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EDCI 1-ethyl-3-(3-
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DDQ 2,3-dichloro-5,6-dicyano-1,4-
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IBX 2-iodoxybenzoic acid 
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Ac acetyl 
R any alkyl group 
M any metal 
aq. aqueous 
Bn benzyl 
Cbz benzyloxycarbonyl 
Bu butyl 
cat. catalytic amount of 
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m meta 
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Me methyl 
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MS4A molecular sieve 4A 
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n normal 
N/A not applicable 
NMR nuclear magnetic resonance 
PMB paramethoxybenzyl 
p para 
Ph phenyl 
PEI polyethylene imine 
PLC preparative layer chromatography 
Pr propyl 
PPTS p-toluenesulfonic acid pyridine salt 
Py pyridine 
quant quantitative yield 
rt room temperature 
s secondary 
sec secondary 
Boc t-butoxycarbonyl 
TBS t-butyldimethylsilyl 
TBDPS t-butyldiphenylsilyl 
temp. temperature 
t tertiary 
tert tertiary 
TBAF tetrabutylammonium fluoride 
THF tetrahydrofuran 
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TLC thin layer chromatography 
Ts tosyl (p-toluenesulfonyl) 
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Tf trifluoromethylsulfonyl 
TIPS triisopropylsilyl 
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Part 1. Two-step Synthesis of Multi-substituted Amines 
 

Chapter 1. Introduction 
1-1. Features of N-Alkoxyamine Derivatives 

Not only Weinreb amide but other N-alkoxyamine derivatives possess various features 

originated from conflicting nature of “electronegativity” and “unshared electron pair” of the 

oxygen atom in the N-alkoxy group. Herein, the important effects of N-alkoxy group positively 

assisting various type of reaction are summarized (Figure 1-1). For example, while a carbonyl 

oxygen atom is the most nucleophilic site in an ordinary amide 1, a nitrogen atom becomes the 

most nucleophilic in N-methoxyamide 2 (effect A). This is because the inductive electron 
withdrawal of the alkoxy group and the acyl group competes within each other. In addition, the 

electron withdraw effect of the methoxy group also increases the electrophilicity of the carbonyl 

group (effect B).1 Comparing an ordinary N,O-acetal 3, N,O-acetal 4 can be stabilized by 
formation of a five-membered chelation, which plays an important role in Weinreb ketone 

synthesis2 by preventing C-O or N-O bond cleavage (effect C). In addition, a chemoselective 

nucleophilic addition of Grignard reagent to an ester in the presence of an aldehyde or a ketone 

reported by Colby and co-workers also use chelation effect.3 Compared to ordinary iminium ion 

5, the inductive electron withdrawal of the methoxy group also leads to increase in electrophilicity 

of oxyiminium ion 6 (effect D).4 Furthermore, the methoxy group serves as a unique protecting 
group of the nitrogen atom, removable with a mild single electron reducing agent such as SmI2, 

Mo(CO)6, or Zn/acid (compound 7 or compound 8, effect E).5,6,7 Besides the characteristic 

conditions for cleaving N-O bond, the N-methoxy group is sterically the smallest protecting group, 

which would be advantageous for various reactions occurring around nitrogen atom (effect F). 
 
Figure 1-1. Features of N-alkoxyamine derivatives 
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1-2. N-Methoxyamide (Weinreb Amide)8 
Chida-Sato research group has been exploring new synthetic strategies that take advantage of 

a heteroatom-heteroatom bond for the synthesis of biologically active complex natural products. 

The connection of a heteroatom and another heteroatom opens it up to new reactivities as 

represented by -effect of hydroperoxide, 9 and chelation effect of Weinreb amide.2 In 1981, 
Weinreb and co-workers reported a reliable method to access ketone from carboxylic acid 

derivative (Scheme 1-1A, 9→10→11). Treatment of Weinreb amide 9 with organometallic 

reagent ‘R2M’ leads to the formation of the five-membered chelated intermediate 10, which 

prevents the addition of second nucleophile. And sequential workup gives ketone 11 without the 

formation of tertiary alcohol 12. Secondary N-methoxyamide 13 shows a unique reactivity 

originated from the adjacent methoxy group (Scheme 1-1B, 13→14→16→17).10 Treatment of 

N-methoxyamide 13 with PhI(OCOCF3)2 (PIFA) results in formation of N-allylated 

methoxyamide 17 via aziridinium ion 16 generated by concerted insertion of allylsilane to 

acylnitrenium ion 14. Driving forth of producing highly reactive species 14 is the resonance 

stabilization of nitrenium ion (14↔15). 

   

Scheme 1-1. Unique reactivities of N-alkoxyamide 
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1-3. Reductive Nucleophilic Addition to N-Methoxyamide 
The reductive functionalization of amides is one of the greatest methods for synthesizing multi-

substituted amines due to the following two reasons. First, synthetic method to form amide bonds 

have been established. Second, while amines cannot be handled easily due to its strong basicity, 

nucleophilicity, and oxophilicity, amides can be handled because of its low reactivity. Thus 

amides would be a useful nitrogen source for synthesis of alkaloids. However, the stability of 

amides has prevented the late-stage conversion of amides to functionalized amines in the presence 

of more reactive functional groups. Therefore, recently, development of amide-selective 

conversion in the late-stage of natural products and drug syntheses have been desired. 

The proposed mechanism of the reductive nucleophilic addition to N-methoxyamide 2 is 

shown in Scheme 1-2. Treatment of N-methoxyamide 2 with an organometallic reagent (R3M) 

allows the formation of the chelated intermediate 4 at moderate temperatures (Figure 1-1, effects 

B and C). Then, addition of acid promotes the formation of highly electrophilic N-oxyiminium 

ion 18, and subsequent addition of second nucleophile (R4M) would proceed smoothly due to 

high electrophilicity of 18 to give N-methoxyamine 19 in a one-pot process (Figure 1-1, effect 

D). In 2010, Chida-Sato group developed the novel method of the reductive nucleophilic addition 

to N-methoxyamide in using DIBAL-H (Scheme 1-3).1,11 Addition of DIBAL-H to a solution of 

N-methoxyamide 20 in CH2Cl2 at –78 °C, and subsequent one-pot addition of allylstannane (3.0 

equiv) and Sc(OTf)3 (1.1 equiv) afforded the desired amine 21 in 92% yield. Reductive cyanation 

of 20 also proceeded successfully to form α-cyanoamine 22, whose substructure is often seen in 

the bioactive complex alkaloids. 

 

Scheme 1-2. Nucleophilic addition to N-methoxyamide 

 
 

Scheme 1-3. Reductive allylation and cyanation of N-methoxyamide 
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The nucleophilic addition to N-alkoxyamides also enabled access to α-tertiary amine moiety 

in a one-pot reaction (Scheme 1-4).11 Treatment of N-benzyloxyamide 23 with MeLi at –78 °C 

followed by allylation or cyanation afforded tertiary amines 24 or 25 in 92% or 85% yield, 

respectively. The reductive allylation of N-benzyloxyamide 26 afforded 2,6-trans-substituted 

piperidine 27 with complete diastereoselectivity by treatment of DIBAL-H and allylstannane 

(Scheme 1-5-left). Helmchen and co-workers reported Grignard reagent mediated reductive 

nucleophilic addition of N-methoxyamide (Scheme 1-5-right).12 In their method, first nucleophile 

is carbon nucleophile and second nucleophile is hydride reductant such as NaBH4 or Raney nickel, 

and the inverse order of hydride and carbon source resulted in opposite diastereoselectivity. They 

performed the successive addition of EtMgBr and NaBH3CN to N-methoxyamide 28 to afford 

the 2,6-cis-substituted piperidine 29 in 90% yield and >10:1 diastereomeric ratio.  

 

Scheme 1-4. Reductive allylation and cyanation of N-benzyloxyamide 23 

 
 

Scheme 1-5. Control of diastereoselectivity by exchanging the order of nucleophiles 

 

 

To confirm the beneficial effects of N-alkoxy groups, a control experiment between N-

methoxyoctanamide 20 and N-methyloctanamide 32 was conducted (Scheme 1-6). N-

Methoxyamide 20 reacted with DIBAL-H (1.3 equiv) at –78 °C, and subsequent allylation gave 

N-methoxyamine 21 as a single product. In contrast, the reduction of N-methylamide 32 was not 

complete at –78 °C, and the reaction was required to be performed at –50 °C (effect B). 

Furthermore, after completion of the allylation, N-methylamine 35 was obtained in low yield 

along with the undesired over reduced product 36 (35: 20%, 36: 41%). These results indicates 

that N,O-acetal 33 would easily decompose to form iminium ion 34, which would readily be 

converted to over-reduced product 36. Moreover, the chelation effect was crucial for this one-pot 
process.   



 
5 

Scheme 1-6. Control experiment with and without N-methoxy group 

 

 

Although various effects of the N-methoxy group enable addition of two different nucleophiles 

to an amide carbonyl group in one-pot process, these methods require the addition of highly 

nucleophilic organometallic reagent such as DIBAL-H, alkyllithium reagent, or Grignard reagent. 

Therefore, more electrophilic functional groups such as ester, nitro, or nitrile groups cannot be 

tolerated under these conditions. For example, ester and amide are embedded in a same molecule, 

the ester group of 37 should be converted to non-reactive ether 38 through reduction and 
protection. Next the nucleophilic addition of amide followed by reconstruction of the ester could 

give the desired product 39 (Scheme 1-7A). These tedious redox reactions and protecting group 

manipulation would decrease synthetic efficiency. However, the Schwartz reagent, which is an 

amide-selective reducing agent, was effective for the development of the amide-selective 

nucleophilic addition (Scheme 1-7B).13 Treatment of N-methoxyamide 40 with the Schwartz 

reagent, and subsequent addition of Sc(OTf)3 and allylstannane afforded N-methoxyamine 41 
without harming more electrophilic methyl ester. 

 
Scheme 1-7. Amide-selective nucleophilic addition by using Schwartz reagent 
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1-4. Total Synthesis of Gephyrotoxin (50) 
In 2014, Chida-Sato group disclosed the total synthesis of gephyrotoxin featuring two-step 

construction of multi-substituted N-methoxypiperidines in highly chemoselective fashion 

(Scheme 1-8).13 Details of the key reactions are depicted in Chapter 2. The synthesis commenced 

with the synthesis of the bicyclic N-methoxylactam 44 taking advantage of the key coupling 

reaction of N-methoxyamide EZ-42 and 4-bromobutyraldehyde. A solution of an amide and an 

aldehyde in CH2Cl2 was treated with BF3·OEt2 at –20 °C to form N-methoxypiperidone 43. The 

key bicyclic intermediate 44 was prepared by several transformations from 43, and then the 

lactam-selective nucleophilic addition was performed. The reduction of 44 with 1.1 equiv of 

Cp2ZrHCl led to formation of the five-membered chelated intermediate 45 (Figure 1-1, effect C). 
Then treatment with Sc(OTf)3 (30 mol%) and allylstannane (2.0 equiv) achieved reductive 

allylation via oxyiminium intermediate 46 in completely lactam-selective fashion. Surprisingly, 

this allylation proceeded at –78 °C due to the increased electrophilicity of 46 (Figure 1-1, effect 

D), and favorably produced the desired compound 47 with 4.6:1 diastereoselectivity. The 

resulting decahydroquinoline 47 was then converted to enoate 48. Reductive cleavage of N-O 

bond of 48 was achieved by addition of activated Zn powder in the presence of AcOH at 60 °C, 

and subsequent aza-Michael reaction proceeded to give 49 in 98% yield and with moderate 

diastereoselectivity (Figure 1-1, effect E). Finally, introduction of the enyne side-chain and 

reduction of tert-butyl ester accomplished the total synthesis of gephyrotoxin (50). 
 

Scheme 1-8. Total Synthesis of Gephyrotoxin (50) 
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1-5. Cleavage of N-O Bond14 
  Heteroatom-heteroatom bonds, for instance N=N, N-N, N-O, O-O, are known to be cleaved 

under reductive-, radical-, or oxidative conditions. To cleave the N-O bond of N-alkoxyamides, 

two representative methods have been commonly used. The first method is single-electron 

reduction with low valent metals (Scheme 1-9A, 1-9C).5-7,15 The other is Pd or Ni catalyzed 

hydrogenation (Scheme 1-9B).16 

 

Scheme 1-9. Reductive cleavage of N-O bond of N-alkoxyamides 

 

 

  The required conditions to cleave the N-O bonds of amines are different from those of amides. 

In case to cleave the N-O bond of N-alkoxyamines, the basicity and electrophilicity of the amine 

are important. For example, treatment of bicyclic compound 57 with mCPBA provoked oxidative 

N-O bond cleavage to give nitrone 58 (Scheme 1-10A).17 N-Methoxyamine 59 was converted to 

secondary amine 60 by treatment with Zn/AcOH (Scheme 1-9B).4 These reactions proceeded via 

onium intermediates such as 61 and 62. 

 

Scheme 1-10. Oxidative and reductive cleavage of N-O bond of N-alkoxyamines 
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Chapter 2. Two-step Synthesis of Multi-substituted N-Methoxypiperidine 
2-1. Piperidine Alkaloids 

The secondary metabolites generated from plants or animals possess a variety of bioactivities. 

In general, most of medicinal drugs contain nitrogen atom in its structure. Therefore various 

scientists have been interested in the development of synthetic method for alkaloids and 

heterocyclic compounds including nitrogen atom. Piperidines are one of the most common and 

important structural motifs seen in a number of natural products. Some selected examples of 

piperidine alkaloids attracting a number of synthetic chemist are listed in Figure 2-1. 

Gephyrotoxin (50)1,2 and histrionicotoxin (63)3,4 possesses synthetically attractive structures 

including α-multi-substituted piperidine skeleton and enyne structure. Therefore a number of 

synthetic studies on 50 and 63 have been investigated to date. From the roots of Rauwolfia 

serpentina, several bioactive indole alkaloids were isolated including reserpine (64) and ajmaline 

(65). Reserpine (64) possesses an antihypertensive and antipsychotic activities,5 and ajmaline 

(65) has an antiarrhythmic activity.6 From the Chinese plant Gelsemium (G. elegans), an indole 

alkaloid, koumidine (66) was isolated, which has a structure similar to 64 and 65.7 In fact, the 

biosynthetic route of 64, 65, and 66 were considered through the same intermediate.8 Morphine 

(67) and cocaine (68) are well known as highly addictive drugs due to the strong activity on the 

central nerve.9,10 On the other hand, tiotropium bromide (69: also known as Spiriva®), which 

possesses a structure similar to 68, is utilized as a COPD (Chronic Obstructive Pulmonary 
Disease) drug.11 Synthetic studies of these natural products and drugs shown in Figure 2-1 have 

been contributed to the improvement of organic synthetic chemistry from many aspects. 

 

Figure 2-1. The piperidine alkaloids 
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2-2. Synthetic Plan 
We supposed that N-methoxy amides would be useful for synthesis of highly substituted 

piperidine compounds, including gephyrotoxin (50), ajmaline (65), and koumidine (66). These 

natural products possess the common structural motif; 2,3,6-trisubstituted piperidine skeleton 74. 

A synthetic plan for the two-step access to highly substituted piperidine 74 from N-methoxyamide 

E-42 is described in Scheme 2-1 (E-42→71→74). The success of this process is highly dependent 

on the assistance from the N-methoxy group which acts as a reactivity control element. The first 

step is an acid-mediated direct coupling of N-methoxyamide E-42 with an aldehyde, followed by 

spontaneous intramolecular allylation of the generated N-acyliminium ion 70 to give 2,3-

disubstituted N-methoxy-piperidone 71.12 Intermolecular condensation of an ordinary amide with 
an aldehyde is very challenging due to the poor nucleophilicity of the amide nitrogen atom. 

