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Chapter 1

Introduction

In number theory, the ideal class group of a number field is one of the most
important arithmetic objects. The ideal class group CI(K) of a number field
K is the quotient group Cl(K) = I(K)/P(K), where I(K) is the group of
fractional ideals of K and P(K) is the group of principal ideals of K. It is
well known that Cl(K) is a finite abelian group. However, it is difficult in
general to compute the order of it.

Iwasawa theory studies a relationship between arithmetic objects and
special values of the zeta functions. The analytic class number formula is a
famous theorem which relates the ideal class groups to the Dedekind zeta
functions. More precisely, let K be a number field, (x(s) the Dedekind
zeta function of K, and hg the order of CI(K). The analytic class number
formula says that

_Gls) _huReg
5—0 gritra—l tW(K)’

where r1 is the number of real places of K, ro is the number of complex places
of K, Regj is the regulator of K and W (K) is the group of roots of unity in
K. This formula means that the special value of the Dedekind zeta function
knows the class number of K. In Iwasawa theory, the famous Iwasawa main
conjecture is a refinement of the analytic class number formula (see §1.2.2).

1.1 Iwasawa theory for class groups

In this section, we introduce Iwasawa theory for class groups. Let p be a
prime, k a totally real field and K /k a finite abelian extension such that K
is a CM-field. Assume that for any number field N, we denote by Ny /N
the cyclotomic Zy-extension of N. Assume that ks N K = k. We consider



the unramified Iwasawa module X _ which is defined as the Galois group
of the maximal unramified abelian pro-p extension of K.,. By class field
theory, we have

XKoo ~ @AKwn

where K, is the n-th layer of K. /K and Ak, is the p-Sylow subgroup of
the ideal class group of K,. The projective limit is taken with respect to
the relative norms. Since the Galois group Gal(K /k) naturally acts on
XK., it becomes a Z,[[Gal(K /k)]]-module. Iwasawa proved that Xp_ is
a finitely generated torsion Z,[[Gal(K/K)]]-module.

The Iwasawa main conjecture claims that the characteristic ideal of the
x-component of Xy __ coincides with the projective limit of the Stickelberger
element for any odd character x of Gal(K/k) (see Conjecture 2.4.1). This
conjecture is proved when £ = Q and p = 2 by Mazur-Wiles [23], and for
general totally real field k and p # 2 by Wiles [34] (see Theorem 2.4.4).

As an application of the Iwasawa main conjecture, we get the information
of the ideal class group of K by descent theory. When k£ = Q, Kurihara and
Miura [21] proved that the Fitting ideal of the minus component of the ideal
class group of K coincides with the Stickelberger ideal (see Theorem 2.5.7)
except for the 2-component. Also when k = QQ and the 2-Sylow subgroup of
Gal(K/Q) is cyclic, Greither [13] determined the Fitting ideal of the minus
component of the 2-part of the ideal class group of K (see Theorem 2.5.8)
under certain assumptions.

To study the Fitting ideal of the ideal class group, they firstly consider
the Fitting ideal of the unramified Iwasawa module Xg__. For any finitely
generated torsion Zy[[Gal(K/K)]]-module M, if M has no non-trivial finite
Zp||Gal(K s/ K)]]-submodule, the characteristic ideal of M coincides with
the Fitting ideal of M (see Proposition 2.5.3). Therefore, a question of
whether the Iwasawa module has non-trivial finite submodules or not is
important in Iwasawa theory. If p is an odd prime, Iwasawa proved that
the minus component of X has no non-trivial finite Z,[[Gal(Ko/K)]]-
submodule (see Theorem 2.2.2). However, it sometimes has non-trivial finite
submodules when p = 2. For p = 2, Ferrero [6] proved that if K is an
imaginary quadratic field that is not Q(v/—1), Q(v/—2) and the prime above
2 ramifies in K /Qoo, the maximal finite Zo[[Gal( K /K )]]-module of Xx__
is isomorphic to Z/27Z.

In Iwasawa theory, one often assumes p # 2. The case for p = 2 is
totally different from the case that p is an odd prime. For example, the
Iwasawa main conjecture has not completely proved for p = 2. Also, as we
mentioned above, the minus component of Xx_ sometimes has non-trivial



finite submodules for p = 2. In this thesis, we study Iwasawa theory and
the p-components of ideal class groups for p = 2.

1.2 Main results

In this section, we state the main results in this thesis. Our main results
are the following 3 theorems.

The first main result (Theorem 1.2.1) is on finite submodules of the
minus quotient of the unramified Iwasawa module of a CM-field. This is a
generalization of Fererro’s result (see Theorem 2.2.3).

The second main result (Theorem 1.2.4) is on the Iwasawa main conjec-
ture for p = 2. Wiles [34] proved the Iwasawa main conjecture for p = 2
only in the case where there is no trivial zero in the p-adic L-function (see
Theorem 2.4.5). We remove this condition.

The third main result (Theorem 1.2.6) is on the Fitting ideals of ideal
class groups. We determine the Fitting ideal of the minus quotient of the
2-component of the ideal class group of a CM-field which is cyclic over a
totally real field. This is a generalization of Greither’s result (see Theorem
2.5.8).

1.2.1 The maximal finite submodules of Iwasawa modules

In this subsection, we introduce the first main theorem.

For any number field K, we denote by K,/ K the cyclotomic Zg-extension
of K, K, the n-th layer of K. /K, and CI(K) the ideal class group of K.
We denote by S3(K), So(K) the set of primes of K lying above 2, oo, re-
spectively. Let F' be a CM-field and F'™ the maximal real subfield of F. Put
A := Zs[[Gal(Fu/F)]]. We define the subset . (F ™) of So(F1)U Sy (FT)
by

Fo(F) = {v € So(FT) | v ramifies in Fi /F} U Soo(FT).

For any extension K/FT, we denote by .#»(K) the set of primes of K lying
above % (F*1). We put

d= ﬁ(S2(Foo) my2(Foo))

Using this particular . (K), we define Cly, (K) by the (K )-ideal class
group of K, i.e

Cly, (K) = coker(K™ Gordy @ 7).
vES2(K)



We denote by Ag (resp. Ak, ) the 2-Sylow subgroup of the ideal class
group Cl(K) (resp. Clg,(K)). By definition, we have Xp = yLnAFn.
There are several ways to define the minus quotient, but we adopt the fol-
lowing. Let j be the complex conjugation. We define the minus quotient
Xp. bY

We denote by F(Xf ) the maximal finite A-submodule of X, . We define
XFooayQ ) Xgoo,ﬁﬂg by

Xpo,to =M AR, 7, X o = Xpg /(1 + ) X, 7

where the projective limit is taken with respect to the norm maps.
We define

Dn,yz = keI‘(AFn — ApmyQ), D;,VQ = ker(AF;r — AF;L",JWQ)’

= rank2<l'&n ((O;n“%)l_j/(oﬁn)l_j))a
09 = mnkg(@mker(l):{’y2 — Dn,z%)),

where O}X%y2 is the #5(F,)-unit group of Fy,, O the unit group of F,,, both
projective limits are taken with respect to the norm maps, and ranks(A) is
the 2-rank, namely the dimension of A/2A as an Fa-vector space. We note
that 0 < d < 01 < 1 and the 2-rank of yLnDn,,%/(l + j)Dy, o is d or
d —1 (see Remark 3.3.5), where d is defined in the previous paragraph (the
number of certain 2-adic primes). The first main theorem is the following.

Theorem 1.2.1. (Theorem 3.2.1, Theorem 3.3.1) (i) X5 ., has no non-
trivial finite A-submodule.

(ii) Assume that Leopoldt’s conjecture is valid for F* and the lifting
maps AF;7y2 — Ap, #, are injective for all sufficiently large n > 0. Then
we have

(z./22,)% (if pas ¢ Fro)
(Z)2Z)P=0%%2 (if pigee C Fio),

FA(X7,) = lim Dy g/ (143) Dy {
where d is the number of primes of Fs, above 2 which ramify in Fo /FY and

foce 1S the group of all 2 power roots of unity.

This is a generalization of the Ferrero’s result (see Example 3.3.8). If all
primes above 2 are unramified in F../F%, the set .#(F™) coincides with
Soo(FT) by definition. Therefore, we have Ap, o, = Ap,, and Xp o =
Xp_- Thus Theorem 1.2.1 (i) implies the following result.

7



Corollary 1.2.2. Assume that all primes above 2 are unramified in Foo /Y.
Then, X has no non-trivial finite A-submodule.

Concerning the injectivity of the lifting map A ooy Af, o, for an
imaginary abelian field F', we get lemma 3.3.7. Theorem 1.2.1 and lemma
3.3.7 imply the following result.

Corollary 1.2.3. Assume that F is an imaginary abelian field and all
primes above 2 ramify in Foo/FL. If Fs contains pss or Hasse’s unit
index [OF - M(Fn)O;;r] = 2 for all sufficiently large n >> 0, we have

. | (Z/22)% (if poe ¢ Fr)
Fa(X =1limD, o /(1+§)D, . # =
A( Foo> P n,,/g/( -7) n,,/2 {(Z/QZ)@d51+§2 (Zf /,[/200 c Foo)7
where d was defined on page 5 and in this case, it is the number of primes
of Foo above 2, u(Fy,) is the group of roots of unity contained in F,.

If F is an imaginary abelian field and /—1 € F, we can determine the
maximal finite A-submodule of X7- by Corollary 1.2.2 and Corollary 1.2.3.

For example, let '™ be a real abelian field which is unramified at 2, and
F = F*(y/=1). Then, we have

FA(Xp,) = (2/22)%,

and in this case, d is the number of primes of F' lying above 2 (see Example
3.3.9).

1.2.2 Iwasawa main conjecture

In this subsection, we introduce the second main theorem. Let k be a totally
real field. We take a one-dimensional Artin character x for k and denote
by kX the extension of k attached to x, i.e., Gal(kX/k) = Im(y). Assume
that x is even, so kX is also totally real. We denote by kX the cyclotomic
Zy-extension of kX. Let S be a set of primes of k, which contains all primes
which ramify in k% /k. We consider the Iwasawa module Xyx ¢ which is
defined by the Galois group of the maximal abelian pro-p extension over kX
unramified outside S. Put A, = Z,[Im(x)][[Gal(kX/kX)]]. We consider the
X-component Xé(o’s = Xjx s @z, [[Gal(kX k)] Mx» Which is a Ay-module.
The Iwasawa main conjecture (IMC) claims that the characteristic ideal
of X]z‘x coincides with the p-adic L-function (for more precise statement of

OO7S
(IMC), see Conjecture 2.4.2). If p is an odd prime, Wiles (and Greenberg)



proved that (IMC) is valid in [34] (see Theorem 2.4.4 ). But for p = 2, Wiles
proved (IMC) only in the case that there is no trivial zero in the p-adic L-
function (see Theorem 2.4.5 ). We can prove (IMC) for p = 2 only assuming
that the p-invariant vanishes and Leopoldt’s conjecture is valid.

The second main theorem is the following result.

Theorem 1.2.4. (i) If the p-invariant of kX wvanishes, then (IMC) for
p = 2 is valid for x # 1.

(ii) If the p-invariant of kX% wanishes and Leopoldt’s conjecture is valid
for k, then (IMC) for p =2 is valid for x = 1.

Remark 1.2.5. In Iwasawa theory, one often assumes p # 2. One of the
reasons is that the Iwasawa main conjecture (IMC) is not proved for the
case p = 2. Here, we give two applications of Theorem 1.2.4.

(i) An equivariant Iwasawa main conjecture has been formulated and
proved by Ritter and Weiss for odd primes under the assumption g = 0 in
[27]. In [31], [32], Taleb extended this conjecture of Ritter and Weiss to all
prime numbers (see Conjecture 5.1 in [32]) and proved it for p = 2 assuming
that the classical Iwasawa main conjecture (IMC) is valid (see Theorem 5.7
in [32]). Therefore, Theorem 1.2.4 implies that the equivariant Iwasawa
main conjecture for p = 2 holds by assuming that the p-invariant vanishes
and Leopoldt’s conjecture is valid.

(ii) Greither and Kurihara also proved an equivariant Iwasawa main con-
jecture which treats classical Iwasawa modules. Let K/k be a finite abelian
extension such that both k and K are totally real fields. We denote by K
the cyclotomic Z,-extension of K. When p is an odd prime, Greither and
Kurihara obtained the exact description of the Fitting ideal of the Iwasawa
module Xx__ g as a Z,[[Gal(K/k)]]-module using the p-adic L-function
under the assumption g = 0 (see Theorem 4.1 in [15], see also Remark 0.4
(6) in [16]). In their theorem, the assumption p # 2 is used only for using
(IMC). Using (IMC) for p = 2, we get the same theorem for p = 2 by the
same method in [15]. Therefore, Theorem 1.2.4 implies that we can deter-
mine the Fitting ideal of the Iwasawa module X g, assuming that u =0
and Leopoldt’s conjecture is valid.

1.2.3 Fitting ideal of the ideal class group

Let k be a totally real number field, and K a CM-field such that K/k is
a finite abelian extension. We denote by K, the cyclotomic Zs-extension
of K. We consider the unramified Iwasawa module Xg_ which is defined
by the Galois group of the maximal unramified abelian pro-2 extension of



K. We denote by Agx the 2-Sylow subgroup of the ideal class group of
K. For any Zs[Gal(K/k)]-module M, we define the minus quotient of M
by M~ = M ® Z3[Gal(K/k)]/(1+ j), where j is the complex conjugation in
Gal(K/k). We put d = [k : Q]. We write G = Gal(K/k) = G’ x A, where
G’ is a 2-group and the order of A is odd. We assume that G’ is cyclic. Put
Z9|G]~ = Z2[G]/(1 + j). Let v be a faithful character of G’. Since G’ is
cyclic, we have
LIG) ~ @ Zollm(x¥)).

XEA/~

Therefore, Zo[G]™ is a direct product of discrete valuation rings. In this
situation, we will define the Stickelberger ideal © s © L2 [G]™ in Definition

5.1.2 . The definition of @;(/k
ideal in Kurihara [19]. We denote by K G the fixed field ¢/ in K, and by
ke the Galois closure of k over Q. Let Kt be the maximal real subfield of

K. The third main theorem is the following.

is similar to the definition of the Stickelberger

Theorem 1.2.6. Assume that the following assumptions are satisfied.

(1) The p-invariant of K vanishes.

(2) KNk =k.

(3) At least one of the following assumptions is satisfied.

(3a) No prime above 2 splits in K/K™.

(3b) No prime above 2 ramifies in K/K* and k% N K = k.

Then we have

FittZQ[G]f(A[_() = @[_(/k

If ¥ = Q and 2 is unramified in K/Q, Theorem 1.2.6 was proved by
Greither [13] (see Theorem 2.5.8). Greither proved this using the Iwasawa
main conjecture and descent theory. In this paper, we also prove Theorem
1.2.6 by a similar method as in Greither [13]. However, there are some diffi-
culties in our general case. For example, if all primes above 2 are unramified
in K/k, the minus quotient of Xx_ has no non-trivial finite submodule
(see Corollary 1.2.2). But, as we mentioned above, the minus quotient of
Xk, sometimes has non-trivial finite submodules in general. In this case,
the characteristic ideal does not coincide with the Fitting ideal of the x-
component of Xg__ .

If & = Q, the assumption (3) in Theorem 1.2.6 is always satisfied and
the p-invariant of K., vanishes by the theorem of Ferrero and Washington
[7]. Therefore, Theorem 1.2.6 implies the following result.

10



Corollary 1.2.7. Assume that K is an imaginary abelian field over Q and
that the 2-Sylow subgroup of Gal(K/Q) is cyclic. Then, we have

Fittz,q)- (Ax) = Ok o-

For a general totally real field, Brumer gave a conjecture which gen-
eralizes the Stickelberger’s theorem (cf. Conjecture 1 in [35]). Theorem
1.2.6 implies some affirmative result for the 2-component of the conjecture
of Brumer (cf. [35]) under the assumptions in Theorem 1.2.6.

Corollary 1.2.8. Assume that the assumptions (1), (2), (3) in Theorem
1.2.6 are satisfied. Then, we have

1
2K Q(K)Anng, g (W (K) ® Z2)F‘9K/k; C Anng,(q)(Axk),

where 2915 = fker(Ag+ — Ag), d = [k : Q] and Q(K) is Hasse’s unit
index of K.

We note that both 2.5 and Q(K) are 1 or 2. Therefore, if d = [k :
Q] > 3, we have

AHHZQ[G}(W(K) &® ZQ)QK/k C ADDZQ[G] (AK)

under the assumptions (1), (2), (3) in Theorem 1.2.6.

