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Abstract

Heartbeat is one of significant vital signs, and the monitoring of heart rate (HR)

enables detecting the disorders of human health. In the past decades, many wear-

able sensors like electrocardiography (ECG) and photoplethysmography (PPG), have

been applied to detect heartbeat based on information and communication tech-

nology (ICT). However, wearable devices are unsuitable in some situations, due to

the additional burden on subjects. In contrast, non-contact heartbeat detection via

Doppler radar realizes remote monitoring, which avoids violation of privacy and dis-

turbance of light and ambient temperature over camera and passive infrared (PIR).

In non-contact heart rate (HR) monitoring via Doppler radar, the disturbances from

respiration and/or body motion is treated as a key problem in the estimation of HR.

To date, numerous methods on non-contact measurement of human’s heartbeat

movements have been developed. The limitations of the existing detection methods,

i.e., the low robustness to motion artifacts (MA) and the extra demand for continuous

parameter regulation, imply that they are not ideal candidates for heartbeat detection

in a number of circumstances where subjects’ movements happen frequently.

This thesis first proposes a sparse spectrum reconstruction (SSR) approach to

mitigate the noise in received Doppler signal, by taking into account the spectral

sparseness of heartbeat. Furthermore, a blind source separation (BSS) approach is

further proposed to achieve better extraction of heartbeat in time domain, utilizing its

temporal sparseness, incorporating the proposed SSR approach. The proposed non-

contact heartbeat detection method is both provided with stability and convenience

of use. In addition, the HR estimation method using our proposal delivers more satis-

factory precision and robustness over other existing methods, which is demonstrated

through measurements under various conditions, gaining both smallest absolute errors

of HR estimation for sitting still and typewriting.

In Chapter 1, the background of HR estimation using Doppler radar, some typical

existing approaches, and the two proposed approaches of SSR and BSS, are introduced

in turn.
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In Chapter 2, as related works to our proposal, the existing methods for heartbeat

detection and their limitations, and motivations are elaborated.

In Chapter 3, the stochastic gradient approach is applied to reconstruct a high-

resolution spectrum of heartbeat, by proposing the zero-attracting sign least-mean-

square (ZA-SLMS) algorithm. To correct the quantized gradient of cost function, and

penalize the sparse constraint on the updating spectrum, more accurate heartbeat

spectrum is reconstructed. To better adapt to the noises with different strengths

caused by subjects’ movements, an adaptive regularization parameter (AREPA) is

introduced in the ZA-SLMS algorithm as an improved variant, which can adaptively

regulate the proportion between gradient correction and sparse penalty. Moreover, in

view of the stability of location of spectral peak associated with HR when the size of

time window slightly changes, a time-window-variation (TWV) technique is further

incorporated in the improved ZA-SLMS (IZA-SLMS) algorithm, for more stable HR

estimation.

In Chapter 4, the proposed BSS decomposes the spectrogram of mixture signal into

original sources including heartbeat using non-negative matrix factorization (NMF)

algorithms, through learning the complete basis spectra (BS) by a hierarchical clus-

tering. Moreover, to exploit the temporal sparseness of heartbeat component, two

variants of NMF algorithms with sparseness constraints are applied as well, namely

sparse NMF (SPNMF) and weighted sparse NMF (WSPNMF). In particular, over the

uniform sparseness constraint of SPNMF algorithm, the WSPNMF algorithm further

penalizes weighted sparseness constraints on each updating estimated signal, focusing

on the evident difference of sparseness between heartbeat and other sources in time

domain.

In Chapter 5, our proposal on HR estimation via Doppler radar, i.e., the SSR

approach acting on heartbeat spectrum reconstruction and the BSS approach func-

tioning in extraction of heartbeat component, is concluded. Finally, some possible

research directions are discussed based on specific applications.
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Chapter 1

Introduction

Electronic health (e-Health) will have enormous applications in future healthcare

systems. A typical case is the telemedicine service and assisted living for elderly people

in an aging society [1]. In particular, heartbeat is one of significant vital signs, and the

monitoring of heart rate (HR) enables detecting the disorders of human health [2–4].

Wearable monitoring devices (attached to chest, wrist, fingertip, or earlobe) require

the embedded electrodes to directly contact wearers’ skin, e.g., electrocardiography

(ECG) sensor [5] and photoplethysmography (PPG) sensor [6], which limits people’s

daily actions due to the additional burden [1,4]. An example of ECG sensor is shown

in Fig. 1-1.

1.1 HR Estimation via Doppler radar

In contrast, contact-free HR measurement has been increasingly drawing attentions.

The contact-free devices for HR measurement typically fall into several main cat-

egories, i.e., camera, passive infrared (PIR), and radar sensor [2]. Even though

imaging-based camera and temperature-based PIR achieve the remote detection of

heartbeat, subjects’ privacy may be violated in some circumstances, e.g., bathroom.

Also, the availability of detection by camera is limited by light and obstacles, and

the effect of RIP is easily influenced by temperature [2, 7]. Instead, the non-contact

detection via Doppler radar is of several evident advantages, e.g., availability to the
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Figure 1-1: ECG sensor [https://www.koenenco.nl/wp-content/uploads/2015/08/
JM-01-webiste-04.jpg]

patients with burn or skin disease, long-period monitoring owing to flexible range, and

good penetrability of electromagnetic wave that can pass through clothing [2,3,7]. A

continuous wave (CW) Doppler radar is one of the famous types of radar systems in

this filed due to its simplicity and high sensitivity [7], which is shown in Fig. 1-2. In

the last decades, Doppler radar-used heartbeat detection has been researched in many

fields, covering medical science and healthcare, etc [2, 3]. Specifically, chronic heart

failure patient study [8], sudden infant death syndrome (SIDS) monitoring [9], mon-

itoring of driver’s condition [10], seniors and children monitoring during sleep [11],

and life sensing after earthquake [12], are typical applications of this technology.

However, since radar signals are less sensitive than ECG or PPG, and the chest-

wall variation induced by heartbeat is generally smaller than that by respiration, the

interference of respiration and/or subjects’ movements forms a main challenge in the

HR estimation with Doppler radar [4, 13,14].
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Figure1-2:CWDopplerradar

1.2 CWDopplerradar

1.2.1 SignalTransmissionandReception

ThebasictheoryofDopplerradardetectionforvitalsignsisremotelycapturing

andanalyzingthephasevariation,reflectedbyhumanphysiologicalmotion. Fig.

1-3showsatypicalradarfront-endstructurethatfunctionstoHRmeasurement,

withsignalflow.Theunmodulatedsignaltransmittedfromtransmitter(Tx)canbe

expressedas

T(t)=cos[2πft+Ψ(t)], (1.1)

wheref,t,andΨ(t)respectivelyrepresentcarrierfrequency(24GHz),transittime,

andinitialphase. Afterthetransmissionthroughadistanced0,thetime-varying

chest-walldisplacementx(t)ofatargetduetobreathingandheartbeatchangesT(t),

andthesignalreceivedatreceiver(Rx)becomes

R(t) cos

[

2πft
4πd0
λ

4πx(t)

λ
+Ψ

(

t
2d0
c

)]

, (1.2)
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Figure1-3:TypicalstructureofDopplerradarheartbeatdetectionsystem

omittingtheamplitudeandextranoise.λandcdenotewavelengthandvelocityof

electromagneticwave,respectively.

Forasingle-toneperiodicmovement,x(t)=msin2πfmtwherefm andmare

frequencyandamplitudeofasubject’smovement,respectively.Sincetheperiodic

cardiopulmonarymovementismorecomplex,itcanbedecomposedintosingle-tone

signals,i.e.,xh(t)=mhsin2πfhtinducedbymotioninformationofheartbeat,and

xr(t)=mrsin2πfrtbyrespiration.IntheHRmeasurement,theobjectiveistodetect

theHRdenotedasfh,byprocessingbasebandsignalsthatwillbedepictedinthe

followingsubsection.

1.2.2 GenerationofBasebandSignals

InCWDopplerradar,twomainoperationsareexecutedtoR(t),namelydown-

conversionwithreferencesignal(i.e.,T(t))andquadraturemixing. Theresultant

basebandsignalsconsistingofin-phasesignalBI(t)andquadraturesignalBQ(t)are

BI(t)=cos

[
4πx(t)

λ
+θ+∆Ψ(t)

]

, (1.3)
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BQ(t)=sin

[
4πx(t)

λ
+θ+∆Ψ(t)

]

, (1.4)

whereθ=(4πd0)/λisthephaseshiftdeterminedbythedistanced0betweenthe

radarandthetarget.∆Ψ(t)=Ψ(t) Ψ(t 2d0/c)istheresidualphasenoise.In

addition,toremovethepossibledirectcurrent(DC)offsetmainlyduetoclutter

reflections[2],acluttercalibrationisimplementedtoadaptivelyadjustthemean-

amplitudeofbasebandsignalstozero.Ingeneral,thetwoquadraturebaseband

signalsarecombinedasacomplexsignal:

C(t)=BI(t)+iBQ(t), (1.5)

followedbyanalog-to-digitalconversion(ADC)anddigitalsignalprocessing(DSP),

toanalysedigitalizedC(t).

1.3 ExistingApproaches

Alongwiththegrowinginterestsinnon-contactHRmonitoring,numerousdetection

approacheshavebeendeveloped[14–18].Ingeneral,existingapproachesmainlyfall

intofrequencydomainand/ortimedomainasfollows:

(1)Frequencydomain:FastFouriertransform(FFT)[14,16,19–22]andcontinuous

wavelettransform(CWT)[4,15,23–26].

(2)Timedomain:Adaptivenoisecancelation(ANC)[27],arctangent(AT)demodu-

lation[17],andensembleempiricalmodedecomposition(EEMD)[18].

Theapproachesin(1)areusualfrequencydomaintransformtechniques,whichare

calledconventionalonesofspectrumreconstructioninthisthesis.Incontrast,the

approachesin(2)typicallyrelyontheprocessingintimedomain.Theexistingmeth-

odsofheartbeatdetectionusingafore-mentionedapproaches,havebeenshowntobe

abletoeffectivelyrealizeremoteHRestimation,inrelativelyidealconditionswhere
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subjects’ movements rarely occur, e.g., sitting still [4,9,16], sleep monitoring, and in-

fant monitoring [28,29]. Meanwhile, when a subject is relatively static, the heart rate

variability (HRV) is not obvious along with time, differing from the case when body

motion exists [30,31]. In fact, a degree of body motion should be considered in many

practical applications, such as, HR monitoring to office workers or drivers [15]. How-

ever, most existing detection methods cannot deal with the motion artifacts (MA),

i.e., the noise interference caused by body motion, resulting in a significant perfor-

mance degradation [4,9]. Also, in the presence of body motion, a real-time parameter

regulation for some existing approaches is indispensable due to the observable HRV.

A typical case is the selection of scale factor for the CWT-based methods [15, 25],

which will be elaborated in Section 2.1. Furthermore, typical state-of-the-art meth-

ods on HR estimation using various approaches, and their limitations are reviewed in

Chapter 2.

1.4 Proposed Approaches

In view of the limitations of existing approaches and motivations in non-invasive

heartbeat detection, we first proposes a frequency domain-based sparse spectrum

reconstruction (SSR) approach functioning in reconstructing heartbeat spectrum, for

more reliable HR estimation considering MA. Then, to improve the noise elimination

in time domain, an unsupervised blind source separation (BSS) approach is further

proposed inheriting the basic framework of HR measurement with the proposed SSR,

bringing about performance improvement.

1.4.1 SSR in Frequency Domain

Considering the evident advantages of ZA-SLMS algorithm for sparse signal recon-

struction, i.e., superior performance and robustness, we first apply it to the SSR part

in our proposed method of heartbeat detection. In particular, the proposed ZA-SLMS

algorithm can suppress well the interference originated from respiration and/or mod-

erate body motion, e.g., typewriting. As a preliminary work, we have shown the
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validity of the ZA-SLMS algorithm in [40].

To the sparse adaptive algorithms, including our proposed ZA-SLMS algorithm,

the regularization parameter (REPA) plays a key role to balance the proportion be-

tween gradient correction and sparse penalty, which should be properly chosen to

guarantee satisfactory performance [44]. As mentioned above, MA often overwhelms

the heartbeat signal due to its weakness, which directly associates with the variation

of amplitude of radar signal [30, 31, 41]. In addition, the diversity of noise strengths

based on different kinds of body motion is distinct [9,30,31,41]. However, the constant

REPA probably determines an improper weight of sparse penalty on updating spec-

trum, against different subjects’ activities. Motivated by the fact that the amplitude

variation of received radar signal relates with the strength of interference by body

motion, a novel adaptive REPA (AREPA) is introduced by further proposing an im-

proved ZA-SLMS (IZA-SLMS) algorithm. The IZA-SLMS algorithm can adaptively

regulate the sparse penalty to a proper proportion based on the standard deviation

of radar signal, to obtain more accurate HR estimation over the ZA-SLMS algorithm,

facing various subjects’ activities.

