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論文要旨

本論文では，液体ジェット洗浄および超音波洗浄に代表される流体物理洗浄技術の
洗浄メカニズム解明を目的として，高速液滴衝突および気泡崩壊に関する直接数値
解析を実行する．それらに付随する音響現象（キャビテーション，衝撃波伝ぱ）と
粘性現象（壁面せん断流の形成）を定量評価し，エロージョン (表面壊食)と付着粒
子除去性能の観点から考察する．
第一に，高速液滴衝突に付随するキャビテーションによるエロージョンの影響を

評価するための圧縮性・非粘性解析を行う．理論上，液滴内部を伝ぱする水撃衝撃波
は液滴界面（音響インピーダンス不連続面）との干渉により負圧領域を生じるため
キャビテーションは発生し得るが，この現象を数値的に再現した研究例はない．キャ
ビテーションの評価には相変化を考慮しない液滴衝突の数値解析から液相圧力履歴
を取得し，それをRayleigh–Plesset型方程式に入力することで，ある初期気泡核の運
動を解析する．すなわち，one-way-couplingに基づく数値解析を行う．解析の結果
キャビテーションの発生は数値的に確認され，そのキャビテーション気泡崩壊に伴
う音響放射は，衝突に伴う水撃圧を上回る可能性が示された．
第二に，高速液滴衝突が壁面上にもたらす水撃圧および壁面せん断流の形成を評

価する圧縮性・粘性解析を行う．ここでは乾燥壁面並びに液膜で覆われた壁面への衝
突を考慮し，乾燥壁面への衝突では壁面せん断流の形成を再現するため，三相が接触
する移動界面を正確に捉えるための滑り壁モデルを適用する．せん断流による粒子
はく離を評価するためには，粒子がせん断流から受ける表面応力トルクとファンデ
ルワールス力のトルクの比較に基づき，壁面せん断応力分布を粒子はく離の可能性
を予測する無次元パラメータ分布へ写像する手法を提案する．本研究は液滴衝突に
よる壁面せん断流形成が物理洗浄メカニズムに大きく寄与することを確認した．加
えて壁面上の液膜厚さに依存する水撃圧・壁面せん断応力の減衰率をモデル化した．
最後に，壁面近傍気泡の非球形崩壊に伴うマイクロジェットの形成および壁面せ

ん断流の形成を評価する圧縮性・粘性解析を行う．対象として，単一気泡および気
泡間相互干渉を含む二気泡の崩壊を議論する．気泡崩壊では液滴衝突と異なり大幅
な気相体積変化が数値的な界面鈍りを助長するため，界面捕獲の移流方程式にこれ
を修正するソース項を導入する．単一気泡崩壊の結果から，気泡壁面間距離の増加
に伴ってマイクロジェットは増速するが，壁面せん断応力はべき乗則に従って減衰
することを確認した．壁面に対して水平に位置する二気泡崩壊の結果では，気泡間
相互干渉によってマイクロジェットの衝突角が他方の気泡方向へ傾斜する作用が観
察され，その結果として壁面せん断応力の上昇は約 1/10以下に著しく抑制されるこ
とを確認した．
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Abstract

Spurred by the demand for cleaning techniques of low environmental impact, one favors
physical cleaning that does not rely on any chemicals (e.g., liquid jet cleaning and ultra-
sonic cleaning). In the present work, the cavitation accompanied by droplet impact and
wall shear flow generated by droplet impact and cavitation bubble collapse near a rigid
wall are simulated to understand their roles for surface erosion and cleaning contributions.
Problems are modeled by solving compressible multicomponent Navier–Stokes (or Euler)
equations and we solve a high-order accurate finite volume method that can capture both
shocks and material interface.

Cavitation accompanied by high-speed droplet impact against a deformable wall is
simulated to see whether the collapse is violent enough to occur surface erosion. The
evolution of pressure waves in a single droplet to collide with a deformable wall at speed
up to 110 m/s is simulated and the preexisting bubble nuclei (micron or submicron in
radii) show large growth to submilimeters based on a one-way coupling evaluation. It is
also found, the radiated pressure from the cavitation bubble collapse can overwhelm the
water-hammer pressure directly created by the impact.

Radially spreading wall shear flow generated by high-speed droplet impact is believed
to achieve particle removal in liquid jet cleaning, but its mechanism is not well under-
stood. We simulate high-speed droplet impact on a dry/wet rigid wall to investigate wall
shear flow as well as water hammer after the impact. The impact of a spherical water
droplet (200 µm in diameter) at velocity from 30 to 50 m/s against a dry/wet rigid wall are
considered. In the dry wall case, the strong wall shear appears near the moving contact
line at the wetted surface. Once the wall is covered with the liquid film, the wall shear
stress gets weaker as the film thickness increases; the similar trend holds for the water-
hammer shock loading at the wall. Thereafter, we compute hydrodynamic force acting
on small adherent particles in a one-way-coupling manner. The hydrodynamic force is
estimated under Stokes’ assumption and compared to particle adhesion of van der Waals
type, enabling us to derive a simple criterion of the particle removal.

Collapse of cavitation bubbles near a rigid wall leads to the formation of a high-speed
reentrant microjet toward the surface which plays an important role in ultrasonic clean-
ing. The jet impact accompanies radially spreading wall shear flow capable of removing
contaminants from the surface, but the particle removal mechanism is not well understood
due to the experimental challenges. We simulate the so-called Rayleigh bubble collapse
(100 µm in radius) near a no-slip, rigid wall to quantify the wall shear flow. Collapse of
both single bubble and two bubbles are considered and the driving pressure ranges from 2
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to 10 MPa. Our simulations show that generation of wall shear flow particularly after the
jet impact. Lastly, the suppression effects on the wall shear stress due to the bubble-bubble
interaction is clarified.
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Chapter 1

Introduction

1.1 Motivation

Particulate contamination is one of the major issues in semiconductor manufacturing be-

cause it is directly related to yielding loss. The target contamination is becoming smaller

(sub-micron or even smaller) as the semiconductor devices become further miniaturized

(Li et al., 1997). In this context, the central research topic is to develop a cleaning strat-

egy that is highly efficient enough for ultra-precision manufacturing. Hereafter, cleaning

is formally defined as removal of contaminant particles from material surfaces.

Historically, the popular cleaning method in industry is known as chemical immer-

sion cleaning method. For instance, the Radio Corporation of America (RCA) cleaning

method, one of the most popular immersion techniques, is composed of seven stages

(Kern, 1990). Every stage requires immersion in solutions such as sulfuric acid, hy-

drogen peroxide, and hydrogen fluoride. Thereby, this classical type of static chemical

immersion cleaning is time-consuming and its environmental impact is controversial. To

deal with these issues, physical forces are incorporated in major recent cleaning processes

to facilitate the particle removal efficiency (PRE) (Busnaina et al., 2002; Okorn-Schmidt

et al., 2013).

In physical cleaning based on hydrodynamic force, interaction between wall shear

flow and adhered particles is believed to play an essential role (Henry & Minier, 2014).
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Particle removal under simple shear flow of liquid or gas has previously been studied

experimentally and analytically (Fan et al., 1997; Busnaina et al., 2002; Burdick et al.,

2005; Zoeteweij et al., 2009). The mechanism of the particle removal can be classified

into rolling, sliding, and lifting (to be recalled in Chapter 3). These previous studies

suggest that the rolling mechanism arising from the torque induced by the hydrodynamic

drag plays a dominant role in the particle removal and the rotatory motion of particles are

also visualized by an image processing (Agudo et al., 2017b). In this sense, when it comes

to facilitating the cleaning efficiency, it is essential to generate steep velocity gradients

around attached particles. One of the promising methods is based on water jets that often

involve fission into droplet fragments and collide with target surfaces (Watanabe et al.,

2009; Erkan & Okamoto, 2014; Frommhold et al., 2015). The jet-based cleaning method

has already become popular in precision processing and its performance improvement is

one of the overarching goals. Furthermore, ultrasonic cleaning that uses the dynamics

of acoustic cavitation bubbles in liquid batch is also known as high-efficient physical

cleaning method (Gale & Busnaina, 1999; Kohli & Mittal, 2011; Yamashita et al., 2018).

As a particularly practical importance of ultrasonic cleaning, it is suitable for combination

with chemical immersion.

In order to improve these types of physical cleaning, it is therefore imperative to fully

understand two canonical multicomponent flow phenomena: high-speed droplet impact

and bubble collapse. In what follows, these issues are addressed in further details.

1.2 Historical perspectives

1.2.1 High-speed droplet impact

High-speed droplet impact onto solid surfaces is relevant to a number of applications in

industry. One of the classical examples is aircrafts whose wings are exposed to raindrop

impact under their operation and eventually suffer from erosion due to the water-hammer
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loading (Cook, 1928; Huang et al., 1973). More recently, such erosion becomes a tech-

nical issue in ink-jet printing and physical cleaning based on liquid jets (Okorn-Schmidt

et al., 2013; Sanada et al., 2008; Sanada &Watanabe, 2015; Tatekura et al., 2015). One of

the earliest theoretical studies is Heymann’s work that considers one-dimensional droplet

impact at high speed where liquid compressibility comes into play (Heymann, 1969). Ex-

tensions to the cases of deformable surfaces (Brunton & Rochester, 1979) and spherical

droplets (Engel, 1955) were performed in the subsequent studies. Moreover, the impact

of water droplets against solid walls has been studied experimentally in wide parameter

space; the impact velocity ranges from 10−1 m/s to 102 m/s and the droplet diameter varies

between 10−5 m and 10−2 m (Visser et al., 2015). In these studies, both acoustic and fluid-

dynamic phenomena of the droplet impact have been widely studied (e.g., water hammer

(Heymann, 1969; Dear & Field, 1988; Kennedy & Field, 2000; Haller et al., 2002; Sasaki

et al., 2016), cavitation (Field et al., 1989; Obreschkow et al., 2011), splashing (Yarin &

Weiss, 1995; Wal et al., 2006; Thoroddsen et al., 2011; Guo & Lian, 2017; Banitabaei

& Amirfazli, 2017; Boelens & de Pablo, 2018; Charalampous & Hardalupas, 2017), side

jetting (Lesser, 1981; Weiss & Yarin, 1999; Haller et al., 2002) and rim instability (Reg-

ulagadda et al., 2017; Huang et al., 2018)).

It is interesting to note that recent studies suggest the potential role of cavitation within

the impinging droplet in the issue of surface erosion (Field et al., 2012; Obreschkow

et al., 2011). Experimentally, cavitation accompanied by high-speed droplet impact was

observed by Brunton & Camus (1970) and Field et al. (1989). The cavitation can be

explained by acoustic impedance mismatch at droplet interfaces. When a water-hammer

shock wave (arising from the impact) reflects at the distal interface of the droplet, the

resulting tension wave can rupture the droplet, nucleating cavitation bubbles as illustrated

by Obreschkow et al. (2011). Haller et al. (2002, 2003) simulated the impingement of

compressible droplets against a rigid wall. Their simulation supports the formation of
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such a tension wave within the droplet. Nevertheless, the contribution of such cavita-

tion (and its collapse often followed by strong shock emission) to the erosion is not yet

clarified.

Though the high-speed droplet impact has remained a central research topic over the

past decades, further knowledge of its dynamics is still demanded in context of the phys-

ical cleaning. To optimize the PRE of the jet-based cleaning, one can use monodisperse

splay of micron-sized droplet train (Brenn et al., 1997; Kim et al., 2003; Sato et al., 2011;

Okorn-Schmidt et al., 2013; Visser et al., 2015). To evaluate the PRE quantitatively, pre-

vious researchers usually compared the number of contaminant particles between pre-

and post-cleaned silicon wafers (Sato et al., 2011; Fernando et al., 2011; Okorn-Schmidt

et al., 2013). However, this evaluation is insufficient to identify the mechanism of the

particle removal and it is challenging to experimentally evaluate the wall shear flow de-

velopment and particle removal. In this context, numerical approach will be an impor-

tant tool to quantify the near-wall flow profiles and the shear-induced particle removal.

There are some numerical studies about shear-induced particle removal in incompressible

laminar flow (Agudo et al., 2017a), incompressible turbulent flow (Chen et al., 2018),

compressible air jet (Song et al., 2014) and bubble collapse near a wall (Chahine et al.,

2016). However, to our knowledge, wall shear flow formation during the droplet impact

has not yet been simulated. Furthermore, to promote the efficiency of liquid jet cleaning,

higher impact velocity is favored but may give rise to erosion of the cleaning surface due

to water-hammer shock loading from the impact. Hence, to understand cleaning contribu-

tions and erosion effects of high-speed droplet impact, both viscosity and compressibility

of the fluids need to be accounted for.
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1.2.2 Bubble collapse

Cavitation bubble collapse near solid boundaries is paid primal attention in a wide variety

of applications because it may give rise to surface erosion. Such erosive effect is caused by

the formation of a high-speed, reentrant microjet directed toward the wall surface during

the bubble collapse phase (Plesset & Chapman, 1971; Lauterborn & Bolle, 1975; Shima &

Tomita, 1981; Supponen et al., 2017). In hydraulic applications, many researchers have

long studied bubble collapse in the context of cavitation erosion (Knapp, 1955; Arndt,

1981). More recently, the dynamics of acoustic cavitation bubbles have been of benefit

in biomedicine (Brujan, 2011; Brennen, 2015), sonochemistry (Crum, 1994) and physical

cleaning (Chahine et al., 2016; Yamashita et al., 2018).

In the context of physical cleaning, the microjet impingement during the bubble col-

lapse is an intriguing phenomenon because it may cause strong wall shear flow as seen in

high-speed liquid jet cleaning (Watanabe et al., 2009; Erkan &Okamoto, 2014; Frommhold

et al., 2015). However, due to the experimental challenge to resolve the bubble dynamics

and the resulting fluid flow, the cleaning mechanism is not well understood. We thus take

a numerical approach for the quantitative investigations. In what follows, detailed litera-

ture survey is provided for both experimental and numerical studies about the near-wall

bubble collapse.

To experimentally investigate the bubble collapse near a wall, researchers mainly

study its dynamics from a laser-induced cavitation bubble because it can highly control

the position of cavitation inception by changing the focus location of a laser (Vogel &

Lauterborn, 1988; Philipp & Lauterborn, 1998; Brujan et al., 2002). For understanding

the surface erosion by the near-wall bubble collapse, impulsive pressure rise during the

collapse is measured by Tomita & Shima (1986). To quantify the characteristics of the

microjet velocity, a unified scaling law is proposed by Supponen et al. (2016) and that

can examine the velocity of the microjet only by the stand-off distance from the wall to
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the bubble center without regard to various nonspherical collapse drivers (e.g., presence

of the rigid surface, free surface, or pressure gradient). The near-wall fluid flow induced

by the bubble collapse is visualized by Reuter et al. (2017a). Here, we note that bubble

dynamics in underwater ultrasound is also studied from a laser-induced cavitation bubble

for simplicity because it is challenging to control acoustic cavitation spatially and tempo-

rally. In this context, the accompanying wall shear flow formation and its surface cleaning

effect have been reported by few researchers. Ohl et al. (2006a) investigate the transition

of wall-attached fluorescent particles during the collapse of a near-wall, laser-induced

cavitation bubble to visualize the contribution of cavitation-induced wall shear flow to the

cleaning. Thereafter, Dijkink & Ohl (2008) measure the wall shear stress at several spots,

which arises from the laser-induced cavitation bubble, by means of a constant temperature

anemometer. The other experiment of wall shear stress from cavitation bubble is carried

out based on electrochemical microscopy by Reuter &Mettin (2018) and its result is fairly

reasonable in comparison to the former experiment (Dijkink & Ohl, 2008). We note that

both the above experiments only focus on the case of single bubble collapse while the

cavitation is often occurred as a cluster near the target surface in ultrasonic cleaning. On

the other hand, Kim & Kim (2014) visualize disruptive bubble collapse near a wall in

ultrasonic field for understanding the surface damage in ultrasonic cleaning. Yamashita

& Ando (2019 in press) investigate the ultrasound-induced reentrant microjet formation

of a trapped bubble on a glass surface in oxygen-supersaturated water. This work also

qualitatively reports the effect of the bubble-bubble interaction in the collapse of a bubble

pair attached to the wall.

When it comes to simulation studies, Johnsen & Colonius (2009) perform Euler flow

simulation to quantify the jet velocity and pressure emission of bubbles collapsing near

a wall. Compressible Navier–Stokes simulation of bubble collapse near a wall that is

designed by solution-adaptive, high-resolution scheme is performed by Beig & Johnsen
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(2015). Thereby, the detailed characteristics of the jet velocity, pressure and temperature

is quantified but near-wall flow profiles are beyond their scope (Beig, 2018; Beig et al.,

2018). Their works also include the investigation of dynamics of a bubble pair in terms

of microjet morphology. To understand the wall shear flow formation, Zeng et al. (2018)

numerically reproduce the experiment of Dijkink & Ohl (2008) by compressible Navier–

Stokes simulation based on a volume of fluid (VOF) method. However, the simulated

wall shear stress disagrees with the corresponding experiment. The difficulty is mainly

related to the treatment of the computational grid that can sufficiently resolve the phys-

ical viscosity. Since the viscous effects is only dominating in the vicinity of the wall in

the bubble collapse simulation, fine grid spacing is only required locally near the wall.

However, it tighten the Coulant–Friedrichs–Levi (CFL) condition and the simulation be-

comes crucially time-consuming. Therefore, obtaining the correspondence between the

experimental and numerical works are still challenging. In context of the simulation of

the multiple-bubble dynamics, Tiwari et al. (2015) investigate the nonspherical collapses

of respective bubbles in a near-wall bubble cluster but viscosity is neglected. On the other

hand, the near-wall bubble collapse under ultrasound irradiation is simulated by Boyd &

Becker (2018); Ma et al. (2018); Qiu et al. (2018) and the reentrant microjet formation is

reproduced like a laser-induced cavitation. Ochiai & Ishimoto (2017) numerically inves-

tigate the multiple-bubble oscillations for megasonic cleaning applications to clarify the

effects of bubble-bubble interactions in the bubble morphology and the wall pressure evo-

lution. However, wall shear flow formation is beyond their scope and the spatial resolution

is insufficient to resolve the near-wall viscous effect. Hence, to understand the cleaning

mechanism, there is a need for further numerical investigations of the near-wall collapse

of both the single and a pair of bubbles, which can sufficiently resolve the compressible

viscous flow.

7



1.3 Objectives and contributions

Accordingly, to provide a more concrete insight for the improvement of physical cleaning,

numerical investigations of high-speed droplet impact and bubble collapse near a wall are

conducted. The main objective of this work is to understand compressible and viscous

flow physics of these phenomena by direct numerical simulation in terms of the surface

erosion by water hammer and the cleaning effect coming from the wall shear flow. More-

over, coupled problems (e.g., cavitation during the droplet impact and particle removal in

wall shear flow) are of great concern.