1.3 Key points in this thesis

To study the 2-components of ideal class group is difficult. One of the reasons
is that taking a minus component is not an exact functor for p = 2. Let k
be a totally real field and K /k a finite abelian extension. Assume that K is
a CM-field. If p is an odd prime, 2 is invertible in Z,[Gal(K/k)]. Therefore,
% are in Zp(Gal(K/k)], and idempotents of the group ring, where j is
the complex conjugation in Gal(K/k). This implies that taking the minus
component is an exact functor for the case p # 2. But this is not an exact
functor for p = 2, which makes all the arguments very complicated.

In Iwasawa theory, a question of whether the Iwasawa module has non-
trivial finite submodules or not is important. The minus quotient of the un-
ramified Iwasawa module sometimes has non-trivial finite submodules only
in the case for p = 2. To compute the Fitting ideal of the ideal class group,
we need to determine this. We determine the size of the maximal finite

11



submodule of the minus quotient of the unramified Iwasawa module under
some mild assumptions (see Theorem 1.2.1).

To prove Theorem 1.2.1, we use a result of Greenberg [11]. Greenberg
gives sufficient conditions that Selmer groups have no non-trivial finite sub-
modules. We can prove Theorem 1.2.1 (i), using Greenberg’s result. How-
ever, as we mentioned above, the minus quotient of the unramified Iwasawa
module sometimes has non-trivial finite submodules only in the case for
p = 2. This means that Selmer groups which have usual local conditions do
not satisfy Greenberg’s conditions in the case for p = 2. Therefore, we need
to choose some appropriate local conditions.

The Iwasawa main conjecture (IMC) claims that the characteristic ideal
of the y-component of the Iwasawa module coincides with the p-adic L-
function (see Conjecture 2.4.1, 2.4.2). If p is an odd prime, Wiles proved
that (IMC) is valid in [34]. But for p = 2, Wiles proved (IMC) only in
the case that there is no trivial zero in the p-adic L-function (see Theorem
11.1 in [34]). In this thesis, we prove (IMC) for p = 2 assuming that the
p-invariant vanishes and Leopoldt’s conjecture is valid (see Theorem 1.2.4).

We show that the argument of Wiles to avoid the trivial zeros in [34] can
be applied for p = 2. The key lemmas of avoiding the trivial zeros by Wiles
are Lemmas 10.1, 10.2 in [34]. Instead of these lemmas, assuming p = 0, we
prove Lemma 4.1.6 which is a similar statement of Lemma 10.1 in [34], and
Lemma 4.1.1 which is the p = 2 version of Wiles [34] Lemma 10.2.

Using Theorem 1.2.1, Theorem 1.2.4 and descent theory, we can get the
information of the 2-component of the ideal class group of a number field of
finite degree. We determine the Fitting ideal of the minus quotient of the
2-component of the ideal class group of a CM-field K which is cyclic over a
totally real field k.

If £ = Q, the p-adic L-function has at most one trivial zero, by which
we can use the value of the first derivative of the p-adic L-function. But,
in general, the p-adic L-function sometimes has more than two trivial zeros.
In this case, we need the technical descent argument in Wiles [35].

To prove Theorem 1.2.6, we have to determine the order of the -
component of the ideal class group since Zz[G|~ is a direct product of dis-
crete valuation rings. It might look easy to determine the order, but it is
quite difficult in general. Even if we use the analytic class number formula,
2-power factors appear in several places. For example, Hasse’s unit index in
the class number formula is always 1 or 2. We note that if £ = Q and the
2-Sylow subgroup of Gal(K/Q) is cyclic, Hasse’s unit index is always 1 but
we can use this fact only for £ = Q (see [22]). Also, the number of roots
of unity of K is always divided by 2 since —1 € K. To study the order of

12



the y-component of the ideal class group, we need to consider these terms.
We need to study these complicated factors to get the exact order of the
x-component of the ideal class group.

1.4 Outline

The outline of this thesis is as follows. In Chapter 2, we introduce known
results in Iwasawa theory. Also we state the Iwasawa main conjecture. In
chapter 3, we study finite submodules of the minus quotient of the unramified
Iwasawa modules of a CM-field for p = 2 and prove Theorem 1.2.1. In
chapter 4, we prove the Iwasawa main conjecture for p = 2 (Theoren 1.2.4).
In chapter 5, we study the Fitting ideal of the 2-component of the ideal class
group of a CM-field and prove Theorem 1.2.6.

13



Chapter 2

Preliminary

2.1 Algebraic preliminary

Let p be a prime number. Suppose that O is the integer ring of a finite
extension of Q, and put A = O[[T]]. We denote by 7 a uniformizer of O.

Theorem 2.1.1. ( Theorem 7.3 in [33], p-adic Weierstrass preparation the-
orem) For any 0 # f(T) € A, we can write it (in a unique way) in the
form

F(T) = a IO (T)U(T),
where u(f(T)) € Z>o, f*(T) is a distinguished polynomial and U(T) is a
unit power Series.

Definition 2.1.2. (pseudo-isomorphic) Let My and My be finitely gener-
ated A-modules. We call My and My pseudo-isomorphic if there is a A-
homomorphism f : My — Moy such that both ker f and cokerf are finite.

We note that this is not an equivalence relation in the category of finitely
generated A-modules. However, this is an equivalence relation in the cate-
gory of finitely generated torsion A-modules.

Theorem 2.1.3. (Theorem 13.12 in [33], Structure theorem for torsion A-
modules) Let M be a finitely generated torsion A-module. Then there exists
a pseudo-isomorphism

t

M — @A/ (@) & DA/ (fH(T)),
1=1

j=1

14



where s,t are non-negative integers, m;,n; are positive integers and f;(T')
is an irreducible distinguished polynomial. The integers s,t,m;,n; and the
irreducible distinguished polynomial f;(T) are determined uniquely by M.

This theorem guarantees the following quantities are well-defined.

Definition 2.1.4. (Iwasawa invariants, characteristic ideal) With the no-
tation of Theorem 2.1.3, we define

M(M) = Zmia
=1

AM) = Y njdeg(f;(T)),
j=1

charp (M) = (W“(M)Hfj(T)nj)'
j=1

Let T" be a topological group which is isomorphic to the additive group
Zy. For any n € Z>q, we denote by I';, the subgroup of I' of index p".

Theorem 2.1.5. (Serre, Theorem 7.1 in [33]) Let v be a topological gener-
ator of I'. Then there is a non-canonical isomorphism
Zp[[T]] =~ Zp[[T]] := lim Z,[T'/ T,
n

T — ~—1,

of topological rings.

2.2 Iwasawa module

In this section, we mention some properties of Iwasawa modules.

2.2.1 unramified Iwasawa module

First of all, we consider the unramified Iwasawa module. Let p be a prime
number, K a number field and K /K the cyclotomic Z,-extension. Put
I' = Gal(Ko /K) and A = Zp[[I']]. We consider Lo, the maximal unramified
abelian pro-p extension of K. Put X = Gal(Ls/K). Then I' acts on
XK. by

1

) = FxAy~ re Xk ,vel,

where 7 is an extension of v to Gal(Ls/K). Since Xk is an abelian, this
action is well-defined. Therefore, X becomes a A-module.

15



Theorem 2.2.1. (Iwasawa) Xg__ is a finitely generated torsion A-module.

Assume that K is a CM-field and K is the maximal real subfield of K.
Let j be the complex conjugation in Gal(K/K™). We consider the minus
quotient of Iwasawa module defined by

Theorem 2.2.2. (Iwasawa, Proposition 13.28 in [33]) If p is an odd prime,
Xk has no non-trivial finite A-module.

However, when p = 2, X sometimes has non-trivial finite submodule.
Ferrero proved the following result.

Theorem 2.2.3. (Ferrero, Theorem 5 in [6]) Let K be an imaginary quadratic
field. Assume that the prime above 2 ramifies in Ko/KL. If p = 2, the
mazximal finite A-submodule of Xy is isomorphic to 7/27.

2.2.2 S-ramified Iwasawa module

Next, we consider the S-ramified Iwasawa module. Let k& be a totally
real field and ko /k the cyclotomic Z,-extension. We take S a finite set
of prime of k, which contains all primes above p. We denote by M g
the maximal abelian pro-p extension of k., unramified outside S. Put
Xoos = Gal(My,_ s/koo). Since X, g is abelian, Gal(ks/k) acts on Xy g
by conjugation as above.

Theorem 2.2.4. (Iwasawa, Theorem 13.31 in [33]) A} g is a finitely gen-
erated torsion Zy||Gal(kss/k)]]-module.

2.3 p-adic L-function

In this section, we introduce the p-adic L-function of Deligne-Ribet.
Let k be a totally real field, F'/k a finite abelian extension. We define in
the usual way the partial zeta function for o € Gal(F'/k) by

((s,0)= > N

(a,F/k)=0

for Re(s) > 1 where the sum is taken over integral ideals a of k which are
prime to the conductor ideal g/, such that the Artin symbol (a, F/k) is
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equal to o (N(a) is the norm of a). The partial zeta functions are mero-
morphically continued to the whole complex plane, and holomorphic except
s = 1. We consider the Stickelberger element defined by

ep/k: Z C(O,a)ail.

oeGal(F/k)
By Klingen and Siegel, we know that 05/, € Q[Gal(F/k)].

Lemma 2.3.1. (cf. Lemma 2.1 in [19]) Let M be a field such that k C M C
F. We denote by Sg (resp. Syr) the set of primes of k ramifying in F/k
(resp. M/k). Let

crm : QGal(F/k)] — Q[Gal(M /k)]
denote the natural homomorphism. Then we have

CF/M(HF/k) = ( H (1 — Frob;l))GM/k,
UGSF\S]L{

where Frob, is the Frobenius of v in Gal(M/k).

Let p be a prime number and K/k a finite abelian extension. For any
number field N, we denote by N, the cyclotomic Z,-extension of N and
N,, the n-th layer of N, /N. Assume that K is also a totally real field and
KNkoo =k. Put L = K(pp) (L =K(wa) if p=2), G = Gal(Loo/k).

Theorem 2.3.2. (Deligne-Ribet [4]) For any integral ideal ¢ of k which is
prime to conductor of Ly /k,

(N¢ — Frob )0y, /i € 2771 (1 — §)Z[Gal(L, /k)]

for all sufficiently large n > 0. Where d = [k : Q], Nc = #(O/c¢) and j is

the complex conjugation.

We consider the restriction maps

CLoir/Ln * QplGal(Ln1/E)] = Qp[Gal(Ln/F)]

for all n > 0. Lemma 2.3.1 implies that the Stickelberger elements 67, /.
satisfy ¢z, ., /1, (0,1 /k) = 01, /% for all sufficiently large n > 0. Theorem
2.3.2 implies that the existence 0y, /. € Q(Z,[[G]]) which is the following
properties, where Q(Z,[[G]]) is the totally quotient ring of Z,[[G]].
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(1)1 € (A € QG | (5(0)—)A € 2 (1-)Z, (3] for all o €
G}, where k is the cyclotomic character.
(2) The canonical map cr_ /., : Zp[[G]] — Zp[Gal(L,/k)] extends to

CLoo/Ln © Lpl[GN0L. i = QplGal(Ln/kK)], and ¢ /1, (01 /) = 01, for all
sufficiently large n > 0.

We denote by i the involution map i : Q(Z,[[G]]) = Q(Z,[[G]]) induced
by 0 — o~ ! for all ¢ € G and by j, the twist map j, : Q(Zy[[9]]) —
Q(Zy[[G]]) induced by o — k(c)o for all 0 € G. Put @1/ =i 0 ju(0r /1)-
The property (1) implies the following result.

.k €N € QZIG]]) | (0 — DA € 2971 (1 + 5)Zy[[G] for all o € G}.
Let x be a character of Gal(L/k). We consider the classical L-function

defined by
x(a)
L(X’S) - Z Nas’
a

for Re(s) > 1 where the sum is taken over non-zero integral ideals a of k.
This is meromorphically continued to the complex plane, and holomorphic
except x =1 and s = 1. We have

L(x.s) = [0 = x()N ) ™),

p

where p ranges over prime ideals of k. Let S be a finite set of finite prime of
k, which contains all primes which ramify in L, /k. Let Lg(x,s) be defined
by

Ls(x,s) = [J(1 = x(0)N(p) ™) L(x. ).
peSs

Theorem 2.3.3. (Deligne-Ribet [4]) There is an unique element ®1,_ /1. 5 €
Q(Zp|[G]]) such that
XE"(@r o /k,s) = Ls(1 —n,x)
for alln € Z~o and all characters x of Gal(L/k). In particular, if S is the
set of finite primes of k, which ramify in Lo /k, we have
Q1 ks = Pro k-

Put G* = Gal(Ku/k), I' = Gal(Koo/K). The canonical map cr__ /. :
Zp[(G] — Zp[[G7]] extends to cr k., + QZp[[G]]) = QZp[[GT]]). We con-
sider e/, = ¢ ko (Pr k) € Q(Zy[[G]]). The above inclusion implies
that the following result.
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Proposition 2.3.4. Put Ix_ is the augmentation ideal of Zp[[G"]], i.e.,
I /= ker(Zy|[GT]] = Zp). Then we have

1
ga 1K kP Kook © Zp[[G 1]

We write G = Gal(K/k) = G’ x A where G’ is a p-group and the order of
A is prime to p. We say two (@p—valued character x1 and x2 are Qp-conjugate
if oy1 = x2 for some o € Gal(Q,/Q,). We consider this equivalence relation
on A. Then we have

Zy(G7N = Zy[[G x D)) = €D Zp[lm(xX)][[G" x T].
X' €A/~
For any element 2 € Z,[[G]], we denote by 2X' € Z,[Im(x)][[G’ x T] the

X'-component of x. Proposition 2.3.4 implies the following result.

Corollary 2.3.5. If x' is a non-trivial character of A, we have

Si %k € Ll OO [G % T

If X' is the trivial character of A, we have

520 = DOY_j1 € Zylm( (G x T,

foralloc € G' xT.

Let x be a character of G. We consider the map fy : Zy[[G"]] —
Zp[Im(x)][[T]] induced by x. For any element = € Zy[[G"]], we write aX =

fx(@).

Theorem 2.3.6. ([4], Theorem 1.15 in [28]) If x is a non-trivial character
of G, we have

L@, € Z, )]

Assume that Leopoldt’s conjecture is valid for k. Then we have

Si%k s £ 2l

where 1 is the trivial character of G.
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2.4 Iwasawa main conjecture

In this section, we state the classical Iwasawa main conjecture (IMC).

Let p be a prime number and k a totally real field. We take a one-
dimensional Artin character y for all £ and denote by kX the extension of k
attached to x. For any number field N, we denote by N, /N the cyclotomic
Zy-extension. Assume that ke NAX = k. Put I' = Gal(kX/kX). We fix
a topological generator v of I' and put 7" = v — 1. By Theorem 2.1.5, we
have Z,[[Gal(kX /k)]] ~ Zp|Gal(kX/K)][T]]. Put Ay = Zy[Im(x)][[T]] on
which Gal(kX/k) acts via x. For any element z € Q(Z,[[Gal(kX/k)]]), we
write 2X € Q(A,) the image of z of the map Q(Z,[[Gal(kX /k)]]) — Q(Ay)
induced by x. For any Z,[[Gal(kX,/k)]]-module M, we define the x-quotient
by MY =M &z, (Gaix /o)) Ax:

2.4.1 (IMC) for unramified Iwasawa module

First of all, we introduce (IMC) for the unramified Iwasawa module. As-
sume that x is an odd character (i.e., kX is a CM-field). We consider the
unramified Iwasawa module X;x which is defined by the Galois group of the
maximal unramified abelian pro-p extension of kX, (see section 2.2). We de-
note by Opx /x € Q(Zp[[Gal(k /k)]]) the projective limit of the Stickelberger
elements defined in section 2.3. By Theorem 2.3.2, we have

1
@%o/k € Ay (X#w)

(K1) =M gefi e € Ax (x=w),
where d = [k : Q], w is the Teichmiiller character and
i T = Gal(k (jyee) /KX (1) — 7,
is the cyclotomic character.
Conjecture 2.4.1. (IMC, first form)
(2%92%0/0 (x #w)

char X )=
i () {(wm—v);eg& W) =)

2.4.2 (IMC) for S-ramified Iwasawa module

Next we introduce (IMC) for S-ramified Iwasawa modules. Assume that x
is an even character (i.e., kX is a totally real field). Let S be a finite set

20



of finite primes of k which contains all ramifying primes in k%, /k. We con-
sider the S-ramified Iwasawa module Xjx ¢ which is defined by the Galois
group of the maximal abelian pro-p extension of k% unramified outside S
(see section 2.2). Put LX = kX(p,). Let ®px /g € Q(Zy[[Gal(L%/k)]])
be the p-adic L-function of Deligne-Ribet in Theorem 2.3.3. We write
Dyx 15 € QZp[[Gal(kX/k)]]) the image of @ x /¢ of the natural restric-
tion map Q(Z,[[Gal(L%/k)]]) — Q(Z,[|Gal(kX/k)]]). By Corollary 2.3.5
and Theorem 2.3.6, we have

1
ﬁq):é‘o/k,s € Ay (x#1)
1

where 1 is the trivial character.