However, incorporation of a methoxy group on the nitrogen atom results in an increase of the 

nucleophilicity (Figure 1-1, effect A), enabling direct coupling with an aldehyde R1CHO. The 

second step of the two-step sequence is the nucleophilic addition to N-methoxylactam 71, 

affording 2,3,6-multi-substituted N-methoxypiperidine 74.13 This nucleophilic addition takes 

advantage of both the increased electrophilicity of the N-methoxyamide and the chelation effect 

(Figure 1-1, effects B and C), and the increased electrophilicity of the N-methoxyiminium ion 73 

(Figure 1-1, effect D). The addition of the first nucleophile R2M to the N-methoxylactam would 

provide the five-membered chelated intermediate 72. After addition of acid, the generated 

oxocarbenium ion 73 would then react with a mild nucleophile to provide N-methoxypiperidine 

74 in a one-pot process.  

 

Scheme 2-1. Synthetic plan for the two-step synthesis of multi-substituted piperidine 
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2-3. Synthesis of Allylsilanes E-42, Z-42, and EZ-42 
Allylsilane E-42 was synthesized as shown in Scheme 2-2. Mono protection of the 

commercially available 1,4-butanediol (75) with the TBDPS group, followed by oxidation with 

IBX gave aldehyde 76. Next, the resulting aldehyde 76 was converted to allylic ester 77 by 

Grignard reaction followed by trifluoroacetylation of the allylic alcohol. Treatment of 77 with a 

catalytic amount of Pd(dba)2 and (TMS)2 led to the formation of allylsilane 78. Subsequently, the 

TBDPS group of 78 was removed with TBAF, and the resulting alcohol 79 was oxidized by IBX 

(79→80) and Kraus-Pinnick oxidation to afford carboxylic acid 81. Finally, the condensation of 

81 and N-methoxyamine hydrochloride proceeded to give E-42 in 57% total yield over 9 steps. 

 

Scheme 2-2. Synthesis of E-allylsilane E-42 

 

 

 

The allylsilane Z-42 was prepared by using other synthetic route (Scheme 2-3). The 

commercially available 4-pentyn-1-ol (82) was protected as a THP ether, and subsequent 

alkylation of 83 with trimethylsilyl iodomethane gave internal alkyne 84. Subsequently, the 

removal of the THP group (84→85), followed by Z-selective semi-reduction with nickel boride 

afforded the Z-olefin 86. Finally, the primary hydroxy group of 86 was converted to N-

methoxyamide by oxidation (86→87) and condensation, giving Z-42 in 50% total yield over 7 

steps. 
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Scheme 2-3. Synthesis of Z-allylsilane Z-42 

 
 

Although both stereoisomers of allylsilanes E-42 and Z-42 were obtained, the sequence 
required a number of steps due to multiple oxidation and protection/deprotection. Thus, a two-

step synthesis of EZ-allylsilane EZ-42 was developed by utilizing cross metathesis reaction 

between N-methoxyamide 89 and allyltrimethylsilane (Scheme 2-4A). The commercially 

available 4-butenoic acid (88) was converted to N-methoxyamide 89 by condensation with N-

methoxyamine in good yield. In this reaction, the workup with NaHCO3 was necessary due to 

the removal of the side product derived from HOBt, which was inseparable from 89 by silica gel 
chromatography. Then, optimization of the cross metathesis reaction was conducted. The cross 

metathesis reaction with Grubbs 2nd generation catalyst proceeded in moderate yield, despite the 

presumable deactivation of catalyst caused by coordination with nitrogen atom.14 The addition of 

isocyanide 93, which was prepared from 90 by the sequence of reaction sequence depicted in 

Scheme 2-5B (90→91→92→93),15 was effective in order to remove the side product derived 

from ruthenium catalyst. 

 

Scheme 2-4. Two-step synthesis of EZ-allylsilane EZ-42 
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2-4. The First Step: Coupling of N-Methoxyamide and Aldehyde 
With both allylsilanes E-42 and Z-42 in hand, the first coupling reaction was optimized using 

N-methoxyamide E-42 and octanal 94a. No desired product 71a was formed with Sc(OTf)3, TiCl4, 

SnCl4, or TMSOTf (Table 2-1, entries 1-4). However, addition of LiClO4 and a catalytic amount 

of Bi(OTf)3
16 to a solution of E-42 and octanal 94a in CH2Cl2 initiated the coupling reaction, 

giving 71a in 53% yield (Table 2-1, entry 5). The reaction proceeded in completely cis-

stereoselective fashion with 71a isolated as the single diastereomer. The yield of 71a was 

improved to 85% with 2 equiv of BF3·OEt2 at –20 °C, along with recovery of E-42 in 12% yield 

(Table 2-1, entry 6). To consume the remaining E-42, added 1.0 equivalent of BF3·OEt2 every 30 

minutes, and found that addition of 6 equiv of BF3·OEt2 resulted in complete consumption of E-

42 to give 71a in 90% yield (Table 2-1, entry 7). Even if Z-allylsilane Z-42 was treated with the 

optimized conditions, the reaction proceeded in 93% yield and completely cis-selective fashion 

(Table 2-1, entry 8). This result clearly suggested that the geometry of the double bond had no 

significant effect on either the yield or the diastereoselectivity.  

 

Table 2-1. Optimization of acid and effect of the geometry of double bond 

 
 

With optimal conditions in hand, the substrate scope of the coupling reaction with several 

aldehydes was surveyed (Table 2-2). Despite the strongly acidic conditions using BF3·OEt2, the 

reaction smoothly proceeded in the presence of various functional groups. The coupling reaction 

with E-42 and aldehyde 94b with the hydroxy group protected as a TBDPS ether proceeded in 

92% yield (Table 2-2, entry 2, 71b: 92%). Methyl ester and alkyl bromide moieties did not 

interfere with this transformation (Table 2-2, entries 3 and 4, 71c: 92%, 71d: 80%). The coupling 

reaction of EZ-42 (E:Z = 2.4:1) and aldehyde 94d was used in the total synthesis of gephyrotoxin 

reported by Chida-Sato group, which afforded the desired cis-piperidone 71d with complete cis-
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selectivity (Table 2-2, entry 5, 71d: 79%). Carbamates including acid-sensitive Boc group were 

compatible with these conditions (Table 2-2, entries 6 and 7, 71e: 92%, 71f: 75%). Although 2-

arylacetoaldehyde derivatives 94g and 94h tend to be enolized, the coupling reactions smoothly 

took place, with 71g and 71h isolated in 78% and 92% yields, respectively (Table 2-2, entries 8 

and 9). The sterically hindered iso-butyraldehyde 94i required a longer reaction time (3 hour vs 

2 days), but still gave the cis-cyclized product 71i in 67% yield (Table 2-2, entry 10). The 

coupling reaction using the less electrophilic benzaldehyde 94j resulted in moderate yield 

(Table2-2, entry 11, 71j: 34%). 

 

Table 2-2. Substrate scope of the coupling reaction of N-methoxyamide E-42 and aldehyde 94 
 

 

  



 
15 

In order to demonstrate the utility of the N-methoxy group, the coupling reaction of N-

methylamide 95 with octanal 94a was attempted. As a result, the coupling product 98 was not 

produced, but instead, formation of the terminal olefin 99 was observed. This can be rationalized 

by the intramolecular protonation via six-membered intermediate 100 (Scheme 2-5). In this 
coupling reaction, N-methoxy group would increase the nucleophilicity of the nitrogen atom of 

N-methoxyamide 42 and enable the formation of N,O-acetal E-101. The intramolecular 

cyclization would proceed smoothly due to higher electrophilicity of N-acyl-N-oxyiminium ion 

E-70a than that of ordinary N-acyliminium ion. In addition, stabilization of transition state E-

TS1 by through-space interaction between non-bonding electron of oxygen atom and β-cation of 

silyl group would affect the diastereocelectivity.17  

 

Scheme 2-5. The attempt of coupling reaction with N-methylamide 95 and octanal 94a 
 

 
 

Scheme 2-6. Plausible effect of the N-methoxy group in the amide/aldehyde coupling reaction 
 

 
 

Although the through space interaction of N-methoxy group have not been reported, Floreancig 

and co-workers reported a closely related chemistry (Scheme 2-7).17 In their case, the 6-endo-

cyclization of the acyliminium ion 103 gave 2,3-trans-piperidine 106 as a major product. They 

supposed that this stereoselectivity would be determined by the geometry of the iminium ion,18 
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and through space interaction between acyl group and cationic β-silyl carbon. According to the 

calculation of a model N-acyliminium ion 108a and 108a’, the E-isomer 108a was more stable 

than 108a’ significantly (the Boltzmann population of 108a and 108a’ at 298 K was calculated 

as 98.4:1.6). Therefore, the transition states 104 and 105 would adopt E-acyliminium ion in the 

cyclization reaction. Although 104 seems to be sterically disfavored due to the 1,3-diaxial-like 

interaction, a through-space interaction between oxygen atom of the carbamate and the β-silyl 

cation is overwhelmingly stronger than the sterical effect to give trans-product 107 with highly 
stereoselective fashion. 

 

Scheme 2-7. Example of through-space interaction (reported by Floreancig and co-workers) 

 
 

Based on these context, the stereochemical outcome of our intramolecular cyclization would 

be explained as shown in Scheme 2-8. DFT calculation indicated that N-oxy-N-acyliminium ion 

108b preferred the Z-geometry than the E-geometry.19 Therefore, two possible transition state E-

TS1 and E-TS2 adopt the Z-geometry in the transient iminium ions. In this occasion, while the 

transition state E-TS1 will be transformed to cis-product 71a, the competing E-TS2 will be 

converted to trans-product 109a. In general, E-TS2 considered to be favorable transition state, 

because the alkyl side-chain and the allylsilane occupied the pseudoequatorial positions.20 For 

example, Ito and co-workers reported highly trans-selective intramolecular allylation of 110 and 

114 via favorable transition states 112 and 116 rather than unfavorable 111 and 115 affording the 

2,3-trans product 113 and 117 (Scheme 2-9).20c The favorable transition states 112 and 116, alkyl 

side-chain and allylsilane were placed in pseudoequatorial positions. Despite such sterical 

advantages in E-TS2, our experimental results showed the complete cis-selectivity via transition 

state E-TS1, probably because the strong through-space interaction as shown in Scheme 2-7 

would stabilize the transition state E-TS1.  
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Scheme 2-8. Plausible mechanistic rational for cis-selective intramolecular allylation of E-42 

 

 

Scheme 2-9. Example of trans-selective cyclization (reported by Speckamp and co-workers) 

 

 

To elucidate the role of the amide carbonyl group, the coupling reaction of N-methoxyamine 

118 was attempted instead of N-methoxyamide E-42 (Scheme 2-10). In this case, the Z-geometry 
of iminium ion was dominant, which was supported by the calculation of model iminium ion 

108c and 108c’. Interestingly, although the stereoselectivity was decreased, the cyclization still 

afforded cis-isomer 120 as a major product (120: 64%, 121: 24%). This cyclization would also 

be considered to proceed through TS3 and TS4 derived from the favorable Z-geometrical 

iminium ion. Although the reason is not clear why trans-product 121 was obtained, in this case 

also cis-product 120 was generated as a major product, probably because the through-space 
interaction would be still dominant.  
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Scheme 2-10. The effect of the carbonyl group 

 
 

The next control experiment was the coupling reaction using Z-allylsilane Z-42. As a result, 

the coupling reaction between Z-42 and 94a afforded cis-isomer 71a with perfect 

stereoselectivity in 93% yield (Scheme 2-11). The reaction of Z-42 would proceed via the 

transition state E-42 shown in Scheme 2-8. Although a larger 1,3-diaxial-like repulsion in 

transition state Z-TS1 would be expected than in E-TS1,17 we considered that the electrostatic 
interaction between β-silyl cation and N-methoxy group would still be dominant, resulting in the 

complete cis-cyclization to give 71a. 

 

Scheme 2-11. The effect of the geometry of allylsilane 
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2-5. The second step: Nucleophilic Addition of N-Methoxylactam 
With N-methoxylactam 71 in hand, then the nucleophilic addition of N-methoxylactam 71 was 

attempted using a variety of nucleophiles (Table 2-3). The reductive cyanation of lactam 71a 

successfully proceeded upon treatment with DIBAL-H at –78 °C and subsequent addition of 

TMSCN and SnCl4 to give N-methoxypiperidine 74a, along with the diastereomer 122a in 87% 

combined yield (Table 2-4, entry 1, 74a:122a = 2.2:1). By changing the first and second 

nucleophiles, this nucleophilic addition allowed quick access to various multi-substituted 

piperidines from the identical N-methoxylactam 71a. The reductive allylation proceeded by using 

a combination of DIBAL-H as a first nucleophile (R2M) and allylstannane as a second 

nucleophile (R3M) (Table 2-4, entry 2, 86%, 74b:122b = 4.1:1). Reductive Pictet-Spengler 

reaction with N-methylindole at –40 °C afforded 74c in highly diastereoselective fashion (Table 

2-4, entry 3, 88%, 74c:122c = 14:1). The reductive Mukaiyama Mannich reaction using 

silylenolether gave 74d as a single diastereomer in 65% yield (Table 2-4, entry 4). In this reaction, 
when DIBAL-H was used as the first nucleophile, inseparable unknown side product was 

generated, and the yield of 74d was 51%. Furthermore, if organolithium reagent was employed 

as a first nucleophile, α-tertiary amines were successfully constructed. For instance, the addition 

of MeLi to N-methoxylactam 71a followed by the cyanation and allylation proceeded smoothly 

to give α-tri-substituted N-methoxypiperidines (Table 2-4, entry 5: 83%, 74e:122e = 1:4.0; entry 

6: 57%, 74f:122f = 4.2:1). Nucleophilic addition to N-methoxylactam 71d was more challenging 
because the methyl ester was incompatible with both DIBAL-H and organolithium reagent. 

However, our chemoselective variant of nucleophilic addition using the Schwartz reagent was 

highly effective with substrates bearing sensitive functional groups.21 The reduction of N-

methoxylactam 71d with Cp2ZrHCl at room temperature followed by the addition of TMSCN 

and 20 mol% Sc(OTf)3 furnished a 1:4.3 diastereomeric mixture of 74g and 122g in 86% yield 

(Table 2-4, entry 7). The reaction was completely chemoselective, and proceeded without 

affecting the methyl ester which is more electrophilic than ordinary amide or the terminal olefin. 

The corresponding allylation of 71d gave 74h as a major diastereomer (Table 2-4, entry 8: 74%, 

74h:122h = 4.2:1). Thus, the two-step procedure including N-methoxyamide/aldehyde coupling 
and subsequent nucleophilic addition proved to be highly practical to afford a variety of multi-

substituted piperidines. 
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Table 2-3. Nucleophilic addition of a variety of nucleophiles to N-methoxypiperidine  
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  The stereochemical rationale for the reductive nucleophilic addition to N-methoxylactam 71a 
was shown in Scheme 2-13. NOESY experiment (500 MHz, CDCl3) indicated that N-

methoxylactam 71a mainly existed as a half-chair conformation 123, in which the alkyl side chain 

occupied the pseudoaxial position. We believed that transient N-oxyiminium ion 73a might exist 

mainly as a half-chair conformation 124 similar to 123, and the transition state 125 might exist 

as a minor conformation due to 1,2-allylic strain between the methoxy group and alkyl side-chain. 

The sterically large nucleophile would avoid the steric repulsion with alkyl side-chain of 124. 
Considering the stereoelectronical effect,22 a large nucleophile would be difficult to react at β-

side of 124 (path A), and would react immediately with β-side of 125 to provide 74 as a major 

product (path B). On the other hand, in the case using sterically small nucleophile, the interaction 

with alkyl side-chain would be negligible. Therefore, the small nucleophile relatively favored the 

α-side attack to 124 (path C, cf. Table 2-4, entries 5 and 7). 

