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Abstract

Making GPUs First-Class Citizen Computing Re-
sources in Multi-Tenant Cloud Environments

Graphic processing units (GPUs) provide massively parallel computational
power and encourage the use of general-purpose computing on GPUs (GPGPU).
GPGPU has become an attractive platform in various domains of applications in-
cluding server-side workloads. Adaption of GPGPU in server-side workloads and
scaling up of GPU computing capacity motivate the consolidation of GPGPU ap-
plications. Making GPUs first-class citizen computing resources in the cloud is a
key to consolidation in multi-tenant cloud platforms. Despite the previous study
on GPU resource virtualization, the tradeoffs between the approaches remain un-
clear. Shedding light on these tradeoffs and the technical requirements for the re-
source virtualization at various interface-levels would facilitate the development
of an appropriate GPU resource virtualization solution.

This dissertation presents two approaches for GPU resource virtualization,
GPUvm and GLoop. GPUvm is an architecture for hypervisor-level GPU virtual-
ization. GPUvm offers three modes: the full-, naive para-, and high-performance
para-virtualization. GPUvm exposes low- and high-level interfaces such as
memory-mapped I/O and DRM APIs to the guest virtual machines (VMs). Our ex-
periments show that GPUvm incurs different overheads as the level of the exposed
interfaces is changed. The results also show that GPU scheduling can achieve a
coarse-grained fairness among multiple VMs.

We also present GLoop, a software runtime that enables us to consolidate
GPGPU applications including advanced GPU applications. While the coarse-
grained fairness can be achieved by the application-transparent approaches, ad-
vanced GPGPU applications, referred to as GPU eaters, can monopolize a shared
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GPU. GLoop explores the way to achieve consolidation of GPU eaters by tak-
ing an application-assisted approach including modification of the applications.
GLoop introduces an event-driven programming model to offer the GPU eaters’
high functionality while scheduling them on a shared GPU with a proportional-
share policy. We implement a prototype of GLoop and port eight GPU eaters
on it. Our experiments show that our prototype successfully schedules the con-
solidated GPGPU applications on the basis of its scheduling policy and isolates
resources among them.

The contribution of this dissertation is twofold. First, we show the design and
implementation of full-virtualized GPUs, clarify the bottleneck, and show that the
high-level interface for virtual GPUs can mitigate the overheads. This helps the
cloud software developers to select an appropriate virtualization approach for their
use cases, and helps GPU hardware vendors to design the future GPU hardware
extension for virtualization. Second, we show the limitation of the application-
transparent approaches, and show that the application-assisted approach can share
a GPU even in the face of GPU eaters. This allows the multi-tenant clouds to
share a GPUs with a wider range of applications. Moreover, GLoop envisions the
clouds sharing not only GPUs but also other non-preemptive accelerators.
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Chapter 1

Introduction

Graphic Processing Units (GPUs) become distinguished accelerators for a broad
range of applications because of their significant performance benefit and high
energy efficiency. GPUs are composed of thousands of compute cores, which
characterize GPUs as accelerators for massively data-parallel computations. Be-
yond the graphic purpose, general-purpose computing on GPUs (GPGPU) be-
comes widely accepted technique in various application domains, which include
deep learning [1, 19, 39, 59], scientific simulations [52, 73], file systems [74, 78],
complex control systems [41,66], autonomous vehicles [37,53], and server appli-
cations including network systems [33,38], web servers [3], key-value stores [35]
and databases [14, 34, 40, 46, 51, 69, 87].

Making GPUs a first-class citizen computing resource is a critical requirement
for hosting GPGPU applications in multi-tenant cloud platforms whose resources
are shared among multiple users. Increasing adoption of GPGPU in server work-
loads leads to making GPUs stock keeping units in cloud platforms. GPGPU in
server workloads motivates consolidating GPGPU applications on shared GPUs
in the cloud. For example, since the load of cloud services varies with diurnal pat-
terns and spikes [13], GPGPU server consolidation can improve GPU utilization
by assigning the idle-time of the GPU to not only other GPGPU servers but also
compute-intensive GPGPU applications including those of deep learning. The
motivation for consolidation is strengthened by the fact that GPUs are continu-
ously scaling up. NVIDIA has reported that the number of streaming processors
and size of memory in Tesla M40 GPUs are 1.6 times and 2.0 times larger than
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CHAPTER 1. INTRODUCTION

those of the previous generation [61].
Resource and performance isolation are keys for sharing GPUs in multi-tenant

cloud platforms. Without resource isolation, multiple tenants cannot share a GPU
in a secure manner. Since GPUs are recognized as I/O devices from the rest of
the systems, GPU computing resources cannot be shared among multiple tenants
without first virtualizing them as computing accelerators. Supporting virtualiza-
tion of GPU computing resources enables a GPU to be isolated among the virtual
machines (VMs) or containers, which are used as the logical unit of the computing
resources in a cloud.

Performance isolation, in particular, time-multiplexing of GPU computing re-
sources poses a new challenge in multi-tenant consolidation. GPGPU applica-
tions use GPU computing resources by launching GPU kernels that are routines
executed on GPUs. Recent high-functioning GPGPU applications, referred to as
GPU eaters, typically launch a long- or infinite-running GPU kernel and monop-
olize a shared GPU, easily starving other GPGPU applications collocated on it.
For example, GPUfs- [74] and GPUnet-based [48] applications poll completions
of I/O requests on the GPU. Scientific applications [52,73] exclusively use GPUs
to compute their simulations.

Throughout this dissertation, we focus on discrete GPUs. Discrete GPUs are
widely accepted for their intensive computational ability when compared with in-
tegrated GPUs in the GPGPU field. GPUs are classified into discrete (on-board
and off-chip) and integrated (on-chip) GPUs. Discrete GPUs are connected on the
PCI express bus (PCIe) and are composed of a huge number of cores tightly cou-
pled with a specialized high bandwidth device memory, while integrated GPUs
reside on the same chip as the CPUs and share system memory with CPUs. As
discussed in [48], the discrete GPU design delivers a greater computational per-
formance and a higher energy efficiency, whereas integrated GPUs are oriented
to a lower latency and a lower thermal design power (TDP). The more recent
research has leveraged discrete GPUs to create high-performance, scalable, and
more energy efficient cloud applications [48, 68, 77].
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CHAPTER 1. INTRODUCTION

1.1 Previous Approaches

We summarize the pros and cons of the current approaches to sharing GPUs.
Resource virtualization of GPU is categorized into four types: multiplexing in
Operating Systems (OSes), hypervisors, hardwares, and application-assisted ap-
proaches.

Approaches at the OSes and hypervisors virtualize GPU devices or their com-
puting capabilities, and do not require application modifications. Application-
assisted approaches require developers to modify applications or use specific
frameworks to make GPU sharing available. While application-assisted ap-
proaches require support from applications, fine-grained control (e.g. time-
multiplexing of GPU kernels) can be achieved.

1.1.1 Multiplexing GPUs at OS

Multiplexing GPUs at the OSes is useful in multi-programming environments
where a user concurrently runs multiple GPU applications including games, video
players, and so on. By modifying GPU device drivers [43], introducing ker-
nel modules [44, 55], or introducing different system calls and programming
paradigm [67], these approaches achieve coarse-grained performance isolation
among multiple GPU applications. The OSes and GPU drivers isolate applica-
tions by using the process abstraction. Since these approaches are done at the
OSes, simply bringing these approaches to the cloud using hypervisors is not pos-
sible.

1.1.2 GPU Virtualization at Hypervisor

The approaches of GPU resource virtualization at the hypervisor are classified
into I/O pass-through, API remoting, hybrid, or mediated pass-through. These
approaches are also referred to as back-end, front-end, para, and full virtualiza-
tion, respectively [22].

I/O pass-through [6] directly exposes the GPU hardware to guest device
drivers. The virtualization extension for directed I/O such as Intel VT-d [2] al-
lows hypervisors to assign devices to guest VMs without compromising isolation.
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This can provide close to a native performance, but a physical GPU is assigned to
a single VM by hardware design.

API remoting [5, 23, 26, 31, 32, 47, 50, 72, 85, 86] is more suitable for multi-
tasking and is relatively easy to implement. A high-level API such as CUDA in
this approach is exported to the guest VMs by installing a wrapper library. The
API calls from the guest VMs through a wrapper library are routed to the server
owning the GPUs, and then, the server invokes the APIs through the original li-
brary. Although this approach is simple, it lacks flexibility in the choice of lan-
guages and libraries and can cause a version incompatibility between a wrapper
library and an original library. The entire software stack must be rewritten to in-
corporate an API remoting mechanism. Implementing API remoting could also
result in enlarging the trusted computing base (TCB) due to the need to accom-
modate for additional libraries and drivers in the server.

Para-virtualization [22] provides an ideal device model through the hypervisor
and allows multiple VMs to concurrently access the GPU. It can provide lower-
level control to the guest drivers than in API remoting and minimizes the overhead
of the virtualization, but the guest device drivers must be modified to support the
device model.

Full-virtualization [82] enables for multiplexing without needing any drivers
or runtime modification. It allows guest VMs to use vanilla device drivers while
providing resource isolation on multiple VMs for GPGPU. These features are
attractive to IaaS environments on which the users can use existing GPGPU soft-
ware stacks without any guest modifications. However, to the best of our knowl-
edge, no designs or evaluations of the full-virtualization for discrete GPUs have
been reported. gVirt [82] enables for the full-virtualization of the Intel integrated
GPUs, but they have different hardware designs than those for discrete GPUs.
gVirt also changes the specifications and driver of Intel Integrated GPUs.

1.1.3 Application-assisted Approaches

While the approaches in Section 1.1.1 and Section 1.1.2 typically do not require
modifications of applications, they fail to schedule GPU eater’s GPU kernels if
GPUs are non-preemptive. GPU kernel launchers [44, 67] schedule GPU kernels
from GPGPU applications. GPU command-based schedulers [43,55,79] schedule
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GPGPU applications at the boundary of GPU commands instead of GPU kernels.
GPU device drivers submit GPU commands to drive GPUs, so GPU commands
are low-level interface to GPU devices. However, these schedulers fail to schedule
GPU eaters, which have long- or infinite-running GPU kernels since launching a
GPU kernel is represented as one command.

A naive application-assisted approach to scheduling GPU eaters in an isolated
manner is to divide the GPU eater’s kernels into smaller GPU kernels by splitting
the GPU computations and finishing all the running thread blocks. This approach,
called kernel splitting, offers scheduling points to typical GPU schedulers that use
GPU kernel launches as scheduling points. However, it degrades the performance
of the GPU kernels due to the high cost of kernel launches.

Thread block schedulers [16, 64, 84] schedules thread blocks that compose
a GPU kernel. These approaches use the ends of thread blocks as scheduling
points. Thus, even with them, a GPU eater with long-running thread blocks can
still monopolize a shared GPU.

Other techniques, such as context funneling [60, 83] and persistent
threads [30], effectively schedule GPU eaters but fail to isolate GPGPU appli-
cations since they run GPU kernels in a shared GPU context where all the kernels
share the same address space; thus, a hosted GPGPU application may access and
modify the memory of other GPGPU applications, which is not suitable for multi-
tenant cloud platforms.

1.1.4 Hardware Preemption

Current hardware preemption is not a perfect solution to consolidate GPU eaters in
multi-tenant cloud platforms. The recent NVIDIA Pascal GPUs [61] have mecha-
nisms to preempt long-running GPU kernels. However, as recent literature [84] re-
ported, no publicly available information shows the availability of software-level
preemption control. Because of the lack of software control, we cannot apply a
proportional share policy to GPU kernels that is based on various indicators such
as customer payment. Therefore, if a user starts many GPU contexts, this user can
simply occupy the GPU’s computing resources. In addition, if a GPU eater polls
I/O completion, GPU cycles are wasted because the hardware-level scheduler as-
signs timeslices to it without recognizing the polling.
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1.2 Motivation

Despite all the study on the resource virtualization of GPUs, the important trade-
offs between the approaches remain unclear because of a lack of designs for and
quantitative evaluations of resource virtualization approaches. First, the design,
overhead, and bottleneck of full-virtualization are not explored, which prevent
the cloud vendors from selecting appropriate virtualization approaches for their
cloud. Second, the application-assisted approach for GPU eaters is not shown,
which limits applicability of GPU sharing in the multi-tenant cloud environments.
The approaches have different tradeoffs in terms of performance, functionalities,
requirement of application modification, and limitations. Exploring these ap-
proaches clarifies the tradeoffs and technical difficulties and allows cloud software
developers and hardware designers to design and discuss efficient virtualization
solutions.

1.3 Study Overview

In this dissertation, we explore the tradeoffs between the approaches of GPU
resource virtualization. We tackle the resource isolation and time-multiplexing
of GPU kernel execution. To achieve this goal, we explore two approaches,
hypervisor-level GPU virtualization and application-assisted approaches.

We show GPUvm, a hypervisor-level GPU virtualization approach. GPUvm
offers three types of hypervisor-level GPU virtualization: full-, naive para-, and
high-performance para-virtualization. In the full- and naive para-virtualizations,
we expose a native GPU device model to provide a low-level interface through
memory-mapped I/O (MMIO). In the naive para-virtualization, we provide a hy-
percall interface to mitigate the major source of overhead in the full-virtualization.
In high-performance para-virtualization, which is called PVDRM, we expose the
high-level interface. PVDRM leverages the Direct Rendering Manager (DRM)
APIs as an interface. DRM is a widely used GPU abstraction layer in Linux. It
is used in open-source GPU drivers including i915 for the Intel Integrated GPUs,
AMDGPU for the AMD GPUs, and Nouveau for the NVIDIA GPUs.

We describe the design and implementation of GPUvm based on the Xen hy-
pervisor [11]. We develop several optimization techniques to reduce the overhead
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in each GPU virtualization. Our experiments show that GPUvm incurs different
overheads as the level of the exposed interfaces is changed. The results also show
that a coarse-grained fairness on the GPU among multiple VMs can be achieved
using GPU scheduling.

We also present GLoop, a runtime system to consolidate GPGPU applications
including GPU eaters. GLoop is an application-assisted cooperative resource vir-
tualization. While GLoop requires modifications of applications, GLoop can
schedule GPU eaters, which can monopolize a shared GPU with the hypervisor-
level GPU virtualization approaches. GLoop introduces an event-driven program-
ming model into GPUs, which is widely used in cloud applications driven by I/O
events such as network packet arrival [71]. The event-driven programming model
allows GPU eaters to be consolidated without wasting GPU time, while GLoop
schedules them on a shared GPU in an isolated manner. In addition to consoli-
dating I/O-driven GPU eaters, GLoop allows compute-intensive GPU eaters writ-
ten in the event-driven programming model to exploit the idle-time of an under-
utilized GPU. The GLoop runtime also schedules GPGPU applications on the
basis of a proportional share scheduling policy.

We prototype GLoop on an unmodified proprietary NVIDIA driver and
CUDA SDK. We port eight GPU eaters on GLoop: TPACF, LavaMD, MUM-
merGPU, Hybridsort, Grep, Approximate Image Matching, Echo Server, and Ma-
trix Multiplication Server. We perform an experimental evaluation of our proto-
type demonstrating that our GLoop-based applications are comparable in per-
formance to the original versions and that GLoop successfully consolidates and
schedules them on the basis of the scheduling policy. We also show that GLoop’s
consolidation contributes to improving GPU utilization in two consolidation sce-
narios: GPU server consolidation and GPU idle-time exploitation.

This dissertation makes following contributions.

• The design, implementation, and evaluation of the hypervisor-level GPU vir-
tualization approaches clarify the tradeoffs and technical difficulties in the vir-
tualization approaches. The clarified tradeoffs between performance, guest de-
vice driver modification, and software stack limitation allow cloud software
developers to select efficient virtualization solutions for the specific use of
GPUs. The detailed analysis identifies the bottleneck of the full-virtualization
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approach. The evaluation result shows that the full-virtualization incurs non-
trivial overhead and implies that the nested page table support in GPUs is
promising hardware extension for the full-virtualization approach.

• The application-assisted approach for GPU resource virtualization achieves
time-multiplexing of accelerators even without the support of preemption. The
case studies for eight GPU eaters show an event-driven programming model
in GPUs is applicable. The result envisions our approach can be applied to
non-preemptive accelerators such as low-end GPUs and FPGAs.

• GPUvm, PVDRM, and GLoop are provided as a complete open-source soft-
ware at https://github.com/CPFL/gxen, https://github.com
/CPFL/pvdrm, and https://github.com/CPFL/gloop.

1.4 Organization

This dissertation is organized as follows. Chapter 2 describes the model of the
discrete GPUs that are focused in this dissertation. Chapter 3 describes existing
approaches for resource virtualization of GPUs in detail. Discussion in the chapter
motivates sharing GPUs at multi-tenant cloud platforms, and illustrates the miss-
ing features and analysis in the field of resource virtualization of GPUs. Chapter 4
shows GPUvm, our GPU virtualization techniques at the hypervisor. The chapter
presents the design, implementation, and evaluation of our approaches to show
the tradeoffs among the levels of abstractions between GPUs and VMs. Chapter 5
introduces GLoop, an application-assisted approach for scheduling GPU eaters.
The chapter shows GLoop’s mechanism for scheduling GPU eaters with the co-
operation of the applications, and demonstrates that GLoop achieves its goal by
the evaluations including realistic scenarios. Chapter 6 concludes this dissertation
and discusses the future directions.
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Chapter 2

GPU Model

We describe the model of the discrete GPUs, which are focused in this disserta-
tion. The system is composed of a multi-core CPU and a GPU connected on the
bus. A compute-intensive function offloaded from the CPU to the GPU is called
a GPU kernel, which can produce a large number of compute threads running on
a massive set of compute cores integrated in the GPU. The given workload may
also launch multiple kernels within a single process.

