability. On the other hand, self-thermal oscillation often hap-
pens if two thermal coefficients of the resonator have the opposite sign [100], for
instance, PDMS-coated silica, CaF2, and BaF2 crystal. Figure 2.19 shows experi-
mentally observed self-thermal oscillation. These features make it challenging to
employ the self-thermal locking technique; therefore, another external locking
is necessary to stabilize the optical coupling.
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Fig. 2.18: Observed transmission spectra showing thermal resonance shift (ther-
mal triangle) when increasing the input power in a silica microtoroid.
During a laser scan from the blue-side, the optical resonance undergoes
an effective resonance shift towards the red-side due to the thermal ef-
fect and Kerr effect.
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Fig. 2.19: Experimentally observed self-thermal oscillation in a CaF2 resonator.
Even though a pump frequency is kept constant value, the transmission
exhibits oscillatory behavior due to the thermal instability. The oscil-
lation period and waveform are sensitive to the coupled power to the
resonator.
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2.3 Optical frequency comb

2.3.1 Optical frequency comb in mode-locked lasers

A passively mode-locked laser is one of the most conventional optical frequency
comb generators by means of a gain medium and a saturable absorber inside
the laser cavity [101, 102]. When a pumped gain medium yields an intracav-
ity modulation as a result of laser operation, a saturable absorber exhibits an
intensity-dependent transmission. In general, a saturable absorber transmits
a high-intensity component of circulating pulse; nevertheless, it absorbs low-
intensity light, which corresponds to the foot region of the optical pulse. Such a
filtering operation enables us to passively shape the optical pulse with an ultra-
short duration on the order of picoseconds or femtoseconds. Schematics of an
optical frequency comb in mode-locked lasers are depicted in Fig. 2.20.

frequency

�me

po
w

er

fceo+nfceo fceo+2nfceo

SHG fceo

pump

GainSA

pump

Gain
SA

tR=1/frep

frep

(a) (b)

(c)

Fig. 2.20: (a) Schematics of conventional mode-locked lasers. The cavity consists
of the gain medium, which is externally pumped for lasing operation,
and a saturable absorber (SA), working as a passive mode-locker. (b)
Optical pulse train generated in a mode-locked laser. A pulse repeti-
tion rate of frep corresponds to the inverse of a round-trip time tR, and
the offset phase shift as regards the pulse envelope is also given by the
carrier-envelope offset of fceo. The red line corresponds to the electric
field, and the gray line represents the pulse envelope. (c) A frequency
comb spectrum of the mode-locked laser. The comb spectrum and the
pulse train of (b) can bemathematically converted by Fourier transform;
hence the properties such as the bandwidth and mode spacing are char-
acterized by one-to-one relation. The f − 2 f self-referencing method
to detect the offset frequency of fceo is realized by generating second
harmonics of the low-frequency component of fn and then mixing with
the high-frequency component of f2n.
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An optical frequency of frequency comb is defined as,

fm = fceo +mfrep, (2.41)

where m is the integer, fceo and frep represent the carrier envelope offset fre-
quency and pulse repetition frequency, respectively. The pulse repetition equals
the frequency spacing of comb lines, namely the cavity FSR. The offset frequency
fceo can be interpreted as the frequency of the “first” comb line. The repetition
frequency frep is directly measurable with a fast photodetector because the RF
beatnote of the overall frequency comb gives the information of frep. On the
other hand, the fceo measurement is a challenge since fceo does not appear in
the beat signal. However, it has been possible to determine fceo when the comb
bandwidth exceeds one-octave by means of the useful method referred to as
f −2 f self-referencing [29,30,103]. The lower frequency of the octave spanning
comb fn is converted to a doubled frequency 2 fn via second-harmonic genera-
tion. When the harmonic light and filtered higher frequency f2n are mixed with
a photodetector, the beat signal corresponds to the fceo as,

2 fn − f2n = 2(nfrep + fceo)− (2nfrep + fceo) = fceo. (2.42)

In practice, an offset frequency can be detected by the 2 f -3 f method, which
modifies the requirement of octave-spanning. The frequency comb is usually
stabilized by locking the two frequencies (i.e., fceo and frep) to an external refer-
ence clock for the reason of frequency stability and accuracy [103].

Besides the passive mode-locking comb, there have been many developments
regarding frequency comb generation. An electro-optic (EO) modulator enables
the generation of optical sidebands by amplitude or phase modulation of CW
laser, so-called EO comb [104]. Since a modulation frequency is controlled by an
external signal generator, precise control of cavity length is no longer necessary;
moreover, a high repetition rate (∼several tens of GHz) can be easily obtained
with the EO comb. An actively mode-locked laser can be operated by using such
a modulator (e.g., electro-optic modulator) instead of a saturable absorber so as
to synchronize the cavity loss with the resonator round-trip.

2.3.2 Application of optical frequency combs

Optical frequency combs provide numerous applications owing to mutually co-
herent time-frequency properties. Excellent fractional uncertainty of 10−19 or
lower accelerated the use of frequency combs as absolute frequency standards,
and nowadays, there are various metrological applications [105]. The optical
clock is based on an accurate frequency measurement of a clock laser locked
to an atomic transition, and frequency combs are used for precise frequency
measurement, namely, laser spectroscopy. The direct link between commonly
used frequency references (e.g., cavity, atom, and quartz crystal) and frequency
combs enables the improvement of the international definition of the second in-
stead of the natural oscillations of the cesium atom [106]. Indeed, the frequency
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comb was adopted in 2009 for the definition of length in Japan. In addition to
the use in frequency standards, frequency combs offer direct molecular spec-
troscopy by exploiting the accuracy of the frequency [107], and particularly,
dual-comb spectroscopy overcomes several limitations of conventional methods
and is widely adopted in the present [108]. Highly desirable low-phase noise
microwave oscillators are also realized by frequency down-conversion of a comb
from the optical to radio-frequency domain [109]. Harmonics generated by pho-
todetection of the comb repetition rate directly reflect the excellent phase-noise
property of the frequency comb. The fact that frequency comb works as abso-
lute frequency standards indicates the underlying nature of time, speed, and
distance. In other words, the accuracy of the frequency comb is not only for the
spectral domain but also for the spatial domain. Owing to its mutual relation,
ranging and imaging applications have great impacts on the field of metrology.

2.4 Microresonator frequency comb

Con�nuous wave

�me

frequency Kerr soliton/comb

�me

frequency

ωn

Non-degenerate
FWM

ωlωk

ωm
ωn

Degenerate
FWM

ωlωk

ωk

Microresonator

Input

Output

Fig. 2.21: Schematic illustration of the microresonator frequency comb genera-
tion. A dielectric microresonator is driven by a CW laser through an
external coupler, and a cascade intracavity FWM process outputs the
equidistant comb spectrum. The output light forms a pulse train, so-
called Kerr soliton with each comb line being mode-locking.

Figure 2.21 illustrates the microresonator frequency comb generation. When
a CW laser pumps a dielectric microresonator, the output corresponds to the
equidistant comb spectrum, which originates from a cascaded FWM process.
The following sections introduce the fundamental physical background and the
experimental observation of themicroresonator frequency comb. Besides, a brief
explanation as regards to novel microcomb generation and applications will be
presented.
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2.4.1 Nonlinear coupled mode equation

The dynamics of microresonator comb formation can be described with coupled
mode equations. The series of equations prepared for each comb mode describe
nonlinear interactions between the large comb modes, and thus the evolution
of the microresonator frequency comb [96, 110]. This approach is referred to
as a nonlinear coupled mode equation (NCME) or spectrotemporal model since
it tracks the evolution of individual modes in the time domain. The nonlinear
coupled mode equation can be rewritten from Eq. (2.9), by taking a series of
resonance modes and the Kerr effect into account,

dÃµ(t)

d t
= −γ

2
Ãµ−iωµÃµ+δµ,0pγextsin exp (−iωp t)+i g

∑
µ1,µ2,µ3

Ãµ1Ãµ2Ã
∗
µ3
, (2.43)

where Ãµ denotes the optical field of the µ-th comb mode, δµ,0 is the Kronecker
delta function to validate the driving field (i.e., δµ,0 = 1 for µ = 0), g is the
Kerr nonlinear coefficient given as (ħhω2

0cn2)/(n2
0Veff), and ωµ is the µ-th res-

onance angular frequency. The last term on the right hand side represents
Kerr effects including SPM, XPM, and FWM. When applying a rotating frame
Aµ(t) = Ãµ exp{ j(ωp +µD1)t}, Eq. (2.43) is transformed to,

dAµ(t)

d t
= −γ

2
Aµ − i(ωµ −ωp −µD1)Aµ +δµ,0

p
γextAin

+i g
∑
µ1,µ2,µ3

δµ−(µ1+µ2−µ3)Aµ1Aµ2A
∗
µ3
.

(2.44)

The delta function in the nonlinear term stands for the requirement of energy
conservation to satisfy the relation µ = µ1 + µ2 − µ3. The driving term Ain =Æ

Pin/ħhωp stands for the square root of input photon flux, and Pin denotes the
pump power in watts. Therefore, Eq. (2.44) can be generalized as,

dAµ(t)

d t
= −γ

2
Aµ − j(ωµ −ωp −µD1)Aµ +δµ,0

p
γextAin + j g
∑
µ1,µ2

Aµ1Aµ2A
∗
µ1+µ2−µ.

(2.45)
The second term on the right hand side includes both the dispersion term Dint =
(ωµ −ω0 −µD1) and the pump detuning term δ0 = (ω0 −ωp).

2.4.2 Lugiato-Lefever equation

Instead of considering time domain dynamics of individual modes, the comb
formation can be described by tracking the overall intracavity field along the
circumference of the resonator, namely the position in the azimuthal coordinate
ϕ. This alternative approach is called the spatiotemporal model, which is essen-
tially governed by the Lugiato-Lefever equation [111,112]. The spatiotemporal
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intracavity field A(ϕ, t) relates to the optical field of each comb mode Aµ(t) by
a discrete Fourier transform,

A(ϕ, t) =
∑
µ

Aµ(t)exp( jµϕ), (2.46)

where A(ϕ, t) satisfies a periodic boundary condition A(ϕ, t) = A(ϕ + 2π, t).
Equation (2.45) is transformed into the Lugiato-Lefever equation by taking Eq. (2.46)
into account,

∂ A(ϕ, t)
∂ t

=
∑
µ

∂ Aµ(t)exp(iµϕ)

∂ t

=− γ
2
Aµ exp(iµϕ)− iδ0

∑
µ

Aµ exp(iµϕ)− i
∑
µ

DintAµ exp(iµϕ)

+
p
γextAin + i g
∑
µ

∑
µ1,µ2

Aµ1Aµ2A
∗
µ1+µ2−µ exp(iµϕ).

(2.47)
Equation (2.47) can be simplified using Eq. (2.46) as,

∂ A(ϕ, t)
∂ t

= −
�γ
2
+ iδ0
�
A− i
∑
k≥2

Dk

k!

�
∂

i∂ ϕ

�k
A+ i g|A|2A+pγextAin. (2.48)

A nonlinear partial differential equation of the form in Eq. (2.48) is equivalent to
the general form of the Lugiato-Lefever Equation (LLE) proposed in 1987 [113].
It should be noted that the LLE can be written in a different timescale, called
fast time, instead of the azimuthal coordinate. The fast time coordinate t̃ can
be replaced by the relation t̃ = −ϕ/D1, standing for the relative position of the
circulating waveform. They are strictly equivalent in terms of physical under-
standing, whereas the fast time approach has been developed from the point of
view of nonlinear fiber optics.

A master equation for the LLE can be modified in order to consider other
nonlinear effects, for instance Raman effect and self-steepening effect [114]. As
opposed to the Kerr effect, which is the quasi-instantaneous electronic response,
the Raman effect is delayed relative to the incident field owing to the molec-
ular response (non-instantaneous). Therefore, the nonlinear response can be
expressed as a function of the fast time coordinate t̃ as [115],

R( t̃) = (1− fR)δ( t̃) + fRhR( t̃), (2.49)

where fR is the Raman fractional coefficient, δ( t̃) is the Kronecker delta, and
hR(t) is the impulse Raman response, which is given as

hR( t̃) =
τ21 +τ

2
2

τ1τ
2
2

exp
�
− t̃
τ2

�
sin
�

t̃
τ1

�
. (2.50)
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Here, τ1 and τ2 represent an inverse Stokes shift (1/ΩR) and inverse FWHM
bandwidth of Raman gain (1/∆ΩR) of the material, respectively. Hence, an LLE
including the Raman effect is expressed as,

∂ A(ϕ, t)
∂ t

= −
�γ
2
+ iδ0
�
A− i
∑
k≥2

Dk

k!

�
∂

i∂ ϕ

�k
A

+i gA

∫
R
�
ϕ′
D1

�
|A(ϕ −ϕ′)|2dϕ′ +pγextAin.

(2.51)

By replacing R(ϕ′/D1) with Eq. (2.49), Eq. (2.51) can be rewritten as,

∂ A(ϕ, t)
∂ t

= −
�γ
2
+ iδ0
�
A− i
∑
k≥2

Dk

k!

�
∂

i∂ ϕ

�k
A+ i g(1− fR)|A|2A

+i g fRA

∫
hR

�
ϕ′
D1

�
|A(ϕ −ϕ′)|2dϕ′ +pγextAin.

(2.52)

The self-steepening effect, which leads to a delay of pulse peak due to the change
of group velocity, can be also added to the master equation Eq. (2.48) [116],

∂ A(ϕ, t)
∂ t

= −
�γ
2
+ iδ0
�
A− i
∑
k≥2

Dk

k!

�
∂

i∂ ϕ

�k
A

+i g

�
1+

iD1

ωp

∂

∂ ϕ

�
|A|2A+pγextAin.

(2.53)

2.4.3 Microcomb generation via cascaded four-wave mixing

Theoretical description of threshold power and initial sideband generation

The primary sidebands of the microcomb are generated via degenerate FWM as
the CW pump laser approaches the resonance mode from the blue detuned side.
Subsequent cascaded FWM forms the microcomb, which accompanies multiple
comb sidebands; nevertheless, a frequency spacing of the generated primary
sidebands is determined by the condition of various parameters, including the
pump power, pump detuning, dispersion, quality factor, and so on. Here, the
simplified coupled-mode equations provide an analytical solution with respect to
parametric gain, which critically affects the primary sideband generation [110,
117,118].

To begin with, a nonlinear coupled mode equation of Eq. (2.45) is trans-
formed to a dimensionless description:

∂ aµ
∂ τ
= −(1+ iζµ)aµ + i

∑
µ1,µ2

aµ1aµ2a
∗
µ1+µ2−µ +δµ,0 f , (2.54)

where the normalization and the phase transformation are applied as follows:
τ = γt/2, d2 = D2/γ, ζµ = 2(ωµ −ωp −µD1)/γ = ζ0 + d2µ

2, f =
p

8ηg/γ2Ain,
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and aµ = Aµ
p

2g/γe−i(ωµ−ωp−µD1)t . In order to consider the primary sidebands,
namely the signal a+µ and idler a−µ light, from the pump light a0, the sets of the
linearized equation are expressed as,

∂ a0
∂ τ
= −(1+ iζµ − 2i|a0|2)a+0 + f , (2.55)

∂ a+µ
∂ τ

= −(1+ iζµ − 2i|a0|2)a+µ + ia2
0a
∗
−µ, (2.56)

∂ a∗−µ
∂ τ

= −(1− iζµ − 2i|a0|2)a∗−µ − ia∗20 a+µ, (2.57)

where the later two equations yield the eigenvalues:

λ= −1±q|a0|4 − (ζµ − 2|a0|2)2. (2.58)

The positive real part of the eignenvalue corresponds to the parametric gain, and
thus the net gain G = γ

Æ|a0|4 − (ζµ − 2|a0|2)2 has to exceed the cavity loss γ for
the parametric oscillation. This relation yields the required minimum power
in the pump mode as |a0|2 = 1, which is always satisfied under laser detuning
ζ0 ≤ 1. Next, the steady state solution (∂ a0/∂ τ = 0) for the pump mode can be
described as,

(ζ0 − |a0|2)2|a0|2 + |a0|2 = f 2, (2.59)

which gives the critical conditionwith respect to pump power f 2 = 1 (i.e., |a0|2 =
1 and ζ0 = 1), to be Pin = (γ2n2Veff)/(8ηω0cn2) as defined in Eq. (2.35).

From Eq. (2.59), a laser detuning is expressed as a function of intracavity
threshold power |a0|2:

ζ0 = |a0|2 −
q

f 2/|a2
0| − 1. (2.60)

Finally, by substituting ζ0 = ζµ− d2µ2 at the threshold value of parametric gain,
the mode number of the primary sideband is derived as [117],

µth =

√√√ γ
D2

�√√ Pin
Pth
− 1+ 1

�
. (2.61)

Microcomb formation dynamics: the stability and noise

The initial sidebands are generated via degenerate FWM, as described above.
Meanwhile, multiple comb sidebands and subsequent broad microcomb evolve
via cascaded FWMwhen driving the resonator with a CWpumping. A pump laser
is tuned into a pump resonance from a blue-detuned side to a red-detuned side
to achieve stable microcomb generation owing to the self-thermal locking [99].
When approaching zero-detuning, the intracavity power is gradually enhanced,
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Fig. 2.22: Numerically simulated microcomb formation with laser sweeping. The
calculation parameters are as follows: γ= 12.1 MHz, γext = 6.07 MHz,
λp = 1550 nm, D1/2π = 145 GHz, D2/2π = 550 kHz, Aeff = 40 µm,
n0 = 1.44, n2 = 2.2 × 10−20 m2/W, and Pin = 70 mW. (a) Intracav-
ity power as a function of pump detuning. The blue-shaded and red-
shaded area indicate effectively blue-detuned and effectively re-detuned
region, respectively. (b, c) Optical spectrum and temporal waveform of
Turing pattern comb. (d, e) Corresponding spectrum and waveform of
MI comb. (f, g) Corresponding spectrum and waveform of Kerr soliton
comb.

resulting in the growing parametric gain. The formation dynamics of micro-
combs have been studied enough in many earlier works, which provided a de-
tailed understanding with respect to the stability as well as noise formation dur-
ing microcomb evolution [38,117,119]. Here, simple and brief discussions will
be introduced as limiting the scope on a more important part for understanding
the physics of microcomb.

The primary sidebands are initially generated with a single or multiple-FSR at
the effectively blue-detuned region. In this case, the optical spectrum and cor-
responding time-domain waveform show the symmetric and ordered pattern,
so-called Turing pattern (roll) comb. Figure 2.22 represents a numerical simu-
lation showing microcomb formation dynamics during the commonly used laser
sweeping method. The Turing pattern is shown in Figs. 2.22(b) and 2.22(c). The
higher intracavity power circulates inside the resonator, the more subcombs are
subsequently generated while approaching the effectively zero-detuning. Then,
the state transits into a chaotic state referred to as a modulation instability (MI)
comb due to cascaded subcomb formation, which leads to a broad beatnote in
the RF domain. This is a low coherence and high noise comb [Figs. 2.22(d) and
2.22(e)]. Further detuning, however, enables the ultrasmooth spectral comb
state at the effectively red-detuned region, and the state is understood to be a
dissipative Kerr soliton, as shown in Figs. 2.22(f) and 2.22(g). Kerr soliton is
characterized by its high coherence and stability since it is inherently the mode-
locked state where the soliton pulse propagates inside the resonator, hence ad-
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vantageous for many applications. More details of Kerr solitons are described
later. The point, with respect to the stability and noise, is that the Kerr soli-
ton state is considered to be desirable rather than the MI comb, and intensive
investigations on soliton formation have been conducted thus far.

Experimental observation of microcomb formation

Pump laser Microresonator

EDFA

Func�on 
generator

FPC

PD
Oscilloscope

OSA

ESAH-PD

To OSC trigger
PDFBG

Fig. 2.23: Experimental setup for the microcomb observation. The pump laser fre-
quency is controlled by a ramp signal from a function generator. EDFA,
erbium doped fiber amplifier; FPC, fiber polarization controller; OSA,
optical spectrum analyzer; ESA, electrical spectrum analyzer; (H)-PD,
(High-speed) Photodetector, FBG, fiber Bragg grating.

A commonly used experimental setup for microcomb observation is shown
in Fig. 2.23. A pump frequency of a narrow-linewidth CW laser is externally
controlled by using a function generator to generate a microresonator frequency
comb. The laser power is usually amplified with an optical amplifier, an erbium-
doped fiber amplifier (EDFA) for telecom wavelength, and evanescently coupled
via an external coupler. A fiber polarization controller (FPC) adjusts the laser
polarization in order to excite a desired mode. The transmitted light is mon-
itored by using an optical spectrum analyzer (OSA) and photodetectors (PD)
connected to an oscilloscope (OSC) and an electric spectrum analyzer (ESA),
which allows us to monitor the transmission and the RF beatnote, respectively.
In order to monitor only the comb power, a fiber Bragg grating (FBG) filter is
used to exclude the transmitted pump light. A ramp function is often applied
to the laser frequency to be scanned, enabling continuous microcomb formation
from the blue-detuned region to the red-detuned region.

Figure 2.24 presents the continuous evolution of the microcomb spectrum
in a 16.6 GHz FSR MgF2 resonator while tuning the pump into the resonance.
A multiple-mode spaced comb and subsequent subcombs were generated with
further detuning, and the comb finally settled into a characteristic, stratovolcano-
like, MI comb spectrum. Figure 2.25 shows the experimentally observed mico-
comb spectrum in various platforms. It should be noted that all these combs
are operated in the effectively blue-detuned region, namely MI comb. The comb
can be stably operated for a long time owing to self-thermal locking, but coher-
ence and noise properties are inherently not good, as described in the previous
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Fig. 2.24: Evolution of the microcomb spectrum in a 16.6 GHz FSRMgF2 resonator
while increasing the pump wavelength with a pump power of 300 mW.
Through the generation of Turing pattern comb and subcomb formation,
a comb spectrum finally settled into a stratovolcano-like MI comb.

2.4.4 Temporal dissipative Kerr soliton formation

Theoretical description of a single soliton solution in microresonators

The analytical solution of a temporal soliton can be derived from an LLE [cf.
Eq. (2.48)] in which the loss and external pump terms are excluded, and only
second-order dispersion D2 is taken into account [41]:

∂ A(ϕ, t)
∂ t

− i
D2

2
∂ 2A
∂ ϕ2
− i g|A|2A+ iδ0A= 0. (2.62)

As the steady-state solution for temporal soliton, the following form is assumed,

A(ϕ) = Bsech(ϕ/ϕs), (2.63)

where B and ϕs represent the soliton amplitude and pulse width in the az-
imuthal coordinate, respectively. Then, Eq. (2.62) can be transformed by in-
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Fig. 2.25: The microresonator frequency comb generation in different platforms
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Si3N4 microring, and (d) MgF2 crystalline microresonator. Inset shows
the magnification view from 1554 nm to 1556 nm.

54



2.4. MICRORESONATOR FREQUENCY COMB

serting Eq. (2.63) as follows:

D2

2ϕ2
s

[1− 2sech2(ϕ/ϕs)] + gB2sech2(ϕ/ϕs)−δ0 = 0. (2.64)

Here, the transformed LLE gives the fruitful stationary soliton condition with
respect to the dispersion and pump detuning as,

D2 = gB2ϕ2
s , (2.65)

δ0 =
D2

2ϕ2
s

=
gB2

2
. (2.66)

The above relations can be interpreted as the balance between Kerr nonlinearity,
dispersion and pump detuning. Moreover, they indicate that the soliton exists
under the condition both of anomalous dispersion (D2 > 0) and a red-detuned
pump laser (δ0 > 0).

The soliton power and pulse duration can be expressed as [42],

Ps =
2ηAeff

n2Q

Æ−2ncβ2δ0, (2.67)

τs =

√√− cβ2
2nδ0

, (2.68)

where β2 = −nD2/cD
2
1 stands for the group velocity dispersion. The detuning

is one of the most important parameters to stabilize the soliton power for a
long-term, and the servo control (feedback loop) offers an effective solution to
maintain the certain detuning point. The maximum detuning value (normalized
by cavity linewidth) for the soliton existence is given by δ0,max = π2Pin/16Pth,
which suggests that higher pump power contributes to a wider detuning range.