 

Scheme 2-13. Plausible mechanistic rationale for reductive nucleophilic addition to 71a  
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Chapter 3. Further Application of the Two-step Synthesis 
3-1. Macroline- and Sarpagine-type Alkaloids 

As a demonstration to show that the developed method was applicable to complex molecules 

relating to natural alkaloids, we took an interest in the quick synthesis of a tetracyclic structure 

embedded in macroline- and sarpagine-type alkaloids (Figure 3-1).1 Macroline (126) and 

sarpagine (127) alkaloids possess an indole-annulated azabicyclo[3.3.1] core structure, and 

koumidine (66) contains the opposite relative stereochemistry between C5 and C16. Macroline-
type alkaloids have the same skeletal connectivity, only that N4-C21 linkage does not exist. On 

the other hand, sarpagine-type alkaloids possesses the N4-C21 linkage and the C16-(R) 

configuration. The skeletal difference between sarpagine (127) and koumidine (66) is the 
configuration at C16. By taking advantage of our two-step synthesis of multi-substituted 

piperidine, the quick access to tetracyclic compound 128 which correspond to the core structure 

of koumidine (66) would be practical. N-Methoxypiperidine 128 would be synthesized by 

amide/aldehyde coupling reaction between E-42 and indole acetaldehyde derivative 130 as the 

first step, followed by intramolecular reductive Pictet-Spengler reaction of N-methoxylactam 129 

as the second step.  

 

Figure 3-1. Synthetic plan of macroline- and sarpagine-type alkaloids  
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3-2. Construction of Tetracyclic Skeleton of Koumidine (66) 
In the first step, the protecting group of the indole nitrogen atom would affect the stability of 

the indole unit because indoles are vulnerable to acidic conditions. In addition, indole 

acetaldehyde 1302 is likely to form benzylic enolate and decompose by dimerization or 
polymerization. As expected, the protecting group of the indole nitrogen atom was crucial in this 

reaction (Table 3-1, entry 1). The N-methyl indole 130b also decomposed under the acidic 

conditions (Table 3-1, entry 2). However, the electron withdrawing Boc group was effective for 

this coupling reaction to give N-methoxylactam 129c in 44% yield in cis-selective fashion (Table 

3-1, entry 3). The Cbz protection of the indole significantly increased the yield of N-

methoxylactam 129d up to 68% (Table 3-1, entry 4). When the more electron withdrawing 
benzene sulfonyl group was used as a protecting group, the coupling reaction proceeded in 65% 

yield comparable to the Cbz group (Table 3-1, entry 5, 129e: 65%).  

 

Table 3-1. Coupling reaction of N-methoxyamide E-42 and indole acetaldehyde 130 
 

 

 

Next, we attempted the intramolecular reductive Pictet-Spengler reaction (Scheme 3-1). 

Treatment of the Cbz-protected N-methoxylactam 129d with the Schwartz reagent, followed by 

addition of a catalytic amount of Sc(OTf)3 induced the reductive intramolecular Pictet-Spengler 

reaction to give the tetracyclic compound 128d in a reasonable yield. It is noteworthy that this 

reductive cyclization was also highly chemoselective without touching the indole carbamate 

despite its similar structure to the N-methoxylactam. The stereochemistries of lactam 129d and 

tetracyclic compound 128d were determined by NOESY experiments (Figure 3-2, 500 MHz, 

CDCl3). In the case using lactam 129e, the cyclization resulted in low yield presumably due to 

the low nucleophilicity of indole moiety.  
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Scheme 3-1. Construction of tetracyclic compound 128  

 

 

Figure 3-2. NOESY experiment of 129d and 128d  
 

 

 

 

3-3. Three-component Coupling Reaction 
All successful examples in the first coupling reaction thus far are two-component reactions 

employing N-methoxyamide 131 that possesses the allylic silane in the same molecule as the 

nucleophilic moiety. In order to render the developed method more general, a three-component 

coupling reaction was attempted by using N-methoxyamide 131, acetaldehyde 132 and 
allylstannane in the presence of BF3·OEt2 (Scheme 3-2). Unfortunately, initial attempts were 

unsuccessful due to the direct allylation of acetaldehyde by allylstannane to form homoallylic 

alcohol 135. 
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Scheme 3-2. Unsuccessful attempt of the three component coupling reaction 

 

 

The issue in the three-component coupling reaction is the unfavorable reactivity of each 

component; the addition of allylstannane to acetaldehyde 132 was much faster than the addition 

of N-methoxyamide 131, and prevented the formation of the N-acyliminium ion 133. In order to 

prevent the formation of 135, utilization of an enol ether was attempted as the aldehyde equivalent 

(Scheme 3-3). First, N-methoxyamide 131 and ethyl vinyl ether 136 were pre-coupled in the 

presence of 1 mol% CSA. The subsequent treatment of resulting N,O-acetal 137 with 

allylstannane and BF3·OEt2 successfully promoted the allylation via iminium ion 133 to give N-

methoxyamide134 in 82% yield in a one-pot process. The reductive cyanation and allylation of 

N-methoxyamide 134 provided 138 and 139 in 72% and 59% yields, respectively. 

 

Scheme 3-3. First attempt of the three component coupling reaction 

 

 

_________________________ 

Reference in Chapter 3 
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Chapter 4. Conclusion 
We have documented a two-step synthesis of multi-substituted N-methoxyamines involving 

an N-methoxyamide/aldehyde coupling reaction and subsequent nucleophilic addition to amide 

carbonyls. The key to success was the utilization of the N-methoxy group as a reactivity control 

element. The first coupling reaction between the amide and aldehyde took place with 

enhancement of the nucleophilicity of the nitrogen atom by assistance of the N-methoxy group 

(effect A). The unusual cis-stereoselectivity was developed by the strong through-space 

interaction between N-methoxy group and transient β-silyl cation (effect C). The next 

nucleophilic addition was achieved by taking advantage of the high electrophilicity of amide 

carbonyls (effect B), the chelation effect of N-methoxyamides (effect C), and the high 

electrophilicity of N-oxyiminium ion (effect D). At every stage of this synthetic method, N-

methoxy group played a role as sterically less hindered protecting group (effect F). The developed 

synthesis enabled quick supply of a set of various 2,3,6-multi-substituted N-methoxypiperidines 

including a substructure of a complex alkaloid. The method was then applied to a three-

component coupling reaction, giving acyclic compounds. Thus, N-alkoxyamine derivatives 

possess a great potential to create practical chemical reactions for synthesis of complex molecules. 

From now on, a variety of new synthetic method using N-alkoxyamine derivatives will be 

discovered. 
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Part 2. Unified Total Synthesis of Stemoamide-type Alkaloids 
 

Chapter 5. Introduction 
5-1. Stemoamide-type Alkaloids 
5-1-1. Isolation and Bioactivity 

Stemona-alkaloids were isolated from the extracts of ‘Stemonaceae’, which have been used in 

folk medicine in East Asia from ancient years. In China, mainly three species of the Stemona 

genus (S. tuberosa, S. japonica, and S. sessilifolia) have been utilized as a cough medicine and 

an insecticide agent.1,2 

For instance, a water extract of S. tuberosa mainly contains five stemona-alkaloids (Figure 5-

1A) that showed anti cough activity. Especially neostenine and neotuberostemonine were 

revealed to possess the strongest anti-cough activity among these five alkaloids.3 

Stemona-alkaloids also show insecticidal activity (Figure 5-1B). Stemofoline and 

didehydrostemofoline possess strong insecticidal and growth inhibitory activity against neonate 

larvae of the cotton leaf worm Spodoptera littoralis Boisduval.4 Protostemonine and 

dehydroprotostemonine showed notable nematicidal bioactivity against panagrellus redivevus.2c 

 

Figure 5-1. Alkaloids extracted from the root of S. tuberosa 

  



 
30 

5-1-2. Classification of the Stemona-alkaloids 
 More than 150 stemona-alkaloids have been reported to date and they can be classified into 

eight groups (Figure 5-2).1,2,5 The alkaloids belonging to group I to VI possess five- and seven-

membered ring system remarked as pyrrolo[1,2-a]azepine skeleton, which is regarded as the most 

common structure of stemona species. While the alkaloids belonging to group VII possess six- 

and seven-membered ring system remarked as pyrido[1,2-a]azepine skeleton. The alkaloids 

belonging to group VIII do not possess these core structures. 
Among stemona-alkaloids, approximately 40 natural products belong to stemoamide group 

(II), which is the largest group of these alkaloids (Figure 5-3). Stemoamide-type alkaloids 

possess the tricyclic core structure of stemoamide comprised of a -lactone, an azepane, and a γ-
lactam. 

 

Figure 5-2. Classification of the stemona-alkaloids 

 

 Figure 5-3. The stemoamide-type alkaloids 
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5-1-3. Synthetic Examples of Stemoamide (1) 
 More than 20 synthetic examples of stemoamide (1) have been reported to date. Examples of 

enantioselective and racemic total syntheses of stemoamide are listed below (Table 5-1, 5-2).6,7 
 
Table 5-1. Enantioselective synthesis of stemoamide (1) 
 

group year LLS total yield quantity of obtained 
stemoamide 

Williams 1994 25 steps 5.6% N/A 

Mori 1996 13 steps 8.3% 6.3 mg 

Jacobi 2000 7 steps 4.2% 18 mg 

Sibi 2004 14 steps 7.0% N/A 

Olivo 2006 13 steps <14.1%* 25 mg 

Somfai 2007 12 steps 19.6% 6.8 mg 

Honda 2011 9 steps 23.4% 32.2 mg 

Hong 2012 12 steps 18.7% 24.7 mg 

Sato/Chida 2016 22 steps 2.2% 8.9 mg 

* Yields of first three steps are not reported 
 

Table 5-2. Racemic synthesis of stemoamide (1) 
 

group year LLS total yield quantity of obtained 
stemoamide 

Narasaka 1996 14 steps 1.1% 12 mg 

Jacobi 1997 7 steps 19.9% 438 mg 

Bates 2009 11 steps 5.70% N/A 

Hong 2011 9 steps 30.1%** 166 mg 

Zhang, Qiu 2014 7 steps 5.1% 24 mg 

** They originally counted the steps starting from 4-bromobutyraldehyde, which is not generally 

commercially available. 
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5-1-4. Brief Outline of Representative Total Synthesis of Stemoamide (1) 
5-1-4-1. Williams and co-workers 

The first total synthesis of stemoamide (1) was reported by Williams and co-workers featuring 

Evans diastereoselective aldol reaction and late-stage construction of tricyclic structure from 

acyclic intermediate (15) (Scheme 5-1).6a The synthesis commenced with preparation of 15, 

which contains all carbon atoms of stemoamide (1). A diastereoselective coupling of aldehyde 8 

and amide 9 with chiral auxiliary proceeded by treatment with Bu2BOTf and triethylamine to 

afford oxazolidinone 10. After altering the protecting group of alcohol, lactone 11 was converted 

to ketone 13 by introducing butenyl lithium reagent 12. Then the reduction of ketone, mesylation, 

and azidation were conducted to give azide 14. Following ozonolysis of 14 completed the 

installation of all carbon atoms of stemoamide (1). In the end of this synthesis, the sequential 

multi-step deprotection, oxidation, and cyclization of A, B, and C rings took place to accomplish 

the first concise total synthesis of stemoamide (1). 
 

Scheme 5-1. Total Synthesis Reported by Williams 
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5-1-4-2. Narasaka and co-worker 
Narasaka and co-worker developed oxidative coupling of silyl enol ether and stannyl 

compound, and it was applied to the total synthesis of stemoamide (1) (Scheme 5-2).6b The first 

key coupling reaction was conducted by treatment of silyl enol ether 16 and α-stannyl ester 17 
with tetrabutylammonium nitratocerate (IV) (TBACN, cerium tetrabutylammonium nitrate; 

CTAN) to give γ-ketoester 18 in 85% yield. Second key coupling reaction was the oxidative 

coupling of silyl enol ether 19 and stannyl pyrrolidine 20 with cerium ammonium nitrate (CAN). 

Subsequent reduction of alkyne 21 afforded ketone 22 and epi-22. After construction of A and C 

rings, the treatment of mesylate 23 with sodium hydride led to tricyclic compound 24 in 62% 

yield. Finally, regio- and diastereo-selective methylation of 24 resulted in the second total 

synthesis of stemoamide (1) in 14 total steps. 
 

Scheme 5-2. Total Synthesis Reported by Narasaka 
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5-1-4-3. Mori and co-worker 
Mori and co-worker reported the total synthesis of (–)-stemoamide (1) using a ruthenium 

catalyzed eneyne metathesis developed by the Grubbs group and the Mori group (Scheme 5-3).6c,e 

Eneyne 26 was prepared in 7 steps (6 pots) from 25, and subsequent homologation of terminal 

alkyne provided 27 in 68% yield. The eneyne metathesis of 27 with Grubbs catalyst 1st generation 

proceeded to give a bicyclic compound 28 in 87% yield. 1,4-Reduction of enoate moiety in 28 

followed by hydrolysis of ester and bromolactonization afforded butenolide 32 and tricyclic 

bromide 31, which was successfully converted to 32 by addition of triethylamine. Eventually, the 

total synthesis of (–)-stemoamide (1) was accomplished by nickel boride catalyzed hydrogenation 

of 32 in total 13 total steps and in 8.3% overall yield. 
 

Scheme 5-3. Total Synthesis Reported by Mori 
 

 

 

5-1-4-4. Jacobi and co-worker 
In 2000, Jacobi and co-worker reported an innovative 7-step total synthesis of (–)-stemoamide 

(1) (Scheme 5-4).6d,f The key step of this synthesis was the intramolecular Diels-Alder/retro-

Diels-Alder reaction of oxazole of 36, which would directly form the tricyclic system. The Swern 

oxidation of alcohol 33 prepared from 25, Seyferth-Gilbert reaction of aldehyde 34, and 

methylation of terminal alkyne 35 were sequentially performed to synthesize key intermediate 

36. Then the intramolecular Diels-Alder reaction followed by retro-Diels-Alder reaction of 37 

immediately proceeded to form 2-oxyfuran 38. Subsequent workup gave α,β-unsaturated lactone 

31. Finally, the diastereoselective reduction of 31 with nickel boride afforded stemoamide as a 

major product (73%) along with undesired diastereomer 39 (15%). 
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Scheme 5-4. Total Synthesis Reported by Jacobi 

 

 

5-1-4-5. Somfai and co-workers 
Somfai and co-workers demonstrated a highly efficient total synthesis of stemoamide featuring 

sp2-sp3 Negishi coupling (40+41→42) and ring closing metathesis (42→43) (Scheme 5-5).6i The 

synthesis began with the construction of iododiene 40 taking advantages of alkylation of amide 

and Ohira-Bestmann alkynylation. Treatment of iodide 40 with Pd(PPh3)4 and nucleophile 41 

allowed C-C bond formation to afford the precursor of metathesis 42 in 78% yield. The key ring 
closing metathesis led to construction of the seven-membered ring in excellent yield. Resulting 

ester 43 was converted to tricyclic compound 44 by treatment with modifying hydrolysis and 

bromolactonization of the Mori’s method. Hydrogenation of 44 was performed under similar 
conditions reported by Mori and Jacobi. Finally, the regio- and stereo-selective methylation 

reported by Narasaka accomplished the total synthesis of (–)-stemoamide (1) in 12 total steps in 

19.6% overall yield. 

 

Scheme 5-5. Total Synthesis Reported by Somfai 
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5-1-4-6. Honda and co-workers 
An efficient total synthesis of stemoamide (1) was reported by Honda and co-workers in 2011 

(Scheme 5-6).6k The key step is SmI2-mediated sequential cyclization of seven- and five-

membered ring, which directly provided the tricyclic structure (E-45→48). The aldehyde E-45 

was prepared from commercially available 25 with five-step conversion. The SmI2 mediated 

cyclization had a possibility to produce four diastereomers at C8 and C9 stereocenters. While 

treatment of E-45 with SmI2 (5 equiv) and MeOH (5 equiv) at 0 °C showed only undesired 

diastereoselectivity to form C9-epimers 46 and 47 (60%, 46:47 = 1:1), additional treatment with 

HMPA (20 equiv) realized the complete opposite selectivity at C9 to give diastereomers 48 and 

49 in 55% and 5%, respectively. In addition, it was revealed that the geometry of olefin would 

affect both the yield and diastereoselectivity, and regioisomer Z-45 was converted to 48 and 49 

in 39% and 11%, respectively. The efficient total synthesis of 1 was achieved by methylation of 

48 in 9 total steps and in 23.4% overall yield. 
 