GPU has hierarchical parallelism. Compute threads are grouped into a warp,
where threads run in lock-step. Warps are grouped into a thread block, which runs
on the same processor core, called a streaming multiprocessor (SM). GPU kernel
is a grid that consists of many thread blocks.

The product lines of the GPU vendors are closely tied to the programming
languages and architectures. For example, NVIDIA invented the Compute Uni-
fied Device Architecture (CUDA) for use as a GPU programming framework.
CUDA was first introduced in the Tesla architecture [56], followed by the Fermi
and Kepler and later architectures [56, 57]. The GPUvm and GLoop prototypes
presented in this dissertation assume these NVIDIA technologies, yet its design
concept is applicable for other architectures and programming languages.

Figure 2.1 illustrates the resource management model of our target GPU,
which is well aligned with, but is not limited to, the NVIDIA architectures. The
detailed hardware mechanism is not identical among the different vendors, al-
though recent GPUs have adopted the same high-level design.

Memory-mapped I/O (MMIO): The current GPU form is an independent
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Figure 2.1: GPU resource management model.

computing device. Therefore, the CPU communicates with the GPU via MMIO.
MMIO is the main interface that the CPU uses to directly access the GPU, while
the hardware engines for the direct memory access (DMA) are supported for trans-
ferring large amounts of data. We must note that the I/O ports are used to indirectly
access the above MMIO regions. The I/O port is rarely used since it is intended
to be used in the real mode, which cannot map a high memory address. In fact,
Nouveau, which is an open-source device driver, never accesses it.

GPU Context: Just like the CPU, we must create a context to run on the GPU.
The context represents the state of the GPU computing, part of which is managed
by the device driver, and owns a virtual address space in the GPU. Multiple active
contexts can coexist on the discrete GPU.

GPU Channel: Any operation on the GPU is driven by commands (e.g.,
launching a kernel) issued from the CPU. This command stream is submitted to
a hardware unit called a GPU channel and is isolated from the other streams. A
GPU channel is associated with exactly one GPU context, while each GPU context
can have one or more GPU channels. Each GPU context contains GPU channel
descriptors for the associated hardware channels, each of which is created as a
memory object in the GPU memory. Each GPU channel descriptor stores the set-
tings of the corresponding channel, which includes a page table. The commands
submitted to a GPU channel are executed in the GPU compute cores and the exe-
cution is confined to within the associated GPU context. For each GPU channel,
a dedicated command buffer is allocated in the GPU memory that is visible to the
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Figure 2.2: Format of GPU page table entry.

CPU through MMIO. The GPU commands can be simultaneously submitted from
multiple GPU contexts through the GPU channels. The GPU context switching
and command executions in the GPU compute cores are scheduled internally by
the GPU hardware.

GPU Page Table: Paging is supported by the GPU. The GPU context is as-
signed using the GPU page table, which isolates the virtual address space from
the others. The GPU page table is separated from the CPU page table. It resides
in the GPU memory and its physical address is in a GPU channel descriptor. All
the commands and programs submitted through the channel are executed in the
corresponding GPU virtual address space.

The GPU page tables translate a GPU virtual address into not only a GPU
device physical address but also a host physical address. Figure 2.2 shows the
format of the page table entries in the NVIDIA Fermi architecture [49]. TARGET
indicates the memory type of the target page. We specify a memory type among
the following three types; VRAM, SYSRAM and SYSRAM NO SNOOP. When the
TARGET entry is VRAM, the GPU page table translates a given GPU virtual ad-
dress to a GPU device physical address. When the TARGET entry is SYSRAM
or SYSRAM NO SNOOP, the GPU page table translates a given GPU virtual ad-
dress to a host physical address. This enables the GPU page table to unify the
GPU memory and host main memory into the unified GPU virtual address space.
The commands executed in the GPU context can access the host physical memory
using the GPU virtual address by leveraging the GPU page tables.

The GPU context uses a GPU virtual address that indicates the host physi-
cal address in the GPU page table for initiating the DMA to the associated host
memory.

PCIe BAR: The host computer is based on the x86 chipset and is connected
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to the GPU on the PCI Express (PCIe). The base address registers (BARs) of
the PCIe, which work as the windows of MMIO, are configured at the boot time
of the GPU. GPU control registers and GPU memory apertures are mapped onto
the BARs, allowing the device driver to configure the GPU and access the GPU
memory. For example, NVIDIA Quadro 6000 has three BARs, BAR0, BAR1, and
BAR3. BAR0 is used as GPU control registers. BAR1 and BAR3 work as GPU
memory apertures allowing the device driver to access the GPU memory.

Documentation: GPU vendors currently withhold the details of their GPU
architectures due to marketing reasons. Implementations of the device drivers and
runtime libraries are also protected by the binary proprietary software, whereas the
compiler source code from NVIDIA has recently been open-released to a limited
extent. Some previous works have uncovered the black-boxed interaction between
the GPU and the driver [54]. The Linux kernel community has recently devel-
oped Nouveau [18], which is an open-source device driver for NVIDIA GPUs.
Throughout their development, the details of the NVIDIA architectures have been
well documented in the Envytools project [49]. Interested readers are encouraged
to visit their website.
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Chapter 3

Related Work

As GPUs play a critical role in the field of massively data-parallel computing,
sharing GPU computing resources gains attention from numerous researchers.
The studies spreads on the wide variety of the contexts including multi-tasking
of GPU applications in a single desktop machine, sharing GPUs between the
resource-containers, and sharing GPUs among VMs in the cloud. This chapter
overviews the existing studies and discusses the importance of this dissertation.

Supporting GPGPU applications in the multi-tenant cloud environments re-
quires resource isolation and performance isolation of shared GPUs. Resource
isolation is the mandatory requirement since multiple users run GPGPU applica-
tions at the same time. Without the strong isolation mechanism, a malicious or
buggy GPGPU application can compromise co-located GPGPU applications.

Performance isolation has two levels. GPU kernel or command scheduler
can achieve kernel-level coarse-grained performance isolation. However, with-
out preemption support of GPU kernels, long- or infinite-running GPU kernels
can monopolize a shared GPU. Application-assisted approaches can achieve time-
multiplexing in a fine-grained manner compared to the other approaches.

3.1 Multiplexing GPUs at Operating Systems

As the number of applications using GPUs increases, multiplexing GPUs at the
OS layer becomes important. These GPU resource managers work at the OS
layers, thus simply bringing these approaches to the cloud using hypervisors are
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not possible. The OS including GPU drivers achieves resource isolation by us-
ing process abstraction: GPU drivers assign isolated GPU memory to the pro-
cesses. These approaches aim at achieving performance isolation of GPU com-
puting among GPU applications by using GPU commands or kernel scheduling,
but these resource managers are of limited use when GPU eaters are executed
concurrently on a GPU.

GPU command-based schedulers schedule GPU commands submitted from
multiple GPU applications. TimeGraph [43] offers a GPU command-based sched-
uler that issues GPU commands submitted from processes on the basis of the
scheduling policies. TimeGraph inserts GPU commands causing interrupts at the
end of submitted group of commands. When the interrupt occurs, TimeGraph
wakes up and submits the next group of commands. Since TimeGraph requires
GPU driver modifications, it is difficult to run on proprietary software stacks.

Disengaged scheduler [55] schedules GPU commands with a sophisticated
probabilistic model without modifying GPU drivers. It first profiles the execution
time of each GPU command submitted from each GPU context by trapping ac-
cesses to GPU’s MMIO region. Then, disengaged scheduler allows GPU contexts
to submit GPU commands without traps and approximates the execution time of
each GPU context based on the profiled information. This scheduler is efficient
since it does not trap MMIO accesses most of the time. Even with these command-
based schedulers, a GPU eater can still monopolize a GPU by issuing a command
for polling or launching a long-running kernel. To avoid this situation, we have
to redesign such applications to issue numerous GPU commands instead of one
polling command or split their GPU kernels.

GPU kernel-based schedulers schedule GPU kernels launched from GPGPU
applications. Gdev [44] multiplexes a GPU device at the OS level. Gdev intro-
duces a Linux kernel module that makes GPU computing resources accessible
from both user and kernel spaces. Gdev has a GPU scheduler whose schedul-
ing points are GPU kernel launches. The Gdev scheduler implements a novel
bandwidth-aware non-preemptive device (BAND) scheduling algorithm that ex-
tends the Credit scheduler to deal with the non-preemptive and burst nature of
GPU applications.

PTask [67], where a GPGPU application is designed as a data flow graph that
consists of GPU kernel modules, schedules GPU kernels when they are launched.
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These kernel-based schedulers suffer from the same problem as the command-
based ones.

3.2 Multiplexing GPUs at Hypervisors

Virtualizing GPU computing capabilities at the hypervisor is a natural way to
share GPUs in the cloud using hypervisors. While full-virtualization approach is
ideal since it does not require modifications of applications, runtime, and drivers,
the existing approaches do not clarify their tradeoffs of performance, isolation,
and modifications. Moreover, while these approaches are application-transparent,
they cannot schedule GPU eaters.

Amazon EC2 G1 Instance [6] is categorized into I/O pass-through and pro-
vides GPU instances. It makes use of the pass-through technology to expose a
GPU to an instance. The virtualization extensions of I/O memory management
units (IOMMUs) such as Intel VT-d [2] allow devices to be assigned to guest
VMs in an isolated manner. Since a pass-throughed GPU is directly managed by
the guest OS, we cannot multiplex the GPU on a physical machine.

API remoting, in which the API calls are forwarded from the client to the
server that has the GPU, have been widely studied. GViM [31], vCUDA [72], and
rCUDA [23] forward CUDA APIs. VOCL [85] does this forwarding for OpenCL.
VMGL [50] achieves the API remoting of OpenGL. SnuCL [47] offers OpenCL
API remoting backed by heterogeneous CPU/GPU clusters. MultiCL [5] extends
SnuCL to support cross-device scheduling of kernel launches by decoupling com-
mand queues from specific devices. gVirtuS [26] supports the API remoting of
CUDA, OpenCL, and part of OpenGL. In these approaches, the applications are
inherently limited to the APIs the wrapper-libraries offer. Keeping the wrapper-
libraries compatible to the original ones is not a trivial task because new func-
tionalities are frequently integrated into the GPU libraries, including CUDA and
OpenCL. Moreover, API remoting requires that the all the GPU software stacks,
including the device drivers and runtimes, become part of the TCB.

VMware SVGA2 [22] para-virtualizes GPUs to mitigate the overhead of vir-
tualizing the GPU graphics features. SVGA2 exposes a virtual GPU device,
VMware SVGA2 card, to the guest VM. The para-virtual driver for SVGA2 GPU
works in the guest VM and interacts with the host GPU stack through the virtual
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GPU. The SVGA2 handles graphics-related requests using the SVGA3D proto-
col, which is an architecture-independent communication, to efficiently perform
3D rendering and to improve the portability by hiding the physical GPU hardware.
This approach is specific to graphic acceleration because SVGA2 targets graphic
commands.

Gottschalk et al. proposed a low-overhead GPU virtualization, named LoGV,
for GPGPU applications [28]. Their approach is categorized into a para-
virtualization where the device drivers in the VMs send requests for resource al-
location and mapping memory into the system RAM to the hypervisor. This work
exhibits para-virtualization mechanisms to minimize the GPGPU virtualization
overhead.

gVirt [82] fully virtualizes the Intel integrated GPUs at the hypervisor. How-
ever, gVirt is not designed for the architecture on which multiple active channels
can coexist such as NVIDIA discrete GPUs; it is required to switch the render
contexts on the driver side. gVirt is tailored to Intel integrated GPUs that use
the host memory while discrete GPUs use the device memory. This requires a
different design of virtualization since this could pose the different performance
overhead and bottleneck. gVirt has to integrate an extension of the specifications
for the Intel GPUs into the device driver, thus, requires driver modification. The
design of full-virtualization for discrete GPUs and its overhead is still unclear.

3.3 Application-assisted GPU sharing

Numerous researchers have studied how GPGPU applications can be made to be-
come more highly functional to fully utilize GPU capacities [30, 48, 52, 73, 74].
Such GPU applications launch long- or infinite-running GPU kernels. For ex-
ample, GPUfs [74] exposes file systems APIs to a GPU program to efficiently
execute a GPGPU application involving file operations and facilitate its develop-
ment. GPUnet [48] also provides a socket abstraction and APIs suitable for GPU
processing. The persistent threads model [30] launches a maximum-sized grid on
a GPU. In this model, thread blocks continuously fetch GPU tasks from work
queues to execute them without costly kernel launches. The model is effective
for irregular parallel applications such as ray traversal [4]. GPGPU applications
performing scientific simulations, sorts, and bioinformatics, typically launch a
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long-running GPU kernel [52, 73].
Unfortunately, these application designs implicitly assume that only one

GPGPU application at a time runs on a GPU. Consolidating these types of app,
called GPU eaters, on a shared GPU poses an interesting challenge: How can
we effectively share a GPU among GPU eaters in an isolated manner? GPUfs-
and GPUnet-based applications poll I/O completion to avoid costly GPU kernel
launches so that the other GPU kernels can do nothing until the running kernel fin-
ishes. We cannot execute two or more persistent thread applications concurrently
since the thread blocks in one application are long- or infinite-running over GPU
tasks. The GPU kernels of scientific simulations typically monopolize a GPU for
seconds, minutes, or even hours.

A naive software approach to scheduling GPU eaters in an isolated manner is
to divide the GPU eater’s kernels into smaller GPU kernels by splitting the GPU
computations and finishing all the running thread blocks. This approach, called
kernel splitting, offers scheduling points to typical GPU schedulers that use GPU
kernel launches as scheduling points. However, it degrades the performance of
the GPU kernels and incurs non-trivial development costs. Since each GPU ker-
nel has GPU hardware resources, including tremendous numbers of registers and
shared memory, their allocations/releases in launches/exits are time-consuming,
making the latency of the scheduling points high even if a sequence of split GPU
kernels does not need to be descheduled. Moreover, it is difficult to divide a GPU
kernel into chunks of an appropriate size to offer timely scheduling opportunities
because we cannot exactly know the execution time for each part of the kernel in
the development phase. In addition, efficient coordination of multiple kernels re-
quires overlapping communications and computations, which involves significant
development effort such as orchestrating the host side processing, the host-device
data transfers, and the GPU kernel launches.

The elastic kernel [64] transforms physical thread blocks into logical thread
blocks and dispatches them to physical resources. It schedules GPU kernels by
adjusting the number and size of logical thread blocks spawned in one launch.
EffiSha [16] dispatches logical thread blocks on the basis of the scheduler’s de-
cisions. These approaches use the ends of logical thread blocks as scheduling
points. Therefore, even with them, a GPU eater with long-running thread blocks
can still monopolize a shared GPU.
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GPUpIO [88] achieves I/O-driven preemption in GPU applications by instru-
menting code with save and restore procedures. Instead of waiting for I/O com-
pletions by polling, an inserted procedure saves the state of the executing thread
block and finishes it. When the I/O operation is completed, GPUpIO executes
another GPU kernel that restores the saved state of the thread block. While GPU-
pIO is effective for I/O polling-based GPU eaters, long-running kernels such as
scientific simulations and persistent threads can still monopolize a shared GPU.

GPUShare [27] schedules GPU kernels by controlling the number of exe-
cuted thread blocks. When the thread blocks are dispatched, each of them checks
whether the execution time of the kernel has exceeded a specified period. If so, the
thread block does not start its actual code and finishes early. However, GPUShare
fails to achieve fine-grained scheduling for polling-based GPU eaters or GPU ker-
nels whose thread block execution is too long because the thread blocks cannot
perform periodic checks.

Multi-process service [60] (MPS), which is also known as context funnel-
ing [83], concurrently executes multiple GPU kernels on a GPU. MPS redirects
all the streams of the running GPGPU applications to one GPU context in a ser-
vice process. Thus, the redirected GPU kernels simultaneously run within one
GPU context. FLEP [84] is similar to EffiSha, but combines MPS with a thread
block scheduler to offer spatial multitasking. The persistent threads approach [30]
can schedule GPU kernels requested from GPGPU applications. GPU applica-
tions add their GPU tasks to a work queue, and active thread blocks execute GPU
tasks in the work queue. Since all GPU tasks in these approaches run in the same
GPU virtual address space, a GPU request from a buggy or malicious GPU ap-
plication can destroy or easily hijack other GPU kernels. This is unacceptable in
multi-tenant cloud platforms.

3.4 Multiplexing in GPU Hardware

While traditional GPUs are non-preemptive devices, recent high-end GPUs sup-
port the hardware preemption mechanism. NVIDIA Pascal GPUs [61] support
compute preemption that allows preemption of GPU kernels at instruction-level
granularity. However, current hardware support for GPU kernel preemption is not
a perfect solution to performance isolation in the multi-tenant cloud environments.