Experimental observation of dissipative Kerr soliton

In order to generate a soliton microcomb, the pump laser has to be positioned
in the effectively red-detuned region. Owing to the bistability of nonlinear reso-
nance shifts due to thermal and Kerr nonlinearity, the decreasing laser frequency
from the blue-detuned side provides a reliable way to access the soliton existence
regime, and this method was employed in the first demonstration of a temporal
soliton. However, as opposed to an effectively blue-detuned region, self-stability
cannot work in the red-detuned region, and it makes it difficult to obtain the
soliton. Moreover, the strong thermal effect plays a critical role in the case of
high pump power, and usually has a negative effect for soliton formation. Since
the thermal relaxation time occurs quite slowly compared to the Kerr nonlinear
shift, the effective detuning can be changed after the appearance of the ther-
mal effect, and hence the laser immediately goes out of resonance. Therefore, it
is necessary to optimize the laser tuning parameters (i.e., start/stop frequency,
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sweeping speed) for the soliton self-stabilization, which is achieved when the
resonator settles in the thermal equilibrium state [41].

Over the years, several methods have been proposed to circumvent thermal
effect, for instance, power kicking [120, 121], fast scanning [122], and auxil-
iary laser pumping [123, 124]. In the power kicking method, the pump power
is suddenly reduced just before the soliton formation using an intensity modu-
lator, and it brings a resonance back to the blue-side via thermal cooling. By
increasing the pump power again in a particular period (i.e., nanosecond to mi-
crosecond timescale), the soliton is thermally stabilized. When the laser scan-
ning is operated faster than the thermal relaxation time, the nonlinear resonance
does not experience the thermal effect. This method requires a significantly fast
scanning speed, which is usually realized by a single sideband (SSB) modula-
tor driven with voltage controlled oscillator (VCO). The thermal stabilization
can be achieved by using the auxiliary laser. When the pump laser excites the
soliton, the auxiliary laser set on a different resonance mode helps to keep the
temperature of the resonator, which effectively contributes the soliton stabiliza-
tion. These methods are often used for the resonator exhibiting a strong thermal
effect, such as made of silica and silicon nitride. In practice, the active feedback
loop is usually combinedwith the abovemethods tomaintain the soliton. A servo
controller provides the feedback signal for one or some of the experimental con-
ditions (i.e., pump power, detuning, coupling). Especially, Pound-Drever-Hall
(PDH) method is an effective way owing to the stability and robustness [125].

Figure 2.26 represents an experimentally observed spectrum of a dissipative
Kerr soliton in a 4.2 mm diameter MgF2 crystalline microresonator with a pump
power of 270 mW. The spectral fitting of sech2 envelope is indicated as the red
line, yielding a 3 dB bandwidth of 2.05 THz. The transmission and comb power
during soliton formation are shown in Figs. 2.27(a) and 2.27(b). A stable region
(6 ms-10.5 ms) corresponds to a soliton existence range, which can be length-
ened or shortened depending on the pump power, polarization, and coupling.
Figures 2.27(c) and 2.27(d) show multiple traces of converted comb power that
revealed the stochastic behavior of the number of solitons.
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Fig. 2.26: Optical spectrum of a single temporal soliton in a 16.6 GHz FSR MgF2
resonator. The red line represents the sech2 envelope with a 3 dB band-
width of 2.05 THz (corresponding to a pulse duration of 153 fs FWHM).
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Fig. 2.27: (a), (b) Transmission and converted comb power while scanning a
pump laser to generate a soliton, respectively. (c) Multiple traces of
comb power, indicating a stochastic behavior of the number of solitons.
(d) Magnified view of (c) from 0 ms to 1 ms, where N represents the
number of solitons inside the resonator. The traces of intracavity power
change for every scan due to passing through a chaotic state. The intra-
cavity power shows discrete changes during the laser scan, the so-called
soliton step.
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2.4.5 Novel microresonator frequency comb

Recently, novel microcombs have been developed by considering the resonator
material, the structure, and the experimental procedure. Designing and engi-
neering microresonator dispersion is a powerful way to tailor a microcomb spec-
trum, and these techniques have contributed to attaining a broad bandwidth and
high-efficient microcomb, even in the normal dispersion. Dispersion engineer-
ing is one of the essential subjects in this thesis, and thus intensively highlighted
in Chapter 3.

The structure of the microresonator is not necessarily limited to the ring and
waveguide type resonators (i.e., WGM, microring). The fiber-based Fabry-Pérot
microresonators consist of a single-mode fiber with dielectric Bragg mirror coat-
ing. As opposed to CW-driven microresonators, they are driven by optical pulses
and thus show great advantages regarding the efficiency and the controllability
of soliton repetition rate [126].

Kerr nonlinearity enables microcomb generation via the effect of SPM, XPM
and FWM, whereas the second-order nonlinearity leads to cascade parametric
frequency conversion processes including optical parametric oscillation (OPO),
second-harmonic and sum-frequency generation (SHG/SFG) [127]. Moreover,
electro-optic (EO) phase modulation in a lithium niobate (LN) microring res-
onator overcomes limitations such as the comb power and the mode spacing
flexibility [128]. High-Q LN resonators enable the simultaneous generation of
Kerr microcombs and second-harmonic combs [47], and even the filtering and
modulation of the generated comb line via inherent EO nonlinearity [129].

Even though a significant feature of a microcomb is its high-repetition-rate
of pulse owing to the short round-trip length, the mode-locking in the “con-
ventional” micro-lasers, which are based on the gain medium and saturable
absorber, offer alternative approaches to realizing a high-repetition-rate mode-
locked pulse oscillator. Fabry-Pérot resonators based on erbium-doped single-
mode fiber [130], semiconductor saturable absorber mirror (SESAM) [131] and
Kerr-lensmode-locking [132] have attained themulti-GHz repetition rate, which
is almost comparable value to Kerr nonlinearity based microresonator frequency
combs despite the difference of operation mechanism.

2.4.6 Application of microresonator frequency combs

Microresonator frequency combs are inherently characterized by the high repe-
tition rates (large mode spacings), integration (compactness), low-power oper-
ation, and broadband spectral bandwidth. In particular, large mode spacing and
broad bandwidth are notable advantages for some applications, which have not
been sufficiently explored by conventional comb sources. In addition, a soliton
microcomb expands the potential for wider application owing to the excellent
spectral purity and coherence property.

For example, amicrocomb can replacemassively arrayed semiconductor lasers
as an optical carrier source for the purpose of optical telecommunication. Wave-
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length division multiplexing (WDM) is a widely used technique in coherent op-
tical telecommunication [133, 134]; however, it demands precise wavelength
alignment for each laser so as to meet the standard frequency grid, the so-called
ITU-grid. The microcomb provides equally distant carriers in nature with only a
single CWpump laser, and easily satisfies required channel spacing (e.g., 25 GHz,
50 GHz, and 100 GHz) by designing the resonator FSR. Notably, a soliton micro-
comb can be used as both the transmitter and the local oscillator at the receiver
in coherent data transmission without a systematic penalty compared to parallel
diode lasers.

Spectroscopy and imaging are widely used techniques in various fields, in-
cluding fundamental research and industry. These applications naturally require
a broadband light source such as an incoherent light emitting diode (LED), and
a delayed system to interfere with the light transmitted through a sample with
the reference light. Dual-comb spectroscopy significantly improves the scan rate
of Fourier-transform spectroscopy owing to its high repetition rate [135, 136].
Although the resolution is restricted by the trade-off relation, the soliton mi-
crocomb enables a broadband and high acquisition rate spectroscopy platform.
A microcomb generated in the mid-infrared region is of particular interest to
molecular spectroscopy [137], and moreover, the visible to near-infrared wave-
length around 1.3 µm is more important for biological imaging including opti-
cal coherence tomography (OCT) [138]. Recently, soliton microcombs have also
been adopted to coherent laser-based distance measurement, so-called LIDAR
(light detection and ranging) [139,140].

The precisely equidistant comb lines can be adapted to the frequency cali-
bration of the spectrometer. Especially, astronomical spectroscopy requires ac-
curate, stable, and a large mode spacing comb because the calibration of the
spectrometer is essential to detect a slight variation of stellar spectra. However,
conventional comb sources have such dense mode spacing that spectrometers
cannot resolve the calibration comb lines; and thus, microcombs are in high
demand for astronomical calibration use, namely astrocomb [141,142].

Soliton microcombs characterized by tens of GHz (i.e., radio-frequency do-
main) repetition rate have enabled the link between the microwave and the
optical domains. The nonlinear spectral broadening and dispersion engineering
techniques allow the direct detection of fceo; furthermore, by exploiting phase co-
herency of optical and microwave frequencies, many practical applications have
been developed including absolute optical frequency measurement [143], opti-
cal clock [144], ultrastable microwave generation [145] and integrated optical
frequency synthesizer [146].

For a wide variety of applications, the subject of comb power (intensity) can-
not be avoided as regards microcombs. Since soliton power is specifically given
by Eq. (2.67), it is typically estimated to be at best a few milliwatts. Indeed, the
power per comb line is typically given as −40 dBm to 0 dBm, which is consistent
with the measured result seen in Fig. 2.26 and elsewhere [42]. The predicted
maximum power per comb line increases linearly with the repetition frequency
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and inversely with the Q factor; therefore, a high-repetition rate silicon nitride
resonator is considered an ideal platform in terms of comb power. On the other
hand, a high Q factor greatly reduces the threshold power and the pump power
required for soliton stabilization. To date, several state-of-the-art applications
have been demonstrated without the amplification of a soliton comb [135,139],
whereas some work has been carried out with amplification to power levels of
several hundreds of milliwatts using C-band and L-band EDFAs [134,140]. Such
amplification is needed to improve the signal-to-noise ratio or the measurement
accuracy. However, shot noise or amplified spontaneous emission (ASE) noise
from the EDFA fundamentally limits the performance in many applications. It
should be noted that the typical average power of the master oscillator of a
mode-locked erbium fiber laser ranges from only a few milliwatts to several tens
of milliwatts [147]. In this respect, the average power of soliton microcombs
is lower than that of typical fiber lasers. However, microcombs have a specific
merit with respect to the power per line due to their large mode spacing.

60



Chapter 3

Dispersion engineering and
measurement for microresonator
frequency comb

This chapter describes the fundamentals of microresonator dispersion and the
engineering including calculation and measurement methods for a microres-
onator frequency comb*a.

3.1 Microresonator dispersion

3.1.1 Theoretical description of dispersion

Dispersion plays a critical role in microresonator frequency comb generation and
in ultrafast optics. When light travels the same physical path length, dispersion
originates from the frequency-dependence of the refractive index, which indi-
cates that different frequency components experience different phase velocities
(equivalent to different optical path lengths). A fundamental dispersion rela-
tion is derived from the frequency dependence of the propagation constant β of
traveling light as follows [114]:

β(ω) =
ω

c
n(ω) =

n∑
m=0

�
1
m!

dmβ

dωm

����
ω=ω0

(ω−ω0)
m

�
= β0 + (ω−ω0)β1 +

1
2
(ω−ω0)

2β2 +
1
6
(ω−ω0)

3β3 + · · · ,
(3.1)

where ω and c are angular frequency and light speed in a vacuum, respectively.
The linear term β0 = ω0/vp is given by the phase velocity of the center fre-
quency vp, and the effective index neff is also given by neff = c/vp. The first order

*aContents presented in this chapter has been published in “Dispersion engineering and mea-
surement of whispering gallery mode microresonator for Kerr frequency comb generation,”
Nanophotonics, 9, 5, 1087–1104 (2020).
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dispersion β1 is expressed by group velocity vg and group index ng as,

β1 =
dβ
dω

����
ω=ω0

=
1
vg
=

ng

c
=

1
c

�
neff(ω) +ω

dneff

dω

�
. (3.2)

The expression as a function of wavelength λ is sometimes helpful:

ng = neff(λ)−λdneff(λ)
dλ

. (3.3)

The group velocity is explained as the speed of the envelope of the optical pulse
(wave packet). When taking the phase shift φ = β L into account, the spectral
phase after the propagation through a dispersive medium of length L is given by
Φ(ω) =ωt −β L. By substituting Eq. (3.1), the spectral phase can be written as

Φ(ω)≡ω0

�
t − L

vp

�
+ (ω−ω0)

�
t − L

vg

�
+ · · · . (3.4)

At the time of t = L/vg , the spectral phases of all the frequency components
have constant values without being dependent on frequency, which means that
the envelope of optical pulse arrives with a velocity of vg . Then, the group delay
Tg is defined as the first order derivative of the phase-shift φ as,

Tg =
dφ
dω
= L

dβ
dω
=

L
vg
= β1L, (3.5)

which corresponds to the propagation time of a pulse through an optical medium
of length L. The second-order derivative term of Eq. (3.1) represents the change
rate in the inverse group velocity in terms of frequency, which corresponds to
group velocity dispersion (GVD) β2:

β2 =
d2β

dω2

����
ω=ω0

=
1
c

dng

dω
=

1
c

�
2
dneff

dω
+ω
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�
. (3.6)

It is known that β2 plays important role in nonlinear pulse propagation such as
broadening of the pulse bandwidth. Moreover, the frequency dependency of the
group delay is related to group delay dispersion (GDD),

dTg

dω
=

d2φ

dω2
= L

d2β

dω2
= β2L. (3.7)

In addition to the GVD parameter β2, the dispersion parameter D is a useful
expression, particularly in the field of fiber optics, which is derived by the change
of group delay Tg per unit length in function to wavelength as,

D =
1
L

dTg

dλ
=

dβ1
dλ
=

1
c

dng

dλ
= −λ

c
d2neff

dλ2
. (3.8)
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D can be expressed with β2 using Eq. (3.5) as follows:

D =
1
L

dTg

dλ
=

dβ1
dλ
=

d2β

dλdω
=

dω
dλ

d2β

dω2
= −2πc

λ2
β2. (3.9)

It should be noted that whether to use β2 or D to express the group velocity
dispersion depends on different preferences in the research community. The
parameters β2 and D are given in units of (ps2/km) and (ps/(km · nm)), respec-
tively. As a result, the sign of the two dispersion parameters are opposite and
given by “β2>0, D<0” for normal dispersion, and “β2<0, D>0” for anomalous
dispersion. Note that the above definition of normal/anomalous dispersion gives
the group velocity dispersion for a particular wavelength. The wavelength de-
pendence of the refractive index dn/dλ is also referred to as normal dispersion
(dn/dλ<0) and anomalous dispersion (dn/dλ>0), whereas this definition does
not coincide with group velocity dispersion, and it is sometimes confusing. In
general, “dispersion” indicates group velocity dispersion in the community of
microresonator frequency comb, and this thesis follows the definition.

3.1.2 Dispersion in optical microresonators

In contrast to optical fibers, optical resonators have discrete resonance frequen-
cies given by,

fm =
mc

2πR′(m) · n′eff(m) =
mc

2πR · neff
, (3.10)

where fm (=ωm/2π) is the resonance frequency of the m-th longitudinal mode
with the azimuthal mode number m. Although the resonance frequency is al-
ready defined in Eq.2.1, the above expression provides deeper understanding in
“ring”-type optical microresonators. Here it should be noted that both the effec-
tive refractive index n′eff and the effective radius of the mode R′ are as a function
of the azimuthal mode number (frequency). The effective radius R′ is usually
a constant in standard waveguide devices thanks to strong mode confinement,
whereas the value is depending on the frequency in WGM resonators, and this
is a unique property of WGM. Nevertheless, the effect of frequency dependence
of the R′ is included in the frequency-dependent effective refractive index neff in
practice. Therefore, neff describes the frequency-dependent value, whereas R is
a constant corresponding to the actual radius of WGM resonators.

Based on the above discussion, propagation constant of m-th WGM is given
as,

β̃ =
2πneff

λm
=

m
R
. (3.11)

Consequently, the first order dispersion β̃1 and group velocity dispersion β̃2 are
given by the free-spectral range (FSR) of the resonator ∆ fm around the center
mode m0,

β̃1 =
dβ̃
dωm

����
m=m0

=
1

2πR
dm
d fm

=
1

2πR ·∆ fm
(3.12)
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Fig. 3.1: Resonance frequencies taking dispersion into account. The mismatch be-
tween the equidistant comb grid (black dashed line) and the resonance
mode (blue) corresponds to the microresonator dispersion.
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Then β̃2 gives the dispersion parameter D̃with resonance frequencies from Eq. (3.9)
as,

D̃ = −2πc
λ2
β̃2 =

c
2πλ2R ·∆ f 3m

·∆(∆ fm), (3.14)

where a difference approximation for them-th mode is employed such as,∆ fm =
( fm+1 − fm−1)/2, and ∆(∆ fm) = fm+1 − 2 fm + fm−1.

The microresonator dispersion is often expressed as a function of the relative
position of the resonance frequencies. The relative mode number µ is defined as
the integer mode index as regards the center (pump) mode µ = 0; therefore all
the resonance frequencies are given with a Taylor expansion around the center
frequency:

ωµ =ω0 + D1µ+
1
2
D2µ

2 +
1
6
D3µ

3 +
1
24

D4µ
4 + · · ·

=ω0 + D1µ+ Dint, (3.15)

where D1/2π is the equidistant resonator FSR, D2/2π is the second-order disper-
sion related to β2, and D3/2π, D4/2π, · · · represent the higher order dispersion
in units of (Hz) (Di is given in (rad/s)). Consequently, the integrated dispersion
Dint is defined as the deviation of the resonance frequency including all orders
of dispersion from the equidistant grid D1/2π. The frequency distance between
two adjacent resonant modes is called an FSR, which is the general definition
(including dispersive effect). However, an equidistant grid with respect to the
pump mode D1/2π can be sometimes defined as an FSR. The former includes
the frequency offset induced by the dispersion whereas the latter indicates only
equal intervals. Although both terms are used to stand for “FSR”, this thesis
distinguishes the original definition of “FSR” (i.e., longitudinal mode spacing
including dispersion) from the “equidistant FSR” (i.e., D1/2π).

64



3.1. MICRORESONATOR DISPERSION

Figure 3.1 shows a schematic illustration ofmicroresonator dispersion. Higher
order dispersions can be omitted if the following relation is valid: D2≫D3≫D4· · · .
Here, a positive (negative) D2 corresponds to an anomalous (normal) dispersion,
and Di parameter is related to dispersion βi as,

D2 = − cnD
2
1β2. (3.16)

D3 = − cnD
3
1β3 + 3

c2

n2
D3
1β2 ≈ − cnD

3
1β3. (3.17)

D4 = − cnD
4
1β4 + 16

c2

n2
D4
1β2β3 − 33 c

3

n3
D4
1β

3
2 ≈ − cnD

4
1β4. (3.18)

Here, the inverse round trip time t−1R is equal to D1/2π (corresponding to c tR =
ng L), which means that FSR around the pump mode determines the group ve-
locity of the microresonator system. When taking these relations into account,
the resonator FSR depends on the effective radius and group index as,

FSR(ω) =
1

2πR(ω) · dβdω
=

c
2πR(ω) · ng(ω)

. (3.19)

The following expressions are useful to understand the relationship between FSR
and dispersion straightforwardly:

dFSR
dω

> 0,
dFSR
dλ

< 0 : (anomalous dispersion) (3.20)

dFSR
dω

< 0,
dFSR
dλ

> 0 : (normal dispersion) (3.21)

3.1.3 Material dispersion

Material dispersion — the frequency dependence of refractive index of a mate-
rial — plays an important role in the total dispersion of a resonator. The Sell-
meier equation proposed in 1872 [148] is used to determine the dispersion in
the medium as:

n2(λ) = 1+
∑
i

Ai ·λ2
λ2 − B2

i

(3.22)

where Ai and Bi are the Sellmeier coefficients, and λ is wavelength in units of
µm (see Table 3.1). Figure 3.2 shows material dispersion given by Eq. (3.22).
Sellmeier coefficients for other optical materials can be found elsewhere [149,
150].
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Table. 3.1: Coefficients of Sellmeier equations in microresonator material [149]

Material A1 A2 A3 B1 [µm] B2 [µm] B3 [µm]
SiO2 0.6961663 0.4079426 0.8974794 0.0684043 0.1162414 9.896161

MgF2 0.48755108 0.39875031 2.3120353 0.04338408 0.09461442 23.793604

CaF2 0.5675888 0.4710914 3.8484723 0.050263605 0.1003909 34.649040

Si3N4 3.0249 40314 0.1353406 1239.842
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Fig. 3.2: (a) and (b) Material dispersion D and β2 of various platforms: silica
(SiO2), magnesium fluoride (MgF2), calcium fluoride (CaF2), and silicon
nitride (Si3N4).

3.1.4 Geometric dispersion

Besides the contribution of material dispersion, geometric dispersion has a sub-
stantial impact on total dispersion. Geometrical dispersion can be interpreted as
follows: an optical mode with a different frequency experiences a different op-
tical path in the waveguide. Since optical microresonators have various kinds of
geometry parameters such as resonator diameter and cross-section dimension, it
is necessary to take the geometry effect into account carefully. Furthermore, it is
known that different spatial modes and different polarization modes can induce
additional dispersion effects in terms of geometric dispersion because optical
microresonators generally have a multi-mode structure.
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Finite-element method analysis

In order to calculate the geometric dispersion of the optical microresonator, two
useful methods have been developed. One is an analytical approach via an ap-
proximation of the eigenfrequency of resonators [110, 151, 152]. Such an an-
alytical expression offers an accurate simulation of the resonance frequencies
and mode field distribution, and it has also been used to calculate geometric
dispersion. However, this method has the geometrical limitation of resonators
in which an analytical estimation is valid only for simple and symmetric geome-
tries (i.e., spheroids and toroids). The other approach is a finite-element method
(FEM) simulation that is widely used to solve the partial differential equations
in various mathematical models (e.g., structure analysis, and heat transfer, and
electromagnetic potential). The FEM simulation can be performedwith commer-
cially available software (e.g., COMSOL Multiphysics) as an eigenvalue solver
of axisymmetric structures like optical microresonators [153]. An FEM simula-
tion yields not only the eigenmode frequency corresponding to the resonance
frequency but also the mode field distribution, which gives the effective mode
area (see Eq.(2.8)) and the mode overlap factor between different transverse
modes. Since the whispering galley mode and waveguide mode exhibit differ-
ent properties with regards to the geometric dispersion, it is straight to introduce
independently.

Geometric dispersion in a WGM microresonator

Figure 3.3 shows the examples of mode profile simulation with FEM in a silica
microdisk resonator. In the case of a WGM, the effective mode radius readily in-
fluences the dispersion since the optical mode approaches the inner region of the
resonator (symmetric axis of the resonator) when the wavelength (frequency)
is increasing (decreasing). Such a trend of the effective radius corresponds to
one side of the geometric dispersion. The change in ng , which is determined
by the sum of neff and the frequency-dependent variation ω(dneff/dω) defined
as Eq. (3.2), is interpreted as another side of the geometric dispersion. When
the optical mode extends to the lower index region, it results in the reduction in
neff (which promotes normal dispersion). On the other hand, a sudden change
in neff induces an overall increase in ng , and it helps to contribute anomalous
dispersion.

Here, one can see that the effective index is associated with the change in ef-
fective radius and the penetration of the mode field into the air cladding region.
The former effect is a unique feature in WGM, not present in a waveguide mode.
Although these two mutual contributions must be taken into account simulta-
neously, it is possible to predict the overall microresonator dispersion by un-
derstanding the principle of the geometric dispersion of WGM microresonators.
This makes a significant difference between WGM resonator and waveguide res-
onator as regards the dispersion engineering. It should also be noted that trans-
verse electric (TE) and transverse magnetic (TM) polarizations are defined as
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Fig. 3.3: (a) Created mesh cells for axisymmetric microdisk resonator with 40◦
wedge angle in FEM calculation. (b) Calculated mode profile of funda-
mental TE and TM modes around 1550 nm. The TM mode slightly ex-
tends the outer boundary of the disk resonator. (c) Comparison of mode
profiles at three different wavelengths. At longer wavelengths, the center
of the optical mode is shifted inside the resonator.

the parallel (orthogonal) direction of the dominant electrical field to the sym-
metric axis of the WGM microresonator [153, 154]. This definition is opposite
to the case of waveguide mode described later.

