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Abstract

Heartbeat is one of significant vital signs, and the monitoring of heart rate (HR)
enables detecting the disorders of human health. In the past decades, many wear-
able sensors like electrocardiography (ECG) and photoplethysmography (PPG), have
been applied to detect heartbeat based on information and communication tech-
nology (ICT). However, wearable devices are unsuitable in some situations, due to
the additional burden on subjects. In contrast, non-contact heartbeat detection via
Doppler radar realizes remote monitoring, which avoids violation of privacy and dis-
turbance of light and ambient temperature over camera and passive infrared (PIR).
In non-contact heart rate (HR) monitoring via Doppler radar, the disturbances from

respiration and/or body motion is treated as a key problem in the estimation of HR.

To date, numerous methods on non-contact measurement of human’s heartbeat
movements have been developed. The limitations of the existing detection methods,
i.e., the low robustness to motion artifacts (MA) and the extra demand for continuous
parameter regulation, imply that they are not ideal candidates for heartbeat detection

in a number of circumstances where subjects’ movements happen frequently.

This thesis first proposes a sparse spectrum reconstruction (SSR) approach to
mitigate the noise in received Doppler signal, by taking into account the spectral
sparseness of heartbeat. Furthermore, a blind source separation (BSS) approach is
further proposed to achieve better extraction of heartbeat in time domain, utilizing its
temporal sparseness, incorporating the proposed SSR approach. The proposed non-
contact heartbeat detection method is both provided with stability and convenience
of use. In addition, the HR estimation method using our proposal delivers more satis-
factory precision and robustness over other existing methods, which is demonstrated
through measurements under various conditions, gaining both smallest absolute errors

of HR estimation for sitting still and typewriting.

In Chapter 1, the background of HR estimation using Doppler radar, some typical
existing approaches, and the two proposed approaches of SSR and BSS, are introduced

in turn.
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In Chapter 2, as related works to our proposal, the existing methods for heartbeat
detection and their limitations, and motivations are elaborated.

In Chapter 3, the stochastic gradient approach is applied to reconstruct a high-
resolution spectrum of heartbeat, by proposing the zero-attracting sign least-mean-
square (ZA-SLMS) algorithm. To correct the quantized gradient of cost function, and
penalize the sparse constraint on the updating spectrum, more accurate heartbeat
spectrum is reconstructed. To better adapt to the noises with different strengths
caused by subjects’” movements, an adaptive regularization parameter (AREPA) is
introduced in the ZA-SLMS algorithm as an improved variant, which can adaptively
regulate the proportion between gradient correction and sparse penalty. Moreover, in
view of the stability of location of spectral peak associated with HR when the size of
time window slightly changes, a time-window-variation (TWV) technique is further
incorporated in the improved ZA-SLMS (IZA-SLMS) algorithm, for more stable HR
estimation.

In Chapter 4, the proposed BSS decomposes the spectrogram of mixture signal into
original sources including heartbeat using non-negative matrix factorization (NMF)
algorithms, through learning the complete basis spectra (BS) by a hierarchical clus-
tering. Moreover, to exploit the temporal sparseness of heartbeat component, two
variants of NMF' algorithms with sparseness constraints are applied as well, namely
sparse NMF (SPNMF) and weighted sparse NMF (WSPNMF). In particular, over the
uniform sparseness constraint of SPNMF algorithm, the WSPNMF algorithm further
penalizes weighted sparseness constraints on each updating estimated signal, focusing
on the evident difference of sparseness between heartbeat and other sources in time
domain.

In Chapter 5, our proposal on HR estimation via Doppler radar, i.e., the SSR
approach acting on heartbeat spectrum reconstruction and the BSS approach func-
tioning in extraction of heartbeat component, is concluded. Finally, some possible

research directions are discussed based on specific applications.
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Chapter 1

Introduction

Electronic health (e-Health) will have enormous applications in future healthcare
systems. A typical case is the telemedicine service and assisted living for elderly people
in an aging society [1|. In particular, heartbeat is one of significant vital signs, and the
monitoring of heart rate (HR) enables detecting the disorders of human health [2—4].
Wearable monitoring devices (attached to chest, wrist, fingertip, or earlobe) require
the embedded electrodes to directly contact wearers’ skin, e.g., electrocardiography
(ECG) sensor [5] and photoplethysmography (PPG) sensor [6], which limits people’s
daily actions due to the additional burden [1,4|. An example of ECG sensor is shown

in Fig. 1-1.

1.1 HR Estimation via Doppler radar

In contrast, contact-free HR measurement has been increasingly drawing attentions.
The contact-free devices for HR measurement typically fall into several main cat-
egories, i.e., camera, passive infrared (PIR), and radar sensor [2]. Even though
imaging-based camera and temperature-based PIR achieve the remote detection of
heartbeat, subjects’ privacy may be violated in some circumstances, e.g., bathroom.
Also, the availability of detection by camera is limited by light and obstacles, and
the effect of RIP is easily influenced by temperature [2,7|. Instead, the non-contact

detection via Doppler radar is of several evident advantages, e.g., availability to the
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Figure 1-1: ECG sensor |https://www.koenenco.nl/wp-content/uploads/2015/08/
JM-01-webiste-04.jpg|

patients with burn or skin disease, long-period monitoring owing to flexible range, and
good penetrability of electromagnetic wave that can pass through clothing [2,3,7]. A
continuous wave (CW) Doppler radar is one of the famous types of radar systems in
this filed due to its simplicity and high sensitivity |7], which is shown in Fig. 1-2. In
the last decades, Doppler radar-used heartbeat detection has been researched in many
fields, covering medical science and healthcare, etc [2,3]. Specifically, chronic heart
failure patient study [8], sudden infant death syndrome (SIDS) monitoring [9], mon-
itoring of driver’s condition [10], seniors and children monitoring during sleep [11],

and life sensing after earthquake [12], are typical applications of this technology.

However, since radar signals are less sensitive than ECG or PPG, and the chest-
wall variation induced by heartbeat is generally smaller than that by respiration, the
interference of respiration and/or subjects’ movements forms a main challenge in the

HR estimation with Doppler radar [4,13,14].
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Figure 1-2: CW Doppler radar

1.2 CW Doppler radar

1.2.1 Signal Transmission and Reception

The basic theory of Doppler radar detection for vital signs is remotely capturing
and analyzing the phase variation, reflected by human physiological motion. Fig.
1-3 shows a typical radar front-end structure that functions to HR measurement,
with signal flow. The unmodulated signal transmitted from transmitter (Tx) can be

expressed as

T(t) = cos [2m ft + ¥ ()], (1.1)

where f, ¢, and W(t) respectively represent carrier frequency (24 GHz), transit time,
and initial phase. After the transmission through a distance dy, the time-varying
chest-wall displacement z(t) of a target due to breathing and heartbeat changes T'(t),

and the signal received at receiver (Rx) becomes

R(t) <cos |27 ft 4T;d0 4ﬂi(t) + VU )t 2do l {? (1.2)
c
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Figure 1-3: Typical structure of Doppler radar heartbeat detection system

omitting the amplitude and extra noise. A and ¢ denote wavelength and velocity of

electromagnetic wave, respectively.

For a single-tone periodic movement, z(t) = msin 2x f;,t where f,, and m are
frequency and amplitude of a subject’s movement, respectively. Since the periodic
cardiopulmonary movement is more complex, it can be decomposed into single-tone
signals, i.e., zy(t) = mysin 27 fit induced by motion information of heartbeat, and
z,(t) = m, sin 27 f,t by respiration. In the HR measurement, the objective is to detect
the HR denoted as f,, by processing baseband signals that will be depicted in the

following subsection.

1.2.2 Generation of Baseband Signals

In CW Doppler radar, two main operations are executed to R(t), namely down-
conversion with reference signal (i.e., T'(t)) and quadrature mixing. The resultant

baseband signals consisting of in-phase signal B;(t) and quadrature signal Bg(t) are

Amz(t)

Bi(t) = cos] +9+A11;(t){, (1.3)
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Bo(t) = sin | ™)

+9+A@m{, (1.4)

where 0 = (47dy) /X is the phase shift determined by the distance dy between the
radar and the target. AW(t) = U(t) W (¢t 2dp/c) is the residual phase noise. In
addition, to remove the possible direct current (DC) offset mainly due to clutter
reflections [2], a clutter calibration is implemented to adaptively adjust the mean-
amplitude of baseband signals to zero. In general, the two quadrature baseband

signals are combined as a complex signal:
C(t) = Bi(t) + iBa(t), (15)

followed by analog-to-digital conversion (ADC) and digital signal processing (DSP),
to analyse digitalized C'(t).

1.3 Existing Approaches

Along with the growing interests in non-contact HR monitoring, numerous detection
approaches have been developed [14-18|. In general, existing approaches mainly fall

into frequency domain and/or time domain as follows:

(1) Frequency domain: Fast Fourier transform (FFT) [14,16,19-22| and continuous
wavelet transform (CWT) [4,15,23-26].

(2) Time domain: Adaptive noise cancelation (ANC) [27], arctangent (AT) demodu-
lation [17], and ensemble empirical mode decomposition (EEMD) [18].

The approaches in (1) are usual frequency domain transform techniques, which are
called conventional ones of spectrum reconstruction in this thesis. In contrast, the
approaches in (2) typically rely on the processing in time domain. The existing meth-
ods of heartbeat detection using afore-mentioned approaches, have been shown to be

able to effectively realize remote HR estimation, in relatively ideal conditions where
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subjects’ movements rarely occur, e.g., sitting still [4,9,16], sleep monitoring, and in-
fant monitoring [28,29]. Meanwhile, when a subject is relatively static, the heart rate
variability (HRV) is not obvious along with time, differing from the case when body
motion exists [30,31]. In fact, a degree of body motion should be considered in many
practical applications, such as, HR monitoring to office workers or drivers [15]. How-
ever, most existing detection methods cannot deal with the motion artifacts (MA),
i.e., the noise interference caused by body motion, resulting in a significant perfor-
mance degradation [4,9]. Also, in the presence of body motion, a real-time parameter
regulation for some existing approaches is indispensable due to the observable HRV.
A typical case is the selection of scale factor for the CWT-based methods [15, 25],
which will be elaborated in Section 2.1. Furthermore, typical state-of-the-art meth-
ods on HR estimation using various approaches, and their limitations are reviewed in

Chapter 2.

1.4 Proposed Approaches

In view of the limitations of existing approaches and motivations in non-invasive
heartbeat detection, we first proposes a frequency domain-based sparse spectrum
reconstruction (SSR) approach functioning in reconstructing heartbeat spectrum, for
more reliable HR estimation considering MA. Then, to improve the noise elimination
in time domain, an unsupervised blind source separation (BSS) approach is further
proposed inheriting the basic framework of HR measurement with the proposed SSR,

bringing about performance improvement.

1.4.1 SSR in Frequency Domain

Considering the evident advantages of ZA-SLMS algorithm for sparse signal recon-
struction, i.e., superior performance and robustness, we first apply it to the SSR part
in our proposed method of heartbeat detection. In particular, the proposed ZA-SLMS
algorithm can suppress well the interference originated from respiration and/or mod-

erate body motion, e.g., typewriting. As a preliminary work, we have shown the
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validity of the ZA-SLMS algorithm in [40].

To the sparse adaptive algorithms, including our proposed ZA-SLMS algorithm,
the regularization parameter (REPA) plays a key role to balance the proportion be-
tween gradient correction and sparse penalty, which should be properly chosen to
guarantee satisfactory performance [44]. As mentioned above, MA often overwhelms
the heartbeat signal due to its weakness, which directly associates with the variation
of amplitude of radar signal [30,31,41]. In addition, the diversity of noise strengths
based on different kinds of body motion is distinct [9,30,31,41|. However, the constant
REPA probably determines an improper weight of sparse penalty on updating spec-
trum, against different subjects’ activities. Motivated by the fact that the amplitude
variation of received radar signal relates with the strength of interference by body
motion, a novel adaptive REPA (AREPA) is introduced by further proposing an im-
proved ZA-SLMS (IZA-SLMS) algorithm. The IZA-SLMS algorithm can adaptively
regulate the sparse penalty to a proper proportion based on the standard deviation
of radar signal, to obtain more accurate HR estimation over the ZA-SLMS algorithm,

facing various subjects’ activities.