In another aspect, by incorporating the conventional FFT [14] or CWT [26], a

practical HR acquisition technique termed time-window-variation (TWV) applied in

non-contact heartbeat detection has gained popularity. Unlike the usage of the single

time window adopted in most existing methods, the TWV technique reconstructs

spectra by the samples of received signal in multiple time windows with varying

lengths, then the highest peak on the combined spectrum is selected within a normal

HR range [14,26]. Although the TWV with FFT or CWT, reduces the measurement

errors of HR over usual single window, it has not been attempted to incorporate more

advanced method of spectrum reconstruction, e.g., the SSR. In this thesis, to further

enhance the stability of HR estimation, TWV is applied to SSR by the improved

IZA-SLMS algorithm.
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1.4.2 BSS in Time Domain

Moreover, the other main purpose of this thesis is to present an easy-to-use, compact,

and accurate unsupervised BSS approach based on non-negative matrix factorization

(NMF) structure [45–48], to robustly demix Doppler signal into individual sources,

i.e., heartbeat, respiration, and body motion, combining with SSR for HR estima-

tion. The structure of NMF is fairly simple that merely needs observation signal of

single channel, bringing about high computational efficiency compared with typical

emerging learning methods, e.g., deep clustering [49]. In addition, besides the stan-

dard NMF algorithm [45,46], we further propose two improved NMF algorithms with

sparseness constraint, i.e., the sparse NMF (SPNMF) [50] and the weighted sparse

NMF (WSPNMF), to exploit the inherent sparsity of heartbeat in time domain.

In BSS, the learning of a separation matrix that we name as basis spectra (BS), is

one of important tasks for demixing observation signal. In view of the time-varying

feature of vital signs that includes the variability of HR induced by physical or mental

conditions [30], the training data for supervised learning of BS (heartbeat-only signal)

hardly satisfy a continuous monitoring, specifically for infants or patients who have

troubles in self-control [51] or sleeping people [52]. In view of the fact, we propose an

unsupervised manner-based BSS, consisting of three steps: two progressive clusterings

and a complete learning on BS. 1) First Clustering: In this step, the short-time

Fourier transform (STFT)-based magnitude spectrogram X is first obtained by the

received radar signal in a small batch, which is equal to the size of a time window

in our method. Then, the NMF algorithm decomposes the non-negative part of X

(denoted by X+) into a set of underlying basis vectors, acting on the reconstruction

of eventual BS. 2) Second Clustering: Unlike the direct factorization in the first

clustering, the prior knowledge of source signals, i.e., the number and components,

should be known beforehand for the second clustering. Although it is possible to

neglect movements to a static examinee through cardiopulmonary sounds obtained by

attached auscultation [51], even tiny body motions evidently vary Doppler signal [40],

which is also treated as an individual source to motionless state (e.g., sitting still)
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in our proposal, besides heartbeat and respiration. On the assumption of I = 3

sources, the specific region of X+ concentrating dominant heartbeat and respiration

with periodicity is chosen as decomposition target by NMF algorithms, for acquiring

I reference BS (RBS). 3) Complete BS Learning: To learn a complete BS in each

time window, RBS are dynamically updated by analyzing the maximum similarity

between the respective basis vectors, obtained in the first and second clusterings.

Based on the determined complete BS, the observation matrix (i.e., X+) is factorized

to estimate sources, and the interested heartbeat can be extracted through observing

spectrum magnitude. A part of results of the proposed BSS approach have been

published in [53], as a preliminary work.

It is easy to find that temporal heartbeat signal has prominent sparsity, due

to the generation mechanism in ventricles, namely instantaneous impulsive motions

happen during the systolic phase [13]. In the specific application of BSS for heartbeat

source (e.g., heart sound), the main factorization algorithm is limited to standard

NMF yet [51,54], which may not reach satisfactory decomposition with the sole non-

negativity penalty. Inspired by the fact, we further implement sparseness penalties

on the estimated signals in the both clusterings to improve local representations, by

applying SPNMF algorithm and WSPNMF algorithm. Due to the obvious temporal

sparsity of heartbeat, it is comprehensible that holistic sources also have certain

sparsity, and the SPNMF algorithm imposes a uniform sparseness constraint during

mixture decomposition [50]. In addition, we apply flexibly the proportions of sparsity

penalty of the SPNMF algorithm on each estimated signal, through adaptively sensing

periodicity of updating signals, naturally obtaining a modified SPNMF algorithm

termed WSPNMF in this thesis.

1.5 Contributions

In contrast to most existing non-invasive HR estimation methods that can not well

balance convenience of use and anti-noising to movements, our proposal achieves

robust HR measurement on the compromise of wide practicability, exploiting the
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temporal and spectral sparseness of heartbeat source. In particular, over usual BSS,

our proposed BSS has three advantages: (i) Clustering-induced unsupervised manner;

(ii) Compact demixing architecture; and (iii) Merely requiring single-channel input

data.

Through the experiments on five subjects, we evaluated the effects of the two pro-

posed approaches, i.e., SSR and BBS. The HR measurement methods by our proposal

outperform some existing methods presented recently, both against motionless and

active conditions. In particular, in the activity of typewriting, the proposed methods

using IZA-SLMS with TWV and the one using WSPNMF, respectively acquired the

most precise estimations with average errors of 3.79 beats per minute (BPM) and

3.35 BPM.

1.6 Outline of Dissertation

The remainder of this thesis is organized as follows.

• Chapter 2 reviews the HR estimation-aimed existing methods using various

approaches in frequency domain or time domain, and indicates their limitations

and motivations.

• Chapter 3 elaborates the proposed SSR approach in frequency domain based

on the corresponding framework, with performance evaluation by experiments.

• Chapter 4 further elaborates the proposed BSS approach in time domain based

on the enhanced framework, with performance evaluation by experiments.

• Chapter 5 concludes this thesis, and indicates the possible research direction in

future.

For better understanding this dissertation, the organization and the relation among

key chapters are shown in Figs. 1-4 and 1-5, respectively. Also, Tables 1.1 and 1.2

list the limitations of existing approaches based on frequency domain or time domain,

and the contributions of Chapters 3 and 4, respectively.
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Figure 1-4: The organization of this dissertation
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Figure 1-5: The relation among key chapters
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Table 1.1: Limitations of existing frequency-based approaches and contributions of
Chapter 3

Research Problem

• The interference of respiration and/or sub-
jects’ movements forms a main challenge
in the HR estimation with Doppler radar
[4, 13,14].

Limitations of Existing
Approaches • Fast Fourier transform (FFT) [14,16,19–22]:

An incorrect heartbeat detection probably
occurs due to body motion, resulting in an
evident degradation of performance.

• Continuous wavelet transform (CWT) [4,15,
23–26]: For continuous measurement of HR,
a real-time regulation of scale factor associ-
ated with HR is necessary.

Proposed Approach

• A robust heartbeat detection method is pro-
posed considering the sparseness of heart-
beat spectrum, through enhancing sparse
spectrum reconstruction (SSR) by applying
the ZA-SLMS algorithm.

• An improved ZA-SLMS algorithm and the
incorporation of TWV technique are further
proposed.

Improvements

• Better robustness to noises originated from
respiration and body motion.

• The usage becomes more convenient, avoid-
ing real-time regulations of parameters.
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Table 1.2: Limitations of existing time-based approaches and contributions of Chapter
4

Research Problem

• The interference of respiration and/or sub-
jects’ movements forms a main challenge
in the HR estimation with Doppler radar
[4, 13,14].

Limitations of Existing
Approaches • Adaptive noise cancelation (ANC) [27]: The

respiration-only signal as reference is diffi-
cultly acquired, and multiple antenna struc-
tures may be infeasible in some scenarios.

• Combination of arctangent (AT) demodula-
tion [17] and ensemble empirical mode de-
composition (EEMD) [18]: The method pre-
sented in [9] is clarified to difficultly deal with
body motion, out of specific treatment such
as dynamic motion compensation.

• Singular spectrum analysis (SSA) [40]: The
SSA-based abstraction of heartbeat compo-
nent heavily depends on spectrum distribu-
tion of other sources, i.e., respiration and
movements.

Proposed Approach

• An unsupervised blind source separation
(BSS) based on non-negative matrix factor-
ization (NMF) structure, is further proposed
to abstract heartbeat component, based on
the proposed method [40] in Chapter 2.

• By exploiting the temporal sparseness of
heartbeat signal, two sparse versions of NMF
algorithms named SPNMF and WSPNMF
are proposed as well.

Improvements

• Improved accuracy of HR estimation owing
to better heartbeat abstraction.

• Compact structure of sources separation by
NMF algorithms, without training phase.
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Chapter 2

Related Works

In this chapter, some typical approaches in state-of-the-art HR estimation methods

are first reviewed. Then, the limitations of existing approaches, and the motivations

including the prominent temporal and spectral sparseness of heartbeat are depicted,

respectively.

2.1 Existing Methods for HR Estimation

To date, numerous methods on non-contact measurement of human’s heartbeat move-

ments have been developed, which apply various approaches of signal processing

falling into either frequency domain [4, 14, 16, 23, 24, 26, 40] or time domain [4, 9,

13,27,40].

2.1.1 Frequency Domain-Based Approaches

As a conventional frequency domain approach, FFT can divide the sampled data into

each frequency component, which separates heartbeat and noises, and it has been

widely applied in HR measurement [14, 16, 19–22]. In [14], FFT is first combined

with the TWV technique, which can fast acquire HR with smaller errors. In [16], the

spectrogram of radar signal is calculated by the extended short-time Fourier transform

(STFT), then the R-R intervals (RRIs) can be observed by the period of neighboring
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Figure 2-1: The basic procedure of Spectrogram method [16]

peaks on the integrated spectrum, which is accumulated from the spectrogram in a

normal HR range. Fig. 2-1 shows the procedure of Spectrogram method for better

understanding. The effectiveness of the mentioned FFT-based methods have been

validated, when a few movements from subjects arise, such as usual sitting still.

However, Doppler radar signal is vulnerable to MA, which will bring incorrect RRI

measurements in the presence of body motion, accompanying markedly increased

errors [4, 9].

Unlike FFT, CWT has more flexible time-frequency resolution, which can increase

the resolution of low frequency range adapting to HR extraction. In the CWT-based

detection methods [4, 15, 23–26], to realize that the resultant wavelet coefficients can

correspond with heartbeat, the mother wavelet should have same or close frequency to

HR, which is determined by the key scale factor. To choose a proper scale factor, some

selection methods have been proposed [15,25]. In particular, Mogi et al. [15] presented

an adaptive scale factor selection method, namely, to search the wavelet coefficients

whose peaks count is equal to that of the voltage data generated from radar signal,

then the scale factor corresponding to the interested wavelet coefficients is chosen. For

intuitive illustration, the basic procedure of adaptive scale factor selection method

is shown in Fig. 2-2. For the usage of CWT-based methods, the scale factor is

30



Figure 2-2: The basic procedure of adaptive scale factor selection method [15]

typically constant, also, an improper choice or change probably lead to an inaccurate

heartbeat detection. However, HR varies along with time, and its variation will be

more significant when body motion occurs [30]. Correspondingly, a real-time and

appropriate selection of scale factor is desired to reliable HR measurement, which

may be difficult in most applications [16,40].

Meanwhile, some literatures have reported that MA components can be recog-

nized by acceleration data in wearable devices [30, 31, 41]. Specifically, Zhang et

al. [30] proposed a stable framework termed TROIKA. The TROIKA mainly consists
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of signal decomposition and SSR, which realizes high estimation accuracy against

strong MA, by PPG signal and acceleration data. In the signal decomposition part,

the interference from subjects’ movement can be removed relying on acceleration data,

then a relatively cleansed PPG signal can be obtained for SSR. Unfortunately, since

few studies proved that acceleration sensor can be effectively utilized in remote HR

monitoring, the removal of MA is a challenging task. Furthermore, unlike on-body

heartbeat detection, the respiration movement is another main noise source of the

non-contact way. When the TROIKA framework is assumed to be applied in the

HR measurement with Doppler radar, the residual noises of respiration and body

motion after signal decomposition, may bring serious influence on the reconstruc-

tion of heartbeat spectrum. In [30], a regularized focal under-determined system

solver (FOCUSS) algorithm [37] considering multiple-measurement-vectors, termed

RM-FOCUSS [38], has been used for SSR in TROIKA, due to the robustness to the

basis matrices with highly correlated columns. However, the FOCUSS-type algo-

rithms are sensitive to additive noise, and probably fail to reconstruct the interested

nonzero coefficients [37,38]. In view of the misfits of RM-FOCUSS algorithm for SSR

by Doppler radar signal, an anti-noise SSR algorithm is needed.