The main contributions of this thesis are summarized as follows:

• Correspondence between the current simulation and the previous experiment by

Field et al. (1989) is obtained for cylindrical droplet impact and the cavitation oc-

currence within the droplet.

• Cavitation threshold pressure is suggested under the specific cases of the droplet

impact.

• In Navier–Stokes flow simulation, droplet impingement against a dry wall, which

involves stress singularities on the moving contact line, is robustly reproduced by

implementing a partial velocity slip condition based on molecular dynamics.

• Wall shear stress generated by the droplet impact is characterized as a function of

the water film thickness covering the rigid wall initially.

• Nondimensional parameter for judging the possibility of particle removal is pro-

posed as a function of wall shear stress, which evaluates the torque balances be-

tween adherent force of van der Waals type and hydrodynamic surface torques from

the wall shear flow.
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• Wall shear stress generated by the cavitation bubble collapse is characterized as a

function of the stand-off distance from the bubble center to the wall in the case of

single bubble.

• As an effect of bubble-bubble interaction, remarkable decaying of wall shear stress

is observed in the cases of two-bubbles collapse and the effect of the length of the

inter-bubble distance is evaluated.

1.4 Organization of this thesis

This thesis is organized as follows. In Chapter 2, cavitation accompanied by high-speed

droplet impact is numerically investigated to clarify its role in surface erosion. Two-

dimensional Euler flow simulation of the thin cylindrical gelatin droplet impact is first

implemented to reproduce the previous experiment. The cavitation within the droplet is

reproduced by solving the equation of Rayleigh–Plesset type in one-way coupling manner.

Chapter 3 presents impingement of the spherical droplet is simulated for understanding

the mechanism of liquid jet cleaning. Axisymmetric two-dimensional Navier–Stokes flow

simulation is implemented to investigate the water-hammer pressure and wall shear flow

generated by the droplet impact. As a treatment of the (no-slip) rigid wall, both dry and

wet condition is considered. Given the flow profiles near the wall, particle removal is

evaluated from the nondimensional parameter for the particle removal judgement. Lastly,

in Chapter 4, cavitation bubble collapse is simulated to investigate the resultant wall shear

flow formation. Three-dimensional Navier–Stokes flow simulation is implemented to re-

produce the collapse of single bubble and two bubbles. Noted that these Chapters 2 to

4 include the sections of physical/numerical modeling respectively because these three

problems are simulated by different manners. Concluding remarks and suggestions for

further study are stated in Chapter 5.
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Chapter 2

Cavitation accompanied by high-speed
droplet impact

2.1 Introduction and outline

In this chapter, we numerically investigate the possible role of the collapse of cavitation

bubbles accompanied by high-speed droplet impact as a source of erosion. For simplic-

ity, we study the cavitation bubble dynamics in a one-way-coupling manner; the evolu-

tion of pressure waves within the droplet to collide with a moving wall is obtained from

multicomponent Euler flow simulation and is then substituted to a Rayleigh–Plesset-type

equation to compute the dynamics of cavitation arising from small bubble nuclei that are

supposed to exist inside the droplet. Particularly, we aim to see how large pressure ra-

diation from the cavitation bubble collapse is in comparison to the initial water-hammer

loading.

2.2 Physical modeling

2.2.1 Problem description

As a representative example, we numerically reproduce the experiment of Field et al.

(1989). In their experiment, a cylindrical, two-dimensional 12 wt% gelatin droplet fixed

between transparent plates whose separation is 3 mm (much larger than cavitation bubbles
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nucleated in between) is set into collision with a solid material moving at speed Vi =

110m/s (see Fig. 2.1). Their claim is that the gelatin viscoelasticity does not play a role

in acoustic wave propagation inside the droplet. The diameter of the cylindrical droplet

is 10 mm so that the Laplace pressure within the droplet is very small compared to the

water-hammer pressure. The subsequent splash formation (where surface tention comes

into play) is beyond our scope. Even though air entrapment between impinging droplets

and a wall is reported for impact velocity up to O(10 m/s) (van Dam & Le Clerc, 2004; Li

& Thoroddsen, 2015; Li et al., 2015), it is ignored in our simulation with impact velocity

of 110 m/s. Moreover, to be simple, we treat a deformable wall as a stiff fluid whose

acoustic impedance is defined as the product of density and (longitudinal) speed of sound

in the solid (Thompson, 1972; Sanada et al., 2011).

After the impingement, the water-hammer shock wave reflects at the droplet interface

as a tension wave due to acoustic impedance mismatch between the droplet and the ambi-

ent air. Here, we explore the possibility of cavitation inception from micron/submicron-

sized gas bubble nuclei. Micron-sized gas bubbles exist naturally in tap water (O’Hern

et al., 1988; Mørch, 2015), so that the simulation will represent heterogeneous cavitation.

On the other hand, unless contaminant gas bubbles are present in liquids, cavitation is ex-

pected to occur homogeneously from submicron-sized voids that randomly appear among

thermally fluctuating liquid molecules (Herbert et al., 2006; Caupin & Herbert, 2006). To

numerically replicate homogeneous-like cavitation, we run Rayleigh–Plesset-type calcu-

lations, starting from submicron-sized bubble nuclei, based on continuum assumptions

(Maxwell et al., 2013; Tsuda et al., 2015). For simplicity, the volume fraction of nuclei

and the subsequent cavitation bubbles is assumed to be so low that the pressure field in-

side the droplet is not contaminated by the bubble dynamics; the bubble dynamics are

then determined according to the pressure evolution (i.e., one-way coupling).
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Fig. 2.1: Computational setup of a cylindrical droplet and a deformable wall moving at Vi (at time
t = 0). Because the problem is symmetric about the y axis, the flow is simulated for x ≥ 0 only,
imposing the reflecting boundary condition (BC) along the y axis. Length scale is normalized by
the droplet diameter.

2.2.2 Governing equations for the multi-component fluid flow

Accordingly, to capture the acoustic wave interaction in the high-speed droplet impact

against a deformable wall, we solve multicomponent Euler equations modeled by five-

equation formulation (Allaire et al., 2002; Perigaud & Saurel, 2005). Even though in-

terfaces separating the three components are physically discontinuous in the sense of

continuum mechanics, interface smearing is introduced in the simulation. Conceptually

speaking, the mixture of the two neighbor components appears in numerically diffused

interfaces. Here, mass conservation (Eqs. (2.1-a), (2.1-b) and (2.1-c)) is treated for gas,

liquid and solid components separately, while momentum and energy conservation (Eqs.
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(2.1-d), (2.1-e) and (2.1-f)) are formulated for the mixture. The numerically diffused

interfaces are represented by volume fraction and advected by Eq. (2.1-g) and (2.1-h).

∂

∂t
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(2.1)

Here, αm is the volume fraction of componentmwherem =G, L and S stand, respectively,

for the gas phase (air), liquid phase (gelatin) and solid phase (alloy), ρm is the density of

component m, ρ is the mixture density (to be defined by Eq. (2.4)), u and v are velocities,

respectively, in x and y coordinates, p is thermodynamic pressure, E is total energy (per

unit volume), and ∇ · u is the divergence of the velocity vector field ((∂u/∂x) + (∂v/∂y)).

Surface tension is neglected since capillary effects are expected to be less important in

comparison to inertial effects in high-speed droplet impact Meng & Colonius (2015).

The system of Eq. (2.1) is closed by the stiffened gas equation of state:

p
γ − 1 +

γP∞
γ − 1 = E − 1

2
ρ
(
u2 + v2

)
, (2.2)

where γ and P∞ are thermodynamic constants for the mixture; the value of γ controls the

material compressibility and P∞ corresponds to the tensile strength of liquids or solids

due to inter-molecular cohesive force. Equation (2.2) can model perfect gases by setting

γ = 1.4 (the ratio of specific heats for air) and P∞ = 0 (no cohesion between the gas

molecules). In the five-equation model, we need to introduce the following mixture rule

to define quantities in the mixture:

αG + αL + αS = 1, (2.3)

φ = αGφG + αLφL + αSφS, (2.4)
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φ =
(
ρ γ P∞

)T
, (2.5)

φm =
(
ρm γm P∞,m

)T
, (2.6)

where φ is a vector composed of respective mixture physical properties in Eq. (2.1) to

(2.2) and φm is a vector composed of respective physical properties of water (m = L), air

(m = G) and an alloy (m = S). Table 2.1 summarizes the values of γ and P∞ as well as

other thermodynamic properties for materials of our concern (at standard temperature and

pressure) (Gojani et al., 2009; Coralic & Colonius, 2014; Saurel & Abgrall, 1999).

To record the pressure evolution within the droplet, Lagrangian fluid particles are

initially set along the y-axis and labeled as Yϵ . This fluid particle position may represent

that of a preexisting gas-bubble nucleus whose size is assumed to be small enough to

ignore slip with respect to its surrounding flow. The no-slip assumption will be more

reasonable for gelatin gel droplets (as in Field et al. (1989); Shirota & Ando (2015))

whose elasticity is expected to hinder the slip of bubble nuclei relative to the surrounding

material. We set the particles at the droplet center (ϵ = 0) and with the eccentricity

(normalized by the droplet diameter) from the droplet center selected at 0.1, 0.2, 0.25,

and 0.3. During the Euler flow simulation, the particle is traced according to the flow and

the pressure it experiences is interpolated and recorded. The recorded pressure is used to

determine the dynamics of a cavitation bubble to be nucleated at Yϵ as explained in the

Section 2.2.3.

2.2.3 Governing equation for the single bubble dynamics

The dynamics of a spherical cavitation bubble nucleated at Yϵ are determined by the

Gilmore equation (Gilmore, 1952), an extended Rayleigh–Plesset equation that takes liq-

uid compressibility into account:

RR̈
(
1 − Ṙ

C

)
+
3
2
Ṙ2
(
1 − Ṙ

3C

)
= H
(
1 +

Ṙ
C

)
+
RḢ
C

(
1 − Ṙ

C

)
. (2.7)
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Table 2.1: Thermodynamic properties of air (ambient), water, 12 wt% gelatin (Gojani et al.,
2009; Coralic & Colonius, 2014) (droplet), and Uranium/Rhodium alloy (Saurel & Abgrall, 1999)
(wall). Acoustic impedance is normalized by the value of water.

Air Water 12 wt% gelatin Alloy
(m = G) (for reference) (m = L) (m = S)

Density ρm [kg/m3] 1.2 1000 1030 17200
Sonic speed cm [m/s] 343 1450 1550 2740
Specific acoustic impedance [–] 2.84 × 10−4 1.00 1.10 32.5
γm [–] 1.40 6.12 6.72 3.53
P∞,m [GPa] 0 0.343 0.370 36.6

The dot denotes time derivative, R is the bubble radius, and C and H are the sonic speed

and the enthalpy of the droplet, respectively, at the bubble wall:

C =

√√
γ(p0 + P∞)
ρL0

(
pL + P∞
p0 + P∞

) γ−1
γ

+ (γ − 1)H, (2.8)

H =
γ

γ − 1
p0 + P∞
ρL0

⎡
⎢⎢⎢⎢⎢⎢⎣

(
pbw + P∞
p0 + P∞

) γ−1
γ

−
(
pL + P∞
p0 + P∞

) γ−1
γ

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.9)

Subscripts L and 0 mean quantities attributed to the liquid phase (droplet) and values at

the equilibrium state (one atmosphere), respectively. The (far-field) liquid pressure, pL, is

given by the pressure recorded at Yϵ in the Euler flow simulation (see Section 2.2.2), and

the bubble wall pressure (at the droplet side), pbw, is described by

pbw = pG + pv −
4µṘ
R
− 2S

R
, (2.10)

where pG is the partial pressure of gas contents inside the bubble, pv is the saturated

vapor pressure (2.3 kPa at the undisturbed liquid temperature 20◦C due to the cold liquid

assumption (Preston et al., 2007; Prosperetti et al., 1988)), and S is the surface tension.

In this case, the gas pressure may be modeled by

pG =

(
p0 − pv +

2S
R0

) (R0

R

)3κ
, (2.11)
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where R0 is the (equilibrium) radius of a gas bubble nucleus that is assumed to exist

at Yϵ and κ is a polytropic index; κ = 1 models isothermal gas behavior and κ = γ

corresponds to adiabatic behavior. For nonlinear bubble oscillations, we often rely on

more sophisticated models of heat and mass transfer at the bubble wall (see for example

Preston et al. (2007); Stricker et al. (2011); Warnez & Johnsen (2015)). In addition to

the case of polytropic bubbles represented by Eq. (2.11), we consider dissipative effects

of heat transfer inside the bubble and phase changes at the bubble wall based on the

reduced-order model proposed by Preston et al. (2007). This model will be accurate for

small bubbles whose Peclet numbers of heat and mass transfer are below or on the order

of 10 (for details, see Preston et al. (2007)); the model constraint is almost satisfied in our

problem setup.

If the distance h from the bubble center to the wall is much larger than the bubble size

(h(t) ≫ R(t)), the bubble can be considered as a point source so that the radiated pressure

is approximated by

pa =
ρL
h

(
2RṘ2 + R2R̈

)
, (2.12)

where Ṙ and R̈ are determined from integrating the Gilmore Eq. (2.7). The radiated acous-

tic pressure pa is to be compared to the water-hammer pressure obtained from the droplet

impact simulation explained in Section 2.2.2.
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Fig. 2.2: Computational grid with the initial configuration of the droplet impact problem at t = 0.
Gray line: computational grid (every 10 grid lines is presented). Blue and black lines: the nominal
positions of numerically diffused material interfaces.

2.3 Numerical modeling

2.3.1 Spatial discretization and temporal integration of the Euler flow
simulation

The numerical method we use is based on the shock-interface capturing scheme proposed

by Johnsen & Colonius (2006) and Coralic & Colonius (2014), which allows us to sta-

bly simulate compressible flow involving both shocks and material interfaces. For spatial

discretization, a third-order finite-volume weighted essentially nonoscillatory (WENO)

scheme with the Harten–Lax–van Leer-Contact (HLLC) approximate Riemann solver
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is adopted according to the previous droplet impact simulation by Meng & Colonius

(2015). The component-wiseWENO reconstruction is computed with primitive variables.

The time integration is handled by a third-order total variation diminishing Runge–Kutta

scheme (Gottlieb & Shu, 1998).

The numerical stability for the time integration is controlled by (dimensionless) Courant

number C, which is the ratio of physical and numerical wave speeds:

C = ∆tmax
i, j

(
ci, j + |ui, j|
∆xi

,
ci, j + |vi, j|
∆y j

)
, (2.13)

where the indicator i and j denote the numbers of computational cells in x and y direction,

respectively. To stably capture the physical wave in simulations, it is necessary to satisfy

the following Courant–Friedrichs–Lewy (CFL) condition:

0 < C ≤ 1
N
, (2.14)

where N stands for the number of spatial dimensions in the problem of concern. In this

study, the time step is uniform with maximum Courant number set below 0.1.

The computational domain of the droplet impact is shown in Fig. 2.2. The grid is based

on Cartesian coordinates. Since the flow is symmetric about the y axis, we solve the prob-

lem only for x ≥ 0 by imposing the reflecting boundary conditions (Dadone & Grossman,

1994). While coarser grids are adopted away from the droplet in order to minimize spuri-

ous wave reflection together with nonreflecting boundary conditions (Thompson, 1987),

finer grids (with 200 grid points used for the initial diameter of the droplet) are used to re-

solve the droplet. To avoid spurious oscillation at material interfaces, we use 8 grid points

to diffuse interfaces in the initial configuration according to Johnsen & Colonius (2006).

The nominal position of a numerically diffused interface is determined at αL = αG = 0.5

for the liquid/gas interface. We should note that air entrapment, which is reported exper-

imentally in low-speed droplet impact (van Dam & Le Clerc, 2004; Li & Thoroddsen,

2015; Li et al., 2015), cannot be observed because of the numerically diffused interfaces.
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2.3.2 Temporal integration of the bubble dynamics simulation

Numerical integration of the Gilmore Eq. (2.7) is performed by ordinary differential equa-

tion (ODE) solver ODE15s, which is provided by MATLAB and designed for stiff sys-

tems, for stable and efficient calculations. As will be presented in Section 2.6, this method

allows for resolving (numerically very stiff) violent collapse of cavitation bubbles.

2.4 One-dimentional droplet impact

Before discussing the impact of a cylindrical droplet against the solid wall (alloy), we

reduce it to a one-dimensional problem. That is, we may numerically replicate the initial

stage of the droplet impact as a one-dimensional water column collision with the wall.

To be simple, the ambient air between the two materials is excluded from the simulation.

The numerical method applied in this reduced problem is the same as in simulating the

two-dimensional droplet impact with very fine grids with sufficiently small CFL number.

The impact speed of our concern is so high that nonlinearity would play a role in

the acoustic wave propagation. In other words, it is inappropriate to use the celebrated

water-hammer formula derived from linearized mass and momentum conservation laws.

Heymann (1969) proposed the empirical formula to predict pressure generated from the

high-speed impact:

p = ρLcLVi

(
1 + a

Vi

cL

)
, (2.15)

where ρLcL is the acoustic impedance of the water (i.e., the product of density ρL and

sonic speed cL), Vi is the impact velocity, and a is a constant empirically determined at 2

for water. Note that Heymann’s emprical formula reduces to the water-hammer formula

by substituting a = 0. In Eq. (2.15), the solid is assumed to be rigid with infinite acoustic

impedance, which may be reasonable from the large acoustic impedance of the alloy (see

Table 2.1).
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Fig. 2.3: Water-hammer pressures, simulated from the Euler flow simulation and predicted from
Heymann’s extended water-hammer Eq. (2.15), from one-dimensional impact of water and the
solid wall (alloy) with varying the impact velocity Vi. The pressure p is normalized by ρLcLVi.

In Fig. 2.3, the simulated pressure with varying Vi is compared to the empirical for-

mula, Eq. (2.15). Here, the pressure is normalized by the (linear) water-hammer pressure

ρLcLVi, so that its deviation from unity represents nonlinear effects. It turns out that the

simulation is well captured by the empirical formula. This simplified example suggests

that nonlinear Euler flow simulations are essential to properly capture the dynamics of

high-speed droplet impact.