In another aspect, by incorporating the conventional FFT [14] or CWT [26], a
practical HR acquisition technique termed time-window-variation (TWV) applied in
non-contact heartbeat detection has gained popularity. Unlike the usage of the single
time window adopted in most existing methods, the TWV technique reconstructs
spectra by the samples of received signal in multiple time windows with varying
lengths, then the highest peak on the combined spectrum is selected within a normal
HR range [14,26]. Although the TWV with FFT or CWT, reduces the measurement
errors of HR over usual single window, it has not been attempted to incorporate more
advanced method of spectrum reconstruction, e.g., the SSR. In this thesis, to further
enhance the stability of HR estimation, TWYV is applied to SSR by the improved
[ZA-SLMS algorithm.
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1.4.2 BSS in Time Domain

Moreover, the other main purpose of this thesis is to present an easy-to-use, compact,
and accurate unsupervised BSS approach based on non-negative matrix factorization
(NMF) structure [45-48], to robustly demix Doppler signal into individual sources,
i.e., heartbeat, respiration, and body motion, combining with SSR for HR estima-
tion. The structure of NMF is fairly simple that merely needs observation signal of
single channel, bringing about high computational efficiency compared with typical
emerging learning methods, e.g., deep clustering [49]. In addition, besides the stan-
dard NMF algorithm [45,46|, we further propose two improved NMF algorithms with
sparseness constraint, i.e., the sparse NMF (SPNMF) [50] and the weighted sparse
NMF (WSPNMF), to exploit the inherent sparsity of heartbeat in time domain.

In BSS, the learning of a separation matrix that we name as basis spectra (BS), is
one of important tasks for demixing observation signal. In view of the time-varying
feature of vital signs that includes the variability of HR induced by physical or mental
conditions [30], the training data for supervised learning of BS (heartbeat-only signal)
hardly satisfy a continuous monitoring, specifically for infants or patients who have
troubles in self-control [51] or sleeping people [52]|. In view of the fact, we propose an
unsupervised manner-based BSS, consisting of three steps: two progressive clusterings
and a complete learning on BS. 1) First Clustering: In this step, the short-time
Fourier transform (STFT)-based magnitude spectrogram X is first obtained by the
received radar signal in a small batch, which is equal to the size of a time window
in our method. Then, the NMF algorithm decomposes the non-negative part of X
(denoted by X ) into a set of underlying basis vectors, acting on the reconstruction
of eventual BS. 2) Second Clustering: Unlike the direct factorization in the first
clustering, the prior knowledge of source signals, i.e., the number and components,
should be known beforehand for the second clustering. Although it is possible to
neglect movements to a static examinee through cardiopulmonary sounds obtained by
attached auscultation [51], even tiny body motions evidently vary Doppler signal [40],

which is also treated as an individual source to motionless state (e.g., sitting still)
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in our proposal, besides heartbeat and respiration. On the assumption of I = 3
sources, the specific region of X, concentrating dominant heartbeat and respiration
with periodicity is chosen as decomposition target by NMF algorithms, for acquiring
I reference BS (RBS). 3) Complete BS Learning: To learn a complete BS in each
time window, RBS are dynamically updated by analyzing the maximum similarity
between the respective basis vectors, obtained in the first and second clusterings.
Based on the determined complete BS, the observation matrix (i.e., X ) is factorized
to estimate sources, and the interested heartbeat can be extracted through observing
spectrum magnitude. A part of results of the proposed BSS approach have been
published in [53|, as a preliminary work.

It is easy to find that temporal heartbeat signal has prominent sparsity, due
to the generation mechanism in ventricles, namely instantaneous impulsive motions
happen during the systolic phase [13]|. In the specific application of BSS for heartbeat
source (e.g., heart sound), the main factorization algorithm is limited to standard
NMF yet [51,54], which may not reach satisfactory decomposition with the sole non-
negativity penalty. Inspired by the fact, we further implement sparseness penalties
on the estimated signals in the both clusterings to improve local representations, by
applying SPNMF algorithm and WSPNMF algorithm. Due to the obvious temporal
sparsity of heartbeat, it is comprehensible that holistic sources also have certain
sparsity, and the SPNMF algorithm imposes a uniform sparseness constraint during
mixture decomposition [50]. In addition, we apply flexibly the proportions of sparsity
penalty of the SPNMF algorithm on each estimated signal, through adaptively sensing
periodicity of updating signals, naturally obtaining a modified SPNMF algorithm
termed WSPNMF in this thesis.

1.5 Contributions

In contrast to most existing non-invasive HR estimation methods that can not well
balance convenience of use and anti-noising to movements, our proposal achieves

robust HR measurement on the compromise of wide practicability, exploiting the
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temporal and spectral sparseness of heartbeat source. In particular, over usual BSS,
our proposed BSS has three advantages: (i) Clustering-induced unsupervised manner;
(ii) Compact demixing architecture; and (iii) Merely requiring single-channel input
data.

Through the experiments on five subjects, we evaluated the effects of the two pro-
posed approaches, i.e., SSR and BBS. The HR measurement methods by our proposal
outperform some existing methods presented recently, both against motionless and
active conditions. In particular, in the activity of typewriting, the proposed methods
using IZA-SLMS with TWV and the one using WSPNMF, respectively acquired the
most precise estimations with average errors of 3.79 beats per minute (BPM) and

3.35 BPM.

1.6 Outline of Dissertation

The remainder of this thesis is organized as follows.

e Chapter 2 reviews the HR estimation-aimed existing methods using various
approaches in frequency domain or time domain, and indicates their limitations

and motivations.

e Chapter 3 elaborates the proposed SSR approach in frequency domain based

on the corresponding framework, with performance evaluation by experiments.

e Chapter 4 further elaborates the proposed BSS approach in time domain based

on the enhanced framework, with performance evaluation by experiments.

e Chapter 5 concludes this thesis, and indicates the possible research direction in

future.

For better understanding this dissertation, the organization and the relation among
key chapters are shown in Figs. 1-4 and 1-5, respectively. Also, Tables 1.1 and 1.2
list the limitations of existing approaches based on frequency domain or time domain,

and the contributions of Chapters 3 and 4, respectively.
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Figure 1-4: The organization of this dissertation
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Chapter 2
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hody motion [4,9]
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Figure 1-5: The relation among key chapters
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Table 1.1: Limitations of existing frequency-based approaches and contributions of
Chapter 3

Research Problem

e The interference of respiration and/or sub-
jects’” movements forms a main challenge
in the HR estimation with Doppler radar
[4,13,14].

Limitations of Existing

Approaches e Fast Fourier transform (FFT) [14,16,19-22]:

An incorrect heartbeat detection probably
occurs due to body motion, resulting in an
evident degradation of performance.

e Continuous wavelet transform (CWT) [4, 15,
23-26]: For continuous measurement of HR,
a real-time regulation of scale factor associ-
ated with HR is necessary.

Proposed Approach

e A robust heartbeat detection method is pro-
posed considering the sparseness of heart-
beat spectrum, through enhancing sparse
spectrum reconstruction (SSR) by applying
the ZA-SLMS algorithm.

e An improved ZA-SLMS algorithm and the
incorporation of TWV technique are further
proposed.

Improvements

e Better robustness to noises originated from
respiration and body motion.

e The usage becomes more convenient, avoid-
ing real-time regulations of parameters.
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Table 1.2: Limitations of existing time-based approaches and contributions of Chapter
4

Research Problem

e The interference of respiration and/or sub-
jects’” movements forms a main challenge
in the HR estimation with Doppler radar
[4,13,14].

Limitations of Existing

Approaches e Adaptive noise cancelation (ANC) [27]: The

respiration-only signal as reference is diffi-
cultly acquired, and multiple antenna struc-
tures may be infeasible in some scenarios.

e Combination of arctangent (AT) demodula-
tion [17] and ensemble empirical mode de-
composition (EEMD) [18]: The method pre-
sented in [9] is clarified to difficultly deal with
body motion, out of specific treatment such
as dynamic motion compensation.

e Singular spectrum analysis (SSA) [40]: The
SSA-based abstraction of heartbeat compo-
nent heavily depends on spectrum distribu-
tion of other sources, i.e., respiration and
movements.

Proposed Approach

e An unsupervised blind source separation
(BSS) based on non-negative matrix factor-
ization (NMF) structure, is further proposed
to abstract heartbeat component, based on
the proposed method [40] in Chapter 2.

e By exploiting the temporal sparseness of
heartbeat signal, two sparse versions of NMF
algorithms named SPNMF and WSPNMF
are proposed as well.

Improvements

e Improved accuracy of HR estimation owing
to better heartbeat abstraction.

e Compact structure of sources separation by
NMF algorithms, without training phase.
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Chapter 2

Related Works

In this chapter, some typical approaches in state-of-the-art HR estimation methods
are first reviewed. Then, the limitations of existing approaches, and the motivations
including the prominent temporal and spectral sparseness of heartbeat are depicted,

respectively.

2.1 Existing Methods for HR Estimation

To date, numerous methods on non-contact measurement of human’s heartbeat move-
ments have been developed, which apply various approaches of signal processing
falling into either frequency domain [4, 14, 16, 23, 24, 26, 40| or time domain |4, 9,
13,27, 40].

2.1.1 Frequency Domain-Based Approaches

As a conventional frequency domain approach, FFT can divide the sampled data into
each frequency component, which separates heartbeat and noises, and it has been
widely applied in HR measurement [14, 16,19-22]. In [14]|, FFT is first combined
with the TWYV technique, which can fast acquire HR with smaller errors. In [16], the
spectrogram of radar signal is calculated by the extended short-time Fourier transform

(STFT), then the R-R intervals (RRIs) can be observed by the period of neighboring
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Figure 2-1: The basic procedure of Spectrogram method [16]

peaks on the integrated spectrum, which is accumulated from the spectrogram in a
normal HR range. Fig. 2-1 shows the procedure of Spectrogram method for better
understanding. The effectiveness of the mentioned FFT-based methods have been
validated, when a few movements from subjects arise, such as usual sitting still.
However, Doppler radar signal is vulnerable to MA, which will bring incorrect RRI
measurements in the presence of body motion, accompanying markedly increased

errors [4,9].

Unlike FFT, CWT has more flexible time-frequency resolution, which can increase
the resolution of low frequency range adapting to HR extraction. In the CWT-based
detection methods [4, 15,23-26], to realize that the resultant wavelet coefficients can
correspond with heartbeat, the mother wavelet should have same or close frequency to
HR, which is determined by the key scale factor. To choose a proper scale factor, some
selection methods have been proposed [15,25]. In particular, Mogi et al. [15] presented
an adaptive scale factor selection method, namely, to search the wavelet coefficients
whose peaks count is equal to that of the voltage data generated from radar signal,
then the scale factor corresponding to the interested wavelet coefficients is chosen. For
intuitive illustration, the basic procedure of adaptive scale factor selection method

is shown in Fig. 2-2. For the usage of CWT-based methods, the scale factor is
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Figure 2-2: The basic procedure of adaptive scale factor selection method [15]

typically constant, also, an improper choice or change probably lead to an inaccurate
heartbeat detection. However, HR varies along with time, and its variation will be
more significant when body motion occurs [30]. Correspondingly, a real-time and
appropriate selection of scale factor is desired to reliable HR measurement, which

may be difficult in most applications [16,40].