Conjecture 2.4.2. (IMC, second form)

(2%@2(2:0/&5) (x#1)
(T%@Z%O/hs) (x=1).

Remark 2.4.3. (1) Greenberg proved that the validity of (IMC, second
form) for one S implies the validity for others. Therefore, we can take S
minimal when we prove (IMC) for p = 2 in chapter 4.

(2) Let 9 be an even character for k. Iwasawa proved that Conjecture
2.4.1 for ¢~ 'w is equivalent to Conjecture 2.4.2 for ).

charAX(Xé(o’S) = {

Theorem 2.4.4. (Mazur-Wiles [23], Wiles [34], Greenberg [12]) If p is an
odd prime, (IMC) is valid.

When p = 2, Wiles proved the partial result as following.

Theorem 2.4.5. (Wiles, Theorem 11.1 in [34]) Suppose that x is an odd
character for k such that kX Nkeo = k and p = 2. If xy(p) # 1 for all
characters ¢ of Gal(koo/k) and all primes p above 2 and the p-invariant of
k% wvanishes, (IMC, first form) is valid.

2.5 A refinement of Iwasawa theory

In this section, we discuss a refinement of Iwasawa theory.
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2.5.1 Fitting ideal

Let R be a commutative ring and M a finitely presented R-module M such
that R™ g R" - M — 0 is exact.

Definition 2.5.1. (Fitting ideal) The (initial) Fitting ideal of M is defined
to be the ideal of R generated by all n X n minors of the matriz which
corresponds to ¢.

This does not depend on the choice of this exact sequence. We denote
the Fitting ideal of M over R by Fittr(M).
It is well known the following results about the Fitting ideal.

Proposition 2.5.2. (see [25])

(1) Anng(M) C Fittg(M).

(2) Let My, My and Ms be finitely presented R-modules and there is an
exact sequence My — Mo — M3 — 0. Then we have

FittR(Ml)FittR(Mg) C FittR(M2>.

(3) Let My, My and Ms be finitely presented R-modules and there is an
exact sequence 0 — My — Mo — Mg — 0. If there exists an exact sequence
R™ - R™ - M — 0 for some integer n > 0, we have

FittR(Ml)FittR(Mg) = FittR(Mg).

Suppose that O is the integer ring of a finite extension of QQ, with a
prime p.

Proposition 2.5.3. (Corollary 2.8 in [26]) Let R = O|[T]] and M a finitely
generated torsion R-module. We denote the mazimal finite R-submodule of
M by Mg,. Then we have

FittR(M) = ChaI'R(M)FittR(Mﬁn).
In particular, if M has no non-trivial finite R-submodule, we have

Fittg(M) = chargr(M).

2.5.2 Stickelberger ideal

Let K/Q be a finite imaginary abelian extension. For any subfield F' C K,
we consider the canonical homomorphism

ciyr - Q[Gal(K/Q)] — Q[Gal(F/Q)]
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induced by the natural restriction map. In this situation,

vie/r : Q[Gal(F/Q)] — Q[Gal(K/Q)]

denotes the homomorphism defined by

o S 7
CK/F(T)=U

for o € Gal(F/Q) where 7 ranges over elements of Gal(F/Q) such that

cx/p(T) = 0.
Let p1,p2, ..., pr be all primes ramifying in K/Q. We denote by I,,, the
inertia subgroup of p; in Gal(K/Q). If K/Q satisfies the following condition

(A)  Gal(K/Q)=1I, x---x1Ip,
we say that K/Q satisfies the condition (A).

Lemma 2.5.4. (Lemma 2.3 in [19]) Let K/Q be a finite abelian extension.
Then, there exists a unique abelian extension K'/Q such that K C K', K'/K
is unramified at all finite primes, and that K'/Q satisfies the condition (A).

Definition 2.5.5. (Stickelberger ideal, Kurihara [19] ) Let K/Q be a finite
imaginary abelian extension which satisfies the condition (A). We define a
Z|Gal(K/Q)]-module @’K/Q by

@,K/@ = (vr/r(Or/g) | Q C F C K)zjcax/q) C Q[Gal(K/Q)],

where O q is the Stickelberger element defined in §2.5. In this situation, we
define the Stickelberger ideal O g by

Ok/q = Ok/g N Z[Gal(K/Q)].

Next, we consider a finite imaginary abelian extension K/Q which does
not satisfy the condition (A). By Lemma 2.5.4, there exists a unique abelian
extension K'/Q such that K C K', K'/K is unramified at all finite primes,
and that K'/Q satisfies the condition (A). In this situation, we define the
Stickelberger ideal © ) by

Ok/q = cxryx (OK/g)-

Remark 2.5.6. If K is a cyclotomic field, the Stickelberger ideal defined
by Kurihara coincides with the Stickelberger ideal defined by Iwasawa and
Sinnott in [29].
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2.5.3 Fitting ideal of class groups

Let p be a prime number, K/Q a finite imaginary abelian extension. Let
j denote the complex conjugation in Gal(K/Q). Put Z,[Gal(K/Q)|” =
Zp|Gal(K/Q)]/(1 + j). For any Z,[Gal(K/Q)]-module M, we define the
+-component M* by

M* = M/(1+j)M.

If p is an odd prime, we note that M = M+ & M~. Let CI(K) be the ideal
class group of K. Let

[+ Zp|Gal(K/Q)] — Zy[Gal(K/Q)]”
denote the natural homomorphism.

Theorem 2.5.7. (Kurihara-Miura, Theorem 0.1 in [21]) For any odd prime
p, we have

Fitty, (caix /)~ (CUK) @ Zy)™) = f(Oxq @ Zp).

Theorem 2.5.8. (Greither, Theorem A in [13]) Assume that 2 is unramified
in K/Q and the 2-Sylow subgroup of Gal(K/Q) is cyclic. Then, we have

. _ 1
Fitty, ai(x/q)- ((CUK) @ Zy)™) = gf(@K/@ ® Ls).
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Chapter 3

Finite submodules of
Iwasawa modules for p =2

3.1 A result of Greenberg

In this section, we introduce the result of Greenberg. Greenberg describes
his theorems in a much more general setting in [11]. However, we describe
it in a restricted setting here.

Let p be a prime. Suppose that K is a finite extension of Q and that
Y is a finite set of primes of K. Let Ky be the maximal extension of K
unramified outside X. We assume that ¥ contains all archimedean primes
and all primes lying above p. Put A := Z,[[T]] and let 7 be a Gal(Kyx/K)-
module such that 7 = A as a group and Gal(Kx/K) acts on 7 continuously.
We define D = T @4 A, where A = Hom(A,Q,/Z,) is the Pontryagin dual of
A. The Galois group Gal(Kyx/K) acts on D through its action on the first
factor T.

We note that D is a discrete abelian group and the Galois cohomology
group H'(Kyx /K, D) is a discrete A-module. Let L(K,, D) be a A-submodule
of H'(K,,D) for each v € ¥, where K, is the completion of K at v. Put
Q(K,D) := [[yex H'(Ky, D)/L(Ky, D). The natural global-to-local maps
induce a map

¢ : Hl(KZ/Kap) — Q(K,D)
The kernel of ¢ is denoted by S(K, D). We define 7* = Hom(D, pp), and

IM12(K, ¥, D) = ker (HQ(KZ/K, D) — [[ B*(K.. D)).
vEX
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We say that a finitely generated A-module M is reflexive if the map

M — Homy (Homy(M,A),A)

m — [a— alm)].
is an isomorphism. Suppose that N is a discrete A-module and that its
Pontryagin dual is finitely generated. We say that N is almost A-divisible if

there is a nonzero element f(7") € A such that g(7')N = N for all irreducible
elements ¢g(7T') € A not dividing f(T).

Theorem 3.1.1. (Greenberg [11] Proposition 4.1.1) Suppose that the fol-
lowing assumptions are satisfied.

(a) The A-module TIT*(K, %, D) is A-cotorsion,
(b) The A-module T*/(T*)%%v is reflezive for allv € %,

(¢) There exists a non-archimedean prime v € ¥ such that (T*)%% =0,

(d) Iyes L(Ky, D) is almost A-divisible,
(e) coranky (H'(Kyx;/K, D)) = coranky (S(K, D)) + corank, (Q(K, D)),

(f) At least one of the following additional assumptions is satisfied.

e D[m] _has no subquotient isomorphic to p, for the action of G =
Gal(K/K).

e D is a cofree A-module and D[m] has no quotient isomorphic to j, for
the action of Gk .

o There is a prime v € ¥ which satisfies (¢) and such that
HY(K,,D)/L(K,,D) is coreflerive as a A-module.

Then S(K,D) is almost A-divisible.

In section 3.4, 3.5 in [11], Greenberg discussed the case that the as-
sumption (f) is not satisfied. We can replace the assumption (f) to (f*) as
following.

Theorem 3.1.2. (Greenberg [11] Proposition 4.1.1 and section 3.4, 3.5)
Suppose that the following assumptions are satisfied.

(a) The A-module III?(K, %, D) is A-cotorsion,

(b) The A-module T*/(T*)%v is reflexive for allv € 3,

(c) There exists a non-archimedean prime v € ¥ such that (T*)%x = 0,
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(d) [Iyes L(Ky, D) is almost A-divisible,
(e) coranky (H'(Kx/K, D)) = coranky (S(K, D)) + corank, (Q(K, D)),
(f*) L(K,,D) C H' (Ky, D)A_gin for allv € X.

Then S(K,D) is almost A-divisible.

Remark 3.1.3. Let M be a finitely generated A-module, and N the Pon-
tryagin dual of M (i.e., N = Hom(M,Q,/Z,)). Then, the following two
statements are equivalent:

e M has no non-trivial finite A-submodule.
e N is almost A-divisible.

The proof of this fact can be found in Proposition 2.4 in Greenberg [10]

3.2 Y-modified Iwasawa module X5 _ o,

For any number field N, we denote by No,/N the cyclotomic Za-extension
of N and N,, the n-th layer of Noo/N. We denote by Sa(N), Soo(N) the set
of primes of N lying above 2, oo, respectively. Let F' be a CM-field and F*
the maximal real subfield of F. Put A := Zy[[Gal(Fu/F)]]. We define the
subset A (F1) of So(FT) U Sy (F) by

Fo(FT) = {v € So(FT) | v ramifies in Foo /FE} U S (FT).

For any extension K/FT, we denote by .%(K) the set of primes of K lying
above .#(F*). Using this particular #(K), we define Clg,(K) by the
S5 (K)-ideal class group of K, i.e

Clyy (K) = coker(K* ©% D 2z).
v 75 (K)

We denote by Ak o, the 2-Sylow subgroup of the .#(K)-ideal class group
Cly, (K). We define X, 7 Xp 7, DY

Xpo,o =M AR, 70, X o = Xpg /(1 + ) Xp, 7

where the projective limit is taken with respect to the norm maps. In this
section, we prove the following result.

Theorem 3.2.1. X, has no non-trivial finite A-submodule.
00372
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We prove Theorem 3.2.1, using Theorem 3.1.2 and taking K = F*,p =
2. We may assume that all primes above 2 are totally ramified in F/F
and F/F*. We define

2 = Sram(F/FT) U So(FF) U Sy (FF),

where Spam(F/F7T) is the set of primes of F* which ramify in F/F*. Let
Fg be the maximal extension of I unramified outside ¥. By definition,
Fo C FY. Put I' := Gal(FL/FT), and A := Zy[[[']] & Zy[[T]]. Let j be
the complex conjugation. By definition, Gal(F/F*) = {1,5}. We take T
to be a Gal(Fy /F*)-module such that 7 = A as a A-module, for which j
acts as —1, and the group Gal(Fy /F*) acts on T through the natural map
Gal(Fy /FT) — Gal(Foo/F1) & Gal(F/F 1) x Gal(FS;/F*). We define

D=T®rA, T =Hom(D, pig),

where A = Hom(A, Qy/Zs) is the Pontryagin dual of A. We define the
A-submodule L(F;f,D) of H'(F,;f,D) for each v € ¥

L(F;,D)

_ Jker (HY(F}, D) — HYF™ D)) (ifv ¢ S2(F) N Stam(Fso /)
o (if v € So(F*) N Sram(Foo/FE)),

where F,F"™" is the maximal unramified extension of F and Syam(Foo/F55)
is the set of primes of FT which ramify in Fo/F5. Put Q(FT,D) :=
[Tyes HY(F,S, D)/L(F;, D). The natural global-to-local maps induce a map

¢: HY(FY/FT D) — Q(FT,D).

The kernel of ¢ is denoted by S(F™,D). In this situation, we check the
assumptions (a), (b), (c), (d), (e), (f*) in Theorem 3.1.2.

Proof of Theorem 3.2.1 (¢) T* = Hom(D, pge) = Hom(D,Q2/Z2) &
Z2(1) = A(1) as A-modules. Since no prime splits completely in the cyclo-
tomic Zg-extension in Ff/FT, Gg, acts on A(1) nontrivially for each v.

Therefore, (’7‘*)GFv+ = 0 for any non-archimedean prime v € X.
(b) If v is non-archimedean, 'T*/('T*)GFv+ =~ A(1). This A-module A(1)
is reflexive. If v is archimedean, G+ = {1, j}. Since

GH @) =3(fG ) =j(f(—2) =i(f(2)™") = f(2)
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for any f € T* and z € D, j acts trivially on 7*. Thus, 7‘*/(7“*)(;1”ij =0.
(d) We claim that

Q2/Zy (if v € So(F) and v splits in Fiy/F)
0 (otherwise)

L(F),D) = {

for each v € ¥. This fact implies that [] .5, L(K,, D) is almost A-divisible.

If v € So(FT) N Sram(Foo/FY), this is trivial by definition. Thus, we
consider the case v & S2(FT) N Siam(Foo/FL). The inflation-restriction
sequence shows that

L(FF, D)= HY(E™ /p+ DR,
If v is archimedean, Gal(F,”"™ /F, ) = 1 implies L(F,", D) = 0.
If v is non-archimedean and v ¢ Sy(F), then v is unramified in Ff /F+
and hence F,f C F,/™ where ;[ is the cyclotomic Zy-extension of Ff.
Thus, Gal(FvJr i / F;L ) contains the unlque subgroup P, which is isomorphic

to Zy and the restriction map P, — I', = Gal(F,\ /F;") is an isomorphism.
The inflation-restriction sequence shows that the restriction map

Hl(Fjunr/Fj’ DGFJLUDT) N HI(PU’ DGFJLUHY)

is injective. Hence, it suffices to show that H(P,, D ) = 0. The action
of Gpyur on D factors through G prur — Gal(Fy/Fy7) = {1,j}, where w
is a prlme of F lying above v. Slnce j acts on D as —1 and D is a divisible
group, we get an exact sequence

0D "™ pp
Taking Galois cohomology, we get an exact sequence
pP X3 pPe ., gi(p,, DR — HY(P,, D).
Let v, be a topological generator of I',. Then,
D™ = Homr, (A, Qa/Z2) = Hom(A/(1 — 7,), Q2/Z2) = (Q2/Zs)®"

where, n = [ : T'y]. Thus, D" is a divisible group and the map D =5
D is surjective. Therefore, the map Hl(PU,DGFv”m) — HY(P,,D) is
injective. Here, H'(P,, D) = D/(1 — 7,)D = 0 because 1 — v, acts on D as

29



the multiplication by a nonzero element of A and D is A-divisible. Thus,
HY(P, DGFJum) = 0 for each non-archimedean prime v ¢ Sa(F™T).

We consider the case that v € So(F1) and v is inert in Fio/F5. Let P,
be the maximal subgroup of Gal(F,*"" /F.") which is isomorphic to Zsg, and
7, a topological generator of P,. The action of Gal(F,”™ /F,;) on D factors
through Gal(F,;F"™ /F.") - Gal(F,/F,") = {1,;}, where w is the prime of
F lying above v. Therefore, v, acts on D as —1. Thus,

HY(FF™/FF DY) = HY(FS/ESA)
= H'Y(P,A)
= A/(1—=v)A=0,

where A is a Gal(F,/"™ /F,)-module such that A is isomorphic to Q2/Zs as
a group, for which j acts as —1, and Gal(F,”™ /F,}) acts via Gal(F,,/F,}) =
(1.4},

If v € So(FT) and v splits in Fo/F, the action of Gal(F,”™ /FF) on
D is trivial since we assumed that all primes above 2 are totally ramified in
F}/F*. Therefore,

nr G 4unr nr
HYES™/FF, D) = H(ES™/EF Qo/Ls)
= Hom(Zz, Q2/Z2)
Q2/Zo.
(f*) Let v be a topological generator of I'. We know that L(F,", D) is

a divisible group and annihilated by the ideal (1 — «) for each v € 3. By
Remark 3.5.2 in [11], we have the inclusion L(F,", D) C H*(F,", D)A_aiv-

12

Before we check the assumptions (a) and (e), we prove the following
lemma.