2.5 High-speed cylindrical droplet impact

We numerically reproduce the cylindrical droplet (gelatin) impacted by the solid wall (al-

loy) moving at Vi = 110 m/s. To see the evolution of acoustic waves arising from the

impact, numerical Schlieren images at different times are presented, together with the

experimental observation from Field et al. (1989) (see Fig. 2.4). It follows that impor-

tant features reported in the experiment including water-hammer shock propagation and

the focusing of the reflected wave from the droplet interface are well reproduced in the
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Fig. 2.4: (a) High-speed cylindrical droplet impact in the experiment of Field et al. (1989). A 12
wt% gelatin droplet (10 mm in diameter) is impacted by a metal slider at Vi = 110 m/s. Labels
S and J mean shock and jet formation. A reflected tension wave (labeled R) is focused (labeled
F), rupturing the gelatin (i.e., cavitation). The interframe between snapshots is 1 µs. Reprinted
with permission from J. E. Field et al., ”The effects of target compliance on liquid drop impact,”
J. Appl. Phys., vol. 65, pp. 533–540. ©1989, AIP Publishing LLC. (b) Numerical Schlieren of
the Euler flow simulation displayed at the same times as in (a).

simulation. The water-hammer shock propagates toward the distal side of the water-air

interface of the droplet (frames a to h). Due to acoustic impedance mismatch, the shock

is reflected as a tension wave (frame i), which is focused within the droplet (frame j). In

the frame j of the experiment, it is reported that the gelatin was ruptured by the focused

tension wave and a cloud of cavitation bubbles appeared in the focal spot.

To explain the cavitation observed in the experiment, we examine the evolution of

the pressure field. Figure 2.5 shows the pressure distribution at selected times. From

frames b to d, we observe the water-hammer shock propagation toward the distal side
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of the droplet interface. The reflected wave is numerically confirmed as a tension wave

(negative pressure) at frame e. Note that the liquid phase can support negative pressure

(in absolute sense) owing to cohesion (represented by P∞ in Eq. (2.2)) between closely

populated molecules, unless cavitation occurs.

It is instructive to make a rough estimate of the cavitation inception pressure in Fig.

2.4. For this purpose, we superimpose the simulated pressure contours onto the experi-

ment at t = 10 µs; see Fig. 2.6. We see that the bubble nucleation can be found roughly

within the contour line of −20 MPa. That is, the gelatin gel can support its phase without

rupturing on the way of approaching such a strong tension of about −20 MPa. The tensile

strength (or equivalently a cavitation threshold) is close to the measurement of Maxwell

et al. (2013) in which cavitation was induced by the interaction between preexisting bub-

bles and focused ultrasound pulses in gelatin phantoms and its threshold was measured

using a hydrophone. It is also close to the cavitation threshold in distilled water (Herbert

et al., 2006). These observations imply that the cavitation in Fig. 2.4 might occur homo-

geneously as contaminant bubble nuclei or particles that possibly exist in the medium are

not activated under such a short tension state.

Finally, we report on the pressure recorded at Lagrangian markers set at Yϵ inside the

droplet in Fig. 2.7. For the range of eccentricity ϵ, every Lagrangian particle is exposed to

large tension after 10 µs (see Fig. 2.7 (a)). It follows that the most negative pressure (−33

MPa) is achieved at ϵ ≈ 0.25 (see Fig. 2.7 (b)). The recorded tension is far below the

Blake threshold pressure, which is determined from the quasistatic mechanical balance

of gas bubble nuclei under tension (Brennen, 2014; Harkin et al., 1999; Ida, 2009) and is

calculated at −5.6 MPa, for example, for R0 = 10 nm. This clearly suggests the possibility

of having cavitation, even from nanobubble nuclei, whose dynamics will be explored

based on Rayleigh–Plesset-type calculations as a next step.
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Fig. 2.5: Pressure distributions at different times. Solid lines represent material interfaces. Red
and blue regions correspond to compression and tension, respectively.
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Fig. 2.6: The experimental result at t = 10 µs (see Fig. 2.4) superimposed by the simulated pres-
sure contours. Reprinted with permission from J. E. Field et al., ”The effects of target compliance
on liquid drop impact,” J. Appl. Phys., vol. 65, pp. 533–540. Copyright 1989, AIP Publishing
LLC.
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Fig. 2.8: Evolution of the radius of the cavitation bubble nucleated from a gas bubble nucleus
whose equilibrium radius R0 is (a) 10 µm and (b) 10 nm located at Yϵ=0.25. For reference, the
far-field pressure that triggers the bubble dynamics is plotted by dotted lines scaled at the right
vertical axis. Simulating the bubble’s thermal behavior is according to adiabatic and isothermal
relations and the reduced order model of Preston et al. (2007) that accounts for diffusive effects at
the bubble wall.
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2.6 Cavitation accompanied by the droplet impact

According to the one-way-coupling method (Section 2.3.2), we showed the possibility

of having cavitation due to the wave interaction within the droplet. As a representative

example, we consider cavitation bubble nucleation at Lagrangian position Yϵ=0.25 where

the most negative pressure is recorded (see Fig. 2.7). Gas bubble nuclei are assumed to

behave either isothermally (κ = 1) or adiabatically (κ = γ) with their equilibrium size

selected at R0 = 10 µm (heterogeneous cavitation) or 10 nm (homogeneous-like cavita-

tion). For comparative purposes, we also examine diffusive effects on bubble dynamics

by the reduced-order model of Preston et al. (2007). The bubble dynamics corresponding

to the far-field pressure at Yϵ=0.25 are summarized in Fig. 2.8 (a) for the heterogeneous

case (R0 = 10 µm) and (b) for the homogeneous-like case (R0 = 10 nm). It is found

that the nuclei exhibit rapid growth to submillimiters, supporting the visible observation

of cavitation in the experiment of Field et al. (1989) While the collapse dynamics can be

controlled by diffusive effects at the bubble wall (Preston et al., 2007), the growth phase

is insensitive to the bubble’s thermal behavior as confirmed in Fig. 2.8, for the growth rate

is simply determined from the inertia of the liquid surrounding the bubble whose pressure

is essentially equal to the vapor pressure (Brennen, 2014). Also note that the growth dy-

namics are rather insensitive to the equilibrium radius of bubble nuclei. Once the nucleus

starts to grow, surface tension soon becomes less influential. As a result, the maximum

bubble size is expected to be insensitive to the value of equilibrium R0 (Brennen, 2014;

Ceccio & Brennen, 1991). Under this situation, the maximum size is approximated by

multiplying the Rayleigh growth velocity (Brennen, 2014) by a period of the tension state

and turns out to be 310 µm in this example. This rough estimate leads to reasonable

agreement with the simulation results in Fig. 2.8. Meanwhile, it is interesting to note that

the rebound after the initial collapse is effectively eliminated in the case of the nanobub-

ble nuclei for which the minimum radius of the collapsing bubble (about 0.1 nm in Fig.
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2.8 (b)) is small enough to produce huge damping from viscosity and heat transfer at the

bubble wall.

Finally, we examine pressure radiation from dynamics of the nucleated cavitation bub-

bles in Fig. 2.9 (a) and (b), respectively, for the cases of R0 = 10 µm and 10 nm. The

pressure radiation due to the cavitation dynamics is recorded at the wall, h(t) measured

from Y (t)ϵ=0.25, and plotted in this figure. For comparison, the water-hammer pressure at

the wall obtained from the Euler flow simulation is also plotted in Fig. 2.9 (a). It follows

from the case of R0 = 10 µm that the pressure radiation due to the first collapse (t ≈ 17 µs)

produces a large pressure impulse whose amplitude is comparable to the water hammer.

On the contrary, the cavitation bubble collapse for R0 = 10 nm in Fig. 2.9 (b) emits a

far larger pressure impulse, but its extreme amplitude would violate the perfect gas law

within the collapsing bubble that the Preston’s model employs.

In Fig. 2.10, the amplitude of the radiated pressure impulse due to the first collapse is

plotted as a function of R0 (from 1 nm to 10 µm). To see the effect of the bubble’s thermal

behavior, the results with adiabatic/isothermal bubbles and the Preston’s model are pre-

sented for each R0. We first note that cavitation does not occur when R0 = 1 nm, which

is below the Blake critical radius and thus stable against the tension within the droplet.

More importantly, the pressure radiation from the collapse becomes stronger as the nuclei

size decreases. In other words, the cavitation bubble collapse becomes more violent as

the ratio of the maximum bubble radius to the equilibrium nucleus radius increases. Even

though the pressure amplitude is unreliable because of violating the perfect gas law, this

trend gives us an important insight that homogeneous-like cavitation (with smaller bubble

nuclei) is expected to produce more violent collapse that gives rise to more erosive im-

pact on target materials. At the end, we should notice from Fig. 2.10 that the results with

Preston’s model are close to those with adiabatic bubbles, meaning that violent bubble

collapse is fast and thus adiabatic even at nanometer scales.
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2.7 Summary

In summary, the possibility of cavitation accompanied by high-speed droplet impact against

a deformable wall is investigated in one-way coupling manner; the presence of bubble nu-

clei within the droplet is assumed and the bubble dynamics were determined according

to the given pressure variation from the Euler flow simulation. The experiment of Field

et al. (1989) is reproduced for comparison in which cavitation is observed within the

droplet colliding with a solid wall at speed Vi = 110 m/s. The current simulation shows

good agreement from a viewpoint of acoustic wave propagation within the droplet (see

Fig. 2.4 and 2.5): after the collision with the wall, water-hammer shock is propagated

within the droplet and its reflection wave (at the distal side of the droplet surface against

the wall) focuses at a particular point due to the curvature of the droplet surface. The

agreement between the simulated and previously observed focus location of tension wave

is excellent (see Fig. 2.6). Given the time history of pressure at Lagrangian markers

within the droplet (see Fig. 2.7), one-way-coupling simulation is carried out based on the

Rayleigh–Plesset-type calculation (with the equilibrium radius of bubble nuclei varied

from submicrons to microns). It suggests the possibility of having cavitation caused by

wave interaction within the droplet as shown in Fig. 2.8. More importantly, pressure radi-

ation from the cavitation bubble collapse may overwhelm the initial water-hammer shock;

this trend is emphasized for the case of homogeneous-like cavitation that arises from the

growth of nanobubble nuclei (see Fig. 2.9 and 2.10). Therefore, such cavitation may be a

noteworthy additional erosion factor in the problem of high-speed droplet impact.
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Chapter 3

High-speed droplet impact against a
dry/wet rigid wall for understanding the
mechanism of liquid jet cleaning

3.1 Introduction and outline

In this chapter, we solve compressible Navier–Stokes equations to study both acoustic

and hydrodynamic phenomena in high-speed droplet impact problems. We simulate the

impact of a spherical droplet (200 µm in diameter) against a dry/wet rigid wall in order to

evaluate water-hammer shock loading and wall shear flow after the impact as illustrated

in Fig. 3.1. Attached spherical particles of our concern are assumed too small (10 nm in

diameter) to disturb the fluid flow, enabling us to evaluate the particle removal in one-way-

coupling manner; we judge the removal from a comparison between the particle adhesion

and the hydrodynamic force obtained from the droplet impact simulation. Hence, the

main contribution of this chapter is to provide comprehensive discussion on the role of

high-speed droplet impact in both cleaning and erosion. This chapter is organized as

follows. Our model for high-speed droplet impact and particle removal is described in

Section 3.2 and the simulation method we use is verified in Section 3.3. In Section 3.4,

we perform the droplet impact simulation with varying the impact velocity (30 to 50 m/s)

and the water film thickness (up to 200 µm). In particular, we examine the evolution of the
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Fig. 3.1: Schematic of high-speed droplet impact against a wet rigid wall that accompanies water-
hammer events, side jetting, and crown-like shape formation. In the radially spreading wall shear
flow, hydrodynamic force acts on attached particles.

wall shear stress to derive the particle removal criterion in the one-way-coupling method.

3.2 Physical modeling

3.2.1 Problem description

Our study is based on one-way coupling from fluid flow simulation to particle removal

evaluation as follows:

1. High-speed droplet impact is simulated, accounting for both compressibility and

viscosity, to obtain the evolution of wall shear stress.

2. The simulated wall shear stress can directly be related to the hydrodynamic force

acting on attached particles and compared with particle adhesion force of van der

Waals type.

The initial configuration of a water droplet (of diameter D) impinging against a rigid

wall (z = 0) covered with a water film (of thickness l), together with the computational

domain, is illustrated in Fig. 3.2; the initial shape of the droplet just before the impact

is assumed spherical for simplicity. Even though deformation of the liquid film will be

caused by compression waves from the moving droplet (prior to the direct impact) (Man-

dre et al., 2009), we introduced the idealized initial condition, for the problem to be sim-
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Fig. 3.2: The initial configuration of a spherical water droplet impinging at velocity Vi (at time
t = 0) towards the wall (z = 0) covered with a water film of thickness (0 ≤ l ≤ D). Since the
problem is axisymmetric about the z axis, the flow for r ≥ 0 only is simulated, imposing the
reflecting boundary condition (BC) along the z axis of symmetry. The length is normalized by the
droplet diameter D.

pler, where the spherical droplet is set into collision against the flat free surface. In this

case, the flow becomes axisymmetric so that z denotes the axis of symmetry. Cleaning

surfaces are originally dry (before liquid jet cleaning); we may say that the phenomena

just after the cleaning process starts are represented by the dry case (l = 0). On the con-

trary, during the cleaning process, the cleaning surface becomes wet; we model it as a

rigid wall covered with a water film of uniform thickness l. In both cases, fluids in the

computational domain are initially (t = 0) set at standsard temperature and pressure (STP;

20◦C and 1 atm). Since we are interested in particle removal by liquid shear flow, we do

not consider that by capillary force (Sharma et al., 2008; Khodaparast et al., 2017). The

droplet is set into motion normal to the wall at three different speeds Vi (30, 40, 50 m/s).

As an example, we set the droplet diameter D at 200 µm, which may be a representative

value in previous experiments and simulations (Cheng, 1977; Visser et al., 2012, 2015;

Haller et al., 2002). The Reynolds number for the droplet is based on the water properties
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(see Table 3.1):

ReD =
ρLDVi

µL
. (3.1)

For the cases of Vi = 30, 40, and 50 m/s, ReD are calculated as 6000, 8000, and 10000,

respectively. The (dimensionless) film thickness, l/D, ranges from 0 to 1.

Spherical particles of very small size are assumed to adhere to the wall (z = 0); the

particles are assumed too small to disturb fluid flow. In our study, the particle diameter

d is set at 10 nm as a representative particle size in silicon wafer cleaning. The particle

adhesion is assumed to originate dominantly from van der Waals force. The hydrody-

namic force (Section 3.2.4) acting on the particles is calculated given the simulated wall

shear flow and compared to the particle adhesion, which allows for deriving the particle

removal criterion.

3.2.2 Governing equations for the multi-component fluid flow
To model the flow of our concern, there is a need to consider both compressibility and

viscosity of water (and the ambient air). Hence, we solve Navier–Stokes equations for

compressible flow consisting of gas and liquid components (with no phase change) in

five-equation formulation (Allaire et al., 2002; Perigaud & Saurel, 2005). The system

of the five-equation formulation is addressed in Section 2.2.2. Now that the problem is

axisymmetric, we solve the equations in two dimensions with source terms that arise from

the axisymmetric geometry (Mohseni & Colonius, 2000).
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Here, αm is the volume fraction of component m where m = G and L stand, respectively,

for the gas phase (air) and liquid phase (water), ρm is the density of component m, ρ is the

mixture density (to be defined by Eq. (3.8)), uz and ur are the axial and radial velocity,

respectively, ∇ · u is the divergence of the velocity vector field ((∂uz/∂z) + (∂ur/∂r)), p is

thermodynamic pressure, E is total energy (per unit volume), and τ is the viscous stress

tensor whose components are given by

Tzz = µ

(
4
3
∂uz
∂z
− 2
3

(
∂ur
∂r

+
ur
r

))
, (3.3)

Trr = µ

(
4
3
∂ur
∂r
− 2
3

(
∂uz
∂z

+
ur
r

))
, (3.4)

Tzr = Trz = µ

(
∂uz
∂r

+
∂ur
∂z

)
, (3.5)

where µ is the mixture viscosity (to be defined by Eq. (3.8)). In the above formulation,

bulk viscosity is neglected according to Stokes’ hypothesis, for our main target is to evalu-

ate wall shear generation associated with the high-speed droplet impact. Thermodynamic

pressure, p, is given by the stiffened gas equations of state

p
γ − 1 +

γP∞
γ − 1 = E − 1

2
ρ
(
u2z + u2r

)
, (3.6)
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where γ and P∞ are thermodynamic constants for the mixture and calculated according to

the mixture rule (see below). Equation (3.6) can model perfect gases by setting γ = 1.4

(the ratio of specific heats for air) and P∞ = 0. Table 3.1 summarizes the physical prop-

erties of air and water, which are used in the simulation, at STP. With these parameters,

the speed of sound in air and water (c =
√
γ(p0 + P∞)/ρ where p0 is one atmosphere) is

calculated, respectively, at 344 m/s and 1500 m/s. Similarly, the speed of sound in the

mixture can be calculated according to the mixture rule (see below).

As with Section 2.2.2, mixture quantities for the current physical modeling are sum-

marized as follows:

αG + αL = 1, (3.7)

φ = αGφG + αLφL, (3.8)

φ =
(
ρ µ γ P∞

)T
, (3.9)

φm =
(
ρm µm γm P∞,m

)T
, (3.10)

where φ is a vector composed of respective mixture physical properties in Eq. (3.2) to

(3.6) and φm is a vector composed of respective physical properties of water (m = L) and

air (m = G) (see Table 3.1). Here, we note that every mixture quantity including viscous

coefficient is defined by arithmetic mean formulation while some numerical schemes em-

ploy harmonic mean for higher accuracy (Coward et al., 1997; Patanker, 1991). Indeed

the harmonic mean is more accurate than arithmetic mean, but it may violates the ro-

bustness of the simulation (Tryggvason et al., 2011). Consequently, arithmetic mean is

more favorable for the multicomponent flow, which has large differences of density and

viscosity, to prevent the destruction of the computation by numerical instabilities.

Finally, we introduce the assumption of constant thermodynamic properties (µm, γm,

and P∞,m) in our simulation models, even though these are temperature-dependent. Since
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Table 3.1: Physical properties of air (ambient) and water (droplet and film) used in the simulation.
Gas (air, m = G) Liquid (water, m = L)

µm [Pa·s] 1.8 × 10−5 1.0 × 10−3
cm [m/s] 344 1500
ρm [kg/m3] 1.2 1000
γm [-] 1.4 6.6

P∞,m [GPa] 0 0.343

FvdW

aJKRHp ≈ d/2
FD

TD

ur

Up

Fig. 3.3: Schematic of the forces and torque acting on a spherical particle attached at a solid
surface above which simple shear flow (of water) is created. The contact radius aJKR is often very
small in comparison to the diameter d of spherical particles (i.e., aJKR ≪ d).

wall shear stress calculations are important in this work, we need to consider whether the

assumption of the constant properties (especially, water viscosity µL) holds. The tempera-

ture rise due to the water-hammer shock in our droplet impact problem is very small (less

than 1 K) according to the previous study on shock Hugoniot compression (Nagayama

et al., 2002). The water temperature can also be increased by viscous dissipation within

the wall shear flow after the droplet impact. In Appendix B, we evaluate the effect of the

viscous dissipation and conclude that the temperature rise at the wall is at most 0.1 K.