Meanwhile, some literatures have reported that MA components can be recog-
nized by acceleration data in wearable devices [30, 31, 41]. Specifically, Zhang et
al. |30] proposed a stable framework termed TROIKA. The TROIKA mainly consists
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of signal decomposition and SSR, which realizes high estimation accuracy against
strong MA, by PPG signal and acceleration data. In the signal decomposition part,
the interference from subjects’ movement can be removed relying on acceleration data,
then a relatively cleansed PPG signal can be obtained for SSR. Unfortunately, since
few studies proved that acceleration sensor can be effectively utilized in remote HR
monitoring, the removal of MA is a challenging task. Furthermore, unlike on-body
heartbeat detection, the respiration movement is another main noise source of the
non-contact way. When the TROIKA framework is assumed to be applied in the
HR measurement with Doppler radar, the residual noises of respiration and body
motion after signal decomposition, may bring serious influence on the reconstruc-
tion of heartbeat spectrum. In [30], a regularized focal under-determined system
solver (FOCUSS) algorithm [37] considering multiple-measurement-vectors, termed
RM-FOCUSS [38], has been used for SSR in TROIKA, due to the robustness to the
basis matrices with highly correlated columns. However, the FOCUSS-type algo-
rithms are sensitive to additive noise, and probably fail to reconstruct the interested
nonzero coefficients [37,38|. In view of the misfits of RM-FOCUSS algorithm for SSR

by Doppler radar signal, an anti-noise SSR algorithm is needed.

2.1.2 Time Domain-Based Approaches

So far, plenty of time domain approaches used for remotely detecting HR have been
studied, which mainly focus on the probe of heartbeat periodicity by signal amplitudes
[4,13], or the extraction of heartbeat component by noise elimination [9,27,40]. In
[4], using Doppler signal, the peaks in autocorrelation function of calculated wavelet
coefficients are selected to estimate R-R intervals (RRIs), by means of the peak ratio
of autocorrelation. However, when an improper time-frequency resolution is chosen
in CWT, incorrect selection of peaks of autocorrelation easily occurs. In [13], radar
signal with inherent sinusoidal shape is trained by Guassian pulse, to represent a more
realistic pulsed characteristic of heartbeat. However, the application of Guassian
pulse training is only bounded to the examinees staying as basically motionless. Lu

et al. applied the ANC to suppress the interference of respiration, from the reflected
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signal induced by chest-wall motions [27|. However, the respiration-only signal as
reference is difficultly acquired, and multiple antenna structures may be infeasible in
some scenarios. Hu et al. combined arctangent (AT) demodulation [17] and ensemble
empirical mode decomposition (EEMD) [18], to recover cardiopulmonary signals [9].
Therein, AT demodulation enables precise phase demodulation of the received signal
by the ratio of quadrature baseband signals, and EEMD repeatedly cleanses heartbeat
signal by decomposing the white noise-added data. However, the method presented
in 9] is clarified to difficultly deal with body motion, out of specific treatment such
as dynamic motion compensation. In [40], incorporating the SSR via the ZA-SLMS
algorithm, a singular value decomposition (SVD)-based time series decomposition
approach termed singular spectrum analysis (SSA) [42] was used to noise removal of
Doppler signal, for reliable heartbeat detection. However, the selection of time series
associated with heartbeat by SSA requires relatively rigorous spectrum analysis, and
respiration and MA that have close or same frequencies with actual HR will disorder
SSA [53]. In brief, most existing time domain de-noising means for contact-free
heartbeat extraction are difficult to get rid of disturbance of movements, and most
signal decompositions like EEMD and SSA have large computational burden [41],

correspondingly a novel signal processing approach is desired.

2.2 Limitations and Motivations

The limitations of the existing detection approaches, i.e., the low robustness to MA
and the extra demand for parameter regulation, imply that they are not ideal candi-
dates for heartbeat detection in a number of circumstances where subjects’ movements
happen frequently. As such, a more reliable and practical non-contact heartbeat de-
tection method is of urgent need for applications to more general scenarios.

In fact, some literatures have clarified that the sparse spectrum reconstruction
(SSR) approach can acquire higher spectral resolution than the conventional FFT
and CWT [30, 32|, which inspires us to reconstruct a more accurate heartbeat spec-

trum by SSR. In another aspect, some robust adaptive (filtering) algorithms based on
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stochastic gradient descent (SGD), have been proposed for sparse channel estimation,
to effectively suppress strong noises [33]. However, the mentioned algorithms in [33]
cannot directly apply in SSR, that is, to reconstruct a high-resolution of spectrum by
certain sample data. Fortunately, the feasibility that sparse signal can be robustly re-
constructed using compressed data, by adaptive algorithms combining sparse penalty,
has been manifested in [34]. Also, the sparse adaptive algorithms have been demon-
strated to outperform most typical algorithms for sparse signal reconstruction [34-38].
Specifically, an improved sparse adaptive algorithm termed zero-attracting sign least-
mean-square (ZA-SLMS) realizes robustly the reconstruction of sparse signal, by re-
stricting the scale of gradient correction [39]. In this thesis, the ZA-SLMS algorithm

and its variants will be first applied to accomplish SSR of heartbeat component.

Furthermore, though SSR overcomes many limitations of conventional spectrum
reconstrction by utilizing the spectral sparsity of heartbeat, which greatly increases
the resolution of reconstructed spectra and simplifies the parameter settings [30,32,34,
40], the SSR is susceptible to the noises remained in received radar signal [40]. Even if
some improved SSR algorithms have been presented, such as the ZA-SLMS [39], their

performances still fairly rely on the previous temporal de-noising processing [40].

For the noise cancellation in time domain, signal decomposition has been widely
used in heartbeat detection methods, specifically, singular spectrum analysis (SSA)
is proved as a powerful approach to decompose signal due to the flexibility of oper-
ation [30,40,41]. The basic idea of SSA is to reconstruct multiple time series, using
the singular values calculated by the mapped matrix from the considered signal [42].
In SSA-based HR estimations, the selection of noise-free time series severely relies on
spectral interpretation (generally by Periodogram), and noise recognition by aided
knowledge [30,41|. For instance, using Periodogram to calculate the spectra of each
time series from PPG signal and acceleration data, the MA component is recog-
nized and cancelled by removing the dominant magnitudes induced by acceleration
data, in [30,41]. Otherwise, the representative problem existing widely in algorithms
of spectrum reconstruction (e.g., Periodogram algorithm via FFT [43]), namely the

leakage effect, makes frequency components inseparable [30,43|. Through treating the
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leakage effect by spectrum subtraction, the heartbeat-induced spectral peaks become
prominent, which enables the precise extraction of the time series reflecting HR.

In contrast to the invasive detection, generally, acceleration sensor can not work
well for remotely measuring HR. Lacking of a feasible identification of noises in SSA,
the interference of respiration and MA becomes a challenging issue in the non-invasive
detection using Doppler radar signal [40]. More concretely, the nearby spectral am-
plitudes corresponding to respiration and/or movements weaken even overwhelm the
spectral peaks associated with HR, resulting in a noise-contaminated heartbeat sig-
nal, i.e., the targeted time series reconstructed by SSA. The obvious residual noises
easily restrain the effects of following frequency domain processings, due to the un-
solved leakage effect. In addition, the serious problem also limits the exploitation of
spectral sparsity of heartbeat in the usage of superior SSR, which has been presented
as an open question in [40]. To extract relatively cleansed heartbeat component for

Doppler radar detection, an alternative of SSA is urgently needed.

2.2.1 Sparseness of Heartbeat Signal

Fig. 2-3(a) intuitively illustrates a segment of heartbeat signal recorded by ECG
sensor in time domain, where the impluse characteristic of signal exhibits the evident
temporal sparseness. Also, the reconstructed spectrum by the heartbeat signal is
shown in Fig. 2-3(b), the spectral sparseness of heartbeat signal can be easily found
by the dominant power peak, and the other magnitudes are close to zero. In contrast,
most vital signs do not have obvious sparseness as heartbeat signal, such as respiration
or blink signals. Inspired by the remarkable sparseness both in time domain and
frequency domain, we improve the proposed approaches of BSS and SSR by penalizing

sparse constraint, which will be elaborated in the following context.
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Chapter 3

Proposed SSR Approach

In this chapter, first, an applied HR measurement framework incorporating the pro-
posed SSR approach is described. Then, three proposed SSR algorithms are depicted,

successively. Finally, the experimental results by multiple metrics are provided.

3.1 Framework of HR Measurement

To realize accurate HR estimation with Doppler radar during subjects’ movement, a
stable framework is proposed as shown in Fig. 3-1. Raw radar signal is processed by
pre-processing, signal decomposition, and temporal difference for noise elimination.
SSR yields a high-resolution spectrum reconstruction, following a binary decision that
decides whether TWYV is adopted. Next, the spectrum peak tracking would find the
spectral peak corresponding to HR. For better understanding the superiority of the
proposed method, namely the robustness to MA, the ZA-SLMS algorithm and its
improved variant acting on SSR, and the introduction of the TWYV technique are
elaborated.

In this thesis, the Doppler signal C'(¢) in each time window of 7y = 8 s is input
to the proposed framework for HR estimation. Note that 8 s is an appropriate size
of time window for heartbeat detection that has been adopted in [30,41], considering
that relatively large T, can achieve a high spectrum resolution on the compromise

of prompt observation of HRV. Each signal processing part is depicted in order, as
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Figure 3-1: The flowchart of HR measurement framework, incorporating our proposed
SSR approach

follows.

3.1.1 Pre-Processing

Pre-processing consists of down-sampling and bandpass filtering. To reduce redun-
dant computational burden, the radar signal is first down-sampled to 125 Hz. Besides,
in view of the fact that the respiration rate typically varies within 0.1-0.3 Hz, while
HR varies in a higher range of 1-3 Hz [4], a bandpass filter with cutoff frequency of
0.4-5 Hz covering the variation range of HR, is adopted to down-sampled C(t). The
noises including MA outside of the objective frequency band can be filtered, also, the

sparsity of spectrum becomes more dominant.
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3.1.2 Signal Decomposition

Followed by the pre-processing of signal, the singular spectrum analysis (SSA) [42,55]
is used to extract heartbeat components, in the signal decomposition part. First, the
filtered radar signal is decomposed into some time series by singular value decompo-
sition (SVD), then, the spectra of each time series are calculated by the Periodogram
algorithm executed via FFT. Finally, through searching for the highest peak in a
given HR range among the reconstructed spectra, referring to the previous estimated
HR, the time series corresponding to heartbeat is obtained. Note that the interfer-
ence by respiration and body motion cannot be completely eliminated, specifically,

in the case that MA occurs. The residual noises motivate us to apply more robust

algorithms for SSR.

3.1.3 Temporal Difference

In general, MA components are aperiodic, while respiration and heartbeat are approx-
imately periodic [30]. In order to promote the periodic fluctuations of the de-noised
radar signal, the temporal difference is operated between signal decomposition and
SSA. To the time series presenting heartbeat of the length M = 1000, which is output
by SSA, i.e.,

y =[v1,92 - um] ", (3.1)

where (¥T denotes the transpose, its first-order difference is defined as

T
Y= y,Y Y- yn Yu-a] - (3.2)
To coincide with the count of samples in y, i.e., M, y’ is approximated by
y' =10,y" (T _ (3.3)

By temporally differentiating the de-noised radar signal, the random spectral power
induced by MA can be reduced [30].