18



CHAPTER 3. RELATED WORK

Since no publicly available information shows the availability of software-level
preemption control [84], we have no control over GPGPU applications includ-
ing GPU eaters to schedule them flexibly. For example, cloud vendors cannot
proportionally assign GPU resources to a customer’s application on the basis of
their payments. Moreover, since GPU hardware is not aware of whether an ac-
tive GPU eater is polling for I/O completion, the hardware-level scheduler blindly
assigns timeslices to the polling GPU eater, leading to wasting GPU time [88].
With control over scheduling GPU eaters, the GPU resource managers would be
able to intercept I/O requests of GPU eaters and dispatch other hosted GPGPU
applications instead of polling-based blocks.

NVIDIA recently announced its NVIDIA Volta architecture with new mech-
anisms for MPS, called Volta MPS [62]. It enables multiple GPU kernels to run
concurrently with their own GPU address spaces. However, a GPU kernel typ-
ically exhausts one type of GPU resource and prevents other GPU kernels from
running concurrently [64]. Therefore, Volta MPS’s fair-sharing scheduling does
not work well in multi-tenant use cases, as described in the white paper [62].

3.5 Summary

While there is numerous work on multiplexing GPUs, the tradeoffs of perfor-
mance, isolation, and modifications are still unclear due to the lack of design,
implementation, and analysis of missing approaches.

Section 3.2 shows the tradeoffs between I/O pass-through, API remoting, para-
virtualization, and virtualization for Intel integrated GPUs with partial specifi-
cations and driver modifications. However, while full-virtualization is an ideal
approach in terms of application modifications, the design, implementation, and
performance of full-virtualization is not uncovered. This dissertation explores the
design and implementation of full-virtualization for discrete GPUs to clarify the
bottleneck caused by the current hardware and tradeoffs between performance and
level of interfaces.

Section 3.3 describes the application-assisted approaches to gain finer control
of GPGPU applications. While Section 3.1 and Section 3.2 show the existing
application-transparent approaches, they cannot schedule the advanced GPGPU
applications called GPU eaters, limiting applicability of GPU sharing in the multi-
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tenant cloud environments. This dissertation shows that application-assisted ap-
proach, taking the opposite approach to full-virtualization, can schedule GPU
eaters.
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Chapter 4

GPU Virtualization at the
Hypervisor

The objective of this chapter is to show GPUvm, our GPU virtualization ap-
proaches at the hypervisor. As shown in Chapter 3, while full-virtualization is de-
sirable in terms of software modifications, the tradeoffs between full-virtualization
and the other approaches are unclear. We present the design and implementation
of full-, naive para-, and high-performance para-virtualization approaches to clar-
ify the bottleneck and compare the performance characteristics. The experiments
show that GPUvm poses different overheads as the level of the exposed interfaces
is changed. Full-virtualization shows significant overhead due to the page table
shadowing and MMIO handling. Our para-virtualization approaches eliminate
these overheads and make performance close to native one.

4.1 Design

The challenge with GPUvm is to show that the GPU can be virtualized at the
hypervisor level. The GPU is a unique and complicated device and its resources
(such as memory, channels, and GPU time) must be multiplexed like that in the
host computing system. Although the architectural details of a GPU are not well-
known, GPUvm virtualizes GPUs by combining the well-established techniques
in the CPU, memory, and I/O virtualizations of traditional hypervisors.
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Figure 4.1: Software stack of GPUvm.

4.1.1 Approaches

Figure 4.1 shows a high-level overview of the software stack of GPUvm. GPUvm
exposes interfaces to each VM and aggregates the accesses to it. VM operations
within the interfaces such as MMIO and hypercalls are redirected to the hypervisor
so that the VMs can never directly access the GPU. The GPU Access Aggregator
arbitrates the redirected operations to the multiplex GPU resources.

The GPU memory and channels must be multiplexed among multiple VMs to
isolate them on the GPU hardware resources. In addition to this spacial multiplex-
ing, the GPU also needs to be scheduled in a fair-share manner. GPUvm logically
partitions GPU channels and assigns some of them to each VM. GPUvm also
makes use of the GPU page table to isolate the GPU memory among the GPU
contexts of different VMs. GPUvm introduces the GPU fair-share scheduler for
the GPU command submissions in order to multiplex the GPU computation time.

GPUvm exposes the interfaces on several levels. For the full-virtualization, it
exposes a native GPU device model to the VM where the guest device drivers are
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loaded. For the naive para-virtualization, in addition to the GPU device model,
GPUvm provides the interface for updating the GPU page tables. While the full-
and naive para-virtualizations use a low-level interface through MMIO, GPUvm
exposes the high-level interface for PVDRM, which is the high-performance para-
virtualization.

4.1.2 Full-Virtualization

GPUvm supports the hypervisor-level full-virtualization for GPUs., The mem-
ory areas, PCIe BARs, and GPU channels must be multiplexed in order to pro-
vide an isolated native GPU device model. The main components for the full-
virtualization of GPUvm to address this problem include the GPU shadow page
tables and GPU shadow channels.

To aggregate the accesses to a GPU device model from a guest device driver,
GPUvm intercepts the MMIO by setting these ranges as inaccessible. The ac-
cesses to the I/O ports are trapped in the hypervisor, and they are emulated by
changing these accesses into ones for the appropriate MMIO region.

In order to ensure that one VM can never access the memory areas of the
other VMs, GPUvm creates a GPU shadow page table for every GPU channel
descriptor. The entire GPU memory address translation is done using the GPU
shadow page tables; a virtual address for the GPU memory is translated using the
shadow page table not using the one set by the guest device driver. The GPU
memory can be safely shared by multiple VMs because GPUvm validates the
contents of the shadow page tables. The use of the GPU shadow page tables also
guarantees that the DMA initiated from the GPU never accesses memory areas
outside those allocated to the VM.

The device driver must establish the corresponding GPU channel to create a
GPU context. However, the number of GPU channels is limited in the hardware.
GPUvm creates shadow channels to multiplex the GPU channels. It configures
the shadow channels, assigns dedicated virtual channels to each VM, and main-
tains the mapping between a virtual channel and shadow channel. GPUvm inter-
cepts and redirects the operations to the corresponding shadow channel when the
guest device drivers access the virtual channel assigned by it.
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Resource Partitioning

GPUvm partitions the physical memory space into multiple sections of contin-
uous address space, each of which is assigned to an individual VM. The guest
device drivers consider that the physical memory space originates at 0, but the
actual memory access is shifted by the corresponding size through the shadow
page tables created by GPUvm. Similarly, the GPU channels are partitioned into
multiple same-sized sections for individual VMs.

The static partitioning is not a critical limitation of GPUvm, and thus, dy-
namic allocation is possible. When a shadow page table refers to a new page,
GPUvm allocates the page, assigns it to a VM, and maintains the mappings be-
tween the guest physical GPU pages and the machine physical ones. For ease in
implementation, the current GPUvm prototype uses static partitioning. We plan
to implement this dynamic allocation in the future.

GPU Shadow Page Table

GPUvm creates GPU shadow page tables in the reserved area of the GPU mem-
ory, which translates the guest GPU virtual addresses into GPU device physical
or host physical addresses. By design, the device driver needs to flush the TLB
caches every time a page table entry is updated. GPUvm can intercept the TLB
flush requests because they are issued from the guest device driver through MMIO.
After the interception, GPUvm updates the corresponding GPU shadow page ta-
ble entry.

GPU shadow page tables play an important role in protecting GPUvm itself,
the shadow page tables, the shadow channel descriptors, and the GPU contexts
from buggy or malicious VMs. GPUvm excludes any memory mappings to the
sensitive memory pages from the shadow page tables. Since all the memory ac-
cesses by the GPU go through the shadow page tables, no VMs can access these
sensitive memory areas.

The current GPU design poses the technical challenge of maintaining consis-
tency between the guest and shadow page tables. In the traditional shadow page
tables, page faults are extensively used to detect the updates to the guest page table
entries. However, the current NVIDIA GPUs abort the execution of GPU kernels
after page faults occur [28,45]. It is impossible to employ the typical shadow page
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technique that restarts the guest code after setting an appropriate page table entry
during page fault handling. Therefore, GPUvm scans all the page tables during a
TLB flush.

We must note that GPUvm guarantees the safety of DMA. If a buggy driver
sets up an erroneous physical address when initiating the DMA, the memory re-
gions assigned to other VMs or the hypervisor can be destroyed. GPUvm uses
shadow page tables and the unified memory model of the GPU to avoid this sit-
uation. As explained in Chapter 2, the GPU page tables can map GPU virtual
addresses to the physical addresses in the GPU memory and host memory. Un-
like in conventional devices, the GPU uses the GPU virtual addresses to initiate
the DMA. If the mapped memory happens to be in the host memory, the DMA is
initiated. Since the shadow page tables are controlled by GPUvm, the memory
access by the DMA is confined in the memory region of the corresponding VM.

GPU Shadow Channel

GPUvm takes the approach of assigning dedicated GPU channels to each VM.
As described in Chapter 2, the GPU has multiple GPU channels. They have dedi-
cated command buffers and the driver can simultaneously push commands to the
buffers. GPUvm partitions the GPU channels and assigns some of them to each
VM. This design enables GPUvm to simultaneously accept GPU commands from
the VMs. In addition, compared to multiplexing one GPU channel among the
VMs, it does not incur any overhead when switching the GPU context belonging
to the GPU channel. Since the GPU commands executed through the assigned
GPU channels are confined by the GPU shadow page tables, the isolation among
the VMs is maintained.

GPUvm provides GPU shadow channels to isolate the GPU accesses from the
VMs. The physical indexes of the GPU channels are hidden from the VMs, but the
virtual indexes are assigned to their virtual channels. Mapping between the phys-
ical and virtual indexes is managed by GPUvm. GPUvm intercepts the MMIO
operations for the virtual GPU channels and then translates the virtual GPU chan-
nel indexes into shadow ones and performs the operations to the corresponding
channel.

GPUvm provides virtual channel registers to each VM and maintains the map-
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Figure 4.2: Timings of TLB flush and channel activation in GPGPU application
(srad). The orange lines in this figure represent the TLB flush timing and the red
ones are the timings of the channel activations, where the corresponding shadow
page table starts to be used.

ping between the physical and virtual channel registers. Since the virtual channel
registers are mapped to the memory aperture, GPUvm can intercept any access to
them and redirect it to the physical channel registers. Furthermore, intercepting
the command submission requests enables GPUvm to schedule the GPU com-
mand executions.

GPUvm also creates a GPU shadow channel descriptor for each GPU shadow
channel to achieve the isolation between virtual GPU channels. The GPU shadow
channel descriptors are set for each GPU shadow channel and have a reference to
the GPU shadow page table used by the corresponding channel. The GPU shadow
channel descriptors reside in the reserved GPU memory and are protected from
the VMs in a similar way as for GPU shadow page tables. GPUvm intercepts the
GPU memory accesses through MMIO, detects the accesses to the guest channel
descriptors, and maintains a consistency between the guest channel descriptors
and the shadow ones.

Optimization Techniques

Several optimization techniques are introduced to reduce the overhead in
GPUvm.

Lazy Shadowing: In principle, GPUvm reflects the updates of the guest page
tables to the shadow page tables every TLB flush. As explained in Section 4.1.2,
GPUvm scans the entire page table to find the updated entries in the guest page
table. Since TLB flushes frequently occur and the page table size is large, the cost
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Figure 4.3: No. of scanning shadow page tables in several benchmarks with/with-
out Lazy Shadowing. The measurement is done in each execution phase: init,
compute, and close.

of scanning the page tables is significant. Figure 4.2 shows the timings of the TLB
flushes and channel activations during the execution of a GPGPU application.
Although the TLB is frequently flushed, the shadow page table is often unused
immediately after it.

GPUvm lazily scans the guest page tables to reduce the frequency of the scans.
It scans the guest page tables each GPU channel activation, which is the timing
for using the GPU page table. GPUvm detects the activation by checking the
intercepted MMIO operations. Figure 4.3 shows the number of guest page table
scans in the benchmarks summarized in Table 4.2. Lazy Shadowing reduces the
page table scans in all the benchmarks. Since some of the scans in the init phase
are delayed until the channel activation point, the scan happens in the compute
phase.

BAR Remap: GPUvm intercepts the data accesses through the BARs to
virtualize the GPU channel descriptors. By intercepting all the data accesses, it
maintains the consistency between the shadow GPU channel descriptors and guest
GPU channel descriptors. However, this design incurs non-trivial overhead be-
cause the hypervisor is invoked every time the BAR is accessed. Figure 4.4 shows
the number of BAR accesses in the benchmarks. Even simple benchmarks such
as madd significantly access BAR3, causing overhead from the MMIO trappings.
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Figure 4.5: No. of BAR3 traps in benchmarks with/without BAR Remap. The
measurement is done in each execution phase: init, compute and close

In the BAR Remap optimization, GPUvm passes through the BAR3 accesses
other than those for the GPU channel descriptors. Specifically, GPUvm logically
partitions the BAR3 area because BAR3 is highly accessed and used for a memory
aperture while BAR0 is a control register region and sensitive to virtualization. It
exposes part of them as virtual BARs for each VM, and then, GPUvm creates a
shadow page table for the physical BAR3. All the accesses to the BAR areas are
isolated among the VMs by setting up shadow page tables in the same way as the
shadow channels. The number of trapped BAR3 accesses under this optimization
is shown in Figure 4.5. This optimization significantly reduces the BAR3 traps in
all the benchmarks.
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Table 4.1: No. of hypercall issues.

without multicall with multicall
nop 11383 118
loop 11383 118
madd 11573 122
mmul 11573 122
fmadd 11573 122
fmmul 11573 122

cpy 12163 105
pincpy 44937 122

bp 11777 137
hs 11429 122
lud 11783 114
nn 11469 118

srad 12379 185
srad2 13031 133

4.1.3 Naive Para-Virtualization

Shadowing the GPU page tables is a major source of overhead in the full-
virtualization, because the entire page table needs to be scanned to detect any
changes to the guest GPU page tables. We take the naive para-virtualization ap-
proach to reduce the cost of detecting the updates. In this approach, we introduce
a new hypercall interface for controlling the GPU page tables and integrate it into
the full-virtualization mechanisms. The guest GPU page tables are placed within
the memory areas under the control of GPUvm and cannot be directly updated by
the guest GPU drivers. The guest GPU driver issues a hypercall to the hypervisor
to update the guest GPU page tables. The hypervisor validates the correctness of
the given page table updates. This approach is inspired by the direct paging in the
Xen para-virtualization [11].

We take into account the hypercall invocation cost, which is expensive since
the context is switched from the VM to the hypervisor. GPUvm uses the multi-
call interface that batches multiple hypercalls to reduce any hypercall issues. For
example, instead of calling a hypercall to update one page table entry, GPUvm
calls one multicall to update multiple page table entries to be updated. Table 4.1
lists the number of hypercalls for each benchmark in the naive para-virtualization
with and without the multicall optimization. In all the benchmarks, the multicall
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dramatically reduces the hypercall issues. Compared to the other benchmarks,
pincpy issues many more hypercalls in the naive para-virtualization without the
multicall. Pincpy suffers from a larger overhead but the multicall improves its
performance, which is described in Section 4.3.1.

4.1.4 PVDRM

While the naive para-virtualization avoids scanning the GPU page tables using a
hypercall, it still incurs overhead caused by the low-level interceptions through
MMIO and frequent hypercall issues. We also developed PVDRM, the high-
performance para-virtualization approach that uses a set of high-level interfaces
to address this issue.

PVDRM uses the Direct Rendering Manager (DRM) as a boundary of the para-
virtualization instead of MMIO. The DRM is a widely used GPU abstraction layer
in Linux, and it is used in multiple existing open-source GPU drivers such as in
the i915 for the Intel Integrated GPUs, Radeon for the AMD GPUs, and Nouveau
for the NVIDIA GPUs. AMDGPU, which is an official driver for the AMD GPUs
under development, uses DRM [8]. The use of the DRM provides high-level
para-virtualization interfaces and enables for existing software stacks depending
on the DRM to work on PVDRM without needing any modification. In addi-
tion, since the DRM is used through ioctls and each ioctl command semantic
rarely changes [9], PVDRM easily maintains the compatibility over driver version
changes. In fact, we can interchangeably use Linux kernel v3.6.5 and v3.17.2 on
our PVDRM prototype.

PVDRM uses the split driver model [25]. The front-end driver resides in the
guest and provides the DRM interfaces to the guest software stack. The DRM
operations on the front-end driver are routed to the back-end driver that conceptu-
ally runs in the hypervisor. The back-end driver adjusts the routed operations and
performs them in the DRM stack.

PVDRM inherits the existing isolation mechanism of DRM to achieve the iso-
lation among the VMs. The DRM has already been integrated with a mechanism
that uses the GPU page table to isolate multiple GPU contexts. PVDRM sim-
ply uses this isolation mechanism to protect the GPU contexts of different VMs.
Shadowing the GPU page tables is unnecessary because the front- and back-end
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drivers are aware of the GPU virtualization and depend on the DRM isolation
mechanism.

4.1.5 GPU Fair-Share Scheduler

So far we have discussed the virtualization of the memory resources and GPU
channels for multiple VMs. We herein provide information on the virtualiza-
tion of the GPU time. This is indeed a scheduling problem. The GPU sched-
uler of GPUvm is based on the bandwidth-aware non-preemptive device (BAND)
scheduling algorithm [44], which was developed for virtual GPU scheduling. The
BAND scheduling algorithm is an extension of the CREDIT scheduling algo-
rithm [11] in that (i) the prioritization policy uses a reserved bandwidth and (ii)
the scheduler intentionally inserts a certain amount of delay after completion of
the GPU kernels, which leads to a fairer utilization of the GPU time among the
VMs. Since the current GPUs are not preemptive, GPUvm waits for GPU kernel
completion and assigns credits based on the GPU usage. More details about this
can be found in [44].