Thus, we may say that the assumption of the constant properties is reasonable in our

droplet impact simulation.
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3.2.3 Partial velocity slip model
To model the spreading of droplets over a dry solid wall, there is a need to permit velocity

slip at the wall where the contact line is passing, leading to velocity and stress singularities

(Huh & Scriven, 1971; Thompson & Robbins, 1989). While the well-known slip models

of Navier (1823) and Maxwell (1890) do not account for velocity components normal to

the wall and cannot remove the singularity issue, we adopt that more recently proposed by

Thalakkotor & Mohseni (2016) in the present study. In their model, velocity components

normal and tangential to the wall are both accounted for and the velocity at the wall is

given by

ur|z=0 = ls
(
∂uz
∂r

+
∂ur
∂z

)
. (3.11)

The slip length ls is determined by

ls =
(
1 − emax

ec

)− 1
2

− 1, (3.12)

where ec is the critical value, and emax is the principal strain rate of the maximum extension

evaluated at the wall (z = 0),

emax =
1
2

(
∂ur
∂r

+
ur
r
+
∂uz
∂z

)
+

√(
1
2

(
∂ur
∂r

+
ur
r
− ∂uz
∂z

))2
+

(
1
2

(
∂ur
∂z

+
∂uz
∂r

))2
. (3.13)

In this study, ec corresponds to the principal strain rate of the maximum extension in the

case of droplet impact against a perfect slip-wall, which is thus simulated preliminary.

For further details of the slip model, see Thalakkotor & Mohseni (2016).

3.2.4 Criterion for particle removal
Given the velocity profile from the fluid flow computations (Section 3.2.2), one can in

principle calculate hydrodynamic force and torque acting on spherical particles attached

at the wall, in one-way-coupling fashion, under the assumption that the particles are too

small to disturb the base flow. Under the small particle assumption, shear flow around
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the particles may be modeled as a linear profile and it enables us to approximate the

(near-wall) velocity profile ur from wall shear stress τwall(r, t) = Trz(r, 0, t) = µ(∂uz/∂r +

∂ur/∂z)|z=0:

ur(r, z, t) ≈
z
µ
τwall(r, t), (3.14)

where the no-slip condition is applied at the wall (z = 0). Furthermore, provided that

the flow around the particles is creeping, one can analytically obtain the hydrodynamic

drag force FD (tangent to the wall) and the torque TD (see Fig. 3.3) from the Stokes’ flow

formulas (O’Neill, 1968; Busnaina et al., 2002; Burdick et al., 2005; Zoeteweij et al.,

2009):

FD = 1.70
(
3π

µ2L
ρL

Rep
)
, (3.15)

TD = 2.13
(
FD

d
2

)
, (3.16)

where d is the particle diameter. In the above expression, Rep denotes the particle Reynolds

number

Rep =
ρLUpd
µL

, (3.17)

where Up (=ur|z=d/2) is the fluid velocity at the particle center (in the absence of the par-

ticle) and is estimated by Eq. (3.14). The particle Reynolds number we encountered in

the simulation with particle diameter d = 10 nm is at most Rep = 0.02; such a small

particle Reynolds number may allow us to validate the one-way-coupling computation of

the hydrodynamic force and torque under Stokes’ assumption. Thus, the estimation of

the hydrodynamic force and torque from Eqs. (3.15) and (3.16) suffices in the sense of

one-way-coupling computations.

Since volumetric force such as gravity is negligible for small particles of our target,
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the dominant adhesion force is of van der Waals type (Israelachvili, 2011),

FvdW =
AHd
12H2

p

(
1 +

2a2JKR
Hpd

)
, (3.18)

where AH is the Hamaker constant, Hp is the particle-to-surface distance (set at 0.4 nm),

aJKR is the contact radius that may be estimated by Johnson-Kendall-Roberts (JKR) theory

(Johnson, 1997; Rimai et al., 2000; Israelachvili, 2011) (see Appendix A for the details).

In calculating the adhesion force, we consider the case of polystyrene particles attached

on a quartz surface, as an example relevant to silicon wafer cleaning in semiconductor

industry, according to the previous work of Burdick et al. (2005).

In deriving a particle removal criterion, we ignore contributions from volumetric force

including inertia, for small particles of our target have large surface areas per unit volume

and surface force is believed to be dominating. This means, under the assumption that

the rolling mechanism plays a dominant role in particle removal (see Fig. 3.1), that we

simply make a comparison between the hydrodynamic torque (FD(d/2) + TD) and the

adhesion-supported torque (FvdWaJKR). Following the work of Busnaina et al. (2002), we

introduce the ratio between the two rolling torques:

R =
FD

d
2 + TD

FvdWaJKR
. (3.19)

Namely, in this study, particle removal is achieved when R > 1. Substituting Eqs. (3.14)

to (3.18) into Eq. (3.19), we can write this relation in terms of the wall shear stress:

R =
5.32(3πd)

(
d
2

)2
τwall

AHd
12H2

p

(
1 + 2a2JKR

Hpd

)
aJKR

. (3.20)

In the one-way-coupling evaluation, the dimensionless number R is linearly proportional

to the wall shear stress. This simple relation agrees with our intuition that particle removal

is promoted by larger wall shear stress.
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Fig. 3.4: Computational grids (with every 20 grids presented) in which the initial configuration
of the water droplet and film location for the case of l/D = 0.5 is depicted by thick black lines.
The droplet center is initially set at (z/D, r/D) = ((l/D) + 0.52, 0).
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3.3 Numerical modeling
3.3.1 Spatial discretization and temporal integration
The numerical method we use is based on the shock-interface capturing scheme proposed

by Johnsen & Colonius (2006) and Coralic & Colonius (2014). As with previous Chapter

2.3, the third-order finite-volume WENO scheme is employed for spatial reconstruction,

but the numerical flux is calculated by the Harten Lax–van Leer (HLL) approximate Rie-

mann solver (Harten et al., 1983) to adapt the viscous simulation. Though the HLLC

approximate Riemann solver is modified from HLL solver for sharp interface capturing,

its contribution becomes trivial under the spatial resolution of viscous simulation. To

reduce the numerical cost and improve the robustness of the simulation, the HLL approx-

imate Riemann solver is adapted (also according to Beig & Johnsen (2015)). The time

integration is handled by a third-order, total variation diminishing Runge–Kutta scheme

(Gottlieb & Shu, 1998) with sufficiently small Courant number (< 0.1) (Eq. (2.13)) and

diffusion number for viscosity:

DV = ∆tmax
i, j

⎛
⎜⎜⎜⎜⎜⎝
µi, j

ρ∆z2i
,

µi, j

ρ∆r2j

⎞
⎟⎟⎟⎟⎟⎠ , 0 < DV ≤

1
2N

. (3.21)

This condition allows us to stably compute the viscous flow. We set the (dimensionless)

diffusion number below 2.0 × 10−3.

3.3.2 Computational domain and boundary treatment
The computational grid with the initial configuration of the droplet and film location for

the case of l/D = 0.5 is presented in Fig. 3.4. Grid stretching across the film is applied

in order to resolve the wall shear flow. Here, we show the grid whose resolution is 800

points across the film thickness, l/D = 0.5. For the cases of different film thickness, we

use the same grid as in Fig. 3.4. The cell Reynolds number of the current resolution,

which quantifies the effect of spurious numerical viscosity, is Recell = ρLVi∆z/µL = 6 near

the wall for the case of Vi = 50 m/s. Thus, the effect of numerical viscosity is sufficiently
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small in contrast to the physical viscosity(Vreugdenhil, 1982; Thompson et al., 1985).

Along the z axis of symmetry, we apply the reflecting boundary conditions (BCs)

where the cell center is located at the origin (r = 0) in finite-volume fashion and the

singularity is removed by integration over the origin (Johnsen, 2007). Along the wall

whose surface is represented by the cell center, we apply the velocity slip model that is

introduced in Section 3.2.3. The velocity gradient normal to the wall, which is necessary

for evaluation of the wall shear stress τwall is calculated by a third-order one-sided differ-

ence. At the other boundaries, we apply nonreflecting BCs of Thompson type (Thompson,

1987).

3.3.3 Verification: Stokes’ first problem
We numerically solve Stoke’s first problem in Cartesian coordinates (x, y) in order to see

whether boundary layer flow over the no-slip wall can be resolved by our model. In this

case, we omit the geometric source terms from the Navier-Stokes equations for single-

phase flow (Eqs. (3.2-a) to (3.2-e)). The wall surface is aligned with the x axis (y = 0) and

the uniform velocity u = U = 50 m/s of the water (αL = 1) in the x direction is initially

(t = 0) imposed above the wall; the correspondingMach number isM = U/cL = 1/30 < 1

(subsonic). The computational grid is based on the Cartesian coordinates and its spacing

(∆x,∆y) is uniform (∆x = ∆y for all grid points) but with Courant number fixed at 0.3.

Convergence analysis is performed with varying the grid size, for the purpose of selecting

the grid resolution used in the droplet impact simulation.

Figure 3.5(a) shows the (dimensional) near-wall velocity profile (0 ≤ y ≤ 1 µm) at

t = 2.6 µs, which is a representative time in the following droplet simulation. From

the analytical solution with self-similarity (denoted by the solid line), the boundary layer

thickness (at which the velocity is 99% of the free stream) is δ99% = 6 µm, which is

much larger than the contaminant particles’ size of our target. As a result, the (near-wall)

velocity profile is effectively linear. The numerical solutions with varying grid size ∆y are
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Fig. 3.5: (a) Computations of (dimensional) near-wall velocity profiles with varying the grid
spacing ∆y at t = 2.67 µs in Stoke’s first problem. The free stream velocity U is set at 50 m/s;
the corresponding Mach number is M = 1/30. (b) The nondimensional velocity profiles (at t =
2.67 µs) with varying the grid spacing ∆y. Since the problem is self-similar, the y coordinate is
normalized by boundary layer thickness 2

√
νLt where νL is the kinematic viscosity of the liquid.

(c) Convergence analysis of the computed velocity gradient at different dimensional times. The
analytical value is indicated by the dotted line.
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compared to the analytical solution, visually showing that the simulation result converges

to the analytical one as the grid size decreases. Since the problem is self-similar, the

velocity profile u∗ = u/U can be expressed in terms of single coordinate η = y/(2
√
νLt)

where νL = µL/ρL is the kinematic viscosity of the liquid. In Fig. 3.5(b), the velocity

profile across the boundary layer thickness at t = 2.6 µs is displayed as a function of the

normalized coordinate η. This shows that the velocity profile in the boundary layer flow

can be captured, provided that the grid is sufficiently fine.

Given the simulated velocity profile in boundary layer flows, our ultimate goal is to

evaluate velocity gradients at the wall (and the wall shear stress) for the particle removal

judgement (see section 3.2.4). In Fig. 3.5(c), computations of the (normalized) velocity

gradient at different representative times in the droplet simulation are plotted as a func-

tion of grid size ∆y. We note that the solution convergence is the worst for the case of

the earliest time at which the boundary layer thickness is the thinnest and the grid resolu-

tion is relatively coarse. However, provided that the grid is sufficiently fine, the solution

convergence is reasonable even at the earliest time. In the droplet simulation, we choose

the near-wall grid resolution at ∆z = 0.125 µm which is obtained by grid stretching as

explained in Section 3.3.2.
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Fig. 3.6: Snapshots of the droplet impact simulation at representative times (a) to (f) for the
case of (Vi, l/D) = (50 m/s, 0), plotting the distributions of the pressure (left contour), the liquid
velocity (right vector) and the shear stress Eq. (3.5) (right contour) with characteristic wall shear
stress (τc = 12.5 kPa). The nominal positions of air-water interfaces (α = 0.5) is depicted as black
lines. Close-up views of the velocity and shear stress near the wall are presented to show the shear
flow development.
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Fig. 3.7: As Fig. 3.6, but with (Vi, l/D) = (50 m/s, 0.25).
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Fig. 3.8: As Fig. 3.6, but with (Vi, l/D) = (50 m/s, 0.5).
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3.4 High-speed droplet impact against a dry/wet wall
First of all, we present the big picture of the high-speed droplet impact simulations for the

dry (l = 0) and wet (l > 0) cases. From Figs. 3.6 to 3.8, we plot the evolution of the pres-

sure, velocity, and shear stress fields at representative times for the case of l/D = 0, 0.25,

0.5, respectively, with the impact velocity fixed at Vi = 50 m/s. In these figures, frame (a)

corresponds to the respective initial conditions. We note that the simulated water-hammer

pressure (at the instant of the droplet impact against the wall) records a higher value than

the upper limit of the pressure contour in Fig. 3.6. In this plot, we intentionally tune the

upper pressure limit in order to clearly visualize pressure fluctuations within the droplet

after the impact, for the initial pressure rise just after the impact is too large. In Section

3.5.1, we examine the acoustic phenomena including water-hammer shock loading more

carefully. The hydrodynamic events including side jetting and wall shear flow generation

are plotted in frames (d) to (f) and are to be examined in Sections 3.6.1 and 3.6.2. The

magnitude of the velocity vector is normalized by the initial impact velocity Vi and the

pressure is normalized by the water hammer pressure ρLcLVi. The time is normalized by

characteristic droplet impact time ti (to be introduced in Section 3.6.1). The shear stress is

normalized by characteristic shear stress τc based on representative boundary layer thick-

ness (see section 3.6.2). Results for the case of the other impact velocity (Vi = 30 and 40

m/s) will be discussed in parametric studies in Section 3.6.2.

3.5 Acoustic stage of the impact dynamics
3.5.1 Water-hammer shock loading
We first examine the impact-induced water hammer phenomenon that appears much faster

than the subsequent hydrodynamic events. Just after the frame (a) in Figs. 3.6 to 3.8,

the droplet collides with the solid wall and the liquid film interface, respectively, for the

dry case (l = 0) and wet case (l > 0). This collision generates a water-hammer shock
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Fig. 3.9: (a) Logarithmic plot of the maximum wall pressure as a function of l/D > 0 for Vi = 50
m/s. (b) Linear plot of the maximum wall pressure as a function of l/D ≥ 0. The vertical axis in
both (a) and (b) is normalized by the maximum wall pressure in the dry case pmax(0) = 22 MPa.
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(Thompson, 1972). In the frame (b), the water-hammer shock is reflected at the solid

wall, giving rise to a high pressure loading on the wall. In the frame (c), the shock

propagates towards the distal side of the droplet interface and reflects as an expansion

wave, leading to the formation of negative pressure inside the droplet, due to the acoustic

impedance mismatch between air and water, as observed in Chapter 2. The acoustic wave

generated by the impact keeps reflecting at the droplet interface and being trapped within

the droplet.

To clarify the role of the liquid film to damp the impact-induced shock loading on

the wall, the maximum pressure at the wall (r, z) = (0, 0) that arises from the initial

shock loading for the case of Vi = 50 m/s is defined by pmax(l/D) ≡ max(p(0, 0, t; l/D))

(over t/ti ∈ [0, 1]) and plotted as a function of the film thickness; see logarithmic and

linear plots in Fig. 3.9 (a) and (b), respectively. The maximum pressure is normalized

by that in the dry wall (pmax(0) = 22 MPa). According to the work by Tatekura et al.

(2018), calculation of the water-hammer peak pressure that appears at the point contact

of spherical droplet impact requires extremely high spatial/temporal resolutions. In this

study, we do not intend to resolve the water-hammer event with finer computational grids;

rather, we explore a trend in the decay rate of the maximum wall pressure as a function of

the liquid film thickness.

Figure 3.9(a) plots the maximum wall pressure for the wet case (l > 0) only and

shows that the maximum pressure decays as (l/D). In other words, the shock is generated

initially by the point-like contact between the droplet and the liquid film and tends to

propagate spherically, leading to the decay rate of (l/D) as predicted from the (far-field)

linear acoustic theory (Thompson, 1972). When it comes to plotting the maximum wall

pressure in the dry case (l = 0) in addition to the wet case (l > 0), the fitting to the linear

acoustic theory for the far field is no longer valid, for the maximum wall pressure in the

dry case results from the direct contact between the droplet and the wall and thus consists
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of the near-field contributions. To model the functional dependence of the maximum wall

pressure on the film thickness (l ≥ 0), one may use the empirical formula proposed in the

previous studies (Sasaki et al., 2016; Fujisawa et al., 2018):

ξ = exp
⎛
⎜⎜⎜⎜⎝−a
(
l
D

)b⎞⎟⎟⎟⎟⎠ , (3.22)

where a and b are fitting parameters. In this particular example, the simulation results

for both the dry and wet cases are found to be well fitted to Eq. (3.22) with a = 4.5 and

b = 0.5.

In the context of jet cleaning, a liquid film initially covered at cleaning surfaces will

play an essential role in reducing the possibility of erosion due to the impact-induced

water-hammer shock loading. However, as will be shown in the following section, the

liquid film has an adverse effect when it comes to enhancing cleaning performance.

3.6 Hydrodynamic stage of the impact dynamics
3.6.1 Side jetting
We next examine the hydrodynamic phenomena after the acoustic events; see frames

(d) to (f) of Figs. 3.6 to 3.8 where the formation of side jetting (of the water) can be

confirmed. In the dry case, the side jet travels along the wall as also seen in Fig. 2.4

and previous studies (Lesser, 1981; Field et al., 1989). On the contrary, in the wet case,

the jet direction turns away from the wall; the upward jet eventually forms a crown-like

shape, accompanying the thinning of the liquid film inside the crown. It follows from a

comparison between Figs. 3.7 and 3.8 that the crown bottom with the thinned liquid film

tends to be augmented as the initial film thickness decreases.

In the dry case, one can introduce the following time scale ti to characterize (low-

speed) droplet impact dynamics in the hydrodynamic stage (Pasandideh-Fard et al., 1998):

ti =
8D
3Vi

. (3.23)
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Approximately at time t = ti after droplet impact against dry walls, the droplet spreading

over the wall is expected to have its maximal extent. After that (t > ti), surface tension

will come into play and the deformed droplet starts to bounce. Now that we are interested

in the early-time impact events, we confine the overall simulation time up to t = ti; the

time scale is normalized by the characteristic time ti in Eq. (3.23). For reference, the

values of ti is summarized in Table 3.2.

3.6.2 Shear flow formation
While the impinging droplet forms the side jetting flow, a thin shear layer appears in the

radially spreading flow above the wall as seen in frame (d) to (f) of Figs. 3.6 to 3.8 and

their close-up views just above the wall at r/D ∈ [0.45, 0.55]. Judging from the close-up

view of the flow field (around z/D = 0, r/D = 0.5), the shear layer develops immediately

and its time evolution is very small within our observation scope.

To investigate the shear flow in details, we plot the evolution of near-wall radial ve-

locity at r/D = 0.5 for the case of Vi = 50 m/s in Fig. 3.10 (a). In these plots, we

numerically define boundary layer thickness δ = zk such that the minimum index k ∈ Z+

for the z-direction grid points with z0 = 0 (the wall surface) satisfies ur(zk) ≤ 0.99ur(zk−1).