39



noises from respiration ‘;E
and/or body motion £

T :\::I":

@ 1 1 1
R _ . AR A A7
£  1/Q Doppler Radar Signal }
= c -fs/2 0 HR /2 f
g ] No. of frequency bins is equal
- ] ] to that of periodic impulse
1 | |
; : : (a)
I I I g
1 1 1 E
5]
tp Ty 2T, s m b t R
Periodic impulse SSR AR L daay W R e
| I N I ' N N I AN A N ' I B B
——> RN Wi
-fs/2 0 HR f/2 f
Increased frequency bins
(b)

Figure 3-2: An comparison of spectrum reconstruction methods by Doppler radar
signal, where T, and f; respectively denote sampling period and frequency. (a) Con-
ventional FFT. (b) Proposed SSR

3.1.4 SSR (with TWV)

SSR [32,35, 36| overcomes the traditional Nyquist sampling limit, which enables the
acquisition of high-resolution spectrum, by developing the sparsity of signal. The main
task of SSR. is to reconstruct the spectrum of interest, i.e., the heartbeat spectrum in

this study, based on an under-determined linear equation as follows,
y =®s+v. (3.4)

Here s is an unknown solution of original heartbeat spectrum with inherent sparsity,
lbk|F, & / }1, %, N| is the corresponding heartbeat spectrum of length N = 4096
(M € N), v represents the M-length residual noises of respiration and body move-

ment, and & / CM>*VN is a known basis matrix with the elements defined as
b =N j=0 %0, M 1;k=0,%x, N 1. (3.5)

By a proper choice of SSR algorithms, the frequency bins can be dramatically in-
creased by limited samples of Doppler radar signal, as shown in Fig. 3-2. Owing
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to the previous signal processing operations, the spectral power of noises is generally
zero or close to zero, which can be further suppressed by introduced sparse constraint,
and the peak associated with HR becomes more dominant.

Even though FOCUSS-type algorithms [37,38] have been demonstrated to a PPG
signal to realize SSR [30,41], the prominent spectral power of HR probably cannot
be reconstructed in a low signal-to-noise power ratio (SNR). Considering that the
instability of FOCUSS-type algorithms against the residual respiration noise and MA,
two sparse adaptive algorithms based on SGD approach are applied in SSR part,
ie., the ZA-SLMS algorithm and its improved variant. Also, to further develop
the potential of performance of the proposed algorithms, TWV technique can be
incorporated by sacrificing several times of computing time, which will be separately

stated later on.

3.1.5 Spectrum Peak Tracking

At the end, the spectral peak corresponding to HR can be estimated by a compact

procedure, which is divided into following three steps:

1. Initial Setting: A variable HR search range of 20 BPM is initialized aiming to
different subjects, considering that the HRV is generally within a specific range

to a normal subject without big motion [16].

2. Peak Selection: Since the HRs in two successive time windows with a short
sliding time is close, and the sliding time of Sy = 2 s adopted in this paper
is sufficiently small to a time window of Ty = 8 s (generally Sy > Ty/2) [30],
the search range denoted by [Nprey 8, 3¢, Nprey + 0] is used to search HR
for both B;(t) and Bg(t) data. Here Npey is the previous estimated HR, and
search bound is 6 = 10 BPM. Through selecting the peak with the largest power
in the given search range, on the spectra reconstructed respectively by Bi(t)
and Bg(t), the HR is estimated by the corresponding frequency that we name

current estimation N,;.
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Figure 3-3: Adaptive filter framework to solve SSR problem. (a) SSR problem. (b)
Unknown FIR and adaptive filter

3. Verification: Due to the noise components on the spectra, some probably wrong
HR estimations cannot be avoided. To cope with an overmuch abrupt HRV that
is abnormal in a short period, Ny, is replaced by Nprey if [Vprev  Neur||is bigger
than some threshold, such as experimental 6 BPM.

3.2 ZA-SLMS Algorithm for SSR

In our proposed framework, SSR is regraded as a key part. Fig. 3-3(a) intuitively
shows the objective of SSR problem, namely, to reconstruct the original heartbeat
spectrum by an updating signal s(n), relying on the samples of radar signal y’ and a
given basis matrix ®. Eventually, a reconstructed spectrum |s;(n)|E, k / }1, xxx, N|
can be obtain by the steady-state s(n), and it will be dealt with in the following

tracking of spectral peak.

3.2.1 Adaptive Filter

Adaptive filter has drawn great attentions for a long time, due to its simple structure

and reliable performance facing interference [56,57], which is the premise of the usage
of adaptive-type algorithms, including our proposed ZA-SLMS and [ZA-SLMS. A
popular adaptive filter framework is shown in Fig. 3-3(b), which features in the
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Table 3.1: Parameters correspondences between SSR problem and adaptive filter

SSR Problem Adaptive Filter
9; m"(n)
s(n) h(n)
Yi d(n)

estimation of unknown finite impulse response (FIR) h = [hy, ho, ..., hy]|" by the

critical adaptive filter. More concretely, the recursion error
e(n) =d(n) mT(n)h(n) (3.6)

is extracted to construct the cost functions of adaptive algorithms, the filter coeffi-
cients h(n) = [hi(n), ha(n), ..., hx(n)]T are iteratively reconstructed to estimate h.

Here d(n) = mT(n)h + 2(n) is the inner-product of input signal
m(n) = [m(n),m(n 1),...,mn N+1)]" (3.7)

termed training sequence and h, contaminated by additive noise z(n).

In view of the feasibility that sparse signal can be reconstructed by adaptive filter
[34], in this paper, heartbeat spectrum is reconstructed based on the correspondences
of parameters between SSR problem and adaptive filter shown in Table 3.1. As
shown in Fig. 3-3, the row vectors ¢;, 7 / }1, xxx, M| in ® acting as m(n) and the
corresponding element in y’ acting as d(n), are used circularly, to make s(n) to reach

steady-state.

3.2.2 ZA-SLMS Algorithm

Based on adaptive filter, the proposed ZA-SLMS algorithm is described here. Least-
mean-square (LMS) algorithm is a popular adaptive algorithm due to its simplicity
and practicability [56,57], and many sparse versions have been developed [39,44,58].

Since the recursion updating equation of the ZA-SLMS algorithm is derived from the
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zero-attracting least-mean-square (ZA-LMS) algorithm [58], the cost function of the

ZA-LMS is recalled:
(3.8)

Gza-1LMs = ff \(_:E) + :\_vlzl&llv} ,

gradient correction  sparse penalty

where p is a step-size decides the convergence rate, A is a REPA that trades off the
is the Euclidean ¢;-norm. The

gradient correction and the sparse penalty, and

recursion updating equation is derived by the gradient Gpygs as follows,

h(n+1) =h(n) + ge_(n\)\mﬂ) jgl@@), (3.9)
sparse penalty

gradient correction

where 7 = p termed zero attraction factor plays a similar role with A i.e., to balance

the proportion between the correction of gradient and sparse constraint, and the sgn(%

is a component-wise sign function defined as

x
i —  ifz¥0,

il (3.10)
? 0, otherwise.

sgn(z) =
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Figure 3-5: The comparison of general gradient descent and proposed gradient descent
with restriction under impulsive noises

Fig. 3-4 intuitively shows the LMS algorithm-induced gradient descent, where h
and h(n) are assumed to locate a plane denoted by h; and hs, and h(n) approaches
iteratively h by decreasing Grys to the minimum €2, . In Eq. (3.8), the introduced

sparse penalty benefits the exploitation of sparsity, resulting in the acquisition of

more realistic heartbeat spectrum [39,44, 58].

Furthermore, some literatures have clarified that many artificial or physical noises
have impulsive nature departing from Gaussian distribution, including biological noise
[59-61]. Such environments probably lead severe performance degradation to adaptive
algorithms due to the unstable gradient descent, and the modification of gradient by
restricting error e(n) is regarded as an effective way to suppress sudden disturbance
[39,62]. Fig. 3-5 shows the updating process of restricted gradient descent, which
enhances the stability of general gradient descent. Through quantifying the updating
of e(n), the recursion updating equation of ZA-SLMS algorithm is obtained,

h(n+ 1) = h(n) + psgn(e(n))m(n)  ~sgn(h(n)). (3.11)
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which consists of restricted gradient correction and ¢;-norm-based sparse penalty.
The recursion procedure of the ZA-SLMS algorithm is shown in Fig. 3-6. Through
applying alternatively the gradient correction by LMS and the sparse constraint by ¢;-
norm on updating signal, the process of SSR by ZA-SLMS is summarized in Method
1.

3.3 Improved ZA-SLMS Algorithm

Although the ZA-SLMS algorithm can realize robustly SSR, it is difficult for this
algorithm to always reach high-accurate HR estimation under various conditions,
limited by the fixed weight of sparse constraint. The amplitude of radar signal varies
significantly along with ambient environments, therein, the movements from subjects
are regarded as one of the most causes [30,31,41]. Fig. 3-7 shows an intuitive
comparison of amplitude variations of B;(t) and Bg(t) against different subjects’
activities, one can find that the amplitude variations on typewriting accompanying
body motion, are more obvious than those of sitting still. The obvious fluctuations
of radar signal probably bring significant decrease of accuracy, due to an improper
proportion between gradient correction and sparse penalty by a constant REPA \.

To better regulate the weight of sparse constraint dealing with different subjects’
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Method 1 ZA-SLMS algorithm for SSR
Input: &, y'
Output: s(n)
1: Initialize s(1) = 0, n = 1, choose p, A.
2: while n < C (C' is a given maximum iteration run) do

mT(n’) = ij‘a

d(ﬂ,) = Yj

where j = mod(n, M), with mod(» denotes the modulo function that calculate
remainder of division.
3: Calculate recursion error

e(n) =d(n) mT(n)h(n).
4: Correct gradient of s(n) by LMS
S(n +1) = s(n) + psgn(e(n))m(n).
5: Penalize sparse constraint by /;-norm
s(n+1)=s(n+1) ~sgn(s(n)).
6: [teration run increases by one
n=n+1.

7: end while

activities, an adaptive REPA (REPA) is proposed to adaptively change the scale of
REPA, by incorporating an improved ZA-SLMS algorithm named [ZA-SLMS.

The proposed AREPA is given by

Mada =\ 6+ VE[ /VE (3.12)

where A is an initial REPA, o is the standard deviation of y’, and ¢ is the threshold

of AREPA, respectively. The functions of o and ¢ are as follows:

e o0: To a small amplitude variation of y’, Aaga is set as a relatively large value
by small o, when the weight on sparse penalty correspondingly increases. In

contrast, when the amplitude largely varies by strong MA, A4, relatively de-
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Figure 3-7: An example showing the comparison of the amplitudes of radar signal on

different subjects’ movements. (a) A segment of radar signal on sitting still. (b) A
segment of radar signal on typewriting

creases due to a larger 0. Hence, a part of weight will be transferred to gradient
correction from sparse penalty.

e J: To prevent an overmuch fast change of AREPA, § is introduced to enhance

the stability of proportion regulation, guaranteeing a reasonable acquisition of

AREPA.

Based on the the cost function of the ZA-SLMS algorithm defined in Eq.

(3.8),
the cost function of further proposed IZA-SLMS algorithm is defined by introducing
AREPA,

G =é€*(n) + /\ada\}u(n)\}.

(3.13)
Similarly, the corresponding recursive updating equation is derived as

h(n + 1) = h(n) + psgn(e(n))m(n)  agasgn(h(n)), (3.14)

where 7Yada = ftAada 1S an adaptive zero attraction factor. In contrast to ZA-SLMS,
an adaptive AREPA parameter is introduced into the cost function, and the process

of SSR by the improved [ZA-SLMS is summarized in Method 2.
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Figure 3-8: The flowchart of TWV framework incorporating IZA-SLMS algorithm for
SSR

3.4 IZA-SLMS Algorithm Combining with TWV

Unlike the single time window used in most detection methods, TWV technique re-
constructs the interested spectra by several time windows with slight length variation,
namely length-varying samples of data. TWV makes it possible that higher accuracy
is acquired, combining spectrum transform methods of FFT [14] or CWT [26]. In a
time window with short-period, e.g., 5 s, the received radar signal contains only one
or two respiration cycles, and just an approximate respiratory rate can be calculated
by the limited cycles [14,26]. Since a short time window cannot fully reveal the peri-
odicity of a respiration signal, the approximate respiratory frequency typically varies
depending on the choice of time windows with different size. In contrast, a heartbeat
signal has more cycles than those of a respiration signal in a given time window,
which are up to 3-6 times [14,26]. Owing to the better reveal of the periodicity of a
heartbeat signal, the HR can be more reliably acquired than respiratory rate in some

way. In particular, when the length of time window varies, the location of spectral
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Figure 3-9: An example showing the benefit of TWV. (a) A segment of simultaneously
recorded ECG signal regarded as the ground-truth of HR. (b) A segment of down-

samples of radar signal after bandpass filtering. (c¢) The radar signal segment after
SSA and temporal difference following (b). (d) SSR on (c) by ZA-SLMS. (e) SSR on
(¢) by IZA-SLMS with TWV

peak associated with HR is almost unchanged, which benefits the precise extraction

of HR.