In order to obtain the total dispersion of WGM microresonators, both mate-
rial and geometry dispersions should be taken into account in the calculation.
Nevertheless, it is not easy to consider these two dispersions separately since the
mode field distribution of a WGM resonator is strongly related to the refractive
index of the resonator material and the outer field. Therefore, an iterative cal-
culation is an effective way to simulate resonance frequencies accurately. Three
steps have been used in the calculation. (1) Input the microresonator struc-
ture and the approximate refractive index of the material into an FEM solver.
The approximate refractive index can be obtained by Eq. (3.22) or literature.
(2) A Sellmeier equation gives the refractive index at the frequency, which is
obtained as an eigenfrequency in FEM solver. These procedures are repeated
several times. (three or four times are sufficient) (3) Obtain the “exact” reso-
nance frequency taking account of the “exact” refractive index at the frequency.
The obtained results are resonance frequencies that include both material and
geometry dispersions, which yield the FSR and dispersion through proper data
processing. A detailed calculation flow is shown in Fig. 3.4. The setting of the
starting eigenfrequency to be searched is essential to avoid an undesired calcula-
tion and a failed result. Calculation sometimes diverges due to an error with the
solver, and then the calculation should be repeated with a different searching
frequency. A judgment algorithm that can be used to check the values is also
important for implementing a successful simulation and reducing the redundant
computation time. Moreover, the mesh size should be sufficiently fine to obtain
exact values even though it is a trade-off against calculation time.
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Fig. 3.4: Iterative calculation flow for WGM microresonator dispersion taking ac-
count of material and geometry dispersion.

Geometric dispersion in waveguide microresonator

In general, the geometric dispersion of a waveguide (guided-mode) resonator
approaches anomalous dispersion near the higher confinement region and nor-
mal dispersion near the lower confinement (cut-off) region. This is the sim-
ple rule in the case of waveguide resonators, where the effect of frequency-
dependent mode radius variation is neglected due to its strong mode confine-
ment. Also, TE and TM polarizations are defined as the electric (magnetic) field
being perpendicular to the propagation direction, as is the case of the general
definition.

3.2 Microresonator dispersion engineering

3.2.1 Structure design of microresonators

Optical microresonators have wide-ranging combinations of material and ge-
ometry; in particular, various choices are available and selected based on the
demands for FSR or integration possibility. The host material for resonators
determines the Q limitation, and the major trend of the dispersion as material
dispersion. Nevertheless, the total dispersion can only be modified by arranging
the structural parameters in the monolithic resonators, and thus there are many
studies aimed at engineering the resonator dispersion utilizing geometry tailor-
ing [53,155], layer structure [156], slot waveguide [157], and multi-resonator
system [78,158].

Here, the total dispersions in several kinds of microresonators are briefly in-
troduced. The resonator geometry can be engineered via the structural condition
where different structure parameters are used for different resonators. The res-
onator size (corresponding to radius R) is directly related to the FSR, and thus
the FSR can be approximated from the resonator radius and refractive index
while other structural parameters can affect both the FSR and dispersion. The
following section mainly focuses on presenting the dependence of each geom-
etry parameter on total dispersion and the principle of dispersion engineering.
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The modeling of WGM resonators are depicted in Fig. 3.5.
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Fig. 3.5: (a) Spheroid (spherical) model, representing a mm-sized microresonator
with a resonator radius R and a curvature radius r. (b) Microtoroid
model, whose two structural parameters are major radius R and minor
radius r. (c) Single-disk model with resonator radius R, thickness t, and
wedge angle θ . (d) SEM image of an MgF2 crystalline resonator. (e)
SEM image of a silica microtoroid resonator. (f) SEM image of a silica
microdisk resonator.

3.2.2 Calculated dispersion of whispering gallery mode mi-
croresonators

Spheroid (spherical) model

Spheroid and spherical cross-sectional shapes are ubiquitous structures in crys-
talline and silica-basedWGMmicroresonators [14,15]. The spheroid (spherical)
structure is characterized by a resonator radius R and a curvature radius r, and
microsphere resonator corresponds to the case of the perfect sphere, namely the
condition of R = r [4]. Since the fabricated resonator size is in the order of
several hundred micrometers to several millimeters, the typical curvature radius
becomes several tens/hundreds of micrometers. These features are determined
by the fabrication methods such as mechanical and hand polishing with a crys-
talline resonator, and a carbon dioxide (CO2) laser cutting process with a silica
rod resonator.

Figures 3.6(a) and 3.6(b) shows calculated dispersion D as a function of
wavelength for the fundamental TE mode of a MgF2 resonator with a different
resonator radius and curvature radius. Figures 3.6(c) and 3.6(d) shows the cor-
responding integrated dispersions Dint, which indicates the deviation between
each resonance frequency and the estimated equidistant FSR D1/2π. The res-
onator radius is changed to 350 µm, 700 µm, 1400 µm, and 2800 µm. One
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can see that the dispersion curves gradually get close to the material dispersion
with a larger resonator size, enhancing an overall anomalous dispersion. On the
other hand, it is clear that the curvature radii from 25 µm to 100 µm are less im-
portant as regards overall dispersion, even though a smaller radius contributes
slightly to a strong anomalous dispersion as shown in the inset of Fig. 3.6(b).
These results suggest important guidelines: (1) the overall dispersion mainly
depends on the resonator size, (2) the curvature size plays a less important role
in a mm-size spheroid/spherical resonator. The first guideline can be simply
understood as a suppression of the geometric effect in a larger size resonator.
The second guideline describes that the optical mode is not influenced by a rela-
tively large curvature radius than the resonance wavelength. Nevertheless, this
example is only the fundamental mode, and it is known that the radial and polar
higher-order modes also contributes to the change of the total dispersion [159].

Microtoroid model

A microtoroid is characterized by a major radius (corresponding to resonator
radius) and a minor radius of several tens/hundreds of micrometers and sev-
eral micrometers, respectively [5]. The results of simulated dispersion in silica
microtoroid are shown in Fig. 3.7. A choice of major radii strongly affects the
dispersion as with the case of the spheroid model. One can find that the differ-
ence between radii of 40 µm and 60 µm are more important as regards realizing
an anomalous dispersion in the 1550 nm region. Interestingly, the smaller mi-
nor radius contributes to a strong anomalous dispersion as shown in Fig. 3.7(b).
This feature indicates that the µm-size of minor radius strongly affects the geom-
etry dispersion. As a result, the change towards an anomalous dispersion with
a smaller minor radius is interpreted as follows: geometry dispersion generally
contributes to normal dispersion because of a reduction of mode radius, which
corresponds to an increasing FSR with a longer wavelength. On the other hand,
a change in ng can compensate for the normal dispersion, and the total disper-
sion becomes anomalous due to the strongmode confinement. Consequently, the
geometry dispersion becomes anomalous overall as the resonator cross-section
dimension is compressed. In contrast, the dispersion for r = 5 and r = 6 exhibits
little change compared with that for r = 3 and r = 4 as shown in Figs. 3.7(b)
and 3.7(d). These results indicate that relatively loose mode confinement has
less influence on dispersion, namely “mode relaxation” effect.

Single-disk model

A single-disk resonator is characterized by three parameters, namely a resonator
radius, a wedge angle, and thickness [13,160]. Figures 3.8(a) and 3.8(c) show
the dispersion with different thicknesses of 4 µm, 6 µm, 8 µm and 10 µm. The
disk angle and resonator radius were kept at 40◦ and R = 300 µm, respectively.
Here, the dispersion curves increase significantly with a decrease in disk thick-
ness, and does not show any significant change with thicknesses of 8 µm and
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Fig. 3.6: Simulated dispersion of MgF2 spheroid resonator for different resonator
radii R and curvature radii r in µm. (a) Dispersion parameter D for dif-
ferent resonator radii. (b) Dispersion parameter D for different curvature
radii. (c) Integrated dispersion Dint, which is defined as the deviation of
the resonance frequency from an equidistant FSR, for different resonator
radii. The positive parabolic function corresponds to anomalous disper-
sion, and the cubic function curves of the dispersion originate from the
effect of third-order dispersion. (d) Integrated dispersion Dint for differ-
ent curvature radii.
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Fig. 3.7: Simulated dispersion of a SiO2 microtoroid for different resonator radii
R and minor radii r in µm. (a) Dispersion parameter D for different
resonator radii. (b) Dispersion parameter D for different minor radii. (c)
Integrated dispersion Dint, for different resonator radii. (d) Integrated
dispersion Dint for different minor radii.
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Fig. 3.8: Simulated dispersion of SiO2 disk of 300 µm radius for different angles
θ and thicknesses t µm. (a) Dispersion parameter D for different disk
thicknesses. (b) Dispersion parameter D for different disk angles. (c)
Integrated dispersion Dint, for different disk thicknesses. (d) Integrated
dispersion Dint for different disk angles.
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10 µm. The reason for the former result can be explained with the analogy of
“mode compression”, and latter observation can be understood with the anal-
ogy of “mode relaxation” as with the microtoroid model. Next, the disk angle is
changed to 20◦, 30◦, 40◦, and 50◦ with a fixed thickness of 6 µm and resonator
radius of R= 300 µm as shown in Fig. 3.8(b) and 3.8(d). The simulation result
indicates that the smaller disk angle contributes greatly to the normal disper-
sion. The faster mode radius reduction mainly explains this effect with a smaller
disk angle.

3.2.3 Calculated dispersion of waveguidemodemicroresonators

3.2.4 Review of a strategy of dispersion engineering

Here the strategy of dispersion engineering is briefly reviewed from the obtained
results of dispersion simulation. First, it is clear that the choice of material and
type of microresonator is essential with respect to deciding the overall disper-
sion. Indeed, different material exhibits different dispersion, and the manufac-
turable structure mutually depends on the material and the resonator size.

In the case of WGM microresonator, a smaller radius resonator is strongly
influenced by geometric dispersion approaching a normal dispersion in general.
However, the resonator size determines the FSR of a generated comb, and so it is
not easy to achieve both a large FSR and a proper anomalous dispersion in terms
of microresonator frequency comb generation. The compression of smaller res-
onator cross-section dimension is an effective way in order to overcome this lim-
itation since the dispersion changes from normal to anomalous in small radius
resonators [160, 161]. A criterion for such mode compression is several times
the wavelength of the optical mode (i.e., a cross-section dimension of λ∼4λ).
In addition, the disk angle critically affects the dispersion, which is not observed
with spheroid/spherical and microtoroid models. One can understand this case
as a rapidly decreasing mode radius with a smaller disk angle than with a larger
angle (i.e., contribution to normal dispersion) [155, 162]. These trends can be
applied to every type of WGM microresonator, and it will be an important strat-
egy for designing the microresonator structure.

3.3 Measurement of microresonator dispersion

3.3.1 Objective of dispersion measurement

The measurement of microresonator dispersion is one of the essential techniques
for the evaluation of fabricated microresonators. In addition to numerical simu-
lation, as described in Section 3.2, a precise measurement of dispersion allows us
to find the desired resonance mode from massive resonance frequencies. Mea-
sured resonance frequency provides the resonator FSR, second and higher-order
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dispersions, and themode interaction between different transversemodes. How-
ever, resonator dispersion measurements must be performed carefully and accu-
rately since the linewidth and the deviation of the mode spacing are in the orders
of kHz or MHz, which means that high spectral resolution is required over the
measurement bandwidth. In general, it is not easy to guarantee the frequency
with such accuracy due to the uncertainty of the measurement, which cannot be
neglected in this case. Therefore, the wavelength axis of the measurement data
must be calibrated with reliable methods to give precise frequency references.
The requirements of dispersion measurement are as follows; (1) measurement
bandwidth, (2) accuracy and resolution, (3) system simplicity. There is often a
trade-off, and thus it is necessary to choose the method carefully on demand.
Here, several dispersion measurement methods are reviewed with the measure-
ment results. Figure 3.9 shows a schematic of the experimental setup for various
dispersion measurements.

Fiber comb

Tunable ECDL

Fiber MZI

Wavelength meter

Polariza�on controller
Photodetector

Oscilloscope

BPF

Microresonator

Marker signal

Transmi�ance

Marker signal

Marker signal

TIA

Fig. 3.9: Schematic of the setup used for the microresonator dispersion measure-
ment. The dispersion of crystalline MgF2 microresonator was measured
with three different methods. Both the resonator transmittance and cal-
ibration marker are recorded simultaneously with a multi-channel oscil-
loscope. Each path can be independently used for dispersion measure-
ments, whereas all the signals in the experiment were observed for com-
parison. ECDL, external cavity diode laser. MZI, Mach-Zehnder interfer-
ometer. TIA, transimpedance amplifier. BPF, band-pass filter.

3.3.2 Laser wavemeter based method

The simplest method involves using a wavelength meter to calibrate the actual
wavelength of the sweeping laser. The wavelength meter is synchronized with
the scanning laser, and the resonance transmission and the output signal from
the wavelength meter are obtained simultaneously with a long-memory oscillo-
scope or other data acquisition (DAQ) system. It is assumed that the wavelength
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Fig. 3.10: The result of the laser wavelength method. Top: Measured resonator
transmission spectrum (blue) and frequency marker signal with wave-
length meter (orange). Several different mode families are recorded.
Middle: 10× enlarged view of the top. The frequency axis is calibrated
by the peaks at a 100 MHz distance. Bottom: Measured dispersion plot
of Dint (blue dots) versus relative mode number µ. The red line shows
a parabolic fitting curve yielding D2/2π = 4.5 kHz (FSR ∼ 21.6 GHz).
The deviations from the fitting are limited by the accuracy of the wave-
length meter. Strong mode perturbations around µ= 100 and µ= 150
are caused by anti-mode crossing between different mode families.
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meter can be synchronized with the sweeping laser in this measurement. Accord-
ingly, wavelength resolution and accuracy would be limited by the performance
of the wavelength meter, which is at best of tens of MHz order in commercially
available products. This property lacks wavelength accuracy even though it is
critical for the dispersion measurement. The advantage of this method is exper-
imental simplicity, and it requires only a 2-channel oscilloscope (available for
maximum performance of memory length). Figure 3.10 shows the experimental
dispersion result obtained with a wavelength-meter-based measurement. Here,
the trigger outputs based on a built-in-function wavelength meter of the tunable
laser (TSL-710, santec) are used as the marker signal.

3.3.3 Mode-locked frequency comb based method

This method was first proposed as frequency comb assisted diode laser spec-
troscopy [163], and used in many studies [43, 76]. A scanning laser over reso-
nances is partially split and combined with a stabilized frequency comb source,
which generates a laser beat signal with equidistant comb lines. The beat sig-
nals are electrically filtered with a narrow-band bandpass filter to make calibra-
tion markers only when the scanning laser passes through the comb lines. Con-
sequently, the calibration markers are detected when the laser frequency ( fs)
matches the difference between a neighboring comb line ( fc = fceo + nfrep) and
the center of the bandpass filter ( fb) with 0 < fb < frep/2: fs = fceo + nfrep ± fb.
The schematic of the operation principle of this method is shown in Fig. 3.11.
This method provides reliable information about the scanning laser frequency
and the transmission resonance simultaneously within a few seconds. Marker
peaks can be processed with a local peak finding algorithm and converted to an
accurate frequency axis. The measured results are shown in Fig. 3.12.

The spectral resolution is determined from the scan bandwidth and the mem-
ory length of the oscilloscope, and the sweeping speed of the laser should be
sufficiently fast to avoid unnecessary measurement error (e.g., the frequency
fluctuation of the comb source). Nevertheless, the maximum sweep speed vs is
limited by the bandwidth of electric filters, which have certain response times
(estimated from the inverse of the filter bandwidth Γbw), yielding vs = 1/Γ 2bw. The
laser frequency between neighboring calibration markers can be interpolated so
that the use of multiple bandpass filters can increase the measurement accu-
racy. It should be noted that this method uses a multi-channel oscilloscope with
a sufficiently long memory because the spectral resolution (scan bandwidth di-
vided by memory length) must be sufficiently finer than the resonance linewidth
γ=Q/ν. For instance, the detection of a high Q resonance of 109 over a 40 nm
range needs a memory length of at least ∼ 25M point per channel. It should
also be noted that this measurement requires a mode-hope-free tunable laser
over the scanning range, and the measurement bandwidth is limited by both the
laser and the reference frequency comb. The polarization of the fiber comb must
be carefully adjusted to interfere with the tunable laser. Otherwise, the marker
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signal lacks in the sweeping range. This means that the degree of polarization
uniformity and the stability of fiber comb directly links to the noise floor of the
marker signal.

Besides, there is a way to use a wavelength meter or frequency-stabilized
CW laser in order to generate a reference marker signal to calibrate the absolute
wavelength. The uncertainty of the wavelength meter introduces an absolute
wavelength offset for the measurement data; however, it is less important for
microresonator “dispersion” measurements. This indicates that measurement
accuracy does not depend on absolute frequency calibration, but on relative fre-
quency calibration. The bandwidth limitation of the measurement can be over-
come by utilizing two widely tunable lasers with different wavelength bands if
the reference comb has a broad enough bandwidth over the full measurement
range [164].
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Fig. 3.11: Operating principle of the mode-locked frequency comb-based method.
The scanning laser generates beat notes with stabilized fiber comb lines,
and the beat signals filtered with a band-pass filter calibrate the time
axis to frequency axis.

3.3.4 Calibrated fiber-based interferometer method

A fiber-based interferometer or fiber-loop cavity can be used as a calibration
marker [13, 42, 77, 124] instead of beat signals generated with a mode-locked
frequency comb. This method offers simple implementation, high accuracy, and
broad bandwidth. However, the fiber interferometer composed of optical sil-
ica fiber itself inherently exhibits dispersion. Thus, the FSR and dispersion of a
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Fig. 3.12: The result of the mode-locked frequency comb based method. Top:
Measured resonator transmission spectrum (blue) and beat signal (red)
with fiber comb lines, which work as calibration peaks. Middle: 10× en-
larged view of the top. The frequency axis is calibrated by the peaks at
40MHz and 60MHzwith respect to the fiber comb lines with a 100MHz
mode spacing. Bottom: Measured dispersion plot of Dint (blue dots) and
fitting curve (solid red line). The measurement accuracy is greatly im-
proved compared with the wavelength meter method.
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Fig. 3.13: The result of the calibrated fiber MZI method. Top: Measured resonator
transmission spectrum (blue) and interferometric signal (green) with a
fiber MZI. Middle: 10× enlarged view of the top. The frequency axis
is calibrated by the sinusoidal peaks at 20 MHz of the FSR of the MZI.
Bottom: Measured dispersion plot of Dint (blue dots) and fitting curve
(solid red line). With proper dispersion calibration of the fiber MZI, the
measured dispersion agrees well with the results obtained with other
methods. The inset shows the result without the calibration of MZI,
which reflects the inherent dispersion of silica optical fiber, and it hin-
ders the resonator dispersion.
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fiber Mach-Zehnder interferometer (MZI) must be carefully measured and cal-
ibrated in advance of the resonator dispersion measurement. A fiber MZI is
easy to prepare by connecting two 50/50 fiber couplers where one path is sev-
eral meters longer than the other. The length difference between the two paths
∆Lfiber corresponds to the frequency period of a sinusoidal interferometer signal
∆ fMZI = c/(n∆Lfiber). When using a 10 m length of delay line (e.g., commercial
single-mode silica optical fiber), the interferometric period will be around 20
MHz. The period of the MZI becomes longer on the time axis while the laser
is slowly scanned; on the other hand, the MZI will respond as a short period
against faster scanning. This time-variant sinusoidal signal gives frequency cal-
ibration information, and the number of MZI periods is counted with a similar
algorithm to that used with the frequency comb-based method. Measured re-
sults are shown in Fig. 3.13. The MZI dispersion can be expressed by a Taylor
expanded equation as,

∆ fMZI(µMZI) =∆ fMZI,0 + d1µMZI +
1
2
d2µ

2
MZI (3.23)

where ∆ fMZI,0 is the FSR of the center mode, µMZI = 0, µMZI is the relative mode
number of the MZI period with respect to the center mode, d1 and d2 are the
first and second-order dispersion, respectively. The calibration of the fiber MZI
must be accomplished by the precise measurement of the FSR both near and
far from the center mode, and polynomial fitting according to Eq. (3.23). If the
dispersion of the fiber MZI, namely, d1 and d2, is not considered, the resonator
dispersion can be no longer measured, as shown in the inset of the bottom figure
of Fig. 3.13. The calibrated fiber MZI should be operated in a stable condition
for temperature, pressure, and bending in order to avoid any deviation of the
calibration data.

3.3.5 Electro-optic modulator comb based method

An electro-optic modulator (EOM) modulates the scanning laser, and this gen-
erates multiple resonances on both sides with a modulation frequency fmod.
Such sideband modulation technique can be used in various microresonator re-
searches such as the Pound-Drever-Hall (PDH) technique [125], linewidth es-
timation [58], electro-optic frequency comb generation [165], and the disper-
sion measurement described here [155,162]. If the modulation frequency fmod

nearly matches the resonator FSR, three resonance dips can overlap each other
in the spectral domain, and then fmod itself gives the FSR of the interest. This
method can be adopted for broadband dispersion measurement and is not lim-
ited by the tunable range of the mode-hope free laser, from 1400 to 1700 nm,
and even around the 2100 nmwavelength region via difference frequency gener-
ation [155]. The CW laser sent to the EO modulator with fmod outputs a narrow
band EO comb, and the bandwidth can be broadened through multiple ampli-
fiers and highly nonlinear fibers. When the broadened comb lines sweep over

82



3.4. ROLE OF MICRORESONATOR DISPERSION IN MICROCOMBS

the multiple resonances simultaneously, precisely adjusted fmod will provide the
average FSR of the extracted resonances. The uncertainty of this measurement
is estimated to be about 100 kHz [162]. It should be noted that there is one
limitation regarding resonator FSR since fmod must reach at least 1-FSR from
the pump laser. The bandwidth of a commercially available EO modulator is
several tens of GHz, and thus this method can only be operated in the measure-
ment of microresonators having the FSR of the same order as a bandwidth of EO
modulator used in the experiment.

3.4 Role ofmicroresonator dispersion inmicrocombs

The microresonator dispersion plays a critical role in the frequency comb spec-
trum, especially for the position of initial sideband, spectrum shape, and comb
bandwidth. Anomalous dispersion is a requirement for phase-matching in terms
of FWM under CW pumping condition, and for dissipative Kerr soliton forma-
tion as well. Thus, the dispersion tailoring for attaining anomalous dispersion
becomes an essential technique to obtain soliton microcomb. On the other hand,
microcomb generation in the normal dispersion region has also been experimen-
tally and theoretically studied in the present. Here, the role of dispersion and
local dispersion perturbation by avoided mode crossing on the microresonator
frequency comb spectrum are briefly reviewed.

3.4.1 Anomalous group velocity dispersion and dispersive waves

Second-order dispersion and dissipative Kerr soliton

In the formation of dissipative Kerr soliton, second-order (quadratic) dispersion
compensates Kerr nonlinearity as well as the relation of parametric gain and
loss [40, 41]. A nearly pure quadratic dispersion should ideally be achieved
around the pump wavelength, and then the DKSs characterized by sech2-shaped
optical spectrum stably maintains the waveform during propagating the res-
onator [Fig. 3.14(a)]. The steepness of parabolic function corresponds to the
value of second-order dispersion D2, and overall, it determines the comb band-
width. The detailed description of D2-dominated soliton with respect to the
mathematical form and its formation can be referred to §2.4.4.

Dispersive wave due to higher-order dispersion

Higher-order dispersion makes it possible to extend the comb bandwidth into a
wavelength region in which the sign of the integrated dispersion Dint changes
from positive (negative) to negative (positive). In this case, the comb spectrum
is no longer imposed by the limitation by second-order dispersion, and expands
even the normal dispersion regime [Figs. 3.14(b) and 3.14(c)]. This process is
known as the dispersive wave formation, which can be understood in terms of
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soliton-induced Cherenkov radiation [43]. The higher-order dispersion enables
to bend Dint curve at the far from the pump mode, and leads to the generation
of enhanced comb sidebands. The spectral location of the dispersive wave can
be approximately estimated by the zero-cross point of Dint, namely Dint(µ) = 0,
which means that resonator FSR around µ-mode matches to the FSR around
pump mode. For instance, the position of dispersive waves µDW are expressed
as,

µDW = −3D2

D3
(3.24)

µDW = −3D3

D4
±
√√√�2D3

D4

�2
− 12D2

D4
, (3.25)

where Eq. (3.24) is valid for D4 = 0. One can see that fourth-order dispersion
permits the formation of a dispersive wave with double peaks on both sides with
respect to the pump light, whereas third-order dispersion induces only a single
peak. The dispersion wave emission induces the oscillatory tail on the CW back-
ground of the intracavity waveform, resulting from the modulation by beating
of dispersive wave and the pump light. In addition, the dispersive wave forma-
tion causes soliton recoil accompanied by a soliton frequency shift relative to the
pump frequency. The management of higher-order dispersion offers the poten-
tial of spectral extension and power enhancement even in the spectral ends of
frequency comb; therefore, they can be used for f -2 f or 2 f -3 f self-referencing
measurement in microresonator frequency comb [143].