Scheme 5-6. Total Synthesis Reported by Honda 

 

 

5-1-4-7. Hong and co-worker 
A biomimetic total synthesis of stemoamide (1) was reported by Hong and co-workers.6l,m 

Seger, Greger and co-workers suggested a biosynthesis of stemona-alkaloids stemming from a 

spermidine precursor, which couple with an isoprene unit, followed by oxidation and cyclization 

may afford carbon framework of stemoamide (Scheme 5-7A).8 Therefore, Hong and co-workers 

planned to connect the C9-C9a bond by intramolecular allenylation of acyliminium ion (Scheme 

5-7B). Treatment of N,O-acetal 50 with FeCl3 led to formation of bicyclic structure, and TBS 

group was subsequently removed by the addition of TBAF. The late-stage construction of γ-

lactone was accomplished by dynamic ruthenium-catalyzed CO-insertion, which convergently 

transformed the two isomers 52/52’ to a single isomer 31, which was the same intermediate 

reported by Mori and co-workers. 
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Scheme 5-7. Total Synthesis Reported by Hong 
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5-1-5. The First Total Synthesis of Stemonine 
 Stemonine (4) possesses the core-tricyclic structure of stemoamide-type alkaloids. Despite its 

high structural similarity to stemoamide (1), only one synthetic example of stemonine (4) was 

reported by Williams and co-workers (Scheme 5-8).9 The synthetic strategy was identical as their 

first total synthesis of stemoamide (1), featuring the late-stage C and D ring construction from 

acyclic substrate containing all carbon, oxygen, and nitrogen atoms of 4. Their total synthesis 

commenced with the synthesis of a key intermediate 56 through coupling of lactone 53 and 

alkyllithium 54, followed by protection of primary alcohol with TBS group. Then the resulting 

55 was transformed to the key intermediate 56 through deprotection and oxidation of the primary 

alcohol and azidation of the ketone. Removal of benzyl group followed by oxidation of the 

resulting primary alcohol and Staudinger reaction provided aminoaldehyde 57, which was 

immediately converted to azepane 58 by intramolecular cyclization and reduction. Treatment of 

58 with iodine promoted the key cascade cyclization of C and D rings (58→59→60→61). Finally, 

the total synthesis of stemonine (4) was accomplished by the formation of the A-ring. 

 

Scheme 5-8. The landmark total synthesis of stemonine (4) reported by Williams 
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5-1-6. Synthetic Examples of Croomine 
5-1-6-1. Williams and co-workers 
  Croomine (67) belonging to tuberostemospironine group partially shares the common structure 

corresponding to stemonine, such as pyrrolo[1,2-a]azepine skeleton and γ-lactone connected to 

the C3 position. Williams and co-workers reported the first total synthesis of (+)-croomine (67) 

featuring iodine-mediated cascade cyclization (Scheme 5-9).10 At the early stage of the synthesis, 

diastereoselective epoxidation of allylic alcohol 62 led to construction of two consecutive 

stereocenters at C9 and C9a. Treatment of 62 with catalytic amount of D-diisopropyltartrate, 

Ti(Oi-Pr)4, and t-butyl hydroperoxide in the presence of MS4A at –50 °C successfully afforded 

epoxide 63 in 83% yield. After several steps, addition of excess amount of lithium azide to 

epoxide 64 resulted in construction of nitrogen functionality at the less hindered the C9a position 

in complete stereocontrol. Resulting azide 65 was converted to spirolactone 66 in multiple steps 

through deprotection and oxidation. In the last step of this synthesis, the key iodine-mediated 

cascade cyclization of 66 gave (+)-croomine (67) in 25% yield. 

 

Scheme 5-9. The landmark total synthesis of croomine (67) reported by Williams 
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5-1-6-2. Martin and co-workers 
In 1999, Martin and co-workers reported a convergent total synthesis of (+)-croomine by 

taking advantage of two vinylogous Mukaiyama Mannich reaction (Scheme 5-10).11 The first key 

Mannich reaction of siloxyfuran 68 and N,O-acetal 69 proceeded by the treatment of catalytic 

amount of TIPSOTf (5 mol%) to give bicyclic compound 70 in 32% yield. Next, removal of the 

Boc group and hydrogenation of the unsaturated lactone led to the formation of secondary amine 

71, which would serve as a substrate of the seven-membered ring closure. Treatment of 71 with 
N-methylmorpholine in refluxing DMF followed by acidic hydrolysis of the methyl ester gave 

access to tricyclic compound 72 in 74% yield. The second key Mannich reaction of 72 was 

promoted by the addition of phospholic chloride and siloxyfuran 73 to afford two diastereomers 

74 and 75 in combined 47% yield. The total synthesis of (+)-croomine (67) was achieved by a 

Pd/C-catalyzed diastereoselective hydrogenation of the major isomer 75 possessing the desired 

stereochemistry at C13. 

 

Scheme 5-10. Total synthesis of croomine (67) reported by Martin 
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5-2. Chemoselective Reduction of Amides 
5-2-1. Rhodium-catalyzed Amide-selective Hydrosilylation 
  To reduce the amide carbonyl group, LiAlH4 has been frequently used in either the late- or 

early-stage of natural product synthesis. However, the hazardous reductant often tends to be 

avoided, and alternative methods have been extensively investigated. To the best of our 

knowledge, the first example of catalytic chemoselective hydrosilylation of amides was reported 

by Ito and co-workers in 1998.12 Optimization of rhodium-catalyst and hydrosilane reductant 

revealed that the combination of rhodium(I) hydride catalyst and Ph2SiH2 showed quick reduction 

of tertiary amide 76a to give amine 77a (Table 5-3). A remarkable advantage of this reaction is 

high functional group tolerance. For instance, aliphatic and aromatic esters, an aryl bromide, and 

an epoxide were tolerated (Figure 5-4). 

 

Table 5-3. Optimization of catalyst 
 

 
 
Figure 5-4. Substrate scope 
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5-2-2. Iridium-catalyzed Semi-reduction of tert-Amides 
After the first discovery of the catalytic mild reduction of amides by Ito and co-wokers, double-

reduction to give α-primary amine with a variety of organometallic complex have been reported 

to date.13 In contrast to this, the less number of reports regarding a catalytic semi-reduction of 

amides to give enamines have been existed. However, Nagashima and co-workers invented a 

chemoselective semi-reduction of amides taking advantage of the Vaska’s complex and 

(Me2HSi)2O (tetramethyldisiloxane: TMDS) (optimization of catalyst; shown in Table 5-4, 

substrate scope; shown in Figure 5-5).14  

 

Table 5-4. Optimization of catalyst 
 

 

Figure 5-5. Substrate scope 
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5-2-3. Iridium-catalyzed Semi-reduction of sec-Amides 
In 2012, Brookhart and co-workers established an iridium-catalyzed hydrosilylation of 

secondary amides.15 Treatment of secondary amides 81 with 0.5 mol% of [Ir(COE)2Cl]2 and 4 

equiv of Et2SiH2 afforded the corresponding amines 82 or imines 83 with good chemoselectivity. 

While secondary amines 82 were produced by conducting the reduction with 0.5 mol% of 

[Ir(COE)2Cl]2 and 4 equiv of Et2SiH2 at room temperature or 80 °C (Table 5-5), imines 83 were 

obtained by restricting Et2SiH2 to 2 equiv (Table 5-6). 
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5-2-4. Molybdenum-catalyzed Semi-reduction of tert-Amides 
A molybdenum catalyst has been widely used for catalytic oxidation or reduction of carbonyl 

compounds. Adolfsson and co-workers developed a catalytic reduction of tertiary amides 

utilizing Mo(CO)6, which is an inexpensive and a commercially available metal complex.16 The 

expected products were dependent on either the substrate or the corresponding intermediate. α,β-

Unsaturated tertiary amides 84 were converted to allylamines 85 by addition of 5 mol% of 

Mo(CO)6 and (Me2HSi)2O under reflux conditions (Figure 5-6). Under the same conditions, β,γ-

unsaturated amides 86 was converted to dienamines 87 (Figure 5-7). The key of the molybdenum-

catalyzed semi-reduction is the stabilization of enamines due to resonance effect derived from 

the adjacent aromatic ring or stylene unit. Recently, further applications of this synthetic method 

of enamines were reported such as [2+3] cycloaddition with azide17 or nitrile oxide18 (ex., 

88→89→90).  

 

Figure 5-6. Mo(CO)6 catalyzed 1,2-reduction of α,β-unsaturated amides to allylamines 

  
Figure 5-7. Mo(CO)6 catalyzed reduction of β,γ-unsaturated amide 
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5-3. Chemoselective Nucleophilic Addition to sec- and tert-Amides 
5-3-1. Amide-selective Nucleophilic Addition by Using the Schwartz Reagent 

In contrast to the reduction of amides to amines, reductive nucleophilic addition to amides 

requires selective semi-reduction. To restrict the over reduction, various methods were developed 

to date. A pioneering work of chemoselective reductive nucleophilic addition to amides was 

reported by Ganem and co-workers (Scheme 5-11).19 The key of chemoselective nucleophilic 

addition was lactam-selective reduction with the Schwartz reagent.20 Secondary lactam 91 was 

treated with Cp2ZrHCl to give imine 92 without harming ethyl ester, and subsequent addition of 

TMSCN led to direct access to α-cyanoamine 93 in 75% yield. 

 

Scheme 5-11. Secondary lactam-selective reductive cyanation using the Schwartz reagent 

 

 

The principle of the amide-selectivity with the Schwartz reagent could be explained by the 

following two reasons. Firstly, the coordination of zirconium to a carbonyl oxygen atom would 

be important for the reduction with the Schwartz reagent, according to the mechanism reported 

by Georg and co-workers (Figure 5-8).21 Secondly, esters also has a potential to react with the 

Schwartz reagent to give alcohols.22 This means reduction of esters with the Schwartz reagent is 

not impossible but slower than reduction of amides. The reaction of amides is faster than that of 

esters due to higher Lewis basicity of amides than esters favorably forming amide-Zr complex 

iii. However, aldehydes and ketones were reduced by the Schwartz reagent even in the presence 

of amides, due to theirs relatively higher electrophilicity than that of amides. 

 

Figure 5-8. Principle of Amide-selectivity with the Schwartz reagent 
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In 2012, Chida-Sato group developed a chemoselective reductive allylation of secondary- and 

tertiary amides using the Schwartz reagent.23 The reduction of tertiary amide 94 with 1.8 equiv 

of Cp2ZrHCl showed complete amide-selectivity to form the four-membered chelated 

intermediate 95 (Scheme 5-12A). Although 95 is less stable than the five-membered chelated 

intermediate like 4 (see p1), the stability is enough to prevent the spontaneous formation of 

iminium ion 96 followed by undesired over-reduction to form amine 98. After treatment of 95 

with TFA, the resulting intermediate 96 was immediately converted to allylated amine 97 by 
treatment of allylstannane without decomposition of the methylester. In the case of secondary 

amide 99 as a substrate, 2.6 equiv of Cp2ZrHCl promoted amide-selective reduction in the 

presence of the ester group (Scheme 5-12B). And subsequent allylation of imine 100 was 

conducted by treatment with allylstannane and TMSOTf to form secondary amine 102 via 

iminium ion 101. 

 

Scheme 5-12. Amide-selective reductive allylation using the Schwartz reagent 
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5-2-6. Iridium-catalyzed Reductive Nucleophilic Addition to tert-Amides 
The key of our previous methods for the reductive nucleophilic addition to amide was 

utilization of N-methoxyamides whose reactivity was controlled by the N-methoxy group. 

However, it would not be applicable for more general tertiary amides due to the lack of positive 

supplementary effect of methoxy group. Very recently, Chida-Sato group found an iridium-

catalyzed highly chemoselective nucleophilic addition to tertiary amides (Table 5-7). Considering 

the Nagashima’s report (Table 5-4 and Figure 5-5), treatment of tertiary amide 103a with a 
catalytic amount of Vaska’s complex and (Me2HSi)2O would allow the formation of enamine 

104a in a highly chemoselective fashion. Next, optimization of acid for the Mannich reaction of 

enamine 104a with silylketenacetal to give α-substituted amine 105a was conducted. After 
extensive investigation of acids, PPTS was revealed to be the optimal acid, which gave the desired 

product 105a in 85% yield and the undesired over reduced product 106a in merely 5% yield. 
 

Table 5-7. Iridium-catalyzed chemoselective reductive nucleophilic addition to tert-amide 

 

 

Next, the tolerance of the functional groups was investigated. The optimized conditions were 

applicable to a variety of substrates, which contain a methyl ester, a nitrile group, a nitro group, 

an aryl bromide, a MOM group, a tosic amide, a carbamate, and a terminal olefin (Figure 5-9).  

The nucleophiles were also investigated. As a result, silyl ketene acetal, TMSCN, allylstannane, 

and 2-siloxyfuran were available under the optimized conditions (Table 5-8).  
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Figure 5-9. Substrate scope 

 

 

Table 5-8. Scope of nucleophiles 
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  Dixon and co-workers reported highly chemoselective reductive functionalization of the amide 

carbonyl group taking advantage of Nagashima’s conditions.24 Firstly, they reported the reductive 

intramolecular nitro Mannich reaction (Scheme 5-13A).24a Moreover, they demonstrated the 

reductive cyanation by using TMSCN (Scheme 5-13B),24c and reductive alkylation by using 

Grignard reagent (Scheme 5-13C).24d 

 

Scheme 5-13. Amide-selective nucleophilic addition reported by Dixon and co-workers 
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Chapter 6. Enantioselective Total Synthesis of Stemoamide 
6-1. Stemoamide-type Alkaloids 

We planned to synthesize a variety of stemona-alkaloids by taking advantage of the late-stage 

chemoselective transformation of γ-lactam and γ-lactone. Especially, we focused on the synthesis 

of stemoamide-type alkaloids (Figure 6-1). Stemoamide (1)1 possesses a tricyclic core structure. 

While saxorumamide (2) and isosaxorumamide (3)2 have an additional γ-lactone on the lactone 

of stemoamide (1), stemonine (4)3 possesses an additional γ-lactone on the lactam of stemoamide 

(1). More than 20 synthetic example of 1 have been reported to date due to its relatively simple 

structure.4 In contrast, the tetracyclic derivatives cannot be synthesized easily because of its 

complex structures. Indeed, only the Williams’ group achieved the total synthesis of stemonine 

(4) by late-stage ring closure from acyclic intermediate with complete stereoselectivity (Chapter 

5, Scheme 5-8).5 

 

Figure 6-1. Stemoamide-type Alkaloids 

 
 

6-2. Chemoselective Assembly of Hetero Five-membered Building Blocks 
For the unified total synthesis of stemoamide-type alkaloids, we devised the following 

synthetic strategy. Stemoamide-type alkaloids possess five-membered hetero cyclic structures, 

and they could be introduced by utilizing α,β-unsaturated lactone 120 and lactam 121. These five-

membered blocks allow for carbon-carbon bond or carbon-heteroatom bond formation at any 

position of each building blocks such as vinylogous addition or Michael addition (Figure 6-2, 

Features). These features would enable an efficient and short step synthesis of natural products 

containing repetitive structures such as stemoamide-type alkaloids 1-4. However, in order to 

accomplish the unified synthesis of these natural products, the precise control of chemoselectivity 

is required (Figure 6-2, Issue). Convergent assembly is not feasible without the differentiation 

between the γ-lactone 120 and the γ-lactam 121. 
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Figure 6-2. The features and issue of the building block strategy 

 
 

6-3. Synthetic Plan for Unified Total Synthesis of Stemoamide-type Alkaloids 
Our actual synthetic plan is outlined in Scheme 6-1. We envisioned that stemoamide (1) could 

serve as a common precursor to the tetracyclic natural products, and incorporated two successive 

coupling reactions of the five-membered building blocks. First coupling reaction is vinylogous 

Michael reaction/reduction sequence of γ-lactam derivatives 123 to α,β-unsaturated lactone 122. 