The computed boundary layer thickness δ is overlaid on the radial velocity profiles in Fig.

3.10 (a), showing that the velocity gradient gets less steep as time progresses. The tem-

poral evolution of δ at different radial locations (where strong wall shear stress appears)

is plotted in Fig. 3.10 (b). With the Reynolds number ReD (Eq. (3.1)), we introduce

the characteristic boundary layer thickness in droplet impact problems for the case of dry

walls (Pasandideh-Fard et al., 1996):

δc =
2D√
ReD

. (3.24)

to normalize the z coordinate in these plots. The values of δc in our study are summarized

in Table 3.2. It turns out that the boundary layer thickness δ measured near the impact
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Table 3.2: Values of characteristic impact time ti (Eq. (3.23)), boundary layer thickness δc (Eq.
(3.24)) and wall shear stress τc (Eq. (3.25)) corresponding to different impact velocities Vi and
Reynolds numbers ReD.

Vi [m/s] ReD ti [µs] δc [µm] τc [kPa]
30 6000 17.8 5.16 5.81
40 8000 13.3 4.47 8.94
50 10000 10.6 4.00 12.5

point tends to approach the characteristic value δc, in the range of film thickness of our

target, in our simulation time at which surface tension does not play an important role.

We may say that the strong wall shear stress, which is essential for particle removal, will

appear in the early stage of the hydrodynamic event. With the characteristic boundary

layer thickness δc, we can introduce the characteristic wall shear stress:

τc = µL
Vi

δc
, (3.25)

whose values in our study are documented in Table 3.2.

Next, we plot the spatiotemporal evolution of the wall shear stress τwall(r, t; l/D) for

Vi = 50 m/s in the r-t diagram (see Fig. 3.11). We can clearly see (from the contour

levels) that the presence of the liquid film at the wall has a significant impact on the wall

shear stress and pressure generation. In the dry case (l/D = 0), very large wall shear stress

O(10τc) appears just after the passage of the moving contact line (immediately after the

impact), but its magnitude decays as time progresses. The water-hammer shock wave is

generated just after the impact and the wave reflections within the deformed droplet are

repeated; the pressure amplitude decays in both space and time. On the contrary, under the

existence of the liquid film (l/D > 0), the peak values of the wall shear stress and pressure

are both suppressed significantly. It is obvious that the suppression effect is emphasized

by having the thicker film. In all the cases, the peak values of the wall shear stress appear

in our simulation up to the characteristic time ti (Eq. (3.23)), as inferred from Fig. 3.11

where the steepest velocity gradients near the impact point appear soon after the impact.
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Fig. 3.10: (a) Temporal evolution of the near-wall radial velocity profiles at r/D = 0.5. Circle
markers correspond to the computed boundary layer thickness δ. The z coordinates in the left-hand
and right-hand sides are normalized by initial droplet diameter D and characteristic boundary layer
thickness δc, respectively. (b) Temporal evolution of the boundary layer thickness δ at different
radial positions near the impact point. The results for three different film thickness are presented:
(i) l/D = 0, (ii) l/D = 0.25, and (iii) l/D = 0.5.
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Fig. 3.13: As Fig. 3.12, but with (Vi, l/D) = (50 m/s, 0.5).
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Even though it is obvious, we note that the wall shear stress vanishes exactly at the impact

point (r = 0) about which the flow is axisymmetric; particle removal at r = 0 is never

achieved by wall shear flow.

We take a more careful look at Fig. 3.11(a-ii) where the strong wall shear stress ap-

pears locally in time (t/ti ≈ 0.25) and space (r/D ≈ 0.5). Such local appearance of the

strong wall shear stress corresponds to the hydrodynamic phenomenon that the liquid film

is thinned by the droplet impact, thereby accelerating the radial flow of the film (away

from the origin). It is of interest to note that negative wall shear stress appears subse-

quently (t/ti > 0.5) around 1 < r/D < 1.5. This means that flow separation (τwall(r, t) ≤ 0)

occurs at the specific spot. On the other hand, such flow separation does not occur in the

dry case (l/D = 0) and another wet case (l/D = 0.5). To explore the flow separation

mechanism, we investigate the relation between the radial velocity and the pressure pro-

files in the deformed liquid film for the cases of l/D = 0.25 and l/D = 0.5, respectively,

in Figs. 3.12 and 3.13. In Figs. 3.12(a) and 3.13(a), we plot the (nominal) positions of

the air-water interface (αG = αL = 0.5) at different representative times. In addition, we

plot the radial velocity distributions ur(r, bmin(t)/2, t), as a representative velocity inside

the deformed liquid film, where bmin denotes the minimum breadth (in the z direction)

of the deformed interface defined at each instant. As a result of the emphasized flow

deceleration in the thinner liquid film case (l/D = 0.25), a remarkable adverse pressure

gradient (> 0) arises after the through (1 < r/D < 1.2) at t/ti = 0.5 as in Fig. 3.13(b-ii)

and thus gives rise to flow separation and the negative wall shear stress generation as in

Fig. 3.12(a-ii). Whether the film flow in the (positive) radial direction is accelerated or

decelerated can be explained by volume conservation of the (effectively incompressible)

liquid flow as seen in Figs. 3.12(a) and 3.13(a). The flow may be treated as that through

a converging-diverging nozzle; it reaches the maximal velocity at the throat (with bmin)

and is decelerated in the diverging area (after the throat passage). The flow deceleration
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Fig. 3.14: Distributions of the maximum wall shear stress encountered at each radial position,
Eq. (3.26), for different film thickness l/D and droplet impact velocity Vi.

is augmented by having the thinner liquid film (l/D = 0.25) with which the extent of

the flow divergence is emphasized with the larger value of bmax/bmin. On the contrary, in

the dry case (l/D = 0), the breadth (from the wall) of the deformed droplet is monotoni-

cally decreasing in the radial direction (as seen in frames (d) to (f) of Fig. 3.6), implying

that strong flow deceleration does not occur and flow separation with negative wall shear

stress is thus not observed in Fig. 3.11(a-i). Additionally, note that pressure fluctuation at

t/ti = 0.25 is came from the reflection waves of the water-hammer shock as mentioned in

Section 3.5.1 and this effect is found to be less important for the flow separation, for the

adverse pressure gradient is relatively small compared with the latter time frames.

The maximum wall shear stress encountered at each radial position is defined by

τmax(r; l/D,Vi) = max
t/ti∈[0,1]

(τwall(r, t; l/D,Vi)), (3.26)

and its distribution is plotted as a function of distance r for Vi = 30, 40, 50 m/s and l/D =

0, 0.25, 0.5, respectively, in Fig. 3.14. It turns out that distributions of the maximum
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Fig. 3.15: The maximum wall shear stress defined over both time and space as a function of film
thickness l/D. Results for different impact velocity Vi are plotted. The vertical axis is normalized
by the maximum wall shear stress in the dry case, τmax(rmax; 0,Vi) = 199 kPa, 308 kPa, and 402
kPa, respectively, for Vi = 30 m/s, 40 m/s, and 50 m/s. The simulation data are fitted to Eq. (3.22)
with a = 4.5 and b = 0.22.

shear stress (Eq. (3.26)) for each value of the liquid film thickness l/D are very similar,

under normalization by the characteristic shear stress τc (Eq. (3.25); see its value in Table

3.2), between the different impact velocities Vi of our concern. For each distribution of

the maximum wall shear stress τmax(r), we can find one peak position rmax at which the

value τmax(rmax) is maximal. The peak position rmax is found to be shifted away from the

impact point (r = 0) under the existence of the liquid film at the wall. Since the peak

wall shear stress τmax(rmax; l/D,Vi) found in Fig. 3.14 can be interpreted as an important

quantity in the sense of particle removal, we plot it with varying the values of l/D and Vi

in Fig. 3.15. For the case of Vi = 50 m/s, we perform the simulations with l/D = 0.1,

0.2 and 1 (in addition to l/D = 0, 0.25 and 0.5) and plot the results in this figure. Now

that the peak wall shear stress is normalized by that for the case of l/D = 0, its value is

indistinguishable between the different values of Vi of our concern. Obviously, the peak

59



wall shear stress is suppressed by having the thicker liquid film, implying that the particle

removal performance will be lowered under the existence of the film. The suppression

rate may be modeled by Eq. (3.22) as in the case of the water-hammer pressure in Fig.

3.9(b); the fitting result with a = 4.5 and b = 0.22 shows reasonable agreement with the

simulation data.

3.7 Particle removal judgement
Given the fluid flow computation, we finally discuss, with the one-way-coupling manner

(Section 3.2.4), the removal of spherical polystyrene particles attached at the wall of a

quartz surface with their diameter d set at 10 nm. In Fig. 3.16, the spatiotemporal evolu-

tion of the dimensionless parameter R that represents the ratio of hydrodynamic torque to

adhesion-supported torque (see Eq. (3.20)) is plotted for different film thickness l/D and

impact velocity Vi. We judge particle removal whenR > 1 under which the hydrodynamic

torque acting on the attached particles defeat that supported by the adhesion force of van

der Waals type. In these plots, the threshold value (R = 1) is depicted by solid lines.

Obviously, wall shear stress is never generated at the impact point (r = 0) about which

flow is symmetric, so that particles sitting at r = 0 are never removed by the hydrody-

namic effects (R = 0); the threshold line (R = 1) never intersects the origin (r, t) = (0, 0).

Once the spot of concern is swept with the threshold line, the particles are considered

to be removed. Note that for the case of Vi = 30 m/s (the lowest impact velocity) and

l/D = 0.5, the value of R is smaller than unity in the entire space; we cannot obtain any

particle removal in this case. Neglecting reattachment of the removed particles, we can

define the particle removal area A (of annular shape) by

A = π
(
R2
max − R2

min

)
, (3.27)

where Rmin and Rmax stand for the minimum and maximum radial positions of the thresh-

old lines (R = 1), respectively (see Fig. 3.16). In Fig. 3.17, we plot the computed values
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of A for different film thickness l/D and impact velocity Vi. It is obvious that the cleaning

performance becomes maximal (with the largest A) in the dry case l/D = 0 and lower

(with smaller A) as the film thickness increases. As expected, the lower impact velocity

also gives rise to the lower cleaning performance. So far, we have numerically exam-

ined the acoustics and hydrodynamics of high-speed droplet impact against dry/wet rigid

walls and then evaluated the removal of small particles attached at the wall surface in

the one-way coupling manner. In the context of droplet-impact-based cleaning, we can

confirm, from these simulations, a trade-off relation between the cleaning performance

enhancement and the erosion reduction. With the higher impact velocity and the thinner

liquid film, the cleaning performance will be higher but the erosion will be more likely to

occur. Technically, there is a need to explore the optimal cleaning conditions at which the

cleaning is more efficient but less erosive.
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Fig. 3.16: Spatiotemporal evolution of dimensionless parameter R, Eq. (3.20), to judge particle
removal for droplet impact velocity at (a) Vi = 30 m/s, (b) 40 m/s, and (c) 50 m/s, particle diameter
fixed at d = 10 nm and for different film thickness (i) l/D = 0, (ii) l/D = 0.25, and (iii) l/D = 0.5.
The threshold value (R = 1) is depicted by solid lines; R > 1 means particle removal. Gray and
black dots depict the position and time of Rmin and Rmax, respectively.
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Fig. 3.17: The particle removal area A, calculated according to Eq. (3.27) and the results in Fig.
3.16, with varying film thickness l/D and droplet impact velocity Vi.

3.8 Summary
In summary, high-speed droplet impact against dry/wet rigid walls was simulated and

discussed it in the context of particle removal. We reproduced high-speed impact of a

spherical water droplet (200 µm in diameter) with varying the impact velocity (up to 50

m/s) and the thickness of a water film at the wall surface (up to the droplet diameter), based

on the compressible Navier–Stokes equations. Note that the impacting droplet is assumed

to behave axisymmetric. First, the acoustic phenomena in the droplet-impact problem

was quantified. The maximum wall pressure beneath the droplet center is found to be

attenuated by having the thicker liquid film and its decay rate can be fitted empirically by

an exponential function (see Fig. 3.9). Next, we quantified the wall shear flow generation

after the acoustic events (see Fig. 3.10). In the dry wall case, the side jet forms in the

lateral direction to the wall surface (see Fig. 3.6) and very large wall shear stress appears

just after the passage of the moving contact line (see Fig. 3.11). On the contrary, in the

wet wall cases, the jet results in the formation of a crown-shape free surface (see Fig. 3.7
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and 3.8). The wall shear stress is damped significantly under the presence of the liquid

film; flow separation can be caused by flow deceleration in the crown-shape liquid film,

depending on the film thickness (relative to the droplet diameter as shown in Figs. 3.12

and 3.13). Finally, we considered the case of very small polystyrene particles (10 nm

in diameter) attached at the wall of a quartz surface and evaluated the particle removal

from a balance of the adhesive force (of van der Waals type) and the hydrodynamic force

(under the Stokes’ approximation) as described in Eq. 3.20. Results are summarized in

Fig. 3.16. As expected, the particle removal area is augmented by having larger impact

velocity and thinner films. We may say that the present simulation approach is helpful

when it comes to exploring the optimal cleaning conditions at which the performance of

cleaning by the wall shear flow is maximal while the erosion caused by the water-hammer

shock loading is minimal.
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Chapter 4

Wall shear flow generated by bubbles
collapsing near a rigid wall

4.1 Introduction and outline
In this chapter, we perform the three dimensional, compressible Navier–Stokes simulation

of the spherical bubble collapse near a flat rigid wall to clarify the wall shear flow forma-

tion. To examine the fundamental characteristics, we simulate the so-called Rayleigh

collapse of air bubble (100 µm in radius at equilibrium state) near the wall, whose driver

is considered as sudden pressure increase (around 20 to 100 times larger than one atmo-

sphere) at surroundings of the bubble (Rayleigh, 1917). That is, we only focus on the

stage of the bubble collapse, which can dominantly play a role in cleaning, for simplicity

while the bubble growth may not involve the high-speed flow generation near the wall.

This simple problem is reasonable to compute with sufficient resolutions and helpful to

understand the detailed dynamics of the microjet formation in the nonspherical collapse.

Here, we carry out the parametric studies about the standoff distance from the wall to

the bubble center. Finally, we discuss the cases of collapsing bubble pair and examine

the effect of bubble-bubble interactions in wall shear flow formation by changing the dis-

tance between two bubbles. That is, the bubble dynamics of our concern includes three

dimensional behavior. To discuss both the single bubble collapse and two bubbles col-

lapse with the same numerical framework and resolutions, we perform three dimensional
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Table 4.1: Simulated cases of parametric studies for driving pressures ∆p, standoff dis-
tances h and inter-bubble distances d. Single bubble collapse is noted as d = ∞, and
2.2 ≤ d < ∞ means collapse of a pair of the same-sized bubbles

∆p [MPa] h/R0 d/R0

2 1.01 ∞
2 1.1 ∞
2 1.2 ∞
2 1.3 ∞
5 1.01 ∞
5 1.1 ∞
5 1.2 ∞
5 1.3 ∞
10 1.01 ∞
10 1.1 ∞
10 1.2 ∞
10 1.3 ∞
5 1.1 2.2
5 1.1 2.3
5 1.1 2.4
5 1.1 2.5
5 1.1 3.0
5 1.1 4.0
5 1.1 8.0

simulations in every case.

This chapter is organized as follows. Physical model and problem setup are described

in Section 4.2 and the simulation method we use is verified in Section 4.3. In Section 4.4,

we first show the simulation of single bubble collapse near a rigid wall with varying the

driving pressure (2 to 10 MPa) and the bubble to wall distance (101 to 130 µm). Finally,

the collapse of two bubbles near a rigid wall with varying the inter-bubble distance is

simulated in Section 4.5 and it reports the remarkable wall shear stress decaying due to

the bubble-bubble interaction.
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Fig. 4.1: The initial configuration and computational domain of (a) a single spherical air bubble
in water and (b) a bubble pair. The (no-slip) rigid wall is set at the y-z plane (x = 0) and the bubble
centers at standoff h along the x axis. The standoff distance h, the inter-bubble distance d and the
pressure increase ∆p are computational parameters. Since the problem is axisymmetric about the
x axis, the flow in one quadrant of the y-z plane (y ≥ 0 and z ≥ 0) is simulated. The length is
normalized by the initial radius of the bubble, R0.
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Table 4.2: Physical properties of water (ambient) and air (bubble) at 300 K used in the simulation
(Del Grosso & Mader, 1972; Le Métayer & Saurel, 2016).

Liquid (water, m = L) Gas (air, m = G)
µm [Pa·s] 8.53 × 10−4 1.85 × 10−5
cm [m/s] 1500 344
ρm [kg/m3] 1000 1.18
γm [-] 1.09 1.40
P∞,m [Pa] 3.43×108 0
bm [kg/m3] 6.61×10−4 0
qm [J/kg] -1.17×106 2.08×106
Cv,m [J/(kgK)] 3610 955
κm [W/(mK)] 6.15 × 10−1 2.61 × 10−2

Table 4.3: Values of characteristic velocity U, the characteristic water-hammer pressure pwh,
Rayleigh collapse time tc (Eq. (4.4)), microjet-based Reynolds numbers (Eq. (4.1)) corresponding
to different driving pressures ∆p for a bubble (100 µm in radius) in water.

∆p [MPa] U(=
√
∆p/ρL) [m/s] pwh(= ρLcLU) [MPa] tc [µs] Rejet

2 45 67.5 2.05 1048
5 71 106.5 1.29 1658
10 100 150.0 0.92 2344

4.2 Physical modeling

4.2.1 Problem description

The initial configuration of a air bubble (of radius R0) located at distance h from a flat rigid

wall (x = 0) in semi-infinite compressed water at pressure pL and temperature T0 = 300 K,

together with the computational domain, is illustrated in Fig. 4.1(a). The bubble pressure

is initially at pG = 1 atm and the bubble collapse is driven by uniform pressure increase

∆p = pL−pG in the surrounding liquid at t = 0. The initial (maximum) bubble radius is set

at 100 µm for every cases, whose size corresponds to the resonant radius under 28 kHz-

sonication when the effect of the wall is considered (Strasberg, 1953). This low-frequency

ultrasound matters in degrease cleaning where the drastic cavitation bubble collapse may
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become a key factor in the cleaning. When the inertial bubble collapse is so violent, vapor

(condensible gas) in the bubble is known to behave like a non-condensible gas (Fujikawa

& Akamatsu, 1980; Kobayashi et al., 2018). Thus, the bubble contents is modeled as air

(non-condensible, ideal gas) for simplicity, while the actual cavitation bubble is filled with

a dissolved gas (air) and vapor. Likewise, mass transfer and vaporization are neglected in

the short time scale of our concern. Since we are interested in wall shear flow formation

in liquid phase and inertial effect is dominant in the time scale of our concern, we do not

consider capillary force (to be demonstrated in the end of the section). On the other hand,

heat transfer is taken into account because the collapsing bubble occurs great temperature

increasing by the shock emission and the gas compression within the bubble (Beig et al.,

2018). Due to the symmetry of the problem, computational domain is reduced for a

quarter of a bubble. To be accurate, this problem may suffice axisymmetric assumption,

but our single bubble simulation is conducted in three dimensional domain to compare

with the result of the two bubbles collapse simulation in the same resolution. As illustrated

in Fig. 4.1(b), we then simulate the Rayleigh collapse including the effect of the bubble-

bubble interaction. In reality, the cavitation generally involves cloud formation as seen

in the work of Hansson et al. (1982). For instance, in the ultrasonic cleaning, numerous

cavitation bubbles are randomly nucleated forming a cluster and come into play in the

cleaning (Yamashita & Ando, 2019 in press). Here, our study focuses the interaction

between two bubbles located horizontally to the wall at distance h. Both bubbles have the

same radius R0 because the adjacent bubbles in cloud bubbles are usually similar in size.

