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Chapter 1

Introduction

1.1 Background

1.1.1 Periodicity and Aperiodicity in Filters and Controls

Periodicity repeats values in regular periods and results in a periodic signal composed of an infinite

sum of sine and cosine waves called Fourier series. To process the periodic signal, comb filters that can

eliminate the infinite sum of sine and cosine waves have been studied [1,2] and have been developed into

optimal filters [3,4]. Classical band-pass and band-stop filters can extract and eliminate a limited number

of sine and cosine waves but cannot handle the periodic signal. Unlike the band-pass and band-stop

filters, the comb filter can eliminate the periodic signal including the infinite sum of sine and cosine waves

by using delay elements. Consequently, comb filters have been practically used for pulsed radar systems

[5], video signal processing [6, 7], speech signal processing [8, 9], ultrasonics [10], and electronics [11–

13]. In addition to the periodic-signal elimination using a comb filter, decomposition based on both

periodicity and aperiodicity have also been considered. In the speech synthesis field, periodic/aperiodic

decomposition has been studied using the discrete Fourier transform [14–16], where a harmonic pulse

noise model defines a periodic signal and aperiodic signal as a limited number of time-varying harmonics

and the residual signal from an original signal, respectively [17–19]. Hence, the methods are nonlinear

and unfeasible for real-time calculation of control owing to the discrete Fourier transform. Furthermore,

they utilize only a limited number of harmonics, unlike the comb filters.

In the field of control, a periodic state has been controlled for high-precision control with repetitive

control (RC) [20–22]. The RC was proposed to eliminate errors caused by an exogenous periodic com-
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mand and disturbance [23, 24]. The repetitive controller realizes an internal model of a periodic signal

including an infinite number of poles on the imaginary axis by using a delay element similar to the comb

filters. As industrial automatic systems typically work periodically and require precise operations, RCs

have been developed and applied to hard disk devices [25], ball-screw-driven stages [26], converters and

inverters [27–29], aircraft ground power unit [30], microgrids [31], and wind turbines [32].

In addition to the controls for a periodic state, periodicity time-varying systems have been studied [33–

35], and robust controls for the periodic systems were further proposed [36–38]. Similarly, a spatially

periodic system was considered [39]. As a practical application, a periodic system has been developed

for helicopter rotors [40]. According to the nonlinearity that the periodic system has periodically time-

varying system matrices, a lifting technique has been used to transform the periodically time-varying

system into a time-invariant system [41–43]. These studies showed the usefulness of the lifting technique

for periodicity.

Frequency estimation of a periodic state has also been studied as adaptive filters and adaptive controls.

Adaptive notch filters have been studied for frequency estimation [44–46], and adaptive repetitive control

has been studied for frequency-varying periodic-disturbance compensation [47, 48].

Since periodicity of a signal, state, and system is a usual phenomenon in automatic systems, comb

filters, RCs, and periodic systems have been studied. Moreover, the speech synthesis studies have focused

on not only periodicity but also aperiodicity of a signal as periodic/aperiodic decomposition. The comb

filters and RCs demonstrated that a delay element can express periodicity of a signal and state. Also, the

control studies for periodic systems showed that a lifting technique is a useful calculation approach to

handle periodicity, and the adaptive notch filters and adaptive repetitive controls showed that adaptivity is

useful to handle frequency-varying periodicity. However, controls for periodicity and aperiodicity were

not studied because the comb filters, RCs, and periodic systems only consider periodicity. Furthermore,

the periodic/aperiodic decomposition, which causes the nonlinearity, long calculation time, and limited

definition of a periodic signal, is not applicable to control.

1.1.2 Periodicity and Aperiodicity in Motion Controls

In the field of applied control, motion control systems such as mechatronics and robotics systems

have been studied for industrial and human support systems [49, 50]. Previous studies focused on and

controlled one of motion elements: velocity (position) [51–53], force [54–56], and impedance [57, 58]

in order to improve control performance: speed, precision, and adaptivity against humans and environ-
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ments. In the motion controls, there is a principle that only one of the motion elements can be controlled

by one-degree-of-control-freedom. Hence, the velocity, force, and impedance controls cannot be simul-

taneously achieved. To acquire multiple functions accomplishing multiple motion control objectives,

hybrid controls, that assign conflicting motion control objectives to independent control freedom such as

different axes and actuators, have been studied [59, 60]. Similarly, bilateral control based on a master-

slave structure has two-degree-of-control-freedom [61–63]. Optimal control adjusts and balances states

between conflicting motion control objectives but cannot achieve both the objectives simultaneously

[64, 65]. Only when motion control objectives do not conflict as a velocity objective calculated from

a force objective, velocity and force responses can be simultaneously controlled [66]. Motion-copying

systems also control consistent position and force with one-degree-of-control-freedom [67–69], where

motion data that correspond to consistent position and force are stored through the bilateral control in

a motion-saving phase, and the data are reproduced with one-degree-of-control-freedom in a motion-

reproducing phase.

Consequently, one control objective for one-degree-of-control-freedom was a standard approach such

as position, force, and impedance controls in the motion controls. Alternatively, increase in axes and

actuators or use of consistent trajectories is required to achieve additional control objectives. Periodicity

and aperiodicity of motion had not been addressed for simultaneous achievement of multiple motion

control objectives.

1.1.3 Periodicity and Aperiodicity in Disturbances

The motion control systems are based on an acceleration control system (ACS) using a disturbance

observer (DOB) [70–72]. Classically, an inner acceleration controller compensates for disturbances, and

an outer motion controller adjusts the motion elements [73]. The DOB enables the separation of the

disturbance-compensation and tracking issues as a two-degree-of-freedom controller and has a Q-filter

that can design sensitivity and complementary sensitivity functions directly. The sensitivity function

corresponds to disturbance suppression performance, and the complementary sensitivity function corre-

sponds to robust stability and noise sensitivity. Accordingly, the sensitivity function is typically set to a

high-pass filter, and the complementary sensitivity function is accordingly set to a low-pass filter on the

basis of a tradeoff between the functions [74, 75].

Industrial automatic systems are usually required to operate precisely and repetitively, but the repeti-

tive operations typically cause periodic disturbances including an infinite number of harmonics [76, 77].
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Then, the periodic disturbances impair the precision of the industrial automatic systems [78,79]. In order

to eliminate the periodic disturbance, the high-pass characteristic of the DOB is not sufficient because an

infinite number of band-stop characteristics is necessary to eliminate an infinite number of sine and co-

sine waves. To overcome the problem of the DOB, high-order DOBs whose sensitivity function includes

several band-stop characteristics were studied [80, 81]. However, the high-order DOBs and their limited

number of band-stop characteristics are still not sufficient to eliminate the periodic disturbance.

The RCs are effective methods that can compensate for all harmonics of a periodic disturbance using

delay elements. However, the repetitive controllers are not two-degree-of-freedom controllers, amplify

aperiodic disturbances, and are difficult to design their complementary sensitivity functions. Although

RCs based on the DOB structure have been studied [82–84], they are not two-degree-of-freedom con-

trollers and their delay elements affect nominal stability. Besides, consideration of both periodicity and

aperiodicity of a disturbance is necessary for practical applications [85].

Since industrial automatic systems usually face periodic disturbances impairing their precision, periodic-

disturbance compensation is a significant issue for the industry. Although the previous studies proposed

the high-order DOBs as two-degree-of-freedom controllers and RCs for periodic-disturbance elimina-

tion, the high-order DOBs and RCs lack the periodic-disturbance suppression performance and two-

degree-of-freedom characteristic, respectively.

1.1.4 Periodicity and Aperiodicity in Industrial Inspection and Human Behavior

Periodicity and aperiodicity exist at inspection for food product packing. In our society, many foods

and drinks are provided after packing to secure their freshness [86]. However, package leaks, which

accordingly occur, expose safety of the products to danger and require product inspection to guarantee

the safety [87]. In particular, automatic production processes require automatic product inspection, where

products are periodically inspected for detecting aperiodic anomaly [88–90]. In a previous study, a haptic

leak detector was developed for inspection of all packages using anomalous force information due to a

leak [86]. However, the previous detection method lacks robustness against environmental changes,

which causes misdetection.

Besides, periodicity and aperiodicity also exist in human behavior. Recently, the number of stroke

survivors has increased as the number of older people has increased in the world. In the United States,

on average, someone has a stroke every 40 seconds [91]. Although stroke survivors usually need re-

habilitation to reacquire lost motor skills caused by brain injury, the number of therapists is limited.
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Consequently, automatic therapy and automatic clinical diagnosis using robots are required [92, 93].

Motor learning, which is a change of motor function based on brain plasticity, has been investigated with

healthy people according to the rehabilitation mechanism based on the motor learning [94–96]. Typi-

cally, the motor learning requires periodic practice, but human behavior is always variable aperiodically.

However, proficiency diagnosis based on the periodicity and aperiodicity had not been studied.

In industrial inspection for food product packing, inspection of all packages periodically measures

food products, and anomaly appears aperiodically. Besides, in motor learning, practice is periodic, and

human behavior is aperiodically variable. Therefore, there are possibilities that the concept of periodicity

and aperiodicity for filters and controls could practically improve the industrial inspection and diagnosis

of motor proficiency.

1.2 Motivation

1.2.1 Periodicity and Aperiodicity for Filters and Controls

I focused on control of a periodic/aperiodic state that includes both a periodic state and aperiodic

state. Although the previous studies proposed filters and controls considering periodicity of a state or

periodicity/aperiodicity of a speech signal, they were insufficient to control the periodic/aperiodic state.

The comb filters and repetitive controls proposed by the previous studies aim to eliminate a periodic

signal from a signal and do not define an aperiodic signal. Although the periodic/aperiodic decomposition

methods were proposed for periodic and aperiodic signals in a signal, they are difficult to be used for

control owing to the discrete Fourier transform. Furthermore, their periodic signal is nonlinearly defined

as a limited number of time-varying harmonics. Besides, the studies for the periodic systems were

different from the studies for the periodic/aperiodic state because the periodicity of a periodic system

belongs to a system.

My research began by definitions of the periodic state and aperiodic state, which compose the peri-

odic/aperiodic state [97]. On the basis of the definitions, I constructed a periodic/aperiodic separation fil-

ter (PASF) to separate the periodic/aperiodic state into the periodic state and aperiodic state. The PASF is

linear and feasible to control, unlike the conventional periodic/aperiodic decomposition methods. Then,

the PASF enabled to construct periodic/aperiodic state feedback control, which separately controls the

periodic and aperiodic states in a similar manner to classical state feedback control. I further revealed

that the control, observation, and separation of the periodic/aperiodic state can be independently de-
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signed through the separation principle. This facilitates the simple design of the periodic/aperiodic state

feedback control, and an additional proposition demonstrates that stability of the control can be designed

in a similar manner to classical state feedback control. In addition, I constructed a frequency estimator

based on an adaptive notch filter to enable to acquire a varying frequency of the periodic/aperiodic state

in [98].

1.2.2 Periodicity and Aperiodicity for Motion Controls

I expanded the concept of the periodic/aperiodic state feedback control into motion control as pe-

riodic/aperiodic motion control [99]. As the periodic state and aperiodic state can be separately con-

trolled by the periodic/aperiodic state feedback control, the periodic motion and aperiodic motion can be

separately designed under one-degree-of-control-freedom. This solved the problem that one-degree-of-

control-freedom can achieve only one control objective such as position, force, and impedance controls.

Two control objectives assigned to periodic motion and aperiodic motion can be simultaneously achieved

by the periodic/aperiodic motion control.

To this end, I used the PASF to separate velocity and force into periodic velocity, aperiodic velocity,

periodic force, and aperiodic force. Then, I designed six types of periodic/aperiodic motion controls that

assign position, force, or impedance control to periodic motion and aperiodic motion. Experiments using

a multi-axis manipulator validated the practicality of the six periodic/aperiodic motion controls.

1.2.3 Periodicity and Aperiodicity for Disturbances

I further focused on periodicity and aperiodicity of a disturbance, which is an exogenous signal, unlike

the state. In particular, periodic disturbances are an inherent problem for industrial automatic systems

because their repetitive works induce periodic disturbances that impair their precision.

The conventional methods: DOBs and RCs for periodic-disturbance compensation have problems that

the DOBs and RCs lack the periodic-disturbance suppression performance and two-degree-of-freedom

characteristic, respectively. To overcome the problems of the conventional methods, I constructed a

periodic-disturbance observer (PDOB) that uses both advantages of a DOB and RC [98,100]. The PDOB

can compensate for all of an infinite harmonic of a periodic disturbance similar to RC, and its delay used

for the compensation does not affect the nominal stability and command tracking performance on the

basis of the two-degree-of-freedom structure. In addition, I developed the PDOB into an enhanced PDOB

in order to enhance its aperiodic-disturbance compensation performance [101]. The enhanced PDOB
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consists of the PDOB and DOB that compensate for periodic and aperiodic disturbances, respectively.

The enhanced PDOB is more practical than the PDOB because both periodic and aperiodic disturbances

usually occur in actual applications.

1.2.4 Periodicity and Aperiodicity for Industrial Inspection and Human Behavior

I further addressed more practical problems in industry and rehabilitation using the periodicity and

aperiodicity. For package-leak detection, I found that repetitive inspection and package leak correspond

to periodicity and aperiodicity, respectively. I applied the PASF for the haptic package-leak detection,

which is one of the previous leak detection methods [86], to pick up aperiodic anomalous packages

from the periodic inspection process. The PASF improved the robustness of the detection against a slow

environmental change at measurement. The improved robustness was verified through 10,000 packages

inspection simulation based on 388 experimental yank data.

For motor proficiency diagnosis, I found that repetitive practice and variable human behaviors are

periodicity and aperiodicity, respectively. I further applied the PASF for motor proficiency diagnosis

to detect a small change of motor proficiency by eliminating aperiodic variations of human behavior.

To evaluate the effect of the PASF on the diagnosis, I designed a motor learning experiment based

on a logarithmic spiral drawing task with twenty subjects. According to the minimum jerk model of

motor control [102], an angular trajectory for the logarithmic spiral was designed to satisfy minimum

jerk. Then, the PASF was used to separate the drawn logarithmic spirals into periodic and aperiodic

trajectories and achieved to evaluate the drawing proficiency accurately.

1.3 Chapter Organization

According to the motivations and studies, I constructed the chapters of this dissertation as shown

in Fig. 1-1. Chapter 2 describes the basis of my studies. Section 2.2 shows definitions for the peri-

odic/aperiodic state and the PASF in [97]. Section 2.3 mentions a frequency estimator for fundamental

frequency estimation of the periodic/aperiodic state according to [97]. Chapter 3 is for control of the peri-

odic/aperiodic state. Section 3.2 constructs the periodic/aperiodic state feedback control using the PASF

and proves the separation principle for the periodic/aperiodic state feedback control according to [97].

The periodic/aperiodic motion control is described in Section 3.3 according to [99]. Chapter 4 is for peri-

odicity and aperiodicity in a disturbance. Section 4.2 constructs the PDOB for periodic-disturbance sup-
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【CHAPTER 4】
DISTURBANCE
【Section 4.2】

Periodic
Disturbance Compensation

【Section 4.3】
Aperiodic

Disturbance Compensation

【CHAPTER 5】
DIAGNOSIS
【Section 5.2】

Aperiodic
Anomaly Detection
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Periodic

Proficiency Diagnosis

【CHAPTER 3】
STATE
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Periodic/Aperiodic

State Feedback Control
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【CHAPTER 6】Conclusions

【CHAPTER 1】Introduction

【Section 2.2】
Periodic/Aperiodic Separation Filter

【Section 2.3】
Frequency Estimation

【CHAPTER 2】
SEPARATION

Fig. 1-1: Chapters of this dissertation.

pression, and Section 4.3 develops the PDOB into the enhanced PDOB to improve aperiodic-disturbance

suppression performance. The PDOB and enhanced PDOB were proposed in [98,100] and [101], respec-

tively. Chapter 5 is for practical diagnoses based on periodicity and aperiodicity. Section 5.2 describes

the PASF-based haptic leak detection for practical package-leak inspection. Section 5.3 describes the

PASF-based proficiency diagnosis for motor learning evaluation. Finally, Chapter 6 concludes this dis-

sertation.
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Chapter 2

Periodic/Aperiodic Separation

2.1 Outline

Chapter 2 focuses on periodicity and aperiodicity for separation.

This research begins by definitions of a periodic/aperiodic state and separation of the periodic/aperiodic

state into periodic and aperiodic states in Section 2.2. Subsections 2.2.1 and 2.2.2 describe the defini-

tions and the PASF for the separation, respectively. As the lowest-order infinite-impulse-response filter,

a first-order PASF is designed in Subsection 2.2.3. The concept and PASF are the basis of the studies for

the state control, disturbance compensation, and diagnosis based on periodicity and aperiodicity.

In order to adapt to frequency-varying periodicity, Section 2.3 describes frequency estimation for the

periodic/aperiodic state. Subsection 2.3.1 constructs a frequency estimator based on an adaptive notch

filter. Subsections 2.3.2 and 2.3.3 mention the adaptive algorithm and its convergence, respectively.

Frequency-estimation examples for design parameter evaluation are shown in Subsection 2.3.4.

2.2 Periodic/Aperiodic Separation Filter

2.2.1 Definitions for Periodic/Aperiodic State

A discrete-time state x(t) is defined to be a periodic/aperiodic state composed of a periodic state xp(t)

and aperiodic state xa(t) as

x(t) = xp(t) + xa(t) ∈ Rn. (2.1)
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In the periodic state, a perfect periodic state is defined by

xp(t+Π) = xp(t). (2.2)

The perfect periodic state can be expressed by the Fourier series as

xp(t) =
a0
2

+

∞∑
n=1

[an cos (nω0Tst) + bn sin (nω0Tst)] , (2.3)

where

ω0 =
2π

ΠTs
. (2.4)

a0, an, and bn denote Fourier coefficients, and ω0, Π, and Ts denote the fundamental frequency, period

that is an integer, and sampling time, respectively. The lifting technique:

xτ (k) := x(kΠ+ τ) (2.5)

is introduced to transform the perfect periodic state into a constant state, where

x(t) = x(kΠ+ τ). (2.6)

The perfect periodic state and lifting technique in (2.2) and (2.5) provide a lifted perfect periodic state

xτp(k + 1) = xτp(k), (2.7)

which shows the constant characteristic. Because the lifted perfect periodic state is a constant state as

xτp(0) = xτp(1) = xτp(2) = · · · , the lifted periodic state and lifted aperiodic state are defined as

F [xτ (k)] =

∞∑
k=−∞

xτ (k)e
−jωTsΠk =

{
F [xτp], if ω ≤ ρ
F [xτa], if ρ < ω

, (2.8)

where F [ ] denotes the the discrete-time Fourier transform. The lifted periodic state xτp and lifted

aperiodic state xτa are low-frequency and high-frequency elements of the lifted periodic/aperiodic state

xτ , respectively. ρ is the separation frequency that is a boundary frequency between the lifted periodic

and aperiodic states. Fig. 2-1 illustrates the definitions of the periodic and aperiodic states.
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Flow of the Definitions

C
on

st
an

t

Lifted
periodic state

xτp(k)

Lifted
aperiodic state

xτa(k)

Fr
eq

ue
nc

y 
D

om
ai

n

Discrete Time

ΠPeriod:

D
is

cr
et

e 
Ti

m
e 

D
om

ai
n

Lifting

Fl
ow

 o
f t

he
 C

on
st

ru
ct

io
n

PASF

Periodic/Aperiodic Separation Filter

PP AA

Periodic State
xp(t)

Aperiodic State
xa(t)

Periodic and Aperiodic States

Perfect Periodic State

A AAAAA

Frequency

Periodic/Aperiodic
State

P P P P P P

x0(k)

Π
P

eriod:

τ0
k

Discrete Time
0 1 2

Π xΠ(k)

xτp(k)

Lifted
periodic state

C
on

st
an

t

Lifted
periodic state

xτp(k) xτa(k)

Lifted
aperiodic state

Lifted
aperiodic state

xτa(k)

Lifted Perfect Periodic State

Frequency

Lifted Periodic/Aperiodic State

Separation Freq.: ρ

Lifted PASF

HPFLPF

Lifted Periodic and Aperiodic States

Periodic/Aperiodic State:F [x]

x(t)Periodic/Aperiodic State: Lifted Periodic/Aperiodic State: xτ (k)

Lifted Periodic/Aperiodic State:F [xτ ]

Inverse Lifting

Fig. 2-1: Conceptual diagram of the periodic/aperiodic states, lifted periodic/aperiodic states, PASF, and
lifted PASF.