The second coupling reaction is the chemoselective nucleophilic addition of lactone derivative 

125 to common precursor 1. The lactone-selective nucleophilic addition would afford 

saxorumamide (2) and isosaxorumamide (3), while the lactam-selective nucleophilic addition 

would afford stemonine (4). 
 

Scheme 6-1. Synthetic plan of stemoamide-type alkaloids 
 

 
 

The lactone-selective nucleophilic addition would be easily accomplished than the lactam-

selective nucleophilic addition because of the inherent larger electrophilicity of the lactone. In 

contrast, the lactam-selective nucleophilic addition would be more challenging. If successful, the 

method would enable the pioneering direct synthesis of stemonine (4) from stemoamide (1). 
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6-4. Preparation of Five-membered Building Blocks 
6-4-1. Preparation of Chiral γ-Butenolide 122 
  The unified total synthesis of stemoamide-type alkaloids commenced with synthesis of γ-

butenolide 122, which is the coupling fragment of vinylogous Michael reaction (Scheme 6-2). 

First, the Michael reaction between siloxyfuran 126 and acrolein was examined.6 The Michael 

reaction successfully proceeded upon treatment of siloxyfuran 126 with a catalytic amount of 

dimethylamine hydrochloride. The subsequent one-pot protection of aldehyde (±)-127 

immediately gave acetal (±)-128 in 82% yield. Acetal (±)-128 was then converted to butenolide 

(±)-122 by hydrolysis, reduction of aldehyde (128→129), and the Appel reaction in good yield. 

 

Scheme 6-2. Synthesis of racemic butenolide (±)-78 

 

 

  Then, the enantioselective Michael reaction of siloxyfuran 130 and acrolein to synthesize 

chiral butenolide (–)-129 was investigated (Scheme 6-3). Siloxyfuran 130 was prepared from 

furanone 120 with TIPSCl and NaN(TMS)2. According to the literature reported by Pihko and 

co-workers, we attempted the Michael reaction catalyzed by C2-symmetric pyrrolidine catalyst 

131 followed by Luche reduction of aldehyde 127.7 However, the reaction lacked both the 
reproducibility of yield and enantioselectivity, especially in the large scale. 

 

Scheme 6-3. Failure to provide chiral butenolide 129 
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To improve the reproducibility, an alternative route to synthesize butenolide 122 was 

investigated (Scheme 6-4). The reduction of commercially available ethyl 4-bromobutyrate 132 

with DIBAL-H followed by the nucleophilic addition of lithium acetylide to the resulting 

aldehyde 133 gave propargylic alcohol 134 in 60% yield over two-steps. Next, the semi-reduction 

of alkyne 134 was attempted. Extensive investigation revealed semi-reduction of alkyne cannot 

be achieved by homogeneous palladium catalyst,8a-d homogeneous nickel catalyst,8e-g or 

heterogeneous palladium catalyst,8h and combinations of additives and solvents (entries 1-6). 

However, the palladium catalyst supported on polyethylene imine reported by Sajiki and co-

wokers was effective for the semi-reduction.9 Subsequent one-pot addition of aqueous hydrogen 

chloride afforded (±)-122 along with over-reduced byproduct 136. Under these conditions, the 
combination of solvent was very important. In fact, although the reaction in 1,4-dioxane was not 

effective for this semi-reduction (entry 7), use of MeOH/1,4-dioxane 1:1 resulted in highly 

selective formation of butenolide 122 in 73% yield along with 136 in 5% yield (entry 8).  

 

Scheme 6-4. Alternative route for racemic butenolide 122 
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Once we set the appropriate conditions for the synthesis of racemic butenolide 122, we then 

focused on enantioselective synthesis of butenolide 122 (Scheme 6-5). To achieve the 

enantioselective alkynylation, we decided to employ conditions reported by Trost and co-

workers.10 After reduction of 132 (8.16 g), treatment of resulting aldehyde with 20 mol% of (S,S)-

Prophenol catalyst 137, Me2Zn, and methyl propiolate gave (–)-134 in 78% yield and with 98% 

ee. Following semi-reduction/cyclization under optimized condition in Scheme 6-4 afforded 3.18 

g of (–)-122 in 72% yield with high reproductivity without racemization. 
 

Scheme 6-5. Asymmetric synthesis of butenolide (–)-122 

 

 

6-4-2. Synthesis of 2-Siloxypyrroles 123a-d 
  2-Siloxypyrroles 123a and 123d were synthesized in 2 steps from commercially available 2,5-

dimethoxy-2,5-dihydrofuran 138 and primary amines (Scheme 6-6).11 The reaction between 138 
and N-methoxyamine hydrochloride was conducted at –2 °C for 24 h to prevent the runaway 

reaction due to unavoidable use of excessive amount of acid as the HCl salt (1 equiv HCl, 

condition A). The reaction between 138 and H2NPMB could be conducted under milder acidic 
conditions (0.2 equiv HCl, condition B). In order to keep the pH approximately around 4, the 

H2NPMB should be added dropwise, especially in large scale. 123b and 123c were prepared 

through oxidation of pyrrole 141 followed by Boc- and TIPS-protections.12 
 

Scheme 6-6. Synthesis of siloxypyrrole 123 
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6-5. Vinylogous Michael Reaction 
6-5-1. Initial Investigation of Vinylogous Michael Reaction 

  With butenolide 122 and 2-oxipyrrole 123 in hand, we then attempted the vinylogous Michael 

reaction. In general, α,β-unsaturated lactam 142 and enamide 143, which are plausible product 

of vinylogous Michael reaction of 122 and 123, would tautomerize respectively via 2-oxypyrrole 

144 under basic conditions.13  

 

Figure 6-3. Predictable issue in vinylogous Michael reaction 

 
 

  Taking the above context into account, we optimized the Mukaiyama-type vinylogous Michael 

reaction of butenolide 122 and 2-siloxypyrrole 123a. First we attempted the fluoride ion mediated 

Michael reaction (Scheme 6-7). After investigation, we found that sufficiently dried TBAF was 

essential for C-C bond formation to afford bicyclic compound 145a, which was immediately 

transformed to enolate 146a. Then the protonation of 146a afforded 142a and 143a (142a: 51%, 

dr = 1:1, 143a: 26%). However the intermediate 146a tended to undergo quick oxidation when 

the slight amount of oxygen was present. Therefore, the use of completely degassed solvent and 

careful control of temperature below –78 °C were necessary. Furthermore, hydrogenation of 142a 

and 143a resulted in poor yield and low stereoselectivity at C9a (68%, 124a:epi-124a = 1:1). 

 

Scheme 6-7. TBAF mediated vinylogous Michael reaction 
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  We then investigated the Lewis acid-mediated vinylogous Michael reaction (Table 6-1). 

Interestingly, this reaction did not proceed with acid other than SnCl4 (Table 6-1, entries 1 to 5). 

In addition, in entry 5, hydrated product 147a was produced in 11% yield. Further investigation 

revealed that excess amount of SnCl4 suppressed the coupling reaction and result in significant 

recovery of butenolide 122 (Table 6-1, entry 6). In contrast, 0.5 equivalent of SnCl4 promoted the 

formation of 147a, and decrease recovery of starting material 122 (Table 6-1, entry 7). Moreover, 

the combined yield of coupling products 142a, 143a, and 147a was largest in entry 7 (87%), and 
optimal acid for vinylogous Michael reaction was decided as 0.5 equiv SnCl4.  

 

Table 6-1. Acid mediated vinylogous Michael reaction 
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6-5-2. Plausible Mechanism and Working Hypothesis for the One-pot Reaction 

Based on the results shown in Table 6-1, we postulated the reaction mechanism and proposed 

a working hypothesis (Scheme 6-8). Treating the mixture of butenolide 122 and 2-siloxypyrrole 

123a with SnCl4 would immediately construct the carbon-carbon bond at C9 and C9a position to 

form ketenacetal 148a with complete stereoselectivity at C9. The excess amount of SnCl4 would 

cause deprotection of TIPS group of 148a to form enolate 149a, which would decompose by 

retro-Michael reaction or transform to α,β-unsaturated lactam 142a. Without the excess amount 

of SnCl4, 148a would immediately be converted to the siloxypyrrole 150a via proton transfer.  

We predicted that 150a would be stable under Lewis acidic conditions at low temperature, and 

converted to enamide 143a via protonation at the less hindered α-position of 150a. In fact, 

according to the TLC analysis, enamide 143a was selectively produced at –78 °C. Then, further 

protonation of enamide 143a would form acyliminium ion 151a, which would react with 

hydrosilane to give the desired lactam 124a. In case we employ an alcohol as a proton source, it 

may assist extending the life-span of iminium ion 151a via the formation of N,O-acetal 152a. 

One of the advantages in this strategy was the every intermediate would converge to the iminium 

ion 151a. In other words, the stereoselectivity of reduction at C9a would only rely on the silane 
reagent and protecting group of the nitrogen. In addition this one-pot reaction would allow us to 

evade the isolation of the unstable intermediate 143a. 

 

Scheme 6-8. Proposed reaction mechanism and working hypothesis 
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6-5-3. Acid-Mediated Vinylogous Michael Reaction 

  To demonstrate our working hypothesis, we optimized the reaction conditions for the one-pot 

vinylogous Michael reaction and reduction sequence. After optimization of the reaction between 

butenolide 122 and N-methoxypyrrole 123a, the bicyclic lactam 124 and epi-124 were produced 
in 77% combined yield (Table 6-2, entry 1). However, under these conditions, not only the poor 

stereoselectivity at C9a was observed, but also racemization was slightly observed. To solve these 

problems, we conducted further investigation. The protecting group of nitrogen was essential, 

and no coupling product was obtained with N-H pyrrole (Table 6-2, entry 2). The reaction with 

N-Boc pyrrole 123c resulted in decomposition due to its instability under acidic conditions (Table 

6-2, entry 3). We found that the utilization of N-PMB group would improve the 

diastereoselectivity (124:epi-124 = 2.7:1), and did not cause racemization (Table 6-2, entry 4).  
 

Table 6-2. Optimization of the protecting group on nitrogen 

 

 

  With the appropriate protecting group of the nitrogen in hand, the silane reductant and 

additional acid were then surveyed (Table 6-3). Use of more sterically hindered triphenylsilane 

and less hindered phenylsilane resulted in poor diastereoselectivity (Table 6-3, entries 2, 3). To 

form N-acyliminium ion, TiCl4 was revealed as an optimal Lewis acid (Table 6-3, entries 4, 5). 

The optimized conditions were successfully applied to gram-scale reaction between chiral 

butenolide 122 (3.11 g, 98% ee) and N-PMB-siloxypyrrole 123d to afford the bicyclic compound 

124 and epi-124 in 73% combined yield with 3.7:1 diastereoselectivity as an inseparable mixture 
(Table 6-3, entry 6).  
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Table 6-3. Optimization of silane reductant and acid 

 

 

The racemization of the product 124a was rationalized when using N-methoxypyrrole 123a 

(Scheme 6-9). First, the coupling reaction gave spiroacetal 157a as an important side product. 

The deprotonation of acyliminium ion 151a could form tetra-substituted enamide 153a. Then, 

the chirality of the C8 position would disappear via the elimination of the carboxylate 154a. 

While reconstruction of γ-lactone 153a would provoke the racemization of 151a, irreversible 

reduction of 154a by silane reagent would form enamide 155a. Protonation of 155a and 

subsequent cyclization of iminium ion 156a led to spiroacetal 157a. The driving forth of these 

reactions would be the increased electrophilicity of N-acyl-N-oxyiminium ion 151a, which 

enables not only the reduction but also the deprotonation to form enamide 153a. 

 

Scheme 6-9. Mechanism of racemization of the N-methoxy substrate 
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6-5-4. Proposed Mechanism of Stereoselectivity 

A proposed mechanism of stereocontrol at the C9 and C9a in vinylogous Michael reaction is 

described in Scheme 6-10A. Firstly, the siloxyfurans would avoid a steric repulsion with bromide 

side chain. Therefore, the C9 stereochemistry was completely controlled, and the C9a 

stereochemistry would depend on the face-selectivity of siloxypyrrole. In transition states TS-1 

and TS-4, the steric repulsion between the substituent of the nitrogen atom and the bromoalkyl 

side-chain would be large. However, transition state TS-2 (Diels-Alder-type) and TS-3 (Open-
type) seems to avoid this steric repulsion.14 Considering the experimental results, the Diels-Alder 

like transition state TS-2 which affords major product α-142 seems to be the most dominant 

transition state.  

In the one-pot reduction, the stereoselectivity at the C9a stereocenter yet to be clarified, the 

selectivity would be explained as shown in Scheme 6-10B. The PMB group would point out the 

opposite direction to the bromide side-chain. Thus, the conformer 151’ would be more dominant 

than 151. The reduction of iminium ion 151’ with triethylsilane would proceed to avoid the 

bromide side-chain affording 124d as a major product. 
 
Scheme 6-10. Plausible mechanism of vinylogous Michael reaction and reduction sequence 
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6-6. Gram-scale Total Synthesis of (–)-Stemoamide 
  Having a practical method for supplying bicyclic compound 124 and epi-124 established on 

multi-gram scale, the next subject is the total synthesis of stemoamide (1) (Scheme 6-11). 

Oxidative removal of N-PMB group using cerium ammonium nitrate gave secondary lactam 158 

and epi-158 in 94% yield (158:epi-158 = 3.7:1). Then, treatment with sodium hydride in the 

presence of catalytic amount of TMSOTf and tetrabutylammonium iodide led to the formation of 

a separable mixture 48 and epi-48 (48: 57%, epi-48: 19%). During the construction of the seven-

membered ring, residual sodium hydroxide induced the hydrolysis of γ-lactone of 1 and formed 

undesired side product 161 (Scheme 6-12). If sodium hydride reacts with slight amount of water, 

sodium hydroxide would easily hydrolyze the γ-lactone 158, giving γ-hydroxy carboxylate 48. 
Then, intramolecular cyclization of the secondary alcohol with alkyl bromide would produce 

furan carboxylic acid 161. Therefore, to avoid this side reaction, we treated the suspension of 

sodium hydride and DMF with TMSOTf to remove the residual sodium hydroxide in advance. 

The total synthesis of stemoamide (1) was accomplished by the site- and stereo-selective 

methylation of tricyclic compound 48 in 84% yield.15 Our enantioselective route enabled the 

gram-scale supply of stemoamide (1: 1.07 g) from a single path in 7 steps and 19.2% total yield, 
which represents one of the most efficient enantioselective synthesis to date. 
 
Scheme 6-11. Total Synthesis of Stemoamide (1) 

 
 

Scheme 6-12. Reaction mechanism from secondary lactam 158 to side product 161 
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Chapter 7. Total Syntheses of Tetracyclic Natural Products 
7-1. Strategies for Lactone-selective Nucleophilic Addition 
  With stemoamide (1) in hand, we embarked on the total syntheses of saxorumamide and 

isosaxorumamide featuring the lactone-selective nucleophilic addition. This chemoselectivity 

could be achieved with classic transformations by taking advantages of the inherent 

electrophilicity: γ-lactone > γ-lactam (Figure 7-1A). In addition, the stereocenter at C11 could be 

constructed with the addition of second nucleophile to an oxocarbenium ion, which is equally 

important as chemoselectivity (Figure 7-1B). To construct desired stereochemistry at C11, we 

proposed two reaction pathway in terms of the order of introduction of reductant (H○― ) and lactone 

equivalent (R○― ).  
 