The inter-bubble distance is denoted by d, which roughly represents the void fraction of

the bubble cloud. In this problem setup, because of the plane symmetry at y = 0 and

z = 0, we only simulate a half of bubble and the another bubble is treated as a mirrored

bubble. The physical properties of air bubble and surrounding water are set as with the

case of single bubble. To qualitatively evaluate the near-wall bubble dynamics and the
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wall shear flow formation, we perform parametric studies by changing three parameters:

• Driving pressure ∆p

• Standoff distance h

• Inter-bubble distance d

Simulated cases are listed in Table 4.1 and the detailed explanations are as follows.

First, we set at three different driving pressure (∆p = 2, 5, 10 MPa) as representa-

tive examples (Beig et al., 2018). The purpose of this study is to compare the simulated

microjet velocity with previous experiments, which is one of the most essential observ-

ables for wall shear flow formation. In previous works, researchers have reported that

the microjet velocity is scaled by
√
∆p/ρL for submillimeter- or millimeter-sized bubbles

because these bubbles dominantly collapse in an inertial fashion (Supponen et al., 2016;

Beig, 2018). Thereby, the microjet characteristics are only determined by the standoff

distance in the case of the near-wall collapse.

The standoff distance h/R0 ranges from 1.01 to 1.3 which is so close that the micro-

jet can directly impinges the wall. Here, a surface-attached bubble is beyond our scope

because the cleaning target is usually hydrophilic in wafer cleaning (e.g., quartz, glass

or silicon). Then, we only focus on the wall shear formation through the first collapse

and until the secondary collapse because of the scarce experimental knowledge for the

latter stage of the collapse in context of the radial spreading flow formation. Since the

collapsing bubble often re-expands and collapses again, with forming pancake-like flat-

tened shape or involving fragmentation (Yang et al., 2013; Reuter et al., 2017b; Zeng

et al., 2018), it is challenging to provide physically reliable simulation results about these

phenomena.

The inter-bubble distance d/R0 ranges from 2.2 to 8 and the standoff distance h/R0 is

then fixed at 1.1. It is known that cavitation bubbles mainly nucleate near the wall due
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to the presence of the cavitation sites. Furthermore, the pressure oscillation amplitude is

emphasized by the interaction with the wall. Accordingly, the dynamics of the near-wall

bubble pair is of great concern to understand the effect of bubble-bubble interactions in

the wall shear flow formation.

The Reynolds number for this problem is based on the microjet characteristics:

Rejet =
2ρLURjet

µL
, (4.1)

U =

√
∆p
ρL

, (4.2)

Rjet ≈
R0

10
, (4.3)

where ρL and µL are water density and shear viscosity (see Table 4.2),U is the characteris-

tic velocity and Rjet is an approximately averaged microjet radius suggested in the previous

work (Ohl et al., 2006b). On the other hand, theWeber numberWe = 2ρLRjetU2/S , where

S is the surface tension (72 mN/m for water at 300 K), is calculated as 281 at minimum in

our parameter space. Thus, the effect of surface tension is not important for the microjet

and the wall shear flow formation. The time is normalized by the Rayleigh collapse time

(Brennen, 2014).

tc = 0.915
R0

U
. (4.4)

We note that Eq. (4.4) is inviscid formulation because the time of inertial bubble col-

lapse is barely affected by the liquid viscosity. For the submillimeter-sized bubble of our

concern, viscous effects may locally appear near the wall during the event of the bubble

collapse. These values of Rejet and tc for the three different ∆p are summarized in Table

4.3.
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4.2.2 Governing equations for the multi-component fluid flow

To model the flow of our concern, there is a need to consider all compressibility, viscosity

and heat conduction of surrounding water (and the inner air). Hence, we solve Navier–

Stokes equations for compressible flow consisting of gas and liquid components (with

no phase change) in five-equation formulation (Allaire et al., 2002; Perigaud & Saurel,

2005; Murrone & Guillard, 2005) under interfacial pressure and temperature preservation

(Beig & Johnsen, 2015). Here, mass conservation (Eqs. (4.5-a) and (4.5-b)) is treated for

liquid and gas components separately, while momentum and energy conservation (Eqs.

(4.5-c) and (4.5-d)) is formulated for the mixture. The numerically diffused interfaces are

represented by void fraction and advected by Eq. (4.5-e).

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αGρG
αLρL
ρui
E
αL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∂

∂x j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αGρGuj

αLρLuj

ρuiu j + pδi j
u j(E + p)
αLuj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∂

∂x j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
Ti j

uiTi j − Qj

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
Γ
∂u j

∂x j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(a)
(b)
(c)
(d)
(e)

(4.5)

Here, αm is the volume fraction of component m where m = G and L stand, respectively,

for the gas phase (air) and liquid phase (water), ρm is the density of component m, ρ is the

mixture density (to be defined by Eq. (4.11)), indicators i and j denote x-, y-, z-directions,

hence, ui and uj are three dimensional velocity components (u, v, w), p is thermodynamic

pressure, δi j is the identity tensor, E is total energy (per unit volume), Ti j is the viscous

stress tensor (Eq. (4.6)), Qj is the heat flux calculated by Fourier’s law (Eq. (4.7)) and

Γ∂uj/∂x j (Eq. (4.8)) is a dilatation-dependent source term that represents the mixture

compressibility (Miller & G., 1996; Tiwari et al., 2013; Beig & Johnsen, 2015).

Ti j = µ

(
∂ui
∂x j

+
∂uj

∂xi
− 2
3
∂uk
∂xk
δi j

)
, (4.6)

Qj = −κ
∂T
∂x j

, (4.7)
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Γ =
αLρGc2G

αLρGc2G + αGρLc2L
, (4.8)

where µ is the mixture viscosity (to be defined by Eq. (4.11)), κ is the mixture heat

conductivity (to be defined by Eq. (4.11)) and cm is the speed of sound in componentm. In

the formulation of viscous stress tensor (Eq. (4.6)), bulk viscosity is neglected according

to Stokes’ hypothesis, for our main target is to evaluate wall shear generation associated

with the bubble collapse. The dilatational source term described in Eqs. (4.5-e) and (4.8)

is classically neglected because it is not important for weak compressible fluid and it may

violate the robustness of the simulation (Beig & Johnsen, 2015). However, it is known that

this source term crucially comes into play in the case of compressible multicomponent

flow including drastic volume changes like bubble oscillation (the contribution of this

term is also confirmed in Section 4.3.3) (Tiwari et al., 2013; Beig & Johnsen, 2015).

Thermodynamic pressure p and temperature T are given by the Noble-Able stiffened

gas (NASG) equations of state (Le Métayer & Saurel, 2016):

E − 1
2
ρuiui − ρq =

p(1 − ρb)
γ − 1 +

γP∞(1 − ρb)
γ − 1 = ρCvT + P∞(1 − ρb), (4.9)

where γ, P∞, q, b and Cv are thermodynamic properties for the mixture formulation and

these values we use are listed in Table 4.2. In comparison to the original stiffened gas

equation of state, the NASG equation of state is obeyed by both liquid and gas for wide

ranges of temperature (Le Métayer & Saurel, 2016). Here, we should note that our sim-

ulation still neglect the temperature dependence in these thermodynamic properties in-

cluding shear viscosity µ because our great interest is liquid flow field near a rigid wall

where the temperature rise is assumed to be relatively small in comparison to the vicinity

of the bubble surface. According to a previous simulation of Beig et al. (2018), which

investigates the temperature increase during the bubble collapse near a wall, the bubble

collapse accompanies a great temperature increase (up to O(100 K)+T0, instantaneously)

at gas phase within the bubble. However, it is also demonstrated that the collapsing bubble
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hardly increases the surrounding water temperature. In addition, the Prandtl number for

water is calculated as Pr = µLCv,L/κL = 5 from Table 4.2. That is, heat transfer from the

inner bubble to the surrounding water is not fully achieved during the short time scale of

the wall shear flow formation after the microjet impingement. Therefore, the assumption

of constant thermodynamic properties is reasonable when we investigate the wall shear

flow formation in water.

As with Section 2.2.2, mixture quantities for the current physical modeling are sum-

marized as follows:

αG + αL = 1, (4.10)

φ = αGφG + αLφL, (4.11)

φ =
(
ρ µ κ γ P∞ q b Cv

)T
, (4.12)

φm =
(
ρm µm κm γm P∞,m qm bm Cv,m

)T
, (4.13)

where φ is a vector composed of respective mixture physical properties in Eq. (4.5) to

(4.9) and φm is a vector composed of respective physical properties of water (m = L) and

air (m = G) (see Table 4.2).
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4.3 Numerical modeling

4.3.1 Spatial discretization and temporal integration

The numerical method we use is based on the solution-adaptive, shock-interface capturing

method proposed by Beig & Johnsen (2015), which can automatically adjust optimum

scheme for computation of numerical fluxes and thereby achieves both high-resolution

computation and reduction of simulation time. For spatial discretization, a fifth-order

finite-volume WENO scheme with the HLL approximate Riemann solver (Harten et al.,

1983) is adopted only for discontinuous regions (i.e., material interface and shock front).

On the other hand, the fourth-order central differencing scheme is adopted for smooth re-

gions. The detection of discontinuities is carried out by calculating a discontinuity sensor

function at all computational cells (Henry de Frahan et al., 2015). The time integration

is handled by a third-order, total variation diminishing Runge–Kutta scheme (Gottlieb

& Shu, 1998) with sufficiently small Courant number (< 0.2) (Eq. (2.13)) and diffusion

numbers for viscosity DV and temperature DT,

DV = ∆tmax
i, j,k

⎛
⎜⎜⎜⎜⎜⎝
µi, j,k

ρ∆x2i
,
µi, j,k

ρ∆y2j
,
µi, j,k

ρ∆z2k

⎞
⎟⎟⎟⎟⎟⎠ < 5.6 × 10−2, (4.14)

DT = ∆tmax
i, j,k

⎛
⎜⎜⎜⎜⎜⎝
κi, j,k

ρCv∆x2i
,
κi, j,k

ρCv∆y2j
,
κi, j,k

ρCv∆z2k

⎞
⎟⎟⎟⎟⎟⎠ < 1.1 × 10−2. (4.15)

Finally, we note that the current numerical implementation for viscous flow problem

is preliminary verified by solving Stokes’ first problem as demonstrated in Section 3.3.3.

Furthermore, the validity of the solution-adaptive, high-resolution scheme for multicom-

ponent flow is demonstrated by single spherical bubble collapse simulation in free field in

Section 4.3.3.
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No-slip BC

x/R0

y/R0z/R0
0.03

(0,0,0)

(4,0,0)

(0,0,2)

(0,2,2) (4,2,2)

(4,0,2)

h/R0

(fine mesh region)

Fig. 4.2: Computational grids in which initial configuration of the single bubble near a rigid
wall for the case of h/R0 = 1.1 is depicted by isosurface of αL = αG = 0.5. No-slip boundary
conditions (BCs) are applied on y-z plane (x = 0) as a rigid wall. Reflecting BCs are applied on x-z
plane (y = 0) and x-y plane (z = 0) because of the symmetry of the problem, while non-reflecting
BCs are applied on the other planes. Refined computational grids are distributed near the wall in
0 ≤ x/R0 ≤ 0.03.
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4.3.2 Computational domain

The computational grid with the initial configuration of the single bubble location for

the case of h/R0 = 1.1 is presented in Fig. 4.2. Grid stretching across near the rigid

surface (x = 0) is applied in order to correctly resolve the wall shear flow, while the both

grids in y- and z-directions are uniform. Here, we show the grid whose resolution is 250

points in 0 ≤ x/R0 ≤ 0.03. The cell Reynolds number of this resolution, which quantifies

the effect of spurious numerical viscosity, is Recell = ρLU∆x/µL = 1.2 near the wall for

the case of ∆p = 5 MPa. Therefore, it is sufficient to resolve near-wall viscous flows

correctly (Vreugdenhil, 1982; Thompson et al., 1985). On the other hand, in the bulk

region (x/R0 > 0.03), 64 grid points are uniformly distributed. For the cases of different

bubble-wall distance and the cases of two bubbles, we use the same grid resolution as

illustrated in Fig. 4.2.

Due to the symmetry of the problem as mentioned in Section 4.2.1, we apply the

reflecting boundary conditions (BCs) along both planes of y = 0 and z = 0. A rigid wall

at x = 0 is treated as no-slip BCs. Since we only consider the cases that bubble is initially

detached, any slip models are not needed to physically regularize the velocity and stress

singularities at viscous boundary layer as discussed in Chapter 3. For evaluation of the

wall shear stress,

τwall =

(
τy(y, z, t; h/R0,∆p)
τz(y, z, t; h/R0,∆p)

)
=

(
Txy(0, y, z, t; h/R0,∆p)
Txz(0, y, z, t; h/R0,∆p)

)
, (4.16)

respective velocity gradients in Eq. (4.6) is calculated by a third-order one-sided differ-

ence. At the rest of far-field boundaries, we apply nonreflecting BCs of Thompson type

(Thompson, 1987).

4.3.3 Verification: Rayleigh collapse in free field

To see whether the current numerical model can resolve the multicomponent flow, we

numerically solve the collapse of an air bubble in infinite water driven by sudden pressure
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Gilmore Eq. (2.7)

Fig. 4.3: Temporal evolution of volume equivalent radius of a spherically collapsing bubble in
water (∆p = 5 MPa). The triangle markers and the circle markers correspond to the simulation
results with and without the assumption of Γ = 0 in Eq. (4.5-e) for three different grid resolutions.
The black solid line depicts of the analytical solution of the Gilmore type.
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rise, known as Rayleigh collapse (Rayleigh, 1917). To be consistent with our main sim-

ulation, physical properties are set at the same as listed in Table 4.2. Accordingly, initial

bubble radius is set at R0 = 100 µm and the driving pressure is set at ∆p = 5 MPa, for in-

stance. As mentioned in Section 4.2.2, we also compare two different advection equations

for volume fraction: one includes the dilatational source term Γ∂uj/∂x j (seen in Eqs. (4.5-

e) and (4.8)) and another does not. For numerical setup, we use the three dimensional,

uniform Cartesian coordinates and simulate with three different grid resolutions: 32, 64

and 128 grid points per initial bubble radius R0.

Figure 4.3 shows the simulation results of the time evolution of the volume-equivalent

bubble radius:

R
R0

=

(
V
V0

) 1
3

, V(t) =
!

αG(x, y, z, t)dxdydz, (4.17)

where V is the bubble volume. The time is normalized by the Rayleigh collapse time tc

Eq. (4.4). The simulation results are compared with the solution of the Gilmore Eqs.

(2.7), which can consider the liquid compressibility (Gilmore, 1952). The inner gas of

the bubble is then assumed to be adiabatic. Here, we find good agreement between the

analytical solution and the results including the source term, while the other results leads

serious damping without the source term. Moreover, the grid convergence is fairly as-

sured in the case of 64 grid points per R0, which is used in our main simulation of the

nonspherical bubble collapse for the bulk region.

4.4 Collapse of a single bubble near a rigid wall

First, big picture of the simulation results for single bubble collapse near a rigid wall is

presented in Fig. 4.4. The temporal snapshot of the velocity magnitude, wall shear stress

and pressure distributions on the rigid wall (plane of x = 0) and wall-normal middle plane

of the bubble (plane of y = 0) are presented for the case of (h/R0,∆p) = (1.1, 5 MPa) as
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a representative. The frame (a) corresponds to the initial condition of this problem. The

frame (b) shows the process of bubble shrinking driven by the pressure gap ∆p between

the air bubble and surrounding water. As illustrated by vectors in velocity and wall shear

stress plot, the bubble shrinking gives rise to the focusing of the liquid flow on the bubble

center. Then, the presence of the wall plays a key role for the nonspherical bubble collapse

because it violates the spherical symmetry of the flow around the bubble in contrast to the

case of the Rayleigh collapse in free field (introduced in Section 4.3). Since the presence

of the wall corresponds to the displacement of the flow, the liquid velocity at the distal

side of the wall relatively increases. Finally, this local acceleration of the flow results in

formation of the reentrant, microjet as shown in the frame (c).

The normalized jet velocity is increasing over the characteristic velocity of the spheri-

cal collapseU (Eq. (4.2)). This result is consistent with previous studies (Supponen et al.,

2016; Beig, 2018). The quantitative agreement is confirmed in Section 4.4.1.

The evolution of wall shear stress, τwall (Eq. (4.16)), shows that generation of wall

shear flow falls into two stages: shock emission of the bubble collapse and the microjet

impact. The maximum wall shear stress is obviously seen in the stage of the jet impact.

As deduced in Section 4.2.1, the flow becomes axisymmetric and the x-axis corresponds

to the axis of symmetry (i.e., τy(y, 0, t) ≈ τz(0, z, t)). To understand the formation of wall

shear flow of our great interest, near-wall velocity profiles is first presented in Section

4.4.2. After the investigation of the boundary layer development, the mechanism of wall

shear stress development over time and space is demonstrated in Section 4.4.3. On the

other hand, the wall shear stress is normalized by a characteristic value τc, which is also

explained in the same section.

The simulated pressure rising is also reasonable because its evolution reaches the same

order of the water-hammer pressure defined by the characteristic velocity pwh = ρLcLU.

Since the wall pressure evolution is fully discussed in previous experiments and simula-
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tions for understanding the surface erosion and for biomedical applications (Johnsen &

Colonius, 2006; Coralic & Colonius, 2014; Tiwari et al., 2015; Chahine & Hsiao, 2015),

detailed discussion of the wall pressure is beyond the our scope.