Lemma 3.2.2. We have
S(FT,D) = Hom(Xl;WW@2 /Zs),
where X];wy2 is the A-module defined on page 2.
Proof. For each w lying above v € 3, we define L(F,,, D) by
L(F,, D) = ker (H'(F,, D)%F/F) 5 qY(F,"™ D))
if v ¢ So(F1)N Spam(Foo/F), and
L(Fy,D) =0
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if v € So(FT) N Sram(Foo/F).
At first, we claim that the map
Hl(F;—,D> Hl(ijp)Gal(Fw/FJL)
—
L(F;,D) L(Fy, D)

(3.1)

induced by the restriction map is injective for each w lying above v € X..

If v g So(FT)orve So(FY)N Sam(Fo/FL), we have L(F,, D) = 0.
Similarly, we have L(F,,D) = 0. Since D%7v is a divisible group and j acts
on DFw as —1, we have

ker(DCFu ¥ DOF)

H'(Fy/F}, D) = (DCFw)1=i

=0.

Therefore the inflation-restriction sequence
0 — HY(F,/F;}, D) — HYF}, D) — HY(F,, D)%Fw/I)

implies the above map (2) is injective.
If v € So(FT) and v is unramified in Fy/F5, then FI = FF™™. We
consider the commutative diagram

0 0

H'(Fy/Fy, D) H'(Fy/F;f, D)

inf inf
0 — HY(FF™ /Ff, D) — HY(F},D)
res res

0 Hl(Fjunr/Fw’DGFl%nr)Gal(Fw/Fj') — \ Hl(Fw7fD)Gal(Fw/Fj')

H?(F,/F}, D) H?(F,/F}, D) .

Hl (171;4—7 D) Hl (Fw; D)Gal(Fw/FJ')

—
L(F),D) L(Fy, D)
jective. This completes the proof of the injectivity of (2).

By the snake lemma, the map is in-
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Put
Hl(Fw, D)Gal(Fw/F;r)

orD) = Il —FFm 25—

wWEX R

where Y is the set of primes of F' lying above 3. We consider the commu-
tative diagram

Hl (F/F, DGal(Fg/F))
inf

0 —— S(F*,D) ——  HNF{/FF,D) —2 Q(F*,D)

l res | g1 192

0 —— kerf —— HYE/F,D)CEF) L o(F D)

!

cokerg; —— cokergy .

Here, we defined g; to be the restriction map H'(Fyd /FT,D) —

Hl(Fg/F,D)GaI(F/F+) and go the map Q(F*,D) — Q(F, D) induced by the

restriction map. Next, we show that the map cokerg; — cokergs is injective.
By definition, we have

Hl F D) Hl (Fwa D)Gal(Fw/Fj)
cokergy = H coker( L(FF.D) — @ L(Fy. D) )

vEX wlv

For any prime v € 3, put

H'(F},D) ® H' (F,y, D) SelFe/ I >)

kergs), = coker( —————=
(Co er92) co er( L(FJ,D) L(Fw,D)

It is sufficiently to show that the map cokerg; — (cokergs), is injective for
any v € Soo(FT). Since L(F,f,D) = 0,L(F,,D) =0 for any v € Seo(F™),
the inflation-restriction sequence implies the commutative diagram

0 — cokergy —— H2(F/F+ DCal(F5/F))

| J»

0 —— (cokergs), —— H?(F,/F}, DEFw)
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We show that the map g3 is injective. We know that H?(F, /F;}, D) =
H2(F/F*,D). Put D’ = coker(DG!(E/F) _, D). Since both D2l /F)
and D are divisible groups, D’ is also divisible. We consider the exact
sequence

HY(F/F*, D) — H2(F/F+,DOAFE/F)y 5y g2(p/p+ D).
Since D’ is divisible, we have

14
ker(D) = D) D
1 + P — — _
H (F/FT,D) = =5 _2’D’_O
Therefore the map g3 is injective. This implies that the map cokerg; —
cokergs is injective.
The map g5 is injective by the injectivity of (2). And we have
HY(F/F+, DCIFS/F)) = 0. Thus, S(F*+, D) is isomorphic to ker f by

Gal(Fy /Foo .
GalEngF) )(A), where A is a

Gal(Fy /FT)-module such that A is isomorphic to Q2/Zy as a group, for
which j acts as —1, and Gal(Fy /FT) acts on A via Gal(F/FT) = {1,j}.
Thus, we have
Hl(Fg/F, fD)Gal(F/F*) ) Hl(Fg/FOO,A)Gal(F/F+)
= HomGal(F/F+)(Gal(ng/Foo>7A)

the snake lemma. We also have D = Ind

by Shapiro’s lemma, where ng is the maximal abelian pro-2-extension of F’
unramified outside X . We may assume that all primes in X does not split
in Fis /F. We denote by Fy, o the cyclotomic Zg-extension of Fy,. Similarly,
we have

H! (Fw; fD)Gal(Fw/qu')
L(Fy,,D)

_ JHomgy s, 5y TP s A) (v ¢ So(F+) N Spam(Fo/FE))
HomGal(Fw/Fj)(GFw,owA) (’U € 52(F+) N Sram(Foo/Fng)),

for each w|v, where I,  is the inertia group in GF, o. Therefore we have
ker f 22 Homga(pyp+) (Gal(Ll,/ Fxo), A),

where L is the maximal unramified abelian pro-2-extension of Fi, in which
the primes of F,, lying above So(F) N Syam(Foo/F55) split completely. By
class field theory, Gal(L. /Fs) is isomorphic to Xp_ . Thus, we have

S(F*,D) = Homgaypyp+) (Gal(Li/Fo), A) = Hom(X 5 o, Qo/Z2).
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This completes the proof of Lemma 3.2.2.
O

Finally, we check the assumptions (a) and (e) to complete the proof of
Theorem 3.2.1.
(e) One has the following obvious inequality:

coranka (S(F*,D)) > coranky (Hl(Fg/FJr, D)) — coranks (Q(F ", D)).

The formulae in section 2.3 in [11] show that the A-corank of H(F /FT, D)
is at least [F'T : Q] and the A-corank of Q(F'T,D) is equal to [FT : Q.
Iwasawa proved that S(F*,D) is cotorsion A-module(Theorem 5 in [18]).
This implies that the A-corank of H'(Fyd /FT, D) is equal to [ : Q] and
(e) is satisfied.

(a) The formulae in section 2.3 in [11] also show that

coranky (H' (Fyf /FT, D)) = coranka (H*(Fy /F*,D)) + [F': Q).

This implies that H*(F /F*,D) is a cotorsion A-module and hence
II1?(K, %, D) is also A-cotorsion.

Thus Theorem 3.1.2 implies that S(F*,D) is almost A-divisible. Since
S(F*,D) = Hom(X;oo,yQ,Qg/Zg) by Lemma 3.2.2, this is equivalent that
Xr. ., has no non-trivial finite A-submodule (see Remark 3.1.3). This
completes the proof of Theorem 3.2.1.

O

3.3 The maximal finite A-submodule of X;OO

We use the same notation as in the previous section. For any number field
N, we denote by Ay the 2-Sylow subgroup of the ideal class group CI(N).
We consider the unramified Iwasawa module Xg_ defined by the Galois
group of the maximal unramified abelian pro-2 extension over F,,. By class
field theory, we have X, = limAp,. Put X = Xr, /(1 + j)XEr, . We
denote by Fi (X ) the maximal finite A-submodule of X . We define

Dn,.jﬁg = ker(AFn — Ame’Q)? D;:,Yz — ker(AFﬂL — AF;{’ny)’
61 = ranks (1m ((OF, ,)'7/(0F,)' 7)),
0y = rank (limker(D, ,, = D)),
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where O;m , 1s the A (F},)-unit group of F,, OF. the unit group of Fy,, both
projective limits are taken with respect to the norm maps, and ranks(A) is
the 2-rank, namely the dimension of A/2A as an Fa-vector space. In this
section, we prove the following result.

Theorem 3.3.1. Assume that Leopoldt’s conjecture is valid for FT and the
lifting maps AF;[ 7y Afr, 7 are injective for all sufficiently large n > 0.
Then we have

(Z/22)% (if pa & Foo)

FA(Xn )=1lmD 1+4)D =
A( Foo) — ”,V2/( j) n,.%2 {(Z/2z)€9d—51+52 (Zf Jiooo CFoo),

where d is the number of primes of Fs, above 2 which ramify in Fs /FY and
Waco 18 the group of all 2 power roots of unity.

We note that 0 < §2 < §; < 1 and the 2-rank of @Dm%/(l +J)Dp, 7,
is d or d — 1 (see Remark 3.3.5 in this paper).

Lemma 3.3.2. We have an ezact sequence
0— ker(D;’j2 — Dy o) — (C?;hwyé)l_j/(CDEh)l_j

— &y Z)27. — Dy.g/(1+§)Dp.sy — 0
IUGy2(Fn)m52(Fn)

of Fa-vector spaces for all sufficiently large n > 0, where j is the complex
conjugation and (Of, , )" ={(1 —j)z |z € O . }.

Proof. For any extension K/FT, put . ¢(K) = #(K)NS2(K). We take n
sufficiently large such that the primes above 2 are totally ramified in F,/F,
and Ff/Ff. We consider the following commutative diagram

0 —— OF

EF ,YQ/O;J ® Ly @ 2 DZJ@ 0

vES o (Fh)

I E

0 — O 5, /05 ®Zy —— P Zz — Dpgy — 0,
weSs 1 (Fn)

X

Ff .

Or. 4, and Cly, (F;f) — Clg,(F,). By the snake lemma, we get an exact

sequence

where f1, fo are homomorphisms induced by the natural maps O —

0 — ker fo — cokerf; — @ Z7)27 — coker fo — 0.
wE S (F)
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Therefore, it suffices to show that cokerf, = (O, )'™7/(OF )'~7 and
coker fo = Dy, o, /(1 + j) D, 5,. We consider the following diagram

X X X X
0 —— (’)Fn+ — O — OFJ,%/OF,;* — 0

| l |

X X X
0 OFn OanyQ OFTLryQ/OFTL 0

b e

(OF ) —— (0f, )",

Since the map fi is injective and (O ,)'77/(Of )77 is a 2-group (see
Remark 3.3.5 in this paper), we have

coker f] = cokerf] ® Zg = ((’);m%)l_j/((’);n)l_j

by the snake lemma.

Next we show that cokerfo = D,, &, /(14 j) Dy, . Since Dy, o, is equal
to ker (Cl(Fn) — Clyz(Fn)) ® Zsy, we have coker fo = Dn’,y2/D;:y2. We
consider the following diagram,

147
D’n,fﬂg E— Dn,,VQ

lNFn/FTJ{ Tf?

+ +
Dn,,yg —_— Dn,j’g‘

Since all primes above 2 which are contained in .#(F},) ramify in F,/F,,
the norm map Np I Dy, v — DT .z, is surjective. This implies that

n,

coker fp =2 Dn,fg/(l + j)DmYz' -

Lemma 3.3.3. (Corollary in [9]) Assume that Leopoldt’s conjecture is valid
for FT. Then the order of D:% remains bounded as n — oo.

Proof. Put T, = Gal(F,[/F*). If Leopoldt’s conjecture is valid for F*,
the order of the Galois invariant AE’L remains bounded as n — oo (see
proposition 1 in [9]). This implies that the order of D , remains bounded
as n — oo. O
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Proposition 3.3.4. Assume that Leopoldt’s conjecture is valid for FT.
Then,

I

{(Z/zzw (2 ¢ Fro)

Ol QD05 5 (@ pgyoa-svsss (uye ),

where d is the number of primes of Fo above 2 which ramify in Fu/FY,
and 41, 62 are defined just before Theorem 3.3.1.

Proof. Put B, = (O )77 /(OF )!™ for any n € Zso. We consider
the following commutative diagram which is obtained by Lemma 3.3.2 for
n>m> 0,

Bn - @ Z/QZ E— Dn,,Vg/(l—i_j)anS@ 0
vES (Fn)NS2(Fn)

lNFn/Fm ‘ lNFn/F7n

By — @D /2 —— D/l 4Dy —— 0.
WES(Fm)NS2(Fm)

Since the action of j on .#5(F},) is trivial, we have ((’);m(%)l_j C u(Fy) for
all n > 0, where p(F,) is the set of roots of unity which contains in F,, (see
Lemma 1.6 in [33] ).

If Fw does not contain pge, the 2-Sylow subgroup of p(F,) is {+1}
for all n > 0. Therefore the norm map pu(Fy,) ® Zo — p(Fm) @ Zg is the
0-map. This fact and (O}X,myz)l_j C w(Fy,) imply that B,, — By, is the
O-map for all n > m > 0. Therefore we have @vey’g(Fn)mSg(Fn) 7)27 =
D, /(1 + j)Dy o for all sufficiently large n > 0. Taking the projective
limit, we have

lim Dy, 7, /(1 + §) D, = (2/22)%,

If Fx contains figec, we have ((’);m%)l_j = u(F,) or u(F,)? (see The-
orem 4.12 in [33] ). Since the norm map u(F,) — u(F,,) is surjective, the
norm map B,, — B, is surjective for all sufficiently large n > m > 0.

We claim that the norm map

Npt g ker(D;% — Dy, 9,) — ker(D} v = D7)

is also surjective for all sufficiently large n > m > 0. We consider the
commutative diagram

0 —— kEI'(.Dth,ﬁ2 — Dn,yz) - DTJLFVVQ

N N
l P /FS, l Rl /FS

0O —— ker(D:%yQ — Dm,fz) — ‘D:l,yQ'
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Lemma 3.3.3 implies that the norm map NFn*/Fnt : D;;y2 — DF T is an
isomorphism for all sufficiently large n > m > 0. Therefore the norm map
Nps s ker(Dny — Dy 9,) — ker(D; 7 — D) is injective for all
sufficiently large n > m > 0. Since the order of ker(D? s D, #,) is
1 or 2 for all n > 0 (see Theorem 10.3 in [33]), the norm map Npt /gt
ker(D+5, — Dy ) — ker(D} 7 — Dm.z,) is surjective for all suffi-
ciently large n>m> 0. Therefore taking the projective limit of the exact
sequences obtained from in Lemma 3.3.2, we get an exact sequence

0 — lim (ker(D}} 5, = Do) — lim ((OF, ) 7 /(0F ) )

— (2)22)%¢ — Wm Dy 5, /(1 + j) D,y — 0

of Fy-vector spaces. Proposition is obtained by considering the 2-rank of
this exact sequence. O

Remark 3.3.5. Since (05, )'™7 = pu(F,) or u(F,)?, (Of )7 /(OF )17
is isomorphic to 0 or Z/2Z for all n > 0. Thus we have 0 § 62 <61 <1and
the 2-rank of @Dmyz/(l +J)Dp 7 is d or d — 1.