The BAND scheduling algorithm assumes that the total utilization of the vir-
tual GPUs could reach 100%. This is a flaw because there must be some interval
in which the CPU executes the GPU scheduler during which the GPU remains
idle, causing the utilization of the GPU to be less than 100%. This means that
even though the total bandwidth is set to 100%, the credit for the VMs would
remain unused, if the GPU scheduler consumes a given amount of time in the
corresponding period. The problem is that the amount of credit to be replenished
and the period of replenishment are fixed. If the fixed amount of credit is always
replenished, after a given period of time all the VMs could have a lot of credit
remaining. As a result, the credit may not influence the scheduling decision at all.
GPUvm accounts for the CPU time consumed by the GPU scheduler and consid-
ers it as the GPU time to overcome this problem. Specifically, GPUvm charges
CPU time equally to each VM to avoid an unbalanced charge to a VM that issues
short requests frequently.

Note that there is a critical problem in guaranteeing the GPU time fairness.
If a malicious or buggy VM starts an infinite computation on the GPU, it can
monopolize the GPU time. One possible solution to this problem is to abort the
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GPU computation if the GPU time exceeds the pre-defined limit of computation
time. Another approach is to cut longer requests into smaller pieces, as shown
in [12]. This limitation means GPU eaters can monopolize a GPU due to its long-
or infinite-running GPU kernels. Chapter 5 shows that the application-assisted
approach can schedule GPU eaters cooperatively.

For future directions, we are planning to incorporate disengaged schedul-
ing [55] on the hypervisor level. The disengaged scheduling provides a fair,
safe, and efficient OS-level management of the GPU resources. We believe that
GPUvm can incorporate this disengaged scheduling without incurring any tech-
nical issues except for the engineering efforts.

4.2 Implementation

Our GPUvm prototype uses Xen 4.2.0, where both domain 0 and domain U adopt
the Linux kernel v3.6.5. We target the device model for the NVIDIA GPUs that
is based on the Fermi architectures [56]. While the full-virtualization does not
require any modification to the guest system software, we make a small modifi-
cation to the GPU device driver called Nouveau, which is provided as part of the
mainline Linux kernel, to implement our naive GPU para-virtualization approach.
We implement our PVDRM front- and back-end para-virtualization drivers from
scratch.

4.2.1 Full- and Naive Para-Virtualizations

Figure 4.6 shows an overview of our implementation of the GPU device model,
the GPUvm back-end, and their interactions with the other components. QEMU-
dm is used to create GPU device models and behave as virtual GPUs. The guest
device drivers in domain U consider it a normal GPU. It exposes virtual MMIO
PCIe BARs to domain Us, trapping the accesses to them. All the accesses to the
GPU aggregated by the GPU Access Aggregator are committed to the physical
GPU through the sysfs interface.

The GPU device model communicates with the GPU Access Aggregator in
domain 0, using the POSIX inter-process communication (IPC). The GPU Access
Aggregator is a user process in domain 0 that receives requests from the GPU
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Figure 4.6: Prototype overview of GPUvm full- and naive para-virtualization.

device model, and issues the arbitrated requests to the physical GPU.
The GPU Access Aggregator has virtual GPU control blocks that represent the

states of the virtual GPUs. The GPU device models update their own virtual GPU
control blocks using the IPC to manage the states of the corresponding virtual
GPUs when privileged events such as control register changes are issued from
domain U.

Each virtual GPU control block maintains a queue to store the command sub-
mission requests issued from the GPU device model. These command submis-
sion requests are scheduled to control the GPU executions in the GPU command
scheduler. This command scheduling mechanism is similar to TimeGraph [43].
However, the GPU command scheduler of GPUvm differs from that of Time-
Graph in that it does not use GPU interrupts. It is very difficult, if not impossible,
for the GPU Access Aggregator to insert the interrupt command into the original
sequence of commands, because the user contexts may also use some interrupt
commands, and the GPU Access Aggregator cannot recognize them once they
are fired. Therefore, our prototype implementation uses a thread-based scheduler.
Whenever command submission requests are stored in the queue, the scheduler
dispatches them to the GPU. Our prototype polls a GPU control register that is
modified by the hardware just after the GPU channels become active/inactive to
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Figure 4.7: Overview of GPUvm PVDRM prototype.

calculate the GPU time.
Another task of the GPU Access Aggregator is to manage the GPU memory

and maintain the isolation of multiple VMs in the partitioned memory resources.
For this purpose, GPUvm creates shadow page tables and channel descriptors in
the reserved area of the GPU memory.

4.2.2 PVDRM

Figure 4.7 overviews our PVDRM prototype. PVDRM front- and back-end
drivers are running in the domain U and domain 0, respectively. To access the
GPU in the DRM environment, an application creates DRM objects, each of which
has its own GPU address space. The DRM object has a memory instance named
Graphics Execution Manager (GEM). The application runs its GPU code by send-
ing a request to the GEM object through a special device file. When an application
requests to create a DRM object in domain U, the front-end creates a stub DRM
object and the back-end prepares the corresponding DRM object. The back-end
driver manages the mapping between the stub and corresponding objects. The
front-end driver forwards received operations to the back-end, and the default
DRM manager running in domain 0 handles the operations. Since each DRM
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object is isolated, PVDRM guarantees the isolation of each VM DRM object.
PVDRM creates a message queue between the front- and back-end drivers.

The queue is used for the front- and back-end drivers to forward the requests and
return the operation results, respectively. Both drivers poll a message to efficiently
handle the requests and responses.

One technical challenge is to handle a mmap operation, which maps a GEM
object to the address space of an application. PVDRM needs to map the GEM
objects in domain 0 to the address space of the application running in domain U
to successfully handle the mmap operation. This means that page sharing across
domains is needed. PVDRM shares the pages of the target back-end GEM object
with domain U and maps the shared pages to the address space of the application
to accomplish this. However, sharing the pages involves several hypercalls, which
causes non-trivial overhead. PVDRM pools the allocated shared GEM objects in
domain U and domain 0 to mitigate the performance penalty. When the mmap
is requested to a cached GEM object, the front-end driver can directly map the
object pages to the address space of the application since the cached object pages
are already backed to those of the back-end object.

4.2.3 Discussion

GPUvm focuses on the hypervisor-level GPU virtualization for GPGPU, and thus,
virtualizes only the GPU resources required for it. This means that GPUvm does
not virtualize all of the GPU resources. For example, our prototype does not
virtualize a frame buffer used for graphics that is typically used by the X server.
Such a resource virtualization is out of the scope of GPUvm.

In shadowing channel descriptors, GPUvm traps the MMIO accesses to the
guest channel descriptors to propagate their updates to the shadow ones. The
current design of GPUvm implicitly assumes that the updates of the channel de-
scriptors are only done by the CPUs. In other words, GPUvm cannot handle the
channel descriptor updates from the GPUs. However, we believe that this assump-
tion is reasonable since the channel descriptors are typically updated by the device
drivers. From our experience, we have never seen GPU applications that update
the channel descriptors from the GPU contexts.

We must also note the current status of the prototype. Our prototype does
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not perfectly handle initialization operations. For the ease in implementation,
the prototype initializes the physical GPUs by using the domain 0 GPU device
driver, and ignores the initialization operations from the guest GPU device drivers
just enough to successfully execute the GPU applications in domain U. We need
to pay the engineering cost to carefully analyze the initialization operations and
sophisticate the corresponding part of the prototype to improve the stability of
GPUvm.

We apply the BAR remap optimization to only BAR3 in the prototype, which
is dominantly accessed in several benchmarks. In principle, the same optimization
can be applied to BAR1 that is used as a memory aperture. This optimization is
expected to slightly reduce the overhead in the full- and naive para-virtualizations.

GPUvm does not support those GPUs prior to the NVIDIA Fermi architecture
because the previous generations have another way to access GPU memory which
is not virtualized in GPUvm. We also restrict our attention to using Nouveau
as the guest device driver. The NVIDIA binary drivers should be available with
GPUvm, but they cannot be successfully loaded using the current versions of Xen,
even in Xen domain 0, which also was the case in the previous work [31, 32].

PVDRM does not have API limitations while API remoting approaches re-
quire specific APIs. The DRM interface leveraged by PVDRM allows DRM-
based runtimes to work. While the level of this interface is lower than the one
of API remoting approaches, it is high enough to abstract components of GPUs.
We expect that the performance of PVDRM would be similar to the one of API
remoting approaches.

4.3 Experiments

We conduct detailed experiments using a relevant commodity GPU to show the
effectiveness of GPUvm. The objective of this section is to answer the following
fundamental questions: 1) How much is the overhead of the GPU virtualization
incurred by GPUvm?, 2) How does the number of GPU contexts affect the perfor-
mance?, 3) Can multiple VMs meet the necessary coarse-grained fairness for the
GPU resources?, and 4) How much is the overhead of the schedulers we used?.
The experiments are conducted on a DELL PowerEdge T320 machine with eight
Xeon E5–24700 2.3-GHz processors, 16 GB of memory, and one 2-TB SATA
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hard disk. We use a NVIDIA Quadro 6000 as the target GPU, which is based
on the NVIDIA Fermi architecture. We run our modified Xen 4.2.0, assigning 4
and 1 GB of memory to domain 0 and domain U. Nouveau is running as the GPU
device driver and the latest user-mode Gdev [44] is running as the CUDA runtime
in domain U. In our previous paper [79], the kernel-mode Gdev was used instead
of the user-mode Gdev. The following ten configurations are evaluated: Native
(non-virtualized Linux 3.6.5), PT (pass-through provided by pass-through fea-
ture of Xen), FV Naive (full-virtualization w/o any optimization techniques), FV
BAR-Remap (full-virtualization w/ BAR Remap), FV Lazy (full-virtualization
w/ Lazy Shadowing), FV Optimized (full-virtualization w/ BAR Remap and Lazy
Shadowing), PV Naive (naive para-virtualization w/o multicall), PV Multicall
(naive para-virtualization w/ multicall), PVDRM (GPUvm w/o pooling allocated
GEMs), and PVDRM Pooling (GPUvm w/ pooling allocated GEMs).

4.3.1 Overhead

We pick several benchmarks from the well-known GPU benchmarks called Ro-
dinia [15] as well as our microbenchmarks to identify the overhead of the GPU
virtualization incurred by GPUvm, as listed in Table 4.2. We measure their ex-
ecution time on the ten models of virtualization. For each benchmark, we run it
eleven times, once for warming up and ten times for the results. We use the later
ten iterations.

Results

Figure 4.8 shows the average execution times of the benchmarks on each model.
The x-axis is the benchmark names while the y-axis exhibits the execution time
normalized by one of Native. It is clearly observed that the overhead of the GPU
full-virtualization is mostly unacceptable, but our optimization techniques signif-
icantly contribute to the reduction of this overhead. The execution times obtained
in FV Naive are more than 100 times slower in nine of the benchmarks (nop, loop,
madd, fmadd, fmmul, bp, hs, lud, and nn) than those obtained in Native. This
overhead can be mitigated by using the BAR Remap and the Lazy Shadowing op-
timization techniques. Since these optimization techniques are complementary to
each other, putting it together improves the performance. The execution time is
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Figure 4.8: Execution time of GPU benchmarks on ten configurations.
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Table 4.2: List of GPU benchmarks.

Benchmark Description
NOP No GPU operation
LOOP Long-loop compute without data
MADD 1024x1024 matrix addition
MMUL 1024x1024 matrix multiplication
FMADD 1024x1024 matrix floating addition
FMMUL 1024x1024 matrix floating multiplication
CPY 64MB of HtoD and DtoH
PINCPY CPY using pinned host I/O memory
BP Back propagation (pattern recognition)
HS Hotspot (physics simulation)
LUD LU decomposition (linear algebra)
NN K-nearest Neighbors (data mining)
SRAD Speckle reducing anisotropic diffusion (imaging)
SRAD2 SRAD with random pseudo-inputs (imaging)

8.2 times shorter in pincpy (best case) while being 3.4 times shorter in srad (worst
case).

We also find from these experimental results that the naive para-virtualization
is much faster than the full-virtualization. In most cases, the execution times ob-
tained in PV Naive are 2–20 times slower than those obtained in Native. PV Naive
exceeds FV Optimized overall in the execution times. However, in pincpy, it is
defeated by FV Optimized. We discuss the reason for this in the next section. The
overhead can also be reduced by using our multicall optimization. PV Multicall
is at most 3 times slower than Native except in the case of loop.

PVDRM outperforms PV Naive and PV Multicall because the high-level in-
terface reduces the frequency of the MMIO interceptions and hypercalls. In PV-
DRM, the overhead becomes 2–25% except for when using pincpy. PVDRM
Pooling incurs only a 4% overhead on average. Interestingly, PVDRM Pooling
exceeds Native in the performance of pincpy. We discuss this in detail in the next
section.

Breakdown

A breakdown of the execution times of the GPU benchmarks is shown in Fig-
ure 4.9. We divide the total execution time into five phases: init, htod, launch,
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Figure 4.9: Breakdown on execution time of GPU benchmarks.
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dtoh, and close. Init is the time necessary for setting up the GPU to execute a
GPU kernel. Htod is the time for the host-to-device data transfers, launch is the
time for the calculation on the GPUs, dtoh is the device-to-host data transfer time,
and close is time for destroying the GPU kernel and context. The figure indicates
that the dominant factors in the execution time for GPUvm are the init and close
phases. This tendency is significant for four of the GPUvm full-virtualization
configurations. In FV Naive, the init and close phases comprise more than 90%
of the execution time. The ratios of these phases can be lowered by using op-
timization techniques and naive para-virtualization. In particular, PV Multicall
significantly lowers the ratios of the two phases during computation heavy work-
loads (mmul, lud, srad, and srad2).

In the case of loop, PV Naive and PV Multicall are more than 15 times slower
than Native. Figure 4.9 shows that loop for PV Naive and PV Multicall spends
a large amount of time in the htod and dtoh phases. This is because the cur-
rent GPUvm prototype is not integrated with the BAR Remap for BAR1. Loop
transfers a small amount of memory (4KB) back and forth between the host and
device. In such cases, the Gdev CUDA runtime uses BAR1 for transferring mem-
ory instead of the DMA, and thus, this causes overhead for intercepting the BAR1
accesses.

As explained in Section 4.1.2, BAR Remap and Lazy Shadowing effectively
work to reduce the overhead. In all the benchmarks, FV BAR-Remap and FV Lazy
incur less overhead than FV Naive. Since both techniques are orthogonal, the use
of both optimizations (FV Optimized) results in a bigger gain in performance. On
average, the execution times are 2.5 times in FV BAR-Remap, 1.4 times in FV
Lazy, and 4.9 times in FV Optimized shorter than in FV Naive.

On the other hand, the init and close phases in two of the GPUvm naive para-
virtualized configurations are much shorter than those of the full-virtualization
in almost all cases. Full-virtualization performs many operations related to the
shadow page tables since memory allocations and deallocations that touch the
GPU page tables frequently occur in the two phases. This cost can be signifi-
cantly reduced in the naive para-virtualizations (PV Naive and PV Multicall) in
which those operations are requested by hypercalls. The only exception is pincpy.
Pincpy reports larger overhead in PV Naive than one in FV Optimized. This is
because pincpy issues many more hypercalls to map a large amount of the host
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memory in a GPU page table. As shown in Table 4.1, pincpy issues about 4
times more hypercalls than the other benchmarks. Using the multicall effectively
reduces this overhead, and pincpy in PV Multicall is 9 times faster than in PV
Naive. The multicall optimization reduces the hypercall issues, and as a result,
the execution times in PV Multicall are closer to those of PT and Native than the
ones of PV Naive. The relative times in six of the benchmarks (mmul, cpy, pincpy,
lud, srad, and srad2) in PV Multicall are within twice of ones in Native. In the
case of mmul, PV Multicall incurs only 11% overhead.

PVDRM performs comparably to the Native except for pincpy. Figure 4.9
depicts that the init and close times of PVDRM take on a larger ratio than in PV
Multicall for pincpy. This is because in the case of pincpy PVDRM issues many
hypercalls for granting access to a large amount of the domain 0 memory to the
domain U. Pincpy requires that a wide region of the host memory is mmap-ped
and it is accessed. Since pincpy involves a mmap operation for a large GEM
object, the front- and back-end drivers interact with the hypervisor to map the
pages of the back-end GEM object to the guest. PVDRM Pooling uses already-
mapped GEM objects, and thus, improves the performance due to less interaction
with the hypervisor.

4.3.2 Performance at Scale

We generate GPU workloads and measure their execution times using two sce-
narios to discern the overhead GPUvm incurs in multiple GPU contexts. In the
first scenario, one VM executes multiple GPU tasks, and multiple VMs execute
GPU tasks in the other scenario. We first launch 1, 2, 4, and 8 GPU tasks in
one VM with the full-virtualized, naive para-virtualized, PVDRM, domain 0, and
pass-throughed GPU (FV(Apps-on-1VM), PV(Apps-on-1VM), PVDRM(Apps-
on-1VM), Dom0, and PT). These tasks are also run on the native Linux (Native).
Next, we prepare 1, 2, 4, and 8 VMs and execute one GPU task on each VM with
the full-, naive para-virtualized, and PVDRM(FV, PV, and PVDRM), where all
our optimizations are turned on. In each scenario, we run the madd listed in Ta-
ble 4.2. Specifically, we repeat the GPU kernel execution of madd 10000 times,
and measure its execution time.