2.2.2 Construction of Periodic/Aperiodic Separation Filter

General Periodic/Aperiodic Separation Filter

A PASF is constructed to separate the periodic/aperiodic state x into the periodic state xp and ape-

riodic state xa. Firstly, a lifted PASF, that separates the lifted periodic/aperiodic state xτ into the lifted
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periodic state xτp and lifted aperiodic state xτa, is constructed as{
x̂τp(k) =

∑l−1
i=0 [pix̂τp(k − 1− i) + qixτ (k − i)]

x̂τa(k) = xτ (k)− x̂τp(k)
, (2.9)

where the coefficients pi and qi perform a low-pass filter. l and the symbolˆdenote the order of the PASF

and an estimated variable. As shown in the right diagram of Fig. 2-1, the lifted periodic state and the lifted

aperiodic state are low and high frequency elements of the lifted periodic/aperiodic state, respectively.

Hence, a low-pass filter is employed to extract the lifted periodic state from the lifted periodic/aperiodic

state, and the complementary high-pass filter extracts the lifted aperiodic state.

Next, the PASF is constructed from the lifted PASF. According to the lifting technique in (2.5), the

lifted periodic/aperiodic states in (2.9) can be inversely transformed into the states

x̂τ (k) = x̂(kΠ+ τ) (2.10)

x̂τ (k − 1− i) = x̂(kΠ+ τ −Π− iΠ) (2.11)

x̂τ (k − i) = x̂(kΠ+ τ − iΠ). (2.12)

By using these equations for (2.9), the lifted PASF becomes{
x̂p(kΠ+ τ) =

∑l−1
i=0 [pix̂p(kΠ+ τ −Π− iΠ) + qix(kΠ+ τ − iΠ)]

x̂a(kΠ+ τ) = x(kΠ+ τ)− x̂p(kΠ+ τ)
, (2.13)

and (2.6) further transforms (2.13) into the PASF:{
x̂p(t) =

∑l−1
i=0 [pix̂p(t−Π− iΠ) + qix(t− iΠ)]

x̂a(t) = x(t)− x̂p(t)
. (2.14)

Fig. 2-1 illustrates a difference between the periodic/aperiodic state and lifted periodic/aperiodic state

and design flow from the lifted PASF to the PASF. A block diagram of the general PASF is shown in

Fig. 2-2.

First-Order Periodic/Aperiodic Separation Filter

As a design example for the general PASF, this dissertation shows a first-order PASF based on an

infinite-impulse-response low-pass filter. Consider the continuous-time low-pass filter

LPF (s) =
ρ

s+ ρ
. (2.15)

Using the bilinear transform

s =
2

ΠTs

1−Z−1

1 + Z−1
, (2.16)
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z−Π z−Π z−Π

z−Πz−Π · · ·

· · ·

· · ·

ql−1q1q0

p0pl−1 pl−2

x(t)

x̂p(t)

x̂a(t)

Fig. 2-2: Block diagram of the general periodic/aperiodic separation filter.

the continuous-time low-pass filter is transformed into the discrete-time low-pass filter

LPF (Z−1) =
ρΠTs + ρΠTsZ−1

(ρΠTs + 2) + (ρΠTs − 2)Z−1
, (2.17)

which is the first-order lifted PASF. Z−1 denotes the Z operator whose sampling time is ΠTs. Using

the first-order lifted PASF, relation between the estimated lifted periodic state x̂τp(k) and the lifted

periodic/aperiodic state xτ (k) is

x̂τp(k) =
2− ρΠTs

2 + ρΠTs
x̂τp(k − 1) +

ρΠTs

2 + ρΠTs
xτ (k) +

ρΠTs

2 + ρΠTs
xτ (k − 1). (2.18)

According to the lifted PASF in (2.9), coefficients of the first-order lifted PASF are

p0 =
2− ρΠTs

2 + ρΠTs
, q0 =

ρΠTs

2 + ρΠTs
, q1 =

ρΠTs

2 + ρΠTs
. (2.19)

By substituting the coefficients for the PASF in (2.14), the first-order PASF is derived as x̂p(t) =
2− ρΠTs

2 + ρΠTs
x̂τp(t−Π) +

ρΠTs

2 + ρΠTs
xτ (t) +

ρΠTs

2 + ρΠTs
xτ (t−Π)

x̂a(t) = x(t)− x̂p(t)
. (2.20)

Transfer functions of the first-order PASF are{
x̂p(z

−1) = F (z−1)x(z−1)
x̂a(z

−1) = [1− F (z−1)]x(z−1)
, (2.21)

where

F (z−1) =
ρΠTs + ρΠTsz

−Π

(ρΠTs + 2) + (ρΠTs − 2)z−Π
. (2.22)

A block diagram of the first-order PASF is shown in Fig. 2-3.
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Fig. 2-3: Block diagram of the first-order periodic/aperiodic separation filter.

Design of Separation Frequency

The separation frequency ρ defines a boundary between periodic and aperiodic states as in (2.8). Bode

diagrams of the transfer functions of the periodic-state extraction F (z−1) and of the aperiodic-state

extraction 1− F (z−1) are shown in Fig. 2-4 with variations in the separation frequency ρ, respectively.

The period of the target periodic state is

ΠTs =
2π

ω0
= 2π, (2.23)

and the fundamental frequency and harmonics of the target perfect periodic state are ω0 = 1 and nω0,

respectively. The Bode diagrams indicate that a periodic state xp is extracted only around frequencies

of a perfect periodic state, and an aperiodic state xa close to a state x is extracted, in a case of a small

separation frequency such as ρ = 0.01 rad/s. In a case of a large separation frequency such as ρ =

10 rad/s, a periodic state xp close to a state x is extracted, and an aperiodic state x far from frequencies

of a perfect periodic state is extracted. Therefore, a periodic state that is consistent with our image of

periodicity may be provided by a small separation frequency.

The separation frequency ρ also determines a time constant Tc of the first-order PASF as

Tc =
1

ρ
(2.24)

because the separation frequency is used as a cutoff frequency of the low-pass filter in (2.15). Fig. 2-5

shows the four convergence examples of the first-order PASF with four separation frequencies (a)ρ =
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(a) Periodic-state extraction F (z−1).
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(b) Aperiodic-state extraction 1− F (z−1).

Fig. 2-4: Bode diagrams of the extraction characteristics of the first-order PASF with variations in the
separation frequency ρ. The fundamental frequency is ω0 = 2π/ΠTs = 1 rad/s.

10 rad/s, (b)ρ = 1 rad/s, (c)ρ = 0.1 rad/s, and (d)ρ = 0.01 rad/s. The time constants (a)Tc = 0.1 s,

(b)Tc = 1 s, (c)Tc = 10 s, and (d)Tc = 100 s can be confirmed. s denotes the second, which is the

base unit of time. (2.24) and the convergence examples indicate that rapid convergence requires a large

separation frequency.

According to the above requirements, there is a tradeoff between the proper periodic-state extraction

and rapid convergence. The tradeoff provides the following design strategy of the separation frequency
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(d) ρ = 0.01 rad/s.

Fig. 2-5: Four convergence examples of the periodic state x̂p using the first-order PASF. The input signal
is sin(4πt).

ρ. The desired time constant Tmax determines an upper limit of the time constant as

Tc ≤ Tmax. (2.25)

Using (2.24), the inequality is transformed into

1

Tmax
≤ ρ. (2.26)
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Since the proper periodic-state extraction requires a minimum separation frequency, the separation fre-

quency can be determined as

ρ =
1

Tmax
. (2.27)

In order to realize both proper separation and rapid convergence, two separation frequencies for transient

response and steady-state response can be used.

Interference Between Estimated Periodic and Aperiodic States

The lifted periodic state xτp and lifted aperiodic state xτa are defined as low-frequency elements and

high-frequency elements of a lifted periodic/aperiodic state xτ , respectively. Although the lifted PASF is

designed based on a low-pass filter, it is impossible to separate the lifted periodic/aperiodic state ideally

because only an ideal low-pass filter can extract low-frequency elements ideally. Consequently, an actual

PASF based on an actual low-pass filter causes interference between the estimated periodic state x̂p and

estimated aperiodic state x̂a. The interference can be approximately confirmed as an estimated aperiodic

state of an estimated periodic state x̂ap and an estimated periodic state of an estimated aperiodic state

x̂pa. They can be calculated as{
x̂ap(z

−1) = [1− F (z−1)]F (z−1)x(z−1)
x̂pa(z

−1) = F (z−1)[1− F (z−1)]x(z−1)
, (2.28)

and

x̂ap(z
−1) = x̂pa(z

−1). (2.29)

Fig. 2-6 shows Bode diagram of [1 − F (z−1)]F (z−1), which is an interference transfer function from

the state x(z−1) to the interferences x̂ap and x̂pa. The gain of the transfer function is −5dB at the most;

hence, the interference is usually smaller than estimated periodic and aperiodic states. In addition, the

Bode diagrams indicate that the interferences of ρ = 0.1 rad/s and ρ = 1 rad/s are larger than those of

ρ = 0.01 rad/s and ρ = 10 rad/s. Fig. 2-7 shows a separation example using ρ = 1 rad/s if tTs < 20 s

and ρ = 0.01 rad/s if 20 s ≤ tTs. The inputted signal was

x(t) = sin 4πTst+ v(t) + w(t), (2.30)
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Fig. 2-6: Bode diagram of the interference transfer functions [1 − F (z−1)]F (z−1). The fundamental
frequency is ω0 = 2π/ΠTs = 1 rad/s.

where

v(t) =

{
1 if 5.00 s ≤ tTs < 5.01 s or 20.00 s ≤ tTs < 20.01 s
0 otherwise

(2.31)

w(t) ∼
{

N(0, 0.1) if 10 s < tTs < 13 s or 25 s < tTs < 28 s
N(0, 0) otherwise

. (2.32)

The PASF converged between 0 s and 5 s. The separation example shows that the interference was

smaller than the estimated periodic and aperiodic states. Furthermore, the interference of ρ = 0.01 rad/s

(5 s – 20 s) was smaller than that of ρ = 1 rad/s (20 s – 30 s) consistent with the suggestion from the

Bode diagram in Fig. 2-6. Therefore, the small interference may be typically ignorable. However, it

should be noted that the interference can not be eliminated without using an ideal low-pass filter.

2.2.3 Separation Examples

Separation of Single Sine Wave

Different separation characteristics using the different separation frequencies ρ = 10 rad/s, ρ =

1 rad/s, ρ = 0.1 rad/s, and ρ = 0.01 rad/s were verified through separation examples using a sine

wave, as shown in Fig 2-8. The initial separation frequency was set to 1 for fast convergence of the PASF

in t ≤ 5 s. The original signal shown in Fig. 2-8(a) was

x(t) = sin 4πTst+ v(t) + w(t), (2.33)
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(d) Estimated aperiodic state x̂a.

Fig. 2-7: Effects of the interference on the separation. The separation frequencies are
ρ = 1 rad/s if tTs < 20 s and ρ = 0.01 rad/s if 20 s ≤ tTs.

where

v(t) =

{
1 if 10.125 s ≤ tTs < 10.135 s
0 otherwise

(2.34)

w(t) ∼
{

N(0, 0.1) if 15 s < tTs < 17 s
N(0, 0) otherwise

. (2.35)
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In the case of the largest separation frequency ρ = 10 rad/s, the periodic signal was much affected by

the pseudo impulse signal v(t) in 10.125 s ≤ tTs < 10.135 s and by the pseudo white noise w(t) in

15 s < tTs < 17 s. In the case of the smallest separation frequency ρ = 0.01 rad/s, the sine wave

sin 4πt was accurately extracted as the periodic state. Thus, the time range, in which the effects remain

after the pseudo impulse signal and pseudo white noise, increases as the separation frequency increases.
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Fig. 2-8: Estimated periodic states x̂p of four separation examples using the first-order PASF with varia-
tions in the separation frequency ρ. The input signal is (2.33).
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Fig. 2-9: Separation example of the multiple sine waves in (2.36) using the first-order PASF.

Separation of Multiple Sine Waves

The first-order PASF was compared with low-pass and high-pass filters, band-pass and band-stop

filters, and comb filters through separation of multiple sine waves. The original signal shown in Fig. 2-

9(a) was

x(t) =
10∑
i=1

0.1 sin(4πiTst) + v(t) + w(t), (2.36)

where

v(t) =

{
1 if 10.00 s ≤ tTs < 10.01 s
0 otherwise

(2.37)

w(t) ∼
{

N(0, 0.1) if 15 s < tTs < 17 s
N(0, 0) otherwise

. (2.38)

The low-pass and high-pass filters were

LPF(z−1) =
µTs + µTsz

−1

(µTs + 2) + (µTs − 2)z−1
(2.39)

HPF(z−1) = 1− LPF(z−1), (2.40)
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the band-pass and band-stop filters were

BPF(z−1) =
2µTs(1− z−1)

(ω2
0T

2
s + 2µTs + 4) + 2(ω2

0T
2
s − 4)z−1 + (ω2

0T
2
s − 2µTs + 4)z−2

(2.41)

BSF(z−1) = 1− BPF(z−1), (2.42)

and the comb filter proposed by [13] extracted an aperiodic signal and its complementary filter extracted

a periodic signal. µ of the low-pass filter and that of the band-pass filter are cutoff frequency and design

frequency, respectively. The separation results using the first-order PASF are shown in Fig. 2-9(b), and

the separation results using the classical filters are shown in Fig. 2-10. The low-pass and high-pass filters

only separated the original signal into the low-frequency and high-frequency waves, respectively, and the

band-pass and band-stop filters separated it into the sine wave and the others, respectively. Consequently,

they were impossible to extract the periodic signal, which includes a fundamental wave and harmonics.

The comb filter could extract the periodic signal, but the extracted periodic signal was much affected

by the pseudo impulse signal v(t) and pseudo white noise w(t). Only the first-order PASF achieved to

separate the original signal into the periodic signal
∑10

i=1 0.1 sin(4πiΠt) and the aperiodic signals v(t)

and w(t).

2.3 Frequency Estimation

2.3.1 Frequency Estimator

This study developed a frequency estimator to estimate a fundamental frequency ω0 of a periodic state

xp in a periodic/aperiodic state. Firstly, the band-pass filter:

BPF(z−1, ω̂0) =

[
2gbTs(1− z−1)

(ω̂2
0T

2
s + 2gbTs + 4) + 2(ω̂2

0T
2
s − 4)z−1 + (ω̂2

0T
2
s − 2gbTs + 4)z−2

]2
, (2.43)

is used to extract a fundamental wave xfwp from the periodic state xp including harmonics as

x̂fwp = BPFxp, (2.44)

where

xfwp := a1 cos (ω0Tst) + b1 sin (ω0Tst) (2.45)

according to (2.3). x̂fwp denotes the estimated fundamental wave of the periodic state xp. The design

frequency gb governs the bandwidth, as shown in Fig. 2-11. Since the role of the band-pass filter is to
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Fig. 2-10: Separation examples of the multiple sine waves in (2.36) using the classical filters.

extract the fundamental wave, the parameter gb needs to be small when amplitudes of harmonics of the

periodic state are much larger that of the fundamental wave. The estimated fundamental wave x̂fwp is

– 24 –



CHAPTER 2 PERIODIC/APERIODIC SEPARATION

0
-20
-40
-60
-80
180

90
0

-90
-180

102 104

G
ai

n 
[d

B
]

Frequency [rad/s]

P
ha

se
 [d

eg
]

100 103101

gb = 10

gb = 1000

gb = 10
gb = 100

gb = 1000

gb = 100

gb = 1

gb = 1

ω̂0

Fig. 2-11: Bode diagram of the band-pass filters with variations in gb. The other parameters are
ω̂0 = 100 rad/s and Ts = 0.1 ms.

inputted into an adaptive notch filter:

η̂(t) = α(t)ξ̂(t) + β(t) (2.46)

α(t) = −rη̂(t− 1) + x̂fwp (t− 1) (2.47)

β(t) = −r2η̂(t− 2) + x̂fwp (t) + x̂fwp (t− 2) (2.48)

ξ̂(t) = −2 cos[Tsω̃0(t)], (2.49)

where η(t), ξ̂(t), r, and ω̃0(t) denote the output, adaptive variable, notch parameter, and fundamental

frequency estimated by the adaptive notch filter, respectively. The notch parameter r varies in 0 < r < 1

and governs the bandwidth of the gain, as shown in Fig. 2-12. The adaptive variable ξ̂(t) is modified by

the adaptive algorithm:

g(h) =
P (h− 1)α(h)

λ+ P (h− 1)α2(h)
(2.50)

e(h) = 0− η̂(h) (2.51)

ξ̂(h) = ξ̂(h− 1) + g(h)e(h) (2.52)

P (h) =
1

λ
[P (h− 1)− g(h)α(h)P (h− 1)]. (2.53)

h is the discrete-time using the sampling time Th, which is a slower sampling time than Ts as

Th = κTs (2.54)

0 < κ. (2.55)
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Fig. 2-13: Convergence of the notch filters with variations in the notch parameter r.

The aim of the adaptive notch filter is to estimate an unknown band-stop frequency of an unknown notch

filter that eliminates the fundamental wave. To calculate the error in (2.51), the steady-state output of the

unknown notch filter: η(h) = 0 is used. However, as shown in Fig. 2-13, a notch filter needs a transient

response for the convergence. Thus, the adaptive algorithm is calculated under another sampling h,

that is slower than t, to calculate e = η − η̂ = 0 − η̂ using steady-state output of the adaptive notch

filter. Derivation of the adaptive algorithm is shown in Section 2.3.2. The fundamental frequency ω̃0(t)

estimated by the adaptive notch filter is calculated from the estimated adaptive variable ξ̂(t) as

ω̃0(t) =
1

Ts
cos−1[−0.5ξ̂(t)]. (2.56)

Then, the frequency is inputted into a low-pass filter because ω̃0(t) is usually oscillate

ω̂0 = LPFω̃0, (2.57)
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Fig. 2-14: Calculation flow of the frequency estimator.

where

LPF(z−1) =
gTs + gTsz

−1

(gTs + 2) + (gTs − 2)z−1
. (2.58)

Finally, ω̂0(t) is the estimated fundamental frequency. An initial frequency for the estimated fundamental

frequency needs to use a frequency closer to the fundamental frequency than those of harmonics to avoid

convergence at a harmonic frequency. The estimated fundamental frequency is used by the band-pass

filter BPF(z−1, ω̂0) in (2.43). An estimated period is calculated by the estimated fundamental frequency

as

Π̂ =
2π

ω̂0Ts
. (2.59)

Overview of the frequency estimator is shown in Fig. 2-14.

2.3.2 Adaptive Algorithm

The ideal notch filter that eliminates the fundamental wave x̂fwp is defined as

0 = η(n) = α(n)ξ + β(n)− w(n), (2.60)
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where w(n) is the effect of extraction errors at the band-pass filter in (2.43). The adaptive algorithm

estimates the ideal adaptive variable ξ(h). The error of the adaptive algorithm is calculated by (2.51) as

a difference between the ideal output η = 0 and the output of the notch filter η̂

e(h) = η(h)− η̂(h)

= 0− η̂(h), (2.61)

where

η̂(h) = α(h)ξ̂(h− 1) + β(h). (2.62)

The adaptive algorithm is based on the cost function for a recursive-least-square algorithm:

J(h) =
h∑

n=1

λh−n[e(n)]2 + δλh[ξ̂(h)]2 (2.63)

0 ≪ λ < 1 (2.64)

0 < δ (2.65)

according to [103]. λ and δ denote the forgetting factor and the regularization parameter, respectively.