Lemma 3.3.6. We have
I.&HD”,Y’Q/(l"i_] n,s — LDTLYQ 1+j)(£i£an,Y2)'

Proof. Put D/, o = ker(Dy, 7, = Dy, #,). We consider the commutative
diagram

147 }
0 5 Dn S > Doy > (1+7)Dn.s, » 0
J{NFH/Fm J/NFn/Fm J{NFH/Fm
145

0 D:nyg B Dmé’z — (1+j)Dm,,72 — 0.

Since D’ n.o, is finite for any n > 0, the system (Dny Ng,/F,_,) satisfies
2’

the Mlttag Leffler property (see chapter 2, § 7 in [24] ). Therefore taking

projective limits, we get an exact sequence

0 — m D), ,, — lim Dy, s, ~% lim(1 + j) Dy, — 0.
Thus we have m(l +J)Dps =1+ L m D,, » . This implies that

l.&nDn,Jﬂg/(l“_]) nS’gg(L nS’g)/ +] mDn,QVQ .
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Now we proceed to the proof of Theorem 3.3.1.
Proof of Theorem 3.3.1. We consider the commutative diagram

0 —— ImDy gy, — Xp, —— Xpo 9 —— 0

s | |

0 —— m Dy y, —— Xp, —— Xpo .z — 0,

where f1, fo, f3 are induced by 1+ j, and Xgp_ o = @AFH,<¢2- By the
snake lemma, we get an exact sequence

ker fy — ker f3 — (im Dy, 5,)/(1 4 7) (lim Dy, ) (3.2)
— X;oo — X;OO 7 T 0,

where X5, = Xpo.7/(1+j)XFE, . We claim that the map ker fo —
ker f3 is surjective if A P Af, # is injective for sufficiently large
n > 0. We define '

Ay =ker(Ap, =3 Ap,),

1+7
gy = ker(Ap, 7 —> Ap, ),

1+
’:7,,5@ = ker(Dn7y2 — Dn,,jﬁ)-

By definition, ker fo = I&HAIFn and ker f3 = @A’Fn #,- We consider the

commutative diagram

0 —— DmyQ E— AFn EE— AFn7y2 — 0

lNFn/Fﬁr lNFn/Ff{ lNFn/FTT

+
0 — D g — Apy —— AF,j,yz — 0.
Since infinite primes ramify in F,,/F.’, all norm maps N F, /7 are surjective
by class field theory. Since we assumed that A+ o, — AR, . Is injective,

N N
Fn /Py Fn/Fif

A’me2 = ker(Ap, AF;LH%)' Put D,l’;y? = ker(D,

Np gt
D;; ) AL = ker(Ar, HIACRY) p+)- By the snake lemma, we get an exact
sequence,
0— D!

n

" /
T2 AFn Amez 0
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for all sufficiently large n > 0. We consider the commutative diagram

" / +
0 —— D) 4 —— Dy g — ker(Dnjz — Dy ) —— 0

| | [

0 —— A, —— A, —— ker(4p+ - Ap,) —— 0.

Since the map A o AF, 7, is injective, the map fy is an isomorphism.
Therefore we get an exact sequence,

/ / /
0 DnryQ AFn AanSﬂQ 0

for all sufficiently large n > 0. Lemma 3.3.3 implies that the map D/, P

Nen /Fy_ . L. . .
/—> ! D;Lil’(% is surjective for sufficiently n > 0. Therefore, taking the

projective limit, we get an exact sequence
0— @Dj%% — @A}n — 1’£1A’Fn7y2 — 0.
This implies that ker fo — ker f3 is surjective. Therefore, it follows from
(1) that we have an exact sequence
0— (@Dn,&"z)/(l +j)(£iLnDn,3’2) — Xf;oo — XI;OO,YQ — 0.

If X;oo o has no non-trivial finite A-submodule, we have

FA(X}:(X)) = (@Dn,ﬁﬁ)/(l +.])(1£1Dn,§’2)

Proposition 3.3.4, Lemma 3.3.6 and the above equality imply that

(Z/22)® (if pooe ¢ Fio)

Fa(Xz )=lmD 14+7)Dp o =
if X;oo P has no non-trivial finite A-submodule. This completes the proof
of Theorem 3.3.1. O

Next we study certain conditions on the injectivity of the map A g
Ap, #, for an imaginary abelian field F'. Leopoldt’s conjecture is valid for

a real abelian field. Hence the following result implies Corollary 1.2.3.

Lemma 3.3.7. Assume that F is an imaginary abelian field and all primes
above 2 ramify in Fo /F. If Foo contains pgs or Hasse’s unit index [OF;
M(Fn)O;;r] = 2 for all sufficiently large n > 0, the lifting map AFJ,y’Q —
Af, 7, s injective for all sufficiently large n > 0.
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Proof. 1t is well known that the kernel of the map AFJ v — AR,
coincides with the kernel of the map

HYF,/F;,0F ) — H\(F,/EF T OF )
v¢ S (Frn)

where (’)}X,mv is the unit group of the completion of F,, at v. Therefore it
suffices to show that H'(F,,/F, , (’);m &,) = 0 for all sufficiently large n > 0.

If Fs contains pige, since all primes above 2 are contained in . (F),),
(’);m &, contains 1—Com for all 2™th roots of unity (am in p(F,). This implies
that ((’);n’%)l*j = p(Fy,) for all sufficiently large n > 0.

If Hasse’s unit index O M(Fn)O;T] = 2, we also have (O, )'™7 =
p(Fy) (see Satz 14 in [17]).

Therefore, we get an exact sequence for all sufficiently large n > 0,

0— OF

1-7
X
e — (’)Fn’y2 —5 u(E,) — 0.

Put G = Gal(F,,/F,"). Taking Galois cohomology, we get an exact sequence

ELNIOL

X
0 0 Ff .

f: f: f
o =2 {41y & HY G, 0%, ) HYG, OF )

Ef .

f5 B 2 f 2

L HYG, u(F,)) L5 H2(G, Ot ) = H*(G, OF 4,)
Since f; is an isomorphism, fs is the O-map. Therefore f3 is injective. Since
F,/E} is a cyclic extension,

. y ker(1+j:(9;7l+7y2—>(9;n+’y2)
H' (G, OF;HE%) = ( - )1_]. = {£1}.
Ff s

Thus f3 is also an isomorphism and fj is the O-map. Therefore f5 is injective.
Since

ker(L+ (B = p(E))  p(F)

Hl(Gv :U’(Fn)) - I«L(Fn)lij = N(Fn)2 = {il}a

we get an exact sequence

f5 fo f
0 — HY(G, OF. 7,) — {£1} =% H*(G, (’);J%) 1 H*(G, OF..7)-
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If f7 is not injective, fg is not the O-map. This implies that H!(G, (’);n o) =
0. We show that f7 is not injective. Since F,,/F,f is a cyclic extension,

X
(OFJMQ

)< O
H*G, 0%, )=H"(G, 0, )= =

Fi .7

Ff,. Fi . X X 2’
n 2 n 2 NFn/F7T(OFTJLr,y2) (OFi,yQ)
X
OFJ,%

H*(G, OF% )= :
Fy, . NFn/FQ' (O;‘:n,,yg)

If Hasse’s unit index [Of @ pu(F,)O0 ] = 2, Satz 14 in [17] shows that
[(O;ﬂ)lﬂ : (OEJ)Q] = 2. This implies that f7 is not injective.
If F, contains pugco, (’);" &, contains 1+ Gy, where 2! is the order of the

2-Sylow subgroup of p(F),). Thus we have

Np pr(1+C) =2+ G + (€ Ng 5+ (OF, )

Since 1/2 + (u + C;ll = +((yt1 + C;lil) ¢ F*, we have

24 (o111 + Cg_lil ¢ (0;$,=5’2)2.

This implies that f7 is not injective. This completes the proof of Lemma
3.3.7. 0

We give some examples here.

Example 3.3.8. Let F' be an imaginary quadratic field that is not Q(v/—1),
Q(v/—2) and the prime above 2 ramifies in Fi,/F . Then, Leopoldt’s con-
jecture is valid for F'* = Q. Since the class numbers of F are odd for all
n >0 (see Satz 6 in [17]), the lifting maps Ap+ ,, — Ap, #, are injective
for all n > 0. Since F, does not contain all 2"th roots of unity for n > 1,
Theorem 3.3.1 implies that

FA(Xp) = Z/2Z.
This was proved by Ferrero in [6] (see Theorem 2.2.3).

Example 3.3.9. Let F'* be a real abelian field which is unramified at 2,
and F' = F(y/—1). Then, we have

FA(Xp,) = (2/22)%,
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where d is the number of primes of F' lying above 2. In fact, Theorem 1
in [22] implies that (O;n)l_j = u(F,)? for all n > 0. Since 1 — (yni2 €
Of o, we have (OF )77 = pu(F,) for all n > 0. Therefore we have

(O, ) 7 /(OF )7 = Z/27 for all n > 0 and &, = 1. Theorem 1 in [22]
also implies that d = 0.
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Chapter 4

Iwasawa main conjecture for
p=72

In this section, we prove Theorem 1.2.4.

4.1 Proof of Iwasawa main conjecture for p = 2

If [ is a prime number and [ = 1 mod 2"*!, let Qp, denote the cyclic
extension of Q of degree 2" contained in Q(y) and let N, ; = NQ,,; for any
finite extension N of Q. We note that Q,,; is a real abelian field since | = 1
mod 2"t

Lemma 4.1.1. Let N be a finite abelian extension of k. There exists an
r € Z>2 depending only on N such that for any n > r we can find infinitely
many | satisfying the following conditions.

(a) I is unramified in N/Q.

(b) I =1 mod 2"+,

(c) For any character x1 € Gal(/N:/k:) and any character xo € Ga@/kz)
of order > 2", we have x1x2(v) # 1 for any prime v of k above 2.

Proof. The proof of this lemma goes by the same method of the proof of
Lemma 10.2 in Wiles [34]. Let r = max{m € Z>1 | 2™|[N, : Q2] for all v above 2}+
1, where N, is the completion of N at v. For any n > r, we can find in-
finitely many [ such that [ splits completely in Q(ugn+1)/Q and is inert in
Q(ugn+1, v2)/Q(gn+1) by Chebotarev’s density theorem. We can choose
that [ is unramified in N/Q since the number of primes which ramify in
N/Q is finite. Any such [ satisfies the conditions (a), (b). We show that any
such [ satisfies the condition (c). Since [ is inert in Q(pugn+1, v/2)/Q(pgn+1),
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we have v2 ¢ F;, 2 ¢ (F))%. This implies that the order of Frobs in
Gal(Qy,/Q) is equal to 2n~1 where Frobs is the Frobenius map of 2. Since
the restriction map Gal(k,,;/k) — Gal(Q,,;/Q) is an isomorphism, the order
of Frob, € Gal(ky,;/k) is 2"~ ! for all v above 2. This implies that any such
[ satisfies the condition (c). O

Let x be a one-dimensional Artin character for £ and kX the extension of
k attached to x, i.e., kX = kXX, Assume that kX is a totally real field and
kXN ko = k. Let S be the finite set of primes of k which ramify in kX /k.
We consider N = kX in Lemma 4.1.1 and take r,n,l. Put H = kXQ,,;. Let
S; be the finite set of primes of k above .

We denote by Xy sus, the Galois group of the maximal abelian pro-2-
extension over Ho, unramified outside S U S;. Put I' = Gal(Hx/H). We
write G = Gal(H/k) = G’ x A where G’ is a 2-group and the order of A is
odd. Then, we have

Zo|[Gal(Hoo /F)]] = Zo[[G x T = @ Za[Im(x)][[G" x T
X' €A/~

We write y = x"1) where ¥/ € A and ¢ € G. Put A’é’, = Zo[Im(x)][[G’ x
T)]. For any Zs[[Gal(Hy /k)]]-module M, we put MX = M QZ[[Gal(Hoo /k)]]
Aél/. We take 7 a generator of Gal(Hy/k%) and put &, = T=L € AX,. We

TT:l
denote by P the prime ideal of Aé/' which is generated by 2 and o — 1 for all
o € G'. We note that &,; € P. We consider the map Q(Z»[[Gal(Hw /k)]]) —

Q(Zz[Im(x")][[G’ x T]) induced by X’ and denote by @ﬁw/k the image of

Py € Q(Zs[[Gal(Hoo/k)]]), where @k is defined in section 1.

Proposition 4.1.2. (i) Assume that x' # 1. If

1 /

FittAé’,P('Xﬁm,SUSl) C (ﬁ@?[m/k;gn,l): (4'1)

we have

. ’ 1 ’
FlttAX/ (X;;oo,SUSz) C ( CI))IEIOO/k’EnJ)’

& 24
where A)é/’,P is the localization of A’é/, at P.
(ii) Assume that x' = 1. If

. / 1 ’
(’Y - 1)F1ttA>é’/ P(X;ffoo,SUSl) - ((7 - 1)2j¢>éw/k7§n,l), (4'2)
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we have
. / ]_ /
(fy - 1)F1ttAé/, (X[)-CIOWSUSZ) - ((’Y - 1)27dcp>]fjoo/k7 gn,l)7

where v is a topological generator of I'.

Proof. At first, we consider the case x’ # 1, this is equivalent to saying that
the order of x is not 2-power. In this case, Corollary 2.3.5 implies that

1
2d
Let ¢ be a character of Gal(k,;/k) of order > 2". Then Lemma 4.1.1
(c) implies that x¢x1(v) # 1 for any prime v above 2 and any character

x1 € Gal(kX,/k). Thus Theorem 2.4.5 implies that

! /
Oy EAG-

. / 1
FlttZQ[Iquﬂ[[F]}@Qz (Xﬁwsugl ® Zo[Imx¢|[[I'] ® Q2) = (27(1))1?;0/]@)

for any character ¢ of Gal(k,;/k) of order > 2". This implies that

1 ’

Fitt (X;ffoo,SUSz ®Q2) C (ﬁ‘b;({oo/k,fn,l)-

Aé/ ®Q2

This inclusion and (4.1) imply that for any a € Fitt Aé’,(X ﬁ;,SuSl)7 there
exist j, € Z>o and f € AY, \ P such that

/

; 1
(£,27)a © (5@ &n):

Put A = (%@XH’w/k,gn,l) C A)é:,. Since 2 € P and f ¢ P, this inclusion
implies that Aé/,a + A/A is a finite submodule of A%, JA. If AX, /A has no
non-trivial finite Aé,—submodule, we have a € A and complete the proof of
this proposition for y’ # 1.

We claim that Aé/, /A has no non-trivial finite A’él,—submodule. Since all
primes above [ totally ramify in H/kX and [ is unramified in kX/Q, we have
Gal(H/k) ~ Gal(H/kX) x Gal(kX/k). Put n’ = ords(§Gal(kX/k)). Then we
have .

X -1

2T x ),
X2 1772 )

A%/ (€)= Za[Im(X)][[X1, Xz, TN)/(

We note that Zs[Im(x')][[X1, X2, T]] is a regular local ring of dimension

4. Since 2%(1)?({/00/]6 is the 2-adic L-function, we have (15(2%@)]3[/00/16) # 0
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in Zs[Im(¢x")][[[]] for any character ¢ € G’. Therefore, ();1; X2

1, 5q <I>’I<{ /k) is a regular sequence in A’é/,. Thus A’g, /A has depth one and

there exists a non-unit x € A’él, such that the map
/ Xx !
AL JA— AL /A

is injective. For any finite submodule M of AXI, /A, the map M X M is an
isomorphism. By Nakayama’s lemma, we have M = 0. Therefore, Aé// JA

has no non-trivial finite Aél,—submodule.
Next, we consider the case Y’ = 1. In this case, Corollary 2.3.5 implies
that

1 /
(v=1og od (I)if{ /k € AL
By a similar method, Lemma 4.1.1 (¢) and Theorem 2.4.5 imply that

1

: X' X'
('7 - 1)Fltt/\>é/,®@2 (XHomSUSz ® Q?) - (’Y - 1)(ﬁ(I)Hoo/kafn,l)'

We can also prove that AX, [(v— 1)(2%1@?;00 Ik &n,1) has no non-trivial finite

Aél,—submodule similarly. Therefore, these fact and (4.2) imply the state-
ment of Proposition 4.1.2. O

We write Gal(kX/k) = A x G” where G” is the 2-Sylow subgroup of
Gal(kX/k). We know that G' = G”xGal(H/kX). Put A’él,, = Zo[Im(x))][[G" x
[']]. For any prime A of k above [, we define E) € Zs[[Gal(kX/k)]] b

Ey =1— NX\ 'Frob,,

where Frob) is the Frobenius map of A in Gal(kX/k). We consider the

natural map Zs[[Gal(k /k)]] — Aél// induced by x’ and denote by Ef\‘l the
image of F).

Corollary 4.1.3. (i) Assume that X' # 1 and (4.1) is valid. Then we have

Fitt AY, o (XN sus,/ (T = 1DXg Ho<> sus) © (]1 EYX 2d P /k’2n ")
AES)

(ii) Assume that x' =1 and (4.2) is valid. Then we have

(7—1)FittA>é'”(X;froo,Susl/(T 1)XH sus;) H E,\ 2d D /k>2n ").
AES;
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Proof. We consider the restriction map cy_ px A)é,, — Ag,,. By the
property of p-adic L-function, we have

CHoo /KX (@ Heo /k H EA 2d kX Jk
AES]

Therefore, Proposition 4.1.2 and Remark 2.2 in [26] imply these inclusions.
O

Let Xpx o (resp. Xpx gug,) be the Galois group of the maximal abelian
pro-2-extension over kX, unramified outside S (resp. S U S;). We consider
the restriction map Xpx gus, = Ay ¢ and denote by J; the kernel of this
map. Put A, = Zo[Imyx][[[']]. Gal(kX/k) acts on A, via x. We consider
the natural map Zy[[Gal(kX /k)]] = Ay induced by x and denote by EY the
image of F).

Lemma 4.1.4.