Figure 7-1. Synthetic plan of saxorumamide (2) and isosaxorumamide (3) 

 
 

  To construct the desired stereochemistry at C11, the most stable conformation of 

oxocarbenium intermediate 162 and 163 were calculated and depicted in Figure 7-2.1 

Stereochemical outcome could be predictable based on both steric effect of methyl group and 

stereoelectronical effect proposed by Woerpel and co-workers.2 In “path I”, the sterically large 

lactone equivalent would attack from both faces due to the competition between steric repulsion 

of methyl group and stereoelectronic effect which arise from the eclipse interaction between the 

nucleophile and the hydrogen atom at C10. In “path II”, if the sterically small reductant is 

employed, the steric effect of the methyl group would become negligible. In such case, the 

stereoselectivity may be controlled by stereoelectronic effect to produce the desired isomer 164.  
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Figure 7-2. Prediction of Stereochemistry 

 

 

7-2. Total Syntheses of saxorumamide and isosaxorumamide via “path I” 
  We investigated the “path I” shown above (Scheme 7-1). The lactone-selective reduction of 

stemoamide (1) was accomplished by treatment with DIBAL at –78 °C to form lactol 165. The 

five-membered lactone was successfully introduced to 165 in the presence of BF3·OEt2 via 

oxocarbenium ion 162. However, the stereoselectivity could not be controlled at all, and four 

diastereomers; saxorumamide 2, isosaxorumamide 3, and 11-epimers 166 and 167 were produced 

(2: 12%, 3: 9%, 166: 15%, 167: 12%, two-step yield from 1).  

 

Scheme 7-1. Total Syntheses of Saxorumamide and Isosaxorumamide through “Path I” 
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7-3. Total Syntheses of saxorumamide and isosaxorumamide via “path II” 
  Next we investigated “path II”. Firstly, success of this reaction would rely on a design of the 

lactone equivalent (Figure 7-3). The candidates of lactone equivalent 168 or 169 would react with 

lactone 171, and subsequent reduction of lactol 172 would afford the target structure 174. 

However, 173 could also be converted to dienoate 175 via undesired deprotonation, which might 

be difficult to transform to 174. Therefore, furyllithium 170 would be more practical candidate, 

which would be converted to furan 178 through nucleophilic addition to lactone 171 followed by 

reduction of lactol 176. In addition, the benzylic lactol 176 would be transformed to 

oxocarbenium ion 177 at low temperature, and lead to stereoselective construction of the desired 

structure 178.  
 

Figure 7-3. The candidates of lactone equivalent in “Path II” 

 

 

  Taking these synthetic plan into considering, furyllithium nucleophile 1793 was selected as 

appropriate nucleophile for the concise and efficient synthesis of saxorumamide families 

(Scheme 7-2). The lactone-selective nucleophilic addition of furyllithium 179 to stemoamide (1) 

provided enol ether 180 in 87% yield through concomitant dehydration of lactol via 

oxocarbenium ion 181 probably with the assistance of the adjacent electron donating furan ring. 

Gratifyingly, stereoselective reduction of enol ether 180 was achieved with NaBH3CN in the 

presence of CCl2HCO2H at –78 °C. Two consecutive stereocenters (C10 and C11) were 

established by stereoselective protonation of the enol ether and subsequent reduction of the 

resulting oxocarbenium ion 181,1 giving 182 in 95% yield as a single diastereomer.  
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Scheme 7-2. Construction of C11 stereocenter through “Path II” 

 

 

The mechanistic rational of stereoselective protonation of enol ether 180 and reduction of 

oxocarbenium ion 181 were described in Scheme 7-3. The protonation of enol ether 180 would 

proceed through transition state 183 or 184 in which 183 would be disfavored due to the steric 
repulsion between two hydrogen atom located eclipse relationships. Therefore, protonation at β-

side through transient 184 would be preferable to form oxocarbenium ion 181. As expected, the 

stereoselective reduction took place from β-side of oxocarbenium ion 181 to afford furan 182 as 
a single diastereomer. 

 

Scheme 7-3. Construction of C11 stereocenter through “Path II” 
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The remaining task was the conversion of furan ring to α,β-unsaturated lactone (Scheme 7-4). 

Treatment of furan 182 with mCPBA (1.2 equiv) led to lactone 187 through Meinwald 

rearrangement of epoxy silane 185 with weak acidic condition of m-chlorobenzoic acid derived 

from mCPBA.3 The driving force of the 1,2-migration was the strong cationic character at C14 

due to the β-effect of silyl group and the mesomeric effect (186↔186’). In addition, the remaining 

mCPBA oxidized the resulting enol ether 187 affording 188. Treatment a mixture of 187 and 188 

with TBAF, followed by addition of AcOH and NaBH4 gave saxorumamide (2) and 

isosaxorumamide (3).3a Epoxide 188 was produced by bisepoxidation of furan 182, and converted 

to γ-hydroxy-α,β-unsaturated lactone 189. Therefore treatment of 189 with AcOH and NaBH4 led 

to formation of 2 and 3. Thus, we accomplished the first total synthesis of saxorumamide (2) and 

isosaxorumamide (3) in 11 longest liner steps in 7.3% and 6.2% total yield, respectively. 

 

Scheme 7-4. Total synthesis of saxorumamide (2) and isosaxorumamide (3) 
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7-4. Lactam-selective Nucleophilic Addition Using Schwartz Reagent 
  Lactone is known to be more electrophilic than lactam. On the contrary, the lactam possesses 

higher Lewis basicity than lactone due to the mesomeric effect of nitrogen, which contributes to 

stability of carbonyl group of lactam. Therefore, the high Lewis basicity of lactam have a 

potential to overcome the difficulty to differentiate γ-lactam and γ-lactone. 

  Previously, Chida-Sato group reported the amide-selective reductive functionalization by 

taking advantage of the Schwartz reagent [Cp2ZrHCl], which is reliable amide-selective reducing 

agent even in presence of ester (Scheme 7-5).4,5 Treatment of N-methoxyamide 190 with 1.1 

equivalent of Cp2ZrHCl gave five-membered chelate intermediate 191. Subsequent addition of 

siloxyfuran 130 and a catalytic amount of Sc(OTf)3 to the chelated intermediate 191 provided α-

substituted N-methoxyamine 193 via iminium ion 192 in 78% yield.  

 

Scheme 7-5. Amide-selective nucleophilic addition with the Schwartz reagent 

 

 

Thus, this method was adopted to the γ-lactam-selective reductive nucleophilic addition of 

siloxyfuran 73 to N-methoxylactam 194 (Scheme 7-6). The reductive nucleophilic addition of 

194 proceeded in 39% combined yield and the four diastereomers were obtained in poor 

diastereoselectivity at C3 and C13 stereocenters, along with recover of the starting material 194 
in 39% yield. In addition, when we attempted the reductive nucleophilic addition to stemoamide 

(1) using the Schwartz reagent, the tetracyclic compound 197 was not observed, and instead lactol 

198 was obtained and the starting material 1 was recovered in 26% and 32%, respectively. These 
results indicated that the Schwartz reagent cannot achieve the γ-lactam-selective reduction of the 

substrate that include γ-lactone moiety such as 194 or 1. 
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Scheme 7-6. The attempt of γ-lactam-selective nucleophilic addition with Schwartz reagent 

 

 

7-5. Total Synthesis of Stemonine 
Since the Schwartz reagent was not effective for the lactam-selective functionalization of 

stemoamide (1), other γ-lactam-selective reducing agent was explored. Buchwald reduction with 
Ti(OiPr)4 and Ph2SiH2,6 Brookhart method with cat. [Ir(COE)2Cl]2 and Et2SiH2,7 

Tinnis/Adolfsson reduction with cat. Mo(CO)6 and (Me2HSi)2O,8 could not achieve the 

chemoselective semi-reduction of the γ-lactam (Scheme 7-7). 

 

Scheme 7-7. Investigation of lactam-selective reducing agent 
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However, we solved this problem by utilizing Nagashima’s conditions for an iridium-catalyzed 

hydrosilylation (Table 7-1).9,10 Treatment of stemoamide (1) with the Vaska complex 

[IrCl(CO)(PPh3)2] (1 mol%) and (Me2HSi)2O (1.5 equiv)11 initiated hydrosilylation of the γ-

lactam carbonyl and subsequent elimination of the siloxy group to form enamine 200. Next, the 

optimization of acid was conducted. Treatment of enamine 200 with 2-siloxyfuran 73, MeCN 

and a Brønsted acid in a one-pot process generated the transient iminium ion 201, which 

underwent the vinylogous Mannich reaction to give tetracyclic compounds 197 and epi-197. The 
optimal acid was proved to be 2-nitrobenzoic acid whose pKa is 2.19 (entry 3, 92%, dr = 1.4:1). 

Both reduction of the γ-lactam and the subsequent addition of 73 took place in highly 

chemoselective fashion without affecting the reactive γ-lactone even in 20 mg scale, giving the 

products 197 in 43% and epi-197 in 30% isolated yield, respectively (entry 9). The addition of 2-

siloxyfuran 73 resulted in complete stereocontrol at the C3 carbon center. In contrast, a slight 

diastereoselectivity at C13 (dr = 1.4:1)12,13 was observed favoring the desired product 197 over 

the undesired product epi-197, which could be isomerized to 197 with DBU in CH2Cl2. Thus, we 

achieved the first direct installation of the γ-lactone to stemoamide (1) at the late stage of the 

synthesis. 

 

Table 7-1. Lactam-selective nucleophilic addition to stemoamide (1) 
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The diastereoselectivity at the C3 and C13 stereocenters would be controlled by inherent 

conformation of the substrate. The most stable conformation of stemoamide (1) and iminium 

intermediate 201 were calculated as shown below (Figure 7-4).14 According to this structure, 2-

siloxyfuran 73 approached from the convex side of iminium ion 201, resulting in complete 
stereocontrol at the C3 carbon center. To prove the importance of the rigid tricyclic cage structure, 

nucleophilic addition to bicyclic compound 194 was performed with various nucleophiles (Table 

7-2). As a result, we could not achieve the stereoselective introduction of siloxyfuran to the 

lactam carbonyl group of 194. Therefore, the tricyclic structure of stemoamide was crucial for 

the construction of the desired stereochemistry at C3. In contrast, the stereoselectivity at C13 was 

moderate due to the planarity of the nucleophile.  

 

Figure 7-4. Conformation of stemoamide (1) and iminium ion (201) 

  

 

Table 7-2. Nucleophilic addition to the bicyclic substrate 194 

 
  

Stemoamide (1) iminium ion 201 
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The hydrogenation of α,β-unsaturated lactone 197 was investigated (Table 7-3). The Pd/C 

catalyzed reduction of 197 led to 5.6:1 mixture of diastereomers of stemonine (4) and 15-epi-

stemonine (epi-4) (Table 7-3, entry 2). This hydrogenation of γ-lactone using homogeneous 

catalyst proceeded on the opposite face to the substituent at C13 to give stemonine (4) as a major 
product. The silica gel column chromatography was attempted for the separation of two 

diastereomers 4 and epi-4. However, it resulted in isolation of stemonine (4) in merely 18% yield 

because either 4 or epi-4 would be unstable to air and silica gel (Table 7-3, entry 3). Therefore, 
we had to find a heterogeneous reducing agent, which can achieve perfect chemoselectivity at 

C15 and can be removable by simple filtration. Finally, we revealed that Rh/Al2O3-catalyzed 

reduction could achieve this task, giving stemonine (4) in high yield as the sole product (Table 7-
3, entry 5). Thus, we succeed in establishing the novel method for the direct access to stemonine 

(4) from stemoamide (1) in two steps including chemoselective nucleophilic addition and 

hydrogenation. 

 

Table 7-3. Hydrogenation of α,β-unsaturated lactone 198 
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Chapter 8. Conclusion 
  We accomplished a unified total synthesis of stemoamide-type alkaloids through convergent 

assembly of three five-membered building blocks. The first key reaction was the vinylogous 

Michael reaction/reduction of butenolide 122 and 2-siloxypyrrole 123d. The second key reaction 

was the chemoselective nucleophilic addition to stemoamide (1) as the common precursor to the 

tetracyclic natural products. While the lactone-selective nucleophilic addition led to first total 

synthesis of saxorumamide (2) and isosaxorumamide (3), the lactam-selective reductive 

nucleophilic addition enabled the direct access to stemonine (4) in 2 steps from stemoamide (1). 

Overview of synthetic route is described below (Scheme 8-1, 8-2). The gram-scale total synthesis 

of stemoamide (1) was accomplished from commercially available ethyl 4-bromobutyrate 132 
from a single path in 7 steps and 19.2% total yield. 

 

Scheme 8-1. Overview of unified total synthesis of stemoamide-type alkaloids (Part I) 
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The first total synthesis of saxorumamide (2) and isosaxorumamide (3) in 11 longest liner steps 
in 7.3% and 6.2% total yield, respectively. A concise and efficient total synthesis of stemonine 

(4) was accomplished in 9 steps with an overall yield of 8.1% (10 steps and 11.0% total yield 

including isomerization of epi-197) 
 

Scheme 8-2. Overview of unified total synthesis of stemoamide-type alkaloids (Part II) 
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The lactam-selective reductive nucleophilic addition in the presence of lactones could be 

applicable to total syntheses of other members of the Stemona-alkaloids. 
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A. Experimental Procedures 

General Details. Reactions were performed in oven-dried glassware fitted with rubber septa under an 

argon atmosphere. Toluene, DMSO and (CH2Cl)2 were distilled from CaH2. DMF and MeOH were 

distilled from CaSO4. Pyridine was distilled from sodium hydroxide. All distilled solvents, MeCN, CH2Cl2 

and EtOH were dried over activated 3Å molecular sieves. THF (dehydrated, stabilizer free) was from 

KANTO CHEMICAL CO., INC. Commercial reagents were used without further purification. Thin-layer 

chromatography was performed on Merck 60 F254 precoated silica gel plates, which were visualized by 

exposure to UV (254 nm) or stained by submersion in aquatic cerium- ammonium molybdate, aquatic 

potassium manganate or ethanolic phosphomolybdic acid solution followed by heating on a hot plate. 

Flash column chromatography was performed on silica gel (Silica Gel 60 N; 63‒210 or 40‒50 mesh, 

KANTO CHEMICAL CO., INC.). 1H NMR spectra were recorded at 500 MHz and 13C NMR spectra at 

125 MHz with JEOL ECA-500 spectrometers. Chemical shifts are reported in ppm with reference to 

solvent signals [1H NMR: CDCl3 (7.26), CD3OD (3.31), d-acetone (2.05), C6D6 (7.16); 13C NMR: CDCl3 

(77.16)]. Signal patterns are indicated as brs, broad peak; s, singlet; d, doublet; t, triplet; q, quartet; m, 

multiplet. MPLC was performed on Yamazen, YFLC AI-580. Infrared spectra were recorded using a 

BRUKER ALPHA FT-IR spectrometer. Mass spectra (EI and FAB) were measured with a JEOL GC-Mate 

spectrometer. Mass spectra (ESI-TOF) were measured with a Waters, LCT Premier XE. Melting points 

were measured with a Mitamura-Riken microhot stage or Yanaco MODEL MP-S3. 
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Two-step Synthesis of Multi-substituted Amines 
 

A-1. Two-step Synthesis of Multi-substituted N-Methoxypiperidine 

Preparation of aldehydes 94e, 94f 

 
 

 

 
benzyl (6-((tert-butyldimethylsilyl)oxy)hexyl)carbamate (141e) 

tert-Butyldimethylsilyl chloride (300 mg, 1.99 mmol) was added to a solution of alcohol 140e (414 mg, 

1.65 mmol),1 triethylamine (280 L, 2.0 mmol) and CH2Cl2 (8.2 mL) at room temperature. The solution 

was maintained for 24 h at room temperature, and quenched with H2O (10 mL). The resulting mixture 

was extracted with chloroform (2 x 10 mL). The combined organic extracts were washed with brine (10 

mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:20 to 1:10) to give 585 mg of 141e (97%): a colorless oil; IR (film) 3337, 2932, 2858, 

1700, 1540, 1457, 1255, 1098, 836 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.38‒7.29 (m, 5H), 5.09 (s, 2H), 

4.71 (bs, 1H), 3.59 (t, J = 6.6 Hz, 2H), 3.19 (dt, J = 6.6, 6.6 Hz, 2H), 1.54‒1.46 (m, 4H), 1.37‒1.29 (m, 

4H), 0.89 (s, 9H), 0.04 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 156.5 (C), 136.8 (C), 128.6 (CH), 128.20 

(CH), 128.15 (CH), 66.6 (CH2), 63.2 (CH2), 41.2 (CH2), 32.8 (CH2), 30.1 (CH2), 26.7 (CH2), 26.1 (CH3), 

25.6 (CH2), 18.5 (C), ‒5.2 (CH3); HRMS (ESI), calcd for C20H35NO3SiNa+ (M+Na)+ 388.2284, found 

388.2281. 