In view of the better adaptability against a variety of physical activities by the im-
proved IZA-SLMS algorithm over the ZA-SLMS algorithm, the I[ZA-SLMS is adopted
to realize SSR combining TWYV technique. Fig. 3-8 elaborates the framework of TWV
shown in Fig. 3-1, following the temporal difference, the samples of de-noised radar
data in each time window of T' = 8 s, are chosen as input data. To obtain a set of
samples with varying lengths by input data, the time window changes by T + iAt s,
i/} 4, 3,%x, 0| in order, which is close to the given length of T. By the fact that
HR can be assumed to be unchanged under a short sliding time, i.e., At < 0.17" [14],
At = 0.5 s is experimentally set aiming to the 8 s-time window in this study. In com-
parison to the general SSR by single time window, in the case of TWV, the spectra
reconstructed by the [ZA-SLMS algorithm are combined for the final spectrum peak

tracking.

An intuitive benefit of the incorporation of TWV is shown in Fig. 3-9. Through

the relatively cleansed Bj(t) and Bg(t) after the de-noising by bandpass filtering,
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Table 3.2: Experimental parameters

Parameters Specification
Modulation type Unmodulated CW
Carrier frequency 24 GHz
Transmit power 1 mW
Sampling frequency 1 kHz
Height of radar 80 cm
No. of subjects Five
Observation duration 2 minutes
Subjects’ conditions 1) Sitting still;
2) Typing with a laptop
Measuring distance dy 1) 80 cm and supplemented 30 cm for sitting still;
2) 30 em for typing

SSA, and temporal difference, which exhibit heartbeat shown in Fig. 3-9(c), SSR
is realized by the ZA-SLMS algorithm or the [ZA-SLMS algorithm with TWV, as
shown in Fig. 3-9(d) and Fig. 3-9(e). Fig. 3-9(e) shows a stable observation of
spectral peaks corresponding to HR, namely the locations of peaks obtained by the
time windows with five different lengths (6.0 s, 6.5 s, xxx 8.0 s) are almost unchanged,
which brings about a smaller error of 4.43 BPM than that obtained by the ZA-SLMS
(6.26 BPM). Note that the computational complexity of the [ZA-SLMS algorithm
with TWYV directly depends on the number of adopted time windows, hence, its
running time is approximately five times relative to that of the ZA-SLMS or the
[ZA-SLMS.

3.5 Experimental Results

In this chapter, experimental environment and results are presented, and analytical
accuracy evaluation is performed to verify the advantage of our proposal. That is,
the proposed SSR by the ZA-SLMS algorithms and its variants of [ZA-SLMS and
IZA-SLMS with TVW, and the proposed BSS by various NMF algorithms, namely
standard NMF, SPNMF, and WSPNMF.

The parameters used in measurement are detailed in Table 3.2. The dataset
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Figure 3-10: The setup of HR measurements against various subjects’ activities. (a)
Sitting still when basic dy = 80 cm. (b) Sitting still when supplemented dy = 30 cm.
(c) Typing with a laptop when basic dy = 30 cm

consists of five 2-min recordings which were collected from 18 to 35 years old subjects
performing various activities, i.e., sitting still or typing with a laptop. The ground-
truth of HR is calculated by simultaneously recorded ECG signal, from the ECG
sensor attaching a subject’s chest. Setting at 80 cm-height, we used 24 GHz band
Doppler radar with 1 kHz sampling frequency to detect heartbeat. The Doppler radar
was positioned dy = 80 cm and 30 cm away from subjects, respectively against sitting
still and typewriting as [40], and the basic radar setups are shown in Fig. 3-10(a)
and 3-10(c). Note that the performance evaluation of HR estimation methods in the
following subsection, is on the premise of basic measuring distance dy. In addition,
Fig. 3-10(b) shows the measurement at 30 cm-distance for sitting still, which is
supplementarily conducted for further comparing performance with the case of typing
at the same ranging.

To the Spectrogram method [16], the frequency band for integrate amplitudes is
set 850 Hz, and the minimum and maximum peak-to-peak intervals are set 600 ms
and 1000 ms, respectively. In order to exhibit the better robustness of the SGD-based
SSR algorithms proposed in this paper, the proposed method using RM-FOCUSS al-
gorithm [38] in SSR is applied for performance comparison. Referring to [30], the
parameters of RM-FOCUSS, i.e., norm p and REPA Agur are set 0.8 and 0.1, respec-
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tively.
The parameters of all the proposed sparse adaptive algorithms, i.e., the ZA-SLMS,
the IZA-SLMS, and the [ZA-SLMS with TWV, are chosen as follows:

e Step-size p = 1 x 107, maximum iterations C = 5 * 10® for all the proposed

algorithms,

e Zero attraction factor yza = 2 * 107° for ZA-SLMS, ~viza = 1 % 1075 for the
[ZA-SLMS and IZA-SLMS with TWYV, respectively,

e Threshold of AREPA § = 0.8 for IZA-SLMS and IZA-SLMS with TWV
e Variation time of time windows At = 0.5 for IZA-SLMS with TWV.

One of the metrics for evaluating HR is average absolute error (AAE), which is
calculated by the absolute value of the difference between the measured result and

the ground-truth, as the following equation,

N

1[ BPMec(i)  BPMye(i)| (3.15)

AAE = —
N
where BPMg (i) and BPM;,.(7) respectively represent the estimated HR and ground-
truth corresponding to the i-th time window. N is the amount of time windows
during an observation period. Since the metric of AAE has been widely used in
HR estimation, as in [30,41], we choose AAE as the primary metric for performance

evaluation. The other metric of HR evaluation is AAE percentage (AAEP), which is
defined as the ratio of AAE and ground-truth:

1 [N |BPMest (1) BPMtrUE(i)”
=1

AAEP = BPMrue(7)

(3.16)

Besides the two metrics of HR variation based on BPM, the root-mean-square
error (RMSE) between the RRIs by estimation methods and reference signal, is also

a common metric used in some literatures (see [16]). The average of RMSE is derived
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Table 3.3: Average absolute error (AAE) of HR estimation [BPM]

(a) Sitting still
Subj 1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 4.34 9.38 10.38 6.99 12.61 8.74
RM-FOCUSS [38] 5.14 3.79 3.72 3.22 5.07 4.18
ZA-SLMS 3.21 3.63 3.09 2.98 4.94 3.57
IZA-SLMS 2.42 3.87 2.65 3.37 4.72 3.40

IZA-SLMS with TWV 2.61 3.70 2.12 3.32 4.42 3.23

(b) Typing with a laptop
Subj1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 12.80 10.06 8.60 12.14 13.33 11.39
RM-FOCUSS |[38] 3.12 5.08 2.93 7.18 4.45 4.55
ZA-SLMS 3.11 3.26 2.68 6.20 5.07 4.06
IZA-SLMS 3.23 3.14 2.74 5.83 5.08 4.00

IZA-SLMS with TWV 264 4.51 258  3.97 524  3.79

g N
RMSE = %[ IRRIst (i) RRIyrue(d)[P- (3.17)

where RRI (7) is the detected peak-to-peak interval of temporal signal, and RRI; (i)
is the RRI acquired by ECG signal. The mentioned two estimations, i.e., BPM(i)

and RRI.(7), can be mutually transformed by the given expression,
RRI1e(i) = 60/BPMeg (i) * 10,7 =1, 2, xxx, W, (3.18)

which is helpful for the thorough performance assessment of our proposal.
The measurement accuracies of the three proposed algorithms are evaluated by

two main indices, namely HR and RRI.

3.5.1 Performance Evaluation on HR

Table 3.3 and Table 3.4 present the AAE and AAEP on all 5 subjects’ data recorded
by Doppler radar, respectively. Using the three proposed algorithms (ZA-SLMS, IZA-
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Table 3.4: Average absolute error percentage (AAEP) of HR estimation

(a) Sitting still
Subj 1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 58%  121%  14.5%  9.9% 14.5% 11.4%
RM-FOCUSS |[38] 6.9% 4.8% 5.3% 4.6% 5.8% 5.5%
ZA-SLMS 4.3% 4.6% 4.4% 4.2% 5.6% 4.6%
IZA-SLMS 3.2% 4.9% 3.7% 4.8% 5.4% 4.4%

IZA-SLMS with TWV 3.5% 4.7% 3.0% 4.7% 5.0% 4.2%

(b) Typing with a laptop
Subj 1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 16.5%  141%  11.5%  155%  15.4% 14.6%
RM-FOCUSS [38] 4.0% 7.2% 3.8% 9.5% 5.1% 5.9%
ZA-SLMS 4.0% 4.6% 3.6% 8.1% 5.8% 5.2%
IZA-SLMS 4.1% 4.4% 3.6% 7.6% 5.8% 5.1%

IZA-SLMS with TWV 3.4% 6.3% 3.5% 5.0% 6.0% 4.8%

SLMS, and IZA-SLMS with TWV) can obtain more accurate HR estimation than the
typical existing detection methods, under the status of sitting still or typing. More
concretely, when subjects are sitting still, a smaller average AAE of 3.57 BPM is
obtained by ZA-SLMS, compared with the Spectrogram method and the usage of
RM-FOCUSS, as shown in Table 3.3(a). Moreover, the improved IZA-SLMS that
can adaptively regulate the weight of sparse penalty further reduced the AAE to 3.40
BPM, and the smallest 3.23 BPM is achieved by IZA-SLMS with TWV. Although
very few literatures can clarify the threshold for a qualified AAE, in general, a value
less than 5.0 BPM is regarded as acceptable. Fortunately, the proposed algorithms
typically can acquire acceptable AAEs that are less than 5.0 BPM.

In particular, in the case of typing with a laptop, Table 3.3(b) shows that a signif-
icant degradation of performance happened to the Spectrogram method, and certain
degradation to RM-FOCUSS due to the vulnerability to strong noises. In contrast,
the three proposed algorithms (ZA-SLMS, 1ZA-SLMS, and IZA-SLMS with TWYV)
achieve the reliable results of HR estimation around 4 BPM, due to the robustness

to MA. Among our proposal, the IZA-SLMS with TWYV still achieves the highest
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Figure 3-11: An example showing the comparison of the variation of HR estimated
by detection methods, under typing with a laptop by Subject 1

accuracy owing to more stable HR detection by TWV.

Table 3.4 shows AAEP results of each method, which are basically consistent with
the results of AAE in Table 3.3. Be superior to the Spectrogram method and RM-
FOCUSS, our proposal obtains better HR estimation by smaller AAEP. Specifically,
the IZA-SLMS with TWYV respectively achieves the smallest AAEPs of 4.2% and
4.8%, against the two activities of sitting still and typing.