Tt Oz, a my) Ax = ED Ax/(EX).
AES;

Proof. For any m € Z>q, let kY, be the m-th layer of kX,/kX, Sy, (resp.
Sm.1) the set of primes of k%, above S (resp. S;). We denote M,,(Sy,) (resp.
M, (SmUSp,)) by the maximal abelian pro-2 extension over kp, unramified
outside Sy, (resp. Sy, U Sy, ;). There is an exact sequence

0 — Gal(My(Sm U Sp)/ M (Sm))
— Gal(My (S U Spt) k%) — Gal(My,(Sin) /KX,) — 0.

By class field theory, we have

Gal(Mpy (S U Sm ) /KY) =~ T /kY [ B, ® 22,
U(ZSmUSmyl
Gal(Mpn(Sm)/EYS) = Jux [KX, H Epx , ®Zs,
vESm

where Jix is the idele group of k., Ekx,, » is the local unit group of k&, at
v. Therefore, we have

Gal( M (Sim U Spn) /Mo ( ~ I B /50 I Ewyo) ® Zo.

UESm 1 UGSm,l
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Lemma 4.1.1 (b) implies that all 2-power roots of unity are contained in
kX for any prime v above I. Since Eyx , ® Zy = pigeo (ki v) for all v € Sy
and J; ~ @Gal(Mm(Sm U Smyl)/Mm(Sm)), we have

m

0 = lim paoe (k) — lim EP) (naw (k,,)) — i — 0,

m ’UESm,l

where fig0c (k%) (resp. pia (ki) is the all 2-power roots of unity contained
in kY, (resp. k). Since x is an even character, uge (k) = {1} for all
m. Since

lim @ (ne (k) @ Ay = €D A/ (EY)
m UESmJ AES
has no non-trivial finite Ay-submodule, we have J; ®z,[qairx /b)) Ax =
@Dacs, Ax/(Ey). This completes the proof of Lemma 4.1.4.
O
Put Moo(S) = | (M (Sm)) and Muo(SUS) = | (M (Sim U Sp))-
1

ﬁCg

m=1
By definition, we have

Since only primes above [ ramify in Hu,/kY,, we know that Huo My (S) C
Moo(SUS). Put I = Gal (Moo (S U S))/ Hao Moo (S)).

Lemma 4.1.5. There exists an a € Z>q independent of [,n in Lemma 4.1.1,
we have

20 H EX € Fitty, (I, ® Ay).
AES)

Proof. By definition, we get an exact sequence

0 — I} — J; — Gal(Hoo Moo (S)/Mx(S)) — 0.
Since Gal(Hu/koo) acts on Gal(Hoo Moo (S)/Mso(S)) ~ Z/2"Z trivially,

we have

Gal(Hao Moo (S)/Mao(S)) ® A, = 0
if X' # 1. Therefore, Lemma 4.1.4 implies that

I @, (Gair 1)) My = €D A/ (EY)
AES;
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if X’ # 1. Therefore, we consider only the case for ' = 1.
If ¢ = 1(i.e., x = 1 and kX = k), we have Aél,, = A, and we get an exact
sequence
0 —=L®A — J &N, —Z/2"Z — 0.

Since J;® A, has no non-trivial finite A,-submodule by Lemma 4.1.4, ;Q A,
has too. Therefore, we have
FittAX (Il &® AX) = CharAX (Il ® AX)
= chary (/1 ® Ay)

= (1] 20

AES;

We consider the case ) # 1. Put a is an ideal of Ag,, generated by 2"
and o — 1 for all 0 € G” x I'. Then we have,

Gal(Hoo Moo (S) /Moo (S)) = AX, Ja =~ Z/2"Z.

Consider the map A’g,, X A, and we denote by q the kernel of this map.

Consider ® A A, we get an exact sequence
G//

A,
Tor, " (AJa,Ay) — [ @ Ay — Sy @ Ay — Ay /a+q— 0.
Since ¢ # 1, 9 is a faithful character of G”. Therefore, we have A, /a+ q ~

X/
Z./27. We note that Torjl\G” (A/a,Ay) ~ aNq/aq is annihilated by a and

g. Since the number of generators of a N q as A’C‘;,,—module is independent
of [, there is an a € Z>o independent of /,n in Lemma 4.1.1 such that

AX/// . . . . .« e
(Z/)2Z)* — Tor,; ¢" (A/a, A, ) is surjective. Since J; ® A, has no non-trivial
finite A,-submodule by Lemma 4.1.4, we get an exact sequence

(Z/QZ)G — I ®AX — I ®Ax/fAX(Il ®AX) — 0,

where Fj, (I; ® Ay) is the maximal finite A,-submodule of I; ® A,. The
term on the right has Fitting ideal equal to [], s, Eif By Lemma 7.1 in
[19], we have

2* T EY € Fitta, (I ® Ay).
AES;

This completes the proof of Lemma 4.1.5. O
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Finally, we prove the Iwasawa main conjecture for p = 2 assuming (4.1)
and (4.2) in Proposition 4.1.2 for any n, (.

Proof. We consider the following exact sequence
0— Il — XHOO,SUSI/(T — 1)XH0075U51 — ngms — 0.
Considering Rz, [kX, /k]}AX’ we get an exact sequence
II® AX — XHOO,SUSZ/(T — 1)XHOO,SUSZ X AX — ngovs X® AX — 0.

We consider the case x' # 1. Corollary 4.1.3 and Lemma 4.1.5 imply that

a H E;\(Fltt/\ (ka S®A H E;(Qd kX /k72n T)
AES; AES)

Since [],¢ s, EY is not a zero divisor, we have

2°Fittp, (X s ®@ Ay) C ( X, 2"

od “ kX /K’
for all n > r. Consider n — oo, we have
. 1
2aF1ttAX (Xk&ﬁ ®Ay) C (qu)z /k)'

Since there is a b € Z>1 such that

2bCharAX (Xkéoas &® AX) C FlttAX (Xkéoas X AX)’

we have
20/+bcharAX (ngo’s & AX) C (2d (pzx /k) (43)
for x' # 1.
Next, we consider the case ' = 1. By a similar method, we have

. 1
2 +b(’Y - 1)Chal"AX(Xk:§c,S ®Ay) C(v— )(qu’?ix /k)

If x # 1, Theorem 2.3.6 implies that

2% chary (X g ® Ay) C (2 7% k) (4.4)

We consider the case y = 1. Assume that Leopoldt’s conjecture is valid.

Then Theorem 2.3.6 implies that 55 k" n ¢ A,. Therefore, (y — 1) does
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not divide %@:&/k in Ay. Since both 2*T(y — 1)chary (Xx ¢ ® Ay) and

(y—1) (2%(1)?;& /k) are principal ideals and A, is UFD, we have

27+chary (Xx ¢ ® Ay) € (7 — 1) (%qn;ggo ) (4.5)
for y =1.

For any finitely generated torsion A,-module M, we denote by A(M)
(resp. wu(M)) the A-invariant (resp. p-invariant) of M. Similarly, for any
element f € A,, we denote by A(f) (resp. p(f)) the A-invariant (resp. pu-
invariant) of f. For any finite abelian extension K /k such that K is a totally
real field, we have

2 caar  MAxs @A)

1 1,
= 2 ccal®Th) )‘(ﬁq}:go/k) +A((r = 1)27‘I>koo/k)
x#1
and
erGe@k) (X5 © Ay)

1 1,
- ZXeGal(/K\/k) “(ﬁq)ﬁgo/k) +u((y - 1)ﬁ‘1)koo/k)-
x#1
by the analytic class number formula. (see [5]). Therefore, (4.3), (4.4) and
(4.5) imply that

1
CharAX(Xké(mS X Ax) - (ﬁq):é(o/k) (X # 1)7

1
chary, (Xpx ¢ ®@ Ay) = (v — 1)(@‘@%&/,6) (x=1).

This completes the proof of the Iwasawa main conjecture for p = 2 assuming
(4.1) and (4.2) in Proposition 4.1.2 for any n,! in Lemma 4.1.1. O

Lemma 4.1.6. (i) Assume that X' # 1. If ,LL(Q%CI)ZX /k) = 0, then the

conditions (4.1) in Proposition 4.1.2 is valid for any n,l in Lemma 4.1.1.
(ii) Assume that X' = 1. If p((y — 1)2%(1)2(&/19) = 0, then the conditions
(4.2) in Proposition 4.1.2 is valid for any n,l in Lemma 4.1.1.
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Proof. We denote P’ by the prime ideal of Zy[Im(x)][[G” x T']] generated
by 2 and o — 1 for all 0 € G”. By the assumptions, we have

P & P (EX A1),
1 .
(V= Dg®hy e & P (X =1).

We consider the restriction map cy_ /px A’é/, — Zo[Im(x")][[G" xT]]. Then,
we have

CHoo /KX (ﬁ Hoo/k H E/\ 2d k;X /K
AES;

and cpy_px (P) C P'. Since [[)cg, Ef\d ¢ P’, we have
2d¢>3; W # P (EX £
(v-1) dqﬁﬁ; n & P (X =1)
These imply that the conditions (4.1), (4.2) in Proposition 4.1.2 are valid
for any n,[ in Lemma 4.1.1 for the simple reason that the right hand sides

n (4.1), (4.2) are then the unit ideals.
O
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Chapter 5

Fitting ideal of the 2-part of
the ideal class group

5.1 Stickelberger ideal

In this section, we define the Stickelberger ideal © Ik which is in fact similar
to the Stickelberger ideal defined by Kurihara in [19]. Let k be a totally real
field, and K/k a finite abelian extension. Assume that K is a CM-field. Put
G = Gal(K/k). For any subfield k C M C K and any ring R, we denote by
ci/m the map cgpy : R[Gal(K/k)] — R[Gal(M/k)] induced by the natural
restriction map Gal(K/k) — Gal(M/k). In this situation,

vi/m  R[Gal(M/k)] — R[G]
denotes the R-linear homomorphism defined by
g +— Z T
CK/M(T):U

for o € Gal(M/k) where T ranges over the elements of GG such that cx /(1) =
o. Let j be the complex conjugation in G.

Definition 5.1.1. We define

1 . .
/K/k = <FVK/M(9M/]€) |kc M cC K,MisaCM ﬁeld> C (1 —7)QqdG],

where d = [k : Q], 0y is the Stickelberger element defined in section 1.
We note that @’K/k is a Zs[G]-submodule of Q2]G].
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We write G = Gal(K/k) = G’ x A where G’ is a 2-group and the order
of A is odd. Assume that G’ is cyclic. We denote by W(K) all roots of
unity contained in K. Let K' be the maximal real subfield of K. For any
number field N, we denote by Ay the 2-part of the ideal class group of N.
Let a1, x = 0 (resp., 1) if the ideal extension map A+ — Ag is injective
(resp., not injective), and ag gk = 0 (resp., 1) if Hasse’s unit index Q(K)
is equal to 1 (resp., 2). Put Zs[G]™ = Z2[G]/(1 + j). For any element
a € Z3|G], we denote by a the image of a of the natural surjective map
Z5|G] — Z3|G]~. We denote by I the ideal of Zy[G] generated by 2 and
o — 1 for all ¢ € G. We consider the map f

[ (A =0)2[G] — Zs[G]”
(1-j)a — a.
This map is well defined and an isomorphism of Zs[G]-modules. We define
Ok = o™ " Anng, oy (W (K) © Zo) Kk
By Deligne and Ribet [4], we know that O/, C (1 — j)Za[G].

Definition 5.1.2. We define

K/k = f(@K/k)

Remark 5.1.3. If £ = Q and a; x = 0 (i.e., the map Axg+ — Ak is
injective), © /g coincides with the Stickelberger ideal defined by Kurihara
(see section 2 in [19]).

We fix a faithful character v of G’. Since G’ is cyclic, we have
(G ~ @ Zalim(xy))
XEA/~
For any x € A = Hom(A,Q,), we denote by fx the map
fx 1 Zo[G]” — Za[Im(xv))]

induced by x%. For any x € A, put KXV = K*erx¥  We consider the value
of L-function at s = 0 as the following

LOX ' )= Y <00)x ¢ (o),

o€Gal(KXx¥ [k)

where (0, 0) is the partial zeta function defined in section 1.
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Lemma 5.1.4. If y # 1, we have

1
fx (@1_(/1@) = (ﬁL(vaflﬂfl))-
If x =1, we have

- a a Or' 1 — —
fX(QK/k) = (rorctonst dQ(ﬁWK)@L(O,X Ly™h),

where T is a uniformizer of Za[Im(x)].

Proof. The maps f and f, extend respectively to f : (1 — j)Q2[G] —

Q2[G]/(1 4 7) and fy : Q2[G]/(1+ j) — Qo(Im(x¥)). Since 1 is a faithful
character of G/, we know that KX¥ is a CM-field. Therefore, we have

1
5d—1 VK /KX (Orxw i) € @,K/k

by definition. Since [K : KX¥] is odd, we have

(o F (v Oronp)) = (L0 47).

We denote by g the natural map g : Z2[G] — Z2[G]~. If x # 1, we have
fX o g([gl’K+a2’KAnnZ2[G](W(K) & Zg)) = (1)
Thus we have )
- —1,—1
F(©k) 2 (ﬁL(o,X v h).
If x =1, we have
fxog(Igl,K+02,K) _ (71_(11,K+(12,K)’ ong(AnnZZ[G](W(K)(gZQ)) — (ﬂ.ordz(ﬁW(K))).

Therefore, we have

1
fX(®;(/k) > (ﬂ_aLK-&-az,K-&—ordz(ﬁWK)ﬁL(()’X_lw_l)).

For any CM-field M such that Kk C M C K, Lemma 2.3.1 implies that

Fo F (grvm Oaage)) € (L0, x 0 7).

Therefore, we have

£(07) = {(;duo,x—w—l)) (x#1)
X\MK/k (Fa1,K+a2,K+0rd2(ﬂWK)2%[1(0,Xﬁlwil)) (X: 1)'

This completes the proof of Lemma 5.1.4. O
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Put Ay = Ax ® Zo|G]™.
Corollary 5.1.5. We have
[Z5[G]™ : Fittg, - (Ax)] = [Z2[G]™ - @;(/k].
Proof. We consider the following exact sequence
0 — ker(Ag+ = Ag) — Ag+ — Ag — A — 0.

Since G’ is cyclic, Zo[G]™ is a direct product of discrete valuation rings.
Therefore, we have

1AK

R N - — 901K
[ZQ[G] : FlttZg[G]_(AK)] 2 ﬁAKJr .

The analytic class number formula implies that

fAR gords (Tyea 2 LOX ™) +as rc+orda(FW (K))
1A K+ '

Lemma 5.1.4 implies that

[22]G]™ : O] = gords (Tl ca 27 L0 19™1)) a1, ictaz, i +orda (W (K)

1Ak
BAR+

201, K

O]

Proposition 5.1.6. Assume that G’ is cyclic. Let 1 be the trivial character
of A. Then we have

f1(Fittz, - (A%)) = f1(O% 1)

Proof. Since Zy[Im(1))] is a discrete valuation ring, it is sufficiently to show
that

[Zo[Im ()] : f1 (@I}/k)] = [Zo[Im(y)] : f1(Fittz,q- (Ax))]-

Since §A is odd, we have (A )a =~ A o by the norm argument, where KA
is the subfield of K fixed by A. Therefore, we have

F1(Fittz, g~ (Ax) = Fittz, gy (Aga)-
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Since Zo[Im(v))] is a discrete valuation ring, we have
[Zo[Tm(9)] = Fittz, mmp)(Axa)] = f4%a-

Let K% be the maximal real subfield of K2 and hya(resp. hpa.+) the
class number of K*(resp. K2). By the analytic class number formula,
we have

hpea 1
T = QUEAEW(K®) [] 3L(0,9),
[(A’+ ieg;d/

where Q(K2) is Hasse’s unit index of K2 and W (K?) is the group of all
roots of unity contained in K. Since $A is odd, we have W(K?) ® Zy =
W(K) ® Zs, Q(K?) = Q(K) by Proposition 1 (f) in [22] and

ker(Ag+ — Ag) ~ker(Aga+ — Aga)
by the norm argument. Thus Lemma 5.1.4 implies that

[Z2[Im(4)] : f1 (@I_{/k)]

ords (QUE )W (K™) [Tyeqr S5 LOW)Eker(A gy —A )
— 2 1:odd

h
= K2 ﬁker(AKA,+ — AKA)
hKA,+

= $A74
= [Zo[lm(e)] : f1 (Fittzye- (AR))].