Dispersive wave due to avoided mode crossing

Avoided mode crossing or anti-crossing effect is often observed in optical mi-
croresonators due to their multi-mode structure. Such mode crossing effects
induce a local dispersion perturbation, which influences comb spectra as well
as higher-order dispersion. Although it is known that strong avoided-mode-
crossing occurring at the vicinity of the pump disturbs soliton formation [166],
a local dispersion shift leads to attractive applications including deterministic
single soliton generation [167] and dispersive wave emission [168]. In particu-
lar, dispersive wave emission induced by avoided mode crossings attracts many
interests because the effect of the dispersive wave is well related to unique soli-
ton formation such as a soliton crystal [169]. A modulated CW background
results in the creation of a potential grid, which determines temporal and fre-
quency spacing, and then it works as the lattice trapping optical pulse inside the
resonators [170]. The local dispersion change associated with avoided mode
crossing appears as strong suppression or enhancement of a few comb lines at
crossing position, and the excess power due to dispersive wave also makes soli-
ton recoil in the opposite direction against spectral spikes [168].
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3.4.2 Normal group velocity dispersion

Phase-matched four-wave mixing by fourth-order dispersion

In the case of normal group velocity dispersion, a microresonator frequency
comb cannot usually be observed with a CW pumping because of the absence
of modulation instability. However, higher-order dispersion, especially even or-
ders of dispersion, makes it possible to initiate four-wave mixing even in the
normal dispersion microresonator. When the resonance mode located in a weak
normal dispersion regime (D2 < 0), positive fourth-order dispersion (D4 > 0)
compensates the normal dispersion and enables a resonant modulation instabil-
ity (MI) process to occur far from the pumpmode [Fig. 3.14(d)]. The parametric
sideband generation via phase-matched FWM has been studied in fiber devices,
and recently demonstrated in optical microresonators. The position of initial
parametric sidebands can be approximately estimated from the zero-cross of the
value of frequency difference (ω0+µ+ω0−µ− 2ω0) = D2µ

2+ D4/12µ
4, yielding,

µPS = ±
√√−12D2

D4
. (3.26)

Here only even orders of dispersion play a role regarding the phase-matching
condition even though Dint shows the cubic function affected by D3 (odd orders of
dispersion are negligible). This unique phase-matching scheme offers a practical
advantage that it enables us to drastically extend the bandwidth of FWM with
a combination of dispersion engineering. Moreover, subsequent cascade FWM
forms comb clusters around the primary sidebands, called clustered comb [64].
The extension of spectral coverage assisted by fourth-order dispersion will be
discussed, in Chapter 4 and Chapter 5 in this thesis.

Normal dispersion microcomb via avoided mode crossing

As described previously, modulation instability induced four-wave mixing is not
usually allowed in the normal dispersion regime. Nevertheless, mode-locked fre-
quency combs in normal dispersion were experimentally observed via avoided
mode crossing effect, which creates local anomalous dispersion regime in overall
normal dispersion system [171,172]. These mode-locked states are interpreted
as dark pulses [76], also called flat-topped pulses or platicons [173]. It should be
noted that they can be classified by the pulse duration but not specified so far.
The normal dispersion microresonator comb formation is expected to expand
the comb bandwidth in a certain wavelength range, where the strong material
dispersion dominates the total dispersion (e.g., visible wavelength region), via
tailoring of dispersion and mode crossing. In addition, the higher conversion
efficiency [75] and FSR controllability [158,172] are unique features of the nor-
mal dispersion microcomb. Such a dark pulse state is also accessible by the
bichromatic and amplitude-modulated pump. Chapter 6 highlights on the nor-
mal dispersion microcomb and its rigorous modeling and numerical simulation.
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Dint/2π

(ω0+µ+ω0-µ−2ω0)/2π
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Fig. 3.14: Spectra of Kerr frequency comb (blue line) and corresponding disper-
sion Dint (solid red line). Dissipative Kerr solitons dominated by D2 (a),
with a single peak dispersive wave (b) and double peaks (c) affected by
D3 and D4, respectively. (d) Clustered comb formed in a normal disper-
sion regime via D4. Phase-matching points are indicated by the solid
green line.

3.5 Summary

This chapter reviewed microresonator dispersion engineering and described a
calculation method and a measurement method with the aim of microresonator
frequency comb generation. As this chapter features WGM microresonators that
have several kinds of resonator structures and candidate materials, FEM based
dispersion simulation and precise dispersion measurement techniques are pro-
vided in detail. Moreover, it is revealed that microresonator dispersions, includ-
ing higher-order dispersion and local dispersion change, influence the optical
spectrum of the microresonator frequency comb decisively.

86



Chapter 4

All-precision-machining fabrication
of dispersion engineered crystalline
microresonator for microcomb
generation

This chapter presents the dispersion-engineered crystalline microresonator fab-
rication method with ultra-precision machining for microresonator frequency
comb generation. The first part mainly focuses on the all-precision-machining
fabrication of ultrahigh-Q crystalline optical microresonators. By addressing the
cutting condition and crystal anisotropy to overcome the large surface rough-
ness, an ultrahigh-Q exceeding 100million has been achieved solely by computer-
controlled ultraprecision machining. Since the fully programmed-machining
readily enables the precise geometry control, this approach promises to acceler-
ate the study of dispersion engineering for microresonator frequency comb gen-
eration. The later part reports on the observation of octave-wide optical para-
metric oscillation (OPO) by a continuous-wave pump, that is, phase-matched
FWM in a crystalline microresonator fabricated by ultra-precision machining.
The dispersion of a high-Q MgF2 microresonator was precisely engineered to
satisfy the phase-matching condition assisted by higher-order dispersion. Ex-
perimental and numerical results presented in this chapter confirm that primary
sidebands were generated with a frequency shift up to 140 THz and that sec-
ondary sidebands formed a localized comb structure, namely a clustered comb
in the vicinity of the primary sidebands*a*b.

*aContents presented in this chapter have been published in “All-precision-machining fabri-
cation of ultrahigh-Q crystalline optical microresonators,” Optica, 7, 6, 694–701 (2020) and
“Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microres-
onators,” Optics Letters, 44, 12, 3146–3149 (2019).

*bFabrication of crystalline microresonators with precision machining is collaboration work
with Kakinuma group (Keio Univ.). Note that the author led all the experiments and performed
optical measurement and numerical simulation.
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4.1 Introduction and motivation

A strong motivation of this work is to fabricate dispersion-engineered ultrahigh-
Q crystallinemicroresonators using all-precision-machining techniques and demon-
strate a large frequency shift optical parametric oscillation and a clustered comb,
especially exceeding one-octave, using a fabricated resonator. As a resonator
material, fused silica has been widely used to study the large frequency shift
parametric generation thus far. However, the use of crystalline material (e.g.,
CaF2 and MgF2) as a resonator is straightforward because crystalline materials
have a broad transparent window compared to fused silica showing strong op-
tical attenuation due to water absorption band.

This work addresses the single-crystal cutting condition by considering a crys-
tal anisotropy to obtain the ultrahigh-Q with precision machining alone. An or-
thogonal cutting experiment is performed to reveal the critical depth of cut for
different cutting directions. Also, a precise cylindrical turning experiment gives
the relationship between crystal anisotropy and surface quality after machining
to realize nanometer-scale surface roughness with diamond turning. The ex-
perimental demonstration of optical parametric oscillation is performed based
on the dispersion engineering technique and numerical simulation with Lugiato-
Lefever equation (LLE). Moreover, the control of oscillation frequency by pump
frequency tuning is also a challenge in this work.

4.2 Investigation of critical depth of cut

4.2.1 Miller index and crystal plane

The main purpose is to investigate the critical depth of cut; however, it will be
helpful to introduce the Miller index at the beginning, which is usually used
to define crystal plane and direction in crystallography. A single crystal is com-
posed of infinite unit cells, which correspond to the simplest possible units in the
crystal. These unit cells are categorized into seven fundamental patterns, and
the ordered structure characterizes various optical and material properties of the
crystal, such as refractive index, absorption, cleavage, plastic deformation, and
crystal anisotropy [174,175].

When the three lattice vectors a, b, and c are used to denote a unit cell, the
following notation [h k l] defines the crystal direction:

ha+ kb+ lc, (4.1)

where h, k, and l are relatively prime integer numbers. For instance, [100]
denotes the direction along the a-axis. A negative number indicates the opposite
direction and is written as [100]. The crystal plane is also denoted with such
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indices as well as the direction so that (h k l) gives a plane that intercepts the
three points a/h, b/k, and c/l. With a cubic lattice structure, the [h k l] direction
is normal to the (h k l) plane.

Figures 4.1(a) and 4.1(b) show examples of the Miller index and crystal-
lographic images of CaF2 and MgF2 crystal. The difference in crystal structure
influences the critical depth of cut and the cutting conditions. CaF2 exhibits sym-
metrical cubic structure, whereas MgF2 has a more complex structure, namely
rutile structure. Besides, from the point of view of the optical property, MgF2
is known as a uniaxial crystal, and it is slightly birefringent depending on the
polarization and the direction of the incident light. Therefore, MgF2 material is
often cut with the optical axis perpendicular to the plane of the window to avoid
birefringence in commercial products. Such window materials are referred to as
c-cut or z-cut, in which the optical axis is normal to the (001) plane.

4.2.2 Definition of critical depth of cut

The critical depth of cut is one important parameter when fabricating a single
crystalline microresonator. It is defined by the depth of cut where the transition
from ductile-mode to brittle-mode cutting is observed when machining single-
crystal material [176]. In the ductile regime, a smooth crack-free surface can be
maintained as generating a continuous ribbon chip. This cutting process is con-
sidered more suitable for optical applications due to its ultra-smooth surface. On
the other hand, the surface in the brittle regime is rougher and contains cracks;
hence it is generally inadequate for optical applications. Nevertheless, CaF2 and
MgF2 crystals are hard and brittle materials and have a crystal anisotropy, so they
are challenging to cut. These features make it difficult to manufacture smooth
optical elements with a designed shape such as spherical lenses and optical mi-
croresonators. In particular, high-Q microresonators require an ultra-smooth
surface with a surface roughness of no more than a few nanometers. Thus, the
critical depth of cut must be investigated before resonator fabrication to cut the
crystal in the ductile mode regime.

4.2.3 Orthogonal cutting experiment

An orthogonal cutting experiment was performed to investigate the critical depth
of cut. The experiment was carried out with an ultra-precision machining cen-
ter (UVC-450C, TOSHIBA MACHINE), and a workpiece holder equipped with a
dynamometer to detect the cutting force during the processing. A workpiece is
a pre-polished single-crystal MgF2 substrate with a size of 38 mm×13 mm and
a thickness of 1 mm, which was fixed on the workpiece holder with a vacuum
chuck. Figure 4.2(a) shows the experimental setup. The experiment was con-
ducted with two different crystal planes, (001) and (010) by cutting in every
30◦ rotational direction, and the direction of 0◦ was set at [100] and [001], re-
spectively [Fig. 4.2(b)]. The cutting slope D/L, which gives the cutting depth
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Fig. 4.1: (a) Examples of the Miller index, where (h k l) and [h k l] indicate the
corresponding plane and direction, respectively. (b) Crystallographic im-
ages of CaF2 and MgF2 crystal. The red arrows indicate examples of slip
system. The structure of CaF2 is known as the cubic symmetry system,
and MgF2 is characterized by a more complex rutile structure.
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to cutting length ratio, and the feed rate, were set at 1/500 and 20 mm/min,
respectively, with a numerical control (NC) program. The cutting tool used in
the test will be presented in more detail later.

The critical depth of cut, defined as the cutting depth at which the first brittle
fracture appeared on the surface, can be measured using a scanning white light
interferometer (New View TM6200, Zygo). Figures 4.2(c) and 4.2(d) show a
microscope image and the reconstruction image of the machined surface. The
black points of Fig. 4.2(d) indicate fractures or cracks that appeared on the sur-
face. Note that MgF2 has a complex rutile structure with a different crystal plane
configuration from CaF2; hence the two major planes are selected for the test to
reveal the effect of crystal anisotropy.

Single-crystal substrate

Diamond tool
Ductile modeBrittle mode

Crack (black point)

Top view Cutting direction

(a)

(b)

(c)

(d)

Cutting directionSubstrate

Cutting slope D/L

L D Groove

Side view Diamond tool

0°

90°

180°

270°

30°
60° 120°

150°

330°
300°

210°
240°

Vacuum chuck

Top view

200 µm

Fig. 4.2: (a) Experimental setup for orthogonal cutting to investigate the critical
depth of cut in an MgF2 single crystal. (b) Schematics of a single-crystal
substrate and the cutting direction in the orthogonal cutting experiment.
The cutting was performed in every 30◦ rotation direction (left panel),
and the diamond tool cut a V-shaped groove with a slope of D/L (right
panel). (c)Microscope image of themachined surface. (d) Reconstructed
image of the machined surface using scanning white light interferome-
ter. The critical depth of cut is given by the depth where the first brittle
fracture appeared (black point).

Figure 4.3(a) shows scanning electron microscope (SEM) images of the sur-
face condition of the (010) plane after orthogonal machining. Note that the
yellow region is the original uncut surface. Even though the only difference is
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Fig. 4.3: (a) Scanning electron micrographs showing machined surfaces of a (010)
plane with [001] direction (upper panel) and [100] direction (lower
panel). The yellow shaded area and the gray area correspond to the
original uncut surfaces and machined surfaces, respectively. The differ-
ence between the machined surface conditions is attributed to the crystal
anisotropy of the MgF2 crystal. (b) and (c) The measured critical depth of
cut versus cutting direction on a (001) and (010) plane, respectively. In
comparison with the (001) plane, the (010) plane shows a large variation
in cutting direction due to crystal anisotropy. The results of 0◦ (green dot)
and 270◦ (orange dot) correspond to the upper panel and lower panel
in (a), respectively. These results confirmed that the measured critical
depths of cut are consistent with images of the machined surface. In or-
der to perform ductile mode cutting, the depth of cut must be kept below
the critical depth of cut.
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the cutting direction (i.e., [001] and [100]), there is a significant impact on the
surface quality of the machined region due to the crystal anisotropy. One can
see large brittle fractures in the [100] direction, whereas overall, the [001] di-
rection exhibited smooth surfaces. Figures 4.3(b) and 4.3(c) show the variation
in the critical depth of cut as a function of cutting direction on each plane. On
the (001) plane, the critical depth variation was approximately 120 nm, and
the lower bound value was 86 nm in the 270◦ direction ([010] direction). On
the other hand, the variation with the (010) plane was more significant than
that with the (001) plane, and the lower bound also decreased (i.e., worsened).
These considerable differences in critical depth of cut are consistent with surface
observations, as shown in Fig. 4.3(a).

These results can be explained by taking the tensile model in single-crystal
cutting into account, as shown in Fig. 4.4. The difference in critical depth of cut
could be considered to originate from the slip system and the cleavage plane,
as they are strongly related to the ductile-brittle mode transition. Cutting along
the slip plane promotes ductile-mode cutting (i.e., plastic deformation), which
contributes to the large critical depth of cut. On the other hand, the cutting
force against cleavage induces crystal parting where brittle fractures are easily
manifested.

The slip system and cleavage plane of single-crystal MgF2 are (110)[001]
and (110), respectively, as shown in Fig. 4.1; therefore the influence of cutting
on the (001) plane on the critical depth of cut is less susceptible to the cutting
direction because the cutting on the (001) plane is always perpendicular to both
the slip system and the cleavage plane. With the (010) plane, however, a large
variation in the cutting direction was observed, because the cutting periodically
followed the same direction as the slip system (i.e., 0◦ and 180◦). In contrast, the
smallest (i.e., worst) critical depth of cut was obtained for directions of 90◦ and
270◦, corresponding to [100] and [100], respectively. They are in a configuration
where the cutting force is applied in a direction almost perpendicular to the
cleavage plane (110) and its inversion symmetry (110). As a result, a shallow
depth of cut is needed to obtain a ductile mode for these directions. As a result,
the experiment indicates that the depth of cut must be less than approximately
50 nm to maintain ductile mode cutting.

4.3 Ultra-precision cylindrical turning

4.3.1 Procedure of cylindrical turning

Based on the results of the orthogonal cutting experiment, cylindrical turning
is performed to manufacture a crystalline cylinder workpiece. Since the cutting
direction continuously changes in the turning process, the optimum turning pa-
rameters have to be investigated to achieve the smooth surface needed for a
high-Q microresonator. A MgF2 cylinder workpiece was prepared with an end-
face orientation of (001) because a z-cut (c-cut) resonator is used to avoid optical
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Fig. 4.4: Schematics of tensile stress model in MgF2 crystal regarding cutting di-
rection. Cutting along the slip system (110)[001] and the inversion sym-
metry (110)[001] promotes ductile mode cutting (left panel). Cleavage
and subsequent brittle fractures are induced by the cutting force against
cleavage plane (right panel).
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Fig. 4.5: Ultra-precision aspheric surface machine for cylindrical turning. A single
crystal workpiece is fixed to a brass jig, and mounted on a vacuum chuck.
Lubricant oil is used for manufacturing the microresonator.
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birefringence.
Cylindrical turning was performed using an ultra-precision aspheric surface

machine (ULG-100E, TOSHIBAMACHINE), as shown in Fig. 4.5. AnMgF2 work-
piece with a diameter of 6 mm was fixed to a brass jig and then mounted on a
vacuum chuck. The ultra-precision turning was conducted in the following three
steps. Rough turning was initially undertaken to form the desired diameter (here
3 mm). It should be noted that this initial rough turning was performed in the
brittle regime. Next, pre-finish cutting was conducted to remove the large cracks
that occurred in brittle mode cutting with a removal thickness of 8 µm. Finally,
finish cutting in the ductile mode completed the ultra-precise turning. The de-
tailed cutting condition for each step is listed Table 4.1.

The effective cutting speed is given by the rotation speed multiplied by 2πR,
where R is the radius of the cylinder workpiece, and feed per revolution (mm/rev)
is given by the feed rate (mm/min) divided by the rotation speed (min−1). In this
work, the rotation speeds were set at 500 min−1 and 1000 min−1 for 3 mm and
0.5 mm diameter workpieces, respectively. Nevertheless, it should be noted that
the rotation speed is less important than the other parameters (i.e., feed rate,
depth of cut, and the choice of the diamond tool) as regards machined surface
quality [177] as discussed in more detail later.

Table. 4.1: Cutting condition for each step

Rough turning Pre-finish turning Finish turning

Rotation speed (min−1) 1000 500 or 1000 500 or 1000

Feed rate (mm/min) 20 0.5 0.1

Depth of cut (nm) 2000 100 50

Removed thickness (µm) — 8.0 2.0

Diamond tool Tool #1 Tool #2 Tool #2

Single crystal diamond tool

Figure 4.6(a) shows schematics of the single-crystal diamond tool. Two types of
single crystal diamond tools were used in this work, and their properties were
as follows: Tool #1 had a 0.2 mm nose radius, a −20◦ rake angle, and a 10◦
clearance angle [Fig. 4.6(b)]; Tool #2 had a 0.01 mm nose radius, a 0◦ rake
angle, and a 10◦ clearance angle [Fig. 4.6(c)]. Tool #1 had a negative rake angle
and a large nose radius, which made it suitable for efficiently manufacturing
millimeter size workpieces such as crystalline microresonators. Therefore, Tool
#1 was used for the orthogonal cutting experiment and the rough turning stage
in the ultra-precision turning. On the other hand, for the pre-finish and finish
cutting, Tool #2 was used since a sharper edge with a rake angle of 0◦ enables us
to achieve stable cutting because the small rake angle reduced the thrust force
on the material [178]. Moreover, in terms of the choice of the cutting tool, a
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smaller nose radius makes it possible to have a smaller contact area between
tool and material during cylindrical turning, which helps to reduce any excess
cutting force and leads to improved surface quality. However, tools with a small
nose radius are more fragile, which gives them a short lifespan; hence it will be
reasonable to use different tools for the rough turning and finish turning stages.
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Fig. 4.6: (a) Relationship between cutting direction and tool shape of single crystal
diamond tool. (b) SEM image showing Tool #1 used for an orthogonal
cutting experiment and rough turning (c) SEM image of Tool #2 used for
pre-finish and finish turning.

Cutting condition for single-crystal machining

Although the depth of cut at the finish turning step was readily set at 50 nm
based on the result of the orthogonal cutting experiment, other factors, such
as the rotation speed, feed rate, and diamond tool, should also be taken into
account because these choices determine the effective cutting speed and cutting
amount. In particular, previous studies have reported that the feed rate critically
affects the quality of the machined surface, as does the combination of the tool
radius and depth of cut [177, 179, 180]. These studies suggest that a fast feed
rate induces brittle mode cutting if the depth of cut is kept below the critical
value. In this work, thus, a relatively slow feed rate (≤ 1 mm/min) is chosen
when fabricating a smooth surface.
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In addition, it is necessary to consider the relationship between the edge ra-
dius of the tool, the undeformed chip thickness, and the critical depth of cut,
namely the size effect [181]. If the undeformed chip thickness is much smaller
than the edge radius of the tool, the cutting process does not occur (the plowing
effect occurs instead). The critical thickness at which material removal begins is
called the minimum chip thickness, and chip formation occurs when the unde-
formed chip thickness reaches this critical value.

Furthermore, the undeformed chip thickness must not exceed the critical
depth of cut, which indicates the boundary of the ductile-brittle transition to
minimize excess surface roughness. Considering the discussion above, the depth
of cut should exceed the tool edge radius and be smaller than the critical depth of
cut. The tool edge radii of both Tool #1 and Tool #2 are less than approximately
10 nm. Hence, one can see that a depth of cut of 50 nm is a feasible value from
the standpoint of the size effect.

4.3.2 Surface roughness measurement

The machined surfaces were observed using an optical microscope (VHX-5000,
Keyence), as shown in Figs. 4.7(a) and 4.7(b). Clear boundaries can be identified
in the micrograph images between the rough turning and finish turning regions.
The surface roughness after cylindrical turning was measured using a scanning
white-light interferometer (New View TM6200, Zygo). Surface measurement
was performed at 15◦ intervals from the orientation flat [100] defined as 0◦ as
shown in Fig. 4.7(c), and the measurement results are presented in Figs. 4.7(d)
and 4.7(e). Here, an end-face orientation of an MgF2 workpiece was (001),
namely z-cut orientation. Unsurprisingly, the surface roughness after the rough
cutting exceeded 200 nm for the entire cylindrical surface, as shown with red
dots in Fig. 4.7(d). The large roughness was caused by the brittle-regime cutting.
In contrast, the smoothness improved significantly after the finish cutting, which
was performed under the ductile cutting condition. The magnified plot on a
linear scale is shown in Fig. 4.7(e). These results confirmed that the turning
condition for final cutting enabled us to achieve a smooth surface. Specifically, an
excellent RMS roughness of below 2 nm was obtained at 18 observation points.
The result also revealed an interesting feature of 90◦ periodicity, namely that
specific observation points exhibited a slightly larger RMS roughness of 7.8 nm
on average. Periodicity can also be seen in the micrograph shown in Figs. 4.7(a)-
4.7(c); for instance, 135◦ exhibits a smoother machined surface than that in the
180◦ direction. This is evidence of the appearance of crystal anisotropy in MgF2
crystal, as observed in the orthogonal cutting experiment.

Such a periodicity can also be understood from the slip system and cleavage
configurations shown in Fig. 4.4. The relatively rough surfaces can be explained
in terms of specific directions where the excess cutting force acts on the bound-
aries of cleavage planes. The 15◦ asymmetry is due to the rotation direction of
the workpiece; the force on the cleavage plane exerts stress only in the clockwise
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Fig. 4.7: (a) Micrograph showing a machined surface, where clear boundaries are
observed between the rough turning and finish turning regions. The hor-
izontal boundary in the rough turning region is evidence of the depen-
dence of the cutting direction on the crystal anisotropy in MgF2 single
crystal. (b) Magnified views of the finish turning region in 135◦ and
180◦, respectively. The machined surface of 135◦ is smoother than that
of 180◦, which agrees with the result of the surface roughness (RMS)
measurement. (c) Schematic of surface roughness measurement. The
yellow line and dot correspond to orientation flat [100] with an endface
orientation of (001). The surface roughness at a total of 24 points was
measured at 15◦ intervals. (d) Measured surface roughness (RMS) of the
finish turning (red dots) and rough turning (blue dots) regions. A quarter
symmetry is clearly observed in the finish turning condition due to crystal
anisotropy. (e) The magnified plot on a linear scale of finish turning in
(d).
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direction (the opposite direction to workpiece rotation). There is nevertheless
excellent surface integrity as long as the cutting remains on a cylindrical surface
where the cutting force circumvents the crystal anisotropy.