The results are shown in Figure 4.10. The x-axis is the number of launched
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GPU contexts and the y-axis represents the average execution time of application
instances in each configuration (e.g. the average execution time of 8 applica-
tion instances in FV 8 case). This figure shows that the full-virtualization takes
longer in the init and close phases as the number of GPU contexts increased. FV
also takes longer during these phases as more VMs are running. This is because
GPUvm forces the VMs to exclusively access unique GPU resources including
the dynamic window.

The graphs also show that the naive para-virtualization and PVDRM of
GPUvm have a similar performance to pass-through GPU. The total execu-
tion times in PV, PV(Apps-on-1VM), PVDRM, and PVDRM(Apps-on-1VM) are
quite similar to those in PT even if there are more GPU contexts.

We can see from this figure that PV (multiple VMs) has a shorter kernel execu-
tion time than PV(Apps-on-1VM). This overhead seems to occur for the following
two reasons. One is that the device driver uses coarser-grained locks for the GPU
resource accesses, and thus, the GPU contexts are executed more sequentially than
for one GPU context over multiple VMs; our prototype locks GPU resources in
a finer-grained manner. The other is that the MMIO operations of multiple GPU
contexts are serialized in the 1VM case since our prototype generates one thread
for each VM to emulate the MMIO operations. On the other hand, the ones for a
GPU context over several VMs are handled by several threads and are emulated
in parallel on physical cores.

The kernel execution time in Native is shorter than Dom0 since Native does
not suffer from virtualization overhead caused by Xen.

4.3.3 Performance Isolation

We launch a GPU workload on 2, 4, and 8 VMs and measure the GPU usage on
each VM to show how GPUvm achieves the performance isolation among the
VMs. For comparison, we use three schedulers: FIFO, CREDIT, and BAND.
FIFO issues GPU requests in a first-in/first-out manner. CREDIT schedules GPU
requests in a proportional fair-share manner. Specifically, CREDIT reduces the
credits assigned to a VM after its GPU requests are executed, chooses a VM whose
credit number is positive, and issues its GPU requests. CREDIT reassigns the
credits to the VMs for a given interval. BAND is our scheduler that was described
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Figure 4.10: Performance across multiple VMs.
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Figure 4.11: GPU usage of VMs (over 500 ms) for three GPU schedulers.

in Section 4.1.5. We prepare two GPU tasks, madd, which is used in the previous
experiment and an extended madd (long-madd), which performs 15 times more
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calculations than the regular one. Each VM loops one of them. We run each task
on half of the VMs. For example, madd runs on 2 VMs while long-madd runs on
2 VMs in the 4VM case.

Figure 4.11 shows the results. The x-axis represents the elapsed time and the
y-axis is the GPU usage of the VMs over 500 ms. The figure reveals that BAND
is the only scheduler that achieves performance isolation in all cases. In FIFO,
the GPU usages of the VMs running long-madd are higher in all cases since it
dispatches almost the same number of GPU commands from each VM at a given
time.

CREDIT fails to achieve the fairness among the VMs in the 2VM case. When
the command submission request queue contains requests from only long-madd
just after the madd commands have completed, CREDIT dispatches long-madd
requests even if it does not have a credit. On the other hand, BAND achieves the
fairness because it waits for the request arrivals from madd for a short time period,
and thus, handles the requests issued from the VMs whose GPU usage is less.

CREDIT achieves fair-share GPU scheduling in the 4VM and 8VM cases. In
these cases, CREDIT has more opportunities to dispatch less-executed VM com-
mands for the following two reasons. First, the GPU operations whose execution
times are short are issued more frequently in the 4 and 8VM cases so that there
are more points for scheduling VMs in an interval. Last, the request submission
queue has requests from two or more VMs just after a GPU kernel completes,
which differs from that in the 2VM case.

Note that BAND cannot achieve fairness among the VMs in a fine-grained
manner on the current GPUs. Figure 4.12 shows the GPU usages of the VMs
over 100 ms. Even with BAND, the GPU usages fluctuated over time, because
the GPU is a non-preemptive device. We need a novel mechanism inside the
GPU that effectively switches the GPU kernels to achieve a finer-grained GPU
fair-share scheduling.

GPUvm achieves coarse-grained fairness by scheduling GPU commands. As
described in Section 4.1.5, fine-grained scheduling points are required to schedule
GPU eaters effectively since GPU commands include launches of long- or infinite-
running GPU kernels. We explore the way to achieve fine-grained fairness by
adopting assists from applications in Chapter 5.
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Figure 4.12: GPU usage of VMs (over 100 ms) for three GPU schedulers.
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Figure 4.13: Execution time of madd and long-madd with different VMs and
scheduling policies.

4.3.4 Scheduling Overhead

We compare the overheads of FIFO, CREDIT, and BAND schedulers, using madd
and long-madd benchmarks in the previous section. Madd and long-madd are
executed on 1, 2, 4, and 8 VMs, respectively.

Figure 4.13 exhibits the results. The x-axis is the combination of the selected
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task, the number of VMs and the schedulers. The y-axis is the average of the
execution time. The overhead of FIFO is the smallest in our schedulers since
FIFO simply issues commands to GPUs just after the commands from madd or
long-madd arrived. The execution times of CREDIT and BAND are at most 39%
and 30% longer than FIFO in the madd case, while their execution times in the
long-madd cases are at most 5% and 3% longer.

In most of the cases, execution time on CREDIT is longer than that on BAND
in 2, 4, and 8 VMs. This is because the context switches occur more frequently in
CREDIT. Since BAND waits for a small amount of time to receive requests from
the previously executed GPU context, BAND tends to execute one GPU context
in a batch manner.

Figure 4.13 also indicates that the scheduling overheads are larger in madd
than long-madd under the same configuration (the same number of VMs and the
same scheduler). Since the madd workload consists of multiple shorter command
streams than long-madd, the schedulers run more frequently in the madd cases. In
addition to the frequently invoked schedulers, the ratio of the context switches to
the whole execution in the madd cases is larger than that in the long-madd cases.
Since time for one context switch is constant [65, 81] and madd’s execution is
much shorter than long-madd, the performance penalty in the madd cases becomes
larger.

4.4 Summary

This chapter presented GPUvm, an open architecture for GPU virtualiza-
tion. GPUvm supports the full- and naive para- and high-performance para-
virtualization using optimization techniques. The experimental results using our
prototype showed that the full-virtualization incurs a non-trivial overhead largely
due to the MMIO handling, and naive para-virtualization provides a two or three
times slower performance than the pass-through and native approaches. The high-
performance para-virtualization with the high-level interface significantly reduces
the overhead.

Table 4.3 summarizes the tradeoffs between the GPUvm hypervisor-level
GPU virtualization modes. Although the full-virtualization mode does not require
any modification of the software stack on the VMs, its performance penalty is the
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Table 4.3: Comparison of GPUvm virtualization modes.

Full-virtualization Naive Para-virtualization PVDRM
Level of Interface MMIO MMIO & Hypercalls Hypercalls

Overhead 297 – 5113% 11 – 1150% -3 – 9%
Guest Driver Extended for Hypercalls, Full Scratch,
Modification Nothing 540 LOC1, 2 3474 LOC2

Software Stack Limited for
Limitation No Limitation No Limitation Linux DRM APIs

1 Counted additions and modifications related to naive para-virtualization.
2 Counted by Al Danial’s CLOC.

highest (297–5113%). The overhead of the naive para-virtualization is lower than
that of the full-virtualization at the expense of some modification to the code of
the device driver in order to use hypercalls (540 LOC). PVDRM offers the DRM
interfaces to the VMs and incurs at most a 9% overhead. The drawbacks of PV-
DRM are supporting only applications using the DRM and requiring device driver
modification (3474 LOC).

Our suggestion to the GPU hardware design is that a nested page table support
in GPUs, similar to Intel EPT, is effective to reduce overhead of GPU virtualiza-
tion. Since the hardware extension translates guest virtual addresses to machine
addresses by setting a physical-to-machine mapping table to a special register in
advance, we do not have to scan all page table entries in building the shadow
page table. We can offer a virtual GPU by grouping several GPU channels and
assigning one nested page table to the group.

For our future directions, the optimization techniques proposed in
vIOMMU [10] that can be applied to GPUvm should be investigated. vIOMMU’s
sidecore IOMMU emulation exposes a shared memory region between the guest
and hypervisor as a virtualized MMIO region. Instead of trapping accesses to
this region, the hypervisor polls this emulated memory region. This optimiza-
tion avoids expensive VM-exits caused by traps. We hope our experience with
GPUvm gives insight into designing the support for device virtualization such as
SR-IOV [21].
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Chapter 5

Cooperative GPU Kernel Scheduling

The objective of this chapter is to show the resource virtualization approach for
scheduling GPU eaters. While GPU virtualization approaches at hypervisors
are application-transparent, they cannot schedule GPU eaters because these ap-
proaches schedule GPU commands or kernels. As is mentioned in Section 4.1.5
and 4.3.3, this is because these approaches use the boundary of GPU commands
or kernels as a scheduling point while GPU commands or kernels can be long-
or infinite-running. This limits applicability of GPU virtualizations in the multi-
tenant cloud environments.

This chapter introduces GLoop, which is a software runtime that enables
us to consolidate GPGPU applications including GPU eaters. GLoop uses
the application-assisted approach. GLoop offers an event-driven programming
model, which allows GLoop-based applications to inherit the GPU eaters’ high
functionality while proportionally scheduling them on a shared GPU in an iso-
lated manner. GPU eaters are modified to be executed on GLoop framework so
that GLoop runtime inserts lightweight scheduling points to make GPU eaters
schedulable. We carefully designed GLoop to overcome the limitations of exist-
ing GPU resource managers. GLoop has three goals, as follows.

• Consolidates GPU eaters efficiently: GLoop concurrently executes GPGPU
applications on a shared GPU. It dispatches them according to a scheduling
policy and lowers scheduling point latency.

• Provides GPU resource isolation: GLoop isolates GPU kernel execution.
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A malicious or buggy GPGPU application cannot destroy GLoop or other
GPGPU applications’ contexts.

• Does not modify proprietary GPGPU stacks: GLoop works on top of propri-
etary GPGPU device drivers, GPGPU libraries, and GPU hardware. The current
prototype runs on an unmodified NVIDIA device driver and CUDA SDK 9.0.

Our GLoop design is also based on the discrete (off-chip) GPU model that is
widely used for its intensive computational abilities. Although GLoop is portable
onto integrated (on-chip) GPUs such as Intel GPUs and AMD Kaveri [7], our opti-
mization techniques would not work as well since integrated GPUs have different
performance characteristics from those of discrete GPUs. In this case, alternative
mechanisms are needed.

We present a prototype of GLoop and port eight GPU eaters on it. The ex-
perimental results demonstrate that our prototype successfully schedules the con-
solidated GPGPU applications on the basis of its scheduling policy and isolates
resources among them.

5.1 GLoop Programming Model

An important role of GLoop is to offer low-latency scheduling points to GPU
kernels without sacrificing isolation to make GPU eaters schedulable. GLoop
provides an event-driven programming model to GPGPU applications by borrow-
ing the idea from Node.js [24]. We treat all kernel operations in this model as
events, except for the GPU computation. The events include file I/O, network I/O,
and GPU yields. GLoop-based applications register their own callbacks of events
of interest, and GLoop dispatches a callback when the corresponding event has
completed.

Our programming model has three important features. First, we can develop
highly functioning GPGPU kernels. GLoop exposes APIs for event requests such
as file I/O, network I/O, and GPU yields; thus, like GPUfs and GPUnet, the de-
velopment of GLoop-based applications does not involve laborious efforts such
as pipelining or asynchronous data copies. Second, we can set scheduling points
without splitting GPU kernels or finishing all the running thread blocks. GLoop
uses not only GPU kernel launches but also event requests as scheduling points.
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1: __device__ void doRead(DeviceLoop* loop,
2: uchar* buf, int fd, size_t offset, size_t size){
3: fs::read(loop, fd, offset, size, buf,
4: [=](DeviceLoop* loop, int read){
5: // ...
6: });
7: }

Figure 5.1: File Read Program on GLoop.

In addition, the latency of scheduling points decreases since event requests do not
involve kernel launches. Third, GLoop’s event request APIs are non-blocking.
This style of programming allows GLoop to avoid polling-based block behavior
and dispatch other hosted GPGPU applications. Namely, I/O operations and GPU
computations can be overlapped.

The event-driven programming model is known to be effective in server appli-
cations because they are driven by external I/O requests such as network packet
arrival [71]. We adopted this model for GPGPU servers in which the GPU
applications are driven by events. In addition, this model offers a chance for
compute-intensive GPU eaters to exploit the idle resources of an under-utilized
GPU. Since the utilization of server GPGPU applications varies, GLoop-based
compute-intensive GPU eaters can exploit the idle resources of the GPU. GLoop
efficiently schedules compute-intensive GPU eaters with server GPU eaters.

Note that the recent hardware GPU preemption will be complementary to
the GLoop technique once preemption technology becomes widespread. When
GLoop fails to offer appropriate scheduling points, we can fall back on the GPU
preemption to prevent GPU eaters from monopolizing GPUs. The current proto-
type of GLoop kills GPU applications that monopolize a shared GPU.

5.1.1 Event-driven Programming

In our programming model, GPU kernels of GLoop-based applications are
composed of callbacks, each of which is associated with events such as an I/O
operation (e.g. file read and write) and GPU yield. When an event is completed,
GLoop executes the corresponding callback and unregisters it. The GLoop-based
application does not finish until all the registered callbacks have been consumed.
A typical GLoop-based application starts and then registers a callback. When the
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1: __device__ void doRead(DeviceLoop* loop,
2: uchar* buf, int fd, size_t offset, size_t size){
3: if (offset < size){
4: size_t sizeToRead = min(PAGE_SIZE, size-offset);
5: auto callback = [=](DeviceLoop* loop, int read){
6: // ...
7: doRead(loop, buf, fd, offset + PAGE_SIZE * gridDim.x, size);
8: };
9: fs::read(loop, fd, offset, sizeToRead, buf, callback);
10: return;
11: }
12: fs::close(loop, fd, [=](DeviceLoop* loop, int err){ });
13: }

Figure 5.2: Repeated File Read Program on GLoop.

callback is invoked after the corresponding event has completed, it registers a new
callback in the running callback.

We first start with a simple program in the GLoop programming model. Fig-
ure 5.1 shows an example program where thread blocks read a file using GLoop
APIs. Supported APIs in our prototype are summarized in Appendix A. The func-
tion, doRead, reads a specified file size bytes into buf. The program executes
fs::read(...), which requests a file read from the host and registers the passed C++
lambda as a callback defined in line 4–6. GLoop executes the registered callback
once the requested read has completed. This callback processes read data at line
5.

Figure 5.2 shows another example program where thread blocks repeatedly
read a file in a chunking manner using GLoop APIs. The function, doRead,
repeatedly reads a specified file up to the specified bytes, size, into buf. We define
a callback function, callback, in the C++ lambda style at line 5. This callback
processes read data and then calls doRead() again to read a next chunk (lines
5–8). The program executes fs::read(..., callback), which requests a file read
from the host and registers the passed callback. As explained, GLoop executes
the registered callback once the requested read has completed. Since doRead()
is called in the callback, the running callback registers itself again via fs::read()
(line 9). These steps are repeated until the read size becomes equal to the specified
size. This program represents the example of the loop with GLoop APIs.

In addition, GLoop allows us to register continuation callbacks for GPU
yields. This means that we can insert scheduling points into the middle of a thread
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block execution by posting the continuation as a callback. GLoop supports post-
Task(), whose argument is the next callback.

5.1.2 Coalesced APIs

GPU execution is based on the hierarchical parallelism of hardware. The GPU
kernel is composed of thread blocks. A thread block consists of grouped threads
called warps, where the GPU executes threads in lock-step, and this poses the
problem of inefficiency when the threads follow divergent paths.

GLoop adopts coalesced API calls, inspired by GPUfs [74] and GPUnet [48].
GLoop specifically forces all the threads in a thread block to call the same APIs
with the same arguments at the same point in the application code. The thread
block-level approach is reasonable because the GPU offers efficient sharing and
synchronization primitives for thread blocks. This means that thread blocks have
a coarse-grained parallelism: all the threads in each thread block perform a single
task [48, 64]. In addition, managing the GPU kernel at the thread or warp level
involves management of much larger metadata per GPU kernel as GPU kernels
typically consist of tremendous numbers of threads.

5.1.3 Programming Model Adoption

GLoop programming is a continuation-passing style where each callback repre-
sents the next control state. Although we need to modify the application code to
consolidate GLoop applications, this is not a complicated task from our experi-
ence.

Most GPGPU applications can be made GLoop-based with little effort since
there is no need to modify the core logic of the applications. If GPU kernels are
short-running, what we should do is to launch the kernels through GLoop. Even
if the thread blocks are short-living, there is a concern that numerous short-living
thread blocks can occupy a shared GPU. Since GLoop treats thread block com-
pletion as scheduling points, as described in Section 5.3.1, no scheduling point
insertion is needed in such GPU kernels.