2.1.2 Time Domain-Based Approaches

So far, plenty of time domain approaches used for remotely detecting HR have been

studied, which mainly focus on the probe of heartbeat periodicity by signal amplitudes

[4, 13], or the extraction of heartbeat component by noise elimination [9, 27, 40]. In

[4], using Doppler signal, the peaks in autocorrelation function of calculated wavelet

coefficients are selected to estimate R-R intervals (RRIs), by means of the peak ratio

of autocorrelation. However, when an improper time-frequency resolution is chosen

in CWT, incorrect selection of peaks of autocorrelation easily occurs. In [13], radar

signal with inherent sinusoidal shape is trained by Guassian pulse, to represent a more

realistic pulsed characteristic of heartbeat. However, the application of Guassian

pulse training is only bounded to the examinees staying as basically motionless. Lu

et al. applied the ANC to suppress the interference of respiration, from the reflected

32



signal induced by chest-wall motions [27]. However, the respiration-only signal as

reference is difficultly acquired, and multiple antenna structures may be infeasible in

some scenarios. Hu et al. combined arctangent (AT) demodulation [17] and ensemble

empirical mode decomposition (EEMD) [18], to recover cardiopulmonary signals [9].

Therein, AT demodulation enables precise phase demodulation of the received signal

by the ratio of quadrature baseband signals, and EEMD repeatedly cleanses heartbeat

signal by decomposing the white noise-added data. However, the method presented

in [9] is clarified to difficultly deal with body motion, out of specific treatment such

as dynamic motion compensation. In [40], incorporating the SSR via the ZA-SLMS

algorithm, a singular value decomposition (SVD)-based time series decomposition

approach termed singular spectrum analysis (SSA) [42] was used to noise removal of

Doppler signal, for reliable heartbeat detection. However, the selection of time series

associated with heartbeat by SSA requires relatively rigorous spectrum analysis, and

respiration and MA that have close or same frequencies with actual HR will disorder

SSA [53]. In brief, most existing time domain de-noising means for contact-free

heartbeat extraction are difficult to get rid of disturbance of movements, and most

signal decompositions like EEMD and SSA have large computational burden [41],

correspondingly a novel signal processing approach is desired.

2.2 Limitations and Motivations

The limitations of the existing detection approaches, i.e., the low robustness to MA

and the extra demand for parameter regulation, imply that they are not ideal candi-

dates for heartbeat detection in a number of circumstances where subjects’ movements

happen frequently. As such, a more reliable and practical non-contact heartbeat de-

tection method is of urgent need for applications to more general scenarios.

In fact, some literatures have clarified that the sparse spectrum reconstruction

(SSR) approach can acquire higher spectral resolution than the conventional FFT

and CWT [30, 32], which inspires us to reconstruct a more accurate heartbeat spec-

trum by SSR. In another aspect, some robust adaptive (filtering) algorithms based on
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stochastic gradient descent (SGD), have been proposed for sparse channel estimation,

to effectively suppress strong noises [33]. However, the mentioned algorithms in [33]

cannot directly apply in SSR, that is, to reconstruct a high-resolution of spectrum by

certain sample data. Fortunately, the feasibility that sparse signal can be robustly re-

constructed using compressed data, by adaptive algorithms combining sparse penalty,

has been manifested in [34]. Also, the sparse adaptive algorithms have been demon-

strated to outperform most typical algorithms for sparse signal reconstruction [34–38].

Specifically, an improved sparse adaptive algorithm termed zero-attracting sign least-

mean-square (ZA-SLMS) realizes robustly the reconstruction of sparse signal, by re-

stricting the scale of gradient correction [39]. In this thesis, the ZA-SLMS algorithm

and its variants will be first applied to accomplish SSR of heartbeat component.

Furthermore, though SSR overcomes many limitations of conventional spectrum

reconstrction by utilizing the spectral sparsity of heartbeat, which greatly increases

the resolution of reconstructed spectra and simplifies the parameter settings [30,32,34,

40], the SSR is susceptible to the noises remained in received radar signal [40]. Even if

some improved SSR algorithms have been presented, such as the ZA-SLMS [39], their

performances still fairly rely on the previous temporal de-noising processing [40].

For the noise cancellation in time domain, signal decomposition has been widely

used in heartbeat detection methods, specifically, singular spectrum analysis (SSA)

is proved as a powerful approach to decompose signal due to the flexibility of oper-

ation [30, 40, 41]. The basic idea of SSA is to reconstruct multiple time series, using

the singular values calculated by the mapped matrix from the considered signal [42].

In SSA-based HR estimations, the selection of noise-free time series severely relies on

spectral interpretation (generally by Periodogram), and noise recognition by aided

knowledge [30, 41]. For instance, using Periodogram to calculate the spectra of each

time series from PPG signal and acceleration data, the MA component is recog-

nized and cancelled by removing the dominant magnitudes induced by acceleration

data, in [30,41]. Otherwise, the representative problem existing widely in algorithms

of spectrum reconstruction (e.g., Periodogram algorithm via FFT [43]), namely the

leakage effect, makes frequency components inseparable [30,43]. Through treating the
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leakage effect by spectrum subtraction, the heartbeat-induced spectral peaks become

prominent, which enables the precise extraction of the time series reflecting HR.

In contrast to the invasive detection, generally, acceleration sensor can not work

well for remotely measuring HR. Lacking of a feasible identification of noises in SSA,

the interference of respiration and MA becomes a challenging issue in the non-invasive

detection using Doppler radar signal [40]. More concretely, the nearby spectral am-

plitudes corresponding to respiration and/or movements weaken even overwhelm the

spectral peaks associated with HR, resulting in a noise-contaminated heartbeat sig-

nal, i.e., the targeted time series reconstructed by SSA. The obvious residual noises

easily restrain the effects of following frequency domain processings, due to the un-

solved leakage effect. In addition, the serious problem also limits the exploitation of

spectral sparsity of heartbeat in the usage of superior SSR, which has been presented

as an open question in [40]. To extract relatively cleansed heartbeat component for

Doppler radar detection, an alternative of SSA is urgently needed.

2.2.1 Sparseness of Heartbeat Signal

Fig. 2-3(a) intuitively illustrates a segment of heartbeat signal recorded by ECG

sensor in time domain, where the impluse characteristic of signal exhibits the evident

temporal sparseness. Also, the reconstructed spectrum by the heartbeat signal is

shown in Fig. 2-3(b), the spectral sparseness of heartbeat signal can be easily found

by the dominant power peak, and the other magnitudes are close to zero. In contrast,

most vital signs do not have obvious sparseness as heartbeat signal, such as respiration

or blink signals. Inspired by the remarkable sparseness both in time domain and

frequency domain, we improve the proposed approaches of BSS and SSR by penalizing

sparse constraint, which will be elaborated in the following context.
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Figure 2-3: A segment of heartbeat singal and its spectrum with sparseness
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Chapter 3

Proposed SSR Approach

In this chapter, first, an applied HR measurement framework incorporating the pro-

posed SSR approach is described. Then, three proposed SSR algorithms are depicted,

successively. Finally, the experimental results by multiple metrics are provided.

3.1 Framework of HR Measurement

To realize accurate HR estimation with Doppler radar during subjects’ movement, a

stable framework is proposed as shown in Fig. 3-1. Raw radar signal is processed by

pre-processing, signal decomposition, and temporal difference for noise elimination.

SSR yields a high-resolution spectrum reconstruction, following a binary decision that

decides whether TWV is adopted. Next, the spectrum peak tracking would find the

spectral peak corresponding to HR. For better understanding the superiority of the

proposed method, namely the robustness to MA, the ZA-SLMS algorithm and its

improved variant acting on SSR, and the introduction of the TWV technique are

elaborated.

In this thesis, the Doppler signal C(t) in each time window of T0 = 8 s is input

to the proposed framework for HR estimation. Note that 8 s is an appropriate size

of time window for heartbeat detection that has been adopted in [30,41], considering

that relatively large T0 can achieve a high spectrum resolution on the compromise

of prompt observation of HRV. Each signal processing part is depicted in order, as
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Figure 3-1: The flowchart of HR measurement framework, incorporating our proposed
SSR approach

follows.

3.1.1 Pre-Processing

Pre-processing consists of down-sampling and bandpass filtering. To reduce redun-

dant computational burden, the radar signal is first down-sampled to 125 Hz. Besides,

in view of the fact that the respiration rate typically varies within 0.1–0.3 Hz, while

HR varies in a higher range of 1–3 Hz [4], a bandpass filter with cutoff frequency of

0.4–5 Hz covering the variation range of HR, is adopted to down-sampled C(t). The

noises including MA outside of the objective frequency band can be filtered, also, the

sparsity of spectrum becomes more dominant.
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3.1.2 SignalDecomposition

Followedbythepre-processingofsignal,thesingularspectrumanalysis(SSA)[42,55]

isusedtoextractheartbeatcomponents,inthesignaldecompositionpart.First,the

filteredradarsignalisdecomposedintosometimeseriesbysingularvaluedecompo-

sition(SVD),then,thespectraofeachtimeseriesarecalculatedbythePeriodogram

algorithmexecutedviaFFT.Finally,throughsearchingforthehighestpeakina

givenHRrangeamongthereconstructedspectra,referringtothepreviousestimated

HR,thetimeseriescorrespondingtoheartbeatisobtained. Notethattheinterfer-

encebyrespirationandbodymotioncannotbecompletelyeliminated,specifically,

inthecasethatMAoccurs. Theresidualnoisesmotivateustoapplymorerobust

algorithmsforSSR.

3.1.3 TemporalDifference

Ingeneral,MAcomponentsareaperiodic,whilerespirationandheartbeatareapprox-

imatelyperiodic[30].Inordertopromotetheperiodicfluctuationsofthede-noised

radarsignal,thetemporaldifferenceisoperatedbetweensignaldecompositionand

SSA.TothetimeseriespresentingheartbeatofthelengthM =1000,whichisoutput

bySSA,i.e.,

y=[y1,y2,...,yM]
T, (3.1)

where(×)Tdenotesthetranspose,itsfirst-orderdifferenceisdefinedas

y′=[y2 y1,y3 y2,...,yM yM−1]
T. (3.2)

Tocoincidewiththecountofsamplesiny,i.e.,M,y′isapproximatedby

y′=
[
0,y′T

]T
. (3.3)

Bytemporallydifferentiatingthede-noisedradarsignal,therandomspectralpower

inducedbyMAcanbereduced[30].
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Figure3-2: AncomparisonofspectrumreconstructionmethodsbyDopplerradar
signal,whereTsandfsrespectivelydenotesamplingperiodandfrequency.(a)Con-
ventionalFFT.(b)ProposedSSR

3.1.4 SSR(withTWV)

SSR[32,35,36]overcomesthetraditionalNyquistsamplinglimit,whichenablesthe

acquisitionofhigh-resolutionspectrum,bydevelopingthesparsityofsignal.Themain

taskofSSRistoreconstructthespectrumofinterest,i.e.,theheartbeatspectrumin

thisstudy,basedonanunder-determinedlinearequationasfollows,

y′=Φs+v. (3.4)

Heresisanunknownsolutionoforiginalheartbeatspectrumwithinherentsparsity,

sk
2,k }1,×××,N|isthecorrespondingheartbeatspectrumoflengthN=4096

(M ≪ N),vrepresentstheM-lengthresidualnoisesofrespirationandbodymove-

ment,andΦ CM×N isaknownbasismatrixwiththeelementsdefinedas

ϕj,k=e
i2π
N
jk,j=0,×××,M 1;k=0,×××,N 1. (3.5)

ByaproperchoiceofSSRalgorithms,thefrequencybinscanbedramaticallyin-

creasedbylimitedsamplesofDopplerradarsignal,asshowninFig.3-2. Owing
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totheprevioussignalprocessingoperations,thespectralpowerofnoisesisgenerally

zeroorclosetozero,whichcanbefurthersuppressedbyintroducedsparseconstraint,

andthepeakassociatedwithHRbecomesmoredominant.

EventhoughFOCUSS-typealgorithms[37,38]havebeendemonstratedtoaPPG

signaltorealizeSSR[30,41],theprominentspectralpowerofHRprobablycannot

bereconstructedinalowsignal-to-noisepowerratio(SNR).Consideringthatthe

instabilityofFOCUSS-typealgorithmsagainsttheresidualrespirationnoiseandMA,

twosparseadaptivealgorithmsbasedonSGDapproachareappliedinSSRpart,

i.e.,theZA-SLMSalgorithmanditsimprovedvariant. Also,tofurtherdevelop

thepotentialofperformanceoftheproposedalgorithms,TWVtechniquecanbe

incorporatedbysacrificingseveraltimesofcomputingtime,whichwillbeseparately

statedlateron.