 

 

 
tert-butyl (6-((tert-butyldimethylsilyl)oxy)hexyl)carbamate (141f) 

tert-Butyldimethylsilyl chloride (310 mg, 2.06 mmol) was added to a solution of alcohol 140f (373 mg, 

1.72 mmol),2 triethylamine (290 L, 2.1 mmol) and CH2Cl2 (8.6 mL) at room temperature. The solution 
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was maintained for 24 h at room temperature, and quenched with H2O (10 mL). The resulting mixture 

was extracted with chloroform (2x10 mL). The combined organic extracts were washed with brine (10 

mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:30 to 1:20) to give 505 mg of 141f (88%): a colorless oil; IR (film) 3360, 2932, 2859, 

1697, 1525, 1366, 1254, 1175, 1100, 837, 776 cm-1; 1H NMR (500 MHz, CDCl3) δ 4.49 (bs, 1H), 3.59 (t, 

J = 6.6 Hz, 2H), 3.10 (dt, J = 7.2, 7.2 Hz, 2H), 1.54‒1.42 (m, 4H), 1.44 (s, 9H), 1.36‒1.29 (m, 4H), 0.89 

(s, 9H), 0.04 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 156.1 (C), 79.0 (C), 63.2 (CH2), 40.7 (CH2), 32.8 

(CH2), 30.2 (CH2), 28.5 (CH3), 26.7 (CH2), 26.1 (CH3), 25.6 (CH2), 18.5 (C), ‒5.2 (CH3); HRMS (ESI), 

calcd for C17H37NO3SiNa+ (M+Na)+ 354.2440, found 354.2437. 

 

 

 
benzyl benzyl(6-((tert-butyldimethylsilyl)oxy)hexyl)carbamate (142e) 

Sodium hydride (60 wt%, 71.5 mg, 4.96 mmol) was added to a solution of carbamate 141e (362 mg, 990 

mol) and THF (2.0 mL) at room temperature. After stirring for 20 min, benzyl bromide (240 L, 2.0 

mmol) and tetrabutylammomium iodide (3.7 mg, 9.9 mol) were added to the mixture of 141e at room 

temperature. The resulting mixture was stirred for 24 h, and quenched with H2O (5 mL). The resulting 

mixture was extracted with EtOAc (5 mL). The organic extracts were washed with brine (5 mL), dried 

over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:40) to give 423 mg of 142e (94%): a colorless oil; IR (film) 2932, 2858, 1703, 1472, 

1422, 1248, 1097, 836 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 7.44‒7.12 (m, 10H), 5.18 (s, 2H), 4.50 

(s, 2H), 3.59 (t, J = 6.3 Hz, 2H), 3.30‒3.18 (m, 2H), 1.58‒1.41 (m, 4H), 1.35‒1.20 (m, 4H), 0.89 (s, 9H), 

0.04 (s, 6H); 13C NMR (125 MHz, CDCl3, 60 °C) δ 156.6 (C), 138.3 (C), 137.2 (C), 128.65 (CH), 128.56 

(CH), 128.0 (CH), 128.0 (CH), 127.8 (CH), 127.4 (CH), 67.3 (CH2), 63.2 (CH2), 50.7 (CH2), 47.2 (CH2), 

32.9 (CH2), 28.2 (CH2), 26.8 (CH2), 26.1 (CH3), 25.7 (CH2), 18.5 (C), ‒5.1 (CH3); HRMS (ESI), calcd for 

C27H42NO3Si+ (M+H)+ 456.2934, found 456.2938. 

 

 

 
tert-butyl benzyl(6-((tert-butyldimethylsilyl)oxy)hexyl)carbamate (142f) 

Sodium hydride (60 wt%, 71.5 mg, 4.96 mmol) was added to a solution of carbamate 141f (330 mg, 995 

mol) and THF (2.0 mL) at room temperature. After stirring for 20 min, benzyl bromide (240 L, 2.0 

mmol) and tetrabutylammomium iodide (3.7 mg, 9.9 mol) were added to the mixture of 141f at room 
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temperature. The resulting mixture was stirred for 24 h, and quenched with H2O (5 mL), and extracted 

with EtOAc (5 mL). The organic extracts were washed with brine (5 mL), dried over Na2SO4, and 

concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:60) to give 

309 mg of 142f (74%): a colorless oil; IR (film) 2930, 2857, 1697, 1463, 1416, 1365, 1249, 1170, 1099, 

836, 775 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 7.31 (t, J = 7.5 Hz, 2H), 7.27‒7.21 (m, 3H), 4.43 (s, 

2H), 3.58 (t, J = 6.6 Hz, 2H), 3.22‒3.12 (m, 2H), 1.55‒1.43 (m, 4H), 1.47 (s, 9H), 1.36‒1.22 (m, 4H), 

0.90 (s, 9H), 0.04 (s, 6H); 13C NMR (125 MHz, CDCl3, 60 °C) δ 156.0 (C), 139.0 (C), 128.6 (CH), 127.6 

(CH), 127.2 (CH), 79.6 (C), 63.3 (CH2), 50.5 (CH2), 46.9 (CH2), 33.0 (CH2), 28.7 (CH3), 28.3 (CH2), 26.9 

(CH2), 26.1 (CH3), 25.8 (CH2), 18.5 (C), ‒5.1 (CH3) ; HRMS (ESI), calcd for C24H43NO3SiNa+ (M+Na)+ 

444.2910, found 444.2907. 

 

 

 
benzyl benzyl(6-hydroxyhexyl)carbamate (143e) 

Tetrabutylammonium fluoride (1.0 M in THF, 760 L, 760 mol) was added to a solution of 142e (288 

mg, 632 mol) and THF (3.2 mL) at room temperature. The solution was maintained for 2 h at room 

temperature, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:9 to 1:2) to give 206 mg of 143e (95%): a colorless oil; IR (film) 3158, 2937, 2863, 

1701, 1454, 1423, 1236, 733, 699 cm-1; 1H NMR (300 MHz, CDCl3, 1:1 mixture of rotamers) δ 7.41‒7.10 

(m, 10H), 5.18 (s, 1H), 5.17 (s, 1H), 4.49 (s, 2H), 3.27 (t, J = 7.0 Hz, 1H), 3.20 (t, J = 7.0 Hz, 1H), 2.32 

(t, J = 7.0 Hz, 1H), 2.26 (t, J = 7.0 Hz, 1H), 1.70‒1.39 (m, 4H), 1.39‒1.16 (m, 4H); 13C NMR (125 MHz, 

CDCl3, 60 °C) δ 156.7 (C), 138.2 (C), 137.1 (C), 128.65 (CH), 128.56 (CH), 128.03 (CH), 128.00 (CH), 

127.7 (CH), 127.4 (CH), 67.3 (CH2), 62.8 (CH2), 50.7 (CH2), 46.9 (CH2), 32.8 (CH2), 28.1 (CH2), 26.6 

(CH2), 25.5 (CH2); HRMS (ESI), calcd for C21H27NO3Na+ (M+Na)+ 364.1889, found 364.1886. 

 

 

 
tert-butyl benzyl(6-hydroxyhexyl)carbamate (143f) 

Tetrabutylammonium fluoride (1.0 M in THF, 680 L, 680 mol) was added to a solution of 142f (219 

mg, 567 mol) and THF (2.8 mL) at room temperature. The solution was maintained for 2 h at room 

temperature, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:9 to 1:2) to give 168 mg of 143f (97%): a colorless oil; IR (film) 3441, 2932, 2860, 

1693, 1455, 1417, 1366, 1246, 1168, 879, 732, 700 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 7.31 (t, J 
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= 6.9 Hz, 2H), 7.27‒7.21 (m, 3H), 4.43 (s, 2H), 3.62 (t, J = 6.6 Hz, 2H), 3.19 (bs, 2H), 1.58‒1.48 (m, 4H), 

1.47 (s, 9H), 1.40‒1.25 (m, 4H); 13C NMR (125 MHz, CDCl3, 60 °C) δ 156.1 (C), 139.0 (C), 128.6 (CH), 

127.6 (CH), 127.2 (CH), 79.7 (C), 62.9 (CH2), 50.5 (CH2), 46.7 (CH2), 32.9 (CH2), 28.6 (CH3), 28.2 (CH2), 

26.7 (CH2), 25.6 (CH2); HRMS (ESI), calcd for C18H29NO3Na+ (M+Na)+ 330.2045, found 330.2040. 

 

 

 
benzyl benzyl(6-oxohexyl)carbamate (94a) 

2-Iodoxybenzoic acid (223 mg, 795 mol) was added to a solution of alcohol 143e (181 mg, 530 mol) 

and DMSO (5.3 mL) at room temperature. The solution was maintained for 12 h at room temperature, and 

diluted with hexane (5 mL) and H2O (20 mL). The mixture was filtered through a pad of Celite, which 

was washed with hexane (30 mL). The filtrate was extracted with hexane (5 mL). The combined organic 

extracts were washed with brine (2x 30 mL), dried over Na2SO4, and concentrated. The residue was 

purified by silica gel column chromatography (EtOAc/hexane 1:30 to 1:9) to give 162 mg of 94e (90 %): 

a colorless oil; IR (film) 2936, 2861, 2720, 1698, 1454, 1421, 1235, 1125, 734, 699 cm-1; 1H NMR (500 

MHz, CDCl3, 1:1 mixture of rotamers) δ 9.73 (s, 1/2H), 9.68 (s, 1/2H), 7.42‒7.12 (m, 10H) , 5.19 (s, 1H), 

5.17 (s, 1H), 4.50 (s, 1H), 4.49 (s, 1H), 3.27 (t, J = 6.9 Hz, 1H), 3.20 (t, J = 6.9 Hz, 1H), 2.40 (t, J = 6.6 

Hz, 1H), 2.31 (t, J = 6.6 Hz, 1H), 1.65‒1.45 (m, 4H), 1.35‒1.16 (m, 2H); 13C NMR (125 MHz, CDCl3, 

1:1 mixture of rotamers) δ 202.7 (CH), 202.5 (CH), 156.9 (C), 156.4 (C), 138.0 (C), 138.0 (C), 136.95 

(C), 136.85 (C), 128.7 (CH), 128.7 (CH), 128.61 (CH), 128.58 (CH), 128.14 (CH), 128.05 (CH), 128.00 

(CH), 127.97 (CH), 127.48 (CH), 127.44 (CH), 127.3 (CH), 127.3 (CH), 67.36 (CH2), 67.32 (CH2), 50.7 

(CH2), 50.4 (CH2), 47.0 (CH2), 46.1 (CH2), 43.84 (CH2), 43.77 (CH2), 28.0 (CH2), 27.6 (CH2), 26.4 (CH2), 

26.3 (CH2), 21.9 (CH2), 21.7 (CH2); HRMS (ESI), calcd for C21H26NO3
+ (M+H)+ 340.1913, found 

340.1903. 

 

 

 
tert-butyl benzyl(6-oxohexyl)carbamate (94f) 

2-Iodoxybenzoic acid (179 mg, 639 mol) was added to a solution of alcohol 143f (131 mg, 426 mol) 

and DMSO (4.3 mL) at room temperature. The solution was maintained for 12 h at room temperature, and 

diluted with hexane (5 mL) and H2O (20 mL). The mixture was filtered through a pad of Celite, which 

was washed with hexane (30 mL). The filtrate was extracted with hexane (5 mL). The combined organic 

extracts were washed with brine (2x 30 mL), dried over Na2SO4, and concentrated. The residue was 
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purified by silica gel column chromatography (EtOAc/hexane 1:30 to 1:9) to give 117 mg of 94f (90 %): 

a colorless oil; IR (film) 2974, 2933, 2864, 2864, 1726, 1693, 1455, 1416, 1366, 1246, 1163, 879, 734, 

700 cm-1; 1H NMR (500 MHz, CDCl3, 1:1 mixture of rotamers) δ 9.74 (t, J = 1.7 Hz, 1H), 7.32 (t, J = 6.9 

Hz, 2H), 7.28‒7.18 (m, 3H), 4.43 (bs, 1H), 4.40 (bs, 1H), 3.27‒3.17 (m, 1H), 3.17‒3.06 (m, 1H) , 2.40 

(td, J = 7.5, 1.7 Hz, 2H) 5, 1.66‒1.56 (m, 2H), 1.56‒1.38 (m, 11H), 1.34‒1.20 (m, 2H); 13C NMR (125 

MHz, CDCl3, 1:1 mixture of rotamers) δ 202.8 (CH), 202.5 (CH), 156.2 (C), 155.8 (C), 138.8 (C), 138.6 

(C), 128.6 (CH), 128.6 (CH), 127.8 (CH), 127.8 (CH), 127.2 (CH), 127.2 (CH), 79.8 (C), 79.8 (C), 50.6 

(CH2), 50.0 (CH2), 46.5 (CH2), 46.3 (CH2), 43.9 (CH2), 43.9 (CH2), 28.6 (CH3), 28.6 (CH3), 28.0 (CH2), 

27.8 (CH2), 26.5 (CH2), 26.5 (CH2), 21.9 (CH2), 21.9 (CH2); HRMS (ESI), calcd for C18H27NO3Na+ 

(M+Na)+ 328.1889, found 328.1883. 

 

 

Preparation of N-methoxyamide E-42 and N-methylamide 95 

 
 

 

 

(E)-6-(trimethylsilyl)hex-4-enoic acid (81) 

2-Iodoxybenzoic acid (924 mg, 3.30 mmol) was added to a solution of alcohol 79 (1.07 g, 6.21 mmol),3 

and DMSO (12 mL) at room temperature. The solution was maintained for 16 h at room temperature, and 

diluted with Et2O (25 mL) and H2O (20 mL). The mixture was filtered through a pad of Celite, which was 

washed with Et2O (15 mL). The filtrate was extracted with Et2O (5 mL). The combined organic extracts 

were washed with brine (30 mL), dried over Na2SO4, and concentrated to give (E)-6-(trimethylsilyl)hex-

4-enal 80, which was immediately used in the next reaction without further purification. 

    A mixture of sodium chlorite (2.24 g, 24.8 mmol), sodium dihydrogenphosphate (1.49 g, 12.4 mmol) 

and H2O (5.2 mL) was quickly added to a mixture of aldehyde 80, 2,3-Dimethyl-2-butene (18 mL, 160 
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mmol) and t-BuOH (110 mL) at room temperature. The resulting mixture was stirred for 2 h at room 

temperature, and extracted with EtOAc (2x 10 mL). The combined organic extracts were washed with 

brine (10 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:19 to 1:4) to give 1.01 g of 81 (87%, 2 steps): a colorless oil; IR (film) 

3022, 2955, 2670, 1713, 1412, 1249, 1154, 967, 850, 694 cm-1; 1H NMR (500 MHz, CDCl3) δ 5.47 (dt, J 

= 15.2, 8.0 Hz, 1H), 5.24 (dt, J = 15.2, 7.2 Hz, 1H), 2.40 (t, J = 6.9 Hz, 2H), 2.31 (dt, J = 7.2, 6.9 Hz, 2H), 

1.41 (d, J = 8.0 Hz, 2H), 0.03 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 179.9 (C), 128.3 (CH), 126.1 (CH), 

34.7 (CH2), 28.0 (CH2), 22.8 (CH2), ‒1.9 (CH3); LRMS (EI) m/z 186 (M+, 8.1%), 118 (8), 117 (74), 116 

(6), 79 (6), 78 (47), 77 (13), 76 (7), 75 (52), 74 (11), 73 (100), 72 (9), 68 (15), 59 (6); HRMS (EI), calcd 

for C9H18O2 M+ 186.1076, found 186.1068. 