If GPU applications have long- or infinite-running thread blocks, the key to
adopting the GLoop programming model is to identify where to insert scheduling
points in the target GPU application code. Developers have to pay attention to two
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types of kernel: (1) I/O-intensive and (2) compute-intensive due to a long-running
thread blocks. Regarding the first type, they do not need to insert scheduling points
explicitly, since I/O requests are used as scheduling points. Regarding the second,
they need to insert a continuation callback into a long-running code path. For
example, they set a continuation callback per iteration in a long loop. Therefore,
the adoption of our programming model does not involve drastic changes to the
application logic.

Inserting callbacks at appropriate points of the code would not impose a huge
burden on developers. As a rule of thumb, they should insert continuation call-
backs at every location where execution is long. GLoop decreases scheduling
point latency by not performing GPU kernel launches in every continuation call-
backs. Instead, GLoop only switches kernels if necessary; GLoop dynamically
decides to perform context switching at the current scheduling point based on the
execution time. If the size of the input for processing becomes larger and thus
the kernel execution time becomes longer, GLoop will perform context switch-
ing more times. This means that GLoop imposes performance penalties that are
small even if a tremendous number of continuation callbacks is set to the applica-
tion. Automatic insertion of continuation callbacks to appropriate code points is
a challenge since it is inherently difficult to obtain such information by statically
analyzing the source code. Investigation of this issue is beyond the scope of the
dissertation.

By following the above guidance, we successfully implemented eight GPU
eaters, as described in Section 5.4.

5.2 GLoop Runtime

GLoop runtime offers an event-driven execution environment which isolates
GPGPU applications and requires no modifications to the proprietary GPGPU
stack. GLoop forces GLoop-based applications to isolate the execution of GPU
kernels in order to establish their own GPU contexts, each of which has its GPU
virtual address space [28, 45, 79]. In addition, GLoop mechanisms are on top of
existing GPGPU runtime libraries, such as CUDA.

Figure 5.3 shows an overview of GLoop. The GLoop runtime assigns a
GLoop-based application a host event loop and device event loops, called a
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Figure 5.3: Overall architecture of GLoop.

host loop and device loops for simplicity. GLoop scheduler, running as a priv-
ileged daemon on a CPU, schedules GLoop-based applications on the basis of its
scheduling policy.

Device Event Loop: The device loops, running on a shared GPU, drive the GPU
kernel composed of callbacks. They receive an event request from the GPU kernel,
pass it to the host loop via the remote procedure call (RPC) slots, and register the
callback. This architecture does not involve the GPU kernel finishing/relaunching
every event request; device loops can keep running until the suspend signal from
the gloop scheduler arrives. When an event has completed, the device loops invoke
a corresponding callback.

Note that not all events are pushed to RPC slots. For example, in postTask(),
device loops do not access the RPC slots when finding and invoking a registered
callback. All the operations are done on the device side, and thus, postTask()
offers lightweight scheduling points.

Host Event Loop: The host loop, running on a host CPU, performs events such
as I/Os issued by device loops and notifies them of event completion by pushing
it to the RPC slots. GLoop-based applications launch GPU kernels through host
loop. The host loop communicates with the gloop scheduler to acquire and re-
lease the scheduling token, which is the right to use the underlying GPU. When
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acquiring the token, the host loop launches a GPU kernel that generates device
loops.

GLoop Scheduler: The gloop scheduler manages the scheduling token and
schedules GLoop-based applications by suspending and resuming the device
loops. GLoop sets up a signal slot between the gloop scheduler and device loops
to deliver the suspend signal. The signal slot is one type of the RPC slots be-
tween the gloop scheduler and device loops. The gloop scheduler accounts the
GPU time of every GLoop-based application. In GLoop, GPU time is an interval
during which the host loop holds the scheduling token.

5.2.1 RPCs between Host and Device Loop

Device loops interact with the host loop via RPC slots that are on the host-device
shared memory. A device loop creates a callback slot in the device memory when
requesting an event to the host loop and initializes an RPC slot. The device loop
saves the next callback (a lambda function) into the callback slot while writing
RPC arguments to the RPC slot. It then issues the RPC by pushing an operation
code to the RPC slot. The device loop starts polling the RPC slots for event
completion and the signal slot to check whether the suspend signal has arrived.

A host loop polls the RPC slots until the device loops issue an RPC operation.
When the RPC operation is detected, the host loop calls a predefined function
corresponding to it. After the function has finished, the host loop stores the result
and event completion in the RPC slot. The device loops invoke the associated
callback when detecting the completion notification.

For example, device loops request the host loop to read a file and associate
a callback with the file read’s completion. The host loop reads the file, transfers
the read data to the device memory through GPU direct memory access (DMA)
engines and writes the notification of the read completion to the RPC slot. After
the device loop, which is polling the RPC slot, detects the data read by the host
loop, it writes the data back to the specified buffer and invokes an associated
callback.
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5.2.2 Suspend and Resume

Suspending and resuming operations involve all the GLoop components. The host
loop requests a scheduling token from the gloop scheduler to start or resume the
GPU kernel. The scheduler suspends the currently running device loops by push-
ing the suspend signal into the signal slot after the device loops have exhausted
their timeslice.

The device loops check for the arrival of the suspend signal before invoking
a new callback. When detecting a suspend signal, the device loops stop callback
invocation and finish execution of the GPU kernel. After the corresponding host
loop acknowledges that the device loops have been suspended, the host loop re-
leases the scheduling token to the gloop scheduler and requests it again. The gloop
scheduler selects the next host loop to run and passes it the scheduling token. The
host loop resumes the GPU kernel by launching a GPU kernel that reconstructs
device loops.

Checking the signal slot in device loops is a time-consuming task since the
host-device shared memory is accessed through the PCIe bus. This latency in
accessing DRAM makes scheduling checks quite slow. This cost is relatively
high in postTask() that offers lightweight scheduling points. To reduce this cost,
we periodically check the signal slot. The device loops monitor GPU clocks to
check for exhaustion of their timeslices (10 ms). The device loops in our prototype
access the signal slot every quarter of a timeslice (e.g., 2.5 ms). While the above
optimization significantly decreases the number of accesses to DRAM, we can
further optimize the latency by placing the signal slot in GPU device memory
instead of the host DRAM. This optimization requires the gloop scheduler and
GLoop-based applications to share the GPU device memory used for the signal
slot, and we note that this is our future work of the GLoop prototype.

5.2.3 An Example of Runtime Execution

We demonstrate how our example 5.2 works with the GLoop runtime. First, the
device loop starts doRead function reading a file. If offset is less than size,
doRead computes sizeToRead, and invokes fs::read API with the callback.
The loop, which is device loop in the code, stores the given callback into the GPU
memory, starts RPC for reading a file, and finishes this doRead function execu-
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tion. The device loop polls the RPC slot since the device loop has the pending slot
for the RPC. The host loop receives the RPC from the device loop, performs asyn-
chronous I/O on the host, transfer the data to GPU, and notifies the device loop of
the completion of reading the file. The device loop detects the completion of the
RPC, load the callback from the GPU memory, and invokes it with the transferred
data. Then the callback starts running with the data and does processing.

When the suspension request from gloop scheduler is detected while the de-
vice loop polls the RPC slot, the device loop stops polling and finishes the GPU
kernel. Since callback is stored in the GPU memory, the device loop can resume
the execution after the GPU kernel is rescheduled.

5.3 Design Details

Efficiently consolidating GPU eaters raises three design challenges: (1) how do
we control GPU kernels spawning numerous thread blocks, (2) how can we lower
scheduling point latency as much as possible, (3) how do we schedule GLoop-
based applications in a fair-share manner, (4) how do we build the GLoop runtime
on the CUDA-based software stack? To address these challenges, we integrate
efficient schemes with the GLoop runtime.

5.3.1 Thread Block Control

The number of thread blocks inside a GPU kernel is critical for scheduling. Sus-
pending all the running thread blocks to de-schedule the GPU kernel is a time-
consuming task if the GPU kernel consists of numerous thread blocks. To stop the
GPU kernel, a host loop has to wait until the GPU hardware has dispatched all the
thread blocks to the SMs. In addition, a GPU kernel generating numerous short-
lived thread blocks is difficult to schedule since its code path is too short to in-
sert continuation callbacks. For example, “MUMmerGPU” and “LavaMD” from
Rodinia [15] respectively generate up to 65,535 and 125,000 short-lived thread
blocks for a single kernel launch.

To address these problems, we introduce a thin thread block scheduler, in-
spired by the idea of Elastic kernels [64] and EffiSha [16]. Our thread block
scheduler, which is a software mechanism running inside the device, puts all the
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thread blocks in its queue and only executes the same number of thread blocks
as concurrently runnable thread blocks on the SMs. The running physical thread
blocks fetch logical thread blocks from the queue and execute them. The changes
to the application code in order to use this scheduler are trivial: using GLoop’s
API to retrieve logical thread block information instead of physical ones (e.g.
blockIdx and gridDim). The thread block scheduler allows us to complete the sus-
pension of a GPU kernel by only stopping physical thread blocks. When fetching
logical thread blocks, the physical thread blocks check for the arrival of a suspend
signal. We note that the appropriate number of physical thread blocks relies on re-
source usage by the thread block. Although we manually specify this number for
each GPU kernel on our prototype, an appropriate number can be automatically
calculated by using the CUDA occupancy calculator API [58].

5.3.2 Scheduling Point Optimization

To lower the latency of the scheduling points as much as possible, we leverage
GPU shared memory regions whose access is faster but whose size is smaller than
that of regular device memory regions. We place the control state of the GLoop
runtime in a shared memory region.

In addition, GLoop manages two callback slots on the shared memory region.
We observe that a GPU kernel typically waits for only one event, which means that
it only uses two callback slots. One is for the currently running callback, and the
other is for pushing the next callback. We therefore place two callback slots that
are currently used in the shared memory region, which leads to quick invoking and
saving of callbacks. Although the cost of context switches is logically increased
slightly since we need to store the slots from shared memory into the regular
memory region, this overhead is negligible.

This optimization can degrade the performance of a GPU kernel if it fully
utilizes GPU shared memory. GLoop’s shared memory use sometimes results in
fewer runnable thread blocks. GLoop can switch the optimization on and off.
Developers can thus choose the appropriate GLoop mode for their GPU kernels.

GLoop supports the postTaskIfNecessary() API in order to further lower
the latency of scheduling points. This API, used for long loops in the program,
allows the GPU kernel to perform lightweight scheduling checks per iteration.
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This saves a callback in its argument and returns true only when the device loop
checks the suspend signal. Otherwise, it returns false without saving the callback,
and the GPU kernel then performs the next iteration. Like postTask(), the API
checks the GPU clock to efficiently poll the suspend signal slot. This API allows
developers to optimize insertion of lightweight scheduling points at the expense
of introducing additional complexity to their code.

5.3.3 Scheduling Policy

We integrate a scheduling policy into the gloop scheduler. An advantage of
GLoop over existing GPU resource managers is that it can assign running states to
hosted GPU kernels, such as running, ready, and blocked, as in traditional process
abstraction because it manages the event invocations of the hosted GPU kernels.
We believe that this feature would enable us to integrate various CPU scheduling
policies into the gloop scheduler. In particular, the main focus of this dissertation
is that GLoop can schedule hosted GPU applications in a fine-grained manner,
which is essential for multi-tenant cloud platforms.

Our scheduler proportionally dispatches GPU kernels in a work-conserving
manner to fully utilize GPU resources. The scheduler is based on weighted fair
queuing [29]. It prepares each user’s queue and assigns more GPU time to high
priority users by weighting their queues. When a GPU application requests the
launch of a GPU kernel, the gloop scheduler pushes its GPU kernel launching re-
quest into the application’s queue and sets the queue to active if it is inactive. Each
queue has a virtual time that elapses during execution of the GPU kernels fetched
from the queue. The gloop scheduler selects the active queue whose virtual time
is shortest and passes the scheduling token to the host loop. The execution of
the GPU application is controlled by GLoop’s suspend and resume mechanism
explained in Section 5.2.2. When all the GPU kernels in a queue complete, the
queue becomes inactive. To achieve a work conserving scheduling, the gloop
scheduler adjusts the virtual time of the queue that just becomes active. Specifi-
cally, the gloop scheduler resets the virtual time to the shortest virtual time among
the active queues.

GLoop’s runtime intermediates event invocations and thus assigns the runtime
states of the GPU kernels such as I/O waiting, and the gloop scheduler manages
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the scheduling token assignment on the basis of the runtime states. The gloop
scheduler can deschedule GPU applications when all of the thread blocks wait for
the events completion. For example, a GPU application is descheduled when all
its thread blocks are waiting for newly incoming packets. This feature is effective
in the context of consolidation.

5.3.4 CUDA API Scheduling

In designing the GLoop runtime, we take into account the invocation of the
CUDA APIs that involve exclusive access to the underlying GPU. While a GPU
kernel spawned from another CUDA context is running, some CUDA API call
blocks the applications. For example, we cannot initialize a new CUDA context
in CUDA 7.5 on Kepler GPUs during the other GPU kernel execution. In this
case, the target CUDA context is never initialized until the running GPU kernel
finishes. The GLoop runtime needs to suspend the GPU kernel to execute such
CUDA APIs.

To address this issue, we reuse the scheduling token used for GPU kernel
scheduling. Specifically, the applications acquire the scheduling token from the
gloop scheduler to invoke a CUDA API of them. The current design conserva-
tively forces the applications to try to get the token in calling all CUDA APIs.
When an application has acquired the scheduling token for the CUDA API in-
vocation, the gloop scheduler suspends the running application, namely stops the
running GPU kernel. For example, an application initializes its new CUDA con-
text after acquiring the scheduling token. At this time, the gloop scheduler has
already suspended the GPU kernel execution.

5.3.5 Discussion

Large GPU memory transfers between the host and device can also monopolize
GPUs. Memory transfers can occupy GPU DMA engines for a long time and
block subsequent memory transfer requests. Previous studies [42, 64] suggest
splitting large memory transfers into small chunks and scheduling split requests.
While GLoop does not focus on memory transfers, these techniques can be inte-
grated into it.
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If GLoop-based applications leverage shared memory, their developers need
to pay attention to GPU kernel context switching, which clears the shared memory
content. There are two ways of addressing this issue at callback boundaries: sav-
ing and restoring the content of the shared memory or reconstructing the content.
Our ported applications using shared memory can take either way.

Although GLoop provides low-latency scheduling points, the tremendously
large number of scheduling points affects overall performance. The scheduling
point frequency depends on scheduling point places in the application code. We
note that developers can adjust the trade-off between scheduling point frequency
and performance penalty by taking into account that the latency is less than 2.26
µs in Kepler and 1.23 µs in Pascal, as shown in Section 5.6.1.

The GLoop architecture is portable to various resource-shared environments.
In a container-based system, one possible setup is that the gloop scheduler runs
on the host OS as a service process, the host loops in GPU applications use CPU
slices assigned to their own containers, and their device loops run on the shared
GPU. The gloop scheduler schedules the running GLoop-based applications in
the containers. In a VM system where a GPU is virtualized [31, 32, 79, 82], the
gloop scheduler is inside the hypervisor or privileged VM, and each loop of the
GPU applications runs on virtualized CPUs and the GPU of their VMs.

While GPUs are getting better hardware preemption support, the other types
of simple accelerators do not support preemptions (low-end GPUs, FPGAs etc.).
The GLoop design can be applied to such accelerators to offer scheduling mech-
anism in software, and this enables sharing of accelerators in multi-programmed
environments without adding complexity to the accelerators themselves.

Since GLoop is a cooperative scheduling mechanism, malicious or buggy
GPU eaters can launch GPU kernels aiming at monopolizing a GPU. We cate-
gorize such GPU eaters into two types, (1) launching a GPU kernel without tak-
ing a token from the gloop scheduler and (2) launching a GPU kernel that does
not have GLoop’s scheduling points. The former GPU eaters can be detected if
GLoop introduces a kernel module that catches launching GPU kernels. Since
launching GPU kernels are done by ioctl to a GPU device file or MMIO to a spe-
cific region of GPU, a kernel module can detect it by hooking a ioctl or trapping
MMIO by protecting memory regions for MMIO [17]. The recent literature [55]
demonstrates handling GPU kernel launches by trapping MMIO even with the
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proprietary NVIDIA GPU driver. This is one of the future extends of the proto-
type of GLoop.

For the latter GPU eaters, we kill a process of GPGPU applications monopo-
lizing a GPU, that results in stopping GPU kernels. Currently, it is done manually
by kill command, but we can extend our prototype to kill automatically when
GPGPU application exceeds the threshold.

5.4 Implementation

We implemented a prototype of GLoop on Linux kernel 4.10.0-37 with CUDA 9.0
for NVIDIA Kepler and Pascal GPUs [57,61]. The current prototype is tailored to
Linux container-based platforms, which means that GLoop-based applications in
each container run on a shared GPU. Figure 5.4 overviews our prototype, which
consists of a GLoop library and a gloop scheduler daemon.

We note that GLoop can be prototyped with the existing tool chains such as
CUDA. We do not need to prepare special compilers or preprocessing tools for
the implementation. This property can improve the GLoop portability that allows
us to easily install the runtime and follow the updates of the underlying CUDA
runtime.