The algorithm for the adaptive variable ξ̂(h) is obtained in accordance with the minimization of the cost

function in (2.63) with respect to ξ̂(h). Using the transformed cost function:

J(h) =

h∑
n=1

λh−n[e(n)]2 + δλh[ξ̂(h)]2

=
h∑

n=1

λh−n[η(t)− α(t)ξ̂(t)− β(t)]2 + δλh[ξ̂(h)]2, (2.66)

the condition, which satisfies the minimization of the cost function in (2.63), is calculated as

∂J(h)

∂ξ̂(h)
= 0

= −2

h∑
n=1

λh−nα(n)[η(n)− α(n)ξ̂(h)− β(n)] + 2δλhξ̂(h). (2.67)

Using

P (h) =
1∑h

n=1 λ
h−nα2(n) + δλh

, (2.68)
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the ξ̂(h) satisfying ∂J(h)

∂ξ̂(h)
= 0 is calculated from (2.67) as follows

0 = −2

h∑
n=1

λh−nα(n)[η(n)− α(n)ξ̂(h)− β(n)] + 2δλhξ̂(h) (2.69)

2

h∑
n=1

λh−nα2(n)ξ̂(h) + 2δλhξ̂(h) = 2

h∑
n=1

λh−nα(n)[η(n)− β(n)] (2.70)[
h∑

n=1

λh−nα2(n) + δλh

]
ξ̂(h) =

h∑
n=1

λh−nα(n)[η(n)− β(n)] (2.71)

ξ̂(h) = P (h)

h∑
n=1

λh−nα(n)[η(n)− β(n)]. (2.72)

From (2.68), the recursive P−1(h) is

P−1(h) = λP−1(h− 1) + α2(h), (2.73)

and P−1(h− 1) is

P−1(h− 1) = λ−1[P−1(h)− α2(h)]. (2.74)

(2.72) is further transformed into a recursive equation as follows

ξ̂(h) = P (h)

h∑
n=1

λh−nα(n)[η(n)− β(n)]

= P (h)
h−1∑
n=1

λh−nα(n)[η(n)− β(n)] + P (h)α(h)[η(h)− β(h)]

= P (h)λ

h−1∑
n=1

λh−1−nα(n)[η(n)− β(n)] + P (h)α(h)[η(h)− β(h)]

= P (h)λP−1(h− 1)P (h− 1)
h−1∑
n=1

λh−1−nα(n)[η(n)− β(n)] + P (h)α(h)[η(h)− β(h)]

= P (h)λP−1(h− 1)ξ̂(h− 1) + P (h)α(h)[η(h)− β(h)]

= P (h)λλ−1[P−1(h)− α2(h)]ξ̂(h− 1) + P (h)α(h)[η(h)− β(h)]

= ξ̂(h− 1)− P (h)α2(h)ξ̂(h− 1) + P (h)α(h)[η(h)− β(h)]

= ξ̂(h− 1) + P (h)α(h)[η(h)− α(h)ξ̂(h− 1)− β(h)]

= ξ̂(h− 1) + P (h)α(h)e(h). (2.75)
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The calculation of ξ̂(h) for the algorithm is obtained as

ξ̂(h) = ξ̂(h− 1) + g(h)e(h), (2.76)

with the gain g(h):

g(h) = P (h)α(h) (2.77)

g(h) =
P (h− 1)α(h)

λ+ P (h− 1)α2(h)
. (2.78)

From (2.73), P (h) is further rewritten into

P (h) =
1

λP−1(h− 1) + α2(h)

=
P (h− 1)

λ+ P (h− 1)α2(h)

=
1

λ

λ

λ+ P (h− 1)α2(h)
P (h− 1)

=
1

λ

[
1− P (h− 1)α(h)

λ+ P (h− 1)α2(h)
α(h)

]
P (h− 1)

=
1

λ
[1− g(h)α(h)]P (h− 1)

=
1

λ
[P (h− 1)− g(h)α(h)P (h− 1)]. (2.79)

The adaptive algorithm was thus obtained. A calculation flow of the adaptive notch filter is shown in

Fig. 2-15.

2.3.3 Convergence of Adaptive Algorithm

This subsection evaluates convergence of the adaptive algorithm under a stationary environment that

assumes a unity forgetting factor λ = 1. Existence of the estimated fundamental wave is assumed as

x̂fwp (t) ̸= 0. (2.80)

In addition, this evaluation assumes

|rη̂(t)| < |x̂fwp (t)|, (2.81)

because the steady-state output η̂(h) of the notch filter is smaller than the estimated fundamental wave

x̂fwp (t) according to Fig. 2-12. Moreover, r is designed in 0 < r < 1. The evaluation firstly considers

– 30 –



CHAPTER 2 PERIODIC/APERIODIC SEPARATION

η̂(t) = α(t)ξ̂(t) + β(t)

α(t) = −rη̂(t− 1) + x̂fw
p (t− 1)

β(t) = −r2η̂(t− 2) + x̂fw
p (t) + x̂fw

p (t− 2)

Holder

ω̃0(t) =
1

Ts
cos−1[−0.5ξ̂(t)]

g(h) =
P (h− 1)α(h)

λ+ P (h− 1)α2(h)

ξ̂(h) = ξ̂(h− 1) + g(h)e(h)

P (h) =
1

λ
[P (h− 1)− g(h)α(h)P (h− 1)]

ξ̂(t)

ω̃0(t)

x̂fw
p (t)

e(t)

η̂(t)

η(t) = 0

ξ̂(t)

v(t)
Unknown notch filter

Sampler Holder

α(t)

Adaptive algorithm

Adaptive notch filter

η(t) = α(t)ξ(t) + β(t)− w(t)

α(t) = −rη(t− 1) + x̂fw
p (t− 1)

β(t) = −r2η(t− 2) + x̂fw
p (t) + x̂fw

p (t− 2)

Fig. 2-15: Calculation flow of the adaptive notch filter.

convergence of 1/[
∑h

n=1 α
2(n)] as

lim
h→∞

1∑h
n=1 α

2(n)
= lim

h→∞

1∑h
n=1[−rη̂(n− 1) + x̂fwp (n− 1)]2

. (2.82)

According to (2.81), rη̂(n− 1) and x̂fwp (n− 1) are not equal and provide

0 < [−rη̂(n− 1) + x̂fwp (n− 1)]2. (2.83)
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This derives the convergence of (2.82) as

lim
h→∞

1∑h
n=1 α

2(n)
= lim

h→∞

1∑h
n=1[−rη̂(n− 1) + x̂fwp (n− 1)]2

= 0. (2.84)

According to (2.84) and (2.65), P (h) converges at zero

lim
h→∞

P (h) = lim
h→∞

1∑h
n=1 α

2(n) + δ
= 0. (2.85)

Also, the gain g(h) in (2.77) becomes zero

lim
h→∞

g(h) = lim
h→∞

P (h)α(h) = 0, (2.86)

and the estimated adaptive variable calculated by (2.76) becomes

ξ̂(h) = ξ̂(h− 1). (2.87)

In conclusion, P (h), g(h), and ξ̂(h) are convergent.

Next, the estimation accuracy is discussed. Although the band-pass filter in (2.43) extracts a fun-

damental wave of a periodic state xp, the extraction errors v(h) deteriorates accuracy of the adaptive

variable estimation. Usually, the extraction errors v(h) include harmonics and aperiodic disturbances,

and the error affects the output of the unknown notch filter in (2.60) as

w(k) =[−rw(k − 1) + v(k − 1)]ξ − r2w(k − 2) + v(k) + v(k − 2). (2.88)

By substituting 1 for the forgetting factor λ, (2.71) is transformed into

ξ̂(h) =

∑h
n=1 α(n)[η(n)− β(n)]∑h

n=1 α
2(n) + δ

. (2.89)

This is further transformed as follows

ξ̂(h) =

∑h
n=1 α(n)[α(n)ξ + β(n)− w(n)− β(n)]∑h

n=1 α
2(n) + δ

=

∑h
n=1 α(n)[α(n)ξ − w(n)]∑h

n=1 α
2(n) + δ

=

∑h
n=1 α

2(n)∑h
n=1 α

2(n) + δ
ξ −

∑h
n=1 α(n)∑h

n=1 α
2(n) + δ

w(n). (2.90)

In order to let ξ̂(h) converge to the true value ξ(h),
∑h

n=1 α
2(n)∑h

n=1 α
2(n)+δ

and
∑h

n=1 α(n)w(n)∑h
n=1 α

2(n)+δ
need to be 1 and 0,

respectively. The regularization parameter δ adjusts them in the tradeoff: a small δ sets the first term to 1

and a large δ reduces the influence of w(n). Alternatively, modification of the band-pass filter in (2.43)

can directly reduce amplitude of w(n).

– 32 –



CHAPTER 2 PERIODIC/APERIODIC SEPARATION
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Fig. 2-16: Step frequency estimations for the frequency-varying sine wave in (2.91) with variations in
r. The standard parameters are ω̂0(0) = 100 rad/s, κ = 10, λ = 0.999, δ = 1000, g = 1000 rad/s,
gb = 1000 rad/s, and Ts = 0.1 ms.
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Fig. 2-17: Step frequency estimations for the frequency-varying sine wave in (2.91) with variations in
κ. The standard parameters are ω̂0(0) = 100 rad/s, r = 0.7, λ = 0.999, δ = 1000, g = 1000 rad/s,
gb = 1000 rad/s, and Ts = 0.1 ms.
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Fig. 2-18: Step frequency estimations for the frequency-varying sine wave in (2.91) with variations in
λ. The standard parameters are ω̂0(0) = 100 rad/s, r = 0.7, κ = 10, δ = 1000, g = 1000 rad/s,
gb = 1000 rad/s, and Ts = 0.1 ms.

2.3.4 Frequency-Estimation Examples

The frequency estimator has the six design parameters: r, κ, λ, δ, g, and gb. The effects of the

variations in the parameters on the frequency estimation are shown with examples.
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Fig. 2-19: Step frequency estimations for the frequency-varying sine wave in (2.91) with variations in
δ. The standard parameters are ω̂0(0) = 100 rad/s, r = 0.7, κ = 10, λ = 0.999, g = 1000 rad/s,
gb = 1000 rad/s, and Ts = 0.1 ms.
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Fig. 2-20: Step frequency estimations for the frequency-varying sine wave in (2.91) with variations
in g. The standard parameters are ω̂0(0) = 100 rad/s, r = 0.7, κ = 10, λ = 0.999, δ = 1000,
gb = 1000 rad/s, and Ts = 0.1 ms.
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Fig. 2-21: Step frequency estimations for the frequency-varying sine wave in (2.91) with variations in
gb. The standard parameters are ω̂0(0) = 100 rad/s, r = 0.7, κ = 10, λ = 0.999, δ = 1000,
g = 1000 rad/s, and Ts = 0.1 ms.

First, the frequency estimator is used to estimate a fundamental frequency of the frequency-varying
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Fig. 2-22: Step frequency estimations for a periodic state including harmonics in (2.92). The other
parameters are ω̂0(0) = 100 rad/s, r = 0.7, κ = 10, λ = 0.999, δ = 1000, and Ts = 0.1 ms.

sine wave:

x(t) =

{
sin(100Tst) Tst < 3 s
sin(110Tst) 3 s ≤ Tst

. (2.91)

Fig. 2-16 shows the oscillate response and slow convergence when the notch parameter r is large and

small, respectively. Using r and Fig. 2-13, the multi-rate ratio κ can be determined to wait for the

convergence of the notch filter. According to Fig. 2-17, a very small κ induces an oscillating response.

The forgetting factor λ is typically selected as a positive value close to, but less than, unity. A small

λ deteriorates the transient response, as shown in Fig. 2-18. A small δ realizes high-speed response

and a large δ smooths the estimated frequency, as shown in Fig. 2-19. In Figs. 2-20 and 2-21, the cutoff

frequency g of the low-pass filter suppresses oscillations of the estimated fundamental frequency, and the

design frequency gb of the band-pass filter changes the transient response. However, the two parameters

should be designed in accordance with the example of the fundamental-frequency estimation from a

periodic disturbance including harmonics.

Next, the frequency estimator is used to estimate a fundamental frequency of the frequency-varying

multiple sine waves:

x(t) =

{ ∑10
n=1 sin(n100Tst) Tst < 3 s∑10
n=1 sin(n110Tst) 3 s ≤ Tst

, (2.92)

including ten harmonics. Fig. 2-22 shows the estimation results using five combinations of g and gb.

The cutoff frequency g and design frequency gb modify the oscillations and steady-state offset caused

by the harmonics, respectively. The cutoff frequencies g and gb are determined with consideration of the

characteristics and the convergence time.
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2.4 Summary

In Section 2.2, the periodic/aperiodic state was transformed using the lifting technique into the lifted

periodic/aperiodic state, in which a constant element was defined as the lifted perfect periodic state. The

low-frequency elements were defined as the lifted periodic state, and the high-frequency elements were

defined as the lifted aperiodic state. A boundary frequency between the lifted periodic and aperiodic

states is called the separation frequency. Based on the definitions, the lifted PASF that separates the

lifted periodic/aperiodic state into the lifted periodic and aperiodic states was constructed, and the inverse

lifting derived the PASF that separates the periodic/aperiodic state into the periodic and aperiodic states.

As a design example of the PASF, this section showed the first-order PASF. Then, the design of the

separation frequency and interference of the first-order PASF were discussed. Finally, the separation

examples using a sine wave validated the effect of the separation frequency, and the separation examples

using multiple sine waves compared the first-order PASF with classical filters.

In Section 2.3, the frequency estimator was constructed based on an adaptive notch filter. The band-

pass filter was used to extract a fundamental wave from a periodic/aperiodic state. Then, the adaptive

notch filter estimates a fundamental frequency of the fundamental wave, and the low-pass filter attenu-

ates oscillation of the estimated fundamental wave. The adaptive algorithm for the adaptive notch filter

was derived in accordance with the minimization of square estimation error, and its convergence was

analyzed. Finally, the frequency-estimation examples were shown with variations in six design param-

eters. Although the frequency estimator can be used for acquiring an unknown frequency for the PASF,

this dissertation discusses the PASF without the frequency estimator. This is because the PASF is linear

despite the nonlinear frequency estimator. In order to analyze the PASF under the linearity, the period

used by the PASF is assumed to be constant or be given by a steady-state frequency estimator.
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Periodic/Aperiodic State Control

3.1 Outline

Chapter 3 focuses on periodicity and aperiodicity of state control.

Section 3.2 constructs periodic/aperiodic state feedback control for the periodic/aperiodic state by us-

ing the PASF. Subsection 3.2.1 describes the structure of the periodic/aperiodic state feedback control

based on the PASF. Then, a separation principle and design proposition for the periodic/aperiodic state

feedback control are proved as Theorem 1 and Proposition 1, respectively in Subsection 3.2.2. The sepa-

ration principle and proposition guarantee the simplified design of the periodic/aperiodic state feedback

control.

Section 3.3 constructs periodic/aperiodic motion control by developing the periodic/aperiodic state

feedback control into motion control framework. Subsection 3.3.1 designs an ACS using a DOB for

disturbance compensation, and Subsection 3.3.2 constructs six periodic/aperiodic motion controls by

assigning velocity, force, and impedance controls to periodic and aperiodic motions upon the ACS. Sub-

section 3.3.3 shows experiments that validated practical performance of the six periodic/aperiodic motion

controls.
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3.2 Separated Periodic/Aperiodic State Feedback Control

3.2.1 Control System

Consider the discrete-time linear time-invariant system{
x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

, (3.1)

where

x(t) ∈ Rn, y(t) ∈ Rm, u(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p. (3.2)

x(t) is the state variable, y(t) is the output, and u(t) is the input. A, B, C, and D are the system

matrices. The system is assumed to be controllable and observable. A state observer
x̂(t+ 1) = Ax̂(t) +Bu(t) +L{y(t)− ŷ(t)}
ŷ(t) = Cx̂(t) +Du(t)
e(t) := x(t)− x̂(t) ∈ Rn

(3.3)

is used to estimate the state of the system, where e(t) and L ∈ Rn×m are the estimation error and

observation gain, respectively. The PASF is used to extract estimated periodic state x̃p(t) and estimated

aperiodic states x̃a(t) from the estimated state x̂(t) as x̃p(t) =
∑l−1

i=0 [pix̃p(t−Π− iΠ) + qix̂(t− iΠ)]
x̃a(t) = x̂(t)− x̃p(t)
ϵ(k) := x̂p(k)− x̃p(k) ∈ Rn

, (3.4)

where ϵ(k) is the separation error. The control input is calculated by using the estimated periodic and

aperiodic states as

u(t) = up(t) + ua(t), (3.5)

where

up(t) = −Fpx̃p(t) (3.6)

ua(t) = −Fax̃a(t). (3.7)

up(t), ua(t), Fp ∈ Rp×n, and Fa ∈ Rp×n are the periodic input, aperiodic input, periodic feedback

gain, and aperiodic feedback gain, respectively. A block diagram of the periodic/aperiodic state feedback

control is shown in Fig. 3-1.
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Fp

y(t)

ŷ(t)
x̂(t)

A
D

B Cz−1

A
D

B Cz−1

x(t)u(t)

L

PASF
x̃p(t) x̃a(t)

Fa

Fig. 3-1: Block diagram of the periodic/aperiodic state feedback control.

3.2.2 Separated Stabilities

Preliminaries

A lifted periodic/aperiodic state feedback control system is calculated as preliminaries using (2.5).

The lifted linear discrete-time system is{
xτ (k + 1) = Ãxτ (k) + B̃uτ (k)

yτ (k) = C̃xτ (k) + D̃uτ (k)
, (3.8)

where

yτ (k) := y(kΠ+ τ) ∈ Rm (3.9)

uτ (k) :=


u(kΠ+ τ)

u(kΠ+ τ + 1)
...

u(kΠ+ τ +Π− 1)

 ∈ RpΠ (3.10)

Ã = AΠ ∈ Rn×n (3.11)

B̃ = [ AΠ−1B AΠ−2B · · · B ] ∈ Rn×pΠ (3.12)

C̃ = C ∈ Rm×n (3.13)

D̃ = [ D 0 · · · 0 ] ∈ Rm×pΠ. (3.14)

The lifted state observer is
x̂τ (k + 1) = Ãx̂τ (k) + B̃uτ (k) + L̃{ητ (k)− η̂τ (k)}
ŷτ (k) = C̃x̂τ (k) + D̃uτ (k)
eτ (k) := xτ (k)− x̂τ (k) ∈ Rn

, (3.15)
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where

ητ (k) :=


yτ (k)
yτ+1(k)

...
yτ+Π−1(k)

 ∈ RmΠ (3.16)

L̃ = [ AΠ−1L AΠ−2L · · · L ] ∈ Rn×mΠ. (3.17)

The lifted PASF is  x̃τp(k) =
∑l−1

i=0 [pix̃τp(k − 1− i) + qix̂τ (k − i)]
x̃τa(k) = x̂τ (k)− x̃τp(k)
ϵτ (k) := x̂τp(k)− x̃τp(k) ∈ Rn

, (3.18)

and the lifted separation error ϵτ (k) is expressed as

ξτ (k) :=


ϵτ (k − l + 1)

...
ϵτ (k − 1)
ϵτ (k)

 ∈ Rnl (3.19)

Ξτ (k) :=


ξτ (k)
ξτ+1(k)

...
ξτ+Π−1(k)

 ∈ RnlΠ (3.20)

Assumption 1 is set to prove Theorem 1.

Assumption 1. The PASF ideally separates the estimated state x̂(t) into the separated periodic state

x̂p(t) and separated aperiodic state x̂a(t) as{
x̂p(t) =

∑l−1
i=0 [pix̂p(t−Π− iΠ) + qix̂(t− iΠ)]

x̂a(t) = x̂(t)− x̂p(t)
, (3.21)

if the initial lifted separation error ϵ(0) is zero.

Separation Principle

The separation principle for the periodic/aperiodic state feedback control is established.

Theorem 1. The pole placement of the lifted periodic/aperiodic state feedback control system is equal

to the independent pole placements of the closed-loop dynamics: (A−BFp)
Π for the lifted periodic state

xτp(k), (A−BFa)
Π for the lifted aperiodic state xτa(k), (A−LC)Π for the lifted periodic estimation
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error eτp(k) and lifted aperiodic estimation error eτa(k), and P for the lifted periodic separation error

Ξτp(k) and lifted aperiodic separation error Ξτa(k).

Proof. First, closed-loop dynamics of the PASF are considered with the lifted separation error ϵτ (k) in

(3.18). According to the separation of the lifted PASF in (3.18) and the ideal separation in (3.21) without

the lifted separation error, the dynamics of the lifted separation error are calculated as follows

ϵτ (k) = x̂τp(k)− x̃τp(k)

=
l−1∑
i=0

[pix̂τp(k − 1− i) + qix̂τ (k − i)]−
l−1∑
i=0

[pix̃τp(k − 1− i) + qix̂τ (k − i)]

=
l−1∑
i=0

piϵτ (k − 1− i). (3.22)

(3.22) is rewritten as

ξτ (k + 1) = P̃ ξτ (k), (3.23)

where

P̃ =


0 I 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 I 0
0 · · · 0 0 I

pl−1I pl−2I · · · p1I p0I

 ∈ Rnl×nl. (3.24)

Moreover, (3.23) is transformed into

Ξτ (k + 1) = PΞτ (k), (3.25)

where

P =


P̃ 0 · · · 0

0
. . . . . .

...
...