The cylindrical turning presented here is a pre-process in microresonator fab-
rication. It should be noted that the measured roughness is the result of the im-
plosion of a machined cylinder, not the dimensional resonator surface. However,
the results enabled us to predict the surface of the resonator under the employed
cutting conditions.

4.3.3 Fabrication and cleaning of microresonators

Crystalline microresonators are fabricated using the same ultra-precision ma-
chine as that used in the cylindrical turning experiment (ULG-100E, TOSHIBA
MACHINE). Although the resonator diameter is determined after the finish cut-
ting, the diameter can be precisely controlled by measuring the diameter and un-
dertaking additional turning prior to microresonator fabrication. The resonator
shape is carefully fabricated by feeding a diamond tool under the critical cut-
ting depth. Here, the turning motion is fully and automatically controlled by the
NC program. The manufacturing procedures of spherical and triangular WGM
structure are shown in Fig. 4.8, where a finish turning condition was employed
at the resonator shaping step. The total fabrication time is about ten hours, from
rough turning to final shaping.

Once the fabrication has completed, the cleaning of the microresonator was
conducted to remove lubricants and small chips attached to the surface. Proper
cleaning is essential for obtaining a high-Q as well as optimized cutting condi-
tions. A lens cleaning tissue is usually used to wipe the resonator, but there is
the possibility that it might scratch or damage the resonator surface, which could
be a critical problem in terms of degrading the Q-factor. Alternatively, to avoid
unwanted damage on the resonator, ultrasonic cleaning can be employed. The
cleaning procedure is as follows. First, an acetone solution is used to reduce
the amount of oil lubricant. Then, the resonator is cleaned with ethanol or iso-
propanol. Next, a dust-free dry nitrogen blower treated the resonator surface.
Finally, the resonator surface should be carefully observed using a stereomicro-
scope. This cleaning procedure can be repeated several times to ensure that no
particles or chips remained close to the resonator surface.

In the case of the ultrasonic cleaning, the resonator is fixed in position with a
jig and cleaned using a commercial ultrasonic cleaner with a frequency of 40 kHz
(Bransonic M1800-J, BRANSON). The cleaning has continued for several min-
utes. After the cleaning, one can observe small particles floating in the solvent,
which convinced us that the lubricant or attached specks of dust and particles
had been removed from the crystalline microresonator. The use of an ultrasonic
cleaner enables us to clean the surface without touching or rubbing it. It is also
a great advantage for fully automated fabrication combined with ultra-precision
turning.
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1. Rough turning 2. (Pre-) Finish turning

3. Pre-shaping I4. Pre-shaping II5. Final shaping

500 µm

1. Rough turning 2. (Pre-) Finish turning

3. Shaping I4. Shaping II
Apex angle

Spherical shaped WGM Triangular shaped WGM(a) (b)

Fig. 4.8: (a) and (b) Fabrication flow of spherical and triangular WGM microres-
onator when using ultra-precision turning. First, a rough turning deter-
mines the approximate diameter of the resonator. Next, pre-finish and
finish shaping with ductile mode cutting are used to realize a cylindrical
surface that is smooth and entirely crack-free. Finally, fully-programmed
shaping steps are performed to fabricate the designed resonator struc-
ture.

4.4 Quality factor and dispersion measurement

4.4.1 Spherical-shaped WGM microresonator

First, theQ-factor and dispersionweremeasured in two differentmicroresonators
fabricated with ultraprecision machining, MgF2 and CaF2 crystalline resonators.
The diameters were 508 µm for MgF2 resonator, and 512 µm for CaF2 resonator,
whereas they have the same curvature radii of 36 µm. SEM images of the fabri-
cated MgF2 microresonator are shown in Figs 4.9(a)-4.9(c).

Although the two resonators were fabricated with the same motion program
and cutting conditions, their diameters differ slightly due to the positioning mis-
alignment of a workpiece that was mounted manually. However, there is the
possibility to solve this problem by installing a real-time diameter measurement
system or introducing zero adjustments of the workpiece offset position. The ad-
ditional measurement and turning of the workpiece should achieve the precise
control of the diameter at the sub-micrometer level.

The Q-factor measurement was performed by using a wavelength-tunable
laser, a polarization controller, and a photodetector. The light was coupled via
a tapered fiber with careful adjustment of the gap between the resonator and
the fiber waveguide. A calibrated Mach-Zehnder interferometer was used as the
frequency reference. Figures 4.9(d) and 4.9(e) show the measured transmis-
sion spectra of the fabricated microresonators. The full-width at half-maximum
(FWHM) linewidth of the MgF2 resonator was 1.40 MHz, which corresponds to
a loaded Q = 1.39× 108 at a wavelength of 1545 nm. Also, the CaF2 resonator
had a linewidth of 2.53 MHz at 1546 nm, corresponding to Q = 7.67 × 107.
Noted that the comparably high-Q values were recorded in different wavelength
regions for other resonant modes. The obtained Q, which exceeded 100 mil-
lion, is so far the highest value recorded in a crystalline WGM microresonator
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Fig. 4.9: Q-factor and dispersion measurement of crystalline microresonators fab-
ricated by ultra-precise turning. (a) SEM image of a fabricated MgF2
microresonator with a diameter of 508 µm and a curvature radius of
36 µm. (b), (c) Magnified views of the resonator. (d) Normalized trans-
mission spectra of the fabricated MgF2 microresonator. The Lorentzian
fitting (red line) yield loaded a Q value of 139 million. (e) Normalized
transmission spectra of the fabricated CaF2 microresonator. The fitting
curves give a loaded Q for the fundamental mode of 76.7 million. (f),
(g) Measured dispersion Dint versus frequency. The red curve indicates
the calculated dispersion of the fundamental TMmode, which agrees well
with the experimental result.
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fabricated solely by ultra-precision machining without a conventional polishing
process. In other words, this approach has overcome the need for skilled manual
techniques throughout the fabrication process to obtain ultrahigh-Q crystalline
microresonators.

The dispersion measurement was performed to confirm that the machin-
ing process can be compatible with dispersion engineering techniques. Fig-
ures 4.9(f) and 4.9(g) show the measured integrated dispersion, Dint, versus
frequency in each resonator. The dispersion was measured by a wavelength me-
termethod (cf. §3.3.2). Themeasured dispersion agrees well with the theoretical
dispersion calculated with the finite element method (FEM), and these results
indicate that ultraprecision turning enables us to obtain the designed resonator
shape.

4.4.2 Triangular-shaped WGM microresonator

Figure 4.10(a) and 4.10(b) show SEM images of a fabricated triangular-shaped
CaF2 microresonator whose triangular structure is designed with an apex angle
of 120◦. The resonator diameter was 502 µm. The experiment was performed
in the same manner as the previous section. The Q value was 1.03 × 107 at
1552.2 nm as shown in Fig. 4.10(c). The measured dispersion also agrees with
the calculated result, which exhibits strong normal dispersion compared with
spherical shaped WGMs [Fig. 4.10(d)]. This fact is attributed to the fragility of
the edge of the apex or remaining specks of dust, thereby increasing scattering
loss.

4.5 Dispersion engineering and numerical simula-
tion of octave-wide parametric oscillation

Next mission is to realize the large frequency shift parametric oscillation in a
manufactured microresonator. Here, the principle of dispersion engineering and
numerical simulation will be discussed. The presence of dispersion in amicrores-
onator changes the relative position of the resonance frequencies. Assuming that
µ represents the relative mode number (pump mode is µ= 0), all the resonance
frequencies are given by the Taylor expression: ωµ =ω0+

∑
(Djµ

j)/( j!) ( j ≥ 1).
Consequently, integrated dispersion Dint is used to express the dispersion with a
function of µ,

Dint =ωµ −ω0 −µD1 =
1
2
D2µ

2 +
1
6
D3µ

3 +
1
24

D4µ
4 + · · · , (4.2)

as introduced in Eq. (3.15). Higher than fourth-order dispersion (D5, D6, · · · )
is less important in this work, and therefore disregarded here. As explained in
§3.4.2, the phase-matched mode number for initial parametric sidebands can be
estimated simply by using frequency difference value defined as (ω0+µ+ω0−µ−
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Fig. 4.10: (a) and (b) SEM images of fabricated triangular-shaped CaF2 microres-
onator with an apex angle of 120◦. (c) Normalized transmission spec-
trum, yielding a loaded Q of 10.3 million. (d) Measured dispersion Dint
versus frequency showing good agreement with the calculated disper-
sion for the fundamental mode (red curve).

2ω0) = D2µ
2 + (1/12)D4µ

4, where the the sign of D2 is negative (i.e., normal
dispersion) and that of D4 is positive. To satisfy the phase-matching condition,
second-order dispersion must be normal but weak because the fourth-order dis-
persion compensates the normal dispersion far from the pump mode. Thus, a
weak normal dispersion, which is close to the zero dispersion regime, is a critical
condition for the phase-matching. As shown in Fig. 3.6, an upper limit of the
resonator radius of an MgF2 resonator to be in the normal dispersion regime is
given as 350 µm, and therefore the resonator diameter should be lower than
700 µm in terms of dispersion engineering. Noted that the calculation method
introduced in §3.1.4 was adopted in order to simulatemicroresonator dispersion.
The dispersion calculation yields the desired resonator diameter of ∼500 µm to
achieve an octave-wide FWM by using a 1550 nm pump.

To obtain the parametric oscillation, the bandwidth of the parametric gain
envelope must overlap the resonant modes in the resonator. Parametric gain
bandwidth in a microresonator has been analytically studied in Ref. [67], and
it was shown that the gain bandwidth tends to decrease as the frequency shift
becomes large. If the gain bandwidth falls below 1-FSR of the resonator, the
possibility of phase-matched FWM also significantly decreases. Then, a numer-
ical simulation was conducted using the LLE to confirm the possibility of the
parametric oscillation. The LLE including higher-order dispersion is given as
Eq. (2.48).

Figure 4.11(a) shows the dispersion used in the LLE simulation. The solid red
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line and the solid green line show the integrated dispersion and the frequency
difference value (i.e., phase-matching condition), respectively. The quality fac-
tor in this simulation follows our experimental result that will be described later,
and other parameters are obtained by FEM calculation and from physical values.
From the zero-cross point of the solid green line, it is possible to estimate the
position of the primary sidebands via degenerate-FWM, which is approximately
at mode number µ = ±510. The values correspond to the frequency shift of
70 THz from the pump frequency, and they reach a one-octave frequency shift
with 1550 nm pumping. Figure 4.11(b) shows the simulated spectra at different
normalized detuning values tRδ0. When the detuning reached the threshold, pri-
mary sidebands were generated at the theoretically predicted wavelength that
corresponds to the mode number µ= ±510. Finally, the pump and the oscillated
sidebands formed three clustered combs as expected.

Even though the clustered comb can be generated via degenerate-FWM from
each primary line, the high-frequency side of primary sidebands is located in a
strong normal dispersion regime where FWM could not be generated due to a
lack of modulation instability (MI) gain. However, the formation scheme for a
clustered comb is explained as follows: after primary sideband (signal and idler
pair) generation, secondary sidebands are generated via degenerate-FWM from
one primary sideband experiencing anomalous dispersion, which is ordinarily
lower frequency (longer wavelength) signal light. Once the secondary sidebands
have been generated, non-degenerate FWMwill occur and form other comb lines
in the vicinity of the idler and pump lights.

4.6 Experimental demonstration in a dispersion en-
gineered crystalline microresonator

With the numerical simulation in mind, an experimental demonstration was per-
formed in an MgF2 crystalline microresonator that was fabricated by using ultra-
precision machining.

4.6.1 Characterization of crystalline magnesium fluoride mi-
croresonator

The MgF2 microresonator has a diameter of 508 µm and a curvature radius of
36 µm, corresponding to a 137 GHz FSR, as described in §4.4. First, the precise
dispersion measurement (cf. §3.3.3) was performed to evaluate the dispersion
again, and more importantly, to identify the desired transverse mode that meets
the condition of parametric generation. Figure 4.12(a) shows the transmission
spectrum around 1550 nmmeasured with a wavelength-tunable laser. There are
several different mode families, and the FSR of the fundamental mode is indi-
cated as red circles. The measured Q-factor of the pump mode (i.e., µ= 0) was
8× 107. Figure 4.12(b) shows the mode structure of all the resonance modes,
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Fig. 4.11: (a) Calculated integrated dispersion Dint (solid red line) and frequency
difference value (ω0+µ +ω0−µ − 2ω0) (solid green line) of fundamen-
tal TE mode. The points at which the green line crosses black refer-
ence line predict the phase-matched wavelength. (b) Simulation results
with increasing pump detuning. The used parameters are as follows;
Qint = 1 × 108, Qext = 4 × 108, n = 1.37, n2 = 0.9 × 10−20 m2/W,
Aeff = 34.8 µm2, and Pin = 300 mW. The FSR and dispersion values are
D1/2π = 136.9 GHz, D2/2π = −52.9 kHz, D3/2π = −1.14 kHz, and
D4/2π= 2.45 Hz.
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Fig. 4.12: (a) Transmission spectrum of fabricated MgF2 microresonator. Red cir-
cles indicate resonances belonging to the same mode family that we
used as pump mode in the comb experiment. (b) Experimentally ob-
served mode structure, where dots show the position of resonances, in
a wavelength from 1530 nm to 1590 nm, limited by the bandwidth of
mode-locked fiber comb source. (c) The calculated dispersion and the
measured result of 55 resonances for fundamental TE mode.
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and it enables us to identify the pump mode. The experimental (blue dots) and
simulated dispersion (solid red line) of a fundamental TE mode are plotted in
Fig. 4.12(c). The measured dispersion agrees well with the calculated disper-
sion (ωµ−ω0− D1µ)/2π, which confirmed that the technique of ultraprecision
machining made it possible to fabricate a pre-designed resonator shape.

4.6.2 Observation of octave-wide optical parametric oscilla-
tions and clustered combs

Figure 4.13 shows the experimental setup for the observation of optical para-
metric oscillation. The input CW laser was amplified using an EDFA, and the
polarization was adjusted using a polarization controller. After splitting the out-
put light with optical couplers, three OSAs were used to cover the octave-wide
wavelength. For only above 2400 nm wavelength, the low-loss mid-infrared op-
tical fiber was used that shows broad transmission up to 4.5 µm. First, the res-
onant mode µ= 0 (1550.56 nm) was pumped with an input power of 350 mW.
With careful tuning of the pump wavelength, stable idler and signal sidebands
were observed at the wavelengths of 1140 and 2425 nm, respectively, as shown
in Fig. 4.14(a). Figure 4.14(b) shows a magnification of spectra of interest, and
it confirms that high-frequency sidebands formed a clustered comb with a 1-
FSR mode spacing. Unfortunately, the secondary sidebands in the vicinity of the
pump line were concealed by the amplifier noise of the EDFA. Next, the primary
sidebands were observed with wavelengths of 1137 and 2433 nm with the fur-
ther tuning of the laser wavelength to the adjacent resonant mode of the same
mode family, namely µ= 1 (1549.47 nm) [Fig. 4.14(c)]. These experimental ob-
servations agree well with the simulation results, and the frequency shift of the
FWM sidebands exceeds one-octave, which is the largest frequency difference
up to 140 THz in this experiment.

Pump laser EDFA
MicroresonatorPolarization

controller OSA(1100-1700 nm) 

Silica tapered fiber OSA(1700-2400 nm) 

OSA(2400-2500 nm) Mid-infrared fiber
Function
generator

Fig. 4.13: Experimental setup for observation of octave-wide parametric genera-
tion. EDFA, erbium-doped fiber amplifier. OSA, optical spectrum ana-
lyzer. Mid-infrared fiber was used above a 2.4 µm wavelength to avoid
unwanted attenuation.
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Fig. 4.14: (a) Experimentally observed spectrum at a pump mode µ = 0
(1550.56 nm) when using different OSAs (depicted in different colors).
The gray shaded signals indicate the OSA artifact noises. (b) Detailed
spectra of interest, which show a clustered comb formation in the vicin-
ity of 1140 nm and the pump wavelength, and that also confirmed the
signal wavelength at 2425 nm. (c) Observed spectra when pumping in
an adjacent mode µ= 1 (1549.47 nm), indicating an FWM pair of 1137
and 2433 nm.
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Figure 4.15 shows the comparison of the theoretically predicted phase-matched
wavelength and the experimentally measured wavelengths (blue and red cir-
cles). These results confirmed that the oscillation wavelength could be tunable
by only changing the pump wavelength, as reported in previous works [64,67].
In this experiment, the pump wavelength is limited to only around 1550 nm
because of the wavelength range of the used narrow-linewidth laser; however,
in practice, there is the potential for obtaining larger frequency sideband as the
theoretical prediction*c.
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Fig. 4.15: Simulated phase-matched wavelength of fundamental mode (solid
lines) as a function of the pump wavelength in MgF2 used in this work.
Experimental plots are shown as blue and red circles.

4.7 Discussion and summary

4.7.1 Towards further Q-factor improvement in ultraprecision
machining

Theoretical limitation by surface roughness

This part addresses the possibility of further improvement of the Q-factor in ul-
traprecision machining. When omitting the coupling rate between the resonator
and the waveguide, the intrinsic Q-factor is determined by several contributions

*cAlmost at the same time as this work, Ref. [66] reported the observation of discrete wave-
length tunability over an optical octave from 1083 nm to 2670 nm, and the signatures of spectral
components over 3800 nm.
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as,
Q−1int =Q−1mat +Q−1surf +Q−1scatt +Q−1rad, (4.3)

where Q−1mat is determined by material absorption, Q−1surf and Q−1scatt are determined
by surface absorption and scattering loss, respectively. In particular, scattering
loss is mainly induced by surface roughness, dust particles, and subsurface dam-
ages. The radiation (tunneling) loss is given by Q−1rad that is linked to the cur-
vature radiation limit, and this loss is significant only with resonators having a
diameter of several micrometers. Since measuredQ-factor can readily reach 109

by polishing millimeter-scale fluoride crystalline resonators, the effect of Q−1mat,
Q−1rad, can be negligible [6]. Hence, Q−1surf is one possible reason for this, but sin-
gle crystals such as MgF2 and CaF2 inhibit the diffusion of water into the crystal
lattice, which makes Q−1surf negligible in our case [7].

Therefore,Q−1scatt should be focused as a fundamental limitation of ultra-precision
machining. The maximum Q-factor as regards surface roughness can be esti-
mated theoretically as [7,182]:

Qscatt ≈ 3λ3R
8nπ2B2σ2

(4.4)

where R is the resonator radius, n is the refractive index, B is the correlation
length, and σ is the surface roughness (RMS). Figure 4.16 shows the maximum
Q-factor versus surface roughness and correlation length of an MgF2 resonator.
Theoretically achievable values for ultra-precision machining correspond to Q
values of 107 − 109, which are consistent with measured Q-factors. It should
be noted that the surface roughness is an experimentally observable parameter,
whereas the correlation length is rather difficult to observe directly due to the
spatial resolution of the instrument. Then, Figure 4.16 employs the correlation
length value in the range of a few tens to hundreds of nanometers, as discussed
in [183]. This result indicates that the roughness of the machined surface could
limit the present Q. A possible way to improve the surface roughness and the
correlation length is to optimize the cutting parameters, for example, by using
a smaller depth of cut and a lower feed rate. Specifically, ideal conditions are
believed to realize an ultrasmooth surface for the entire cylindrical position, and
consequently eliminate the effect of crystal anisotropy.

Subsurface damage caused by diamond turning

Subsurface damage can occur during machining of a single crystal, and so it
has been intensively studied in the field of micromachining and material sci-
ence [185]. Such underlayer damage could degrade Q in the same way as sur-
face scattering; therefore, not only the surface but also the underlayer should be
investigated for the detailed discussion. The surface and the subsurface damage
of the machined resonator were observed using an SEM and a transmission elec-
tron microscope (TEM). And the results were compared with the polishing re-
sults. For TEM measurement, the samples were cut into pieces of approximately
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Fig. 4.17: (a), (b) TEM images of the subsurface damage of machined and pol-
ished single crystal samples, respectively. The subsurface damage is
described in detail in Ref. [184]. (c), (d) SEM images of the surface
condition after the machining and polishing processes, respectively.

111



CHAPTER 4. ALL-PRECISION-MACHINING FABRICATION OF DISPERSION
ENGINEERED CRYSTALLINE MICRORESONATOR FOR MICROCOMB
GENERATION

0.1 mm×0.1 mm from the cylinder workpieces. For comparison, a polished CaF2
microresonator, yielding a Q of 1× 109, was prepared.

Figures 4.17(a) and 4.17(b) are TEM images of a machined surface and a
polished surface, respectively. The subsurface damage with a depth of 11 nm
was clearly observed in the machined sample; on the other hand, no significant
damage was observed in the sample fabricated with polishing. These results
suggest that the difference in the subsurface layer could influence the Q-factor
obtained with the ultra-precision turning and polishing method. Figures 4.17(c)
and 4.17(d) show the SEM images of machined and polished surfaces, respec-
tively. On the machined surface, one can see that chips have adhered, and there
are periodic tracks caused by the regular motion of the ultraprecision lathe.
However, the polished surface is very smooth, although a few grooves are ir-
regularly observed as the evidence of the manual process. It is generally known
that the subsurface damage mechanism strongly depends on the crystal proper-
ties and cutting condition, and the efforts to reduce the subsurface damage are
described elsewhere [186]. The reduction of underlayer damage could also help
to improve the present Q.

4.7.2 Conversion efficiency and measurable power of para-
metric oscillation

Experimentally observed power of the lower frequency (longer wavelength) side-
bands ranges from very weak to barely measurable compared with that on the
pump and higher frequency sideband, whereas the optical power in the simula-
tion is at the same level as a high-frequency side. In fact, the power of the longer
wavelength component is about three orders of magnitude lower than that of a
shorter wavelength component. The reason for this can be explained as fol-
lows: the most probable reason is the strong material absorption of silica above
1.9 µm. Although the fluoride material used as a resonator is transparent even
at mid-infrared wavelengths, the tapered fiber and optical coupler mainly used
in this experiment were made of silica. The attenuation of standard silica fiber at
2.4 µm is typically 1000 times stronger than at 1.55 µm. (>1000 dB/km at 2.4
µm and <1 dB/km at 1.55 µm). Although the length of the tapered region was
about 5 ∼ 10 cm, the rest of the fiber in this experiment is several meters long
and contributes to the strong attenuation of the signal. Unfortunately, there has
been little study on the attenuation of mid-infrared light in silica tapered fiber,
but the signal around 2.4 µm would be attenuated while propagating thorough
the silica fiber. The second reason is the phase-mismatch between the tapered
fiber and the WG mode because the waist of the tapered fiber is optimized for
a 1550 nm pump wavelength. Therefore, the coupling efficiency decreases at
wavelengths far from the pump mode. Wavelength dependent coupling effi-
ciency can be simply estimated from the difference of effective refractive indices
for tapered fiber and WG mode. For the 1.55 µm band, a difference of effective
index ∆n is 0.007 (where nfiber = 1.354, nWGM = 1.361). On the other hand,
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for 2.4 µm band, ∆n is 0.098 (where nfiber = 1.257, nWGM = 1.355). This result
describes the value of phase-mismatch between tapered fiber and WG mode is
larger in the 2.4 µm band than in the 1.55 µm, and thus the coupling efficiency
is also smaller at 2.4 µm.

A simple way to overcome the problem is to utilize low-OH silica fiber as
a tapered fiber coupler as in a previous work that reported Kerr comb genera-
tion at a wavelength of 2.45 µm [187]. However, the tapered region should be
optimized for the pump wavelength even with this method. Another solution,
although it demands a more complex setup, would be to employ an add-drop
system utilizing a tapered silica fiber for the pump (add side) and a waist opti-
mized low-OH or chalcogenide (ChG) tapered fiber for low-frequency light (drop
side). In particular, ChG tapered fiber is more suitable for the mid-infrared re-
gion above 2 µm [188].