3.1.5 SpectrumPeakTracking

Attheend,thespectralpeakcorrespondingtoHRcanbeestimatedbyacompact

procedure,whichisdividedintofollowingthreesteps:

1.InitialSetting:AvariableHRsearchrangeof20BPMisinitializedaimingto

differentsubjects,consideringthattheHRVisgenerallywithinaspecificrange

toanormalsubjectwithoutbigmotion[16].

2.PeakSelection:SincetheHRsintwosuccessivetimewindowswithashort

slidingtimeisclose,andtheslidingtimeofS0=2sadoptedinthispaper

issufficientlysmalltoatimewindowofT0=8s(generallyS0≥T0/2)[30],

thesearchrangedenotedby[Nprev δ,×××,Nprev+δ]isusedtosearchHR

forbothBI(t)andBQ(t)data.HereNprevisthepreviousestimatedHR,and

searchboundisδ=10BPM.Throughselectingthepeakwiththelargestpower

inthegivensearchrange,onthespectrareconstructedrespectivelybyBI(t)

andBQ(t),theHRisestimatedbythecorrespondingfrequencythatwename

currentestimationNcur.
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Figure3-3:AdaptivefilterframeworktosolveSSRproblem.(a)SSRproblem.(b)
UnknownFIRandadaptivefilter

3.Verification:Duetothenoisecomponentsonthespectra,someprobablywrong

HRestimationscannotbeavoided.TocopewithanovermuchabruptHRVthat

isabnormalinashortperiod,NcurisreplacedbyNprevifNprev Ncurisbigger

thansomethreshold,suchasexperimental6BPM.

3.2 ZA-SLMSAlgorithmforSSR

Inourproposedframework,SSRisregradedasakeypart.Fig.3-3(a)intuitively

showstheobjectiveofSSRproblem,namely,toreconstructtheoriginalheartbeat

spectrumbyanupdatingsignals(n),relyingonthesamplesofradarsignaly′anda

givenbasismatrixΦ.Eventually,areconstructedspectrumsk(n)
2,k }1,×××,N|

canbeobtainbythesteady-states(n),anditwillbedealtwithinthefollowing

trackingofspectralpeak.

3.2.1 AdaptiveFilter

Adaptivefilterhasdrawngreatattentionsforalongtime,duetoitssimplestructure

andreliableperformancefacinginterference[56,57],whichisthepremiseoftheusage

ofadaptive-typealgorithms,includingourproposedZA-SLMSandIZA-SLMS.A

popularadaptivefilterframeworkisshowninFig. 3-3(b),whichfeaturesinthe
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Table3.1:ParameterscorrespondencesbetweenSSRproblemandadaptivefilter

SSRProblem AdaptiveFilter
ϕj mT(n)
s(n) h(n)
yj d(n)

estimationofunknownfiniteimpulseresponse(FIR)h=[h1,h2,...,hN]
T bythe

criticaladaptivefilter. Moreconcretely,therecursionerror

e(n)=d(n) mT(n)h(n) (3.6)

isextractedtoconstructthecostfunctionsofadaptivealgorithms,thefiltercoeffi-

cientsh(n)=[h1(n),h2(n),...,hN(n)]
Tareiterativelyreconstructedtoestimateh.

Hered(n)=mT(n)h+z(n)istheinner-productofinputsignal

m(n)=[m(n),m(n 1),...,m(n N+1)]T (3.7)

termedtrainingsequenceandh,contaminatedbyadditivenoisez(n).

Inviewofthefeasibilitythatsparsesignalcanbereconstructedbyadaptivefilter

[34],inthispaper,heartbeatspectrumisreconstructedbasedonthecorrespondences

ofparametersbetweenSSRproblemandadaptivefiltershowninTable3.1. As

showninFig.3-3,therowvectorsϕj,j }1,×××,M|inΦactingasm(n)andthe

correspondingelementiny′actingasd(n),areusedcircularly,tomakes(n)toreach

steady-state.

3.2.2 ZA-SLMSAlgorithm

Basedonadaptivefilter,theproposedZA-SLMSalgorithmisdescribedhere.Least-

mean-square(LMS)algorithmisapopularadaptivealgorithmduetoitssimplicity

andpracticability[56,57],andmanysparseversionshavebeendeveloped[39,44,58].

SincetherecursionupdatingequationoftheZA-SLMSalgorithmisderivedfromthe
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Figure3-4:GradientdescentinthecaseofLMSalgorithm.

zero-attractingleast-mean-square(ZA-LMS)algorithm[58],thecostfunctionofthe

ZA-LMSisrecalled:

GZA−LMS= e2(n)

gradientcorrection

+λ∥h(n)∥1

sparsepenalty

, (3.8)

whereµisastep-sizedecidestheconvergencerate,λisaREPAthattradesoffthe

gradientcorrectionandthesparsepenalty,and∥×∥1istheEuclideanℓ1-norm.The

recursionupdatingequationisderivedbythegradient∇GLMSasfollows,

h(n+1)=h(n)+µe(n)m(n)

gradientcorrection

γsgn(h(n))

sparsepenalty

, (3.9)

whereγ=µλtermedzeroattractionfactorplaysasimilarrolewithλ,i.e.,tobalance

theproportionbetweenthecorrectionofgradientandsparseconstraint,andthesgn(×)

isacomponent-wisesignfunctiondefinedas

sgn(x)=






x

x
, ifx̸=0,

0, otherwise.
(3.10)
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Figure 3-5: The comparison of general gradient descent and proposed gradient descent
with restriction under impulsive noises

Fig. 3-4 intuitively shows the LMS algorithm-induced gradient descent, where h

and h(n) are assumed to locate a plane denoted by h1 and h2, and h(n) approaches

iteratively h by decreasing GLMS to the minimum e2min. In Eq. (3.8), the introduced

sparse penalty benefits the exploitation of sparsity, resulting in the acquisition of

more realistic heartbeat spectrum [39,44,58].

Furthermore, some literatures have clarified that many artificial or physical noises

have impulsive nature departing from Gaussian distribution, including biological noise

[59–61]. Such environments probably lead severe performance degradation to adaptive

algorithms due to the unstable gradient descent, and the modification of gradient by

restricting error e(n) is regarded as an effective way to suppress sudden disturbance

[39, 62]. Fig. 3-5 shows the updating process of restricted gradient descent, which

enhances the stability of general gradient descent. Through quantifying the updating

of e(n), the recursion updating equation of ZA-SLMS algorithm is obtained,

h(n+ 1) = h(n) + µsgn(e(n))m(n) γsgn(h(n)). (3.11)
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Figure 3-6: Recursion procedure of the ZA-SLMS algorithm

which consists of restricted gradient correction and ℓ1-norm-based sparse penalty.

The recursion procedure of the ZA-SLMS algorithm is shown in Fig. 3-6. Through

applying alternatively the gradient correction by LMS and the sparse constraint by ℓ1-

norm on updating signal, the process of SSR by ZA-SLMS is summarized in Method

1.

3.3 Improved ZA-SLMS Algorithm

Although the ZA-SLMS algorithm can realize robustly SSR, it is difficult for this

algorithm to always reach high-accurate HR estimation under various conditions,

limited by the fixed weight of sparse constraint. The amplitude of radar signal varies

significantly along with ambient environments, therein, the movements from subjects

are regarded as one of the most causes [30, 31, 41]. Fig. 3-7 shows an intuitive

comparison of amplitude variations of BI(t) and BQ(t) against different subjects’

activities, one can find that the amplitude variations on typewriting accompanying

body motion, are more obvious than those of sitting still. The obvious fluctuations

of radar signal probably bring significant decrease of accuracy, due to an improper

proportion between gradient correction and sparse penalty by a constant REPA λ.

To better regulate the weight of sparse constraint dealing with different subjects’
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Method1ZA-SLMSalgorithmforSSR

Input:Φ,y′

Output: s(n)
1:Initializes(1)=0,n=1,chooseµ,λ.
2:whilen<C(Cisagivenmaximumiterationrun)do

mT(n)=ϕj,

d(n)=yj,

wherej=mod(n,M),withmod(×)denotesthemodulofunctionthatcalculate
remainderofdivision.

3: Calculaterecursionerror

e(n)=d(n) mT(n)h(n).

4: Correctgradientofs(n)byLMS

s(n+1)=s(n)+µsgn(e(n))m(n).

5: Penalizesparseconstraintbyℓ1-norm

s(n+1)=s(n+1) γsgn(s(n)).

6: Iterationrunincreasesbyone

n=n+1.

7:endwhile

activities,anadaptiveREPA(REPA)isproposedtoadaptivelychangethescaleof

REPA,byincorporatinganimprovedZA-SLMSalgorithmnamedIZA-SLMS.

TheproposedAREPAisgivenby

λada=λδ+
∇
σ
)
/
∇
σ (3.12)

whereλisaninitialREPA,σisthestandarddeviationofy′,andδisthethreshold

ofAREPA,respectively.Thefunctionsofσandδareasfollows:

•σ:Toasmallamplitudevariationofy′,λadaissetasarelativelylargevalue

bysmallσ,whentheweightonsparsepenaltycorrespondinglyincreases.In

contrast,whentheamplitudelargelyvariesbystrongMA,λadarelativelyde-
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Figure3-7:Anexampleshowingthecomparisonoftheamplitudesofradarsignalon
differentsubjects’movements.(a)Asegmentofradarsignalonsittingstill.(b)A
segmentofradarsignalontypewriting

creasesduetoalargerσ.Hence,apartofweightwillbetransferredtogradient

correctionfromsparsepenalty.

•δ:TopreventanovermuchfastchangeofAREPA,δisintroducedtoenhance

thestabilityofproportionregulation,guaranteeingareasonableacquisitionof

AREPA.

BasedonthethecostfunctionoftheZA-SLMSalgorithmdefinedinEq.(3.8),

thecostfunctionoffurtherproposedIZA-SLMSalgorithmisdefinedbyintroducing

AREPA,

G=e2(n)+λada∥h(n)∥1. (3.13)

Similarly,thecorrespondingrecursiveupdatingequationisderivedas

h(n+1)=h(n)+µsgn(e(n))m(n) γadasgn(h(n)), (3.14)

whereγada=µλadaisanadaptivezeroattractionfactor.IncontrasttoZA-SLMS,

anadaptiveAREPAparameterisintroducedintothecostfunction,andtheprocess

ofSSRbytheimprovedIZA-SLMSissummarizedinMethod2.
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Figure 3-8: The flowchart of TWV framework incorporating IZA-SLMS algorithm for
SSR

3.4 IZA-SLMS Algorithm Combining with TWV

Unlike the single time window used in most detection methods, TWV technique re-

constructs the interested spectra by several time windows with slight length variation,

namely length-varying samples of data. TWV makes it possible that higher accuracy

is acquired, combining spectrum transform methods of FFT [14] or CWT [26]. In a

time window with short-period, e.g., 5 s, the received radar signal contains only one

or two respiration cycles, and just an approximate respiratory rate can be calculated

by the limited cycles [14,26]. Since a short time window cannot fully reveal the peri-

odicity of a respiration signal, the approximate respiratory frequency typically varies

depending on the choice of time windows with different size. In contrast, a heartbeat

signal has more cycles than those of a respiration signal in a given time window,

which are up to 3–6 times [14, 26]. Owing to the better reveal of the periodicity of a

heartbeat signal, the HR can be more reliably acquired than respiratory rate in some

way. In particular, when the length of time window varies, the location of spectral
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Figure3-9:AnexampleshowingthebenefitofTWV.(a)Asegmentofsimultaneously
recordedECGsignalregardedastheground-truthofHR.(b)Asegmentofdown-
samplesofradarsignalafterbandpassfiltering.(c)Theradarsignalsegmentafter
SSAandtemporaldifferencefollowing(b).(d)SSRon(c)byZA-SLMS.(e)SSRon
(c)byIZA-SLMSwithTWV

peakassociatedwithHRisalmostunchanged,whichbenefitsthepreciseextraction

ofHR.