. . . P̃ 0

0 · · · 0 P̃

 ∈ RnlΠ×nlΠ. (3.26)

(3.25) is transformed by the discrete-time Fourier transform and definition in (2.8) into

F [Ξτ (k + 1)] =

{
F [Ξτp(k + 1)], if ω ≤ ρ
F [Ξτa(k + 1)], if ρ < ω

=

{
F [PΞτp(k)], if ω ≤ ρ
F [PΞτa(k)], if ρ < ω

. (3.27)
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The inverse discrete-time Fourier transform of (3.27) derives{
Ξτp(k + 1) = PΞτp(k)
Ξτa(k + 1) = PΞτa(k)

. (3.28)

Next, closed-loop dynamics of the lifted estimation error eτ (k) of the lifted state observer in (3.15)

are considered. Dynamics of the estimation error e(t) are calculated using (3.1) and (3.3) as follows

e(t+ 1) = x(t+ 1)− x̂(t+ 1)

= Ax(t) +Bu(t)−Ax̂(t)−Bu(t)−L{y(t)− ŷ(t)}

= Ae(t)−L{y(t)− ŷ(t)}

= (A−LC)e(t). (3.29)

Then, dynamics of the lifted estimation error eτ (k) are

eτ+1(k) = (A−LC)eτ (k), (3.30)

and

eτ+i(k) = (A−LC)ieτ (k). (3.31)

i satisfies

0 ≤ i ≤ Π. (3.32)

eτ+i(k) is transformed by the discrete-time Fourier transform and definition in (2.8) into

F [eτ+i(k)] =

{
F [e(τ+i)p(k)], if ω ≤ ρ

F [e(τ+i)a(k)], if ρ < ω
=

{
F [(A−LC)ieτp(k)], if ω ≤ ρ
F [(A−LC)ieτa(k)], if ρ < ω

. (3.33)

The inverse discrete-time Fourier transform of (3.33) derives the dynamics of the lifted periodic estima-

tion error e(τ+i)p(k) and lifted aperiodic estimation error e(τ+i)a(k) as{
e(τ+i)p(k) = (A−LC)ieτp(k)

e(τ+i)a(k) = (A−LC)ieτa(k)
. (3.34)
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In addition, the lifted estimation error eτ (k + 1) can be calculated using (3.8) and (3.15) as follows

eτ (k + 1) = xτ (k + 1)− x̂τ (k + 1)

= Ãxτ (k) + B̃uτ (k)− Ãx̂τ (k)− B̃uτ (k)− L̃{ητ (k)− η̂τ (k)}

= Ãeτ (k)− L̃{ητ (k)− η̂τ (k)}

= AΠeτ (k)−
Π−1∑
i=0

AΠ−1−iLCeτ+i(k)

= AΠeτ (k)−
Π−1∑
i=0

AΠ−1−iLC(A−LC)ieτ (k)

= (A−LC)Πeτ (k). (3.35)

The discrete-time Fourier transform and definitions in (2.8) and the inverse discrete-time Fourier trans-

form lead to

F [eτ (k + 1)] =

{
F [eτp(k + 1)], if ω ≤ ρ
F [eτa(k + 1)], if ρ < ω

=

{
(A−LC)ΠF [eτp(k)], if ω ≤ ρ
(A−LC)ΠF [eτa(k)], if ρ < ω

, (3.36)

and {
eτp(k + 1) = (A−LC)Πeτp(k)
eτa(k + 1) = (A−LC)Πeτa(k)

. (3.37)

Finally, the closed-loop dynamics of the periodic and aperiodic states are considered. From the defi-

nitions of the errors:

ϵ(t) = x̂p(t)− x̃p(t) (3.38)

e(t) = x(t)− x̂(t), (3.39)

the separated periodic and aperiodic states are

x̃p(t) = xp(t)− ep(t)− ϵ(t) (3.40)

x̃a(t) = xa(t)− ea(t) + ϵ(t). (3.41)

The control input in (3.5) with (3.6), (3.7), (3.40), and (3.41) expresses the state x(t + 1) of the system

in (3.1) as

x(t+ 1) =(A−BFp)xp(t) + (A−BFa)xa(t)

+BFp{ep(t) + ϵ(t)}+BFa{ea(t)− ϵ(t)}, (3.42)
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and the lifted state xτ+1(k) becomes

xτ+1(k) =(A−BFp)xτp(k) + (A−BFa)xτa(k)

+BFp{eτp(t) + ϵτ (t)}+BFa{eτa(t)− ϵτ (t)}. (3.43)

(3.43) is transformed by the discrete-time Fourier transform and definitions in (2.8) as

F [x(τ+1)(k + 1)] =

{
F [x(τ+1)p(k + 1)], if ω ≤ ρ

F [x(τ+1)a(k + 1)], if ρ < ω

=

{
(A−BFp)F [xτp(k)] +BFpF [eτp(t)] +B(Fp − Fa)F [ϵτp(t)], if ω ≤ ρ
(A−BFa)F [xτa(k)] +BFaF [eτa(t)] +B(Fp − Fa)F [ϵτa(t)], if ρ < ω

, (3.44)

and inverse discrete-time Fourier transform provides{
x(τ+1)p(k + 1) = (A−BFp)xτp(k) +BFpeτp(t) +B(Fp − Fa)ϵτp(t)

x(τ+1)a(k + 1) = (A−BFa)xτa(k) +BFaeτa(t) +B(Fp − Fa)ϵτa(t)
. (3.45)

x(τ+i)p(k + 1) and x(τ+i)a(k + 1) can be calculated using x(τ+1)p(k + 1) and x(τ+1)a(k + 1) as

x(τ+i)p(k) = (A−BFp)
ixτp(k) +

i−1∑
j=0

(A−BFp)
i−1−jBFp(A−LC)jeτp(k)

+
i−1∑
j=0

(A−BFp)
i−1−jB(Fp − Fa)ϵ(τ+j)p(k) (3.46)

x(τ+i)a(k) = (A−BFa)
ixτa(k) +

i−1∑
j=0

(A−BFa)
i−1−jBFa(A−LC)jeτa(k)

+

i−1∑
j=0

(A−BFa)
i−1−jB(Fp − Fa)ϵ(τ+j)a(k). (3.47)

They can be simplified as{
x(τ+i)p(k) = (A−BFp)

ixτp(k) +MipBiF ipN ieτp(k) +MipBi(F ip −F ia)RiΞτp(k)

x(τ+i)a(k) = (A−BFa)
ixτa(k) +MiaBiF iaN ieτa(k) +MiaBi(F ip −F ia)RiΞτa(k)

,

(3.48)

where

Bi =


B 0 · · · 0

0
. . . . . .

...
...

. . . B 0
0 · · · 0 B

 ∈ Rni×pi (3.49)

– 44 –



CHAPTER 3 PERIODIC/APERIODIC STATE CONTROL

F ip =


Fp 0 · · · 0

0
. . . . . .

...
...

. . . Fp 0
0 · · · 0 Fp

 ∈ Rpi×ni (3.50)

F ia =


Fa 0 · · · 0

0
. . . . . .

...
...

. . . Fa 0
0 · · · 0 Fa

 ∈ Rpi×ni (3.51)

N i =


I

(A−LC)
...

(A−LC)i−1

 ∈ Rni×n (3.52)

Mip =
[
(A−BFp)

i−1 · · · (A−BFp) I
]
∈ Rn×ni (3.53)

Mia =
[
(A−BFa)

i−1 · · · (A−BFa) I
]
∈ Rn×ni (3.54)

R =
[
0 · · · 0 I

]
∈ Rn×nl (3.55)

Ri =


R 0 · · · 0 0 · · · 0

0 R
. . .

... 0
. . .

...
...

. . . . . . 0
...

. . . 0
0 · · · 0 R 0 · · · 0

 ∈ Rni×nlΠ, (3.56)

B0 = F0p = F0a = N 0 = M0p = M0a = R0 = 0 (3.57)

Rξτ (k) = ϵτ (k) (3.58)

RiΞτ (k) =


ϵτ (k)
ϵτ+1(k)

...
ϵτ+i−1(k)

 . (3.59)

From the lifted system in (3.8) and the control input in (3.5) with (3.6), (3.7), (3.10), (3.40), and (3.41),

xτ (k + 1) can be calculated as follows

xτ (k + 1) =Ãxτ (k) + B̃[uτp(k) + uτa(k)]

=Ãxτ (k)− B̃FΠp


x̃τp(k)

x̃(τ+1)p(k)
...

x̃(τ+Π−1)p(k)

− B̃FΠa


x̃τa(k)

x̃(τ+1)a(k)
...

x̃(τ+Π−1)a(k)
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=Ãxτp(k) + Ãxτa(k)−
Π−1∑
i=0

AΠ−1−iB[Fpx̃(τ+i)p(k) + Fax̃(τ+i)a(k)]

=AΠxτp(k)−
Π−1∑
i=0

AΠ−1−iBFpx(τ+i)p(k)

+AΠxτa(k)−
Π−1∑
i=0

AΠ−1−iBFax(τ+i)a(k)

+
Π−1∑
i=0

AΠ−1−iB[Fpe(τ+i)p(k) + Fae(τ+i)a(k)]

+

Π−1∑
i=0

AΠ−1−iB(Fp − Fa)ϵ(τ+i)(k). (3.60)

Using (3.20), (3.34), and (3.48), (3.60) is expressed as

xτ (k + 1) =AΠxτp(k)−
Π−1∑
i=0

AΠ−1−iBFp(A−BFp)
ixτp(k)

+AΠxτa(k)−
Π−1∑
i=0

AΠ−1−iBFa(A−BFa)
ixτa(k)

+

[
B̃FΠpNΠ −

Π−1∑
i=1

AΠ−1−iBFpMipBiF ipN i

]
eτp(k)

+

[
B̃FΠaNΠ −

Π−1∑
i=1

AΠ−1−iBFaMiaBiF iaN i

]
eτa(k)

+ B̃(FΠp −FΠa)RΠΞτ (k)

−
Π−1∑
i=1

AΠ−1−iBFpMipBi(F ip −F ia)RiΞτp(k)

−
Π−1∑
i=1

AΠ−1−iBFaMiaBi(F ip −F ia)RiΞτa(k). (3.61)

Moreover, the equation is simplified into

xτ (k + 1) =(A−BFp)
Πxτp(k) + (A−BFa)

Πxτa(k)

+Φpeτp(k) +Φaeτa(k) +ΨpΞτp(k) +ΨaΞτa(k), (3.62)
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where

Φp = B̃FΠp(NΠ − Sp) (3.63)

Φa = B̃FΠa(NΠ − Sa) (3.64)

Ψp = B̃(FΠp −FΠa)RΠ − B̃FΠpT p (3.65)

Ψa = B̃(FΠp −FΠa)RΠ − B̃FΠaT a (3.66)

Sp =


0

M1pB1F1pN 1
...

M(Π−1)pBΠ−1F (Π−1)pN (Π−1)

 ∈ RnΠ×n (3.67)

Sa =


0

M1aB1F1aN 1
...

M(Π−1)aB(Π−1)F (Π−1)aN (Π−1)

 ∈ RnΠ×n (3.68)

T p =


0

M1pB1{F1p −F1a}R1
...

M(Π−1)pBΠ−1{F (Π−1)p −F (Π−1)a}R(Π−1)

 ∈ RnΠ×nΠ (3.69)

T a =


0

M1aB1{F1p −F1a}R1
...

M(Π−1)aB(Π−1){F (Π−1)p −F (Π−1)a}R(Π−1)

 ∈ RnΠ×nΠ. (3.70)

Finally, (3.62) is transformed using the discrete-time Fourier transform and definition in (2.8) into

F [xτ (k + 1)] =

{
F [xτp(k + 1)], if ω ≤ ρ
F [xτa(k + 1)], if ρ < ω

=

{
(A−BFp)

Πxτp(k) +Φpeτp(k) +ΨpΞτp(k), if ω ≤ ρ
(A−BFa)

Πxτa(k) +Φaeτa(k) +ΨaΞτa(k), if ρ < ω
, (3.71)

and {
xτp(k + 1) = (A−BFp)

Πxτp(k) +Φpeτp(k) +ΨpΞτp(k)
xτa(k + 1) = (A−BFa)

Πxτa(k) +Φaeτa(k) +ΨaΞτa(k)
. (3.72)

From (3.28), (3.37), and (3.72), the whole closed-loop dynamics of the lifted periodic/aperiodic state
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feedback control system are

xτp(k + 1)
xτa(k + 1)
eτp(k + 1)
eτa(k + 1)
Ξτp(k + 1)
Ξτa(k + 1)

 =



(A−BFp)
Π 0 Φp 0 Ψp 0

0 (A−BFa)
Π 0 Φa 0 Ψa

0 0 (A−LC)Π 0 0 0
0 0 0 (A−LC)Π 0 0
0 0 0 0 P 0
0 0 0 0 0 P





xτp(k)
xτa(k)
eτp(k)
eτa(k)
Ξτp(k)
Ξτa(k)

 . (3.73)

The eigenvalues of (3.73) are those of (A − BFp)
Π, (A − BFa)

Π, (A − LC)Π, and P because it

is an upper triangular matrix. Therefore, poles of the lifted periodic/aperiodic state feedback control

system can be designed by placing the poles of (A − BFp)
Π, (A − BFa)

Π, (A − LC)Π, and P .

Furthermore, the pole placements of (A − BFp)
Π for the lifted periodic state xτp(k), (A − BFa)

Π

for the lifted aperiodic state xτa(k), (A − LC)Π for the lifted periodic estimation error eτp(k) and

lifted aperiodic estimation error eτa(k), and P for the lifted periodic separation error Ξτp(k) and lifted

aperiodic separation error Ξτa(k) are independent.

Proposition 1. The closed-loop dynamics in (3.73) are stable when the dynamics A−BFp, A−BFa,

A−LC, and P are stable.

Proof. The eigenvalues of (3.73) are

{λΠ
p1, . . . , λ

Π
pn}, {λΠ

a1, . . . , λ
Π
an}, {λΠ

o1, . . . , λ
Π
on}, {λf1, . . . , λfnlΠ}, (3.74)

when eigenvalues of A−BFp, A−BFa, A−LC, and P are

{λp1, . . . , λpn}, {λa1, . . . , λan}, {λo1, . . . , λon}, {λf1, . . . , λfnlΠ}. (3.75)

Hence, λΠ
pi, λ

Π
ai, λ

Π
oi, and λfi satisfy

|λΠ
pi| ≤ 1, |λΠ

ai| ≤ 1, |λΠ
oi| ≤ 1, |λfi| ≤ 1, (3.76)
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if and only if

|λpi| ≤ 1, |λai| ≤ 1, |λoi| ≤ 1, |λfi| ≤ 1. (3.77)

Therefore, the eigenvalues of (3.73) are stable if and only if the eigenvalues of the dynamics: A−BFp,

A −BFa, A − LC, and P are stable, because the stability condition for a linear discrete-time system

is |λ| ≤ 1 for every poles.

According to Theorem 1 and Proposition 1, stability of the periodic/aperiodic state feedback control

can be independently designed by A − BFp, A − BFa, A − LC, and P , in which the closed-loop

dynamics: A − BFp, A − BFa, and A − LC have the same structure as the closed-loop dynamics:

A−BF and A−LC of the classical state feedback control system. P determines stability of the PASF.

3.3 Periodic/Aperiodic Motion Control

3.3.1 Acceleration Control System

An ACS based on a DOB is employed to address a tracking issue and disturbance compensation issue

separately. The periodic/aperiodic motion control and the acceleration control handle the tracking issue

and disturbance compensation issue, respectively.

For ACS design, consider the motor system:

v(z−1) =
1

D(z−1)

[
Kt

M
I(z−1)− f(z−1)

]
(3.78)

f(z−1) =
Ze(z

−1)

D(z−1)
aref(z−1) + f exo(z−1) (3.79)

vout(z−1) = v(z−1)− nv(z
−1) (3.80)

fout(z−1) = f(z−1)− nf(z
−1), (3.81)

where

D(z−1) =
2

Ts

1− z−1

1 + z−1
(3.82)

Ze(z
−1) = D +

K

D(z−1)
. (3.83)

v(z−1), vout(z−1), f(z−1), fout(z−1), f exo(z−1), Kt, M , I(z−1), aref(z−1), nv(z
−1), nf(z

−1), D(z−1),

Ze(z
−1), D, and K denote the velocity, output velocity, force, output force, exogenous force, thrust
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ACS

D +
K

D
v

f exo

f1

D
a

Ktn

1

M
Kt

I

Q

aref Mn

Ktn
z−1

vout nv

Icmp

1

Ktn

MnD

Fig. 3-2: Block diagram of the ACS.

constant, mass, current, acceleration reference, velocity noise, force noise, discrete differentiator, envi-

ronmental function, viscosity, and stiffness, respectively. A DOB:

Icmp = Q(z−1)[KtnI(z
−1)−MnD(z−1)vout(z−1)] (3.84)

Q(z−1) =
gdobTs + gdobTsz

−1

(gdobTs + 2) + (gdobTs − 2)z−1
. (3.85)

is used to eliminate f(z−1) from v(z−1) in (3.78). Q(z−1), Icmp, n, and gdob denote the Q-filter, com-

pensation current, nominal variable, and cutoff frequency, respectively. The ACS uses the compensation

current as

I = z−1

[
Mn

Ktn
aref + Icmp

]
. (3.86)

A block diagram of the ACS is shown in Fig. 3-2. The ACS, which compensates for disturbances such as

external force and modeling errors, can be approximately expressed by assuming complete disturbance

elimination as

v(z−1) =
1

D(z−1)
aref(z−1) (3.87)

f(z−1) =
Ze(z

−1)

D(z−1)
aref(z−1) + f exo(z−1), (3.88)

which is the approximate ACS used to construct and design the periodic/aperiodic motion control.
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Table 3.1: Six control objectives for the six periodic/aperiodic motion controls.
Control Periodic motion Aperiodic motion
PVAF vcmd

p − v̂p = 0 f cmd
a − f̂a = 0

PFAV f cmd
p − f̂p = 0 vcmd

a − v̂a = 0

PVAI vcmd
p − v̂p = 0 Mvv̇

cmd
a +Dvv

cmd
a +Kv

∫ tf
t0

vcmd
a dt = f̂a

PIAV Mvv̇
cmd
p +Dvv

cmd
p +Kv

∫ tf
t0

vcmd
p dt = f̂p vcmd

a − v̂a = 0

PFAI f cmd
p − f̂p = 0 Mvv̇

cmd
a +Dvv

cmd
a +Kv

∫ tf
t0

vcmd
a dt = f̂a

PIAF Mvv̇
cmd
p +Dvv

cmd
p +Kv

∫ tf
t0

vcmd
p dt = f̂p f cmd

a − f̂a = 0

3.3.2 Six Periodic/Aperiodic Motion Controls

Six Control Objectives and Construction

This study defines periodic/aperiodic velocity and periodic/aperiodic force as

v = vp + va (3.89)

f = fp + fa, (3.90)

where vp, va, fp, and fa denote the periodic velocity, aperiodic velocity, periodic force, and aperiodic

force, respectively. Six types of periodic/aperiodic motion control are constructed by designing position,

force, or impedance control for the periodic velocity, aperiodic velocity, periodic force, or aperiodic force

as follows.