4.4.1 Speed of the microjet

The microjet speed of the collapsing bubble is an important parameter to understand the

subsequent wall shear flow formations. Moreover, it is usually discussed in experimen-

tal studies because of the straightforwardness in its measurement. Here, we quantify the

maximum jet speed as a function of standoff distance h/R0. The maximum speed is de-

fined as the maximum value at a point over time where it suffices αL = αG = 0.5 on

x-axis:

ujet = max
t/tc

|u(xi, 0, 0, t)| , where αL(xi, 0, 0, t) = αG(xi, 0, 0, t) = 0.5. (4.18)

Simulation results are compared with previous experimental data of the laser-induced

cavitation bubble collapse near a rigid/free surface (Philipp & Lauterborn, 1998; Brujan

et al., 2002; Supponen et al., 2016). Supponen et al. (2016) reports that the jet speed

is scaled by U and that only depends on the standoff distance for the case of bubble

collapse near a rigid wall. This scaling law may be obvious because the nonspherical

bubble collapse is only caused by geometric conditions like the presence of the wall or

free surface.

Simulation results with previous experimental data are summarized in Fig. 4.5. The

difference of the driving pressure is found to be scaled by the characteristic speed U. In

comparison to the experimental data, the simulated jet speed takes the same order values

and the similar trend is seen in its dependency on the standoff distance: the further standoff

distance gives rise to the higher microjet speed. Regarding the fact that numerical results

slightly overtakes the experimental data, we note that our problem description (Rayleigh

collapse) is not exactly the same phenomena as the laser-induced bubble collapse. While
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Fig. 4.4: Snapshots of the bubble collapse near a rigid wall at representative times (a) to (c) for
the case of (h/R0,∆p) = (1.1, 5 MPa), plotting the distributions of the velocity magnitude with
vector (upper middle plane), the wall shear stress magnitude with vector (upper wall plane) the
pressure (lower middle plane and wall plane). The nominal positions of air-water interfaces (αL =

αG = 0.5) is depicted as black lines in middle plane and white surface in the three-dimensional
view listed left.
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Rayleigh collapse (the present simulation)

Laser-induced cavitation bubble collapse
(previous experiments)

1 1.5 2 2.5 3
100

101

102

Fig. 4.5: Maximum microjet velocity of the collapsing bubbles, Eq. (4.18), as a function of the
standoff distance h/R0. Results for different driving pressure ∆p are plotted. Black markers depict
previous experimental measurement of the maximum jet velocity of the laser-induced bubbles by
Philipp & Lauterborn (1998); Brujan et al. (2002); Supponen et al. (2016). Dashed black line
depicts the power law fitting, 4.6(h/R0)2, proposed by Supponen et al. (2016).

the far-field pressure in the actual experiment of the laser cavitation is atmospheric, the

Rayleigh collapse problem assumes high pressure rise in infinite surrounding water. That

is, inertial forces that drives bubble collapse becomes larger than the experiment. Further-

more, experiments may underestimates the maximum velocity due to the limited frames

per second and pixel resolutions of high-speed cameras.

4.4.2 Shear flow formation

To investigate the shear flow in details, we plot the near-wall horizontal velocity w at

several times in Fig. 4.6. Results are shown for ∆p = 5 MPa and four different standoff

distances (h/R0 = 1.01, 1.1, 1.2 and 1.3). The shear flow is probed at two positions

(z/R0 = 0.05 and 0.33), respectively. Here, boundary layer development is observed

in every cases. These results also indicates the grid resolution is sufficient enough for

the boundary layer, for the boundary layer is resolved by tens of grid points. While the
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Fig. 4.6: Temporal evolution of the near-wall z-velocity profiles at (a) z/R0 = 0.05 and (b)
z/R0 = 0.33. The x coordinates in the left-hand and right-hand sides are normalized by initial
bubble radius R0 and characteristic boundary layer thickness δc, respectively. The results for four
different standoff distance are presented: (i) h/R0 = 1.01, (ii) h/R0 = 1.1, (iii) h/R0 = 1.2, (iv)
h/R0 = 1.3.
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Fig. 4.7: (a) The (nominal) air-water interface profiles on the plane of y = 0, b(z, t), defined
by αG = αL = 0.5 (the left vertical axis) and the z-velocity distributions w(bmin/2, 0, z, t) (the
right vertical axis). (b) Distributions of the wall pressure pwall(0, z, t) (the left vertical axis) and
the pressure gradient dpwall/dz (the right vertical axis). The pressure is normalized by the water
hammer pressure, pwh = ρLcLU (see Table 4.3). Results are shown at representative times (i) to
(iii) for the case of (h/R0, ∆p) = (1.1, 5 MPa).

85



vertical axis of wall-normal distance is normalized by initial bubble radius on left-hand

side, the right-hand side is normalized by the characteristic boundary layer thickness as

with Section 3.6.2:

δc =
2Rjet√
Rejet

. (4.19)

The values of δc for several Rejet is listed in Table 4.4.

First, as seen in velocity profiles near the bubble center (z/R0 = 0.05), temporal evo-

lution of the boundary layer development is clearly observed in the latter times. On the

other hand, the fluid is found to be almost static before the timing of the bubble collapse

(plotted as blue and green solid line in Fig. 4.6). As with the study of the droplet impact,

the boundary layer thickness measured near the bubble center tends to approach the char-

acteristic value δc. It is interesting that the shear flow velocity outside the boundary layer

tends to decrease as the standoff distance becomes further, on the contrary to the trend of

the maximum jet speed (see previous Section 4.4.1). However, it is obvious because the

microjet speed is damped during the travel to the wall. That is, this velocity damping can

overwhelm the effect of the velocity increasing due to taking a longer standoff distance.

Focusing on the temporal evolutions of the velocity outside the boundary layer, it takes

a peak value at a particular time and then starts to decelerate. Namely, it is important to

investigate the wall shear flow formation in short period after the jet impact, which is sim-

ilar to the study of the droplet impact. Judging from these features of the wall shear flow,

the microjet impact of the collapsing bubble may have the similar features to the droplet

impact in terms of the wall shear flow formation. In this sense, the standoff distance of

the bubble plays a similar role with the water film thickness in the study of droplet impact

against a wet wall.

Second, at the further probe point (z/R0 = 0.33), it is obvious the boundary layer

becomes thicker for respective cases. More importantly, the shear flow is found to be

separated for cases (b-i) and (b-ii) in Fig. 4.6. On the other hand, such flow separation
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Table 4.4: Values of characteristic boundary layer thickness δc (Eq. (4.19)) and wall shear stress
τc (Eq. (4.20)) corresponding to different driving pressures ∆p for a bubble (100 µm in radius) in
water.

Rejet δc [µm] τc [kPa]
1048 0.62 62
1658 0.50 123
2344 0.41 206

does not occur in cases of longer standoff distance ((b-iii) and (b-iv)). One possible sce-

nario can be explained by the relation between the near-wall velocity and the pressure

profiles on the wall according to the discussion in Section 3.6.2. Figure 4.7 (a) shows

the (nominal) air-water interface positions (αG = αL = 0.5), which illustrates the breadth

between the bubble interface and the wall, at several times for the case of (h/R0, ∆p)

= (1.1, 5 MPa) as a representative. In this figure, we overlay the horizontal near-wall

velocity to the wall w(bmin/2, 0, z, t), as a representative velocity between the bubble inter-

face and the wall, where bmin denotes the minimum breadth (in the x direction) from the

wall to the bubble interface. Accordingly, the flow is dramatically decelerated through

the bubble location, while the flow is accelerated below the bubble. As a result of the

flow deceleration, a remarkable adverse pressure gradient (> 0) arises around z/R0 = 0.4

at respective time frames in Fig. 4.7 (b). This flow deceleration may be related to the

volume conservation of the (effectively incompressible) liquid flow: namely, the near-

wall flow passage consisted by the air-water interface may have a similar feature with the

converging-diverging nozzle. That is, the flow reaches the maximal velocity at the throat

(with bmin) and is decelerated in the diverging area (after the throat passage). The flow

deceleration is augmented by taking the shorter standoff distance (e.g., h/R0 < 1.1 from

our study). Therefore, from a viewpoint of flow separation, we find the analogy between

the droplet impact and the bubble collapse.
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4.4.3 Wall shear stress evolution

The evolution of the wall shear flow is assessed here quantitatively by plotting the wall

shear stress. According to the same manner in Section 3.6.2, the wall shear stress is

normalized by the characteristic wall shear stress:

τc = µL
U
δc
. (4.20)

The value of τc for several Rejet is listed in Table 4.4. In Fig. 4.8, we plot the spatiotempo-

ral evolution of the wall shear stress on z-axis τz(0, z, t) for ∆p = 5 MPa and four different

standoff distances h. As common features for four cases, streak of the wall shear stress

appeared due to the shock emission from the collapsing bubble. Subsequently, the strong

wall shear flow is generated near the bubble center due to the miro-jet impingement. It

is obvious that the wall shear stress becomes stronger as the bubble locates with shorter

standoff distance. On the other hand, the shock-induced shear stress appears earlier by

taking the further standoff distance. That is, the collapse time is found to be reduced

in this case as well as the jet speed increases shown in Fig. 4.5. Moreover, the flow

separation is only found in the cases of relatively short h.

As with Eq. (3.26), the maximum wall shear stress encountered at each position on

z-axis (x = y = 0) is defined by

τmax(z; h/R0,∆p) = max
t/tc

(τz(0, z, t; h/R0,∆p)) , (4.21)

and its distribution is plotted as a function of the distance z for ∆p = 2, 5, 10 MPa

and h/R0 = 1.1, respectively in Fig. 4.9. In comparison to the droplet impact, bubble

collapse is more highly compressible phenomenon such that it accompanies the shock

emission. As observed the shock-induced wall shear flow, effects of compressibility is

no longer trivial for the fluid flow. Therefore, the Reynolds number-based scaling cannot

fully characterize the flow of our concern. Nevertheless, Fig. 4.9 is still instructive to
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show two features of this result. First, the dominant factor of the shear flow formation

is found to be different depending on the distance z: while the jet-induced shear stress

is dominant near the bubble center (z/R0 < 0.3), shock-induced shear stress is dominant

away from the center (z/R0 > 0.3). Second, focusing on the jet-induced shear flow at

0.1 < z/R0 < 0.3, the spatial attenuation rate of the τmax fairly agrees with the functional

dependence of the Glauert’s solution on the wall distance (τmax ∝ z−2.75) (Glauert, 1956).

Hence, the simulated maximum wall shear stress distribution on the wall have a similar

trend with the experiment of Dijkink & Ohl (2008).

Lastly, to comprehensively evaluate effects of the standoff distance on the wall shear

stress evolution, the peak value of τmax(z) are found for respective cases (denoted as

τmax(zmax)) and summarized in Fig. 4.10 as a function of the standoff distance h. Ac-

cordingly, the ∆p-dependence on wall shear stress is found to be relatively small. More

importantly, the τmax(zmax) declines logarithmically with increasing of h. This attenuation

is found to be modeled by a power law fitting of τfit = 85.6(h/R0)−6. This power law is

much steeper than previous scalings for other observables proposed by Supponen et al.

(2016) (power law modeling of jet speed, impact time, bubble volume and bubble dis-

placement are carried out as a function of anisotropy parameter, which corresponds to the

length of the standoff distance for the case of bubble collapse near a surface).

4.5 Collapse of a bubble pair near a rigid wall

Finally, the effects of bubble-bubble interaction is evaluated in terms of wall shear flow

formation. The big pictures of the collapse of a bubble pair near a rigid wall are presented

for the cases of two different distance between bubble pair d/R0 = 2.5 and 8 in Figs. 4.11

and 4.12. The frame (a) in Figs. 4.11 and 4.12 corresponds to the initial condition of this

problem. The frame (b) in Fig. 4.11 shows the process of bubble shrinking, and we note

that the direction of the microjet formation is tilted towards the midpoint of two bubbles.
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(a) (b)

(c) (d)

τz(0, z)/τc

Fig. 4.8: Spatiotemporal evolution of the wall shear stress on z-axis (x = y = 0) for cases of
∆p = 5 MPa. The results for four different standoff distance are presented: (a) h/R0 = 1.01, (b)
h/R0 = 1.1, (c) h/R0 = 1.2, (d) h/R0 = 1.3.
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Fig. 4.9: Distributions of the maximum wall shear stress encountered at each z-position on x =

y = 0, Eq. (4.21), for h/R0 = 1.1 and different driving pressure ∆p.
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Fig. 4.10: The maximum wall shear stress defined over both time and space as a function of the
standoff distance h/R0. Results for different driving pressure ∆p are plotted. The vertical axis is
normalized by the characteristic wall shear stress τc (Eq. (4.20)) (see Table 4.4). The simulation
data are fitted by a power law of 85.6(h/R0)−6.
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This behavior is also observed in the experiment of the collapse of a surface-attached

bubble pair by Yamashita & Ando (2019 in press). Since the nonspherical bubble collapse

is occurred only by the geometric conditions like the presence of the wall, the presence

of the neighbor bubble also affects the microjet formation. Besides the jet direction, the

resulting wall shear stress is entirely suppressed. One possible scenario may be related to

the effect of the flow stagnation at the midpoint of two bubbles, for the jet impinges each

other at the midpoint. The frame (c) in Fig. 4.11 illustrates that the velocity magnitude at

the midpoint is still zero, though the bubble has already formed the microjet. On the other

hand, the result in Fig. 4.12 is more similar to the case of single bubble. Distributions of

the wall shear stress and wall pressure looks more point-symmetric than the result in Fig.

4.11. Here, we first assess the effects of the bubble-bubble interaction in terms of the jet

angle and the jet velocity in Section 4.5.1. Thereafter, wall shear flow evolution and the

suppression effects are evaluated in Section 4.5.2.

4.5.1 Velocity and angle of the microjet

To quantify the the effect of bubble-bubble interaction in terms of the bubble morpholo-

gies, the velocity magnitude and the jet angle are evaluated for the case of (h/R0,∆p) =

(1.1, 5 MPa), by changing the inter-bubble distance d/R0 from 2.2 to 8.0. The jet angle

θ is examined by the velocity vector component, θ = tan−1
(
wjet/ujet

)
, at the point of the

jet tip (found by Eq. (4.18)) on the middle plane of two bubbles (plane of y = 0). Since

the jet angle is slightly time dependent, we choose the timing for the angle definition just

before the microjet piercing in the distal side of the bubble surface. Figure 4.13 illustrates

the velocity magnitude, bubble surface (αL = αL = 0.5) and the jet directions at the repre-

sentative times. Here, we found the jet speed increases and the angle approaches to zero

as the distance increases. These results are summarized in Fig. 4.14 as a function of the

distance d. To compare with the single bubble case, the jet speed is normalized by ujet
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Fig. 4.11: Snapshots of the collapse of two bubbles near a rigid wall at representative times (a) to
(c) for the case of (d/R0, h/R0,∆p) = (2.5, 1.1, 5 MPa), plotting the distributions of the velocity
magnitude with vector (upper middle plane), the wall shear stress magnitude with vector (upper
wall plane) the pressure (lower middle plane and wall plane). The nominal positions of air-water
interfaces (αL = αG = 0.5) is depicted as black lines in middle plane and white surface in the
three-dimensional view listed left.
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Fig. 4.12: As Fig. 4.11, but with (d/R0, h/R0,∆p) = (8.0, 1.1, 5 MPa).

94



(c)

d/R0 = 2.2  (t/tc = 1.17)(a)

x/R0

z/R0

4 0

4

0

θ

d/R0 = 2.5  (t/tc = 1.14)

x/R0

z/R0

4 0

4

0

d/R0 = 8.0  (t/tc = 1.06)

x/R0

z/R0

4 0

6

2

(d)d/R0 = 4.0  (t/tc = 1.09)

x/R0

z/R0

4 0

4

0

(b)

0

2.8

5.6

8.4

11.2

14
|u|/U

Fig. 4.13: Snapshots of the velocity magnitude and the jet angle measured before the microjet
pierces the distal side of the bubble surface. Results for four different distance between bubble
pair are presented: (a) d/R0 = 2.2, (b) d/R0 = 2.5, (c) d/R0 = 4.0, (d) d/R0 = 8.0.
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Fig. 4.14: Maximum microjet velocity of the collapsing bubbles, Eq. (4.18), for left vertical axis
and the jet angle for right vertical axis are both presented as a function of the distance between
bubble pair d/R0, respectively. Results are shown for (h/R0, ∆p) = (1.1, 5 MPa). The left vertical
axis is normalized by the maximum microjet velocity in the single bubble case, ujet(d → ∞) =
1226 m/s.

for (h/R0,∆p) = (1.1, 5 MPa). We found both the jet speed and the angle approaches to

the single bubble case asymptotically as the distance d increases. That is, the effect of the

bubble-bubble interaction exponentially increases for the closer inter-bubble distances d.

4.5.2 Wall shear stress evolution

Finally, the flow suppression effect due to the bubble-bubble interaction is quantified from

a viewpoint of wall shear stress generation. We first present Fig. 4.15, plotting the spa-

tiotemporal evolution of the absolute wall shear stress on z-axis |τz(0, z, t)| for four differ-

ent distances d. For the case of closer distance d in Fig. 4.15(a) and (b), the remarkable

suppression of wall shear stress is observed. In both configurations, as mentioned in Fig.

4.11(c), the microjet may not directly impact the wall due to the effect of the stagna-

tion between two bubbles. On the other hand, for the case of longer distance d in Fig.

4.15(c) and (d), the spatiotemporal distributions appear more similarly to the single bub-
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ble case (see Fig. 4.8): namely, shock-induced wall shear flow is first generated and the

jet-impact-induced strong wall shear stress is generated subsequently. If the jet impacts

perpendicularly to the wall, wall shear flow is expected to spread both ±z-directions due

to the symmetry. In this sense, asymmetry of the wall shear flow formation, around the

location of the jet impact zi/R0 ≈ 1.3, is found in Fig. 4.15(c), while the flow formation

becomes more symmetric around zi/R0 ≈ 3.3 in Fig. 4.15(d). Since weaker wall shear

stress appeared near the midpoint of two bubbles in Fig. 4.15(c), it is consistent with the

effect of the flow stagnation near the midpoint. We also note that the location of the jet

impact zi becomes closer to the midpoint than the initial bubble location (e.g., z/R0 = 2.0

for d/R0 = 4.0).

To investigate the asymmetric wall shear flow formation, we plot the the spatiotem-

poral evolution of the absolute wall shear stress on y-axis |τy(y, z, t)| at z = zi in Fig. 4.16.

In Fig. 4.16(a) and (b), shock-induced shear stress is only observed because of the non-

impact. On the other hand, the distributions in Fig. 4.16(c) and (d) depict both the shock-

and jet-induced shear stress with the distribution on z-axis.