Inviewofthebetteradaptabilityagainstavarietyofphysicalactivitiesbytheim-

provedIZA-SLMSalgorithmovertheZA-SLMSalgorithm,theIZA-SLMSisadopted

torealizeSSRcombiningTWVtechnique.Fig.3-8elaboratestheframeworkofTWV

showninFig.3-1,followingthetemporaldifference,thesamplesofde-noisedradar

dataineachtimewindowofT=8s,arechosenasinputdata.Toobtainasetof

sampleswithvaryinglengthsbyinputdata,thetimewindowchangesbyT+i∆ts,

i }4,3,×××,0|inorder,whichisclosetothegivenlengthofT.Bythefactthat

HRcanbeassumedtobeunchangedunderashortslidingtime,i.e.,∆t<0.1T[14],

∆t=0.5sisexperimentallysetaimingtothe8s-timewindowinthisstudy.Incom-

parisontothegeneralSSRbysingletimewindow,inthecaseofTWV,thespectra

reconstructedbytheIZA-SLMSalgorithmarecombinedforthefinalspectrumpeak

tracking.

AnintuitivebenefitoftheincorporationofTWVisshowninFig.3-9.Through

therelativelycleansedBI(t)andBQ(t)afterthede-noisingbybandpassfiltering,
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Table3.2:Experimentalparameters

Parameters Specification
Modulationtype UnmodulatedCW
Carrierfrequency 24GHz
Transmitpower 1mW
Samplingfrequency 1kHz
Heightofradar 80cm
No.ofsubjects Five
Observationduration 2minutes
Subjects’conditions 1)Sittingstill;

2)Typingwithalaptop
Measuringdistanced0 1)80cmandsupplemented30cmforsittingstill;

2)30cmfortyping

SSA,andtemporaldifference,whichexhibitheartbeatshowninFig.3-9(c),SSR

isrealizedbytheZA-SLMSalgorithmortheIZA-SLMSalgorithmwithTWV,as

showninFig.3-9(d)andFig.3-9(e). Fig.3-9(e)showsastableobservationof

spectralpeakscorrespondingtoHR,namelythelocationsofpeaksobtainedbythe

timewindowswithfivedifferentlengths(6.0s,6.5s,×××,8.0s)arealmostunchanged,

whichbringsaboutasmallererrorof4.43BPMthanthatobtainedbytheZA-SLMS

(6.26BPM).NotethatthecomputationalcomplexityoftheIZA-SLMSalgorithm

withTWVdirectlydependsonthenumberofadoptedtimewindows,hence,its

runningtimeisapproximatelyfivetimesrelativetothatoftheZA-SLMSorthe

IZA-SLMS.

3.5 ExperimentalResults

Inthischapter,experimentalenvironmentandresultsarepresented,andanalytical

accuracyevaluationisperformedtoverifytheadvantageofourproposal. Thatis,

theproposedSSRbytheZA-SLMSalgorithmsanditsvariantsofIZA-SLMSand

IZA-SLMSwithTVW,andtheproposedBSSbyvariousNMFalgorithms,namely

standardNMF,SPNMF,and WSPNMF.

TheparametersusedinmeasurementaredetailedinTable3.2. Thedataset
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Figure 3-10: The setup of HR measurements against various subjects’ activities. (a)
Sitting still when basic d0 = 80 cm. (b) Sitting still when supplemented d0 = 30 cm.
(c) Typing with a laptop when basic d0 = 30 cm

consists of five 2-min recordings which were collected from 18 to 35 years old subjects

performing various activities, i.e., sitting still or typing with a laptop. The ground-

truth of HR is calculated by simultaneously recorded ECG signal, from the ECG

sensor attaching a subject’s chest. Setting at 80 cm-height, we used 24 GHz band

Doppler radar with 1 kHz sampling frequency to detect heartbeat. The Doppler radar

was positioned d0 = 80 cm and 30 cm away from subjects, respectively against sitting

still and typewriting as [40], and the basic radar setups are shown in Fig. 3-10(a)

and 3-10(c). Note that the performance evaluation of HR estimation methods in the

following subsection, is on the premise of basic measuring distance d0. In addition,

Fig. 3-10(b) shows the measurement at 30 cm-distance for sitting still, which is

supplementarily conducted for further comparing performance with the case of typing

at the same ranging.

To the Spectrogram method [16], the frequency band for integrate amplitudes is

set 8–50 Hz, and the minimum and maximum peak-to-peak intervals are set 600 ms

and 1000 ms, respectively. In order to exhibit the better robustness of the SGD-based

SSR algorithms proposed in this paper, the proposed method using RM-FOCUSS al-

gorithm [38] in SSR is applied for performance comparison. Referring to [30], the

parameters of RM-FOCUSS, i.e., norm p and REPA λRMF are set 0.8 and 0.1, respec-
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tively.

Theparametersofalltheproposedsparseadaptivealgorithms,i.e.,theZA-SLMS,

theIZA-SLMS,andtheIZA-SLMSwithTWV,arechosenasfollows:

•Step-sizeµ=1∗10−5,maximumiterationsC=5∗103foralltheproposed

algorithms,

•ZeroattractionfactorγZA=2∗10
−6forZA-SLMS,γIZA=1∗10

−6forthe

IZA-SLMSandIZA-SLMSwithTWV,respectively,

•ThresholdofAREPAδ=0.8forIZA-SLMSandIZA-SLMSwithTWV,

•Variationtimeoftimewindows∆t=0.5forIZA-SLMSwithTWV.

OneofthemetricsforevaluatingHRisaverageabsoluteerror(AAE),whichis

calculatedbytheabsolutevalueofthedifferencebetweenthemeasuredresultand

theground-truth,asthefollowingequation,

AAE=
1

N

N∑

i=1

BPMest(i) BPMtrue(i), (3.15)

whereBPMest(i)andBPMtrue(i)respectivelyrepresenttheestimatedHRandground-

truthcorrespondingtothei-thtimewindow.N istheamountoftimewindows

duringanobservationperiod. SincethemetricofAAEhasbeenwidelyusedin

HRestimation,asin[30,41],wechooseAAEastheprimarymetricforperformance

evaluation.TheothermetricofHRevaluationisAAEpercentage(AAEP),whichis

definedastheratioofAAEandground-truth:

AAEP=
1

N

N∑

i=1

BPMest(i) BPMtrue(i)

BPMtrue(i)
. (3.16)

BesidesthetwometricsofHRvariationbasedonBPM,theroot-mean-square

error(RMSE)betweentheRRIsbyestimationmethodsandreferencesignal,isalso

acommonmetricusedinsomeliteratures(see[16]).TheaverageofRMSEisderived
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Table3.3:Averageabsoluteerror(AAE)ofHRestimation[BPM]

(a)Sittingstill

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 4.34 9.38 10.38 6.99 12.61 8.74
RM-FOCUSS[38] 5.14 3.79 3.72 3.22 5.07 4.18
ZA-SLMS 3.21 3.63 3.09 2.98 4.94 3.57
IZA-SLMS 2.42 3.87 2.65 3.37 4.72 3.40
IZA-SLMSwithTWV 2.61 3.70 2.12 3.32 4.42 3.23

(b)Typingwithalaptop

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 12.80 10.06 8.60 12.14 13.33 11.39
RM-FOCUSS[38] 3.12 5.08 2.93 7.18 4.45 4.55
ZA-SLMS 3.11 3.26 2.68 6.20 5.07 4.06
IZA-SLMS 3.23 3.14 2.74 5.83 5.08 4.00
IZA-SLMSwithTWV 2.64 4.51 2.58 3.97 5.24 3.79

by

RMSE=
1

N

N∑

i=1

RRIest(i) RRItrue(i)2. (3.17)

whereRRIest(i)isthedetectedpeak-to-peakintervaloftemporalsignal,andRRItrue(i)

istheRRIacquiredbyECGsignal.Thementionedtwoestimations,i.e.,BPMest(i)

andRRIest(i),canbemutuallytransformedbythegivenexpression,

RRItrue(i)=60/BPMest(i)∗10
3,i=1,2,×××,W, (3.18)

whichishelpfulforthethoroughperformanceassessmentofourproposal.

Themeasurementaccuraciesofthethreeproposedalgorithmsareevaluatedby

twomainindices,namelyHRandRRI.

3.5.1 PerformanceEvaluationonHR

Table3.3andTable3.4presenttheAAEandAAEPonall5subjects’datarecorded

byDopplerradar,respectively.Usingthethreeproposedalgorithms(ZA-SLMS,IZA-
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Table 3.4: Average absolute error percentage (AAEP) of HR estimation

(a) Sitting still

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Avg
Spectrogram [16] 5.8% 12.1% 14.5% 9.9% 14.5% 11.4%
RM-FOCUSS [38] 6.9% 4.8% 5.3% 4.6% 5.8% 5.5%
ZA-SLMS 4.3% 4.6% 4.4% 4.2% 5.6% 4.6%
IZA-SLMS 3.2% 4.9% 3.7% 4.8% 5.4% 4.4%
IZA-SLMS with TWV 3.5% 4.7% 3.0% 4.7% 5.0% 4.2%

(b) Typing with a laptop

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Avg
Spectrogram [16] 16.5% 14.1% 11.5% 15.5% 15.4% 14.6%
RM-FOCUSS [38] 4.0% 7.2% 3.8% 9.5% 5.1% 5.9%
ZA-SLMS 4.0% 4.6% 3.6% 8.1% 5.8% 5.2%
IZA-SLMS 4.1% 4.4% 3.6% 7.6% 5.8% 5.1%
IZA-SLMS with TWV 3.4% 6.3% 3.5% 5.0% 6.0% 4.8%

SLMS, and IZA-SLMS with TWV) can obtain more accurate HR estimation than the

typical existing detection methods, under the status of sitting still or typing. More

concretely, when subjects are sitting still, a smaller average AAE of 3.57 BPM is

obtained by ZA-SLMS, compared with the Spectrogram method and the usage of

RM-FOCUSS, as shown in Table 3.3(a). Moreover, the improved IZA-SLMS that

can adaptively regulate the weight of sparse penalty further reduced the AAE to 3.40

BPM, and the smallest 3.23 BPM is achieved by IZA-SLMS with TWV. Although

very few literatures can clarify the threshold for a qualified AAE, in general, a value

less than 5.0 BPM is regarded as acceptable. Fortunately, the proposed algorithms

typically can acquire acceptable AAEs that are less than 5.0 BPM.

In particular, in the case of typing with a laptop, Table 3.3(b) shows that a signif-

icant degradation of performance happened to the Spectrogram method, and certain

degradation to RM-FOCUSS due to the vulnerability to strong noises. In contrast,

the three proposed algorithms (ZA-SLMS, IZA-SLMS, and IZA-SLMS with TWV)

achieve the reliable results of HR estimation around 4 BPM, due to the robustness

to MA. Among our proposal, the IZA-SLMS with TWV still achieves the highest

55



Figure 3-11: An example showing the comparison of the variation of HR estimated
by detection methods, under typing with a laptop by Subject 1

accuracy owing to more stable HR detection by TWV.

Table 3.4 shows AAEP results of each method, which are basically consistent with

the results of AAE in Table 3.3. Be superior to the Spectrogram method and RM-

FOCUSS, our proposal obtains better HR estimation by smaller AAEP. Specifically,

the IZA-SLMS with TWV respectively achieves the smallest AAEPs of 4.2% and

4.8%, against the two activities of sitting still and typing.

To intuitively show the performance superiorities of our proposal against the noises

from respiration or body motion, the comparison of the HRV by different detection

methods aiming to a subject in typing, is shown in Fig. 3-11. The interference caused

by subjects’ movements results in obvious deviation of HR estimation, to the ground-

truth of HR by the Spectrogram method. While, the estimated HRs by the three

proposed algorithms are generally more close to the variation of ground-truth. In

particular, the IZA-SLMS with TWV most faithfully reflects HRV depending on the

improved stability, and the observation periods when it evidently outperforms the

other involved methods are highlighted by circles. Although our proposal does not

tightly track the ground-truth of HR during some periods of time, due to interference
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Table 3.5: Root-mean-square error (RMSE) of RRI estimation [ms]

(a) Sitting still

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Avg
Spectrogram [16] 60 163 173 119 167 136
RM-FOCUSS [38] 66 49 51 55 53 55
ZA-SLMS 42 49 43 54 49 47
IZA-SLMS 32 52 35 54 48 44
IZA-SLMS with TWV 35 49 29 53 44 42

(b) Typing with a laptop

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Avg
Spectrogram [16] 218 188 142 203 183 187
RM-FOCUSS [38] 39 62 41 82 45 54
ZA-SLMS 42 44 36 68 47 47
IZA-SLMS 43 42 36 63 50 47
IZA-SLMS with TWV 35 62 34 51 48 46

of respiration and movement, the instantaneous absolute error of estimation can be

guaranteed in a small range. The similar phenomenon also happens to the proposed

NMF algorithms in BSS approach, in Chapter 4.

3.5.2 Performance Evaluation on RRI

The RMSEs of the proposed three algorithms (ZA-SLMS, IZA-SLMS, and IZA-SLMS

with TWV) can be obtained, which are summarized in Table 3.5. Similarly, our pro-

posal (ZA-SLMS, IZA-SLMS, and IZA-SLMS with TWV) generally obtains smaller

RMSEs over the Spectrogram method and RM-FOCUSS, toward to five subjects.