• Periodic velocity and aperiodic force (PVAF) control

• Periodic force and aperiodic velocity (PFAV) control

• Periodic velocity and aperiodic impedance (PVAI) control

• Periodic impedance and aperiodic velocity (PIAV) control

• Periodic force and aperiodic impedance (PFAI) control

• Periodic impedance and aperiodic force (PIAF) control

Six motion control objectives for the six periodic/aperiodic motion controls are summarized in Table 3.1,

where cmd, Mv, Dv, and Kv denote a command variable, virtual mass, virtual viscosity, and virtual

stiffness, respectively. Accordingly, this study designs the six periodic/aperiodic motion systems, as
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z−1

D
v

vout

fout

PASF

PASF

aref
D +

K

D

KP +
KI

D

KF

nv f exo

f

nf

ACSf cmd
pf cmd

a

vcmd
p vcmd

a

v̂outp v̂outa

f̂out
a f̂out

p

(a) PVAF/PFAV controls

vout

foutPASF

aref
D +

K

D
KP +

KI

D

nv f exo

f

nf

ACS

vcmd
p vcmd

a

f̂out
a f̂out

p

vcmd
pvcmd

a D
MvD2 +DvD +Kv

z−1

D
v

(b) PVAI/PIAV controls

z−1

D

vout

fout

PASF

aref v
D +

K

D

nv f exo

f

nf

ACS

1

Mv

Dv +
Kv

D

vcmd
pvcmd

a

f cmd
p f cmd

a

v̂outpv̂outa

(c) PFAI/PIAF controls

Fig. 3-3: Block diagrams of the six periodic/aperiodic motion control systems.

shown in the block diagrams in Fig. 3-3. The velocity controls use the proportional and integral velocity

controller:

Cv = KI/s+KP, (3.91)

where KI and KP denote the integral gain and proportional gain, respectively. The force controls use the

proportional force controller KF, and impedance controller realizes virtual mass Mv, virtual viscosity
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Dv, and virtual stiffness Kv. Moreover, the first-order PASF in (2.21) and (2.22) separates the output

velocity and force into the estimated periodic velocity v̂outp , estimated aperiodic velocity v̂outa , estimated

periodic force f̂out
p , and estimated aperiodic force f̂out

a as{
v̂outp (z−1) = F (z−1)vout(z−1)

v̂outa (z−1) = [1− F (z−1)]vout(z−1)
(3.92){

f̂out
p (z−1) = F (z−1)fout(z−1)

f̂out
a (z−1) = [1− F (z−1)]fout(z−1)

. (3.93)

The input-output periodic/aperiodic transfer functions of the six periodic/aperiodic motion control sys-

tems are calculated as follows

PVAF control:

v̂p =
1

φpvaf
F [Cv(v

cmd
p + n̂vp) +Kf(f

cmd
a − f̂ exo

a + n̂fa)] (3.94)

f̂a =
1

φpvaf
(1− F )Ze[Cv(v

cmd
p + n̂vp) +Kf(f

cmd
a − f̂ exo

a + n̂fa)] (3.95)

PFAV control:

f̂p =
1

φpfav
FZe[Kf(f

cmd
p − f̂ exo

p + n̂fp) + Cv(v
cmd
a + n̂va)] (3.96)

v̂a =
1

φpfav
(1− F )[Kf(f

cmd
p − f̂ exo

p + n̂fp) + Cv(v
cmd
a + n̂va)] (3.97)

PVAI control:

v̂p =
1

φpvai
FCv[Hv(v

cmd
p + vcmd

a + nv)− f̂ exo
a + n̂fa] (3.98)

v̂a =
1

φpvai
(1− F )Cv[Hv(v

cmd
p + vcmd

a + nv)− f̂ exo
a + n̂fa] (3.99)

PIAV control:

v̂p =
1

φpiav
FCv[Hv(v

cmd
p + vcmd

a + nv)− f̂ exo
p + n̂fp] (3.100)

v̂a =
1

φpiav
(1− F )Cv[Hv(v

cmd
p + vcmd

a + nv)− f̂ exo
p + n̂fp] (3.101)

PFAI control:

f̂p =
1

φpfai
FZe[f

cmd
p − f exo + nf + Zv(v

cmd
a + n̂va)] (3.102)

v̂a =
1

φpfai
(1− F )[f cmd

p − f exo + nf + Zv(v
cmd
a + n̂va)] (3.103)
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PIAF control:

v̂p =
1

φpiaf
F [Zv(v

cmd
p + n̂vp) + f cmd

a − f exo + nf ] (3.104)

f̂a =
1

φpiaf
(1− F )Ze[Zv(v

cmd
p + n̂vp) + f cmd

a − f exo + nf ], (3.105)

where

Hv = MvD + Zv (3.106)

Zv = Dv +
Kv

D
. (3.107)

The characteristic equations are as follows

PVAF control:

φpvaf(z) = Dz +KfZe + (Cv −KfZe)F (3.108)

PFAV control:

φpfav(z) = Dz + Cv + (KfZe − Cv)F (3.109)

PVAI control:

φpvai(z) = (Dz + Cv)Hv + CvZe(1− F ) (3.110)

PIAV control:

φpiav(z) = (Dz + Cv)Hv + CvZeF (3.111)

PFAI control:

φpfai(z) = MvDz + Ze + Zv(1− F ) (3.112)

PIAF control:

φpiaf(z) = MvDz + Ze + ZvF. (3.113)

By using Assumption 1 for the periodic velocity vp, aperiodic velocity va, periodic force fp, and aperi-

odic force fa, the input-output transfer functions in (3.94) – (3.105) become as follows

PVAF control:

v̂p =
Cv

Dz + Cv
(vcmd

p + n̂vp) (3.114)

f̂a =
KfZe

Dz +KfZe
(f cmd

a − f̂ exo
a + n̂fa) (3.115)

– 54 –



CHAPTER 3 PERIODIC/APERIODIC STATE CONTROL

PFAV control:

f̂p =
KfZe

Dz +KfZe
(f cmd

p − f̂ exo
p + n̂fp) (3.116)

v̂a =
Cv

Dz + Cv
(vcmd

a + n̂va) (3.117)

PVAI control:

v̂p =
Cv

Dz + Cv
(vcmd

p + n̂vp) (3.118)

Cv

Dz +RCv
(vcmd

a + n̂va)− v̂a =
Cv

Dz +RCv

1

Hv
(f̂ exo

a − n̂fa) (3.119)

PIAV control:

Cv

Dz +RCv
(vcmd

p + n̂vp)− v̂p =
Cv

Dz +RCv

1

Hv
(f̂ exo

p − n̂fp) (3.120)

v̂a =
Cv

Dz + Cv
(vcmd

a + n̂va) (3.121)

PFAI control:

f̂p =
Ze

MvDz + Ze
(f cmd

p − f̂ exo
p + n̂fp) (3.122)

Zv(v
cmd
a + n̂va)−RHvv̂a = (f̂ exo

a − n̂fa) (3.123)

PIAF control:

Zv(v
cmd
p + n̂vp)−RHvv̂p = (f̂ exo

p − n̂fp) (3.124)

f̂a =
Ze

MvDz + Ze
(f cmd

a − f̂ exo
a + n̂fa), (3.125)

where

R = 1 +
Ze

Hv
. (3.126)

The approximate input-output transfer functions based on Assumption 1 in (3.114) – (3.125) are the

same as transfer functions of the classical velocity, force, and impedance controls. Hence, the gain and

impedance parameters: KI, KP, KF, Mv, Dv, and Kv of the six periodic/aperiodic motion controls can

be designed in a similar manner to the classical velocity, force, and impedance controls.
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Robust Stability

Robust stability of the six periodic/aperiodic motion control systems, which guarantees stability under

various uncertainties, is evaluated through their complementary sensitivity functions. A modeling error

∆ of the motor system in (3.78) and (3.79) is defined by

v(z−1) = (1 + ∆)
Ktn

MnD(z−1) + Ze
I. (3.127)

The modeling error ∆ consists of the weighting function W (s) and variation δ(s) as

∆(z−1) = W (z−1)δ(z−1), (3.128)

where the variation satisfies

∥δ(z−1)∥∞ ≤ 1. (3.129)

If the periodic/aperiodic motion control system and the modeling error are nominally stable, a robust

stability condition is

∥W (s)T (s)∥∞ < 1 (3.130)

according to the small-gain theorem. Nominal stability of the six periodic/aperiodic motion control sys-

tems can be designed and evaluated by using the characteristic equations in (3.108) – (3.113). Comple-

mentary sensitivity functions T (s) of the periodic/aperiodic motion control systems, which are indexes

to evaluate the robust stability, are as follows

PVAF control:

Tpvaf(z) = − QDz +KfZe + (Cv −KfZe)F

Dz +M−1
n (1−Q)Ze +KfZe + (Cv −KfZe)F

(3.131)

PFAV control:

Tpfav(z) = − QDz + Cv + (KfZe − Cv)F

Dz +M−1
n (1−Q)Ze + Cv + (KfZe − Cv)F

(3.132)

PVAI control:

Tpvai(z) = − QHvDz + CvHv + CvZe(1− F )

[Dz +M−1
n (1−Q)Ze + Cv]Hv + CvZe(1− F )

(3.133)
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PIAV control:

Tpiav(z) = − QHvDz + CvHv + CvZeF

[Dz +M−1
n (1−Q)Ze + Cv]Hv + CvZeF

(3.134)

PFAI control:

Tpfai(z) = − QMvDz + Ze + Zv(1− F )

Mv[Dz +M−1
n (1−Q)Ze] + Ze + Zv(1− F )

(3.135)

PIAF control:

Tpiaf(z) = − QMvDz + Ze + ZvF

Mv[Dz +M−1
n (1−Q)Ze] + Ze + ZvF

. (3.136)

To satisfy the robust stability condition in (3.130), the cutoff frequency gdob of the DOB and control

parameters for the periodic/aperiodic motion controls: KI, KP, KF, Mv, Dv, and Kv can adjust the

complementary sensitivity functions. Figs. 3-4 – 3-9 show Bode diagrams of the complementary sensi-

tivity functions with variations in the environmental parameters: the viscosity D and stiffness K. The

Bode diagrams illustrated that the periodic/aperiodic motion control systems are robustly stable against

usual modeling errors, which occur for high frequencies.

3.3.3 Experiments

Setup

Six experiments were conducted for the proposed six periodic/aperiodic motion controls. A six axes

manipulator: MOTOMAN YR-UPJ3-B00 was used, as shown in Fig. 3-10. Manipulator angle responses

were measured by position encoders and torque responses were estimated by reaction torque observers

(RTOBs). The controlled joints, initial posture, and parameters are summarized in Table 3.2. The sepa-

ration frequency ρ of the first-order PASF was set to 1.0 if t < 10 s for fast convergence, and 0.01 oth-

erwise for proper separation. The controllers were implemented using the real-time application interface

for Linux, where the source code for the controllers was written in C++. Each control was implemented

with the ACS in the joint space. The experimental control commands were set as follows

PVAF control:

vcmd
p /s = 50[1− cos(πt)] mm (3.137)

f cmd
a =

{
−100 N if 36 s < t ≤ 38 s
0 N otherwise

(3.138)
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Fig. 3-4: Bode diagrams of the complementary sensitivity functions of the PVAF control system in
(3.131). The other parameters are Mn = 0.3, Ktn = 0.24, KI = 6400, KP = 240, KF = 5, Mv = 0.1,
Dv = 50, Kv = 800, ρ = 1 rad/s, and Π = 2π s.
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Fig. 3-5: Bode diagrams of the complementary sensitivity functions of the PFAV control system in
(3.132). The other parameters are Mn = 0.3, Ktn = 0.24, KI = 6400, KP = 240, KF = 5, Mv = 0.1,
Dv = 50, Kv = 800, ρ = 1 rad/s, and Π = 2π s.
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Fig. 3-6: Bode diagrams of the complementary sensitivity functions of the PVAI control system in
(3.133). The other parameters are Mn = 0.3, Ktn = 0.24, KI = 6400, KP = 240, KF = 5, Mv = 0.1,
Dv = 50, Kv = 800, ρ = 1 rad/s, and Π = 2π s.
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Fig. 3-7: Bode diagrams of the complementary sensitivity functions of the PIAV control system in
(3.134). The other parameters are Mn = 0.3, Ktn = 0.24, KI = 6400, KP = 240, KF = 5, Mv = 0.1,
Dv = 50, Kv = 800, ρ = 1 rad/s, and Π = 2π s.
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Fig. 3-8: Bode diagrams of the complementary sensitivity functions of the PFAI control system in
(3.135). The other parameters are Mn = 0.3, Ktn = 0.24, KI = 6400, KP = 240, KF = 5, Mv = 0.1,
Dv = 50, Kv = 800, ρ = 1 rad/s, and Π = 2π s.
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Fig. 3-9: Bode diagrams of the complementary sensitivity functions of the PIAF control system in
(3.136). The other parameters are Mn = 0.3, Ktn = 0.24, KI = 6400, KP = 240, KF = 5, Mv = 0.1,
Dv = 50, Kv = 800, ρ = 1 rad/s, and Π = 2π s.
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PFAV control:

f cmd
p = 50[1− cos(πt)] N (3.139)

vcmd
a /s =

{
50 sin{0.5π(t− 36)} mm if 36 s < t ≤ 38 s

0 mm otherwise
(3.140)

PVAI control:

vcmd
px /s = 50[cos(πt)− 1] mm (3.141)

vcmd
py /s = 50 sin(πt) mm (3.142)

PIAV control:

vcmd
a /s = 0 mm (3.143)

PFAI control:

f cmd
p = 50[1− cos(πt)] N (3.144)

PIAF control:

f cmd
a = 0 N. (3.145)

In the PVAI and PFAI control experiments, an operator contacted the manipulator at approximately 36

s to verify their impedance characteristics. The operator moved the manipulator at all times during

the experiments for the PIAV and PIAF controls. During the experiments on the six periodic/aperiodic

motion controls, the position, force, or impedance control was used if t < 10 s for the convergence of

the PASF. The PVAF and PVAI controls used the position control, PFAV and PFAI controls used the

force control, and PIAV and PIAF controls used the impedance control. The periodic/aperiodic motion

controls were applied otherwise.

Results

In the graphs of the experimental results, the position or force command signals for the impedance

controls were calculated from the force (torque) or position (angle) responses and virtual impedance

parameters in Table 3.2.
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(a) Force control posture. (b) Position control posture. (c) Impedance control posture.

Fig. 3-10: Initial postures of the experimental manipulator.

Table 3.2: Parameters for the periodic/aperiodic motion control experiments.
Description Symbol PVAF PFAV PVAI PIAV PFAI PIAF
Controlled joint 1st 1st 1st, 2nd, 3rd 2nd, 3rd 1st 1st
Initial posture from Fig. 3-10 (a) (a) (b) (c) (a) (a)
Sampling time Ts [ms] 0.1
Length L [m] 0.26, 0.27, 0.09
Gear ratio Gr 192, 120, 80
Torque const. Ktn [Nm/A] 0.59, 0.59, 0.238
Inertia Jn [Kgm2] 1.28 1.28 7.3, 0.86, 0.008 0.86, 0.008 1.28 1.28
Period Π [s] 2
Separation freq. ρ [rad/s] 1.0 if t < 10 s, 0.01 otherwise

Cutoff frequencies [rad/s]
Pseudo derivative for velocity 1000
RTOB for torque estimation 500 500 100, 100, 100 300, 300 500 500
DOB 500 500 100, 100, 100 300, 300 500 500

Control parameters
Integral gain KI 6400 6400 400, 400, 400 400, 400 - -
Differential gain KD 160 240 40, 40, 40 40, 40 - -
Proportional gain KF 5 2 - - 3 3
Virtual inertia Jv [Kgm2] - - 3, 2, 0.1 2, 0.1 0.5 0.5
Virtual viscosity Dv [Nms/rad] - - 100, 50, 0.5 50, 5 10 10
Virtual stiffness Kv [Nm/rad] - - 600, 400, 1 300, 100 1000 1000

• PVAF and PFAV controls

According to Figs. 3-11(b) and 3-12(c), the periodic position tracking and aperiodic force tracking were

realized by the PVAF control, while the aperiodic position and periodic force were not handled by the

PVAF control according to Figs. 3-11(c) and 3-12(b). Conversely, the periodic force and aperiodic

position were controlled by the PFAV control according to Figs. 3-13 and 3-14.
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• PVAI and PIAV controls

Figs. 3-15 – 3-18 show the representative experimental results for the second joint of the manipulator.

The simultaneous realization of the periodic position and aperiodic impedance controls was validated as

Figs. 3-15(b) and (c), and that of the periodic impedance and aperiodic position controls was validated

as Fig. 3-17(b) and (c).

• PFAI and PIAF controls

According to Fig. 3-20(b) and (c), the PFAI control achieved force and impedance controls for periodic

and aperiodic motions. Conversely, the PIAF control achieved periodic impedance control and aperiodic

force control according to Fig. 3-22(b) and (c).

The experiments showed the simultaneous realization of two periodic/aperiodic motion control objec-

tives, and there is a limitation that only one of periodic motion controls and only one of aperiodic motion

controls can be realized.

3.4 Summary

Section 3.2 constructed the periodic/aperiodic state feedback control using the PASF. Then, the sep-

aration principle for control, observation, and separation of the periodic/aperiodic state was proved in

Theorem 1. Furthermore, this section proved Proposition 1, which indicates that stability of the peri-

odic/aperiodic state feedback control can be designed in a similar way to the classical state feedback

control design.

Section 3.3 expanded the periodic/aperiodic state feedback control into the motion control framework.

The ACS using a DOB was constructed to suppress disturbances that impair the periodic/aperiodic mo-

tion control. Then, the six periodic/aperiodic motion controls that assign position, force, and impedance

controls to periodic motion and aperiodic motion were constructed and analyzed in terms of the input-

output transfer functions and robust stability. The experiments validated the practicality of the six peri-

odic/aperiodic motion controls.
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Fig. 3-11: Experimental position results of the PVAF control.
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Fig. 3-12: Experimental force results of the PVAF control.
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(c) Aperiodic position.

Fig. 3-13: Experimental position results of the PFAV control.
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Fig. 3-14: Experimental force results of the PFAV control.
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(b) Periodic angle.

0.0

0.8

-0.4
-0.2
0.2
0.4
0.6

A
ng

le
 [r

ad
]

0 10 20 30 40 50 60
Time [s]

ErrorAperiodic responseCommand

(c) Aperiodic angle.

Fig. 3-15: Experimental angle results of the PVAI control.
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Fig. 3-16: Experimental torque results of the PVAI control.
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(c) Aperiodic position.

Fig. 3-17: Experimental position results of the PIAV control.
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Fig. 3-18: Experimental force results of the PIAV control.
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Fig. 3-19: Experimental position results of the PFAI control.
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Fig. 3-20: Experimental force results of the PFAI control.
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Fig. 3-21: Experimental position results of the PIAF control.
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Fig. 3-22: Experimental force results of the PIAF control.
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Chapter 4

Periodic/Aperiodic Disturbance
Compensation

4.1 Outline

Chapter 4 focuses on periodicity and aperiodicity of a disturbance.

Section 4.2 describes periodic-disturbance compensation. The PDOB, which estimates and compen-

sates for a periodic disturbance, is constructed for improvement in precision of periodically working

automatic systems in Subsection 4.2.1. Subsection 4.2.2 shows comparative experiments that compared

the PDOB with a DOB and RC using a multi-axis manipulator.

Section 4.3 develops the PDOB to estimate and compensate not only for a periodic disturbance but

also for an aperiodic disturbance because the periodic and aperiodic disturbances typically occur simul-

taneously in practical applications. Subsection 4.3.1 mentions the issue of the PDOB concerning an

aperiodic disturbance. To improve the aperiodic-disturbance suppression performance of the PDOB, the

enhanced PDOB is constructed on the basis of the combination design of the PDOB and DOB in Sub-

section 4.3.2. Experiments that compared the enhanced PDOB with the PDOB and DOB are shown in

Subsection 4.3.3.
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Π dp

dp0

Sample t

Fig. 4-1: Conceptual diagram of the periodic disturbance model.

4.2 Periodic-Disturbance Compensation

4.2.1 Periodic-Disturbance Observer

Periodic-Disturbance Model

A periodic disturbance dp(t) is modeled by

dp(t+Π) = dp(t) + dp0(t) (4.1)

dp0(t) =

{
d0(t) t < Π
0 Π ≤ t

, (4.2)

based on the perfect periodic state in (2.2). The periodic-disturbance model is illustrated by Fig. 4-1 and

is Z transformed into

dp(z
−1) =

1

1− z−Π
dp0(z

−1). (4.3)

A PDOB is constructed to compensate for the Z transformed periodic disturbance.

Q-filter

Consider the general DOB shown in Fig. 4-2(a), and the equivalent nominal structure shown in Fig. 4-

2(b) is used to construct the PDOB. r, y, n, P (z−1), P−1
n (z−1), and Qp(z

−1) denote the reference,

output, noise, plant, inverse nominal plant, and Q-filter of the PDOB, respectively. The DOB struc-

ture compensates for the periodic disturbance as [1 − Qp(z
−1)z−1]dp according to Fig. 4-2(b), and the

compensated periodic disturbance is expressed by

[1−Qp(z
−1)z−1]dp =

1−Qp(z
−1)z−1

1− z−Π
dp0(z

−1). (4.4)

In order to set the compensated periodic disturbance in (4.4) to zero when Π ≤ t, a control objective for

the Q-filter design is designed as

1−Qp(z
−1)

1− z−Π
dp0(z

−1) = γdp0(z
−1). (4.5)
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Qp(z
−1)

P (z−1)z−1

P−1
n (z−1)

n

yr u

dp

d̂p

(a) Basic structure.

Qp(z
−1)z−11−Qp(z

−1)z−1

P (z−1)z−1

n

r y

dp

(b) Nominal equivalent structure.

Fig. 4-2: Block diagrams of a DOB.