5.2 Descent theory

In this section, we prove Theorem 1.2.6 in the case (3a). As we mentioned
in chapter 1, we prove Theorem 1.2.6 in the case (3a) by a similar method
as in Greither [13]. For any number field N, let N be the cyclotomic Zsa-
extension, N, the n-th layer. Let k be a totally real field, and K/k a finite
abelian extension. We assume that K is a CM-field and K Nky = k. We
write G = Gal(K/k) = G’ x A where G’ is a 2-group and the order of A
is odd. In this section, we do not assume that G’ is cyclic. Let L/k be
a finite abelian extension such that L is a CM-field, K C L, and L/K is
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a 2-extension. Let L™ be the maximal real subfield of L. We denote by
Gal(L/k)2 the 2-Sylow subgroup of Gal(L/k). Then we have

Zs|Gal(L/k)] ~ @ Zo[Imx][Gal(L/k)2],
XEA/~

Zo|Gal(L/k)]/(1 +j) ~ @ Zo[Imx][Gal(L/k)2] /(1 + 7).
XEA/~

For any Zs|Gal(L/k)]-module M and any character y of A, put MX =
M@z, (Gal(L/k) L2[Tmx][Gal(L/k)2], M~ = M ®gz,(qal(z/k) Z2|Gal(L/k)]/ (1+
) and M™X = M @z, cayr/k)) Z2[Imx][Gal(L/k)2]/(1 + 7).

Lemma 5.2.1. Let x be a non-trivial character of A. Then the norm map
of the ideal class group

X X
A — Ap
is surjective for all n > 0.

Proof. To prove this Lemma, it is sufficient to show that the norm map
A’Ifnﬂ — A}fn is surjective for all n € Z>g. Let H, be the unramified
extension of L, corresponding to Ar,,.

If there is a prime of L,, which ramifies in L,,11/L,,, we have H,NL,11 =
L,,. Therefore, we see that the norm map Ay, , — Ay, is surjective.

If Ly+1/Ly, is an unramified extension, we have L, 11 C H,. Therefore,
we get an exact sequence

AL — ALn — Gal(Ln+1/Ln) — 0.

n+1

Since Lp11/k is an abelian extension, A acts on Gal(Ly,1/Ly,) trivially.
Therefore, we have Gal(Ly+1/L,)X = 0 for any non-trivial character y of
A. This implies that the norm map A’in — A} is surjective for any non-
trivial character y of A. O

For any number field IV, we denote by Py (resp. Py gn) the set of primes
(resp. finite primes) of N.
Consider the map

iy HO(LY/KT, [ Erews) — H(L/K, [] Erw)

wteP, 4 we Py,
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induced by the natural injective map

H Er+ y+ — H Erw,

w+€PL+ wp€PL,

where Ep,,, (resp. Ep+ ,+) is the local unit group of L at w (resp. LT at
w™). For any Zs|Gal(L/K)]-module M, we denote by Mga/k) the Galois
coinvariant of M.

Proposition 5.2.2. For any non-trivial character x of A, we get an exvact
sequence

0— cokeri}i/K — (AL Gai(n/ ) — A — 0.
Proof. We consider the following commutative diagram

Naai(L/k)
Rl

0 — HYL/K,CIL)) —— CUL)gar/x) CI(L)
| [ H
0 —— ker (C(K) — CI(L)) —— CI(K) —  ClL),

where the map Ny, x is the norm map of ideal class group and Nga(z/k) :
CUKn)gai(r/x) — CI(L) is the map defined by a ZaeGal(L/K) oa. This
implies that there is an exact sequence

Naar/x
4()/ )

0 — ker (CI(L)Gal(L/K) CI(K))
— H™Y(L/K, CI(L)) — ker (CI(K) — CI(L)).
It is well known that

ker (CI(K) — CI(L)) =~ ker (H'(L/K, Ex,,) = H'(L/K, [] Erw)),

we Py,

where Ep, is the unit group of L. Therefore, we have

ker (C1(L) Gay(L/ ) Neaitg/ 0 CI(K))
~ ker (H"Y(L/K,Cl(L)) — H'(L/K,EL)) . (5.1)

We consider the following exact sequence

0— Er, — H Er. — Cr, — CI(L) — 0,
we Pr,
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where Cy, is the idele class group of L. Put M = ker (C, — CI(L)). By
Tate-Nakayama’s theorem, we have

H YL/K,Cp) = H3(L/K,Z) = Hy(L/K,Z) = A’Gal(L/K).

By class field theory, we have H°(L/K, C,) ~ Gal(L/K). Thus taking Tate
cohomology of A = Gal(L/K), we get the following commutative diagram,

ﬁO(L/K7 EL)

!

0 —— ker f —— HYL/K, [[ Erw) —1— 4
we Py,

J | H

ANA —— HYL/K,CI(L)) ——  HY(L/K,M) —— A

|

HY(L/K,Ep)

Since G = Gal(K/k) acts on A = Gal(L/K) trivially, we have AX =
Gal(L/K)X =0 and A2AX = 0 for any non-trivial character x of A. There-
fore, we get an exact sequence

HYL/K,EL®Zs)" — H'(L/K, [ Bruw®Z:)¥ —
’LUEPL

H Y L/K,A)X — HYL/K,E ® Zs)X

for any non-trivial character x of A.
By this exact sequence, (5.1) and Lemma 5.2.1, we get an exact sequence,

H(L/K,B, ®Zy)X — HYL/K, [[ Erw®Z2)¥
UJEPL

Ngal

(L/K)
— (A%)Gal(L/K) —L)K A}% — 0.

Put A
Sp = HYL/K,Er ® Z),

Sp+ = HYLT/K' Eps @ Zs),
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Ty = HY(L/K, [[ Erw®Zs),

weE Py,
TL+ = ﬁO(L+/K+’ H EL+,’UJ+ ®Zz)
W+€PL+

By the same argument, we get an exact sequence for L™ /K ™. Therefore,
we get the following commutative diagram,

S, Ty, (Af+)calr+/xt) — Ay —— 0
| ] | |
ST Tr (ADcar/xy — A —— 0

for any non-trivial character x of A. Since ker(Ax+ — Ag) is isomorphic
to0or Z/2Z, G = Gal(K/k) acts on ker(A+ — Ag) trivially. This implies
that A%, — Aj is injective for any non-trivial character y of A. We
consider an exact sequence

0— Eps ®2%y — EL®% —% BN @2, — 0.

Since Ei_j C W(L), we have (Ei_j ® Zy)X = 0 for any non-trivial character
X of A. Therefore, we have SY, = HO(L*/K*, E;+®Zs)* ~ H'(L/K,E.®
Zo)X = S)L‘. These imply that we get the following exact sequence by the
snake lemma,

— (Ag)iﬁn — A* — 0.

X
0— CokerzL/K

O

Put I, = Gal(K,/K), T} = Gal(K,//K"). We consider the set of
primes .5 (k) of k lying above 2 which ramify in K/K™ but do not ramify
in K/KZ. For any prime v of k above 2, we take n, > 0 such that all
primes above v totally ramify in K, /Ky, and are unramified in K, /K.

Lemma 5.2.3. For all sufficiently large n > 0, we have

cokerig, /= @ (Z/2”‘””Z[G/Dv])7,
v 73 (k)

v|2, prime of k

where D,, is the decomposition group of v in G = Gal(K/k).
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Proof. Since only primes above 2 ramify in K.,/K and KI /K™, we have

I:[O(I‘n, H Bk, w,) ~ H ISIO(I‘n,HEme"),

wn€Pxk,, v|2 W, |[v
prime of k

Il Exrup)= 11 2T HEK;,n

’LU;'L—EPK+ ’U|2
n

prime of k

By local class field theory, we have

HO(F”’ H EKnvwn) = @ Gal(Kn/Knv)’

Wn|v w|v
prime of K

for any n > n,,.
If v ¢ 75 (k), we know that all primes above v totally ramify in Kt /K
and are unramified in K, /K*. Therefore, by local class field theory, we

have
HEKM” ~ @ Gal(K, /K, ),

wt|v
prime of K+
for any n > n,. Consider the map
. .0 70
an/K : H (:Fn7 H EK”’w'n) - H H EKn 7wn
wn € Pk P
n n wnE Kn

induced by the norm map

H EKH,W—> H EKM"

wnGPKn

By local class field theory, the map jg,, /i is the restriction map. Therefore,
JjKk, K is an isomorphism for all n > n,. Since ik, /x © jk, /k(*) = (1+j)=
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for any = € I:IO(Fn, Hwn‘v Emen), we have

coker(iKn/K : H rh, H EKJ, + — I:IO(Fn, H E}@,m))

Wn

wn |v
_ coker(ZK JK O JK, /K H Iy, H Ey,,, wn (ﬁO(Fn, H Eann)>
wp |v Wn |v
= (o, [T Brwawn) /(4 DA (T, T Ercorn)
wn|v wn|v

~ P GaK. /K /(1+5) P Gallka/Kn,)

prime of K prime of K

wlv wlv

~ (Z/2""™Z[G/D,))”

for all n > n,.
If v € Z(k), all primes above v totally ramify in K;/K;;_l and are
unramified in K: _1/K™. By local class field theory, we have

ao(r;, H Byt )~ P Gal(K!/K! ),

wt|v
prime of K+

for any n > n,. In this case, the map

ZK JK ¢ H n7 H EK,J{, wi —>H0 | . H Emen)

wp |v

is surjective. This completes the proof of Lemma 5.2.3. O

Put I' = Gal(K«/K), G = Gal(Kx/k), Q = Z2[[G]], @~ = Q/(1 + 7).

Then we have
0~ @ Zo[Imy][[T x G']].
XEA/~

For any ©Q-module M and any character y of A, put MX = M®qZs[Imy][[I' %
G, M~ = M®qQ and M X = M ®q Zo[Imyx][[I" x G’']]/(1+j). We con-
sider the unramified Iwasawa module X = @An, where the projective
limit is taken by the norm map of the ideal class group.

Corollary 5.2.4. For any non-trivial character x of A, there is an exvact
sequence
0— P ZolG/Dy) ¥ — (XgX)r — AR — 0.
v S (k)

v|2,prime of k
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Proof. By Proposition 5.2.2 for L = K,,, we get an exact sequence
0— cokeri}‘{n/K — (A )r, — A — 0.

Taking the projective limit of this exact sequence and Lemma 5.2.3, we get
the exact sequence in Corollary 5.2.4.
O

Let .#(k) be the set of primes of k above 2, which ramify in K./KZ.
We denote by XX ¢ the maximal finite Zs[Im(x)][[G’ x T']-submodule of

X
XX,

oo

Lemma 5.2.5. For any non-trivial character x of A, we have
X;(;f,ﬁn = @ Z/QZ[Q/DU,OO]X7
’Ueyz(k‘)

where D,  is the decomposition group of v in G.

Proof. For any extension N/k, we denote by .#(IN) the set of prime of N
lying above .#,(k). Put

Ak, 7, = coker (K Bordyn @ Z) ® Zs,
Wn &2 (Kn)USoo (Kn)
y EBordw+
Ags , = coker(K; 4" D Z) ® L,
wi .52 (K;§ ) US oo (KHY)

D, v, =ker(Ak, — Ak, %), D:;yQ = keT(AKTt - AK;,yg)a
where Sy (K;) (resp. Seo(K;')) is the set of infinity primes of K,, (resp.
It is well known that the kernel of the map A+ , — Ak, s, coincides
with the kernel of the map

H' (Kn/K7T7 EKn,(V2) — H' (Kn/K;i_, H EKn,wn)v
w¢.S2(Kn)USoo (Kn)

where E,, o, is the #5(K;,)USoo (K, )-unit group of K,,. Since Gal(K,/K;)
acts on .5(K,,) trivially, we have E;(;JyQ C W(K,). We consider the fol-
lowing exact sequence,

1—j
0— EK:7y2 — Ek, .7 — EKn,.% — 0.
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Taking Galois cohomology of Gal(K,,/K,"), we get an exact sequence
HYKn /K5 Epes ) — H' (Ko /K, Ex, ) — H (Kn /K5 E7 ).
Since K,/ K, is a cyclic extension, we have

ker(1+j: Eps o = Eper o)

1—j
K

Hl(Kn/K;_’EK;;,yQ) =

Since ker(1 + j : Ep+ , — Ep+ o) = {£1} and E}(;j% C W(Ky), we
have

HY(Kn/K;} By )X = H\ Ko/ K}, B, ) = HN (Ko /K B 7, )X =0

for any non-trivial character x of A. Therefore, the map A;‘QJL P A}C{m 7

is injective.
We consider the following commutative diagram,

0 — DY —— AL, —— AX —— 0

2 K s
DX y AX y AX 5
0 D’n,(yg AKn AKn,(yQ 0
By the snake lemma, we get an exact sequence
s X s —HX s —HX 3
0 DTLJ”z AKn AKmJ”z 0

for any non-trivial character x of A. Taking the projective limit, we get an
exact sequence

3 X X 3 X
0—1lmD, 5 — X0 — limA ", — 0.

!/

Theorem 1.2.1 (i) implies that Jim AX , hasno non-trivial finite Z[Im(x)][[G’ %

I'|]-submodule. Therefore, we have
Xilin = m D, 5.
Lemma 2.1 and Remark 2.4 in [1] imply that

im D% ~ O Z/2Z[G/Dy X

veS (k)

for any non-trivial character xy of A. This completes the proof of lemma
5.2.5 O
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Now we prove Theorem 1.2.6 in the case (3a).

Theorem 5.2.6. Assume that the following assumptions are satisfied.
(1) The p-invariant of K vanishes.
(2) G’ is cyclic.
(3a) No prime above 2 splits in K/K™.
Then we have

Fx(Fittz,q- (Ag)) = fx(Ok )

for any non-trivial character x of A, where f, is the map defined in section
5.1.

Proof. Let 1 be a faithful character of G, KX is the subfield of K attached
to xv, i.e., Gal(KX/k) ~ Im(xv). We consider the projective limit of the
Stickelberger element 0y /), € Q(Z2[[Gal(K/k)]]) (see section 1).

Put A, = Zs[Imxy][[Gal(K% /KX)]]. Since x is a non-trivial character
of A, we have 259;‘;& € Ay.

Since the p(K)-invariant vanishes, Theorem 1.2.4 and Proposition 2.5.3
imply that

(0% ).

Fitta, (X3 /X 50K

K i) =

By Lemma 5.2.5 and Proposition 2.5.3 , we have

Fitta, (X ) = Fitta, ( P Z/QZ[g/Dv,m]X)(Qdeﬁ ) (5.2)
’UEKVQ(]C)

We consider the natural restriction map ¢, : Ay, — Zs[Imy)] defined by o
1 for all o € Gal(K%,/KX). Since [K : KX] is odd we have XK;?‘ ~ XX by
the norm argument. Let Sy(k) be the set of primes of k lying above 2. For
any v € Sy(k), we denote by o, a generator of the decomposition group of v
in Gal(KX/k). Since Za[Imyx®] is a discrete valuation ring, Corollary 5.2.4

implies that

cx(FlttA (X2 )) Fittz, )}((X;(;’:)p)

FittZQ [Im ()] (A )FlttZQ [Im(x¥)] @ ZQ G/D ’X)

veSa (k)
vg S (k)

= IT (0= xt(o0)Fittz, o (AY)-
veS2 (kN7 (k)
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We denote by Siunr the set of primes of k above 2 which are unramified

in KX/k. Since cx(@?’i /k:) = H (1- XT/J(FI‘Ole))Q}?i/k (see Lemma
vESY

2,unr

2.3.1), (5.2) implies that

ey (Fitt A (XK ))

. 1
= Fittzmae) (€@ Z/22G/D) [T (1 xw(Erob; ")) (52055 )
ve Fa(k) ves]

= I 0w ),

veSY . U (k)

2,unr

Put
Z3(k) = Sa(k) \ (S)

2,unr

U 7(k) U (k).

We note that .75 (k)" is the set of primes of k above 2 which are unramified
in K, /K but ramify in K, /k and (2(k)USy ) C (S2(k)\.#5(k)). Since

1 — x%(oy) is not 0 for any v € S2(k) by the assumption (3a), we have

1 . _
(ﬁeﬁi/k) = H (1 - X¢(Uv))F1ttZQ[Im(Xw)](AKJ()-
veSS (k)

By definition of .7 (k)’, the order of the decomposition group of v in Gal(KX /k)
is not 2-power for any v in .74(k)’. Since x¢ is a faithful character of
Gal(KX/k), 1 — xt(0,) is a unit in Zy[Im(x)] for any v in .% (k). There-
fore, we have

1 . _
(?9%{/,{:) = Fittz, [tm(xy)] (A7)

Since Z%H}C(ﬁ/k = 2idL(O7 x '™, Lemma 5.1.4 implies that

F(Fittz, - (A%)) = fx (O 1)
O

Theorem 5.2.6, Corollary 5.1.5 and Proposition 5.1.6 imply Theorem
1.2.6 in the case (3a).
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5.3 Avoiding the Trivial Zero

In this section, we prove Theorem 1.2.6 in the case (3b). We use the same
notation as in the previous section. Assume that G’ is cyclic and K GOkl =
k. Let ¢ be a faithful character of G.