Also, the three proposed algorithms exhibit the performance superiority, by the ac-

quisition of smaller average RMSE to various subjects’ activities. In particular, in

the status of typing accompanying movements, the smallest RMSE of 46 ms can also

be achieved by the IZA-SLMS with TWV, as shown in Table 3.5(b).

In fact, to different subjects, HR variability and strengths of respiration are typ-

ically distinct, which directly relates with the effect of HR estimation via Doppler

radar. Hence, the further proposed IZA-SLMS and IZA-SLMS with TWV, can not
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always obtain better HR estimation than the ZA-SLMS algorithm, against each sub-

ject. The similar phenomenon also happens to the proposed NMF algorithms in BSS

approach, in Chapter 4.
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Method2IZA-SLMSalgorithmforSSR

Input:Φ,y′

Output: s(n)
1:Initializes(1)=0,n=1,chooseµ,λ,δ.
2:whilen<C(Cisagivenmaximumiterationrun)do

mT(n)=ϕj,

d(n)=yj,

wherej=mod(n,M),withmod(×)denotesthemodulofunctionthatcalculate
remainderofdivision.

3: Calculaterecursionerror

e(n)=d(n) mT(n)h(n).

4: Correctgradientofs(n)byLMS

s(n+1)=s(n)+µsgn(e(n))m(n).

5: Calculatestandarddeviationσofy′.
6: AcquireAREPAandadaptivezeroattractionfactor

λada=λδ+
∇
σ
)
/
∇
σ,

γada=µλada.

7: Penalizesparseconstraintbyℓ1-norm

s(n+1)=s(n+1) γadasgn(s(n)).

8: Iterationrunincreasesbyone

n=n+1.

9:endwhile
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Chapter 4

Proposed BSS Approach

Inspired by the inapplicability of SSA in HR monitoring via Doppler radar, in this

chapter, we propose a BSS approach to directly separate the individual sources mixed

in C(t) by the NMF structure, avoiding extra spectrum modification required by SSA.

First, an enhanced framework of HR measurement using the proposed BSS ap-

proach is redescribed, based on Chapter 3. Then, the basic BBS model, and our

unsupervised BSS approach and two NMF algorithms with sparseness constraints,

are respectively depicted. Finally, the experimental results by multiple metrics are

provided.

4.1 Enhanced HR Measurement Framework

The flowchart of the applied framework used for HR measurement is shown in Fig.

4-1, where the proposed BSS and the emerging SSR are two key parts. To pursue

a relatively high frequency domain resolution within an applicable period, a time

window of T0 = 8 s is adopted for input signal C(t), with a S0 = 2 s-forward sliding,

as in [30,41]. Each part of the measurement framework is briefly stated, in order.

61



Figure 4-1: The flowchart of HR measurement framework, incorporating our proposed
BSS approach

4.1.1 Blind Source Separation

In order to abstract the heartbeat source from the mixed radar signal, we propose an

accuracte and practical BBS approach using NMF algorithms. In particular, not only

standard NMF algorithm, two constrained NMF algorithms with sparseness, namely

SPNMF [50] and WSPNMF, are also used to capture more partial representations of

sources, by observing the time domain sparsity of targeted heartbeat. The details of

the proposed BSS is elaborated in this chapter.
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4.1.2 Pre-Processing

FollowedbytheBSS,thecorrespondingdatapre-processingfunctionsinpruninges-

timatedsignalsanddistinguishingtheheartbeat,whichconsistsofthreesteps:Step

i.Samplerateconversion;Stepii.Bandpassfiltering;Stepiii.Heartbeatextraction.

Inthefirststep,toguaranteesufficientsamplesforSSRonthecompromiseofrea-

sonablecomplexity,theIcomposedcomponentsareconvertedto125Hz,referring

to[30,40].Subsequently,theconvertedsamplesarebandpassfilteredintherangeof

0.4–5.0Hzas[30,40],coveringapossibleHRchangesof1.0–3.0Hz[4].Atthelast

step,throughsearchingthemaximumpeakoccurringinthepossiblefrequencyband

ofHR,heartbeatcomponentisextractedfromI“candidates”,denotedasz.

4.1.3 FollowingParts

Thefollowingthreeparts,i.e.,temporaldifference,SSR,andspectrumpeaktracking,

inherittheonesofHRmeasurementframeworkshowninFig.3-1.Specifically,inthe

partofSSR,theZA-SLMSalgorithmisusedwithoutTWV,consideringthetrade-off

betweentheperformanceandefficiencyofestimationmethod.

4.2 Fundamental ModelofBSS

Forbetterillustratingourproposal,thefundamentalBSSmodelisrecalledasshown

inFig.4-2,whichisdividedintothemixingprocessandthedemixingprocess.

4.2.1 Linear MixingProcess

ThemixtureofIsourcescanbesimplyassumedaslinear[51],andthemixingmodel

indiscrete-timeisgivenby

xf[t]=

I∑

i

aisi[t]+v[t],t }1,×××,T|, (4.1)
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Figure4-2: AfundamentalBSS modelconsistingofthe mixingprocessandthe
demixingprocess

wheresi[t]andaidenoteaT-lengthofsourcesignalanditsamplitude,respectively.

Inconsiderationofadditivenoisesv[t],suchaswhiteGaussian,amixturesignal

xf[t],f }1,×××,F|isobservedasdemixingobjective. Neglectingthenotionof

discrete-time,themixingprocesscanbesimplyregardedasthemultiplicationof

theunknownsourcesmatrixS=
[
sT1,s

T
2,...,s

T
I

]T
RI×T andthemixingmatrix

A RF×I,withnoisematrixV RF×T. Thecorrespondingmatrix-formmodel

ofEq.(4.1)canbeobtained,i.e.,X =AS+V,whereXistermedobservation

matrix.Notethatthesymbol(×)+thatrepresentsnon-negativematricesisomitted

inthefollowingcontext,sincetheissueconsideredbytheNMFalgorithmsusedin

thisthesis,iswithinthenon-negativevariables.

4.2.2 DemixingProcessbyStandardNMFAlgorithm

Theintentofdemixingistoseparateindividualsourcessibyestimatinghi,through

findingaseparationmatrixW A−1.Byoneormultipleknownxfinsomeform,

thecriticalW isadaptivelyupdatedtoobtain,adoptingaproperBSSalgorithm.In

ourmethod,practicalNMFalgorithmsareusedforBSS,whichonlyrequiressingle

channelobservationsignal(solexf),i.e.,complexbasebandsignalC(t).

Beinggoodatmultivariableandlargeamountofdata,thealgorithmsofNMF
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Method3StandardNMFalgorithmforBSS

Input:X
Output: W,H
1:InitializeW andH byrandomuniformdistributionsubjectto(0,1),choose
numberofbasisvectorsKandupperboundofiterationsCNMF.Setn=k=f=
t=1.

2:whilen⩽CNMFdo

Wfk(n+1)=Wfk(n)

[
XHT

]
fk

[WHHT]fk
,

Hkt(n+1)=Hkt(n)

[
WTX

]
kt

[WTWH]kt
,

n=n+1.

3:endwhile

alongwithextensionsarebroadlyappliedinsignal/imageprocessing,textmining,

anddataanalysis,etc[45–48].Tospecificapplications,NMFcanlearnparts-based

representationswithvariousconstraints,includingindispensablenon-negativityand

optionalsparseness,etc,enhancingtheinterpretabilitybetweenobjectiveandobser-

vation[45–48].RecalltheformulaofNMFonmatrixdecomposition:

X=WH +E, (4.2)

wheretheobservationmatrixX RF×Tisgivenbynon-negativespectrogramofC(t),

whichisfactorizedintotwointeractivefactors,namelyW RF×Kandtheestimation

matrixH RK×T,K<min}F,T|,consideringunavoidableerrorrepresentedby

E.ThestandardNMFalgorithmonlyincorporatesnon-negativityconstraintinEq.

(4.2),andausefuldistancemeasurethatisthesquareofEuclideandistancebetween

XandWH constitutesthecostfunction:

DEUD=∥X WH∥2F=
∑

ft

(
Xft [WH]ft

)2
, (4.3)

where∥×∥FisFrobeniusnormformatrices,andtandfrepresenttimeandfrequency

bin,respectively. TheoptimalconditionisX=WH thatisequivalenttoE=0,
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whenitreachesthelowerlimitofEq.(4.3),i.e.,zero.TominimizeDEUDsubjectto

Wfk,Hkt≈0,themultiplicativeupdaterulesactingonW andHarederivedbased

onthegradientdescent:

Wfk(n+1)=Wfk(n)

[
XHT

]
fk

[WHHT]fk
, (4.4)

Hkt(n+1)=Hkt(n)

[
WTX

]
kt

[WTWH]kt
, (4.5)

wherenistheiterationnumber,andk }1,×××,K|. Themultiplicativeupdate

skillfullyavoidsthesignchangestoW andH,andguaranteesthenon-increasing

regressionofEq.(4.3). ThestandardNMFalgorithmforBSSissummarizedin

Method3.

4.3 BSSinUnsupervised Manner

TheunsupervisedmannerproposedinourBSSapproachachievesapracticalHR

observationbydoubleclusterings,omittingadditionaltrainingofheartbeat-onlydata

thatmayrequireholdingbreath. ThedynamiclearningofBSwithineachtime

windowadaptstothevariationofHRovertime,composedbythreesteps:thefirst

clustering,thesecondclustering,andthelearningofcompleteBS.

4.3.1 FirstClustering

BasedonNMFstructure,thedecompositionofwholemixturespectrogramXinthe

initialclusteringisshowninFig.4-3(a),whereK=20(K>I,as[51])basisvectors

wTWk andtheequalnumberofestimationsignalshTWk areobtained,respectively.Here,

wTWk areregardedaspotentialBS,usedforoptimizingtheclusteringatthesecond

time.Tocaptureperiodicityofallsources,wecansimplydealwiththereceivedradar

signalineachtimewindowwithfixedlength(T0=8s),whichcontainsmultiplecycles

ofthemixedsourcewiththelowestfrequency,i.e.,respirationcomponent[14,26].
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Figure4-3: NMF-baseddecompositionofspectrogramofmixturesignal.(a)First
clusteringforunderlyingBS.(b)SecondclusteringforRBS

Also,sufficienttime-frequencybinsareguaranteedbythechoicesofrelativelylarge

timewindowof1.1sandsmallforwardslidingof10ms,intheusageofSTFTfor

thegenerationofX. SinceDopplerradaroperatesat1kHzinourexperiments,

themaximumfrequencyofXis500Hz,wherethespectralstructureofIsourcesis

completelypresented.ThroughfactorizingXgeneratedwithinonetimewindowby

theNMFalgorithm,theunderlyingBSWTW=
[
wTW1 ,×××,w

TW
K

]
andtheestimation

matrixHTW=
[
hTW1
)T
,×××,hTWK

)T
]T
arerespectivelyacquired. WereserveWTW

fortheeventualBSlearning,anddiscardHTW.

4.3.2 SecondClustering

TheintentofsecondclusteringistosearchtheRBSofactualsources,whichenables

theactivationofWTWfromthefirstclustering. Bytheusageofpriorknowledge,

namelythenumber(I=3)andthecomponentsofsources(heartbeat,respiration,

andmovement),wecorrespondinglymodifyXandthenumberofbasisvectorsas
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Figure4-4:LearningofcompleteBSbasedonthesimilaritybetweenunderlyingBS
andRBS

reference. Moreconcretely,onlythefrequencyregionthatcoversdistinctmagnitudes

ofheartbeatandrespirationinX,i.e.,0–100Hzreferringto[16],isretained,while

thevaluesof100–500Hzarereplacedbyzero,asintuitivelyshowninFig.4-3(b).By

theNMFalgorithm,themodifiedXdenotedasXREFisdecomposedintoIspecific

basisvectorswREFi ,i }h,r,m|,inanunfixedorder,whereh,r,andmrespec-

tivelyrepresentcardiac,respiratory,andmovementsignaldomains. Wereservethe

RBSWREF=
[
wREFh ,wREFr ,wREFm

]
,asthefoundationforlearningcompleteBS,and

discardHREF=
[
hREFh

)T
,hREFr

)T
,hREFm

)T
]T
.
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4.3.3 CompleteBSLearning

ThroughsimilaritymeasurementsontheresultantWTWandWREF,theeventualBS

learningiscompletedbyhierarchicaladditions.Inourmethod,ageneralcorrelation

formuladefinedin[51]isgiventomeasuresimilarity:

Cor(fk,gk)=

∑
fkgk√∑
f2k
√∑

g2k
, (4.6)

wherefkandgkaretwovectorswithequallength. Obeying[0,1],Cor(fk,gk)=

0indicatesthetotaluncorrelationbetweenfkandgk,incontrast,Cor(fk,gk)=1

representsthattheyarecompletelycorrelatedwhenfkandgkaresame.