To intuitively show the performance superiorities of our proposal against the noises
from respiration or body motion, the comparison of the HRV by different detection
methods aiming to a subject in typing, is shown in Fig. 3-11. The interference caused
by subjects’ movements results in obvious deviation of HR estimation, to the ground-
truth of HR by the Spectrogram method. While, the estimated HRs by the three
proposed algorithms are generally more close to the variation of ground-truth. In
particular, the IZA-SLMS with TWV most faithfully reflects HRV depending on the
improved stability, and the observation periods when it evidently outperforms the
other involved methods are highlighted by circles. Although our proposal does not
tightly track the ground-truth of HR during some periods of time, due to interference
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Table 3.5: Root-mean-square error (RMSE) of RRI estimation |[ms|

(a) Sitting still
Subj1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 60 163 173 119 167 136
RM-FOCUSS [38] 66 49 o1 25 53 95
ZA-SLMS 42 49 43 o4 49 47
IZA-SLMS 32 52 35 o4 48 44
IZA-SLMS with TWV 35 49 29 53 44 42

(b) Typing with a laptop
Subj 1 Subj 2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 218 188 142 203 183 187
RM-FOCUSS [38] 39 62 A1 82 45 54
ZA-SLMS 42 44 36 68 47 47
IZA-SLMS 43 42 36 63 50 47
IZA-SLMS with TWV 35 62 34 51 48 46

of respiration and movement, the instantaneous absolute error of estimation can be
guaranteed in a small range. The similar phenomenon also happens to the proposed

NMEF algorithms in BSS approach, in Chapter 4.

3.5.2 Performance Evaluation on RRI

The RMSEs of the proposed three algorithms (ZA-SLMS, IZA-SLMS, and 1ZA-SLMS
with TWV) can be obtained, which are summarized in Table 3.5. Similarly, our pro-
posal (ZA-SLMS, IZA-SLMS, and IZA-SLMS with TWV) generally obtains smaller
RMSEs over the Spectrogram method and RM-FOCUSS, toward to five subjects.
Also, the three proposed algorithms exhibit the performance superiority, by the ac-
quisition of smaller average RMSE to various subjects’ activities. In particular, in
the status of typing accompanying movements, the smallest RMSE of 46 ms can also
be achieved by the IZA-SLMS with TWV, as shown in Table 3.5(b).

In fact, to different subjects, HR variability and strengths of respiration are typ-
ically distinct, which directly relates with the effect of HR estimation via Doppler
radar. Hence, the further proposed IZA-SLMS and IZA-SLMS with TWV, can not
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always obtain better HR estimation than the ZA-SLMS algorithm, against each sub-
ject. The similar phenomenon also happens to the proposed NMF algorithms in BSS
approach, in Chapter 4.
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Method 2 IZA-SLMS algorithm for SSR
Input: &, y'
Output: s(n)
1: Initialize s(1) = 0, n = 1, choose p, A, 4.
2: while n < C (C' is a given maximum iteration run) do

mT(n’) - ij‘a

d(n) = yj,

where j = mod(n, M), with mod(» denotes the modulo function that calculate
remainder of division.
3: Calculate recursion error

e(n) =d(n) mT(n)h(n).
4: Correct gradient of s(n) by LMS

s(n+1) = s(n) + usgn(e(n))m(n).

5: Calculate standard deviation o of y'.
6: Acquire AREPA and adaptive zero attraction factor
V_. V_
Aada = A 0+ 0'[/ o,
Yada = fJ')\a.da-
T: Penalize sparse constraint by #;-norm

s(n+1)=s(n+1) ~adasgn(s(n)).
8: [teration run increases by one
n=n+1.

9: end while
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Chapter 4

Proposed BSS Approach

Inspired by the inapplicability of SSA in HR monitoring via Doppler radar, in this
chapter, we propose a BSS approach to directly separate the individual sources mixed

in C'(t) by the NMF structure, avoiding extra spectrum modification required by SSA.

First, an enhanced framework of HR measurement using the proposed BSS ap-
proach is redescribed, based on Chapter 3. Then, the basic BBS model, and our
unsupervised BSS approach and two NMF algorithms with sparseness constraints,
are respectively depicted. Finally, the experimental results by multiple metrics are

provided.

4.1 Enhanced HR Measurement Framework

The flowchart of the applied framework used for HR measurement is shown in Fig.
4-1, where the proposed BSS and the emerging SSR are two key parts. To pursue
a relatively high frequency domain resolution within an applicable period, a time
window of Ty = 8 s is adopted for input signal C(t), with a Sy = 2 s-forward sliding,

as in |30,41]. Each part of the measurement framework is briefly stated, in order.
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Figure 4-1: The flowchart of HR measurement framework, incorporating our proposed
BSS approach

4.1.1 Blind Source Separation

In order to abstract the heartbeat source from the mixed radar signal, we propose an
accuracte and practical BBS approach using NMF algorithms. In particular, not only
standard NMF algorithm, two constrained NMF algorithms with sparseness, namely
SPNMF [50] and WSPNMF, are also used to capture more partial representations of
sources, by observing the time domain sparsity of targeted heartbeat. The details of

the proposed BSS is elaborated in this chapter.
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4.1.2 Pre-Processing

Followed by the BSS, the corresponding data pre-processing functions in pruning es-
timated signals and distinguishing the heartbeat, which consists of three steps: Step
i. Sample rate conversion; Step ii. Bandpass filtering; Step iii. Heartbeat extraction.
In the first step, to guarantee sufficient samples for SSR on the compromise of rea-
sonable complexity, the I composed components are converted to 125 Hz, referring
to [30,40]. Subsequently, the converted samples are bandpass filtered in the range of
0.4-5.0 Hz as [30,40|, covering a possible HR changes of 1.0-3.0 Hz [4]. At the last
step, through searching the maximum peak occurring in the possible frequency band

of HR, heartbeat component is extracted from I “candidates”, denoted as z.

4.1.3 Following Parts

The following three parts, i.e., temporal difference, SSR, and spectrum peak tracking,
inherit the ones of HR measurement framework shown in Fig. 3-1. Specifically, in the

part of SSR, the ZA-SLMS algorithm is used without TWYV, considering the trade-off

between the performance and efficiency of estimation method.

4.2 Fundamental Model of BSS

For better illustrating our proposal, the fundamental BSS model is recalled as shown

in Fig. 4-2, which is divided into the mixing process and the demixing process.

4.2.1 Linear Mixing Process

The mixture of I sources can be simply assumed as linear [51], and the mixing model

in discrete-time is given by

xplt] = | asilt]+ Il t /1,00 T (4.1)

i
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Figure 4-2: A fundamental BSS model consisting of the mixing process and the
demixing process

where s;[t] and a; denote a T-length of source signal and its amplitude, respectively.
In consideration of additive noises v|[t], such as white Gaussian, a mixture signal
x¢[t], f / }1,xxx, F| is observed as demixing objective. Neglecting the notion of
discrete-time, the mixing process can be simply regarded as the multiplication of
the unknown sources matrix S = ]S"lr}s;r} ooy ST T / RI*T and the mixing matrix
A / RF¥ | with noise matrix V. / RF*T. The corresponding matrix-form model
of Eq. (4.1) can be obtained, i.e., X = AS + V, where X is termed observation
matrix. Note that the symbol (34 that represents non-negative matrices is omitted

in the following context, since the issue considered by the NMF algorithms used in

this thesis, is within the non-negative variables.

4.2.2 Demixing Process by Standard NMF Algorithm

The intent of demixing is to separate individual sources s; by estimating h;, through
finding a separation matrix W < A~!. By one or multiple known x; in some form,
the critical W is adaptively updated to obtain, adopting a proper BSS algorithm. In
our method, practical NMF algorithms are used for BSS, which only requires single

channel observation signal (sole xy), i.e., complex baseband signal C(t).

Being good at multivariable and large amount of data, the algorithms of NMF
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Method 3 Standard NMF' algorithm for BSS
Input: X
Output: W, H
1: Initialize W and H by random uniform distribution subject to (0,1), choose
number of basis vectors K and upper bound of iterations Cyyp. Set n =k = f =
t=1
2: while n < Cxumr do

1% =W IXH(;,
fk(n'+ )_ fk(n)[WHH ]fk)
_ IWIX (i,
Hkt(n + 1) — Hkt(n) [WTW ;:‘I:kt}

n=mn-+1.

3: end while

along with extensions are broadly applied in signal/image processing, text mining,
and data analysis, etc [45-48|. To specific applications, NMF can learn parts-based
representations with various constraints, including indispensable non-negativity and
optional sparseness, etc, enhancing the interpretability between objective and obser-

vation [45-48|. Recall the formula of NMF on matrix decomposition:
X =WH+E, (4.2)

where the observation matrix X / R¥*7 is given by non-negative spectrogram of C(t),

RF*K and the estimation

which is factorized into two interactive factors, namely W /
matrix H / RE*T K < min}F,T|, considering unavoidable error represented by
E. The standard NMF algorithm only incorporates non-negativity constraint in Eq.
(4.2), and a useful distance measure that is the square of Euclidean distance between

X and WH constitutes the cost function:

Diup = X WHV;:[ )Xﬁ [WH]ﬁ( , (4.3)

ft

where \/( is Frobenius norm for matrices, and ¢ and f represent time and frequency

bin, respectively. The optimal condition is X = WH that is equivalent to E = 0,
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when it reaches the lower limit of Eq. (4.3), i.e., zero. To minimize Dgyp subject to
Wik, Hiy =~ 0, the multiplicative update rules acting on W and H are derived based

on the gradient descent:

| XH™(,,
WHHT],,’

WTX
Hkt(ﬂ + 1) = Hkt(n)[]WfWﬁf’ (45)

where n is the iteration number, and k / }1, xxx, K|. The multiplicative update

Wee(n+1) = Wee(n) (4.4)

skillfully avoids the sign changes to W and H, and guarantees the non-increasing
regression of Eq. (4.3). The standard NMF algorithm for BSS is summarized in
Method 3.

4.3 BSS in Unsupervised Manner

The unsupervised manner proposed in our BSS approach achieves a practical HR
observation by double clusterings, omitting additional training of heartbeat-only data
that may require holding breath. The dynamic learning of BS within each time
window adapts to the variation of HR over time, composed by three steps: the first

clustering, the second clustering, and the learning of complete BS.

4.3.1 First Clustering

Based on NMF structure, the decomposition of whole mixture spectrogram X in the
initial clustering is shown in Fig. 4-3(a), where K = 20 (K > I, as [51]) basis vectors

w W and the equal number of estimation signals hf W are obtained, respectively. Here,

wi W are regarded as potential BS, used for optimizing the clustering at the second
time. To capture periodicity of all sources, we can simply deal with the received radar
signal in each time window with fixed length (7j = 8 s), which contains multiple cycles

of the mixed source with the lowest frequency, i.e., respiration component [14, 26].
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Figure 4-3: NMF-based decomposition of spectrogram of mixture signal. (a) First
clustering for underlying BS. (b) Second clustering for RBS

Also, sufficient time-frequency bins are guaranteed by the choices of relatively large
time window of 1.1 s and small forward sliding of 10 ms, in the usage of STFT for
the generation of X. Since Doppler radar operates at 1 kHz in our experiments,
the maximum frequency of X is 500 Hz, where the spectral structure of I sources is
completely presented. Through factorizing X generated within one time window by
the NMF algorithm, the underlying BS WTW = ]W;fw, 30, Wi (‘and the estimation
matrix HTW = ] hTW [T, xx<x, hiW [T\7 are respectively acquired. We reserve WTW

for the eventual BS learning, and discard HTW.