If [ is an prime number and [ = 1 mod 27!, let Q1 denote the cyclic
extension of Q of degree 2" contained in Q(¢;) and let N,,; = NQ,,; for any
finite extension N of Q. We note that Q,,; is a real abelian field since | = 1
mod 2"+,

Lemma 5.3.1. For any non-trivial character x of A, there exists an r
depending only on K and x such that for any n > r we can find infinitely
many | satisfying the following conditions.

(a) [ is unramified in K/Q.

(b) I =1 mod 2"+,

(c) For any character ¢ € Gal(?(;/K) of order > 2", we have xyp(v) #
1 for any prime v of k above 2.

(d) For any prime X of k above I, we have x(\) # 1.

Proof. The proof of this lemma goes by the same method of the proof of the
Lemma 4.1.1. Let r = max{m € Z>1 | 2™|[K, : Qo] for all v above 2} + 1,
where K, is the completion of K at v. Let kX be the subfield of K€" attached
to x and kX< be the Galois closure of kX over Q. Since K¢ Nk = k and
ke is a totally real field, the restriction map

res : Gal(KX (Coni1, V2) /% (Conr1, V2)) — Gal(kX(Conr1, V2) /K (Coni1))

is surjective for any n > 7. Since [kX : k] is odd and [EX(Coni1, V/2) :
k(Cyn+1)] = 2, we can find infinitely many [ such that [ splits completely
in k%(Cyn+1)/Q and for any prime X above [, res(Froby) is a generator
of Gal(kX(Cynt1, v/2)/k(Cant1)) by Chebotarev’s density theorem. We can
choose that [ is unramified in K/Q since the number of primes which ramify
in K/Q is finite. Any such [ satisfies the conditions (a), (b), (c), (d). O

Next, we introduce Corollary 4.2 in Kurihara [19].

Let p be a prime number, R a complete discrete valuation ring of mixed
characteristic (0,p) and Ar = R[[T]]. Let H be a cyclic p-group. For any
subgroup H” ¢ H' C H, we consider the canonical map

CH" H' ' AR[H/H//] — AR[H/HI]
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induced by natural restriction map H/H"” — H/H'. We also consider the
map

VH! H' AR[H/H,] — AR[H/H”]
induced by o +— Z 7 for any o € H/H'. Let ¢ be a character of H,

cyr g (T)=0
namely a homomorphism from H to the multiplicative group of an algebraic
closure of the fractional field of R. We consider the ring homomorphism

PAg(H) * Ar[H] — Ag[Im(¢)]
induced by o +— ¢(o) for 0 € H.

Lemma 5.3.2. (Kurihara, Corollary 4.2 in [19]) Suppose that for any sub-
group H' C H, two ideals Iy and Jy g of Ar[H/H'] are given and
satisfy the following properties.

(1) For any subgroup H' C H and any faithful character ¢ of H/H',

gl e La/a) = Oaga o (Ja/m)-
(2) For any subgroup H' C H and any faithful character ¢ of H/H',
agia/H) LE/H) 18 @ free R[Im(@)]-module of finite rank.

(3) For any subgroup H" C H' C H, we have

CH”,H’(IH/H”) - IH/H’a CH”,H’(JH/H”) C JH/H’-

(4) For any subgroup H" C H' C H, we have

VH/,H"(IH/H/) Clypn, VH’,H”(JH/H’) C Ju/pnr-
Then, we have Iy = Jgr.

For any non-trivial character x of A, we consider r,n,l in Lemma 5.3.1.
Put LX = Kff,l, H = Gal(LX/KX) ~7/2" 7.

For any subgroup H' C H, we denote by LX#' the subfield of LX at-
tached to H', and put A,y = Ze[lmy|[[H/H' x Gal(LXH /DeH")).

We consider the projective limit of the Stickelberger element QLX’H/ Ik €
Q(Zz[[Gal(Lé%H/ /k)]]) defined in section 1. Since x is a non-trivial charac-
P

g € Ay p/pr- For any subgroup H” C H, we define

ter, we have 2%0X
L

X
@L&H,,/k by

1
= (VHCH//(fexw ) ’H//CH/CH) CAX,H/H”'

X
" K 247 L /i,
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For any Zs[[Gal(LX,/k)]]-module M, put
M™% = M @y o)) Aot
We consider the unramified Iwasawa module X x = @A LX-

Lemma 5.3.3. Assume that all primes above 2 are unramified in K/K™
and the p-invariant of Ko vanishes. Then we have

@XTZ)

i = Fitta, (G2

L%
for any non-trivial character x of A.

Proof. To prove this lemma, we use Lemma 5.3.2 for R = Zs[Im(x¥)], Ag[H/H'] =
Ax,H/H’7IH/H’ = @zéH//k;’ JH/H’ = FittAX,H/H’ (XL_éIj’X) We check that the
condisions (1), (2), (3), (4) in Lemma 5.3.2 are satisfied.

For any subgroup H' C H and any faithful character ¢ of H/H', we
denote LX¥? by the subfield of LX*" attached to x¢¢ and consider the map
On gy Moty — Zollm(x1p9)][[Gal(LAY? /LX¥9)]] induced by ¢. Since

all primes are unramified in L ' / LXY?_ we have

Xy

L xwd
¢AX,H/H’ (@L&H,/k) = ( X )

2d 0L§£’¢/kz

Since the p-invariant of K is vanished,

Zallm () [Gal (LA / L))/ (045, )

is a free Zs[Im(x1¢)]-module of finite rank. Therefore, the condition (2) is
satisfied.

Since all primes are unramified in L / /LX¥? Proposition 5.2.2 implies
that

sX ~ X
(XLX,H/)Gal(Lx,H’/waab) — Xwa¢'

Since all primes above 2 are unramified in K/K*, Lemma 5.2.5 implies
that X, 0%, = Xpaws @p,gamee sy Z2Im(x))[[Gal(LE"?/L¥9)]] has

no non-trivial finite Zy[Im(yt¢)][[Gal(LX? /LX¥9)]]-submodule. Therefore,
the Iwasawa main conjecture implies that

1
3 X i Xw
O gy (FIEEA (XL&H,)) = (ﬁeLw /k).
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Therefore, the condition (1) is satisfied.

Since only primes above [ ramify in LX" / LXH" and all primes above
| are totally ramified in LX*" /LXH" for any subgroup H” C H' C H, we
have

X : /
- eLgﬁgH'/k (if H # H)

/k [T (1 = X9 (Froby )y ok . (it H' = H),

where Froby (resp. <)) is the Frobenius map of A in Gal(KX/k) (resp.

Lo " W .
Gal(K& /KX)). This implies that cyr g (9>L<2§<;H"/k) ®>Jf>< W By defini-
c XY

X H!

Xy
CH”,H’ (QLX,H”
o0

tion, we have vy g (@X for any subgroup H” C H' C H.

X H//k)
By Proposition 5.2.2, we get the following exact sequence

N " ’
XHY oD

. . X X
00— hm(cokerzL%Hu/L%,H/) — (X — XLX H » 0

" ’ "

for any subgroup H” C H' C H. Since the only primes above [ ramify in
Le?” /p%" | the condition (d) in Lemma 5.3.1 implies that

@(cokem H )X =0.
n

Therefore, we have g g (FittAX,H/H” (X XXH,,)) C Fitta, 0 (X ;XH,) and

v (FittA%H/H, (X XXH,)) C Fitta (XLQH")' Therefore, the condi-

tions (3), (4) are satlsﬁed This completes the proof of Lemma 5.3.3. O
Finally, we prove the case (3b) of Theorem 1.2.6 in chapter 1.

Theorem 5.3.4. Assume that the following assumptions are satisfied.
(1) The p-invariant of K vanishes.
(2) G’ is cyclic.
(3b) All primes above 2 are unramified in K/K+ and k%N K¢ = k.
Then we have

Fr(Fittz,q- (Ag)) = £ (© K/k)
for any non-trivial character x of A.
Proof. For any non-trivial character x of A, we define ©/, Ik by

1
/LX/k = <FVLX/M(9M/]£) ‘ kCMC LX,M isa CM ﬁeld>,
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where d = [k : Q], O/ is the Stickelberger element defined in section 1,
Vrx/pr is the map defined in section 3. We note that @/LX/k C Q2[Gal(LX/k)].
We consider the map Zs[Gal(LX/k)] — Za[Im(xv)][H] induced by xv. For
any ideal I of Zy[Gal(LX/k)], we denote by IX¥ the image of I of this map.

We consider the restriction map cpx jrx : Ay, n — Zo[Im(xv)][H] defined
by o — 1 for all ¢ € Gal(LX,/LX). Lemma 5.3.3 implies that

CLé(O/LX (FittAx,H (X;g)) = CLé(o/LX (@fé/k)
X
= ( H (1- Frob;l)@’Lx/k> ,
VESS
where S%fum is the set of primes of k lying above 2 which are unramified in

KX/k and Frob, is the Frobenius map of v in Gal(LX/k). Since all primes
above 2 are unramified in K/K™, we have .7j(k) = (. Since ramification
index of any prime of k lying above 2 which ramifies in LX/k is odd,

FittZQ [l (x)] [ H] (ZQ[Gal(Lx/k)/Dy(Lx/k)]_’X) = (1)

for any prime v ¢ S%funr, where D, (LX/k) is the decomposition group of v
in Gal(LX/k). Therefore, Corollary 5.2.4 implies that

H (1 — Frobgl)xthittZQ[Im(x¢)][H](AZ;CX) C CLX /Lx (FittAX,H (X[_@.g))
veESY

2,unr

Let 7 be a generator of H and put v = :irj. The condition (c) in Lemma

5.3.1 implies that (1 — Frob,1)X¥ is not a zero divisor in Zs[Im(x%)][H]/(v)

for any v € S%"unr. Therefore, we have

FittZQ[Im(xw)}[H] (AZ&X) C @/inb/k (mod v).

We consider the map cpx/gx @ Zo[Im(xy)|[H]/v — Za[Im(xy)]/(2"77)
defined by 7 — 1. Proposition 5.2.2 implies that

H (l—xz/J(Frob)_\l))FittZQ[Im(Xw)] (A C H (1—X1/1(Frob;1))@,;gﬁ’/k (mod 2™77).
All Al

The condition (d) in Lemma 5.3.1 implies that [],, (1- x¥(Froby!) is a
unit in Zs[Im(xv)]. Therefore, we have

FittZQ [Im(Xw)](A;(%) C G%f/k (mod 2n—r)
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for all n > r. Since @%f/k = (Q%L(O, x '), we have

L 70w ).

Fittz, fm(a) (AxY) © (52

Since [K : KX] is odd, (A")Gai(k/rx) = AxX by norm argument. This
implies that

Fittz, tm () (Ax™) = Fit0z, tm()) (AgX)-
Therefore, Lemma 5.1.4 implies that
Fr(Fittz, (- (Ax)) C fx (@1_(/1@)
for any non-trivial character x of A. O

Theorem 5.3.4, Corollary 5.1.5 and Proposition 5.1.6 imply Theorem
1.2.6 in the case (3b).

74



Acknowledgements

The author would like to express his sincere gratitude to his supervisor,
Professor Masato Kurihara, for his successive encouragement, helpful dis-
cussion, many suggestions, and comments. The author is deeply grateful to
Professors Hiroyasu Izeki, Kenichi Bannai, and Taka-aki Tanaka for their
careful reading of the draft of this thesis and giving him helpful comments.
The author would like to thank Kazuaki Murakami, Jiro Nomura, Rei Ot-
suki, Takamichi Sano, Takahiro Kitajima, and other members in the number
theory group in Keio University for fruitful discussion, and encouragements.

75



Bibliography

1]

[9]

M. Atsuta, Finite A-submodules of Iwasawa modules for a CM-field for
p = 2, Journal de Théorie des Nombres de Bordeaux 30 (3) (2018),
1017-1035.

M. Atsuta, Iwasawa theory for class groups of CM fields with p = 2, to
appear in J. of Number Theory.

D. Burns, C. Greither, On the Equivariant Tamagawa Number Conjec-
ture for Tate motives, Invent. Math. 153 (2003), 303-359.

P. Deligne, and K. Ribet, Values of abelian L-functions at negative in-
tegers over totally real fields, Invent. Math. 59 (1980), 227-286.

L. J. Federer, A note on Iwasawa invariants and the main conjecture,
Journal of Number theory 24 (1986), 107-113.

B. Ferrero, The cyclotomic Zs-extension of imaginary quadratic fields,
American J. Math. 102 (1980), 447-459.

B. Ferrero, L. C. Washington, The Iwasawa invariant j, vanishes for
abelian number fields, Ann. of Math. 109 (1979), 377-395.

M. Flach, On the cyclotomic main conjecture for the prime 2, J. reine
angew. Math. 661 (2011), 1-36.

R. Greenberg, On the Iwasawa invariants of totally real number fields,
American J. Math. 98 (1976), 263-284.

[10] R. Greenberg, On the Structure of certain Galois cohomology groups,

Documenta Math. Extra Volume Coates (2006), 357-413.

[11] R. Greenberg, On the Structure of Selmer Groups, in Elliptic curves,

modular forms and Iwasawa theory in honour of John H. Coates’ 70th
birthday, Springer Proc. Math. Stat. 188 (2016), 225-252.

76



[12] R. Grenberg, On p-adic Artin L-functions II, in Iwasawa Theory 2012
Editors T. Bouganis ans O. Venjakob, State of Art and Recent Advances
(2014), 227-245.

[13] C. Greither, Class groups of abelian fields and the main conjecture,
Ann. Inst. Fourier (Grenoble) 42 (1992), 449-499.

[14] C. Greither, Determining Fitting ideals of minus class groups via
the equivariant Tamagawa number conjecture, Compositio Math. 143
(2007), 1399-1426.

[15] C. Greither, M. Kurihara, Fitting ideal of Iwasawa modules and of the
dual of class groups, Tokyo J. Math. 39 (3) (2017), 619-642.

[16] C. Greither, M. Kurihara, H. Tokio, The second syzygy of the trivial
G-module, and an equivariant main conjecture, to appear in the Pro-
ceedings of the Iwasawa 2017 conference.

[17] H. Hasse, Uber die Klassenzahl abelscher Zahlkorper, Akademie-Verlag,
Berlin, (1952).

[18] K. Iwasawa, On Z;-extensions of algebraic number fields, Ann. of Math.
98 (1973), 246-326.

[19] M. Kurihara, Iwasawa theory and Fitting ideals, J. reine angew. Math.
561 (2003), 39-86.

[20] M. Kurihara, Refined Iwasawa theory and Kolyvagin systems of Gauss
sum type, Proc. Lond. Math. Soc. (3) 104 (2012), 728-769.

[21] M. Kurihara, T. Miura, Stickelberger ideals and Fitting ideals of class
groups for abelian number fields, Math. Annal. 350 (2011), 549-575.

[22] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta
Arith. 72 (1984), 347-359.

[23] B. Mazur, A. Wiles, Class fields of abelian extensions of Q, Invent.
Math. 76 (1984), 179-330.

[24] J. Neukirch, A. Schmidt, K. Wingberg. Cohomology of number fields
(second edition), Springer-Verlag, 2008.

[25] D. G. Northcott, Finite free resolutions, Cambridge Univ. Press,
Cambridge-new York 1976.

77



[26] T. Ohshita, On the higher Fitting ideals of Iwasawa modules of ideal
class groups over real abelian fields, J. of Number theory 135 (2014),
67-138.

[27] J. Ritter, A. Weiss, Toward equivariant Iwasawa theory, Manuscripta
Math. 109 (2002), 131-146.

[28] J.-P. Serre, Sur le résidu de la fonction zéta p-adique, Comptes Rendus
Acad. Sc. Paris (A) 287 (1978), 183-188.

[29] W. Sinnott, On the Stickelberger ideal and circular units of an abelian
field, Invent. Math. 62 (1980), 181-234.

[30] L. Stickelberger, Uber eine Verallgemeinerung der Kreistheilung, Math.
Annal. 37 (1890), 321-367.

[31] R. Taleb, An equivariant main conjecture in Iwasawa theory and the
Coates-Sinnott conjecture, Doc. Math. 18 (2013), 757-791.

[32] R. Taleb, An equivariant main conjecture in Iwasawa theory without
the assumption p = 0, J. of Number theory 171 (2017), 474-494.

[33] L. C. Washington, Introduction to Cyclotomic Fields 2nd ed, GTM 121,
Springer-Verlag.

[34] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math.
131 (1990), 493-540.

[35] A. Wiles, On a conjecture of Brumer, Ann. of Math. 131, (1990), 555—
565.

78