This is based on

γdp0(t) = 0, if Π ≤ t, (4.6)

which is caused by

dp0(t) = 0, if Π ≤ t (4.7)

because of (4.2). γ is a design parameter that is an integer. In the control objective, z−1 of [1 −

Qp(z
−1)z−1]dp is ignored to make the Q-filter causal. The Q-filter of the PDOB is derived from the
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control objective in (4.5) as follows

[1−Qp(z
−1)]dp0(z

−1) = (1− z−Π)γdp0(z
−1) (4.8)

−Qp(z
−1)dp0(z

−1) = (1− z−Π)γdp0(z
−1)− dp0(z

−1) (4.9)

−Qp(z
−1) = (1− z−Π)γ − 1 (4.10)

Qp(z
−1) = 1− γ(1− z−Π). (4.11)

As shown in Fig. 4-2(b), 1 − Qp(z
−1)z−1 is a sensitivity function, which is a disturbance suppression

characteristic, and Qp(z
−1)z−1 is a complementary sensitivity function, which is sensitivity for noise

and robust stability. Bode diagrams of the sensitivity and complementary sensitivity functions using the

Q-filter in (4.11) are shown in Fig. 4-3. The sensitivity function 1 − Qp(z
−1)z−1 realizes a high-pass

characteristic and an infinite number of band-stop characteristics, which eliminate a constant element,

fundamental wave, and harmonics of a periodic disturbance. However, the complementary sensitivity

function lacks a low-pass characteristic. Consequently, the stability of the Q-filter is not robust against

modeling errors and is sensitive to noise at high frequencies. To improve the complementary sensitivity

function in the high-frequency range, a low-pass filter qp(z−1) is added into the Q-filter in (4.11) as

Qp(z
−1) = qp(z

−1)[1− γ(1− z−Π)]. (4.12)

This study employs the first-order low-pass filter

qp(z
−1) =

gpTs + gpTsz
−1

(gpTs + 2) + (gpTs − 2)z−1
, (4.13)

where gp is the cutoff frequency of the low-pass filter for the PDOB. Bode diagrams of sensitivity and

complementary sensitivity functions using the modified Q-filter in (4.12) are shown in Fig. 4-4. Although

the periodic-disturbance compensation performance deteriorates in the high-frequency range, the gain

of the complementary sensitivity function is attenuated in the high-frequency range. Finally, a block

diagram of the PDOB is shown in Fig. 4-5.

Modified Calculation of Delay

The use of a low-pass filter has a problem that frequencies of the band-stop characteristics are moved

as shown in Fig. 4-6 when the delay Π is calculated by

Π =
2π

Tsω0
. (4.14)

– 82 –



CHAPTER 4 PERIODIC/APERIODIC DISTURBANCE COMPENSATION

10
0

-10
-20
-30
-40
90
45

0
-45
-90

-135
-180

101 102 103

G
ai

n 
[d

B
]

Frequency [rad/s]

P
ha

se
 [d

eg
]
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(b) Complementary sensitivity function Qp(z
−1)z−1.

Fig. 4-3: Bode diagrams of the sensitivity and complementary sensitivity functions of the PDOB without
the low-pass filter qp(z−1) in (4.13). The parameters are ω0 = 100 rad/s, γ = 0.5, gp = 1000 rad/s,
and Ts = 0.01 ms.

To correct the frequencies, Π is calculated as

Π =
2πgpγ − ω0

Tsgpω0γ
. (4.15)

(4.15) can be derived as follows. First, a correct delay Π is defined as

Π =
2π

Tsω0
(1 + σ), (4.16)
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(a) Sensitivity function 1−Qp(z
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(b) Complementary sensitivity function Qp(z
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Fig. 4-4: Bode diagrams of the sensitivity and complementary sensitivity functions of the PDOB with
the low-pass filter qp(z−1) in (4.13). The parameters are ω0 = 100 rad/s, γ = 0.5, gp = 1000 rad/s,
and Ts = 0.01 ms.

where σ is a small variation satisfying |2πσ| < 1 caused by the low-pass filter qp(z−1) in (4.13). The

variation σ decreases as the cutoff frequency gp increases. For the frequency adjustment, an objective

for the sensitivity characteristic at the fundamental frequency ω0 is set as

1−Qp(e
−jω0Ts) = 0, (4.17)
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Fig. 4-5: Block diagram of the PDOB.
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Fig. 4-6: Effect of the delay calculation in (4.15) on the frequency change of the sensitivity function
1 − Qp(z

−1)z−1 around the fundamental frequency, which is caused by the low-pass filter qp(z−1) in
(4.13). The parameters are ω0 = 100 rad/s, γ = 0.5, gp = 1000 rad/s, and Ts = 0.01 ms.

where z−1 is ignored. By substituting the Q-filter in (4.12) for (4.17) and gp
gp+jω0

for qp, an approximate

objective is given as

gpγ(1− e−jω0TsΠ) + jω0

gp + jω0
= 0. (4.18)

Using the approximation of the time delay element

e−jω0TsΠ = e−j2πe−j2πσ = e−j2πσ ≈ 1− j2πσ (4.19)

based on (4.16) and |2πσ| < 1, the objective in (4.18) is further approximated as

j2πgpγσ + jω0

gp + jω0
= 0, (4.20)

and this provides

2πgpγσ + ω0 = 0. (4.21)

The modified delay calculation in (4.15) is derived by solving (4.16) and (4.21) in terms of the delay Π.
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Transfer Functions

Six transfer functions of the PDOB from r, dp, and n to y, u, and d̂p are y
u

d̂p

 =
1

ϕ

 P 2
NQD(1 + ∆)z−1 −P 2

N(QD −QNz
−1)(1 + ∆) PNQNPD(1 + ∆)z−1

PNPDQDz
−1 PNQNPD(1 + ∆)z−1 QNP

2
Dz

−1

−PNQN∆PDz
−1 PNQNPD(1 + ∆) QNP

2
D

 r
dp
n

 ,

(4.22)

where the characteristic polynomial is

ϕ(z−1) = PNPD(QD +QN∆z−1), (4.23)

and the modeling error and system polynomials are defined by

P (z−1) = (1 + ∆)Pn(z
−1) (4.24)

Pn(z
−1) =

PN(z
−1)

PD(z−1)
(4.25)

Qp(z
−1) =

QN(z
−1)

QD(z−1)
=

(gpTs + gpTsz
−1){1− γ(1− z−Π)}

(gpTs + 2) + (gpTs − 2)z−1
. (4.26)

Pn denotes the nominal plant. Nominally, the transfer functions become y
u

d̂p

 =
1

ϕn

 P 2
NQDz

−1 −P 2
N(QD −QNz

−1) PNQNPDz
−1

PNPDQDz
−1 PNQNPDz

−1 QNP
2
Dz

−1

0 PNQNPD QNP
2
D

 r
dp
n

 , (4.27)

where the nominal characteristic polynomial is

ϕn(z
−1) = PNPDQD. (4.28)

Nominal Stability

According to the nominal characteristic polynomial in (4.28), nominal stability depends on a numera-

tor polynomial of a nominal plant PN, denominator polynomial of a nominal plant PD, and denominator

polynomial of the Q-filter:

QD(z
−1) = (gpTs + 2) + (gpTs − 2)z−1. (4.29)

A pole of QD = 0 can be calculated as follows

QD(z
−1) = (gpTs + 2) + (gpTs − 2)z−1 = 0 (4.30)

(gpTs + 2)z = −(gpTs − 2) (4.31)

z =
2− gpTs

2 + gpTs
. (4.32)
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The numerator of the pole in (4.32) is smaller than the denominator of the pole as

|2− gpTs| < |2 + gpTs| (4.33)

because

0 < gpTs. (4.34)

Hence, the pole z =
2−gpTs

2+gpTs
is stable because

|z| =
∣∣∣∣2− gpTs

2 + gpTs

∣∣∣∣ < 1, ∵ |2− gpTs| < |2 + gpTs|. (4.35)

Therefore, the PDOB is nominally stable if and only if a plant does not have unstable zeros and poles.

Optimal Design Parameter

The low-pass filter is set to qp(z
−1) = 1 and the Z-operators z−1 in 1−Qp(z

−1)z−1 and Qp(z
−1)z−1

are ignored to simplify design of γ. The design parameter γ especially affects 1−Qp(z
−1) and Qp(z

−1)

at the frequencies ωb1 and ωb2:

ωb1 = (2n)
ω0

2
, ωb2 = (2n+ 1)

ω0

2
, n = 0, 1, 2, . . . , (4.36)

as shown in Fig. 4-7. At the frequencies ωb1 and ωb2, the gains of the functions

|1−Qp(e
−jωTs)| =

∣∣∣∣2γ sin(−ΠTs

2
ω

)∣∣∣∣ (4.37)

|Qp(e
−jωTs)| =

∣∣∣∣∣
√
1 + 4γ (γ − 1) sin2

(
−ΠTs

2
ω

)∣∣∣∣∣ (4.38)

become as follows

|1−Qp(e
−jωb1Ts)| = 0 (4.39)

|1−Qp(e
−jωb2Ts)| = |2γ| (4.40)

|Qp(e
−jωb1Ts)| = 1 (4.41)

|Qp(e
−jωb2Ts)| = |1− 2γ| . (4.42)

The minimum complementary sensitivity characteristic at ωb2: |Qp(e
−jωb2Ts)| = 0 provides the optimal

design parameter:

γ = 0.5. (4.43)
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Fig. 4-7: Bode diagrams of the sensitivity and complementary sensitivity functions of the PDOB with
variations in the design parameter γ. The parameters are ω0 = 100 rad/s, gp = 1000 rad/s, and
Ts = 0.01 ms.

Design of Cutoff Frequency

The design parameter γ is set to 0.5 and the Z-operators z−1 in 1−Qp(z
−1)z−1 and Qp(z

−1)z−1 are

ignored to simplify design of gp. The cutoff frequency gp of (4.13) is designed in accordance with two

objectives: fundamental-wave attenuation and robust stability.

First, a lower limit for gp is given by the fundamental-wave attenuation performance. At the funda-
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Fig. 4-8: Fundamental-wave attenuation performance of the PDOB with variations in ω0/gp.

Qp(z
−1)z−1

∆(z−1)

Fig. 4-9: Equivalent block diagram of the DOB structure in Fig. 4-2(a).

mental frequency, the gain of 1−Qp(e
−jω0Ts) using (4.15) is

|1−Qp(e
−jω0Ts)| =

√√√√√√√√
{
1− cos

(
2
ω0

gp

)}
+ 2

ω0

gp

{
ω0

gp
− sin

(
2
ω0

gp

)}
2

{
1 +

(
ω0

gp

)2
} , (4.44)

which depends only on ω0/gp. Fig. 4-8 shows the gain variation in (4.44) with respect to ω0/gp. A lower

limit for ω0/gp can be determined with the required precision from Fig. 4-8.

Next, an upper limit for gp is determined in accordance with the robust stability based on the equivalent

block diagram of the PDOB for the small-gain theorem in Fig. 4-9. The modeling error consists of the

weighting function W (z−1) and the variation δ(z−1)

∆(z−1) = W (z−1)δ(z−1), (4.45)

where the variation satisfies

∥δ(z−1)∥∞ ≤ 1. (4.46)

By assuming a nominally stable PDOB and modeling error, the robust-stability condition based on the

small-gain theorem and Fig. 4-9 is

∥W (z−1)Qp(z
−1)z−1∥∞ = ∥W (z−1)Qp(z

−1)∥∞ < 1. (4.47)
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Fig. 4-10: Comparative Bode diagrams of the PDOB and DOBs. The parameters for the PDOB are
ω0 = 100 rad/s, γ = 0.5, gp = 1000 rad/s, and Ts = 0.01 ms. The cutoff frequencies for DOB1 and
DOB2 are 25 rad/s and 100 rad/s, respectively.

It can be rewritten as∣∣∣∣ gp
gp + jω

0.5(1 + e−jωTsΠ)e−jωTs

∣∣∣∣ ≤ ∣∣∣∣ gp
gp + jω

∣∣∣∣ < ∣∣∣∣ 1

W (e−jωTs)

∣∣∣∣ , ∀ω. (4.48)

Hence, its sufficient condition is ∣∣∣∣ gp
gp + jω

∣∣∣∣ < ∣∣∣∣ 1

W (e−jωTs)

∣∣∣∣ , (4.49)

which determines the upper limit for gp.
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Table 4.1: Parameters of the comparative experiments for the PDOB.
Parameter Symbol Value (1st, 2nd, 3rd) Joint
Sampling time Ts [ms] 0.1
Proportional gain KP 400, 400, 400
Differential gain KD 40, 40, 40
Nominal inertia Jn [kgm2] 7.0, 3.0, 0.3
Nominal torque constant Ktn [Nm/A] 0.59, 0.59, 0.238
Gear ratio Gr 192, 120, 80
Length L [m] 0.26, 0.27, 0.09
Identified fundamental freq. ω0 [rad/s] 3, 3, 3
Design parameter γ 0.5, 0.5, 0.5
Cutoff freq. for the PDOB gp [rad/s] 200, 200, 200
Cutoff freq. for the DOB − 200, 200, 200
Cutoff freq. for the RC − 30, 30, 30

Comparisons with Disturbance Observers

The sensitivity and complementary sensitivity functions of the PDOB are compared with those of

DOBs: DOB1 and DOB2, as shown in Fig. 4-10. In the sensitivity functions shown in Fig. 4-10(a),

the PDOB achieves the lowest gain against the periodic disturbance, which consists of a fundamental

wave at 100 rad/s and harmonics at 200, 300, … rad/s. Compared with DOB1, the sensitivity function

of the PDOB includes not only a high-pass characteristic but also an infinite number of band-stop char-

acteristics. Thus, the PDOB improves the sensitivity function only at the frequencies of the periodic

disturbance in the tradeoff between sensitivity and complementary sensitivity functions. Moreover, the

periodic-disturbance suppression characteristic of the PDOB is better than that of DOB2, and the gain of

the complementary sensitivity function of the PDOB has an infinite number of band-stop characteristics

in addition to the low-pass characteristic same as DOB2. Thus, both the periodic-disturbance suppression

characteristic and robust stability of the PDOB are better than those of DOB2 in the tradeoff.

4.2.2 Experiments

The PDOB was comparatively validated by the experiments using the multi-axis manipulator shown

in Fig. 3-10. The experimental parameters are summarized in Table 4.1. The experiments compared

the PDOB with a DOB and RC under proportional and derivative position control. The PDOB and RC

were implemented with a DOB because they do not compensate for aperiodic disturbances. The position

commands for x and y axes in the workspaces were set as
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Fig. 4-11: Results of the comparative experiments for the PDOB.
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xcmd(t) =


x0 mm if t̃ < 0.5
x0 + 100(t̃− 0.5) mm if 0.5 ≤ t̃ < 1.0
x0 + 50 mm if 1.0 ≤ t̃ < 1.5
x0 + 100(2.0− t̃) mm if 1.5 ≤ t̃ < 2.0

(4.50)

ycmd(t) =


y0 mm if t̃ < 0.5
y0 + 100(t̃− 0.5) mm if 0.5 ≤ t̃ < 1.0
y0 + 50 mm if 1.0 ≤ t̃ < 1.5
y0 + 100(2.0− t̃) mm if 1.5 ≤ t̃ < 2.0

(4.51)

t̃ = Tst mod 2. (4.52)

Error results of the comparative experiments for the PDOB are shown in Fig. 4-11, where the PDOB+DOB

performed the best precision in the three methods. In the frequency domain calculated by the discrete

Fourier transform shown in Fig. 4-12, the fundamental wave and harmonics attenuation can be confirmed

at 3n rad/s, n = 1, 2, 3 . . ..

4.3 Aperiodic-Disturbance Compensation

4.3.1 Problem of Periodic-Disturbance Observer

The PDOB, which was designed to estimate and compensate for a periodic disturbance, has a problem

regarding aperiodic disturbances. According to the Q-filter in (4.12), sensitivity function S(z−1) and

complementary sensitivity function T (z−1) of the PDOB are

S(z−1) = 1−Qp(z
−1)z−1 = 1− qp(z

−1){1− γ(1− z−Π)}z−1 (4.53)

T (z−1) = Qp(z
−1)z−1 = qp(z

−1){1− γ(1− z−Π)}z−1. (4.54)

Substituting the first-order low-pass filter:

qp(z
−1) =

gpTs + gpTsz
−1

(gpTs + 2) + (gpTs − 2)z−1
, (4.55)

for qp(z−1), the sensitivity and complementary sensitivity functions become

S(z−1) = 1− gpTs + gpTsz
−1

(gpTs + 2) + (gpTs − 2)z−1
{1− γ(1− z−Π)}z−1 (4.56)

T (z−1) =
gpTs + gpTsz

−1

(gpTs + 2) + (gpTs − 2)z−1
{1− γ(1− z−Π)}z−1, (4.57)
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Fig. 4-12: Discrete Fourier transform results of Fig. 4-11 between 20 s and 100 s.

and frequency characteristics are

S(e−jωTs) = 1− gpTs + gpTse
−jωTs

(gpTs + 2) + (gpTs − 2)e−jωTs
{1− γ(1− e−jωTsΠ)}e−jωTs (4.58)

T (e−jωTs) =
gpTs + gpTse

−jωTs

(gpTs + 2) + (gpTs − 2)e−jωTs
{1− γ(1− e−jωTsΠ)}e−jωTs . (4.59)

Based on the bilinear transform:

z−1 ≈ 2− Tss

2 + Tss
, (4.60)
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e−jωTs can be approximately transformed into

e−jωTs ≈ 2− Tsjω

2 + Tsjω
. (4.61)

Using (4.61), the low-pass filter qp(z−1) in (4.55) is approximated into

q(e−jωTs) ≈ 1

1 + jΩ
(4.62)

Ωp =
ω

gp
, (4.63)

and (4.62) changes (4.58) and (4.59) to

S(e−jωTs) ≈ S̄(e−jωTs) = 1− 1

1 + jΩp
{1− γ(1− e−jωTsΠ)}e−jωTs (4.64)

T (e−jωTs) ≈ T̄ (e−jωTs) =
1

1 + jΩp
{1− γ(1− e−jωTsΠ)}e−jωTs . (4.65)

To emphasize the other major frequency characteristic rather than the one sampling delay z−1, frequency

characteristics of the approximate sensitivity and complementary sensitivity functions are derived by

ignoring e−jωTs as

S̄(e−jωTs) ≈ ¯̄S(jω) =
jΩp

1 + jΩp
+

1

1 + jΩp
γ(1− e−jωTsΠ) (4.66)

T̄ (e−jωTs) ≈ ¯̄T (jω) =
1

1 + jΩp
{1− γ(1− e−jωTsΠ)}. (4.67)

The sensitivity function ¯̄S(jω) has different frequency characteristics in the different frequency ranges

as follows

Ωp ≪ 1 :

lim
Ωp→0

¯̄S(jω) = γ(1− e−jωTsΠ) (4.68)

Ωp = 1 :

¯̄S(jgp) =
γ(1− e−jgpTsΠ) + j

1 + j
(4.69)

1 ≪ Ωp :

lim
Ωp→∞

¯̄S(jω) = 1. (4.70)
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In the low frequency range satisfying Ωp ≪ 1, the sensitivity characteristic satisfies

| ¯̄S(jωb1)| = 0 (4.71)

| ¯̄S(jωb2)| = |2γ| , (4.72)

where

ωb1 = (2n)
ω0

2
(n = 0, 1, 2, . . .) (4.73)

ωb2 = (2n+ 1)
ω0

2
(n = 0, 1, 2, . . .). (4.74)

This is because

e−jωb1TsΠ = e−j(2n)
ω0
2
TsΠ = e

−j(2n)
ω0
2
Ts

2π
Tsω0 = e−j2nπ = 1 (4.75)

e−jωb2TsΠ = e−j(2n+1)
ω0
2
TsΠ = e

−j(2n+1)
ω0
2
Ts

2π
Tsω0 = e−j(2n+1)π = e−j2nπe−jπ = −1. (4.76)

(4.71) and (4.72) indicate that the PDOB can eliminate disturbances at the frequencies of ωb1, which

are fundamental and harmonic frequencies of a periodic disturbance. In contrast, the PDOB does not

attenuate disturbances at the frequencies ωb2, which are frequencies of aperiodic disturbances. Although

the PDOB cannot compensate for disturbances at ωb2, the PDOB has a high-pass characteristic. The

sensitivity function in (4.68) can be expressed by Taylor series as

lim
Ωp→0

¯̄S(jω) = γ(1− e−jωTsΠ)

= γ(jωTsΠ− (−jωTsΠ)
2

2
− (−jωTsΠ)

3

3
− · · · ), if Ωp ≪ 1. (4.77)

Using

ωTsΠ = 2π
ω

ω0
, (4.78)

the sensitivity characteristic in (4.77) approximately satisfies

lim
Ωp→0

¯̄S(jω) ≈ j
2πγ

ω0
ω, if Ωp ≪ 1 and 2π

ω

ω0
≪ 1, (4.79)

and gain of (4.79) is

20 log

∣∣∣∣j 2πγω0
ω

∣∣∣∣ = 20 log

∣∣∣∣2πγω0

∣∣∣∣+ 20 log |ω| [dB], if Ωp ≪ 1 and ω ≪ ω0

2π
. (4.80)
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This frequency characteristic performs a differentiator including 20 dB/decade gradient when frequency

of a disturbance ω is much smaller than ω0/2π in the frequency range Ωp ≪ 1. The cutoff frequency is

the minimum positive solution of

ωcut =
ω0

π
sin−1

(
1

2
√
2γ

)
, (4.81)

which can be calculated from the following transformation:

|γ(1− e−jωcutTsΠ)| =|γ[1− cos (ωcutTsΠ) + j sin (ωcutTsΠ)]|

=|γ
√
[1− cos (ωcutTsΠ)]2 + sin2 (ωcutTsΠ)|

=|γ
√
1− 2 cos (ωcutTsΠ) + cos2 (ωcutTsΠ) + sin2 (ωcutTsΠ)|

=|γ
√
2[1− cos (ωcutTsΠ)]|

=|γ
√

4[sin2 (0.5ωcutTsΠ)]|

=|2γ sin (0.5ωcutTsΠ)|

=|2γ sin (πωcut

ω0
)| (4.82)

|2γ sin (πωcut

ω0
)| := 1√

2
(4.83)

2γ sin (π
ωcut

ω0
) =

1√
2

(4.84)

π
ωcut

ω0
=sin−1

(
1

2
√
2γ

)
(4.85)

ωcut =
ω0

π
sin−1

(
1

2
√
2γ

)
. (4.86)

If the design parameter γ is 0.5 according to (4.43), the cutoff frequency is

ωcut =
ω0

4
. (4.87)

Therefore, the PDOB can attenuate low-frequency aperiodic disturbances in the frequency range satis-

fying ω ≪ gp and ω ≪ ω0
4 < ω0

2π . However, if a fundamental frequency ω0 of a periodic disturbance is in

the low-frequency range, the PDOB cannot attenuate the low-frequency aperiodic disturbances because

aperiodic-disturbance suppression performance of the PDOB is (4.72) even if the cutoff frequency gp is

in the high-frequency range. This indicates that the aperiodic-disturbance suppression performance of

the PDOB depends on a fundamental frequency of a periodic disturbance. In order to compensate for the

low-frequency aperiodic disturbances regardless of the fundamental frequency of a periodic disturbance,

this study constructed an enhanced PDOB.
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Fig. 4-13: Block diagrams of the enhanced PDOB.