4.3.2 Second Clustering

The intent of second clustering is to search the RBS of actual sources, which enables
the activation of WTW from the first clustering. By the usage of prior knowledge,
namely the number (I = 3) and the components of sources (heartbeat, respiration,

and movement), we correspondingly modify X and the number of basis vectors as
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Figure 4-4: Learning of complete BS based on the similarity between underlying BS
and RBS

reference. More concretely, only the frequency region that covers distinct magnitudes
of heartbeat and respiration in X, i.e., 0-100 Hz referring to [16], is retained, while
the values of 100-500 Hz are replaced by zero, as intuitively shown in Fig. 4-3(b). By
the NMF algorithm, the modified X denoted as X®F is decomposed into I specific
basis vectors witF i / }h,r,m|, in an unfixed order, where h, r, and m respec-
tively represent cardiac, respiratory, and movement signal domains. We reserve the
RBS WREF — ]WEEF,WEEF,WELEF 'g as the foundation for learning complete BS, and

discard HRPF — | RRFF[T, nREF[, nREF [T/
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4.3.3 Complete BS Learning

Through similarity measurements on the resultant WTW and WREF the eventual BS
learning is completed by hierarchical additions. In our method, a general correlation

formula defined in [51] is given to measure similarity:

K8k
Cor(fk, g1) = —L;f g—:,, (4.6)
\ DI\ D
where f, and g are two vectors with equal length. Obeying [0,1], Cu(fy,gr) =
0 indicates the total uncorrelation between f; and g, in contrast, Co (fi,gr) = 1
represents that they are completely correlated when f, and g, are same.

Fig. 4-4 shows the learning procedure of complete BS. From the first basis vector
in WIW 'ie., wIW  the “spectral correlation” between w} "V and wREF is calculated
one by one. Through similarity measurement, the spectral correlation is calculated
by substituting wi " and wEF into Eq. (4.6),

Cor(wi ¥, wiF). (4.7)
The wiEF with the maximum spectral correlation to current w}" is chosen as the

componential target (WE‘EF, REF REF W,

w, o or w,." ), which is added by the current wy

After the additions by all wiWV, k& / }1, % K|, WREF is updated to complete BS
W= [Wh, Wy, Wp,]. Using W, X can be directly factorized to obtain the objective es-
timation matrix H = ]ﬁh, IAL,,, h,, \,/ and the heartbeat component hy, will be extracted

in the following pre-processing part.

4.4 Constrained NMF Algorithms with Sparseness

Although the standard NMF algorithm could accomplish the proposed BSS approach,
sole non-negative penalization does not comprehensively reflect the characteristics of
matrix factors, i.e., W and/or H. This issue implies the necessity to extend the

cost function in Eq. (4.3), by introducing additional auxiliary constraints [47,48].
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Correspondingly, the extended cost function with penalty terms is given by
Dcon = j( WH\} + aJi(W) + BJ>(H), (4.8)

where vector-wise J; (W) and J,(H) enforce constraints depending on certain appli-
cations, and « and (8 are constant regularization parameters that trade-off approxi-

mation error E and constraints.

4.4.1 Sparseness Constraint to NMF

In this study, we concentrate on the temporal sparsity of heartbeat source that exists

in H, and Eq. (4.8) can be simplified as

Dgpa = \}( WHJF + BJ2(H), (4.9)

where J>(H) is the constraint of sparseness. ! Based on the relationship between ¢;-
norm Elyt” and /;-norm V ny, a famous metric of sparseness degree [51] is defined

as follows,

V& N o2
sparseness(y) = N (Ewal/\‘! Zy‘ ,i /1, % N | (4.10)

where N is the dimensionality of considered signal y, and sparseness(y) subjects to
[0,1]. Here, a low level of sparseness is represented by small sparseness(y), when y
has most active elements, resulting in a large ratio between ¢;-norm and f;-norm.
Whereas, large sparseness(y) represents a high level of sparseness, when most ele-
ments of sparseness(y) are zero or close to zero, resulting in a small ratio between
f1-norm and #5-norm. Through enforcing proper degree of sparseness on H, a more
realistic heartbeat estimation hy in H can be reconstructed, by the proposed SPNMF
algorithm [50] or the improved WSPNMF algorithm.

1Prof. Tkehara: The explanation of Eq. (4.10) is not very sufficient.
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Figure 4-5: Intuitive illustration of projection function with joint constraint of ¢;-
norm and ¢s-norm

4.4.2 Sparse NMF Algorithm

Unlike the standard NMF algorithm that only takes action in the descent of gra-
dient with inverse direction, for minimizing the error E between X and WH, the
SPNMF algorithm further introduces the projection on joint constraint space [50],
which is applied in the proposed double clusterings. In the SPNMF algorithm, the
assumed sparseness of H represented by Sy needs pre-set, and the projection func-
tion P(y, L1, L) plays the most important role in two aspects, where L; and Ly are
respectively the scales of ¢;-norm and ¢;-norm. Note that a large Sy brings about
a small L, which facilitates the estimated sources H to be sparse, vice versa. Also,
when Sy is an empty set @, the SPNMF algorithm just reduces to the standard NMF
algorithm. One effect of projection function is strictly setting L; that sparsifies the

input y, and L, that stabilizes updating of y. The other effect is making the output
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Method 4 SPNMF algorithm for BSS
Input: X
Output: W, H
1: Initialize non-negative W and H by random Gaussian distribution, choose number
of basis vectors K and upper bound of iterations Cspyyp. Set Sg / [0,1] and
n=k=f=t=1 \V
L, =

T )VT 1( S,

where T is the number of columns of H. Initially invoke the projection function,
hi(n) = P (he(n), Ly,1), k / }1, % K| .
2: while n < Cspyvr do
|XHT 1
Wik(n+ 1) = Wyk(n) WHHY,,

3: Implement additive gradient descent to H as follows,

Hy(n+1) = Hy(n) p]WT(WH X)(

kt’
4: Invoke the projection function,
hi(n+1) = P (hg(n+1),L;,1),

n=mn-+1.

5. end while

of P(y, Ly, Ly) non-negative, which coincides with the essential principle of the NMF

algorithms.

Fig. 4-5 intuitively illustrates the joint constraint-induced projection function.
After initially projecting y onto the hypersphere of £;-norm obeying L; = Elsg(n)ﬂ,
when n = 1, the following iteration procedure of projection function can be divided
into three steps: Step i. Within the constraint space where L; = Elst(n)ﬂ and
Ly = Zsf(n), s(n) is projected to the intersection of /;-norm and /;-norm with the
closest distance to obtain s(n + 1), when error may occur. For the Case a, if all the
coefficients of s(n + 1) are non-negative, i.e., si(n + 1) > 0,Ui, the current s(n + 1)
is output as the final result §(n). For the Case b, if some coefficients of s(n + 1)

are subtractive, the subtractive values are replaced by zeros, as Step ii.. Finally,
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at Step iii., the resultant s(n + 1) is further fixed relying on L;, and s(n + 1) is
sequentially updated from Step i. at the next iteration. The SPNMF algorithm for

BSS is summarized in Method 4, and the invoked projection function is depicted in
Method 4.

4.4.3 Weighted Sparse NMF Algorithm

Furthermore, through observing the evident difference of sparseness between heart-
beat and the other (I 1) sources, the WSPNMF algorithm penalizes weighted
sparseness constraints to each updating estimation signal h®¥¥ i / }h,r,m| in
the second clustering, over the uniform constraint of the SPNMF algorithm. Be-
sides dominant sparsity, heartbeat signal also has more prominent periodicity than
respiration and movements, which corresponds to larger proportion of sparseness
constraint. More concretely, when h**F have been preliminarily reconstructed by
hi(n+ 1),k / }1,xxx, I| after half of maximum iterations Cyspnyr, We measure
their standard deviations of first-order temporal difference that reflects periodicities.
Correspondingly, a set of regularization parameters A = [A;, xxx, Ag, xxx, A[] are given
to respectively regulate L, that is the scale of sparseness constraint, namely, mod-

erately small A, for large standard deviation, vice versa. Here, A\ is formulized as

Ak = 6 + Ry, (4.11)

with R, = 1/std (diff (hg(n + 1))), where std(3} denotes a standard deviation func-
tion, and 1 and ¢ are weight factor and threshold of Ay, respectively. The WSPNMF
algorithm for BSS is summarized in Method 6.

4.5 Experimental Results

In the experiments for evaluating the proposed BSS approach, the dataset, setting,
and three metrics are same with those for the proposed SSR. approach in Chapter

3. Note that, compared with the standard NMF algorithm, the further proposed
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Figure 4-6: An example showing the benefit of NMF-based BSS under subjects’

typing. (a) A segment of estimated heartbeat component extracted from Doppler
signal after standard NMF and pre-processing. (b) SSR by ZA-SLMS after SSA. (c)
Spectrum of estimated heartbeat component via FFT using (a). (d) SSR by ZA-
SLMS after standard NMF using (a). All frequency domain signals in (b), (c), and
(d) are normalized

constrained NMF algorithms with sparseness (SPNMF and WSPNMF) are able to
improve the performances of HR estimation, by penalizing additional sparse con-
straints on updating estimation matrix H including heartbeat source. In addition,
through implementing weighted sparse constraints, the WSPNMF algorithm can gen-
erally bring about more precise HR estimation, over that by the SPNMF algorithm
with uniform sparse constraint.

As [40], the ZA-SLMS algorithm [39] was used for achieving SSR in this study,
where the step-size is 1 107°, maximum iterations is 5% 103, and the zero attraction
factor v is respectively 2% 107% and 2* 107!! when it combines with SSA and NMF
algorithms. The parameters of the proposed NMF algorithms, i.e., standard NMF,
and sparseness-constrained SPNMF and WSPNMF', were itemized:

e Upper bound of iterations Cxyr = 130 for standard NMF as [51], Cspxyr = 10
for SPNMF referring to [50], and Cwspyur = 10 for WSPNMF,

e Sparseness of H is set as Sy = 0.2, both for SPNMF and WSPNMF,

e To WSPNMF, the weight factor is set as 7 = 1% 1074, threshold of regulariza-
tion parameters ¢ is respectively 0.990 and 0.994, to subjects’ sitting still and

typewriting conditions.
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Figure 4-7: An example showing the benefit of sparseness constraint introduced in
SPNMF under subjects’ typing. (a) A segment of estimated heartbeat component
extracted from Doppler signal after standard NMF and pre-processing. (b) Spectrum
of estimated heartbeat component via FFT using (a). (c¢) SSR by ZA-SLMS after
standard NMF using (a). (d) A segment of estimated heartbeat component extracted
from Doppler signal after SPNMF and pre-processing. (e) Spectrum of estimated
heartbeat component via FFT using (d). (f) SSR by ZA-SLMS after SPNMF using
(d). All frequency domain signals in (b), (c), (e), and (f) are normalized

Figs. 4-6 and 4-7 intuitively show the benefits of the proposed BSS, respectively
by standard NMF algorithm and SPNMF algorithm. In Fig. 4-6, when a subject
types with a laptop, the noises from respiration and movements overlap the spectral
location of realistic HR, resulting in performance degradation with error of 4.24 BPM,
as shown in Fig. 4-6(b). Instead, owing to the demixing of mixture signal by standard
NMF, the realistic HR-associated peak stands out within the normal frequency band
of approximate 1.0-1.6 Hz (60-100 BPM) [20], which can be easily detected reducing
the error to only 1.26 BPM. Moreover, the effect of introduced sparseness constraint in
SPNMF is validated in Fig. 4-7, under the status of typewriting. Because the distinct
characteristics of heartbeat including its sparsity and periodicity are neglected, at
some times, the correct peak corresponding to HR nearly disappears in the probable
frequency range, resulting in a large error of 7.93 BPM shown in Fig. 4-7(c). Instead,
Fig. 4-7(f) shows that the penalization of sparseness helps the exploitation of cyclicity
of heartbeat, guaranteeing reliable HR estimation with small error of 2.43 BPM.
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Table 4.1: Average absolute error (AAE) of HR estimation [BPM]

(a) Sitting still
Subj1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 4.34 9.38 10.38 6.99 1261 8.74
SSA+ZA-SLMS [40] 3.21 3.63 3.09 2.98 4.94 3.57
NMF+ZA-SLMS 2.29 3.72 2.82 3.36 4.78 3.39
SPNMF+ZA-SLMS 2.48 3.48 291 3.30 3.75 3.18
WSPNMF+ZA-SLMS 2.60 3.36 3.10 2.75 4.12 3.19
NMF+ZA-SLMS 241 3.69 2.51 3.76 4.33 3.34
<SPNMF+ZA-SLMS 2.52 3.61 2.45 3.69 4.08 3.27

AWSPNMF1ZA-SLMS  2.21 3.70 2.24 3.47 438  3.20

* Supplemented dy = 30 cm.