4.7.3 Summary

In conclusion, this chapter demonstrated all-precision machining fabrication of
ultrahigh-Q crystalline microresonators. The Q value exceeds 100 million with-
out a subsequent polishing process that is generally required to raise the Q of
crystalline microresonators. The preliminary experiments revealed an ideal cut-
ting condition for realizing an ultrasmooth surface for the whole resonator sur-
face. Indeed, the fully computer-controlled machining has an advantage for the
dispersion engineering for nonlinear experiments over the conventional polish-
ing process. The described fabrication and cleaning procedure promises to raise
the potential of crystalline microresonators for various applications. Also, this
chapter provides the scheme of octave-wide phase-matched optical parametric
oscillation in a crystalline MgF2 microresonator that is designed to realize clus-
tered comb generation via octave-wide separated FWM simultaneously. In fact,
an octave-wide optical parametric oscillation has been demonstrated by using
a fabricated microresonator with machining solely. Although identification of
the resonance mode is generally tricky because it is close to zero dispersion,
the employed precise dispersion measurement enabled to pick up specific mode
family for the pump. The theoretical analysis of phase-matching condition in-
cluding higher-order dispersion and numerical simulation supported the exper-
imental observation of clustered comb formation in both 1.1 µm and 2.4 µm
wavelengths, which could promise the localized microcomb formation in an un-
explored wavelength region, for example, the T-band (1.0–1.26 µm), O-band
(1.26–1.36 µm) and mid-infrared region, from compact Kerr nonlinear devices.
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Chapter 5

Third-harmonic blue light emission
via Kerr clustered combs and
dispersive waves

This chapter presents the experimental demonstration of broadband visible light
emission via Kerr clustered combs and dispersive waves. In particular, the ex-
tension of bandwidth, such as into the blue light wavelength region, is of inter-
est in the field of microresonator nonlinear optics. This chapter presents two
approaches to obtaining broad bandwidth visible light by engineering the dis-
persion in the pump wavelength band, namely the near-infrared region. One is
based on third-order frequency conversion from a clustered comb, and the other
employs a dispersive wave, and thereby yields visible light emission over a broad
bandwidth ranging from 438 to 612 nm*a.

5.1 Introduction and motivation

Broadband visible light generation by using the THG and TSFG process is of in-
terest as well as the study on microresonator frequency comb. Although some
previous studies have proposed approaches to visible light generation such as
yellow, orange, and red wavelength bands, by using both stimulated Raman scat-
tering (SRS) and FWM process, there are still challenges with respect to third-
harmonic generation in a shorter wavelength regime (i.e., blue or ultraviolet)
and the deterministic generation of visible wavelength light from the infrared
pump. Here, the first motivation of this work is to experimentally demonstrate
blue light emission via THG and TSFG in a silica toroid microresonator. The
second motivation is to achieve deterministic generation of visible wavelength
light by managing the microresonator dispersion, which is the main topic of this
thesis.

*aContents described in this chapter has been published in “Third-harmonic blue light gen-
eration from Kerr clustered combs and dispersive waves,” Optics Letters, 42, 10, 2010–2013
(2017).
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5.2 Analysis of phase-matching condition for effi-
cient third-harmonic generation

5.2.1 Phase-matched transverse mode in visible wavelength

To achieve third-harmonic conversion, the phase matching between the pump
and third-harmonic modes must be satisfied [70]. First, momentum conserva-
tionmust be considered, which requires the wavenumber of the pumpmode kp to
be three times smaller than that of the TH mode kTH (kTH = 3kp). When the mo-
mentum conservation requirement is met, the energy conservation ωTH = 3ωp

should be taken into account. It should be noted that the energy conserva-
tion requirement is not automatically met even when momentum conservation
is fulfilled, due to dispersive resonance mode. Therefore, it is usually difficult
to achieve the phase matching condition when only considering the condition
for the fundamental transverse mode. Then, the use of a higher-order trans-
verse mode provides the possibility of the phase-matching for the visible light
mode. This will compensate for the frequency mismatch, which is defined as
∆ω= 3ωp−ωTH. The frequency mismatch is defined as the difference between
the resonance frequency of TH and the mathematically triple frequency of the
corresponding pump mode as shown in Fig. 5.1. The frequency mismatch needs
to be close to zero to realize efficient conversion (solid green line in Fig. 5.1).
It should be noted that the efficiency also depends on the spatial mode overlap
between the pump and TH modes in addition to the frequency mismatch.

5.2.2 Mode analysis in blue light wavelength regime

To obtain third-harmonic blue light, it is necessary to generate infrared light
around 1.3 µm wavelength region by using a 1550 nm pump. Before the phase-
matching analysis in the infrared regime, the effect of the momentum and en-
ergy matching conditions on the generation of a blue light wavelength has to
be investigated. In the same way as in Fig. 5.1, the resonance frequency from
400 to 480 nm was calculated by the FEM simulation, and the result was com-
pared with the resonance frequencies of the pumpmode, whose azimuthal mode
number is equal to one-third of the mode number of the corresponding TH
mode. Here, the fundamental WG mode is defined as q = 1 and p = 0 [i.e.
TE(1,0)] where q and p are the mode number in the radial and polar directions,
respectively [159]. Figure 5.2(a) shows the normalized frequency mismatches
between the TE(1,0) (fundamental) pump mode and different modes at visible
wavelengths. Figure 5.2(b) is the same as (a) but with TE(1,1) (second-order)
pump modes. Figure 5.2(a) shows that the optimum TH mode is TE(2,4) when
pumping the TE(1,0) mode. Also, the optimum mode is TE(2,7) when pumping
TE(1,1) mode. From these results, one can see that a TH mode that satisfies mo-
mentum and energy matching is usually present regardless of the pump mode.

In addition, the variation in the mismatch as a function of the wavelength is
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Fig. 5.1: (a) Calculated normalized frequency mismatch between the pump mode
and visible modes around TH wavelength in a silica microtoroid with a
major diameter of 50 µm and a minor diameter of 6 µm. Multiple black
lines correspond to simulated visible transverse modes. Right panels
show the mode profiles of 1st mode, 2nd mode, and 12th mode (solid red
line), respectively. The green line corresponds to perfect phase-matching
(∆ω/ωp = 0) and this result indicates that the 12th mode satisfies the
phase-matching condition at 517 nm for 1550 nm pumping.

smaller in Fig. 5.2(b) than in 5.2(a), which indicates that pumping at higher-
order modes enables us to achieve phase matching in a broader wavelength
regime. The mode overlap integral

∫
E3
pE
∗
TH dA for the pump and TH modes

is also calculated to investigate the conversion efficiency. The results show that
a pair consisting of TE(1,1) and TE(2,7) has 3.1 times larger overlap than a pair
consisting of TE(1,0) and TE(2,4). The reason for such a large difference in
the conversion efficiency can be found when looking at the mode profiles. Fig-
ure 5.2(c) and 5.2(d) are the mode cross-sections of TE(1,0) and TE(2,4), and
Figure 5.2(e) shows the overlap between the pump and TH modes. Also, the
mode cross-sections for TE(1,1), TE(2,7), and the mode overlap are shown in
Figs. 5.2(f)-5.2(h). These results indicate that the use of a higher-order mode
as a pump is more advantageous than using a lower order pump mode in terms
of the conversion efficiency as well as the small frequency mismatch between
infrared mode and TH mode.
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Fig. 5.2: (a) and (b) Calculated normalized frequency mismatch∆ω/ωp between
the pump modes [TE(1,0) and TE(1,1)] and several visible modes in the
blue wavelength regime, respectively, in a silica microtoroid with a major
diameter of 54 µm and a minor diameter of 8 µm. The phase-matched
TH modes are shown in the red. (c), (d), (f), and (g) Mode profiles for
the infrared pump modes and the phase-matched TH modes. (e) and (h)
Mode overlap of the mode field distribution between the respective pump
and TH modes.

5.3 Dispersion engineering and numerical simula-
tion in a silica microtoroid

On the basis of the analysis in §5.2.2, pumping with a second-order mode,
namely the TE(1,1) mode, is suitable for obtaining both a broad bandwidth and
efficient TH conversion. Since TH modes that obey the conservation laws are
usually present, the dispersion of the TE(1,1) mode at telecom wavelength is of
interest regarding the phase-matching condition for optical parametric oscilla-
tion. As mentioned earlier, it is necessary to generate sufficiently strong infrared
light around 1.3 µm to be converted to TH blue light. Hence, the scheme of the
clustered combs and the dispersive waves enables the bandwidth extension to
that wavelength regime (cf. §3.4). Here, the clustered comb scheme is mainly
discussed because it is more suitable to obtain a pure optical parametric oscilla-
tion accompanying only signal and idler light, thereby obtaining single frequency
blue light.

First, the dispersion calculation was performed to obtain the phase-matching
point for the optical parametric oscillation in a silica toroidmicroresonator whose
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major and minor diameters are 54 µm and 8 µm, respectively. It should be noted
that the second-order TE mode is assumed as a pump mode with the above
discussion in mind. Figure 5.3(a) shows the value of the frequency difference
(ω0+µ +ω0−µ − 2ω0) as a function of pump wavelength, where the comb lines
will be generated at the point where the value is close to zero. Phase-matched
wavelength versus pump wavelength is shown in Fig. 5.3(b). When one pumps
the shorter resonant wavelength, a parametric oscillation and subsequently clus-
tered comb are generated at the wavelength even far from the pump mode. In
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Fig. 5.3: (a) FEM calculation results of frequency difference (ω0+µ+ω0−µ−2ω0)
of a second-order TE mode in a silica microtoroid with a major diameter
of 54 µm and a minor diameter of 8 µm. (b) Phase-matched wavelength
as a function of the pump wavelength. Blue and green shaded regions
indicate the target wavelengths for TH blue light and EDFA gain, respec-
tively.

practice, nevertheless, the pump wavelength is limited by the gain bandwidth of
the erbium-doped fiber amplifier (EDFA) used for the experiment.

Next, the Lugiato-Lefever equation (LLE) given in Eq. (2.48) provides a more
detailed investigation regarding the possibility of the parametric oscillation. Fig-
ure 5.4(a) shows the calculated integrated dispersion Dint = (1/2)D2µ

2+(1/6)D3µ
3

+ (1/24)D4µ
4 of the TE(1,1) mode when the pump wavelength of 1539 nm is

assigned as the center mode µ= 0. Figure 5.4(b) shows the frequency difference
value (i.e., the phase-matching condition) calculated from Fig. 5.4(a). The pri-
mary sidebands will generate at the mode number µ = 27, which are 33.3 THz
(225 nm blue-shifted) from the pump line. Figure 5.4(c) and 5.4(d) show the
numerical simulation results by solving LLE. One can see that the larger detun-
ing yields the broader optical spectrum as a result of the cascade FWM process.
These results show that the primary comb lines are generated at the mode num-
ber µ= ±27, and thereby a blue light emission should be obtained as a result of
third-harmonics of the idler light at a wavelength of ∼ 1300 nm.
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Fig. 5.4: (a) Calculated dispersion Dint as a function of mode number. (b) Corre-
sponding frequency difference value (ω0+µ+ω0−µ−2ω0) as a function of
wavelength. (c) and (d) Simulated results of the optical parametric oscil-
lation and the clustered comb formation in a silica microtoroid as a func-
tion of wavelength. The used parameters are as follows; λp = 1539 nm,
Qint = 2 × 107, Qext = 2 × 107, n = 1.44, n2 = 2.2 × 10−20 m2/W,
Aeff = 5 µm2, and Pin = 100 mW. The FSR and dispersion values are
shown in (a).

5.4 Experimental demonstration in a silica toroid
microresonator

5.4.1 Mode identification using dispersion measurement

A silica toroid microresonator was fabricated by using the CMOS process and
CO2 laser reflow (cf. §2.1.5). The major diameter and the minor diameter are
∼54 µm and ∼8 µm, respectively. Although precise geometry control of the
microtoroid is rather difficult in general, the desired resonator size could be
finally fabricated through a number of trials. The size of a fabricated device
(i.e., major and minor diameters) was measured with an optical microscope.
First, a dispersion measurement was performed to specify the TE(1,1) mode to
use as the pump mode.

Figure 5.5(a) shows the transmission spectrum of a silica microtoroid used in
this experiment. TE(1,0) (fundamental) and TE(1,1) (second-order) modes are
indicated as the green triangle and the orange circle, respectively. Figures 5.5(b)
and 5.5(c) show the experimental results of dispersion measurements (red cir-
cles) for each mode which agree well with the calculation results (blue dashed
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lines). These results enable us to distinguish the target pump mode experi-
mentally. The variation between the experimental and the theoretical results is
mainly attributed to the anti-mode crossing behavior with other mode families.
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Fig. 5.5: (a) Transmission spectrum of fabricated silica microtoroid. The orange
circle indicates the fundamental mode TE(1,0), and the green triangle
denotes the pump mode. (b) and (c) Measured and calculated dispersion
results of the TE(1,0) and TE(1,1) modes, respectively.

5.4.2 Observation of blue light emission and broadband visi-
ble light emission

Blue light emission via Kerr clustered combs

Figure 5.6 shows the experimental setup for observation of blue light emission
and optical parametric oscillation. A tapered fiber with a diameter of 1 µm was
used to couple the amplified pump light, and a polarization controller was used
to adjust the polarization. Third-harmonic visible light was collected with a fiber-
coupled spectrometer (USB2000+, Ocean Optics) aligned with a focusing lens.
A CMOS camera was also used to image the light emission. The infrared output
was measured using an optical spectrum analyzer (OSA) (AQ6375B, Yokogawa).

When the TE(1,1) mode was pumped at a wavelength of 1539 nm with an
input power of 380 mW, bright blue light emission was observed on the CMOS
camera. The loaded Q of the pump mode was 6 × 106. Figure 5.7(a) shows
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the recorded infrared and visible spectra when the blue light emission and the
optical parametric oscillation were observed. The blue light has a wavelength
of 438 nm, and this agrees perfectly with the TH light of the 1314 nm idler
light obtained in the infrared wavelength region. In the infrared region, pure
signal and idler pair are generated via degenerate FWM far away from the pump,
exactly 27-FSR from the pump mode, which is in perfect agreement with the
predicted mode number in the calculation as shown in Fig. 5.4. With a slight
detuning change of the pump towards the red wavelength side, new sidebands
(i.e., a clustered comb) were generated near the primary comb lines, as shown
in Fig. 5.7(b). The generation of 457 nm light is the result of the sum-frequency
mixing of two photons at mode number µ= 26 and one photon at µ= 6, where
the contributing lines are shown in pink in the left panel of Fig. 5.7(b).

Pump laser EDFA
MicrotoroidPolarization

controller OSA(1200-2400 nm) 

Multi-mode fiber
Function
generator

SpectrometerCamera

Fig. 5.6: Experimental setup for observation of visible light and infrared light.
EDFA, erbium-doped fiber amplifier. OSA, optical spectrum analyzer. The
scattered TH light is monitored by using both a camera and a spectrom-
eter.
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Fig. 5.7: Experimentally observed infrared and visible optical spectra at a pump
wavelength of 1539 nm. (a) A large frequency shift optical parametric
oscillation was generated at 27-FSR from the pump, and then a CW blue
light emission is recorded at a wavelength of 438 nm via the THG process
of idler light. The red dashed line represents the approximate geometry
of the toroid cross-section. (b) and (c) With a slightly red-detuning of the
pump, a clustered comb enables multi-wavelength blue light emission via
THG and TSFG processes. The emitted visible light becomes clearer (see
pictures of insets). (d) Under a different pump condition (but the same
pump mode), broad bandwidth visible light ranging from 438 to 612 nm
was observed.
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Even broad bandwidth infrared combs spanning half an octave, and five peaks
(438, 457, 459, 489, and 515 nm) were generated via THG and TSFG in the
visible region with further detuning of the pump towards a longer wavelength
[Fig. 5.7(c)]. The asymmetric shape in the infrared spectrum at 1.6–1.8 µm is
due to the stimulated Raman scattering. By changing the coupling between the
tapered fiber and the resonator, and the detuning of the pump, the spectrum fi-
nally changed to very broad bandwidth light ranging from 438 to 612 nm, which
covers the entire visible wavelength regime as shown in Fig. 5.7(d). Indeed, a
spectrally broad Kerr comb enabled us to observe broad visible light via simul-
taneous THG and TSFG process. In this case, different transverse TH modes are
believed to contribute to satisfying the phase matching condition.

Broadband visible light emission via dispersive waves

Although dispersion engineered FWM and a clustered comb can be used to ob-
tain visible light emission as above, a dispersive wave also provides an alterna-
tive method to realize broadband TH light. In the same manner as a clustered
comb, the frequency at which a dispersive wave is generated can be controlled
by engineering the microresonator dispersion. Based on the simulation, a sil-
ica microtoroid was fabricated, whose major and minor diameters are 57.4 µm
and 6.6 µm, respectively. Here, the TE(1,1) mode of the resonator supports the
dispersive wave around 1100 nm assisted by the third-order dispersion. A nu-
merical result for the integrated dispersion Dint is shown in Fig. 5.8(a), which
indicates that a dispersive wave can be generated around 1100 nm correspond-
ing to mode number µ ≃ 64. Figure 5.8(b) and 5.8(c) show spectra observed
in the infrared and visible regions, respectively. Comb lines at µ≃ 64 in the 1.0
to 1.2 µm wavelength region are attributed to a dispersive wave as predicted
by the calculation. Indeed, strong blue light emission was confirmed at a wave-
length of 478 nm thanks to the TSFG of the dispersive wave lines and Raman
lines. Interestingly, the dominant comb mode in the infrared spectrum is not
the Kerr comb in the vicinity of the pump but a Raman comb centered around
1700 nm despite the anomalous dispersion regime. These experiments showed
that the higher-order dispersion engineering made it possible to demonstrate
short-wavelength third-harmonic generation in a silica toroid microresonator.
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Fig. 5.8: (a) Calculated integrated dispersion of the TE(1,1) mode in a silica mi-
crotoroid with a major diameter of 57.4 µm and a minor diameter of
6.6 µm. The point of dispersive emission can be predicted as mode
number µ ≃ 64. The dispersion parameters are as follows: D1/2π =
1156 GHz, D2/2π= 44 MHz, and D3/2π= −2.6 MHz. (b) Observed in-
frared spectrum with a pump wavelength of 1553.6 nm. The dispersive
wave was generated around 1100 nm. (c) Observed visible spectrum,
where the blue light emissions (470, 478, 480, and 488 nm) are gener-
ated by the frequency mixing process among dispersive wave, pump, and
Raman comb. Especially, the generation of 478 nm light is the result of
TSFG from the light at 1114 nm, 1554 nm and 1818 nm.
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5.5 Discussion and summary

This work demonstrated the deterministic THG and SFG based visible light emis-
sion by utilizing clustered combs and dispersive waves. The dispersion engineer-
ing— characterizing the dispersion of the pumpmode and generating controlled
Kerr comb spectra — enabled us to generate the desired wavelength light at vis-
ible wavelengths using a top-down approach from simulation to fabrication and
experiment.

In addition, it should be noted that another possible approach is via anti-
Stokes light of stimulated Raman scattering [189]. Since the SRS gain in silica is
very broad, some of the gain bands are centered around 1000 cm−1 [189,190].
However, it is considered challenging to observe a strong emission due to the
weak gain of these Raman modes. Moreover, an anti-Stokes signal is generally
much weaker than a Stokes signal. Also, this scheme is not so viable for a view
to a top-down approach by using dispersion engineering.

In conclusion, a well-designed dispersion in a pump wavelength regime en-
abled the first observation of deterministic blue light third-harmonic emission
and unprecedented broad bandwidth visible light generation ranging from 438
to 612 nm with a single CW pump. Moreover, a numerical simulation, which
was to calculate the phase-matching condition between pumpedmode and third-
harmonic mode, identified the phase-matched transverse mode in the blue light
wavelength regime. Continuous blue light emission from an infrared CW pump
is an important factor for realizing an on-chip light source supporting the en-
tire bandwidth. This result will help expand visible comb generation to the blue
spectral region. Also, this work paves the way for achieving arbitrary generation
of broad bandwidth light deterministically by controlling the dispersion of the
microresonator system.
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Chapter 6

Numerical investigation of Kerr
frequency comb generation in
mode coupled microresonators

This chapter describes numerical simulations of anti-mode crossing assisted nor-
mal dispersion Kerr frequency comb generation inmode coupledmicroresonators.
A set of nonlinear coupled mode equations permits us to simulate complex comb
formation dynamics between two different mode families, and theoretical anal-
ysis for the phase-matching condition gives suitable parameters for free-spectral
range (FSR) selectable comb formation. This work also found that an oscillat-
ing behavior of intracavity power is present, depending on pump detuning. The
systematic and rigorous numerical modeling proposed in this work will provide
a powerful tool for assisting future work in terms of dispersion engineering for
Kerr comb generation and frequency tuning for deterministic mode-locked comb
generation*a.

6.1 Introduction and motivation

Kerr frequency comb generation with mode coupling effect

The effect of mode coupling itself has been studied since the beginning or early
stages of the research on high-Q optical microresonators [182, 191, 192]. In-
deed, a phenomenon of mode coupling is not limited to optical microresonators;
on the contrary, it has been a well-known phenomenon in a coupled pendu-
lum, coupled LC circuit, and so on. The mode coupling between the counter-
propagating modes, namely clockwise and counter-clockwise (CW-CCW) mode
coupling, is usually induced by the backward scattering. The observation of CW-
CCW mode coupling, which exhibits as the mode splitting of resonance mode,

*aContents presented in this chapter has been published in “Analysis of mode coupling assisted
Kerr comb generation in normal dispersion system,” IEEE Photonics Journal, 10, 5, 4501511
(2018).
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has already been reported in a high-Q silica microsphere in 1995 [191]. Subse-
quently, there have been many theoretical and experimental studies [182,192,
193] and demonstration for practical sensing application [194]. Besides, the
strong coupling between different resonance modes produces an anti-crossing
behavior or Fano-like resonance and thereby plays an essential role in various ap-
plications such as parity-time symmetry [195], all-optical logic operation [196],
and electromagnetically induced transparency (EIT) [197].

From the viewpoint of the microresonator frequency comb, a deep relation-
ship between the mode coupling and frequency comb generation has been ex-
plored [167, 171, 172]. Indeed, the mode coupling has created novel functions
and rich dynamics withmicrocomb formation. Themode interactions in counter-
propagating modes or different spatial modes are particular interests since they
can be easily observed in optical microcavities for which the waveguide yields
multi-modes. The strong mode coupling induces the mode frequency shift of
a particular resonance mode, which indicates that the mode coupling can dis-
turb the microresonator dispersion. A CW-CCW mode coupling strongly affects
the soliton formation in the pump mode, as is the case for the mode interac-
tion inhibiting the soliton formation. Figure 6.1(a) and 6.1(b) show a schematic
illustration and a transmission spectrum for the CW-CCW model. The simula-
tion results of soliton generation under strong CW-CCW coupling are shown in
Figs. 6.1(c)-6.1(f). The simulation assumed the constant coupling for all modes,
Γ = 1.0, where Γ = κ/γ is given by the ratio of coupling rate to decay rate. The
probability of soliton formation significantly decreases when the mode coupling
becomes stronger as shown in Figs. 6.1(g) and 6.1(h), and these results suggest
that the mode coupling should be circumvented for the reliable soliton gener-
ation (Further details of the effect of CW-CCW mode coupling on Kerr comb
generation are presented in Appendix. B).

On the other hand, the drawback can also be useful if it is possible to con-
trol the mode shift, namely local dispersion engineering. Indeed, the avoided
mode crossing could be utilized for deterministic soliton generation [167] and
dispersive wave emission [168] (cf. §3.4). The sophisticated mode interaction
achieved by a continuous tuning of resonance could leverage Kerr frequency
comb in the normal dispersion regime, which is the main topic of this chapter.
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Fig. 6.1: (a) Schematic illustration of CW-CCW mode coupling model. (b) Calcu-
lated transmission (red) and reflection (blue) spectra with strong mode
coupling. The intrinsic decay rate, the coupling rate, and the splitting
width are (γint,γext,κ)/2π=(10, 5, 100) MHz, respectively. (c)-(f) Cal-
culated optical spectra and temporal waveforms in the CW and CCW di-
rections with the constant coupling Γ = 1.0 and input power 10 mW.
The intrinsic and coupling Qs were 1 × 107 and 2 × 107, respectively.
The other parameters are assumed for a silicon nitride microring whose
FSR is 1000 GHz. (g), (h) Calculated probability of soliton formation in
the CW direction when the input power, and second-order dispersion are
changed.
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Model of coupled cavity system

Laser sweep

�mewavelength input output
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κ

γ’
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Fig. 6.2: (a) Schematic illustration describing the model of the coupled cavity sys-
tem used for this study. The Main cavity is pumped by a continuous-wave
laser, and the Aux. cavity is used to induce mode coupling. (b) Without
mode coupling, no comb is generated due to the lack of parametric gain
in a normal dispersion. However, mode coupling induced local disper-
sion change enables dark pulse formation in spite of normal dispersion
system.