4.3.2 Enhanced Periodic-Disturbance Observer

Combination Design for Enhanced Periodic-Disturbance Observer

A periodic/aperiodic disturbance d is defined to be composed of a periodic disturbance dp and an

aperiodic disturbance da on the basis of (2.1) as

d(t) = dp(t) + da(t). (4.88)

According to the control objective of the PDOB in (4.5) and Fig. 4-2(b), the PDOB can compensate for

the disturbance as

[1−Qp(z
−1)z−1]d(z−1) = γdp0(z

−1) + [1−Qp(z
−1)z−1]da(z

−1). (4.89)

(4.6) modifies (4.89) as

[1−Qp(z
−1)z−1]d(z−1) = [1−Qp(z

−1)z−1]da(z
−1), if Π ≤ t. (4.90)
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In order to estimate and compensate for the remaining aperiodic disturbance:

d̃a = [1−Qp(z
−1)z−1]da(z

−1), (4.91)

a classical DOB is additionally used and combined with the PDOB, as shown in Fig. 4-13(a). Q-filter of

the DOB uses a first-order low-pass filter

Qa(z
−1) = qa(z

−1) =
gaTs + gaTsz

−1

(gaTs + 2) + (gaTs − 2)z−1
, (4.92)

and the DOB compensates for the remaining aperiodic disturbance d̃a through the high-pass filter (sen-

sitivity function) 1 − Qa(z
−1)z−1. The enhanced PDOB, which is the combination of the PDOB and

DOB, is thus constructed.

Frequency Characteristics of Enhanced Periodic-Disturbance Observer

Sensitivity and complementary sensitivity functions of the enhanced PDOB are

S(z−1) = [1−Qp(z
−1)z−1][1−Qa(z

−1)z−1] (4.93)

T (z−1) = Qp(z
−1)z−1 −Qp(z

−1)Qa(z
−1)z−1 +Qa(z

−1), (4.94)

as shown in Fig. 4-13(b), which is the nominal equivalent block diagram of the enhanced PDOB. The

complementary sensitivity function reflects the effects of the entire enhanced PDOB, including both the

PDOB and DOB. The sensitivity function is approximated and expressed using the Q-filters of the PDOB

in (4.12) and (4.13) and the DOB in (4.92) as

S(z−1) ≈ S̄(z−1) = {1−Qp(z
−1)}{1−Qa(z

−1)}

=
2(1− z−1)

(gaTs + 2) + (gaTs − 2)z−1
+

gpTs + gpTsz
−1

(gpTs + 2) + (gpTs − 2)z−1
γ(1− z−Π).

(4.95)

By using the approximation in (4.61) based on the bilinear transform, the frequency characteristic of the

sensitivity function becomes

S̄(e−jωTs) ≈ ¯̄S(jω) =
jΩa

1 + jΩa
+

1

1 + jΩp
γ(1− z−Π), (4.96)

where

Ωp =
ω

gp
(4.97)

Ωa =
ω

ga
. (4.98)
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Consequently, the frequency characteristics in the frequency ranges are as follows

Ωp ≪ 1 :

lim
Ωp→0

¯̄S(jω) =
jΩa

1 + jΩa
γ(1− e−jωTsΠ) (4.99)

Ωp = 1 :

¯̄S(jgp) =
jΩa

1 + jΩa

γ(1− e−jgpTsΠ) + j

1 + j
(4.100)

1 ≪ Ωp :

lim
Ωp→∞

¯̄S(jω) =
jΩa

1 + jΩa
. (4.101)

At ωb1 and ωb2 in (4.73) and (4.74) satisfying Ω ≪ 1, the gain of (4.99) becomes

| ¯̄S(jωb1)| = 0 (4.102)

| ¯̄S(jωb2)| = 2γ
Ωa√
1 + Ω2

a

. (4.103)

In comparison of (4.103) with (4.72), the enhanced PDOB additionally realizes the high-pass characteris-

tic Ωa√
1+Ω2

a

, which is able to attenuate the remaining aperiodic disturbance d̃a. Figs. 4-14, 4-15, and 4-16

show Bode diagrams of sensitivity and complementary sensitivity functions of the PDOB, DOB, and en-

hanced PDOB, respectively. A number of band-stop characteristics of the PDOB at ωb1 and band-pass

characteristics at ωb2 can be confirmed in Fig. 4-14. By combining the PDOB shown in Fig. 4-14 and

the DOB shown in Fig. 4-15 as the enhanced PDOB, the gain of the sensitivity function of the enhanced

PDOB acquires both the band-stop characteristics and high-pass characteristic, as shown in Fig. 4-16.

This enables the suppression of both periodic and aperiodic disturbances. An enlarged view of the Bode

diagrams is shown in Fig. 4-17, which shows that the enhanced PDOB realizes the multiple performance

of the PDOB and DOB.

Design of Cutoff Frequencies

This dissertation suggests designing the cutoff frequencies gp and ga as the same value gp = ga

because the same value of the frequencies enables to simplify effects of the frequencies on the sensitivity

and tradeoff between sensitivity and complementary sensitivity functions.
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(b) Complementary sensitivity function Qp(z
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Fig. 4-14: Bode diagrams of the PDOB. The parameters are ω0 = 100 rad/s, γ = 0.5, gp = 1000 rad/s,
and Ts = 0.01 ms.
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(b) Complementary sensitivity function Qa(z
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Fig. 4-15: Bode diagrams of the DOB. The parameters are ga = 1000 rad/s and Ts = 0.01 ms.
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Fig. 4-16: Bode diagrams of the enhanced PDOB. The parameters are ω0 = 100 rad/s, γ = 0.5,
gp = 1000 rad/s, ga = 1000 rad/s, and Ts = 0.01 ms.
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Fig. 4-17: Enlarged view of the sensitivity functions of the PDOB, DOB, and enhanced PDOB in
Figs. 4-14(a), 4-15(a), and 4-16(a).

First, the sensitivity and complementary sensitivity functions of the enhanced PDOB in (4.93) and

(4.94) can be transformed into

¯̄S(jω) =
−Ω2 + jΩγ(1− e−jωTsΠ)

(1 + jΩ)2
(4.104)

¯̄T (jω) =
1 + jΩ[2− γ(1− e−jωTsΠ)]

(1 + jΩ)2
(4.105)

Ω := Ωp = Ωa, (4.106)

and they are expressed as follows in the frequency ranges

Ω ≪ 1 :

lim
Ω2→0

¯̄S(jω) =
jΩ

1 + j2Ω
γ(1− e−jωTsΠ) (4.107)

lim
Ω2→0

¯̄T (jω) =
1

1 + j2Ω
+

jΩ

1 + j2Ω
[2− γ(1− e−jωTsΠ)] (4.108)

Ω = 1 :

¯̄S(jgp) =
γ(1− e−jgpL) + j

2
(4.109)

¯̄T (jgp) =
[2− γ(1− e−jgpL)]− j

2
(4.110)

1 ≪ Ω :

lim
Ω−2→0

¯̄S(jω) =
j0.5Ω

1 + j0.5Ω
+

1

1 + j0.5Ω

γ

2
(1− e−jωTsΠ) (4.111)

lim
Ω−2→0

¯̄T (jω) =
1

1 + j0.5Ω
[1− γ

2
(1− e−jωTsΠ)]. (4.112)

Using the design parameter: γ = 0.5 according to (4.43) and∣∣∣∣1− e−jωTsΠ

2

∣∣∣∣ , ∣∣∣∣3 + e−jωTsΠ

4

∣∣∣∣ ≤ 1, (4.113)
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an inequality for the sensitivity function in the low-frequency range and that for the complementary

sensitivity function in the high-frequency range can be obtained as

Ω ≪ 1 :

lim
Ω2→0

| ¯̄S(jω)| =
∣∣∣∣ jΩ

1 + j2Ω

1− e−jωTsΠ

2

∣∣∣∣ ≤ |S̃(jω)| (4.114)

1 ≪ Ω :

lim
Ω−2→0

| ¯̄T (jω)| =
∣∣∣∣ 1

1 + j0.5Ω

3 + e−jωTsΠ

4

∣∣∣∣ ≤ |T̃ (jω)|, (4.115)

where

S̃(jω) =
jΩ

1 + jΩ
=

jω

g + jω
(4.116)

T̃ (jω) =
jΩ

1 + j0.5Ω
=

2g

2g + jω
. (4.117)

Fig. 4-16 compares Bode diagrams of the functions: S(z−1), S̃(s), T (z−1), and T̃ (s). These indicate

that the gain of the sensitivity function S is approximately smaller than that of S̃ in the low-frequency

range. Also, the gain of the complementary sensitivity function T is approximately smaller than that of

T̃ in the high-frequency range. Therefore, the cutoff frequency g of the enhanced PDOB can be designed

with S̃ and T̃ in a similar manner to a classical DOB. A lower limit for g can be determined by a required

cutoff frequency of the high-pass characteristic S̃ for disturbance compensation, and an upper limit for

2g can be determined by a required cutoff frequency of the low-pass characteristic T̃ for robust stability.

It should be noted that the approximate sensitivity function S̃(s) and the approximate complementary

sensitivity function T̃ (s) do not satisfy the upper limits of the original sensitivity function S(z−1) and

original complementary sensitivity function T (z−1) around the cutoff frequency g, as shown in Fig. 4-

16. Accordingly, the approximate sensitivity and complementary sensitivity functions satisfy the tradeoff

S + T = 1 only in the low and high frequency ranges except around the cutoff frequency g as follows

ω ≪ g :

lim
ω→0

[S̃(jω) + T̃ (jω)] = 1 (4.118)

ω = g :

S̃(jg) + T̃ (jg) =
1 + j2

1 + j3
< 1 (4.119)
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Fig. 4-18: Block diagram of the position control system using the enhanced PDOB.

Table 4.2: Parameters of the comparative experiments for the enhanced PDOB.
Parameter Symbol Value (1st, 2nd, 3rd) Joint
Sampling time Ts 0.1 ms
Proportional gain KP 100, 100, 100
Differential gain KD 40, 40, 40
Nominal inertia Jn 7.0, 3.0, 0.3 kgm2

Nominal torque constant Ktn 0.59, 0.59, 0.238 Nm/A
Gear ratio Gr 192, 120, 80
Length L 0.26, 0.27, 0.09 m

Fundamental frequency ω0 3, 3, 3 rad/s
Design parameter γ 0.5, 0.5, 0.5
Cutoff frequencies gp 200, 200, 200 rad/s

ga 200, 200, 200 rad/s
gv 1000, 1000, 1000 rad/s
gacc 500, 500, 500 rad/s

g ≪ ω :

lim
ω→∞

[S̃(jω) + T̃ (jω)] = 1. (4.120)
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4.3.3 Experiments

Experiments were conducted to compare the enhanced PDOB with the DOB and PDOB using the

multi-axis manipulator shown in Fig. 3-10. The workspace position commands:

xcmd(t) =


x0 mm if t̃ < 0.5
x0 + 100(t̃− 0.5) mm if 0.5 ≤ t̃ < 1.0
x0 + 50 mm if 1.0 ≤ t̃ < 1.5
x0 + 100(2.0− t̃) mm if 1.5 ≤ t̃ < 2.0

. (4.121)

ycmd(t) =


y0 mm if t̃ < 0.5
y0 − 100(t̃− 0.5) mm if 0.5 ≤ t̃ < 1.0
y0 − 50 mm if 1.0 ≤ t̃ < 1.5
y0 − 100(2.0− t̃) mm if 1.5 ≤ t̃ < 2.0

(4.122)

t̃ = Tstmod 2 (4.123)

were used by transforming into the joint space to control angles of the motors. A block diagram of

the position control system based on the enhanced PDOB is shown in Fig. 4-18, and the experimental

parameters are shown in Table 4.2. gv, gacc, Jn, Ktn, Gr, θcmd, θres, θ̇res, θ̈ref , T̂ pdis, T̂ adis, Ipcmp,

and Iacmp denote the cutoff frequency for the velocity calculation, cutoff frequency for the acceleration

calculation, nominal inertia, nominal torque constant, gear ratio, angle command, angle response, angu-

lar velocity response, angular acceleration response, periodic-disturbance torque, aperiodic-disturbance

torque, periodic compensation current, and aperiodic compensation current, respectively.

Errors of the experimental results are shown in Fig. 4-19. Fig. 4-19(a) shows the largest errors of

the DOB in the three methods owing to the periodic disturbance. The PDOB solved the periodic dis-

turbance problem and improved the steady-state performance, but the transient errors deteriorated and

low-frequency disturbances still remained, as shown in Fig. 4-19(b). The enhanced PDOB improved the

transient performance and low-frequency errors and achieved the best performance, as shown in Fig. 4-

19(c). The discrete Fourier transform results shown in Fig. 4-20 clarify the steady-state difference of the

DOB, PDOB, and enhanced PDOB. The DOB could not sufficiently eliminate the periodic disturbance,

whose fundamental frequency was 3 rad/s, and the PDOB successfully suppressed the periodic distur-

bance, but low-frequency errors exist under 3 rad/s. The enhanced PDOB realized the suppression of

both the periodic disturbance and low-frequency errors.
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4.4 Summary

Section 4.2 constructed the PDOB for periodic-disturbance compensation. The model of a periodic

disturbance was firstly constructed. The Q-filter of the PDOB was designed to be able to eliminate the

periodic disturbance on the basis of the model. Since the PDOB needs to determine the delay Π, design

parameter γ, and cutoff frequency gp, the design of the parameters was discussed with the sensitivity and

complementary sensitivity functions. The nominal stability analysis based on the characteristic equation

clarified that the delay does not affect the nominal stability of the PDOB. According to the compari-

son with the classical DOBs using sensitivity and complementary sensitivity functions, the improved

periodic-disturbance suppression performance and robust stability in the tradeoff were confirmed. The

experiments validated the practicality of the PDOB.

Section 4.3 developed the PDOB into the enhanced PDOB. Firstly, the problem of the aperiodic-

disturbance suppression performance of the PDOB was shown. Then, the enhanced PDOB was con-

structed by the combination design of the PDOB and DOB to overcome the problem. The enhanced

performance was evaluated through the sensitivity and complementary sensitivity functions, and the de-

sign strategy for the functions was demonstrated. The experiments validated the improved practicality of

the enhanced PDOB compared with the DOB and PDOB.
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Fig. 4-19: Results of the comparative experiments for the enhanced PDOB.
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Fig. 4-20: Discrete Fourier transform results of Fig. 4-19 between 10 s and 100 s.
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Chapter 5

Periodic/Aperiodic Diagnosis

5.1 Outline

Chapter 5 focuses on periodicity and aperiodicity of industrial inspection and human behavior.

Section 5.2 focuses on periodicity and aperiodicity of the industrial inspection for the food product

packing, and this study applied the PASF to the haptic leak detection. In particular, this study focuses on

yank (differential force) information from packages, which represents leak effects due to holes or sealing

errors on packages. The PASF is applied to separate measured yank into periodic yank and aperiodic yank

because the periodic yank typically corresponds to a normal product and slow environmental change,

and the aperiodic yank accordingly corresponds to an anomalous product. Subsection 5.2.1 describes

a detection flow of the PASF-based haptic leak detection, and Subsection 5.2.2 shows 10,000 packages

inspection simulation based on experimental package data.

Section 5.3 focuses on periodicity and aperiodicity of human behavior for the motor learning, and

this study applied the PASF to motor proficiency diagnosis. The PASF-based proficiency diagnosis

enables to evaluate the motor learning accurately by eliminating aperiodic behavior. Subsection 5.3.1

describes the setup for the motor learning experiment based on a drawing task of a minimum-angular-

jerk logarithmic spiral, and Subsection 5.3.2 shows evaluation results that the PASF-based proficiency

diagnosis facilitated the accurate proficiency diagnosis.
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5.2 Aperiodic Leak Detection

5.2.1 PASF-Based Haptic Leak Detection

Package-Leak Model

Periodic normal package condition is modeled by the ideal gas law:

PV = nRT, (5.1)

and aperiodic anomalous condition of a leaked package is

PV =

{
(n− LTst)RT if 0 ≤ n− LTst

0 otherwise
. (5.2)

P , V , n, R, T , and L denote the pressure, volume, number of moles, universal gas constant, temperature,

and leak coefficient, respectively. This study focuses on the time range satisfying 0 ≤ n − LTst. LTst

corresponds to the leak effect, which reduces amount of the contained air. A haptic detector using a

linear motor measures reaction force F (t) with a detection area S from a package as

F (t) = −SP (t) + F ext(t)

= −(n− LTst)
SRT

V
+ F ext(t), (5.3)

where

SRT

V
=

SRTn[1 + ∆T (t)]

Vn[1 + ∆V (t)]

=
SRTn

Vn
+ δ(t) (5.4)

δ(t) =
SRTn[∆V (t)−∆T (t)]

Vn[1 + ∆V (t)]
(5.5)

n, R, S, L, Ts, Tn, Vn = constant. (5.6)

Consequently, the reaction force F (t) and one-sample-period-ahead reaction force F (t+ 1) are

F (t) = −(n− LTst)
SRTn

Vn
− (n− LTst)δ(t) + F ext(t) (5.7)

F (t+ 1) = −(n− LTst)
SRTn

Vn
+ LTs

SRTn

Vn
− (n− LTst)δ(t+ 1) + LTsδ(t+ 1) + F ext(t+ 1).

(5.8)

F ext(t), Tn, ∆T (t), Vn, and ∆V (t) denote the external force, nominal temperature, temperature change,

nominal volume, and volume change, respectively. The amount of contained air n, gas constant R, and
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the detection area S are constant, whereas the temperature T changes on the basis of the four seasons and

measurement environment. The external force F ext represents mechanical wear of the haptic detector.

Finally, yank Y measured by the haptic detector is

Y(t) =
F (t+ 1)− F (t)

Ts
= LSRTn

Vn
+∆(t) (5.9)

∆(t) = Lδ(t+ 1)− (n− LTst)
δ(t+ 1)− δ(t)

Ts
+

F ext(t+ 1)− F ext(t)

Ts
, (5.10)

using (5.7) and (5.8). Hence, the aim of the haptic leak detection is to pick up the leak term LSRT
V

from the yank Y(t) under the disturbance term ∆(t). The temperature change ∆T , volume change ∆V ,

and external factor such as mechanical wear F ext are empirically slow changes in the case of the leak

detection. Thus, the disturbance term ∆(t) and the leak term LSRT
V correspond to the periodic element

and aperiodic element, respectively. Therefore, this study used the PASF to pick up the aperiodic leak

term as aperiodic yank from the yank Y(t) under the periodic disturbance term ∆(t).