Fig.4-4showsthelearningprocedureofcompleteBS.Fromthefirstbasisvector

inWTW,i.e.,wTW1 ,the“spectralcorrelation”betweenw
TW
k andwREFi iscalculated

onebyone. Throughsimilaritymeasurement,thespectralcorrelationiscalculated

bysubstitutingwTWk andwREFi intoEq.(4.6),

Cor(w
TW
k ,w

REF
i ). (4.7)

ThewREFi withthemaximumspectralcorrelationtocurrentwTWk ischosenasthe

componentialtarget(wREFh ,wREFr ,orwREFm ),whichisaddedbythecurrentwTWk .

AftertheadditionsbyallwTWk ,k }1,×××,K|,WREFisupdatedtocompleteBS

Ŵ =[ŵh,̂wr,̂wm].UsingŴ,Xcanbedirectlyfactorizedtoobtaintheobjectivees-

timationmatrix̂H=
[
ĥh,̂hr,̂hm

]
,andtheheartbeatcomponent̂hhwillbeextracted

inthefollowingpre-processingpart.

4.4 ConstrainedNMFAlgorithmswithSparseness

AlthoughthestandardNMFalgorithmcouldaccomplishtheproposedBSSapproach,

solenon-negativepenalizationdoesnotcomprehensivelyreflectthecharacteristicsof

matrixfactors,i.e., Ŵ and/orĤ. Thisissueimpliesthenecessitytoextendthe

costfunctioninEq.(4.3),byintroducingadditionalauxiliaryconstraints[47,48].
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Correspondingly,theextendedcostfunctionwithpenaltytermsisgivenby

DCON=∥X WH∥2F+αJ1(W)+βJ2(H), (4.8)

wherevector-wiseJ1(W)andJ2(H)enforceconstraintsdependingoncertainappli-

cations,andαandβareconstantregularizationparametersthattrade-offapproxi-

mationerrorEandconstraints.

4.4.1 SparsenessConstrainttoNMF

Inthisstudy,weconcentrateonthetemporalsparsityofheartbeatsourcethatexists

inH,andEq.(4.8)canbesimplifiedas

DSPA=∥X WH∥2F+βJ2(H), (4.9)

whereJ2(H)istheconstraintofsparseness.
1Basedontherelationshipbetweenℓ1-

norm
∑
yiandℓ2-norm

√∑
y2i,afamousmetricofsparsenessdegree[51]isdefined

asfollows,

sparseness(y)=

∇
N (

∑
yi)/

√∑
y2i∇

N 1
,i }1,×××,N|, (4.10)

whereNisthedimensionalityofconsideredsignaly,andsparseness(y)subjectsto

[0,1].Here,alowlevelofsparsenessisrepresentedbysmallsparseness(y),wheny

hasmostactiveelements,resultinginalargeratiobetweenℓ1-normandℓ2-norm.

Whereas,large sparseness(y)representsahighlevelofsparseness,whenmostele-

mentsofsparseness(y)arezeroorclosetozero,resultinginasmallratiobetween

ℓ1-normandℓ2-norm.ThroughenforcingproperdegreeofsparsenessonH,amore

realisticheartbeatestimation̂hhin̂Hcanbereconstructed,bytheproposedSPNMF

algorithm[50]ortheimproved WSPNMFalgorithm.

1Prof.Ikehara:TheexplanationofEq.(4.10)isnotverysufficient.
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Figure 4-5: Intuitive illustration of projection function with joint constraint of ℓ1-
norm and ℓ2-norm

4.4.2 Sparse NMF Algorithm

Unlike the standard NMF algorithm that only takes action in the descent of gra-

dient with inverse direction, for minimizing the error E between X and WH, the

SPNMF algorithm further introduces the projection on joint constraint space [50],

which is applied in the proposed double clusterings. In the SPNMF algorithm, the

assumed sparseness of H represented by SH needs pre-set, and the projection func-

tion P (y, L1, L2) plays the most important role in two aspects, where L1 and L2 are

respectively the scales of ℓ1-norm and ℓ2-norm. Note that a large SH brings about

a small L1, which facilitates the estimated sources Ĥ to be sparse, vice versa. Also,

when SH is an empty set ∅, the SPNMF algorithm just reduces to the standard NMF

algorithm. One effect of projection function is strictly setting L1 that sparsifies the

input y, and L2 that stabilizes updating of y. The other effect is making the output
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Method4SPNMFalgorithmforBSS

Input:X
Output: W,H
1:Initializenon-negativeW andHbyrandomGaussiandistribution,choosenumber
ofbasisvectorsKandupperboundofiterationsCSPNMF.SetSH [0,1]and
n=k=f=t=1.

L1=
∇
T
(∇
T 1

)
SH,

whereTisthenumberofcolumnsofH.Initiallyinvoketheprojectionfunction,

hk(n)=P(hk(n),L1,1),k }1,×××,K|.

2:whilen⩽CSPNMFdo

Wfk(n+1)=Wfk(n)

[
XHT

]
fk

[WHHT]fk
.

3: ImplementadditivegradientdescenttoHasfollows,

Hkt(n+1)=Hkt(n) µ
[
WT(WH X)

]
kt
,

4: Invoketheprojectionfunction,

hk(n+1)=P(hk(n+1),L1,1),

n=n+1.

5:endwhile

ofP(y,L1,L2)non-negative,whichcoincideswiththeessentialprincipleoftheNMF

algorithms.

Fig.4-5intuitivelyillustratesthejointconstraint-inducedprojectionfunction.

Afterinitiallyprojectingyontothehypersphereofℓ1-normobeyingL1=
∑
si(n),

whenn=1,thefollowingiterationprocedureofprojectionfunctioncanbedivided

intothreesteps:Stepi. WithintheconstraintspacewhereL1=
∑
si(n)and

L2=
∑
s2i(n),s(n)isprojectedtotheintersectionofℓ1-normandℓ2-normwiththe

closestdistancetoobtains(n+1),whenerrormayoccur.FortheCasea,ifallthe

coefficientsofs(n+1)arenon-negative,i.e.,si(n+1)⩾0,∪i,thecurrents(n+1)

isoutputasthefinalresult̂s(n). FortheCaseb,ifsomecoefficientsofs(n+1)

aresubtractive,thesubtractivevaluesarereplacedbyzeros,asStepii.. Finally,
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atStepiii.,theresultants(n+1)isfurtherfixedrelyingonL1,ands(n+1)is

sequentiallyupdatedfromStepi.atthenextiteration.TheSPNMFalgorithmfor

BSSissummarizedinMethod4,andtheinvokedprojectionfunctionisdepictedin

Method4.

4.4.3 WeightedSparseNMFAlgorithm

Furthermore,throughobservingtheevidentdifferenceofsparsenessbetweenheart-

beatandtheother(I 1)sources,the WSPNMFalgorithmpenalizesweighted

sparsenessconstraintstoeachupdatingestimationsignalhREFi ,i }h,r,m|in

thesecondclustering,overtheuniformconstraintoftheSPNMFalgorithm. Be-

sidesdominantsparsity,heartbeatsignalalsohasmoreprominentperiodicitythan

respirationand movements,whichcorrespondstolargerproportionofsparseness

constraint. Moreconcretely,whenhREFi havebeenpreliminarilyreconstructedby

hk(n+1),k }1,×××,I|afterhalfofmaximumiterationsCWSPNMF,wemeasure

theirstandarddeviationsoffirst-ordertemporaldifferencethatreflectsperiodicities.

Correspondingly,asetofregularizationparametersΛ=[λ1,×××,λk,×××,λI]aregiven

torespectivelyregulateL1thatisthescaleofsparsenessconstraint,namely,mod-

eratelysmallλkforlargestandarddeviation,viceversa. Here,λkisformulizedas

λk=δ+ηRk, (4.11)

withRk=1/std(diff(hk(n+1))),wherestd(×)denotesastandarddeviationfunc-

tion,andηandδareweightfactorandthresholdofλk,respectively.The WSPNMF

algorithmforBSSissummarizedinMethod6.

4.5 ExperimentalResults

IntheexperimentsforevaluatingtheproposedBSSapproach,thedataset,setting,

andthreemetricsaresamewiththosefortheproposedSSRapproachinChapter

3. Notethat,comparedwiththestandardNMFalgorithm,thefurtherproposed
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Figure4-6: AnexampleshowingthebenefitofNMF-basedBSSundersubjects’
typing.(a)AsegmentofestimatedheartbeatcomponentextractedfromDoppler
signalafterstandardNMFandpre-processing.(b)SSRbyZA-SLMSafterSSA.(c)
SpectrumofestimatedheartbeatcomponentviaFFTusing(a).(d)SSRbyZA-
SLMSafterstandardNMFusing(a).Allfrequencydomainsignalsin(b),(c),and
(d)arenormalized

constrainedNMFalgorithmswithsparseness(SPNMFand WSPNMF)areableto

improvetheperformancesofHRestimation,bypenalizingadditionalsparsecon-

straintsonupdatingestimationmatrixHincludingheartbeatsource.Inaddition,

throughimplementingweightedsparseconstraints,theWSPNMFalgorithmcangen-

erallybringaboutmorepreciseHRestimation,overthatbytheSPNMFalgorithm

withuniformsparseconstraint.

As[40],theZA-SLMSalgorithm[39]wasusedforachievingSSRinthisstudy,

wherethestep-sizeis1∗10−5,maximumiterationsis5∗103,andthezeroattraction

factorγisrespectively2∗10−6and2∗10−11whenitcombineswithSSAandNMF

algorithms. TheparametersoftheproposedNMFalgorithms,i.e.,standardNMF,

andsparseness-constrainedSPNMFand WSPNMF,wereitemized:

•UpperboundofiterationsCNMF=130forstandardNMFas[51],CSPNMF=10

forSPNMFreferringto[50],andCWSPNMF =10for WSPNMF,

•SparsenessofHissetasSH=0.2,bothforSPNMFand WSPNMF,

•To WSPNMF,theweightfactorissetasη=1∗10−4,thresholdofregulariza-

tionparametersδisrespectively0.990and0.994,tosubjects’sittingstilland

typewritingconditions.
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Figure 4-7: An example showing the benefit of sparseness constraint introduced in
SPNMF under subjects’ typing. (a) A segment of estimated heartbeat component
extracted from Doppler signal after standard NMF and pre-processing. (b) Spectrum
of estimated heartbeat component via FFT using (a). (c) SSR by ZA-SLMS after
standard NMF using (a). (d) A segment of estimated heartbeat component extracted
from Doppler signal after SPNMF and pre-processing. (e) Spectrum of estimated
heartbeat component via FFT using (d). (f) SSR by ZA-SLMS after SPNMF using
(d). All frequency domain signals in (b), (c), (e), and (f) are normalized

Figs. 4-6 and 4-7 intuitively show the benefits of the proposed BSS, respectively

by standard NMF algorithm and SPNMF algorithm. In Fig. 4-6, when a subject

types with a laptop, the noises from respiration and movements overlap the spectral

location of realistic HR, resulting in performance degradation with error of 4.24 BPM,

as shown in Fig. 4-6(b). Instead, owing to the demixing of mixture signal by standard

NMF, the realistic HR-associated peak stands out within the normal frequency band

of approximate 1.0–1.6 Hz (60–100 BPM) [20], which can be easily detected reducing

the error to only 1.26 BPM. Moreover, the effect of introduced sparseness constraint in

SPNMF is validated in Fig. 4-7, under the status of typewriting. Because the distinct

characteristics of heartbeat including its sparsity and periodicity are neglected, at

some times, the correct peak corresponding to HR nearly disappears in the probable

frequency range, resulting in a large error of 7.93 BPM shown in Fig. 4-7(c). Instead,

Fig. 4-7(f) shows that the penalization of sparseness helps the exploitation of cyclicity

of heartbeat, guaranteeing reliable HR estimation with small error of 2.43 BPM.
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Table4.1:Averageabsoluteerror(AAE)ofHRestimation[BPM]

(a)Sittingstill

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 4.34 9.38 10.38 6.99 12.61 8.74
SSA+ZA-SLMS[40] 3.21 3.63 3.09 2.98 4.94 3.57
NMF+ZA-SLMS 2.29 3.72 2.82 3.36 4.78 3.39
SPNMF+ZA-SLMS 2.48 3.48 2.91 3.30 3.75 3.18
WSPNMF+ZA-SLMS 2.60 3.36 3.10 2.75 4.12 3.19
≤NMF+ZA-SLMS 2.41 3.69 2.51 3.76 4.33 3.34
≤SPNMF+ZA-SLMS 2.52 3.61 2.45 3.69 4.08 3.27
≤WSPNMF+ZA-SLMS 2.21 3.70 2.24 3.47 4.38 3.20

∗Supplementedd0=30cm.