Finally, the global maximumwall shear stress τmax(zmax; d) (defined as with Eq. (4.21))

is plotted as a function of the inter-bubble distance d in Fig. 4.17. To compare with the

single bubble case, the wall shear stress is normalized by the τmax(zmax) for (h/R0,∆p) =

(1.1, 5 MPa). According to Fig. 4.17, we therefore find out that the wall shear flow forma-

tion is exponentially attenuated by closing the inter-bubble distance. In reality, this result

is consistent with experimental researchs of ultrasonic cleaning; Yamashita et al. (2018)

and Yamashita & Ando (2019 in press) reported that a highly dense bubble cluster plays

a role to reduce the PRE of the ultrasonic cleaning. Hence, our numerical study provides

a possible scenario to fully understand the mechanism of bubble-dynamics-based phys-

ical cleaning and it may support to describe an optimum cleaning configuration for the

high-PRE.
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Fig. 4.15: Spatiotemporal evolution of the absolute wall shear stress on z-axis for cases of (h/R0,
∆p) = (1.1, 5 MPa). The probe location in x− and y-direction is fixed at origin. The results for
four different distance between bubble pair are presented: (a) d/R0 = 2.2, (b) d/R0 = 2.5, (c)
d/R0 = 4.0, (d) d/R0 = 8.0.
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Fig. 4.16: Spatiotemporal evolution of the absolute wall shear stress on y-axis for cases of (h/R0,
∆p) = (1.1, 5 MPa). The probe location in z-direction is the position of microjet impingement,
while the x-location is fixed at origin. The presented results are the same as with Fig. 4.15 (a) to
(d).
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Fig. 4.17: The maximum wall shear stress defined over both time and space as a function of
inter-bubble distance d/R0 for cases of (h/R0, ∆p) = (1.1, 5 MPa). The vertical axis is normalized
by the maximum wall shear stress in the single bubble case, τmax(zmax; d → ∞, h/R0 = 1.1, ∆p =

5 MPa) = 8.7 MPa.
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4.6 Summary
In summary, the wall shear flow formation accompanied by the bubble collapse near a

rigid wall was quantified for understanding its performance in context of physical clean-

ing. We simulated the so-called Rayleigh collapse, which is the collapse of single spheri-

cal air bubble (100 µm in radius) in water driven by a sudden pressure rise (ranging from

2 to 10 MPa) at ambience. Simulations were based on the three-dimensional, compress-

ible Navier–Stokes equations. The formation of microjet during the bubble collapse was

reproduced correctly (see Figs. 4.4 and 4.5) and we found out the wall shear flow forma-

tion is accompanied by the shock wave from the bubble collapse and the jet impingement

(see Fig. 4.8). The parametric study for the standoff distance, which determines the initial

position of the bubble from the wall, provided the knowledge that the bubble-collapse-

induced wall shear stress attenuates exponentially by taking a further standoff distance.

The attenuation rate was modeled an empirical power law function (see Fig. 4.10). Fi-

nally, we simulated the collapse of a pair of bubbles near a rigid wall to quantify the effect

of bubble-bubble interaction in the wall shear flow formation. Two bubbles located later-

ally to the wall and the inter-bubble distance were changed as a parameter and the other

configurations were the same as the single bubble case. The effect of the bubble-bubble

interaction clearly appeared in the microjet speed and the angle (see Fig. 4.11). Its effect

became lesser by taking a longer inter-bubble distance (see Fig. 4.12). More importantly,

wall shear stress evolution was crucially suppressed due to the presence of the neighbor

bubble (see Figs. 4.15 and 4.16). We observed the effect of bubble-bubble interaction

increased exponentially as two bubbles got closer (see Fig. 4.17). We may say this fact

is closely related to the cleaning mechanism and PRE of the ultrasonic cleaning which

involves the inception of cavitation clouds near a substrate.
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Chapter 5

Concluding remarks

5.1 Conclusions

In this thesis, compressible gas-liquid flow problems consisting of high-speed droplet

impact and cavitation bubble collapse near a wall were studied in order to characterize

the effect of surface erosion and cleaning given rise to these flows. Direct numerical

simulation was carried out based on a shock/interface capturing method. In what fol-

lows, numerical investigations we accomplished are summarized and several insights into

physical cleaning are recalled.

In Chapter 2, we numerically investigated the possibility of cavitation occurrence in

high-speed droplet impact against a deformable wall. We simulated the experiment of

Field et al. (1989) in which cavitation was observed within the droplet colliding with a

solid wall. The Euler flow simulation was able to accurately reproduce important features

of the wave propagation within the droplet. The subsequent one-way-coupling simulation

based on the Rayleigh–Plesset-type calculation (with the equilibrium radius of bubble

nuclei varied from submicrons to microns) suggested the possibility of having cavitation

caused by wave interaction within the droplet. More importantly, pressure radiation from

the cavitation bubble collapse may overwhelm the initial water-hammer shock; this trend

is emphasized for the case of homogeneous-like cavitation that arises from the growth of

nanobubble nuclei. Therefore, such cavitation may give rise to additional erosion in the
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problem of high-speed droplet impact.

In Chapter 3, we numerically studied high-speed droplet impact against dry/wet rigid

walls and discuss it in the context of particle removal. We simulate the high-speed im-

pact of a spherical water droplet with varying the impact velocity and the thickness of a

water film at the wall surface, based on the axisymmetric two-dimensional compressible

Navier–Stokes equations. First, we studied the acoustic phenomena in the droplet-impact

problem. The water-hammer pressure is found to be attenuated by having the thicker liq-

uid film and its decay rate can be fitted empirically by an exponential function. Next, we

studied the hydrodynamic phenomena including side jet formation and wall shear flow

generation after the acoustic events. In the case of dry walls, the side jet forms in the

lateral direction to the wall surface and very large wall shear stress appears just after the

passage of the moving contact line. On the contrary, in the case of wet walls, the jet

results in the formation of a crown-shape free surface. The wall shear stress is damped

significantly under the existence of the liquid film; flow separation can be caused by flow

deceleration in the crown-shape liquid film, depending on the film thickness (relative to

the droplet diameter). Finally, we considered the case of very small polystyrene parti-

cles (10 nm in diameter) attached at the wall of a quartz surface and evaluated with the

one-way-coupling manner the particle removal from a balance of the adhesive force (of

van der Waals type) and the hydrodynamic force (under the Stokes’ approximation). As

expected, the particle removal area is augmented by having larger impact velocity and

thinner films. We may say that the present simulation approach is helpful when it comes

to exploring the optimal cleaning conditions at which the performance of cleaning by the

wall shear flow is maximal while the erosion caused by the water-hammer shock loading

is minimal.

In Chapter 4, the wall shear flow formation accompanied by the bubble collapse near

a rigid wall was quantified for understanding its performance in context of physical clean-
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ing. We first simulated the so-called Rayleigh collapse, the collapse of single spherical

air bubble in water driven by a sudden pressure rise at ambience, based on the three-

dimensional, compressible Navier–Stokes equations. The formation of micro-jet during

the bubble collapse was reproduced correctly and we found out the wall shear flow forma-

tion is accompanied by the shock wave from the bubble collapse and the jet impingement.

The parametric study for the stand-off distance, which determines the initial position of

the bubble from the wall, provided the knowledge that the bubble-collapse-induced wall

shear stress attenuates exponentially by taking a further stand-off distance and the at-

tenuation rate was modeled an empirical power law function. Finally, we simulated the

collapse of a couple of bubbles near a rigid wall to quantify the effect of bubble-bubble

interaction in the wall shear flow formation. Two bubbles located laterally facing the wall

and the distance between them were changed as parameter and the other configurations

were the same as the single bubble study. The effect of bubble-bubble interaction clearly

appeared in the speed and the angle of the micro-jet and its effect became lesser by taking

a further distance between the bubble pair. More importantly, wall shear stress evolution

was crucially suppressed due to the presence of the neighbor bubble. We observed the ef-

fect of bubble-bubble interaction increased exponentially as two bubbles got closer. This

fact may be closely related to the cleaning mechanism and PRE of the ultrasonic cleaning

which involves the inception of cavitation clouds near a substrate.

5.2 Recommendations for future work

5.2.1 Cavitation modeling

In Chapter 2, we claim the possibility of having cavitation in high-speed droplet impact,

but the magnitude of cavitation-induced pressure emission is not fully quantified due to

some simplifications. In reality, cavitation usually involves some complex phenomena as

follows. For instance, the spherical bubble collapse can be so violent that the extreme col-
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lapse pressure will give rise to plasma formation (Barber et al., 1997; Hilgenfeldt et al.,

1998; Liverts & Apazidis, 2016), which may reduce the energy for the pressure emis-

sion. There are another issues of bubble fission (Brennen, 2002; Delale & Tunç, 2004)

and higher-order liquid compressibility corrections (Lezzi & Prosperetti, 1987) that tend

to damp bubble collapse and will thus reduce its pressure radiation. More importantly,

cavitation often appears as a cloud of bubbles where bubble-bubble interaction will play

a key role to control the bubble dynamics and produce more violent cavitation collapse.

To simply model the effects of cloud bubble dynamics, mixture model of continuum bub-

bly flow (Wang & Brennen, 1999; Ando et al., 2011; Fuster & Colonius, 2011; Maeda &

Colonius, 2018) could be implemented. Namely, two-way-coupling simulation between

the Euler equations and the Rayleigh Plesset type equation is then conducted. However,

the contribution of non-spherical bubble dynamics is neglected in the above models and

it remains a central research topic in the recent numerical study. Though the dynamics

of cloud bubble has been already directly simulated by researchers (Tiwari et al., 2015;

Ochiai & Ishimoto, 2017), some improvements are still required. For instance, positions

of bubble center are spatially fixed and the presence of the preexisting bubbles are as-

sumed (i.e., phase change is neglected).

5.2.2 Physical investigations of high-speed droplet impact and parti-
cle removal

In the present study of the droplet impact in Chapter 3, dynamics of the single spher-

ical droplet impact perpendicular to a dry/wet wall is investigated. For a further step,

consideration of multiple droplet interactions (e.g., monodisperse droplet train impact

(Okorn-Schmidt et al., 2013)) could be conducted. According to the result in Section

3.6, wall shear flow formation depends on the water film thickness (before the impact)

and the water film is found to be thinned by the droplet impact. In this sense, secondary

droplet impact may give rise to stronger wall shear flow. Moreover, investigation of non-
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axisymmetric behavior would be helpful to improve the actual cleaning processes: oblique

impact against a wall, for instance. Since the axisymmetric behavior of the droplet impact

results in the flow stagnation at the center position of the droplet on the wall, the oblique

impact is expected to be more favorable for the wall shear flow formation. It would also be

attractive to incorporate with droplet deformation due to the high-speed migration (Meng

& Colonius, 2015) before collision because the present study assumes spherical droplet as

an initial condition. The non-sphericity of the droplet would also affect the droplet mor-

phology especially in the case of oblique impact. Therefore, we recommend the future

research incorporating the capillary effect and extending to the three-dimensional simu-

lation. The surface tension model could be implemented following the work of Meng

(2016). Regarding the extension to the three-dimensional simulation, computation with

cylindrical coordinates would be a possible idea to minimize the grid effect (Mohseni &

Colonius, 2000; Mignone, 2014).

Regarding the particle removal, the present study was evaluated it based on instan-

taneous torque balances. Thus, the mechanism of particle reattachment is currently ne-

glected. To fully understand the physical mechanism of the particle removal, time evolu-

tion of the hydrodynamic torques will be important, which possibly keeps lifting up the

contaminant particles. For small particles (O(10 nm) in diameter), the time evolution of

the hydrodynamic force would be calculated at Lagrangian points in contact with the rigid

wall in one-way-coupling manner. For larger particles, it would require modeling of the

flow disturbance due to the presence of the adherent particles. More importantly, inves-

tigation of the correlation between the present simple criterion of particle removal and

actual PRE in experiments will follow. This evaluation of particle removal would then

become a meaningful indicator for experimental works that measures wall shear stress in

several physical cleaning applications.
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5.2.3 Physical investigations of bubble collapse

For a further investigation of the bubble collapse in Chapter 4, consideration of non-

sphericity of the initial bubble and wall-attached hemisphere bubble will be interesting

because the jet formation have to differ from the spherical bubble collapse near a wall. It

will also be instructive to simulate the bubble oscillation and collapse under an ultrasonic

field (Ochiai & Ishimoto, 2017) to provide more practical insights. Namely, the far-field

pressure would be extended to a time-dependent variable. Boyd & Becker (2018) While

the present study is focusing on the collapse stage, the bubble oscillation would also

play a role to remove particles especially in a megasonic cleaning (Busnaina & Gale,

1997; Ochiai & Ishimoto, 2017). Then, challenging issues would be consideration of the

surface tension (Schmidmayer et al., 2017; Fuster & Popinet, 2018) and the time-cost of

the simulation. Since the prolongation of the simulation time may result in the increasing

of the interface smearing, implementation of an interface sharpening algorithm will be

beneficial. For instance, THINC (tangent of hyperbola for interface capturing) scheme

achieves the interface sharpening by computing numerical fluxes at material interfaces by

a hyperbolic tangent function (Shyue & Xiao, 2014; Deng et al., 2017).

For more understanding of the effects of bubble-bubble interactions, additional key

parameters will be accounted for: combinations of different bubble sizes, positional re-

lationships (inter-bubble distance and angle) and non-sphericity of initial bubbles. These

parametric studies would help to fully understand the complex dynamics of bubble clus-

ter, which includes the effect of non-spherical collapse. However, when the number of

bubbles is increased, it has to be challenging because of the numerous initial configura-

tions. Considering such circumstances, further investigation of the collapse of a bubble

pair would be essential to predict the dynamics of a larger bubble cluster, because the dy-

namics of a bubble in the cluster could be described by superposition of the bubble-bubble

interactions with respective bubbles. If the non-spherical motion of bubbles is neglected,
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this concept results in the model of continuum bubbly flow as mentioned in Section 5.2.1.

To take into account the non-spherical behavior (i.e., micro-jet formation) in a reduced

bubbly flow model, further insights into the dynamics of the collapse of a bubble pair

should be required.
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Appendix A

Modeling of particle adhesion force by
JKR theory

For particles of our concern (10 nm in diameter), van der Waals force dominates other

particle adhesion forces (Burdick et al., 2005; Zoeteweij et al., 2009). Accounting for the

effect of particle deformation caused by adhesion against a flat surface, the van der Waals

force is written as (Busnaina et al., 2002)

FvdW =
AHd
12H2

p

(
1 +

2a2JKR
Hpd

)
, (A.1)

where AH is the material-dependent Hamaker constant, d is the particle diameter, Hp is

the particle-to-surface distance (typically, Hp = 0.4 nm (Visser, 1995)), and aJKR is the

contact radius determined by Johnson–Kendall–Roberts (JKR) theory (Johnson, 1997;

Israelachvili, 2011; Zhang et al., 2000) (see Fig. 3.3). In this theory, the contact radius is

related to the work done by the adhesion and is thus given by:

a =
3

√
3π ·Wa · d2

2K
, (A.2)

where Wa is the work done by particle adhesion:

Wa =
AH

12π · h2 . (A.3)

The deformation constant K is defined by

K =
4
3

⎡
⎢⎢⎢⎢⎢⎣
1 − ν2p1
Y1

+
1 − ν2p2
Y2

⎤
⎥⎥⎥⎥⎥⎦

−1

, (A.4)
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Table A.1: Material properties of PSL (particle) and quartz for the evaluation of particle defor-
mation.

Young’s modulus Poisson’s ratio
Material Y [GPa] νp [–]
PSL 3.1 0.29
quartz 74 0.17

where Y is Young’s modulus, νp is Poisson’s ratio, and subscripts 1 and 2 refer to the parti-

cle and the surface, respectively. As a representative example, we consider the removal of

a polystylene latex (PSL) sphere from quartz surfaces which is immersed in water, based

on the experiment of Burdick et al. (2005). According to their experimental measurement,

the average Hamaker constant AH for PSL to quartz in water is 1.02 × 10−20 Nm. Other

properties are listed in Table A.1.
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Appendix B

Kinetic energy dissipation during the
droplet impact

To estimate the water temperature rise in the wall shear flow induced by the droplet im-

pact, we investigate the evolution of kinetic energy dissipation ϵ (with the assumption of

constant µL and µG):

ϵ ≡ 2µ
ρ

⎡
⎢⎢⎢⎢⎣
{
∂uz
∂z
− 1
3

(
∂uz
∂z

+
∂ur
∂r

+
ur
r

)}2
+

{
∂ur
∂r

+
ur
r
− 1
3

(
∂uz
∂z

+
∂ur
∂r

+
ur
r

)}2
+
1
2

(
∂uz
∂r

+
∂ur
∂z

)2⎤⎥⎥⎥⎥⎦ ,

(B.1)

which can be computed by postprocessing the simulated velocity field. Since kinetic en-

ergy dissipation corresponds to the irreversible conversion of mechanical energy to ther-

mal energy via the action of viscosity, it can be used to estimate temperature increase.

Figure B.1 illustrates the kinetic energy dissipation per unit mass during the droplet im-

pingement (Vi = 50 m/s, the highest speed in our problem setup) for dry and wet cases

(l/D = 0.5) at the same time frame in Figures 3.6 and 3.8 (d)-(f). The kinetic energy

dissipation inside the droplet is emphasized near the wall (and its crown-shape rim for the

wet case) where the velocity gradient becomes steeper. We obtain the largest dissipation

in the dry case in which the wall shear stress induced by the droplet impact is much larger

than that in the wet cases. Hence, we consider the dry case at which the temperature rise

is expected to be maximal. In this case, the maximal dissipation that appears at the wall

is approximately at 108 J/(kg s) and its duration is about 4 µs. The local heat deposition is

111



z/D

0.5 1 1.50

0.5

1

1.5

0

t/ti = 0.25

t/ti = 0.50

t/ti = 0.75

t/ti = 0.13

t/ti = 0.25

t/ti = 0.38

108

106

1010

100

104

102

ε
[J/(kg s)]

r/D

z/D

0.5 1 1.50

0.5

1

1.5

0

r/D

r/D

z/D

0.5 1 1.50

0.5

1

1.5

0

r/D

z/D

0.5 1 1.50

0.5

1

1.5

0

r/D

z/D

0.5 1 1.50

0.5

1

1.5

0

r/D

z/D

0.5 1 1.50

0.5

1

1.5

0

(a-i)

(a-iii)

(a-ii)

(b-i)

(b-iii)

(b-ii)

108

106

1010

100

104

102

108

106

1010

100

104

102

108

106

1010

100

104

102

108

106

1010

100

104

102

108

106

1010

100

104

102

ε
[J/(kg s)]

Fig. B.1: The liquid-phase kinetic energy dissipation rate at representative times (i) to (iii) for
Vi = 50 m/s and for different film thickness (i) l/D = 0 and (ii) l/D = 0.5.

estimated as the product of these values and the temperature rise (i.e., its division by the

specific heat capacity of the water) is predicted at O(0.1 K). Therefore, the temperature

rise within the droplet is at most O(0.1 K) in our problem setup and has thus a negligible

impact on values of the physical properties.
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