Detection Flow

Overview. This study developed the PASF-based haptic leak detection shown in Fig. 5-1. The detection

flow is composed of five steps: pushing package, yank measurement, aperiodic yank extraction, mean

yank calculation, and detection.

Pushing Package. In the pushing package step, the haptic leak detector using a linear motor shown

in Fig. 5-2 pushes packages. The linear motor is controlled by velocity control in accordance with the

following processes.

1. (Approaching) The velocity command is 100 mm/s until the reaction force F from a package

becomes stronger than −60 N.

2. (Contact) The velocity command is 0 mm/s for 0.4 s.

3. (Disengaging) The velocity command is −100 mm/s until the linear motor reaches the initial po-

sition before approaching.

Yank Measurement and Aperiodic Yank Extraction. During the contact, the reaction force of a

package is measured using a reaction force observer (RFOB), and yank is calculated as follows.

2-1. The RFOB estimates 800 reaction force samples under the sampling time: 0.25 ms in the steady

state from 0.2 s to 0.4 s from a package.
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Fig. 5-1: Overview of the PASF-based haptic leak detection.
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BA

D

C

Fig. 5-2: Haptic leak detector using a linear motor.

Table 5.1: Parameters of the preliminary experiments.
Parameter Symbol Value Parameter Symbol Value
Sampling time Ts 0.25 ms Proportional gain KP 200
Integral gain KI 10000 Nominal mass Mn 2 kg
Nominal thrust constant Ktn 53.1 Nm/A Cutoff freq. for DOB gdob 250 rad/s
Cutoff freq. for RDOB grfob 3000 rad/s Cutoff freq. for velocity gv 2000 rad/s

2-2. A pseudo differentiator whose cutoff frequency is 30 rad/s calculates the yank Y (800i), . . . , Y (800i+

799) from the reaction force of the i+ 1th package.

2-3. The first-order PASF extracts the aperiodic yank Ya(800i), . . . , Ya(800i+ 799) from the yank.

Mean yank calculation. Mean yank for the i+ 1th package is calculated using the aperiodic yank as

MYi =
1

800

799∑
j=0

Ya(800i+ j). (5.11)

Detection. The conditional expression judges whether the package is normal or anomalous

MYi < α, (5.12)

where α denotes a threshold.

5.2.2 Package Inspection Simulation

As preliminaries, this study measured 188 package data from normal packages and 200 package data

from anomalous packages caused by artificial 5 mm holes. The experimental parameters are summarized
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Fig. 5-3: Yank waveforms between 1988 s and 1996 s in Simulation 1.

in Table 5.1. Random reaction force data composed of 10,000 packages for 2,000 s were generated

using the Mersenne Twister, which is a pseudo random number generator for uniform distribution. The

ratio between normal packages and anomalous packages was set to 95:5. Using the generated reaction

force data, this study designed the three simulations in terms of the disturbance term ∆i as follows:

Simulation 1

∆i = 0 (5.13)

Simulation 2

∆i = 0.0005i (5.14)
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Fig. 5-4: Mean yank values in Simulation 1.

Simulation 3

∆i = 2.5 sin (0.0002πi). (5.15)

The disturbance term ∆i for the i + 1th package was inserted into the calculated yank as (5.4) in the

simulation phase. Each simulation was conducted 61 times to investigate different 61 thresholds.

Fig. 5-3(a) shows the yank waveforms between 1988 s and 1996 s in Simulation 1. The PASF extracted

the aperiodic yank in Fig. 5-3(c) by eliminating the periodic yank in Fig. 5-3(b). Fig. 5-4(a) and (b) show

the mean yank values calculated from the yank and aperiodic yank, respectively. The yank waveforms of

Simulations 2 and 3 are shown in Figs. 5-5 and 5-6, respectively, and their mean yank values are shown

in Figs. 5-7 and 5-8, respectively. Simulations 2 and 3 verified robustness of the PASF-based haptic

leak-detection against the disturbances: (5.14) and (5.15). The mean aperiodic yank in Simulations 2

and 3 could provide similar results to Simulation 1 because the aperiodic yank attenuated the disturbance

effects, as shown in Figs. 5-7 and Figs. 5-8. To compare the haptic leak-detection without the PASF and

the proposed PASF-based haptic leak-detection, this study used the true positive rate and false positive
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Fig. 5-5: Yank waveforms between 1988 s and 1996 s in Simulation 2.

rate

True positive rate =
The number of detected normal packages

The number of normal packages
(5.16)

False positive rate =
The number of undetected anomalous packages

The number of anomalous packages
. (5.17)

The evaluation indexes describe a receiver operating characteristic (ROC) curve, as shown in Fig. 5-

9. The true positive rate and false positive rate vary between 0 and 1, and true positive rate = 1 and

false positive rate = 0 indicate perfect detection. According to Fig. 5-9, both the detections with and

without the PASF showed the high detection accuracy in Simulation 1, whereas the detection without

the PASF was not robust against the disturbances ∆i and deteriorated the accuracy in Simulations 2 and

3. In contrast, the proposed PASF-based haptic leak-detection maintained the detection accuracy even in
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Fig. 5-6: Yank waveforms between 1520 s and 1528 s in Simulation 3.

Simulations 2 and 3. Therefore, the robustness of the proposed method was thus verified. In addition, the

PASF-based haptic leak detection was compared with anomaly detection using a variational autoencoder

(VAE) composed of 9 layers [104–106]. Dimensions of the layers from the input layer to the output layer

were set to 800, 800, 600, 400, 20, 400, 600, 800, and 800, respectively. The VAE was trained by the

188 measured normal package data with 300 epochs, and a mean of the reproduction errors of the VAE

was used to detect anomaly. Since the VAE was trained by the normal packages, the errors become large

when the VAE reproduces an anomalous package. The ROC curve also shows the results of the VAE,

and the VAE performed the worst results at all simulations. The difficulty of the VAE in reproducing

time-series data might cause the worst results at Simulation 1. Moreover, the VAE, whose performance

depends on the training data, did not have the robustness against the disturbances.
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Fig. 5-7: Mean yank values in Simulation 2.
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Fig. 5-8: Mean yank values in Simulation 3.
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Fig. 5-9: Comparison of the detection performance with and without the PASF using the ROC curve.

Table 5.2: Accuracy indexes when the separation frequency was ρ = 0.01 rad/s.
Threshold α = 1.0 α = 1.5 α = 2.0 α = 2.5 α = 3.0

Simulation 1 0.986919 0.989395 0.9954955 0.9684685 0.9572072
Simulation 2 0.946944 0.988351 0.9909122 0.9842342 0.9684685
Simulation 3 0.954584 0.993093 0.9839059 0.9617117 0.9459459
Average 0.962816 0.990280 0.9901045 0.9714715 0.9572072

Accuracy of the PASF-based haptic leak-detection depends on the separation frequency of the PASF

ρ and threshold α. They can be determined on the basis of the accuracy index:

Accuracy index = True positive rate× (1− False positive rate). (5.18)

The accuracy index varies between 0 and 1, and accuracy index = 1 means perfect detection. According

to Fig. 5-10, the small separation frequency ρ = 0.01 rad/s realized the widest accuracy in terms of the

threshold at all Simulations 1, 2, and 3. Furthermore, Table 5.2 summarized the high accuracy indexes

from Fig. 5-10 and showed that α = 1.5 performed the best accuracy on average. According to the above

accuracy evaluation, the optimal separation frequency ρ = 0.01 rad/s and optimal threshold α = 1.5

are determined.
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Fig. 5-10: Accuracy index for threshold design.
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Fig. 5-11: Counter-clockwise logarithmic spiral trajectory for the motor learning experiment.

5.3 Periodic Proficiency Diagnosis

5.3.1 Proficiency Diagnosis for Motor Learning

Minimum-Angular-Jerk Logarithmic Spiral

A motor learning experiment was designed using a drawing task of a minimum-angular-jerk counter-

clockwise logarithmic spiral, as shown in Fig. 5-11. The spiral was defined in the polar coordinate system

as

r = r0e
aθ, (5.19)

where

a =
ln (rf/r0)

θf
(5.20)

0 < r0, rf , θf (5.21)

r0 < rf . (5.22)

r0, rf , θ, and θf denote the initial radius, final radius, spiral angle, and final angle, respectively. A

minimum-angular-jerk trajectory for the angle θ was derived by solving the variational problem:

min

∫ τf

0

...
θ
2dτ

s.t. θ(0) = 0, θ(τf) = θf , θ̇(0) = θ̇0, θ̇(τf) = θ̇f , θ̈(0) = 0, θ̈(τf) = 0, (5.23)

where this study used the spiral parameters shown in Table 5.3. τ denotes the continuous time. Using
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Table 5.3: Counter-clockwise logarithmic spiral parameters.
Parameter Symbol Value Parameter Symbol Value
Initial radius r0 0.01 m Final radius rf 0.1 m
Final angle θf 7π rad Initial angular velocity θ̇0 3 rad/s
Final angular velocity θ̇f 3 rad/s Trial time τf 6 s

an Euler equation:

d3

dτ3
∂

...
θ
2

∂
...
θ

= 0, (5.24)

the minimum-angular-jerk trajectory was calculated as

θ(τ) =
1

120
C1τ

5 +
1

24
C2τ

4 +
1

6
C3τ

3 + C5τ, (5.25)

where

C1 = 720
θf
τ5f

− 360
θ̇0
τ4f

− 360
θ̇f
τ4f

(5.26)

C2 = −360
θf
τ4f

+ 192
θ̇0
τ3f

+ 168
θ̇f
τ3f

(5.27)

C3 = 60
θf
τ3f

− 36
θ̇0
τ2f

− 24
θ̇f
τ2f

(5.28)

C5 = θ̇0. (5.29)

Consequently, the position, velocity, and acceleration of the spiral were as follows:

Position: {
r(τ)= r0e

aθ(τ)

θ(τ)= 1
120C1τ

5 + 1
24C2τ

4 + 1
6C3τ

3 + C5τ
(5.30)

Velocity: {
ṙ(τ)= r0aθ̇e

aθ(τ)

θ̇(τ)= 1
24C1τ

4 + 1
6C2τ

3 + 1
2C3τ

2 + C5
(5.31)

Acceleration: {
r̈(τ)= r0aθ̈e

aθ(τ) + r0a
2θ̇2eaθ(τ)

θ̈(τ)= 1
6C1τ

3 + 1
2C2τ

2 + C3τ
. (5.32)

Fig. 5-12 illustrates the trajectories. The spiral trajectory was used by transforming into the orthogonal

coordinate system as the target spiral: xtargeti and ytargeti .
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Fig. 5-12: Angle, angular velocity, angular acceleration, and angular jerk waveforms of θ satisfying the
minimum-angular-jerk in (5.23).

Experimental Setup

In the experiment, participants held a stylus attached to the end effector of the robot in a power grip,

as shown in Fig. 5-13. They are instructed to draw the spiral as accurately as possible in terms of the
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Fig. 5-13: Experimental system.
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Fig. 5-14: Schedule of the drawing practice.

path and time course. The robot was used to measure the stylus position. Twenty students participated

in the experiment and practiced according to the practice schedule, which is composed of evaluation and

practice phases including 3 and 25 trials, respectively. The two phases were alternately conducted, as

shown in Fig. 5-14. In the practice phases, participants performed the drawing task and received visual

feedback of a written spiral after each trial. In the evaluation phases, participants performed the task

without the visual feedback.

5.3.2 PASF-Based Proficiency Diagnosis

A drawn spiral was calculated by measured stylus position xi and yi at all trials. The spiral was

spatially numbered from 0 to 2399, as Fig. 5-11. Along the number, the spirals were separated by the
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(a) Trial errors of the spirals.
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(b) Periodic trajectories of the trial errors.
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(c) Aperiodic trajectories of the trial errors.

Fig. 5-15: Twenty subjects’ trial errors.

first-order PASF into periodic and aperiodic trajectories. A trial error, which is a difference between the

target spiral xtargeti and ytargeti and the spiral xi and yi in Fig. 5-11, was calculated as

Trial error =
1

2400

2399∑
i=0

√
(xtargeti − xi)2 + (ytargeti − yi)2. (5.33)
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(a) Phase errors of the spirals.

0

20

4

P
ha

se
 e

rr
or

 [m
m

]

16
12
8

Phases
E1 P1 E2 P2 E3 P3 E4 E5P4

MEAN
S1

S16

S6
S11

S2

S17

S7
S12

S3

S18

S8
S13

S4

S19

S9
S14

S5

S20

S10
S15

*** **
n.s.**

(b) Phase errors of the periodic trajectories.
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(c) Phase errors of the aperiodic trajectories.

Fig. 5-16: Twenty subjects’ phase errors at the evaluation and practice phases. The error bars stand for
SDs, and the symbols ***, **, *, and n.s. stand for the statistic results: p < 0.001, p < 0.01, p < 0.05,
and 0.05 < p, respectively.
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Trial errors for the periodic trajectory xpi and ypi and aperiodic trajectory xai and yai were calculated as

Trial error =
1

2400

2399∑
i=0

√
(xtargeti − xpi)2 + (ytargeti − ypi)2, (5.34)

and

Trial error =
1

2400

2399∑
i=0

√
x2ai + y2ai, (5.35)

respectively. Fig. 5-15 shows transition of the trial errors and Fig. 5-15(b) illustrates that the trial errors

of the periodic trajectories continuously decrease by eliminating the variable aperiodic trajectories shown

in Fig. 5-15(c). From the trial errors, a phase error that is a mean of the trial errors at each phase was

calculated, as shown in Fig. 5-16. Each subject’s phase errors at the evaluation phases were calculated

by

Phase error =
1

3

3∑
j=1

Trial errorj , (5.36)

and those at the practice phases were calculated by

Phase error =
1

25

25∑
j=1

Trial errorj . (5.37)

In Fig. 5-16(a) for the spirals, the phase errors at E2 and E4 were significantly smaller than those at E1

and E2, respectively. In Fig. 5-16(b) for the periodic trajectories, the phase error at E3 was addition-

ally significantly smaller than that at E2. Therefore, the PASF-based proficiency diagnosis enabled to

detect the small change from E2 to E3. In details, Figs. 5-17–5-25 shows one subject’s spirals, periodic

trajectories, and aperiodic trajectories at each trial. Compared to proficiency transition of the spiral in

Figs. 5-17, 5-18, and 5-19, continuous improvement in the periodic trajectories in Figs. 5-20, 5-21, and

5-22 can be confirmed as a result of eliminating the aperiodic behavior shown in Figs. 5-23, 5-24, and

5-25.

5.4 Summary

Section 5.2 showed the PASF-based haptic leak-detection for the inspection of food product packing.

Firstly, the package-leak model and detection flow were explained. Then, the 10,000 packages inspection

simulation, that was generated by randomly connecting the 388 experimental reaction force data, was
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Fig. 5-17: One subject’s spirals in E1, P1, and E2.

conducted. The simulation validated that the PASF-based haptic leak-detection has the robustness against

the disturbance effects owing to the PASF.

Section 5.3 showed the PASF-based proficiency diagnosis. The minimum-angular-jerk trajectory and

practice schedule for the motor learning experiment were mentioned. Then, the trial errors, phase errors,

and drawn spirals were shown. According to the trial errors and drawn spirals, the periodic trajectories

enabled to evaluate continuous improvements in motor proficiency. According to the phase errors, the

periodic trajectories enabled to detect the small change from E2 to E3. Therefore, the PASF-based

proficiency diagnosis may be able to detect small proficiency improvement accurately.
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Chapter 6

Conclusions

This dissertation described the periodicity and aperiodicity for the separation, state control, distur-

bance compensation, and diagnosis. The basic concept was the periodic/aperiodic state composed of

a periodic state and aperiodic state, where the lifted periodic and lifted aperiodic states were uniquely

defined as low-frequency and high-frequency elements of the lifted periodic/aperiodic state, respectively.

The proposals described by this dissertation are as follows.

• Periodic/aperiodic separation filter (PASF)

• Periodic/aperiodic state feedback control

• Separation principle for periodic/aperiodic state feedback control

• Periodic/aperiodic motion control including six types

• Periodic-disturbance observer (PDOB)

• Enhanced periodic-disturbance observer

• PASF-based haptic leak detection

• PASF-based proficiency diagnosis

Chapter 2 described the periodic/aperiodic separation. In Section 2.2, the periodic/aperiodic state, pe-

riodic state, and aperiodic state were defined by using the lifting technique. The periodic/aperiodic state

was transformed using the lifting technique into the lifted periodic/aperiodic state, in which a constant
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element was defined as the lifted perfect periodic state, and the low-frequency elements were defined as

the lifted periodic state. Accordingly, the high-frequency elements were defined as the lifted aperiodic

state. Based on the definitions, the lifted PASF that separates the lifted periodic/aperiodic state into the

lifted periodic and aperiodic states was constructed, and the inverse lifting derived the PASF that sep-

arates the periodic/aperiodic state into the periodic and aperiodic states. In Section 2.3, the frequency

estimator was constructed based on the adaptive notch filter as a supplementary method for estimating

an unknown or varying frequency of the periodic/aperiodic state. The frequency estimator used a band-

pass filter to extract a fundamental wave from the periodic/aperiodic state, and the adaptive notch filter

estimates a fundamental frequency of the fundamental wave. Oscillation of the estimated fundamental

wave was attenuated by a low-pass filter.

Chapter 3 described the periodic/aperiodic state control. In Section 3.2, the periodic/aperiodic state

feedback control was constructed by using the PASF. Then, the separation principle for control, observa-

tion, and separation of the periodic/aperiodic state was proved. In Section 3.3, the periodic/aperiodic state

feedback control was developed into the motion control framework. Then, the six periodic/aperiodic mo-

tion controls that assign position, force, and impedance controls to periodic motion and aperiodic motion

were constructed.

Chapter 4 described the periodic/aperiodic disturbance compensation. In Section 4.2, the PDOB was

constructed for periodic-disturbance compensation. Based on the model of a periodic disturbance, the Q-

filter of the PDOB was designed to be able to eliminate the periodic disturbance. Moreover, the nominal

stability analysis based on the characteristic equation showed that the delay of the PDOB does not affect

the nominal stability. Furthermore, according to the comparison with classical DOBs, the improved

periodic-disturbance suppression performance and robust stability in the tradeoff were confirmed using

the sensitivity and complementary sensitivity functions. In Section 4.3, the PDOB was developed into the

enhanced PDOB to enable to compensate for both the periodic and aperiodic disturbances. The enhanced

PDOB was constructed by the combination design of the PDOB and DOB.

Chapter 5 described the periodic/aperiodic diagnosis. In Section 5.2, the PASF was applied to the food

packing inspection as the PASF-based haptic leak-detection. The 10,000 packages inspection simulation,

that was generated by randomly connecting the 388 experimental yank data, was conducted. The sim-

ulation validated that the PASF-based haptic leak-detection has the robustness against disturbances and

achieves accurate anomaly detection. In Section 5.3, the PASF was applied to the motor proficiency eval-

uation for the drawing task of the minimum-angular-jerk logarithmic spiral. The PASF-based proficiency

– 136 –



CHAPTER 6 CONCLUSIONS

diagnosis enabled to detect a small change of the drawing proficiency.

Therefore, my research has integrally designed the filter, controls, and diagnostic methods for the

industry and humans on the basis of the periodicity and aperiodicity. The research might open up a new

vista that facilitates the separated design and analysis for periodic/aperiodic phenomena in the field of

the integrated design engineering.

Despite the novelty and improvements of the proposals, they still have limitations regarding inter-

ference between the estimated periodic and aperiodic states by the PASF. An ideal PASF is impossible

to realize because the lifted periodic state was defined as low-frequency elements of the lifted peri-

odic/aperiodic state. In other words, the ideal separation is impossible because an ideal low-pass filter

cannot be causally constructed. Consequently, the interference occurs and affects the controls and diag-

noses based on the PASF. However, the interference is not dominant and could be ignorable according

to Subsection 2.2.2. Besides, my research has future works on consideration of continuous-time and

sampled-data systems in addition to the discrete-time system. The works could expand the applicable

range of the proposals.

The proposals are expected to have an impact on the society. The periodic/aperiodic motion control

can realize periodic velocity and aperiodic impedance control, which is suitable for repetitive robot op-

erations under sudden human contacts. The control enables a robot to achieve repetitive and precise

operation and soft contact with humans. The enhanced PDOB based on the PDOB, which can sup-

press periodic and aperiodic disturbances, is significant for industrial applications. This is because most

industrial machines work repetitively and induce periodic and aperiodic disturbances. Moreover, the

PASF-based haptic leak detection has already demonstrated its usefulness to the industrial application.

Finally, the PASF-based proficiency diagnosis, which has already performed the accurate motor profi-

ciency evaluation for healthy young people, has the potential to evaluate also rehabilitation of stroke

survivors accurately.
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