(b) Typing with a laptop
Subj1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 1280  10.06 860 1214 1333 11.39
SSA+ZA-SLMS [40] 3.11 3.26 2.68 6.20 507  4.06
NMF +ZA-SLMS 2.93 3.73 2.82 5.47 350  3.69
SPNMF+ZA-SLMS 2.90 3.68 3.26 501  3.00 357

WSPNMF-+ZA-SLMS 2.46 3.11 2.43 5.05 3.68 3.35

4.5.1 Performance Evaluation on HR

Against the activities of sitting still and typewriting with moderate movements, the
results of AAE and AAEP on HR estimations of five subjects are summarized in
Table 4.1 and Table 4.2, respectively. In Table 4.1(a), when a subject motionlessly
sits as possible, the SSA+ZA-SLMS method [40] obtains a moderate average AAE of
3.57 BPM, and our proposal exhibits higher accuracies by reliable heartbeat extrac-
tion, of which SPNMF+ZA-SLMS method and WSPNMF+ZA-SLMS method obtain
almost same smallest AAEs, 3.18 BPM and 3.19 BPM. To the typewriting accompa-
nying body motion, the performances of the spectrogram method [16] and SSA+ZA-
SLMS evidently degrade, in contrast, the proposed three methods (NMF+ZA-SLMS,
SPNMF+ZA-SLMS, and WSPNMF+ZA-SLMS) still robustly estimate HR, specif-
ically, the smallest AAE of 3.35 BPM is obtained by WSPNMF+ZA-SLMS. In the
existence of MA, WSPNMF can better make use of the difference of sparsity that
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Table 4.2: Average absolute error percentage (AAEP) of HR estimation

(a) Sitting still
Subj1l Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 579% 12.08% 14.50% 9.93% 14.53% 11.37%
SSA+ZA-SLMS [40] 4290% 461% 4.35% 421 562%  4.62%
NMF+ZA-SLMS 3.06%  4.78%  3.99% 4.75% 5.44%  4.40%
SPNMF+ZA-SLMS 3.35% 4.48% 4.13% 471% 427% 4.19%
WSPNMF+ZA-SLMS 350% 4.32% 43™% 3.91% 4.73% 417%
<NMF-+ZA-SLMS 2.54%  4.79% 2.35% 5.31%  5.40%  4.08%
<SPNMF+ZA-SLMS 2.66%  4.68% 2.30% 5.24%  5.08% 3.99%

<WSPNMF+ZA-SLMS  233% 4.78% 211% 4.92% 551% 3.93%

* Supplemented dy = 30 cm.

(b) Typing with a laptop
Subjl Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 16.54% 14.11% 11.47% 15.52% 15.43% 14.61%
SSA+ZA-SLMS [40] 397% 461% 3.55% 808% 5.82% 5.21%
NMF+ZA-SLMS 3.78% 5.28% 3.71% 6.74% 4.02% 4.71%
SPNMF+ZA-SLMS 3.712%  5.19% 4.29%  6.14%  3.44%  4.56%

WSPNMF+ZA-SLMS 3.16%  4.42% 3.19% 6.12% 4.21% 4.22%

is more distinct between heartbeat and other sources including motions, further im-
proved measurement accuracy than SPNMF. Table 4.2 lists the AAEP statistics that
are basically consistent with the results of Table 4.1. Our proposal acquires better es-
timations over the spectrogram method and SSA+ZA-SLMS, both under sitting still
and typewriting, also, WSPNMF+ZA-SLMS outperforms other methods, respectively
obtaining smallest 4.17% and 4.22%.

The estimated HR variabilities by different detection methods are also intuitively
illustrated in Fig. 4-8. The interference of respiration and MA severely corrupts
the spectrogram method, while, degrades the estimated results of SSA+ZA-SLMS
that are highlighted by circles. In contrast, through stably extracting heartbeat com-
ponent, the HR estimations of proposed three methods overall more approach to
ground-truth. In particular, WSPNMF+ZA-SLMS markedly improves the corrup-
tions of SSA+ZA-SLMS, and most faithfully reflects realistic HR variability among
all the referred methods.
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Table 4.3: Root-mean-square error (RMSE) of RRI estimation [ms]

(a) Sitting still

Subj 1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 60 163 173 119 167 136
SSA+ZA-SLMS [40] 42 49 43 54 49 47
NMF+ZA-SLMS 20 49 42 52 48 44
SPNMF+ZA-SLMS 33 47 42 52 41 43
WSPNMF+ZA-SLMS 33 46 42 43 39 41
NMF+ZA-SLMS 23 46 16 62 56 41
<SPNMF-+ZA-SLMS 20 44 17 48 55 37
<WSPNMF+ZA-SLMS 18 44 16 50 53 36

* Supplemented dy = 30 cm.

(b) Typing with a laptop

Subj1 Subj2 Subj3 Subj4 Subj5 Avg

Spectrogram [16] 218 188 142 203 183 187
SSA+ZA-SLMS [40] 42 44 36 68 47 47
NMF+ZA-SLMS 37 49 39 67 35 45
SPNMF+ZA-SLMS 42 50 43 61 31 45
WSPNMF+ZA-SLMS 34 46 32 66 37 43

4.5.2 Performance Evaluation on RRI

To further perform accuracy assessment, the RMSEs of our proposal are calculated,
by transforming estimated HR to RRI based on Eq. (4.4). The summarized results
of RMSE in Table 4.3 also demonstrate the performance superiority of the proposed
three methods (NMF+ZA-SLMS, SPNMF+ZA-SLMS, and WSPNMF+ZA-SLMS)
that separate sources, against various activities of sitting still and typewriting. Par-
ticularly for WSPNMF+ZA-SLMS that penalizes weighted sparseness constraints, it
respectively reaches the most desired RMSEs, only 41 ms and 43 ms.
Supplementarily, to eliminate the difference of ranging to typing condition, the
estimated results by our proposal when subjects sit still at 30 cm-range, are also
respectively listed in Tables 4.1-4.3. Ome can find that the estimations on sitting
still evidently outperform those on typing in most cases including averages, which

revalidates the influence of MA to HR measurement.
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Estimation Results of HR on Subject 1 under Typewriting
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Figure 4-8: Intuitive comparison of HR estimation results of Subject 1 under type-
writing, by various heartbeat detection methods
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Method 5 Projection function invoked by SPNMF or WSPNMF: P(y, Ly, L,)

Input: y, Ly, L,
Output: The closest non-negative vector to y with joint constraint of /;-norm and

1:

10:

11:

12:

£5-norm, denoted as §(n)
Set zeros-set Z = @ and n = 1. Initiatively project y onto £;-norm hypersphere
as follows,

sy =yt )l | yi(/N}i/}l,m,M,

where N is the dimensionality of y.
loop
Step i. Project s(n) to the closest intersection of /;-norm and f5-norm.

( Li/(N card(2)),ifi ) Z
™= 0ifi ) Z )

where L;-induced m is termed midpoint, and card(Z) represents the number of
elements in Z. To satisfy the £5,-norm constraint, a quadratic equation ax? -+ bx +
¢ =0 (a, b, and ¢ are constants) is required to solve,

a= [ df; b= de(n); c= [ sf(n) Lo,

where d =s(n) m.

\Y
o::) b+ b dac( /(2a),

s(n+1)=s(n)+a(s(n) m).

Case a: If all the coefficients of s(n + 1) are non-negative, return the current
s(n+ 1) as output §(n).
if s;(n+1) > 0, Ui then
break
Case b: If NOT all the coefficients of s(n + 1) are non-negative, Step ii.
and Step iii. proceed.

else
Step ii. Fix the subtractive coefficients of s(n + 1) at zero.
Z =2Z{ }tili(n+1) <0[,
siln+1)=0,U / Z.
Step iii. Prune non-negative s(n + 1) by L;.
r— ) [ sn+1) L (/ (N card(Z)),
siin+1)=s(n+1) r U /Z
end if
n=n+1.
end loop
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Method 6 WSPNMF algorithm for BSS
Input: X
Output: W, H
1: Initialize non-negative W and H by random Gaussian distribution, choose number

of sources I as three and upper bound of iterations Cywspymr- Set Sg / [0, 1],
A=14nandn=k=f=t=1.

V. \V_
Li= T ) T 1(SH,

where T is the number of columns of H. Initially invoke the projection function,

hk‘(n’) = P(hk(n)aLla 1)1 k / }1: ><><>(,1T| :
2: while n < Cywspnyur do

|1 XHT(,

Wik(n+ 1) = Wei(n) WHHT,,

3: Implement additive gradient descent to H as follows,

Hiu(n+1)=Hgu(n) p]WT(WH X) (w

4: Introduce A, to weight the value of L; when the projection function is invoked.
hp(n+1) = P (hg(n+ 1), ALy, 1).
5: if n = Cwspnur/2 then
Ry = 1/std (diff (hg(n + 1))),

Ak = §+7]Rk

6: end if
n=mn-+1.

7: end while
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has first proposed a novel method for heart rate (HR) estimation via
Doppler radar, through reconstructing robustly a heartbeat spectrum with high-
resolution, by a stochastic gradient descent (SGD) manner, combating the noises
from respiration and body motion. Based on the SGD, first, the zero-attracting
sign least-mean-square (ZA-SLMS) algorithm is applied to realize sparse spectrum
reconstruction (SSR) by restricting gradient updating. Then, an improved ZA-SLMS
(IZA-SLMS) algorithm is further proposed, to better cope with different subjects’
activities. Finally, the incorporation of time-window-variation (TWV) in IZA-SLMS
enhances the stability of heartbeat detection, with moderately increased computa-
tional load. Relying on the high-resolution spectrum reconstruction and robust noise
suppression in frequency domain, the proposed SSR obtained improved accuracy of
HR estimation. Specifically, the stable HR measurement by the IZA-SLMS with
TWYV reaches the smallest average error. Taking account of the residual noise in
Doppler signal after the relatively rough temporal signal decomposition for heartbeat
extraction, which may directly corrupt the effect of SSR, a new signal processing
approach in time domain is needed.

Moreover, an unsupervised blind source separation (BSS) approach is further pro-

posed, to stably extract heartbeat component even moderate body motion occurs,
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based on a simple non-negative matrix factorization (NMF) structure. The proposed
BSS is of great value due to three main superiorities: It (i) omits the training phase
that most learning methods require; (ii) adopts simple-structured NMF algorithms
that only focus on local representations of data; (iii) enables source separation by
single-channel input. Experiments verified the performance improvements of heart
rate (HR) estimation by our proposal, combining with the SSR and the BSS, over the
other typical existing detection methods. In particular, the sparseness constraints in-
troduced in sparse NMF (SPNMF') and weighted sparse NMF (WSPNMF) algorithms

furthest reduced errors, by exploiting the temporal sparsity of heartbeat.

5.2 Future Work

In view of the remarkable robustness and practicability of our proposed method with
the approaches of SSR and BSS, as the next work, we will attempt it in specific
applications that need easy-to-use and long-term HR detection accompanying body

motion, such as:
e Sleeping monitoring and scoring in clinical environments
e HR tracking to a driver
e Smart homes that monitor vital signs including respiration

We believe the advantages of our proposal can benefit the achievement of the men-
tioned appealing applications, and the possible improvement of algorithms is also
taken into account. In particular, through training subjects’ daily data, the prevail-
ing machine learning technique probably further enhances the heartbeat extraction in
BSS, even in more rigorous conditions, e.g., HR monitoring during intensive physical

exercise.
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