(b)Typingwithalaptop

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 12.80 10.06 8.60 12.14 13.33 11.39
SSA+ZA-SLMS[40] 3.11 3.26 2.68 6.20 5.07 4.06
NMF+ZA-SLMS 2.93 3.73 2.82 5.47 3.50 3.69
SPNMF+ZA-SLMS 2.90 3.68 3.26 5.01 3.00 3.57
WSPNMF+ZA-SLMS 2.46 3.11 2.43 5.05 3.68 3.35

4.5.1 PerformanceEvaluationonHR

Againsttheactivitiesofsittingstillandtypewritingwithmoderatemovements,the

resultsofAAEandAAEPonHRestimationsoffivesubjectsaresummarizedin

Table4.1andTable4.2,respectively.InTable4.1(a),whenasubjectmotionlessly

sitsaspossible,theSSA+ZA-SLMSmethod[40]obtainsamoderateaverageAAEof

3.57BPM,andourproposalexhibitshigheraccuraciesbyreliableheartbeatextrac-

tion,ofwhichSPNMF+ZA-SLMSmethodandWSPNMF+ZA-SLMSmethodobtain

almostsamesmallestAAEs,3.18BPMand3.19BPM.Tothetypewritingaccompa-

nyingbodymotion,theperformancesofthespectrogrammethod[16]andSSA+ZA-

SLMSevidentlydegrade,incontrast,theproposedthreemethods(NMF+ZA-SLMS,

SPNMF+ZA-SLMS,and WSPNMF+ZA-SLMS)stillrobustlyestimateHR,specif-

ically,thesmallestAAEof3.35BPMisobtainedby WSPNMF+ZA-SLMS.Inthe

existenceof MA, WSPNMFcanbettermakeuseofthedifferenceofsparsitythat
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Table4.2:Averageabsoluteerrorpercentage(AAEP)ofHRestimation

(a)Sittingstill

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 5.79% 12.08% 14.50% 9.93% 14.53% 11.37%
SSA+ZA-SLMS[40] 4.29% 4.61% 4.35% 4.21 5.62% 4.62%
NMF+ZA-SLMS 3.05% 4.78% 3.99% 4.75% 5.44% 4.40%
SPNMF+ZA-SLMS 3.35% 4.48% 4.13% 4.71% 4.27% 4.19%
WSPNMF+ZA-SLMS 3.50% 4.32% 4.37% 3.91% 4.73% 4.17%
≤NMF+ZA-SLMS 2.54% 4.79% 2.35% 5.31% 5.40% 4.08%
≤SPNMF+ZA-SLMS 2.66% 4.68% 2.30% 5.24% 5.08% 3.99%
≤WSPNMF+ZA-SLMS 2.33% 4.78% 2.11% 4.92% 5.51% 3.93%

∗Supplementedd0=30cm.

(b)Typingwithalaptop

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 16.54% 14.11% 11.47% 15.52% 15.43% 14.61%
SSA+ZA-SLMS[40] 3.97% 4.61% 3.55% 8.08% 5.82% 5.21%
NMF+ZA-SLMS 3.78% 5.28% 3.71% 6.74% 4.02% 4.71%
SPNMF+ZA-SLMS 3.72% 5.19% 4.29% 6.14% 3.44% 4.56%
WSPNMF+ZA-SLMS 3.16% 4.42% 3.19% 6.12% 4.21% 4.22%

ismoredistinctbetweenheartbeatandothersourcesincludingmotions,furtherim-

provedmeasurementaccuracythanSPNMF.Table4.2liststheAAEPstatisticsthat

arebasicallyconsistentwiththeresultsofTable4.1.Ourproposalacquiresbetteres-

timationsoverthespectrogrammethodandSSA+ZA-SLMS,bothundersittingstill

andtypewriting,also,WSPNMF+ZA-SLMSoutperformsothermethods,respectively

obtainingsmallest4.17%and4.22%.

TheestimatedHRvariabilitiesbydifferentdetectionmethodsarealsointuitively

illustratedinFig.4-8. Theinterferenceofrespirationand MAseverelycorrupts

thespectrogrammethod,while,degradestheestimatedresultsofSSA+ZA-SLMS

thatarehighlightedbycircles.Incontrast,throughstablyextractingheartbeatcom-

ponent,theHRestimationsofproposedthreemethodsoverallmoreapproachto

ground-truth.Inparticular, WSPNMF+ZA-SLMSmarkedlyimprovesthecorrup-

tionsofSSA+ZA-SLMS,andmostfaithfullyreflectsrealisticHRvariabilityamong

allthereferredmethods.
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Table4.3:Root-mean-squareerror(RMSE)ofRRIestimation[ms]

(a)Sittingstill

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 60 163 173 119 167 136
SSA+ZA-SLMS[40] 42 49 43 54 49 47
NMF+ZA-SLMS 29 49 42 52 48 44
SPNMF+ZA-SLMS 33 47 42 52 41 43
WSPNMF+ZA-SLMS 33 46 42 43 39 41
≤NMF+ZA-SLMS 23 46 16 62 56 41
≤SPNMF+ZA-SLMS 20 44 17 48 55 37
≤WSPNMF+ZA-SLMS 18 44 16 50 53 36

∗Supplementedd0=30cm.

(b)Typingwithalaptop

Subj1 Subj2 Subj3 Subj4 Subj5 Avg
Spectrogram[16] 218 188 142 203 183 187
SSA+ZA-SLMS[40] 42 44 36 68 47 47
NMF+ZA-SLMS 37 49 39 67 35 45
SPNMF+ZA-SLMS 42 50 43 61 31 45
WSPNMF+ZA-SLMS 34 46 32 66 37 43

4.5.2 PerformanceEvaluationonRRI

Tofurtherperformaccuracyassessment,theRMSEsofourproposalarecalculated,

bytransformingestimatedHRtoRRIbasedonEq.(4.4).Thesummarizedresults

ofRMSEinTable4.3alsodemonstratetheperformancesuperiorityoftheproposed

threemethods(NMF+ZA-SLMS,SPNMF+ZA-SLMS,and WSPNMF+ZA-SLMS)

thatseparatesources,againstvariousactivitiesofsittingstillandtypewriting.Par-

ticularlyfor WSPNMF+ZA-SLMSthatpenalizesweightedsparsenessconstraints,it

respectivelyreachesthemostdesiredRMSEs,only41msand43ms.

Supplementarily,toeliminatethedifferenceofrangingtotypingcondition,the

estimatedresultsbyourproposalwhensubjectssitstillat30cm-range,arealso

respectivelylistedinTables4.1–4.3. Onecanfindthattheestimationsonsitting

stillevidentlyoutperformthoseontypinginmostcasesincludingaverages,which

revalidatestheinfluenceofMAtoHRmeasurement.
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Figure 4-8: Intuitive comparison of HR estimation results of Subject 1 under type-
writing, by various heartbeat detection methods
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Method5ProjectionfunctioninvokedbySPNMFor WSPNMF:P(y,L1,L2)

Input:y,L1,L2
Output: Theclosestnon-negativevectortoywithjointconstraintofℓ1-normand
ℓ2-norm,denotedaŝs(n)

1:Setzeros-setZ=∅andn=1.Initiativelyprojectyontoℓ1-normhypersphere
asfollows,

si(n)=yi+
(
L1

∑
yi

)
/N,i }1,×××,N|,

whereNisthedimensionalityofy.
2:loop
3: Stepi.Projects(n)totheclosestintersectionofℓ1-normandℓ2-norm.

mi=

{
L1/(N card(Z)),ifi/Z
0,ifi Z

,

whereL1-inducedmistermedmidpoint,andcard(Z)representsthenumberof
elementsinZ.Tosatisfytheℓ2-normconstraint,aquadraticequationax

2+bx+
c=0(a,b,andcareconstants)isrequiredtosolve,

a=
∑
d2i;b=d

Ts(n);c=
∑
s2i(n) L2,

whered=s(n) m.

α=
(
b+
∇
b2 4ac

)
/(2a),

s(n+1)=s(n)+α(s(n) m).

4: Casea:Ifallthecoefficientsofs(n+1)arenon-negative,returnthecurrent
s(n+1)asoutput̂s(n).

5: ifsi(n+1)⩾0,∪ithen
6: break
7: Caseb:IfNOTallthecoefficientsofs(n+1)arenon-negative,Stepii.
andStepiii.proceed.

8: else
9: Stepii.Fixthesubtractivecoefficientsofs(n+1)atzero.

Z=Z{}isi(n+1)<0|,

si(n+1)=0,∪i Z.

10: Stepiii.Prunenon-negatives(n+1)byL1.

r=
(∑

si(n+1) L1

)
/(N card(Z)),

si(n+1)=si(n+1) r,∪i/Z.

11: endif
n=n+1.

12:endloop
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Method6WSPNMFalgorithmforBSS

Input:X
Output: W,H
1:Initializenon-negativeW andHbyrandomGaussiandistribution,choosenumber
ofsourcesIasthreeandupperboundofiterationsCWSPNMF.SetSH [0,1],
Λ=1,δ,η,andn=k=f=t=1.

L1=
∇
T
(∇
T 1

)
SH,

whereTisthenumberofcolumnsofH.Initiallyinvoketheprojectionfunction,

hk(n)=P(hk(n),L1,1),k }1,×××,I|.

2:whilen⩽CWSPNMF do

Wfk(n+1)=Wfk(n)

[
XHT

]
fk

[WHHT]fk
.

3: ImplementadditivegradientdescenttoHasfollows,

Hkt(n+1)=Hkt(n) µ
[
WT(WH X)

]
kt
,

4: IntroduceλktoweightthevalueofL1whentheprojectionfunctionisinvoked.

hk(n+1)=P(hk(n+1),λkL1,1).

5: ifn=CWSPNMF/2then

Rk=1/std(diff(hk(n+1))),

λk=δ+ηRk.

6: endif
n=n+1.

7:endwhile
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has first proposed a novel method for heart rate (HR) estimation via

Doppler radar, through reconstructing robustly a heartbeat spectrum with high-

resolution, by a stochastic gradient descent (SGD) manner, combating the noises

from respiration and body motion. Based on the SGD, first, the zero-attracting

sign least-mean-square (ZA-SLMS) algorithm is applied to realize sparse spectrum

reconstruction (SSR) by restricting gradient updating. Then, an improved ZA-SLMS

(IZA-SLMS) algorithm is further proposed, to better cope with different subjects’

activities. Finally, the incorporation of time-window-variation (TWV) in IZA-SLMS

enhances the stability of heartbeat detection, with moderately increased computa-

tional load. Relying on the high-resolution spectrum reconstruction and robust noise

suppression in frequency domain, the proposed SSR obtained improved accuracy of

HR estimation. Specifically, the stable HR measurement by the IZA-SLMS with

TWV reaches the smallest average error. Taking account of the residual noise in

Doppler signal after the relatively rough temporal signal decomposition for heartbeat

extraction, which may directly corrupt the effect of SSR, a new signal processing

approach in time domain is needed.

Moreover, an unsupervised blind source separation (BSS) approach is further pro-

posed, to stably extract heartbeat component even moderate body motion occurs,
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based on a simple non-negative matrix factorization (NMF) structure. The proposed

BSS is of great value due to three main superiorities: It (i) omits the training phase

that most learning methods require; (ii) adopts simple-structured NMF algorithms

that only focus on local representations of data; (iii) enables source separation by

single-channel input. Experiments verified the performance improvements of heart

rate (HR) estimation by our proposal, combining with the SSR and the BSS, over the

other typical existing detection methods. In particular, the sparseness constraints in-

troduced in sparse NMF (SPNMF) and weighted sparse NMF (WSPNMF) algorithms

furthest reduced errors, by exploiting the temporal sparsity of heartbeat.

5.2 Future Work

In view of the remarkable robustness and practicability of our proposed method with

the approaches of SSR and BSS, as the next work, we will attempt it in specific

applications that need easy-to-use and long-term HR detection accompanying body

motion, such as:

• Sleeping monitoring and scoring in clinical environments

• HR tracking to a driver

• Smart homes that monitor vital signs including respiration

We believe the advantages of our proposal can benefit the achievement of the men-

tioned appealing applications, and the possible improvement of algorithms is also

taken into account. In particular, through training subjects’ daily data, the prevail-

ing machine learning technique probably further enhances the heartbeat extraction in

BSS, even in more rigorous conditions, e.g., HR monitoring during intensive physical

exercise.
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