GLoop Library: The GLoop library and applications are implemented using
CUDA, and they are compiled in the NVIDIA CUDA Compiler (NVCC). GLoop-
based applications are linked to the library to spawn the host and device loops.
Each host loop communicates with the gloop scheduler via the POSIX inter-
process communication (IPC). The GLoop-based application invokes GPU ker-
nels through the host loop. To execute GPU kernels, the host loop requests the
scheduling token from the gloop scheduler by using the POSIX IPC. When the
host loop acquires the token, it starts a GPU kernel that constructs or resumes the
device loops on the device side and executes user-written GPU code on the top of
them. If the kernel is suspended by the gloop scheduler, the host loop releases the
scheduling token to the gloop scheduler and requests the scheduling token again to
resume the suspended GPU kernel. This scheduling token request is automatically
conducted by the GLoop library.
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Figure 5.4: Overview of GLoop prototype.

GLoop Scheduler Daemon: The scheduler runs in the host as a daemon and
manages the scheduling token. The host loop in each GLoop-based application
tries to obtain the scheduling token from the gloop scheduler to execute its GPU
kernels. The gloop scheduler sends a suspend signal to the active device loop
every timeslice if two or more host loops request the scheduling token. When
receiving the suspend signal, the device loops save their state, stop themselves,
and finish the GPU kernel. The corresponding host loop releases the token to the
gloop scheduler. The gloop scheduler then selects the next host loop to run and
sends it the scheduling token.

Callback: We use C++11 lambda supported in the recent NVCC to represent
callbacks. C++11 lambda saves data necessary to resume the GPU kernel, i.e., an
instruction pointer and captured context data. The NVCC automatically captures
variables referred by the lambda and saves them as a lambda object. The device
loops use it as the callback.

In NVIDIA GPUs, the PTX ISA, a virtual instruction set for NVIDIA GPUs,
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Algorithm 1 Pseudo code of main loop of device loop.
1: function DRAIN

2: slotID ← Invalid
3: while slotID != ShouldExit do
4: if slotID != Invalid then
5: slot← Slots[slotID]
6: data← slot.data
7: callback ← slot.callback
8: DISPATCH(callback, data)
9: DISPOSE(callback)

10: end if
11:
12: if Suspension Request arrives then
13: slotID ← ShouldExit
14: else if No pending RPC slots exist then
15: slotID ← ShouldExit
16: else
17: slotID ← Invalid
18: for each candidateSlotID ∈ SlotIDs do
19: slot← Slots[candidateSlotID]
20: if RPC corresponding to slot is completed then
21: slotID ← candidateSlotID
22: break
23: end if
24: end for
25: end if
26: end while
27: end function

version 2.1 introduces indirect call [63] that allows CUDA programs to use
lambda functions stored in GPU memory. The NVCC intermediately converts
CUDA lambdas to C structures holding a pointer to a function and captured vari-
ables. Since CUDA lambdas are C structures, we can store and load lambdas in
GPU memory. When calling a CUDA lambda, the NVCC emits indirect calls for
this function pointer. While our prototype uses indirect calls, GLoop is applicable
even without indirect calls, by the complier-level approach collecting the types of
lambdas and emitting a large switch statement in a call site.
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Algorithm 2 Pseudo code of main loop of host loop.
1: function LAUNCH(kernel)
2: repeat
3: Acquire a scheduling token from gloop scheduler
4: LAUNCHONGPU(kernel)
5: Release a scheduling token
6: until kernel completes all callbacks
7: end function

RPC Slots: Due to the lack of atomic operations over the PCIe bus, the de-
vice loops and host loop poll their RPC slots and behave in a producer-consumer
manner; synchronization is not required since neither will simultaneously read or
write to the same slot. The host and device loops issue RPCs in two phases to
ensure memory consistency of the shared RPC slots. First, a host or device loop
writes RPC arguments and flushes them by issuing a memory fence. The loop then
writes and flushes the one word operation code. In checking the slot, the host and
device loop bypass CPU and GPU caches, respectively. This protocol guarantees
that the arguments are visible when the RPC operation code is detected. This is
the similar to the GPU RPC implementation in previous work [74, 77].

The slot holds a callback associated with the given RPC completion. Our
prototype stores serialized CUDA lambdas to the memory region allocated for the
slots. When the RPC completes, the device loop load the corresponding CUDA
lambda from the slot and invoke it.

Host and Device Event Loops: Algorithm 1 shows the pseudo code of the de-
vice loops of our prototype. Each device loop in thread block invokes this Drain
function that repeatedly drains populated callbacks from the program. If the sus-
pension request arrives or there are no pending RPC requests, device loop finishes
their execution. Otherwise, device loop polls RPC slots to retrieve completed
RPCs.

Algorithm 2 describes the pseudo code of the main loop of the host loop.
The host loop acquires a scheduling token from the gloop scheduler, launches
a kernel, and releases a scheduling token when the kernel finishes. The host
loop repeats this loop if kernel is suspended by the gloop scheduler. Otherwise,
the host loop finishes launching the kernel. Besides the main loop of the host
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Algorithm 3 Pseudo code of I/O polling thread of host loop.
1: function IOLOOP

2: loop
3: for each slotID ∈ SlotIDs do
4: slot← Slots[slotID]
5: if RPC request is issued in slot then
6: data← slot.data
7: Execute asynchronous I/O in thread pool with data
8: Following steps are executed when I/O completes
9: Mark slot completed with data

10: end if
11: end for
12: end loop
13: end function

loop, the host side code runs Algorithm 3 in the different thread. This I/O loop in
the host loop repeatedly polls the RPC slots, retrieve the request from the device
loops, and perform asynchronous I/O in a thread pool. Once I/O completes, host
loop marks slot completed with the data. This completed RPC slot is detected in
the device loop.

5.5 Case Studies

GLoop is applicable to various GPGPU applications. We ported eight GPU eaters
with different features. Table 5.1 shows the ported GPU eaters and the number of
explicitly inserted scheduling points. The number does not include the implicitly
inserted scheduling points which are inserted by GLoop runtime at the boundary
of logical thread block dispatches.

TPACF: This application from Parboil2 [76] launches a single kernel composed
of long-running thread blocks. TPACF calculates the distances between all pairs
of astronomical bodies. GLoop splits the kernel to insert scheduling points; we
inserted postTask() into the loop calculating the distances of pairs. Note that the
original TPACF intensively uses shared memory. Since GLoop switches GPU
kernels, the content of the shared memory must be saved and restored every time
the kernel is switched. The GLoop version uses regular device memory called
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Table 5.1: List of ported GPU eaters.

GPU eater # of explicit scheduling points
TPACF 5
LavaMD 0
MUMmerGPU 2
Hybridsort 2
Grep 19
Approximate Image Matching 13
Echo Server 5
Matrix Multiplication Server 6

global memory instead of shared memory. For comparison, we integrated the
same change into the original one in addition to the original TPACF.

LavaMD: LavaMD from Rodinia [15] launches a single kernel that generates
many (125,000 in our setting) short-lived thread blocks. Since the thread blocks
are short-lived, the kernel cannot be split. Instead, GLoop schedules the logi-
cal thread blocks as described in Section 5.3.1. GLoop schedules logical thread
blocks on 30 physical thread blocks. Every time the logical thread blocks finish,
control returns to GLoop.

MUMmerGPU: MUMmerGPU [70] from Rodinia [15] consists of two long-
running kernels (mummergpuKernel and printKernel). The kernels have differ-
ent features; the former generates 9,766 long-running thread blocks, and the latter
generates 65,535 short-lived thread blocks. We inserted postTaskIfNecessary()
into the long loop of mummergpuKernel. To obtain more scheduling points,
logical thread blocks are scheduled on 30 physical thread blocks in mummerg-
puKernel. Logical thread blocks in printKernel are scheduled on 60 physical
thread blocks.

Hybridsort: Hybridsort [75] from Rodinia launches two kernels: bucket-sort
and merge-sort kernels. The bucket-sort kernel generates many short-lived
thread blocks, while the merge-sort kernel generates long-running thread blocks
whose numbers vary from 8 to 81,000. Scheduling points can be inserted using
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the same techniques as those that are described above. A point to note here is that
the bucket-sort kernel is carefully implemented to make full use of the shared
memory per SM. This implementation can lead to severely degraded performance
if GLoop runtime uses a small amount of shared memory. We therefore disabled
the use of shared memory in the GLoop runtime.

Grep: Grep from the GPUfs project1 was ported to GLoop. GLoop grep
demonstrates that GLoop can support POSIX-like file system APIs since grep
reads and writes files stored in the file system of the host operating system. GLoop
grep invokes postTask() in each word-search iteration. Every time a string match
succeeds, a callback with the file write request is queued to output the result to a
file.

Approximate Image Matching: This application (img) from GPUfs [74] scans
three databases, each of which has 390MB (25,000 images in total) for learning,
and finds images similar to the ones given as queries (2,000 images: 32 MB in
total). The original img uses gmmap() and gunmap() APIs in GPUfs, which
enable file caches to be placed in the GPU memory. This feature results in sig-
nificant performance benefits because the same files are accessed repeatedly in
img. Our current prototype of GLoop lacks this feature, which results in poorer
performance than that of the original. However, this feature is orthogonal to our
design of GLoop and can be incorporated into GLoop.

Echo Server: To demonstrate that GLoop can support socket-like APIs for net-
working, the echo server from the GPUnet project [48] was ported. GLoop pro-
vides TCP/IP networking APIs such as accept(), recv(), and send() although the
GPUnet assumes RDMA for communication GLoop prepares bounce buffers in
the GPU memory to enable DMA between a host and device loops. Every time the
echo server invokes networking APIs, which provide scheduling opportunities.

Matrix Multiplication Server: This application (matmul server) from the
GPUnet is a network server that multiplies two 256×256 matrices of floats in a
tiling manner. Matmul server mimics a typical GPGPU server behavior in which

1https://github.com/gpufs/gpufs
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the GPU consumes the transferred input and sends back the result, such as a face
verification server [48]. The invocation of networking APIs provides scheduling
opportunities, as is done in the echo server. In addition, every time a tile is calcu-
lated, postTaskIfNecessary() is invoked to incorporate more scheduling points.

5.6 Experiments

We conducted experiments to find answers to four questions: (1) how much over-
head does GLoop incur, (2) how well does the GLoop application perform when
multiple GPU applications are consolidated, (3) can we achieve performance iso-
lation on GLoop, and (4) is GLoop effective in consolidation scenarios?

We evaluated our prototype on an MAX-XW-E5HG machine with two Xeon
E5-2620 v4 2.10-GHz CPUs (each has eight cores), 64-GB of memory and one
726-GB SSD. We used two NVIDIA Tesla GPUs: K40c Kepler GPU with 12-
GB GDDR5 memory and P100 Pascal GPU with 16GB HBM2 memory. The
NVIDIA GPU driver version is 384.81. The disk performance reported by hd-
parm is 8855.98 and 337.46 MB/s for cached and disk reads, respectively.

The workload was executed eleven times, i.e., once to warm up and ten times
to obtain results. The measurements reported below are average values of the ten
executions.

5.6.1 Standalone Overhead

To find how much overhead GLoop incurred, we ran the applications described
in Section 5.5 in a standalone manner and measured their execution times. We
grouped our applications into two categories: GPU- and I/O-intensive. We discuss
GLoop’s overhead based on these two groups.

We ran three versions of GPU applications: an unmodified one (vanilla), a
GLoop-based one (gloop), and a split version where the original GPU kernels
were split into multiple short kernels (kernel-split). We also ran GLoop versions
without the shared memory optimization, which were postfixed as -w/o-shared-
slots.
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Figure 5.5: Execution times and their breakdown.
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Figure 5.7: Execution times for img variations.
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Figure 5.8: Execution times for img-simple variations.

Scheduling Point Latency: To examine the scheduling point latency, we first
measured the execution time for the microbenchmark called throttle. Throttle is
a program that invokes postTask() one million times with one thread block that
consists of one thread. The left end of Figure 5.5a shows the execution time.
GLoop version is 3.69× faster than kernel-split in Kepler, because GLoop offers
lightweight scheduling points that do not involve kernel launches. GLoop version
with the shared memory optimization is 8.2% faster than gloop-w/o-shared-slots,
since throttle frequently writes a callback in slots on the shared memory.

On Pascal GPUs, GLoop is more effective than on kernel-split. The left end of
Figure 5.5b shows that GLoop version is 4.36× faster than kernel-split in Pascal.
This is because time for GPU kernel launches is not changed while the GPU clock
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of P100 is faster than K40c. This result means that the GPU kernel launch are
relatively costly on the Pascal GPU.

From the execution time and number of scheduling points, we estimated that
the latency of a scheduling point, which does not include the scheduling algo-
rithm or GPU kernel switch costs, is less than 2.26 µs in Kepler and 1.23 µs in
Pascal, calculated by ExecutionT imeofGPUKernel

1000000 . We can hide this latency since
GPU executes different warps when accessing GPU memory. In fact, the subse-
quent experiments revealed that the scheduling point latency of GLoop is hidden
or amortized in application benchmarks.

Compute-intensive Applications: We measured the execution times for hy-
bridsort, lavaMD, mummergpu, and tpacf. We did not split the GPU kernel
of lavaMD or the printKernel of MUMmergpu because their thread blocks are
short-lived. For laveMD, we did not prepare a -w/o-shared-slots version because
it does not use postTask(). For tpacf, we also prepared a vanilla-global version
that uses the global memory based on the original one, as described in Section 5.5.
While vanilla hybridsort works with CUDA 7.5 [80], it crashes with CUDA 9.0.
Thus, we omitted the result from the figure. We divided the total execution time
into five categories: CUDAInit/Fin, DataInit/Fin, IO, Copy, and Kernel. They cor-
respond to the times for CUDA context initialization and finalization, constructing
and destroying data, reading and writing files, transferring data between the host
and device, and GPU kernel execution.

Figure 5.5 presents the results. GLoop’s overhead is shown in the CUD-
AInit/Fin and Kernel categories, and is small (-0.2% – 7.3%). The overhead in
the CUDAInit/Fin category comes from allocating additional GPU memory and
threads for GLoop. The time is small (539 ms – 725 ms) compared to the Ker-
nel category (2258 ms – 6506 ms). Since this is one time overhead during GPU
application execution, it is amortized by executing GPU kernels for long time;
such GPU kernels are our target application. The overhead in the Kernel cate-
gory is small or negligible (-10.5% – 4.3%) in all the cases except for hybridsort.
The other categories are similar in all cases. The kernel performance penalty of
GLoop is 23.8% in hybridsort, compared to CUDA 7.5 hybridsort data reported
in our previous work [80]. This is caused by the balance of the two GPU ker-
nel executions. The bucket-sort kernel is faster in the non-shared mode because
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of its shared memory utilization. The merge-sort kernel’ performance, on the
other hand, is better in the shared mode because it does not use shared memory.
All the kernels in one application are currently compiled in either the shared or
the non-shared mode due to limitations in the toolchain. We can extend GLoop
to mitigate the overhead by changing this mode per GPU kernel.

GLoop outperforms kernel-split versions in almost all cases. It is 1.8× and
1.2× faster than the kernel-split of hybridsort and mummergpu, respectively. The
kernel-split versions cause numerous kernel launches for scheduling, whereas
GLoop does not involve such additional kernel launches. In addition, GLoop
reduces callback saves and restores by using postTaskIfNecessary(). The ex-
ecution time of the kernel-split version in tpacf is comparable to that of GLoop
because the execution time of each kernel is sufficiently long to amortize the ker-
nel launch overhead.

The kernel execution time on Pascal is faster than that on Kepler. The main
reason of this speed up is for the number of SMs: Pascal P100 has 3.73× more
SMs (56) than Kepler K40c (15). On Pascal, the execution time of GLoop is
comparable to that of vanilla and is much faster than that of kernel-split in several
benchmarks (2.07× in hybridsort and 1.02× in mummergpu).

We can also see an interesting performance trend that time for GPU kernel
launches is almost the same among two GPUs, which means that the overhead
of GPU kernel launches is bigger on P100 than Kepler. If the GPU kernel launch
incurs the same overhead while GPUs become faster, its relatively worse overhead
motivates developers to consolidate numerous computation into one GPU kernel
to minimize the GPU kernel launches. The optimization of merging tiny GPU
kernels that is employed in a recent research system [36] can be used to reduce
GPU kernel launches.

I/O-intensive Applications: We measured the execution times of grep and img.
We prepared GPUfs- and GLoop-based versions labeled gpufs and gloop, and pre-
pared a workload for comparison that pre-allocates a large amount of GPU device
memory to transfer all the datasets before starting the GPU kernel, called vanilla.
The execution time measured just after the host buffer cache is cleared is postfixed
as -bc. We tuned gpufs and vanilla in grep to gain further CUDA occupancy with
our GPU. These tuned versions are postfixed as -tuned. We modified the source
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code of the downloaded GPUfs to run it on our GPU.
The results obtained for grep are in Figure 5.6. The performance of gloop is

comparable to the other grep implementations on K40c and P100. Gloop in K40c
outperforms the untuned versions and is 7.7% slower than the vanilla-tuned and
4.3% faster than gpufs-tuned versions.

Clearing the buffer cache does not degrade GLoop performance (-0.1% in
K40c and 0.2% in P100). Since grep repeatedly reads the same set of files, no
buffer cache misses occur except for the first read. The execution time of gpufs-
bc and gpufs-tuned-bc on P100 is slower than that of gloop. This comes from
the difference of I/O handling between them. Since P100 GPU core performance
is better than K40c, I/O throughput becomes a relatively major factor in the grep
execution. We believe that the GLoop’s multi-threaded asynchronous I/O feature
maximizes I/O throughput in grep. The GPUfs implementation executes only one
I/O thread in the host-side and thus fails to fully utilize the disk bandwidth.