Figure 6.2(a) is a schematic illustration of the coupled cavity system of interest
in this study. The Main cavity is coupled with both an external waveguide and
an Auxiliary (Aux.) cavity. The coupling rate between the Main and Aux. cavity
modes is given by κ. The field amplitudes of the Main and Aux. cavity modes
are denoted with a and b, respectively. Also, γ and γ′ are the loaded decay
rates of the two cavities, where the coupling rate with the external waveguide
is also taken into account for γ. In the scheme of anti-mode crossing assisted
microcomb generation, the Aux. cavity is used to achieve mode coupling with
the Main cavity [see also Fig. 6.2(b)].

Figure 6.3 shows a schematic diagram of the spectrum of the Main and Aux.
cavities when two cavities are coupled at mode µ = −1, where µ is given by an
integer number showing the relative longitudinal mode number. Here, ωµ and
ω′
µ
are the resonant frequencies of the longitudinal modes at mode number µ

for the Main and Aux. cavities, respectively. The mode coupling induces two
new supermode resonances with frequencies denoted by ω(−)

µ
and ω(+)

µ
, where

ω(−)
µ

is the symmetric mode, and ω(+)
µ

is the anti-symmetric mode. It should be
noted that the free-spectral range (FSR) is not equidistance when the cavity sys-
tem has dispersion. The dispersion introduces the resonance asymmetry factor
∆as of positive (∆as > 0) for an anomalous dispersion and negative (∆as < 0)
for a normal dispersion, when it is defined as ∆as =

�
ωµ −ω0

� − (ω0 −ω−µ).
The definition is the same way as in Ref. [158]. In this study, the two cavities are
both in a normal dispersion at the pump mode (∆as < 0) but have slightly dif-
ferent FSRs and dispersions. To obtain mode coupling at the desired µ, a slight
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offset between the Aux. and Main resonance frequencies is introduced with a
frequency offset of ∆ω at the pump mode µ= 0.

When the dispersion of the Main cavity is given, the resonance frequency
of a coupled Main cavity is expressed as a function of µ as, ωµ = ω0 + µD1 +
(1/2)µ2D2, where D1 is the FSR, and D2 represents the second-order dispersion
(dispersion is normal with D2 < 0). Hence, the resonant frequencies of the Aux.
cavity is shifted by∆ω from theMain cavity, for exampleω′

µ
= (ω0+∆ω)+µD′1+

(1/2)µ2D′2 (the higher-order dispersions are neglected in this model). When the
offset frequency ∆ω is zero, the center modes (µ = 0) of Main and Aux. are
coupled with each other. On the other hand, when the offset frequency has
a nonzero value, the location at which the strong interaction occurs changes.
Although the overall dispersion is normal in the main mode, the mode coupling
between the Main and Aux. cavity modes causes local anomalous dispersion
(∆as > 0) and make it possible to trigger the generation of normal dispersion
Kerr frequency comb.

Main mode
mode 
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Pump
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hybridized mode

Aux. mode

Main mode 
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Fig. 6.3: Schematic diagram of mode coupling induced local dispersion change.
When the two cavity modes are coupled at µ = −1, they formed a hy-
bridized mode and thereby induced a local anomalous dispersion among
the modes of ω−1, ω0, and ω1.
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Motivation

This motivation of this study is to provide a rigorous model and simulate mode
coupling assisted normal dispersion Kerr comb generation in a coupled cavity
system using nonlinear coupled mode equations (NCMEs). Although numer-
ical simulations including the mode coupling effect have been conducted us-
ing Lugiato-Lefever equations [76,168,198] and nonlinear coupled mode equa-
tions [166,173,199], there has been little work that has rigorously modeled the
dynamic effect of mode coupling induced phase-matching on Kerr comb gen-
eration using two-mode equations. Even though a model with only a single
mode equation is rather simple and reduces calculation cost, the proposedmodel
here (i.e., comb evolution including two different mode families) enabled us to
simulate in a more rigorous way and obtain optimized parameters in a practi-
cal experiment. In addition to reproducing the preceding experimental results,
the calculation results indicate new findings related to the oscillating and non-
oscillating behaviors of the optical spectrum during Kerr comb evolution, which
are sensitive to the chosen parameters.

6.2 Theoretical analysis

6.2.1 Supermode resonance by anti-mode crossing effect

The most simple case, where a single mode is considered in Main and Aux. cav-
ities, takes only decay rates and a mode coupling at a coupling rate of κ into
account. Since a mode coupling between two cavities is of interest, the effect of
the external waveguide is omitted here. Then the coupled mode equations are
given as [79,200],

da
d t

=
�
jω− γ

2

�
a+ j

κ

2
b, (6.1)

db
d t

=
�
jω′ − γ′

2

�
b+ j

κ

2
a, (6.2)

where a and b are the field amplitudes of Main and Aux. mode, respectively. In
a steady state, the eigenvalues ω(±) of the Eqs. (6.1) and (6.2) are given as,

ω(±) = ω+ω
′

2
+

j
2

�
γ

2
+
γ′
2

�
±
√√√�ω−ω′

2
+

j
2

�
γ

2
− γ′

2

��2
+
���κ
2

���2. (6.3)

Figure 6.4 shows the theoretical transmission spectrum with and without
a mode coupling effect when changing the detuning of the Aux. mode. (To
be precise, the vertical axes represent |1 − ã − b̃|2 and |1 − ã|2 for Figs. 6.4(a)
and 6.4(b), respectively. ã and b̃ are the Fourier transformed spectra of the
field amplitudes a and b, respectively.) The main mode is not affected when
there is no mode coupling (κ = 0), and thus the resonant frequency does not
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exhibit anti-crossing behavior, as shown in Fig. 6.4(a). When mode coupling of
κ/2π = 1000 MHz is present, anti-crossing behavior is clearly observed. The
frequencies of the hybridized resonances are located at positions that are red-
(ω(−)) and blue- (ω(+)) shifted in relation to the original resonance position as
shown in Fig. 6.4(b). When the detuning between two resonances is zero (see
green line), the width of mode splitting (= ω(+)

µ
−ω(−)

µ
) perfectly agrees with a

coupling rate of κ .
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Fig. 6.4: Calculated transmittance (a) without and (b) with mode coupling
(κ/2π = 1000 MHz) when changing the frequency detuning of the aux-
iliary (AUX.) mode. The intrinsic Q-factors of the Main and Aux. modes
are 5×106 and 3×106, respectively, and the coupling rate with the waveg-
uide is 7× 106. Transmittance spectrum with the same detuning of two
resonances mode is shown by the green line in (b), where the splitting
width agrees with the mode coupling rate of κ.

6.2.2 Phase-matching condition by anti-mode crossing in nor-
mal dispersion microresonators

Here, the relationship between three modes, namely the pump ω0, signal ω−µ
and idler ωµ modes, are investigated in terms of the resonance asymmetry fac-
tor ∆as, which must be positive to satisfy the phase-matching condition. If the
overall dispersion is normal, the local anomalous dispersion (∆as > 0) leads to
MI gain at the desired mode number µ, and primary sidebands start to appear.
Importantly, the location of the local dispersion change can be selected by chang-
ing the frequency offset ∆ω by continuously tuning the resonance frequency of
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the Aux. mode. For instance, when ∆ω is tuned in such a way that the mode
coupling occurs at µ = 3, the primary sidebands start to appear at a distance
of 3-FSRs from the pump mode (µ = 0); and with the help of the cascade pro-
cess, a mode-locked comb with a 3-FSR spacing can be formed. Hence, one can
control the location of the initial comb lines arbitrarily, which in turn enables
one to realize an FSR-selectable mode-locked Kerr comb in a normal dispersion.
The above scheme has been experimentally demonstrated by using integrated
heaters to tune the resonance frequency via the thermo-optic effect [158].

Figure 6.5 shows the asymmetry factor ∆as at different µ, as a function of
∆ω. The coupling rate κ is fixed at a constant value (κ/2π =3.34 GHz), and
the other parameters are taken from Ref. [158]. The condition for the anoma-
lous dispersion (∆as > 0), which is necessary to obtain MI gain, is shown in
white, whereas the gray shaded region indicates the absence of MI gain due
to the normal dispersion of the system. One can see that the phase-matched
mode number µ increases as the increase of the offset frequency ∆ω. The ver-
tical black dotted line represents ∆ω, when the Main and Aux. modes at µ
perfectly overlap its resonant frequencies (i.e., ωµ = ω′µ) and couple. This in-
dicates that the frequency separation between “A” and “B” in Fig. 6.5 is equal
to κ/(2π). When ∆ω/(2π) approaches 12.5 GHz, the splitting (ω(+)−1 −ω(−)−1 )
approaches the maximum value, and thus ∆as is at its largest. This is because
the anti-symmetric mode (ω(+)−1 ) is shifted to its maximum from the original fre-
quency ω−1, and its mode is of interest because it will contribute to the positive
∆as. When ∆ω/(2π) =12.5 GHz, the energy of the hybridized mode is equally
distributed between the Main and Aux. cavities (i.e., at “A” and “B”). However,
when ∆ω/(2π) is larger than 12.5 GHz, the anti-symmetric mode (ω(+)−1 ) is no
longer coupled efficiently with the Main cavity (the blue dashed line of “A”).
Therefore, it is then necessary to focus on the symmetric mode (ω(−)−1 ), which
contributes to the normal dispersion of the system (the solid blue line of “B”).

When ∆ω is small, one can always find a coupled mode exhibiting a local
anomalous dispersion. However, when ∆ω is large, some ranges, not satisfying
∆as > 0, appear. These features suggest that precise frequency tuning is needed
if one requires a local normal dispersion for large-FSR (i.e., 5-FSR, 6-FSR) comb
generation. On the other hand, the asymmetry factor for each mode number
increases significantly when the offset frequency is close to zero (red shaded
region in Fig. 6.5), where the two center frequency modes (µ = 0) are strongly
coupled. In this region, the position of the initial comb sidebands can not be
selected because the competition occurs between the MI gains of different mode
numbers µ.
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Figure 6.6 shows further analysis of the phase-matching condition as a func-
tion of themode coupling strength κ. This map shows that strong coupling (large
mode splitting) makes it possible to have a large asymmetry factor and narrows
the region with no MI gain. These analyses give the information to determine
the critical condition as regards frequency tuning for FSR-selectable comb gener-
ation. The offset frequency gap from the 1-FSR to 6-FSR region is about 65 GHz
when κ/2π = 3.34 GHz, which agrees well with an experimental report on the
frequency shift of the auxiliary mode ∼ 64.8 GHz roughly estimated from the
thermal heater power and the thermal shifting efficiency in Ref. [158].

6.3 Numerical simulation

6.3.1 Nonlinear coupled mode equations with mode coupling
effect

The nonlinear coupled mode equations that takes the mode coupling term into
account are described as,

∂ Aµ
∂ t
= −
hγ
2
+ i
�
ωµ −ωp −µD1

�i
Aµ + i g
∑
j,k

A jAkA
∗
j+k−µ + i

κ

2
Bµ + f δµ0, (6.4)

∂ Bµ
∂ t
= −
�
γ′
2
+ i
�
ω′
µ
−ωp −µD′1
��

Bµ + i g ′
∑
j,k

B jBkB
∗
j+k−µ + i

κ

2
Aµ, (6.5)

where Aµ (Main) and Bµ (Aux.), respectively are the slowly varying amplitude
of each comb mode. Each term of the equations was introduced in §2.4.1. The
calculation is performed with a total of 201 modes using the 4th-order Runge-
Kutta method and a fast Fourier transform acceleration algorithm [201]*b. Ta-
ble 6.1 shows the parameters used in the following simulations that assumed
coupled silicon nitride microresonators. The radii of the two microrings are
60 µm (Main) and 58 µm (Aux.), respectively, and the waveguide cross-section
dimension is 1300 nm×600 nm [158].

*bThe number of modes should be large enough for a simulated comb bandwidth.
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Table. 6.1: Parameters used for the numerical simulation. They are taken from
physical constants and Ref. [158]

Parameters Symbol Values (Main) Values (Aux.) Units

Refractive index n0 1.98 1.98 −
Nonlinear refractive index n2 2.4× 10−19 2.4× 10−19 m2/W

Center frequency ω0/2π 191.9 191.9 THz

Offset frequency ∆ω/2π − variable GHz

Cavity FSR D1/2π 378 391 GHz

Dispersion D2/2π −16 −17 MHz

Effective mode area Aeff 1.10 1.10 µm2

Loaded quality factor Q 7.5× 105 3.7× 105 −
External quality factor Qext 3.5× 106 − −
Mode coupling rate κ/2π 3.34 3.34 GHz

Input power Pin 500 − mW
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6.3.2 Numerical simulation on FSR-selectable comb and de-
terministic dark pulse formation

Figure 6.7 shows the simulation results of 3-FSR microcomb generation, where
the offset frequency ∆ω/(2π) is 36 GHz, determined by the theoretical curve
in Fig. 6.5. Figure 6.7(a) shows the cavity dispersion (ωµ −ω0 − µD1) of the
coupled Main cavity, with (red) and without (green) mode couplings, indicating
that a strong mode interaction is present in three modes apart from the pump
mode. Figure 6.7(b), 6.7(c), and 6.7(d), respectively show the average intracav-
ity power, the evolution of the optical spectrum, and the temporal waveform at
different normalized pump detunings tR(ω0−ωp) (tR is the roundtrip time of the
Main cavity). Here, the initial comb sidebands are generated at 3-FSR apart from
the pump, where strong mode coupling occurred, and then a stable 3-FSR comb
is formed without passing through a chaotic state. Even when adopting differ-
ent initial noise, the trajectory of the intracavity power followed the same path,
which proved numerically that deterministic mode-locked dark pulse generation
is indeed possible by using this scheme, as reported in the previous work [158].

Optical spectra and temporal waveforms at different pump detunings are
shown in Figs. 6.7(e)-6.7(g), where the red and blue lines represent the Main
and Aux. modes, respectively. When the pump detuning is increased, the pulse
duration of dark state and spectrum bandwidth became broader. As a result,
the waveform had the appearance of a bright pulse-like state with periodic os-
cillatory tails. Although such spectra are known as a platicon [173], there are
certain differences between the platicon and the results that exhibit an asym-
metrical shape with respect to the pump mode. Such trends are usually induced
by the effect of higher-order dispersion (e.g., dispersive waves), whereas this
study is only considering the second-order dispersion. This fact suggests that
the model rigorously simulates the dynamic mode coupling that affects the ef-
fective dispersion profile of the Main cavity, and thereby enabling the accurate
reproduction of the asymmetric comb spectrum and the temporal waveform.
These results demonstrate the advantage of using a rigorous model instead of
the more simple model taking the mode shift into account as the perturbated
dispersion ωµ = ω0 − δµ0∆µ + D1µ + (1/2)D2µ

2, where ∆µ is the mode shift
frequency at mode number µ.

Figure 6.8 shows the calculated results of the FSR-selectable comb genera-
tion. The arbitrary-FSR comb generation can be obtained only by changing the
offset frequency from 5.5 GHz to 76 GHz, which again agrees well with reported
experimental results [158]. These results confirmed that the rigorous modeling
is well suited for the simulation of normal dispersion Kerr comb generation in a
coupled cavity system.
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Fig. 6.7: (a) Cavity dispersion of the main mode with mode coupling (red circles)
and without mode coupling (green circles). A strong mode interaction
occurs at the mode number µ = −3. (b) Average intracavity power ver-
sus normalized pump detuning tR(ω0−ωp) during pump sweeping from
blue-side to red-side. The trajectory of the main mode follows the same
path when the calculation is repeated with different initial noise condi-
tions. (c) and (d) Evolution of the optical spectrum and time domain
waveform versus pump detuning. (e), (f), and (g) Simulated optical
spectra and temporal waveforms of the main (red) and auxiliary (blue)
modes with different detunings. Further detuning of pump results in the
broader pulse duration of dark state and spectrum bandwidth.
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Fig. 6.8: Simulated optical spectra and temporal waveforms with different offset
frequencies ∆ω/(2π). The blue arrows indicate the locations of strong
mode coupling. (a) 1-FSR;∆ω/(2π) = 5.5 GHz. (b) 2-FSR;∆ω/(2π) =
17 GHz. (c) 3-FSR;∆ω/(2π) = 36 GHz. (d) 4-FSR;∆ω/(2π) = 50 GHz.
(e) 5-FSR; ∆ω/(2π) = 64 GHz. (f) 6-FSR; ∆ω/(2π) = 76 GHz.

6.3.3 Mode coupling induced oscillating behavior in 1-FSR
comb generation

This section describes 1-FSR comb generation with different offset frequencies
in more detail. Figure 6.9(a) is a magnified view of Fig. 6.5 for µ = −1 (1-
FSR), which shows the relation between the asymmetry factor ∆as and the off-
set frequency ∆ω. First, the four different offsets (∆ω/2π = 5.25, 7.75, 10.0,
and 12.5 GHz) were chosen for the comb simulation. Figure 6.9(b) shows the
calculated average intracavity power. Notably, such randomly oscillating behav-
iors are observed whatever the offset frequency (gray shaded region). These
behaviors have never before been observed for 3-FSR comb generation [see
Fig. 6.7(b)], and the oscillating region is strongly dependent on the detuning and
offset frequency. Figure 6.9(c) shows the evolution of the optical spectrum when
we swept the pump detuning while setting ∆ω/(2π) at 7.75 GHz. Snapshots
of the spectrum and the waveform are shown in Fig. 6.9(d). In the initial state
(I) (detuning = 0.004 ∼ 0.012), the comb spectrum is stable but the bandwidth
is relatively narrow. After the initial state, the optical spectrum becomes highly
unstable. In addition, the intracavity power exhibits clear oscillations with the
detuning of 0.012 ∼ 0.017 (II). Finally, it becomes stable again when detuning
reaches 0.017. In this state, the intracavity power exhibits small steps, and the
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comb spectrum and temporal waveform show discrete transitions. These small
steps have been observed experimentally in a normal dispersion system [76];
however, it is different from the soliton step usually observed in an anomalous
dispersion system (corresponding to the change in soliton number). In this con-
dition, the comb repetition rate does not change from 1-FSR from start to end,
and the temporal waveform in (III) is always in a mode-locked state even though
the shape of the temporal waveform is similar to that of platicons.
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Fig. 6.9: (a) Asymmetry factor versus offset frequency in the 1-FSR comb region.
A 1-FSR sideband is generated as the initial comb in the blue shaded re-
gion, whereas multi-FSR initial comb lines (e.g., 1-FSR and 2-FSR side-
bands) can be generated simultaneously with the pump in the red shaded
region. (b) Relative average intracavity powers with different offset fre-
quencies. Oscillation behaviors were observed depending on the chosen
offset frequency. (c) Evolution of optical spectrum versus detuning with
∆ω/(2π) = 7.75 GHz. A stable and narrow bandwidth primary comb
was generated at the initial state (I). With further detuning, the comb
transformed into a highly unstable state, as shown in the gray shaded
region of (b). After the oscillation regime, the comb became stable again
and formed a dark pulse. Interestingly, the optical spectrum repeated a
bandwidth expansion and its narrowing with small steps of intracavity
power. (d) Simulated optical spectra and temporal waveforms in each
state indicated in (c).
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When the offset frequency is in the blue shaded region in Fig. 6.9(a), initial
sidebands are generated at 1-FSR. This is expected behavior since the 1-FSR
resonant mode is the point where a local dispersion change occurs. However, the
simulation shows a different trend (i.e., initial sidebands are generated at multi-
FSRs) when choosing an offset frequency in the red shaded region. In this region,
many resonant modes satisfy the phase-matching condition simultaneously (see
the red shaded region in Fig. 6.5) because the pump mode exhibits a large red-
shift due to the strong mode interaction between two center frequencies.

6.4 Discussion and summary

6.4.1 Discussion

The rigorous simulation model presented here not only provides a more accu-
rate reproduction of experimental results but new findings regarding oscillation
behaviors prior to the mode-locking transition. It should be noted that some
of the features observed in this simulation were discussed in recent theoretical
studies; oscillatory tails [198], and the change in angular pulse velocity depend-
ing on pump detuning [202]. In particular, the study reported by V. Lobanov
et al. [173] that undertook a numerical study of the generation of platicons is
relevant to this work. Although the work reported valuable results and findings,
they performed the calculation only for the Main cavity mode by introducing the
frequency shift of one of the modes. In contrast, this work fully calculated the
two cavity modes and thereby taking the energy transfer between the two cavity
modes into account. Moreover, recent studies have revealed that an intermodal
interaction induces breather solitons accompanied by an oscillation of the pulse
duration [203], and Kerr interaction between the two optical modes results in
the oscillatory regimes depending on the detuning [204]. In addition, it has been
known that the comb passed a noisy MI state even when pumping the mode
belonging to the strong local anomalous dispersion overall normal dispersion
system [205]. These phenomena are similar to our observations (i.e., unstable,
oscillating behavior) rather than the previous demonstrations for deterministic
dark pulse generation [76, 158, 172]. Although it needs further analysis to un-
derstand the complex dynamics, our model will help us to study the formation
of the comb spectrum and time domain waveform in a realistic system in a more
rigorous way.

6.4.2 Summary

In summary, this chapter studied nonlinear coupled mode equations (NCMEs)
to simulate mode coupling assisted Kerr comb generation in a normal dispersion
system. The FSR-selectable comb generation was investigated by employing a
theoretical analysis, and our calculation results agree well with experimental
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results reported in previous works. Moreover, the simulation provided the find-
ings of oscillating behavior during detuning sweeping, and the behaviors are
very sensitive to the chosen parameter. The proposed model and analysis will
aid in practical experiments on mode coupling assisted normal dispersion Kerr
comb generation, in particular, the engineering and design of coupled cavities
to obtain a desired Kerr frequency comb spectrum. Also, the analysis of the
phase-matching condition can help to deal with practical experiments, and prior
examination of optical spectra and temporal waveforms.
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Chapter 7

Summary and outlook

This chapter summarizes the thesis and gives a brief outlook of research on mi-
croresonator frequency comb and future aspects of dispersion engineering.

7.1 Summary

This thesis studied the dispersion engineering of high-Q optical microresonators
with a view to frequency comb generation. The research for this thesis, was drive
by the desire to explore the underlying physics of the microresonator-based fre-
quency comb, namely the possibility offered by dispersion engineering, to realize
broader and more controllable microcomb generation. One specific limitation
of dispersion engineering is its accuracy when fabricating whispering gallery
mode resonators. Abrasive polishing and a laser reflow process cannot control
the precise resonator geometry, resulting in a lack of dispersion controllabil-
ity compared with lithography-based waveguide resonators. However, precision
machining opens the possibility of overcoming this limitation. Indeed, micro-
comb generation has been realized in a fabricated crystalline microresonator by
machining alone. The obtained large-frequency-shift microcomb achieves one
octave for the first time, and the spectral position perfectly agrees with the pre-
diction based on numerical analysis. These results will have a great impact on
microcomb studies from the perspective of the geometry dispersion engineering
of whispering gallery mode resonators. Dispersion engineering techniques have
been applied to deterministic visible light emission in on-chip silica toroid mi-
croresonators and even in a coupled resonator system designed to induce local
dispersion. These studies show the potential for realizing reliable microcomb
generation in the normal dispersion regime. The entire work is motivated by
the idea that the spectral bandwidth can be extended into the unexplored wave-
length region by employing dispersion engineering.

As a summary of this work, the following list presents an overview of the
main achievements in this thesis.

• The principles and strategies for dispersion engineering are revealed, fea-
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turing whispering gallery mode microresonators. The methods for simu-
lation and measurement of dispersion can be applicable for other types of
microresonators and could be helpful for various applications, not limited
to microcombs. The role of dispersion in the microcomb spectrum is also
shown.

• All-precisionmachining fabrication of ultrahigh-Q crystallinemicroresonator
has been demonstrated. The computer-controlled ultraprecision machin-
ing achieved an ultrahigh-Q exceeding 100 million, for the first time, with-
out a subsequent polishing process. Since the machining process readily
offers the dispersion engineering and size control of manufactured devices,
this method makes it possible to manage both an ultrahigh-Q and disper-
sion engineering.