Figure 5.7 shows the results for img. Since img-gpufs and img-gpufs-bc oc-
casionally crash with CUDA 9.0 SDK, we measure the average execution time of
first eleven successful execution. The execution time for gloop is 3.88× and 5.68×
longer than that for gpufs in K40c and P100. This is because gpufs can benefit
from the GPUfs’ GPU buffer cache: GPUfs builds its buffer cache in the GPU
device memory, and thus, the cache works effectively as the workload repeatedly
reads the same files.

We used another data set called img-simple to validate this expectation. Img-
simple uses only one image as the query data, runs one thread block, and never
provides matches against dataset images. This avoids reading the same data from
the file system multiple times and reduces the effect of the GPU buffer cache as
much as possible.

The results in Figure 5.8 indicate that the execution time of gloop is just 1.45×
and 1.27× longer than that of gpufs in K40c and P100 respectively. The remaining
overhead is caused by the additional data copies in the gloop version. While gpufs
exposes mmap-like APIs that only cause one data copy from the host to the GPU
buffer cache, gloop provides write/read like APIs that perform copies twice, from
the host memory to the GPU bounce buffer, and from the bounce buffer to the GPU
user buffer. This overhead can be eliminated by adding a gpufs-like buffer cache
mechanism to the GLoop runtime. This implementation just requires engineering
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Figure 5.9: Performance across multiple throttle instances.

effort but a description of the implementation of a buffer cache is beyond the scope
of this dissertation.

Different from the grep case, the cold buffer cache degrades performance by
0.8% in K40c and 0.1% in P100 because img issues I/O requests more frequently
than grep.

5.6.2 Performance at Scale

We concurrently ran multiple instances of GLoop-based applications to find the
performance penalty of GLoop’s consolidation. We launched one, two, four, and
eight instances and measured each of their execution times. We used throttle as
the microbenchmark, tpacf as a compute-intensive application, and grep as an
I/O-intensive application. We measured the execution time of these benchmarks
on K40c GPU.
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Figure 5.10: Performance across multiple application instances.
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Figure 5.11: GPU utilization for GPU applications (over 200 ms).

Context Switching Latency: To discern the context switching overhead, we
ran throttle by varying the number of threads, timeslice lengths, and the number
of thread blocks. Figure 5.9a plots the execution times for different numbers of
threads. In the single instance case, the increase in threads from 1 to 1024 length-
ens the execution time by 13.6%. This is because the scheduling points require
thread synchronization. The tendency in the case of eight instances is almost the
same as that in the single instance (14.3% longer execution time from 1 to 1024).
The slight overhead results from thread synchronization done in context switch-
ing.

Figure 5.9b plots the results for varied timeslice lengths. Due to the optimiza-
tion of GLoop to avoid polling on the PCIe bus, as described in Section 5.2.2, the
actual timeslice consumed slightly differs from the specified value. GLoop per-
forms 2636 context switches on average per application in the two instances with
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10000 µs timeslices in eleven runs. Thus, throttle in the two instances performs
239.6 context switches for each execution on average. When the timeslices are
too short, context switches are dominant in the execution times. The execution
time with a 100 µs timeslice is 5.8× longer than that with a 10000 µs timeslice
for eight instances, where the execution time with the 100 µs timeslice is 42.5×
longer than that of the one instance. The longer timeslice mitigates the context
switching overhead. The increase in execution time for the 10000 µs timeslice is
linear from one to eight instances (7.88×).

Figure 5.9c shows the execution time for throttle with different number of
thread blocks. The execution time does not increase linearly up to 240 since K40c
GPU can execute 240 thread blocks of throttle concurrently. However, in the eight
instance case, the execution time with 240 thread blocks is 20.3% longer than that
with 1 thread block. This time increase comes from the limitation of GLoop’s
suspend mechanism. The thread block scheduler stops the running thread blocks
asynchronously; it checks the suspend signal only every time slice and thus some
GPU cores used by suspended thread blocks become idle until all the thread blocks
are suspended. Suspending more running thread blocks causes more idle cores in
the GPU kernel suspension, leading to waste computing resource of a GPU.

Applications: Figure 5.10 presents the results obtained for tpacf and grep. The
x-axis in the figures represents the number of launched applications, and the y-axis
represents the execution time. GLoop schedules the applications in a fair-share
manner, and the standard deviation for the results is at most 2.5%.

The figure indicates that the execution time for tpacf applications increases
in proportion to the number of instances. The execution time for eight instances
is slightly better than eight times the standalone’s execution time because of the
short I/O time in tpacf. From Figure 5.5, tpacf performs file I/O, which can be
overlapped with execution of the other tpacf kernels.

The execution times for eight grep instances exceed eight times the stan-
dalone’s execution time (8.43×) as a result of disk I/O contention. The result
in the next section validates this finding: the execution time for grep with seven
throttles is 8.28× longer than that for the standalone since throttle does not issue
any I/O requests. The remaining slowdown stems from the overhead imposed by
scheduling the running instances.
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Figure 5.12: Execution times for GPU applications with throttles.

5.6.3 Performance Isolation

We demonstrated that GLoop isolates performance among GPU applications. We
controlled the GPU utilization of consolidated applications by using our pro-
portional scheduler and measured the GPU utilization of each application. We
launched one GPU application instance. We used tpacf and grep as GPGPU ap-
plications. We also ran one, three, and seven instances of throttle together.

First, we ran all the applications with the same utilization assignment. Fig-
ure 5.11 plots the GPU utilization. The x-axis represents the elapsed time, and the
y-axis is the GPU utilization of the applications over 200 ms. The figure reveals
that GLoop achieves performance isolation in all cases. The applications share
one GPU and the computation resources are fairly divided. When running two,
four, and eight instances, their GPU utilizations correspond to 50%, 25%, and
12.5%.

Figure 5.12 shows the execution times for each instance. The execution time
for eight instances for tpacf is 3.71× longer than that for the two instances. The
increase in the execution time is not linear since the short I/O time in tpacf is con-
stant in all cases. The execution time for grep in the eight instances is 4.02× longer
than in two instances. This results from the overhead for scheduling multiple GPU
applications.

Next we changed the resources assigned to the GPU applications. We assigned
66% of the utilization to a target application (tpacf or grep) while co-running throt-
tle instances shared the GPU with one another. Figure 5.13 plots the results, which
reveal that GLoop successfully assigns a target application the weighted GPU uti-
lization and the other throttles share the remaining resources. The execution time
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Figure 5.13: GPU utilization for GPU applications (over 200 ms). 66% of the
GPU resources is assigned to the applications.
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Figure 5.14: Execution times for GPU applications with throttles. 66% of the
GPU resources is assigned to the target application.

shown in Figure 5.14 slightly increases with the number of applications due to the
accumulated overhead of the scheduler.

5.6.4 Consolidation Scenarios

To confirm the effectiveness of consolidating GLoop’s GPU applications, we de-
vised two scenarios: GPU Server Consolidation and GPU Idle-time Exploitation.
The GPU server consolidation is a situation where under-utilized GPU servers
are consolidated into one GPU, while the GPU idle-time exploitation is where a
compute-intensive application exploits the idle time of an under-utilized GPU.
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Figure 5.15: Stacked GPU utilization for consolidated GPU matmul servers (over
200 ms).
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Figure 5.16: Stacked GPU utilization for GPU matmul server and tpacf applica-
tion (over 200 ms).

GPU Server Consolidation: To demonstrate that GLoop successfully consoli-
dates under-utilized GPU servers on a single GPU, we configured the applications
as follows. We first ran an under-utilized GPU matmul server (server1) on a
GPU whose utilization was roughly 20%. Then we gradually launched two addi-
tional under-utilized GPU servers (server2 and server3) on the same GPU. When
a single server was running, GLoop assigned it 100% of GPU utilization for the
polling of device loops. To clearly demonstrate the effectiveness of GLoop’s con-
solidation, we launched a low priority throttle to drain the remaining utilization.

Figure 5.15 shows the stacked GPU utilization per 200 ms. The x-axis indi-
cates the stacked GPU utilization of the three under-utilized GPU servers, and the
y-axis plots the time series. While the new servers are being launched, GLoop
successfully maintains the GPU utilization of the running servers at 20%. The
figure also plots that the resource utilization spikes when server2 and server3 start
(at the points of 7.5 and 17.5 s). This is because the CUDA initialization (CUD-
AInit/Fin in Section 5.6.1) takes 500 ms and thus GPU utilization is temporarily
occupied. We note that it was 200 ms in 361.42 GPU driver. We guess that the
internal initialization procedure is changed.
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GPU Idle-time Exploitation: We also demonstrated that GLoop effectively as-
signs idle resources to the compute-intensive application while maintaining the
performance of low utilized GPU servers. We ran one under-utilized GPU server
(server) and then sequentially launched tpacf (tpacf1, tpacf2, and tpacf3). As is
the same to the previous experiment, we launch a throttle application draining the
remaining utilization too.

The results are plotted in Figure 5.16. When we launch a tpacf instance, the
tpacf first occupies the GPU for its initialization. After that, while the server
process runs under the assigned resources, tpacf utilizes the rest of the GPU re-
sources. GLoop successfully assigns idle GPU utilization to tpacf instances while
the resource utilization of the server is preserved.

5.6.5 Hardware Preemption

Finally, we describe an anecdotal situation showing that our software-level pre-
emption can be more effective than hardware preemption. Pascal’s compute pre-
emption offers instruction-level granularity preemption. The preemption mecha-
nism saves/restores context information on the GPU kernels to/from GPU DRAM.
Since the context information includes thousands of registers’ values and large
shared memory contents, the context switching could cause high latency. On the
other hand, GLoop allows developers to insert scheduling points at appropriate
places where the size of the context information becomes small. For example, we
do not need to save register values and shared memory content as context infor-
mation at a scheduling point when a thread block finishes. While the strength of
GLoop is that it can offer flexible software scheduling control, the above situation
implies our approach can achieve efficient context switches.

To validate the above assumption, we run LavaMD benchmark on two Pascal
GPUs, GTX 1080 and Tesla P100 Pascal GPUs. In each trial, we launch mul-
tiple instances of vanilla and GLoop-based LavaMD (1 to 6) and measure their
execution time.

Figure 5.17 shows the average execution time and standard deviation. The
standalone performance shows that GLoop causes 2.1% in GTX 1080 and 4.7% in
P100 performance penalties stemming from its runtime overhead. We believe this
penalty would be further mitigated once we optimize GLoop for Pascal GPUs. On
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Figure 5.17: Execution times of LavaMD with GLoop and hardware preemption.

the other hand, the cases of two or more instances show that the GLoop version is
comparable the vanilla version in GTX 1080 (-0.2 – 3.1%). The standard deviation
of the vanilla version is large in the four, five, and six instance cases. This is
because the vanilla LavaMD execution is so short that the LavaMD sometimes
completes without any hardware preemption. This completion is observed more
frequently in P100. GLoop can schedule applications stably with its software
mechanism.

The overhead of GLoop is higher on P100 (4.7 – 46.2%) than that of GTX
1080 due to the difference of the LavaMD configurations, each of which is tuned
to each GPU. The major difference is the number of the running thread blocks.
In LavaMD, P100 executes more thread blocks at once than GTX 1080 since the
number of SMs on P100 is 2.8× more than that on GTX 1080. This causes two
negative impacts related to the overhead on P100. First, the standalone perfor-
mance of LavaMD on P100 is worse than that on GTX 1080 and thus the perfor-
mance penalty on P100 is relatively bigger. Second, LavaMD on P100 launches
more thread blocks and causes context switching overhead shown in Section 5.6.2.
We could mitigate this overhead by a NVIDIA Volta GPU’s feature [62]: statically
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partitioning SMs to lower the number of the running thread blocks and switching
the running thread blocks eventually for each SM.

This result shows that software-level approach can potentially perform effi-
cient context switches compared with hardware preemption in some situations
with flexible scheduling control.

5.7 Summary

This chapter presented GLoop, a pure software runtime that allows us to consoli-
date GPGPU applications including GPU eaters on a shared GPU. GLoop offers
an event-driven programming model so that we can develop highly functional
GPGPU applications and schedule them on a shared GPU in a fine-grained man-
ner. The GLoop runtime executes the GPU kernels that are isolated from one an-
other, provides lightweight scheduling points, and schedules them according to a
proportional share scheduling policy. In addition, it runs on a proprietary GPGPU
software stack including the NVIDIA driver and CUDA library. We implemented
a prototype of GLoop and ported eight GPU eaters on it. The experimental results
demonstrate that our prototype efficiently consolidates GPGPU applications.

Recent adoption of binary-offered GPU kernels such as NVIDIA cuDNN
poses an issue of GLoop applicability; their proprietary nature means that we
cannot modify them. One of our future work will be to explore ways to transform
GPU kernels including binary blobs into GLoop-based applications. One possi-
ble direction is to transform GPU applications into GLoop-based applications and
insert scheduling points by using GPU binary analysis frameworks [20].

Completely automatic transformation into GLoop-based applications is also
challenging. This is because we cannot estimate the execution time of a spe-
cific part of the application from the static information. Thus, profiling-based
or semi-automatic insertion techniques are promising. One solution is inserting
many scheduling points into the program mechanically, taking profiling informa-
tion, and removing unnecessary scheduling points. Another is that programmers
can specify which scheduling points are necessary by referring to the reported
profiling information. This mechanism can further reduce the programmer effort.
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Chapter 6

Conclusion

6.1 Contribution Summary

This dissertation has conducted studies of GPU resource virtualization in the
multi-tenant cloud environments. GPUvm clarifies the tradeoffs between GPU
virtualization approaches. GLoop presents an application-assisted approach that
can host GPU eaters in the cloud environments.

GPUvm showed the tradeoffs between GPU virtualization approaches in
terms of software modifications, the levels of interfaces, and performance. This
dissertation presented the design and implementation of full-virtualization of
GPUs. The analysis of the experimental results showed that the full-virtualization
incurs significant overhead, and the bottleneck of the full-virtualization is largely
the cost of the MMIO handling and page table shadowing. This dissertation
demonstrated that the high-level interfaces to the virtual GPUs can mitigate these
overheads at the expense of modification of the device driver; the naive para-
virtualization removing the page table shadowing improved the performance and
the high-performance para-virtualization reduced the MMIO handling overhead.
This result helps the cloud software developers to select an appropriate virtualiza-
tion approach for their use cases.

Although application-transparent approaches including GPUvm can host var-
ious classes of GPGPU applications, hosting GPU eaters are challenging for
these approaches because they schedule GPGPU applications at a coarse-grained
boundary, GPU commands or kernels. This dissertation demonstrated that
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CHAPTER 6. CONCLUSION

GLoop, an application-assisted approach, can schedule GPU eaters on a shared
GPU according to a proportional share scheduling policy, by introducing event-
driven programming model into GPGPU kernels. GLoop allows the multi-tenant
clouds to share GPUs with a wider range of applications including GPU eaters.

6.2 Future Directions

GPUvm has uncovered that the largest bottleneck of the full-virtualized GPUs
is the page table shadowing. Thus, one of the future work is to reduce or elim-
inate this overhead. For example, designing a nested page table support in GPU
hardware as a virtualization extension, similar to Intel EPT, is effective to reduce
overhead of GPU full-virtualization. The nested page table translates GPU guest
physical addresses to GPU host physical address, so that the guest GPU driver can
use the unmodified guest GPU page tables, which eliminates the need of shadow-
ing. While the nested page table introduces an additional cost of the two-level
page walk, effective use of huge pages in GPU memory could mitigate this over-
head.

Automatic transformation into GLoop-based applications is another one of
the future work. While we insert lightweight scheduling points of GLoop manu-
ally, profiling the runtime data could advise developers where to insert lightweight
scheduling points. This semi-automatic approach can reduce the burden of mak-
ing GLoop-based applications and expand applicability of GLoop.

Introducing an abstraction layer for GPUs like GPUvm and GLoop can sim-
plify the management and improve the availability of GPUs in the multi-tenant
cloud environments. Virtualized GPU contexts pave the way to allowing hyper-
visors to migrate VMs using GPUs by migrating virtual GPU contexts among
physical GPUs. Another use case is a high availability system that keeps the state
of the secondary virtual GPU in synchronization with the primary one and makes
the secondary one active when the primary one becomes unavailable.

While this dissertation focused on discrete GPUs, the design of GLoop could
be applicable to the other types of simple accelerators that do not support preemp-
tions (low-end GPUs, FPGAs etc.). The GLoop design envisions the future cloud
environments making wider range of accelerators sharable.
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Appendix A

GLoop APIs

Table A.1: List of GLoop APIs in our prototype.

API Explanation
fs::open / fs::close Open and close a file descriptor.
fs::fstat Retrieve size information of a given file.
fs::ftruncate Truncate a file to a given size.
fs::read / fs::write Read from and write to a file at a given offset.
net::connect Open a TCP socket for client.
net::bind / net::unbind Open and close a server.
net::accept Open a TCP socket for a incoming connection

on a given server.
net::close Close a TCP socket.
net::receive / net::send Receive from and send to a socket.
loop::postTask Post a given callback to the event loop.
loop::postTaskIfNecessary Post a given callback to the event loop if the

event loop needs to check the suspend signal.
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