• Octave-wide phase-matched four-wave mixing and clustered comb gener-
ation have been demonstrated for the first time. The dispersion engineered
microresonator enabled the primary sideband generation with a frequency
shift up to 140 THz. By using a 1550 nm pump, a magnesium fluoride mi-
croresonator started to oscillate at 1.1 µm and 2.4 µm. Subsequently, it
formed localized microcomb formation in the wavelength region, which
has not been much explored thus far.

• Third-harmonic blue light emission has been reported in a silica micro-
toroid resonator. The cascade third-order nonlinear processes, namely
four-wave mixing, stimulated Raman scattering, and third-harmonic gen-
eration, enabled the first observation of deterministic multi-color visible
light generation. It has also been revealed that the higher-order disper-
sion plays a key role in the phase-matching process ranging from visible to
near-infrared wavelength regime.

• Nonlinear coupled mode equations to simulate mode coupling assisted
frequency comb generation has been presented. Besides the geometrical
dispersion engineering, local dispersion control can be used to generate
mode-locked microcomb in a normal dispersion regime. The numerical
simulation provides more rigorous simulation by taking dynamic phase
shift by mode coupling into account.

7.2 Outlook

Visible and mid-infrared microcombs
Microresonator frequency combs so far have been developed with a focus on
telecommunication wavelength. There are many reasons, such as instrumen-
tal limitations and target applications; nevertheless, the one critical problem
for overcoming wavelength bandwidth is the microresonator dispersion. Strong
material dispersion dominates the overall dispersion and inhibits the visible and
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mid-infrared microcomb generation in the same manner as the telecom band.
The visible and ultraviolet wavelength bands are highly attractive spectral re-
gions because they would benefit optical atomic clock [206], bioimaging [207],
and astronomical calibration [208]. Besides, the shorter wavelength micro-
combs can replace mode-locked titanium sapphire lasers, which are used for
many applications, by small devices. The mid-infrared regime, which is known
as the finger-print region, is also fascinating for particular applications in molec-
ular spectroscopy and chemical sensing [209]. In this respect, dispersion en-
gineering presented in this thesis will play a key role in obtaining visible and
mid-infrared frequency comb by tailoring a resonator geometry, selecting a res-
onator material, and hybridization of resonance modes. Recently, many studies
show the potential of spectral extension with sophisticated dispersion engineer-
ing and resonator fabrication [161,210–212].

Ultraprecision machining for geometry dispersion engineering
Ultraprecision machining overcomes the limitation of geometric dispersion in
crystalline microresonators. Moreover, precise control of the resonator size and
reproducibility may become great advantages for various applications, including
dual-comb spectroscopy and LiDAR. Especially, computer-controlled machining
provides the geometry controllability, and thereby realizing triangular and rect-
angular resonator cross-sections, which has not been achieved with manual fab-
ricationmethods. These features will definitely contribute tomicrocomb spectral
extension and applications.

Merging of different materials for dispersion engineering
Merging of different materials would impact dispersion engineering. In the
present, the difficulty of fabricationmay inhibit the realization. However, hybrid-
material resonators can give the possibility of dispersion engineering shortly, not
limiting to geometry tailoring. These techniques could include the functionaliza-
tion of the monolithic resonator by combining different materials such as mono-
layer semiconductors and graphene.

Miniaturization of passively mode-locked lasers
The development of dissipative Kerr soliton brought a revolution in the study on
microresonator frequency comb. However, there are still subjects to be solved,
such as low conversion efficiency, bandwidth extension, stochastic soliton for-
mation, and integration with waveguide, etc. In particular, the strong pump is
required for comb generation, and in principle, the pump remains at the trans-
mitted comb light. This is a challenge because the strong pump is usually un-
wanted for many applications; therefore, the transmitted pump is rejected by
using an additional filter. In this respect, the use of active resonators, namely a
gain-doped microresonator and the combination with a saturable absorber (i.e.,
carbon nanotube, graphene), will be the solution. Noted that this idea is similar
to that of the conventional mode-locked lasers.
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Appendix A

Gain transition between four-wave
mixing and Raman effect in silica
microresonators

The effects of four-wave mixing (FWM) and Raman gain coexist and compete
in optical microresonators. A silica microresonator, especially with a large free-
spectral range, exhibits the selectable transition between modulation instability
(MI) and Raman gain with only changing pump power or pump detuning. Such
a transition is attributed to the dynamic appearance and disappearance of FWM
gain inhibiting discrete resonance modes. Steady-state analysis and numerical
simulation using a Lugiato-Lefever equation with Raman effect revealed that the
Raman-dominant region is present between transitions of FWM with different
free-spectral range spacings. Also, an experimental observation confirms the
controllable switching of intracavity field between a stable Kerr comb and a sta-
ble Raman state in a silica toroid microresonator*a.

A.1 Theory and analysis of FWM and Raman gain
in a silica microresonator

Modulation instability gain, namely FWM gain, originates in the Kerr effect and
induces a parametric oscillation from vacuum fluctuations in nonlinear materi-
als. When the system is pumped with a continuous wave input, new frequency
sidebands are generated as a result of the cascade FWM process. The gain spec-
trum g(Ω) of the MI including the loss in an optical fiber is derived from the
nonlinear Schrödinger equation (NLSE), as described in [114],

gfib(Ω) = −αfib + |β2Ω|
Æ
Ω2

c −Ω2, (A.1)

*aPart of the contents of this chapter was published in “Transition between Kerr comb and
stimulated Raman comb in a silica whispering gallery mode microcavity,” Journal of the Optical
Society of America B, 35, 1, 100–106 (2018).
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where, Ω2
c = 4γP0/β2 is the frequency of the gain peak. Ω, β2, γNL, αfib, and

P0 are the modulation frequency, second-order dispersion, nonlinear coefficient,
propagation loss, and optical power, respectively. On the other hand, MI gain in
an optical microresonator is obtained from the LLE [113], which is an expansion
of the NLSE used to describe the linear and nonlinear dynamics in an optical
cavity. The equation is given as [213,214],

gcav(Ω) = −αcav +
Æ
(γLP0)2 − (δmiss)2, (A.2)

where,

δmiss = δ0 − β22 LΩ2 − 2γLP0, (A.3)

represents the phase-mismatch due to the detuning, dispersion and nonlinear
phase shift. αcav, L, and δ0 = tR(ω0−ωp), are the loss of the cavity per roundtrip,
the cavity length, and the phase detuning of the input frequency ωp to the res-
onance frequency ω0 (tR is the roundtrip time). In both cases, the higher order
dispersions are neglected to simplify the discussion.

A silica-basedmicroresonator easily shows stimulated Raman scattering (SRS)
owing to a large and broad Raman gain. The Raman gain gR per roundtrip is
given as [114],

gR = −α+ gR
bulk

P0
Aeff

Leff, (A.4)

Leff =
1
α
[1− exp(−αL)], (A.5)

where gR
bulk = 0.6×10−13 m/W [114] is the bulk Raman gain of silica at a pump

wavelength of 1550 nm, and Aeff is the effective mode area. Leff is the effective
length determined by the propagation loss α. Since the Raman gain spectrum
is broad and its full-width at half-maximum (FWHM) covers more than 10 THz,
the Raman gain spectrum always covers multi-FSRs of the microresonator res-
onances even when the resonator size (diameter) is relatively small. This is a
significant difference between MI gain and Raman gain since, with a small mi-
croresonator (i.e., a large FSR system), there is a possibility that the MI gain can
be located between the longitudinal modes, thereby suppressing FWM genera-
tion. Figure A.1 shows a schematic illustration of the gain competition between
the FWM and SRS discussed above.

To obtain an intracavity power P0 from an input power Pin, the bistable con-
dition of nonlinear resonator is considered as,

θ Pin = (γNLL)
2P3

0 − 2δ0γNLLP2
0 + (δ

2
0 +α

2)P0, (A.6)

where θ is the coupling coefficient between the cavity and the input waveguide.
Eq. A.6 gives P0 at Pin and δ0, which enable to calculate the MI and Raman gain
as a function of the input power by using Eqs. (A.2) and (A.4).

Figure A.2(a) shows the theoretical values of MI gain at frequencies 1-FSR
and 2-FSR from the pump frequency, along with the Raman gain. The param-
eters are set as follows: pump wavelength λp = 1542 nm, refractive index
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Resonances Raman gain

MI gain(1-FSR)

Pump

Raman gain peak ~13 THz

MI gain(2-FSR)

Wavelength

Wavelength

Wavelength

1-FSR comb state

Intracavity power

2-FSR comb state

Raman-dominant state

Fig. A.1: Schematic illustration explaining the competition between the MI and
Raman gain in a large-FSR silica microresonator system. 1-FSR comb
state: The peak of the MI gain overlaps a pair of longitudinal modes
1-FSR from the pump frequency at a low pump power. Since the MI
gain is higher than the Raman gain, the FWM generation will be dom-
inant. Raman-dominant state: The peak of the MI gain is between the
large FSR’s longitudinal modes. Since the longitudinal modes overlap
the broad Raman gain, the SRS process can occur instead of FWM gener-
ation. 2-FSR comb state: The peak of the MI gain overlaps a pair of lon-
gitudinal modes 2-FSR from the pump frequency at a high pump power.
Then those resonances receive MI gain and 2-FSR comb is generated.

n = 1.44, nonlinear refractive index n2 = 2.2 × 10−20 m2/W, nonlinear coef-
ficient γNL = 1.79 × 10−2 W−1m−1 (γNL = n2ω0/cAeff), intrinsic quality factor
Qint = 5× 107, external (coupling) quality factor Qext = 1× 108, and the phase
detuning from cold cavity resonance δ0 = −5.4× 10−8. It should be noted that
an anomalous dispersion (β2 < 0) is required for this scheme to function (be-
cause phase-matching is satisfied only when β2 < 0 under the condition δ0 ∼ 0),
so second-order mode of a silica microtoroid is assumed as the pump mode.
Major and minor diameters are ≈50 µm and ≈7 µm, respectively. The cav-
ity FSR D1/2π = 1350 GHz, the second-order dispersion β2 = −10 ps2/km
(D2/2π = 23.8 MHz), the effective mode area Aeff = 5 µm2, all of which can
be estimated by using the finite element method. Figure A.2(a) indicates that
there are three regions present, where 1-FSR MI gain, Raman gain, and 2-FSR
MI gain are dominant with respect to the input power. As further increasing of
the input power, the resonator experiences through 1-FSR gain, Raman, and 2-
FSR gain in order. So the result in Fig. A.2(a) directly supports the explanation
in Fig. A.1.

Also, Figure A.2(a) defines the maximum input power at which the gain at
1-FSR is equal to zero as P1-FSR, and the minimum input power at which the
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gain at 2-FSR is equal to zero as P2-FSR, indicated as the black arrows. The dif-
ference between these two powers ∆Pin = P2-FSR − P1-FSR represents the range
of the input power to achieve a Raman-dominant state. Figure A.2(b) shows
the ∆Pin as a function of the resonator FSR for different coupling rates with the
waveguide. When ∆Pin is zero, the system has no Raman-dominant region, but
the MI gain at 2-FSR is dominant. For example, the calculation shows that the
FSR must be larger than 1000 GHz to obtain SRS when the system is operating
in a critical coupling condition. Hence, this analysis allows us to obtain impor-
tant information about the strategy for choosing the cavity diameter to obtain a
Raman-dominant state without FWM. The result shows that an under coupling
condition (Qext > Qint) in addition to the choice of a large-FSR (i.e., a small di-
ameter microresonator) is suitable for obtaining a Raman-dominant region over
a broad range.
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from the pump), and the Raman gain per roundtrip as a function of
the input power when Qext is 1 × 108. Only the Raman gain inhibits
the cavity modes when the input power is in the 6.5 ∼ 17 mW range,
because the MI gain is located between the 1-FSR and 2-FSR resonant
modes. (b) ∆Pin versus the cavity FSR at three different coupling condi-
tions. ∆Pin = P2-FSR− P1-FSR is the allowed power range for obtaining the
Raman-dominant state. The arrow is at the condition for (a).

A.2 Numerical simulation based on Lugiato-Lefever
equation

Numerical simulation can be performed by using the LLE model with Raman
effect as Eq. (2.52) and the impulse Raman response given as Eq. (2.50). Here,
τ1 and τ2 are given as 12.2 fs, and τ2 = 32 fs, respectively [114], and the other
parameters are the same as introduced in the previous section. The simulated
spectra are shown in Figs. A.3(a)-A.3(c), with changing the input power. Insets
show the time domain waveforms. At an input power of 2.5 mW, a stable 1-FSR
comb, namely a Turing pattern comb, was generated as expected without any
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Raman components. However, only the Raman comb appeared when the input
power was 10 mW, and this result is consistent with the analysis in Fig. A.2.
Finally, the 2-FSR comb became dominant when the input power was set to
40 mW in which case Raman lines were not observed again. It should be noted
that these transitions can be observed by changing different parameters such as
the couplingQ or the laser detuning as long as the gain gap similar to∆Pin exists.
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Fig. A.3: Simulated spectra with LLE for different input powers. Insets show sim-
ulated temporal waveforms. (a) Output spectrum when the resonator is
pumped with a 2.5 mW input. 1-FSR Turing pattern comb is observed.
(b) At 10 mW input. The peak of the output spectrum at 1657 nm wave-
length corresponds to the peak of the Raman shift of silica. (c) At 40 mW
input. A 2-FSR Turing pattern comb is obtained.

A.3 Experimental observation in silica microtoroid

Based on the results of numerical simulation, the experiment was performed
using a silica toroid microresonator. The major andminor diameters are≈50 µm
and≈7µm, respectively, and themeasuredQ of the pumpmodewas 1.8×107. In
the experiment, the laser detuning is gradually changed instead of pump power
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tuning. Since a coupled power depends on both the laser detuning and pump
power (and the coupling rate), the laser-detuning is the best way to continuously
control the intracavity power. The experiment is performed in the effectively
blue-detuned region, and therefore thermally stable. When the laser detuning
is increased towards the red-detuned side, the spectrum dynamically changes,
as shown in Fig. A.4. The experimental results clearly show the transition from
1-FSR comb to Raman comb, and the back to 2-FSR comb state as the numerical
simulation revealed.
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Fig. A.4: Measured output spectra from a silica toroid microresonator pumped at
different detunings. The pump power was about 250 mW. The wave-
length of the input laser is swept from a shorter to a longer wavelength.
When the pump is largely blue detuned, a 1-FSR comb is obtained. The
spectral envelope of the 1-FSR became broader, and Raman lines ap-
peared with the smaller detuning. When the detuning is at its smallest,
a 2-FSR comb is finally observed.

A.4 Summary

In summary, it has been demonstrated that the gain transition between FWM
and Raman-dominant states is present in a silica microresonator that exhibits a
broadband Raman gain. Although a Raman comb is of high interest in terms of
extending the wavelength regime of the microresonator frequency combs, this
study revealed that it is needed to choose the resonator size, the gap between
the cavity and the waveguide, and the input power carefully, in order to obtain
Raman state selectively. Also, this system, representing the competition between
the Kerr and Raman effects, is well related to themicroresonator dispersion (e.g.,
the trade-off relation between the cavity size and anomalous dispersion), and
therefore will be interesting subject with regard to the dispersion engineering.
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Appendix B

Impact on microcomb formation in
a clockwise and counter-clockwise
mode coupled microresonator

The impact of inherent mode coupling between clockwise (CW) and counter-
clockwise (CCW) modes is a particular underlying problem for Kerr frequency
comb generation in optical microresonators. Here, numerical analysis using cou-
pled Lugiato-Lefever equations reveals that the scattering-induced mode cou-
pling affects the formation of soliton microcomb in the pump direction. It also
showed that CCW comb power depends on the coupling strength between the
CW and CCW modes. The experiment is performed using a silica toroid mi-
croresonator that exhibits the strong mode coupling to confirm the simulation
results. The understanding of the specific relation between CW-CCW mode cou-
pling and Kerr frequency comb could provide variable information for perform-
ers as regards the experiment and measurement of soliton microcomb*a.

B.1 Numerical simulation based on coupled Lugiato-
Lefever equations

Coupled Lugiato-Lefever equations (LLEs) that take CW-CCW mode coupling
into account are represented as [168],

∂ A(ϕ, t)
∂ t

= −
�γ
2
+ iδ0
�
A+ i

D2

2
∂ 2A
∂ ϕ2

+ i g|A|2A+ i
κµ

2
B +
p
γextAin, (B.1)

∂ B(ϕ, t)
∂ t

= −
�γ
2
+ iδ0
�
B + i

D2

2
∂ 2B
∂ ϕ2

+ i g|B|2B + i
κµ

2
A, (B.2)

*aPart the contents of this chapter was published in “Effect on Kerr comb generation in a
clockwise and counter-clockwise mode coupled microcavity,” Optics Express, 25, 23, 28969–
28982 (2017).
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Fig. B.1: Simulation results when the CW-CCW mode coupling is the same for all
longitudinal modes with a constant Γ = 1.0, Pin = 100mW. (a), (b) Op-
tical spectrum and temporal waveform of CW direction. (c), (d) Corre-
sponding results of CCW direction. (e) Average intracavity power while
the normalized detuning is scanning.

where A and B correspond to CW mode and CCW mode, respectively, and κµ
is the coupling coefficient between two modes. It should be noted that the de-
cay rate, detuning, and the nonlinear coefficient are the same for both modes
due to the mode degeneracy. The cross-phase modulation (XPM) between the
two counter-propagating modes since the XPM interaction is weak, and thus
neglected in the above equations. In the following simulation, a silica toroid
microresonator is assumed as a platform. A silica microtoroid, especially a small
diameter resonator, often shows strong CW-CCW mode coupling. The calcula-
tion parameters are as follows: input wavelength λp = 1542 nm, refractive in-
dex n= 1.44, nonlinear refractive index n2 = 2.2× 10−20 m2/W, Qint = 2× 107,
Qext = 2× 107 and Aeff = 5 µm2. The cavity free-spectral range (FSR) D1/2π is
1350 GHz, and the second-order dispersion D2/2π= 23.8 MHz.

First, the numerical simulation was performed with constant coupling Γ =
1.0 and input power Pin = 100 mW. The result is shown in Fig. B.1. In this
condition, the CW comb spectrum and intracavity intensity indicate that the CW
comb is not disturbed by mode coupling with Γ = 1.0. However, one can see
some interesting behaviors from the results. Although the intracavity power of
both the CW and CCWmodes increased until the detuning reached 0.2×10−3, the
power of the CCW mode decreased significantly when the CW mode generated
a pulse (> 1× 10−3). These results suggested that the CCW mode receives the
power of the CW comb by fixed coupling in the spectrum domain, and there
are no nonlinear processes after the soliton formation in the CW direction. As
a result, the spectrum and the time domain waveform of the CCW mode are
similar to those of the CW mode; however, the peak power exhibits orders of
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EQUATIONS

magnitude smaller than that of the CW mode.
Next, further analysis was conducted by changing the coupling strength and

input power. Figure B.2(a) and B.2(b) show the intracavity intensity with Γ =
0.5, Pin = 50 mW and Γ = 3.0, Pin = 200 mW, respectively. And, Figure B.2(c)
and B.2(d) show the numerical investigation of the probability of soliton gener-
ation when changing input power and dispersion, respectively. With a small Γ
value, the CW mode exhibits a stable soliton state; however, with a Γ value of
> 2.5, the probability suddenly decreases. When Γ > 3.0, the CW mode could
not be transformed into a soliton state whatever the dispersion value was set.
These results indicate that the mode coupling strength affects the probability of
soliton formation in the CW mode. Only very strong coupling induces competi-
tion between the intracavity powers of the CW and CCWmodes and disturbs Kerr
comb formation even in the CW mode. In other words, the coupling between
the CW-CCW modes will not affect Kerr comb generation in the CW direction as
long as the coupling is within the practical strength range.
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Fig. B.2: (a), (b) Intracavity powers versus normalized detuning with different
coupling parameter and input power. (c), (d) Numerical investigation of
probability of soliton formation in the CW direction when changing input
power and dispersion D2/2π, respectively. In each case, the calculations
were performed 100 times.

Although constant coupling was thus far assumed, the coupling strength is
not always the same for all modes in the real microresonator system. This dif-
ference has been observed experimentally and can be explained by the presence
of multiple scattering points [194]. Here, the simulation assumes the random
coupling parameters of each longitudinal mode. Figure B.3 shows the results
with Γ = 0 ∼ 4.0 and Pin = 100 mW. The Γ value of each mode is randomly
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selected from 0 to 4.0 by a pseudorandom number algorithm whose average
value is about 2.0. Calculated spectra and temporal waveforms of the CW and
CCW modes are shown in Fig. B.3(a)-B.3(d), respectively. The CCW mode ex-
perienced random coupling Γ from 0 to 4.0, as shown in Fig. B.3(e). The comb
intensities of CCW modes, particularly µ= −7, 2, and 7, are weaker than those
of the other modes depending on the coupling strength Γ . On the other hand, the
intensity of some combs (e.g., µ= 3,4) is correspondingly strong. Even when a
CW mode is in a soliton state or a Turing pattern state, the intensity of the CCW
mode is weak, and the waveform is not smooth [Fig. B.3(d)]. These results show
that the CCW comb teeth are directly affected by the coupling strength and could
not be compensated with the nonlinear effect. On the other hand, the CW mode
generates a soliton pulse in spite of random coupling.
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Fig. B.3: (a), (b) Simulated optical spectrum and temporal waveform in the CW
direction when the coupling strength is randomly set with Γ =0 to 4.0, as
shown in (e). (c), (d) Corresponding results of the CCW direction. The
red dashed line indicates the envelope of the soliton comb. (e) Coupling
parameter Γ for each longitudinal mode. (f) Average intracavity power
and normalized detuning of CW and CCW modes.

B.2 Experimental observation of CW-CCWmode cou-
pled Kerr frequency comb

To confirm the numerical results, an experiment was performed in a silica toroid
microresonator that inherently exhibits a strong CW-CCW mode coupling. The
transmission spectrum, which gives the coupling strength of each mode, was
recorded in advance. Since the diameter of the microtoroid was 45 µm, the
higher-order mode was selected as the pump mode from the standpoint of the
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FREQUENCY COMB

dispersion. To observe the CCW comb mode, an optical circulator was inserted
before the coupling to the microresonator. Fig. B.4 shows the experimental
setup. The combs generated in the CW and CCW directions are simultane-
ously observed, as shown in Figs. B.4(b) and B.4(c). The CW comb spectrum
suggests a low-noise initial state, namely a Turing pattern comb; on the other
hand, the CCW direction is also temporally stable but exhibiting an irregular
spectrum shape as described in the simulation. Then, the power ratio of the
CW and CCW modes (Pµ) can be compared with the strengths of the CW-CCW
coupling (Γ = κ/γ), which were obtained from the preliminary experiment of
transmissionmeasurement. The coupling strength differs for differentmodes but
falls within the 10 to 50 MHz range, and typically measured linewidths imply
Q ∼ 1 × 107. Figure B.4(d) shows the transmission spectrum of the particular
mode µ = −2. Here, the power ratio Pµ was calculated by dividing the CCW
peak power by the CW peak power. The results of Pµ and Γ for each mode are
summarized in Fig. B.4(e), where the two lines show a strong correlation, which
indicates that the CCW comb is generated by the scattering of each CW comb
component. This, in turn, indicates that the FWM process is dominant in the CW
direction, and nonlinear mixing rarely occurs in the CCW direction. The trend
of the experimental observation agrees with the numerical simulation in terms
of the irregular comb power. Nevertheless, a soliton could not be observed in
this experiment, mainly due to the instrumental limitation.
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Fig. B.4: (a) Experimental setup used for measuring CW and CCW combs and
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B.3 Summary

In summary, the effect of a CW-CCW mode coupling on Kerr comb generation
has been investigated both experimentally and theoretically. In the numerical
simulation, a model with which to study a CW-CCW mode coupled system was
developed based on a Lugiato-Lefever equation. The calculation result suggested
that CW-CCW coupling will not degrade the CW comb and soliton formation as
long as the system has a sufficiently anomalous dispersion and weak coupling.
In the experiment, the contribution of linear scattering to a spectrum in the CCW
direction was confirmed.
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[194] J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-
chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q
microresonator,” Nat. Photonics 4, 46–49 (2010).

[195] B. Peng, a. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori,
C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcav-
ities,” Nat. Phys. 10, 394 EP – (2014).

[196] W. Yoshiki, Y. Honda, T. Tetsumoto, K. Furusawa, N. Sekine, and T. Tanabe, “All-
optical tunable buffering with coupled ultra-high Q whispering gallery mode mi-
crocavities,” Sci. Rep. 7, 10688 (2017).
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