 

 

 

(E)-N-methoxy-6-(trimethylsilyl)hex-4-enamide (E-42) 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 3.53 g, 18.4 mmol) was added to 

a solution of carboxylic acid 81 (3.12 g, 16.8 mmol), O-methylhydroxylamine hydrochloride (1.54 g, 18.4 

mmol), HOBt·H2O (2.48 g, 18.4 mmol), triethylamine (5.1 mL, 37 mmol) and CH2Cl2 (170 mL) at room 

temperature. The solution was maintained for 21 h at room temperature, and quenched with saturated 

aqueous NaHCO3 (100 mL). The resulting mixture was extracted with CH2Cl2 (2x 100 mL). The combined 

organic extracts were washed with brine (150 mL), dried over Na2SO4, and concentrated. The residue was 

purified by silica gel column chromatography (EtOAc/hexane 1:4 to 1:2) to give 3.43 g of E-424 (95%): 

a colorless oil; IR (film) 3180, 2955, 1659, 1441, 1248, 1068, 967, 856 cm-1; 1H NMR (500 MHz, CDCl3) 

δ 5.48 (dt, J = 15.2, 8.0 Hz, 1H), 5.29‒5.17 (m, 1H), 3.75 (s, 3H), 2.33 (dt, J = 6.9, 6.9 Hz, 2H), 2.21‒

2.05 (m, 2H), 1.40 (d, J = 8.0 Hz, 2H), ‒0.02 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 170.7 (C), 128.5 

(CH), 126.3 (CH), 64.6 (CH3), 33.9 (CH2), 28.6 (CH2), 22.8 (CH2), ‒1.9 (CH3); HRMS (ESI), calcd for 

C10H22NO2Si+ (M+H)+ 216.1420, found 216.1419. 
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(E)-N-methyl-6-(trimethylsilyl)hex-4-enamide (95) 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 9.5 mg, 49.6 mol) was added to 

a solution of carboxylic acid 81 (8.4 mg, 45.1 mmol), N-methylamine hydrochloride (3.4 mg, 49.6 mol), 

HOBt·H2O (6.7 mg, 49.6 mol), triethylamine (14 L, 99 mol) and CH2Cl2 (1.0 mL) at room temperature. 

The solution was maintained for 24 h at room temperature, and quenched with saturated aqueous NaHCO3 

(5 mL). The resulting mixture was extracted with CHCl3 (2x 5 mL). The combined organic extracts were 

washed with brine (5 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel 

column chromatography (EtOAc/hexane 1:3 to 1:1) to give 8.3 mg of 95 (92%): a colorless oil; IR (film) 

3297, 3095, 2954, 1651, 1557, 1411, 1248, 1157, 852, 695 cm-1; 1H NMR (500 MHz, CDCl3) δ 5.47 (bs, 

1H), 5.46 (dtt, J = 14.9, 8.0, 1.2 Hz, 1H), 5.23 (dtt, J = 14.9, 6.6, 1.2 Hz, 1H), 2.79 (d, J = 4.9 Hz, 3H), 

2.31 (td, J = 6.9, 6.6 Hz, 2H), 2.21 (t, J = 6.9 Hz, 2H), 1.40 (dt, J = 8.0, 1.2 Hz, 2H), ‒0.03 (s, 9H); 13C 

NMR (125 MHz, CDCl3) δ 173.5 (C), 127.7 (CH), 126.8 (CH), 36.9 (CH2), 28.9 (CH2), 26.2 (CH3), 22.7 

(CH2), ‒2.0 (CH3); HRMS (FAB), calcd for C10H22NOSi+ (M+H)+ 200.1471, found 200.1475. 

 

 

Preparation of N-methoxyamide Z-42 

 

 

 

 
(Z)-6-(trimethylsilyl)hex-4-enoic acid (88) 

Sulfur trioxide pyridine complex (55.4 mg, 348 mol) was added to a solution of alcohol 86 (30.0 mg, 

174 mol),5 DMSO (220 L) and CH2Cl2 (660 L) at room temperature. The solution was maintained for 
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2 h at room temperature, and quenched with H2O (5 mL). The resulting mixture was extracted with CH2Cl2 

(2x 5 mL). The combined organic extracts were washed with brine (5 mL), dried over Na2SO4, and 

concentrated. The residue was purified by silica gel column chromatography (CH2Cl2/pentane 1:3) to give 

aldehyde 87. 

    A solution of aldehyde 87 and EtOH (1.5 mL) was added to a mixture of silver nitrate (59.1 mg, 348 

mol), NaOH (27.8 mg, 696 mol) and H2O (3.0 mL) at 0 °C. The resulting mixture was stirred for 30 

min at room temperature, and quenched with saturated aqueous NH4Cl (10 mL). The resulting mixture 

was extracted with Et2O (2x 10 mL). The combined organic extracts were washed with brine (10 mL), 

dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:14) to give 22.4 mg of 88 (69%, 2 steps): a colorless oil; IR (film) 3011, 2956, 2679, 

1714, 1417, 1292, 1249, 1152, 944, 856, 729, 701, 668 cm-1; 1H NMR (500 MHz, CDCl3) δ 5.47 (dtt, J = 

10.6, 8.6, 1.4 Hz, 1H), 5.24 (dtt, J = 10.6, 6.9, 1.4 Hz, 1H), 2.42‒2.37 (m, 2H), 2.37‒2.30 (m, 2H), 1.49 

(d, J = 8.6 Hz, 2H), 0.01 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 179.6 (C), 127.6 (CH), 124.8 (CH), 34.3 

(CH2), 22.5 (CH2), 18.7 (CH2), ‒1.7 (CH3); LRMS (EI) m/z 186 (M+, 2.8%), 118 (6), 117 (56), 75 (64), 

74 (10), 73 (100), 72 (7), 68 (12), 59 (6); HRMS (EI), calcd for C9H18O2Si M+ 186.1076, found 186.1080. 

 

 

 

(Z)-N-methoxy-6-(trimethylsilyl)hex-4-enamide (Z-42) 

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 487 mg, 2.54 mmol) was added 

to a solution of carboxylic acid 88 (432 mg, 2.31 mmol), O-methylhydroxylamine hydrochloride (212 mg, 

2.54 mmol), HOBt·H2O (342 mg, 2.54 mmol), triethylamine (670 L, 5.1 mmol) and CH2Cl2 (23 mL) at 

room temperature. The solution was maintained for 21 h at room temperature, and quenched with saturated 

aqueous NaHCO3 (20 mL). The resulting mixture was extracted with chloroform (2x 20 mL). The 

combined organic extracts were washed with brine (40 mL), dried over Na2SO4, and concentrated. The 

residue was purified by silica gel column chromatography (EtOAc/hexane 1:3 to 1:1) to give 470 mg of 

Z-424 (95%): a colorless oil; IR (film) 3183, 2955, 1660, 1423, 1248, 1152, 1078, 856 cm-1; 1H NMR (500 

MHz, CDCl3) δ 5.49 (dt, J = 9.7, 9.7 Hz, 1H), 5.30‒5.18 (m, 1H), 3.76 (s, 3H), 2.35 (dt, J = 7.2, 7.2 Hz, 

2H), 2.19‒2.05 (m, 2H), 1.50 (d, J = 9.7 Hz, 2H), 0.00 (s, 9H); 13C NMR (125 MHz, CDCl3) δ 170.8 (C), 

127.8 (CH), 124.9 (CH), 64.5 (CH3), 33.4 (CH2), 23.0 (CH2), 18.7 (CH2), ‒1.7 (CH3); HRMS (ESI), calcd 

for C10H22NO2Si+ (M+H)+ 216.1420, found 216.1418. 
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Synthesis of N-methoxylactams 71a-j 

 

[General Procedure A] 

(5S,6R)-6-heptyl-1-methoxy-5-vinylpiperidin-2-one (71a) 

Boron trifluoride diethyl ether complex (570 μL, 4.6 mmol) was added to a solution of octanal 94a (540 

μL, 3.5 mmol), E-42 (500 mg, 2.32 mmol) and CH2Cl2 (12 mL) at ‒20 °C. After maintaining at ‒20 °C 

for 20 min, boron trifluoride diethyl ether complex (290 μL, 2.3 mmol) was added to the solution every 

15 min four times. After maintaining at ‒20 °C for 20 min, the solution was quenched with H2O (15 mL), 

and extracted with chloroform (2x 15 mL). The combined organic extracts were washed with brine (15 

mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:3 to 1:2) to give 529 mg of 71a (90%): a colorless oil; IR (film) 2928, 2857, 1673, 1460, 

1072, 999, 918 cm-1; 1H NMR (500 MHz, CDCl3) δ 5.86 (ddd, J = 17.2, 10.6, 7.5 Hz, 1H), 5.19 (ddd, J = 

10.6, 1.2, 1.2 Hz, 1H), 5.17 (ddd, J = 17.2, 1.2, 1.2 Hz, 1H), 3.74 (s, 3H), 3.67 (ddd, J = 6.6, 5.2, 5.2 Hz, 

1H), 2.77‒2.70 (m, 1H), 2.53 (ddd, J = 17.5, 6.0, 6.0 Hz, 1H), 2.44 (ddd, J = 17.5, 6.2, 6.0 Hz, 1H), 1.87‒

1.76 (m, 2H), 1.72‒1.64 (m, 1H), 1.59‒1.50 (m, 1H), 1.43‒1.19 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H); 13C 

NMR (125 MHz, CDCl3) δ 167.1 (C), 136.5 (CH), 117.1 (CH2), 62.6 (CH), 61.4 (CH3), 42.4 (CH), 31.8 

(CH2), 30.9 (CH2), 29.9 (CH2), 29.7 (CH2), 29.1 (CH2), 27.0 (CH2), 23.5 (CH2), 22.7 (CH2), 14.1 (CH3); 

HRMS (ESI), calcd for C15H27NO2Na+ (M+Na)+ 276.1939, found 276.1936. 

 

NOESY experiment for 71a 

 
71a (500 MHz, CDCl3) 
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(5S,6R)-6-(3-((tert-butyldiphenylsilyl)oxy)propyl)-1-methoxy-5-vinylpiperidin-2-one (71b) 

Following the general procedure A using boron trifluoride diethyl ether complex (6x 34 μL, 1.6 mmol), 

4-((tert-butyldiphenylsilyl)oxy)butanal 94b6 (135 mg, 417 mol) and E-42 (60.0 mg, 278 mol) were 

converted to 115 mg of 71b (92%): a colorless oil; IR (film) 2931, 2857, 1672, 1428, 1111, 772, 703, 613 

cm-1; 1H NMR (500 MHz, d-acetone) δ 7.71‒7.68 (m, 4H), 7.49‒7.41 (m, 6H), 5.97 (ddd, J = 17.5, 10.3, 

7.5 Hz, 1H), 5.18 (ddd, J = 17.5, 1.4, 1.4 Hz, 1H), 5.16 (ddd, J = 10.3, 1.4, 1.4 Hz, 1H), 3.77 (ddd, J = 

6.0, 5.7, 4.6 Hz, 1H), 3.74‒3.68 (m, 2H), 3.65 (s, 3H), 2.84‒2.77 (m, 1H), 2.40 (ddd, J = 17.5, 6.3, 6.3 Hz, 

1H), 2.44 (ddd, J = 17.5, 7.5, 7.5 Hz, 1H), 1.84‒1.76 (m, 3H), 1.76‒1.65 (m, 3H), 1.05 (s, 9H); 13C NMR 

(125 MHz, CDCl3) δ 167.1 (C), 136.4 (CH), 135.6 (CH), 133.9 (C), 129.7 (CH), 127.7 (CH), 117.3 (CH2), 

63.6 (CH2), 62.4 (CH), 61.5 (CH3), 42.5 (CH), 30.8 (CH2), 30.0 (CH2), 26.9 (CH3), 26.5 (CH2), 23.5 (CH2), 

19.3 (C); HRMS (ESI), calcd for C27H37NO3Na+ (M+Na)+ 474.2440, found 474.2443.  

 

NOESY experiment for 71b 

 
71b (500 MHz, d-acetone)  

 
 

 

(5S,6R)-6-(3-bromopropyl)-1-methoxy-5-vinylpiperidin-2-one (71c) 

Following the general procedure A using boron trifluoride diethyl ether complex (5x 60 μL, 2.4 mmol), 

4-bromobutanal 94c4 (108 mg, 717 mol) and E-42 (103 mg, 478 mol) were converted to 105 mg of 

71c4 (80%): a colorless oil; IR (film) 3457, 2936, 1667, 1435, 1266, 999, 923 cm-1; 1H NMR (500 MHz, 

CDCl3) δ 5.86 (ddd, J = 17.5, 10.6, 7.2 Hz, 1H), 5.22 (ddd, J = 10.6, 1.2, 1.2 Hz, 1H), 5.19 (ddd, J = 17.5, 

1.4, 1.4 Hz, 1H), 3.75 (s, 3H), 3.71 (ddd, J = 5.8, 5.8, 4.9 Hz, 1H), 3.44‒3.34 (m, 2H), 2.79‒2.71 (m, 1H), 

2.55 (ddd, J = 17.8, 5.7, 5.7 Hz, 1H), 2.46 (ddd, J = 17.8, 8.0, 8.0 Hz, 1H), 2.03 (ddddd, J = 14.3, 14.3, 

6.3, 6.3, 6.3 Hz, 1H), 1.95 (ddddd, J = 14.3, 14.3, 6.9, 6.9, 6.9 Hz, 1H), 1.86‒1.80 (m, 2H), 1.80‒1.74 (m, 

2H); 13C NMR (125 MHz, CDCl3) δ 166.9 (C), 136.2 (CH), 117.5 (CH2), 61.7 (CH), 61.4 (CH3), 42.6 

(CH), 33.5 (CH2), 30.9 (CH2), 30.3 (CH2), 28.9 (CH2), 22.9 (CH2); HRMS (ESI), calcd for 

C11H18NO2NaBr+ (M+Na)+ 298.0419, found 298.0419. 
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NOESY experiment for 71c 

 

71c (500 MHz, CDCl3) 

 

 

 
[General Procedure B] 

methyl 3-((2R,3S)-1-methoxy-6-oxo-3-vinylpiperidin-2-yl)propanoate (71d) 

Boron trifluoride diethyl ether complex (68 μL, 550 mol) was added to a solution of methyl 4-

oxobutanoate 94d7 (78.0 mg, 433 mol), E-42 (60.0 mg, 279 mol) and CH2Cl2 (1.4 mL) at ‒20 °C. After 

maintaining at ‒20 °C for 1 h, boron trifluoride diethyl ether complex (36 μL, 290 mol) was added to the 

solution every 1 h four times. After maintaining at ‒20 °C for 12h, the solution was quenched with H2O 

(5 mL), and extracted with chloroform (2x 5 mL). The combined organic extracts were washed with brine 

(5 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:1 to 3:1 to 1:0) to give 61.4 mg of 71d (92%): a colorless oil; IR (film) 

2950, 1737, 1668, 1437, 1174, 1004, 925 cm-1; 1H NMR (500 MHz, CDCl3) δ 5.85 (ddd, J = 17.2, 10.3, 

6.9 Hz, 1H), 5.19 (ddd, J = 10.3, 1.2, 1.2 Hz, 1H), 5.17 (ddd, J = 17.2, 1.2, 1.2 Hz, 1H), 3.80 (ddd, J = 

6.3, 6.3, 4.6 Hz, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 2.78‒2.71 (m, 1H), 2.53 (ddd, J = 17.5, 6.0, 6.0 Hz, 1H), 

2.49 (t, J = 7.7 Hz, 2H), 2.46 (ddd, J = 17.5, 8.3, 8.3 Hz, 1H), 1.93‒1.88 (m, 2H), 1.84‒1.78 (m, 2H); 13C 

NMR (125 MHz, CDCl3) δ 173.6 (C), 166.8 (C), 136.4 (CH), 117.5 (CH2), 61.4 (CH3), 61.1 (CH), 51.7 

(CH3), 42.6 (CH), 31.5 (CH2), 31.0 (CH2), 25.6 (CH2), 22.6 (CH2); HRMS (ESI), calcd for C12H19NO4Na+ 

(M+Na)+ 264.1212, found 264.1199. 
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NOESY experiment for 71d 

 
71d (500 MHz, CDCl3) 

 

 

 

benzyl benzyl(5-((2R,3S)-1-methoxy-6-oxo-3-vinylpiperidin-2-yl)pentyl)carbamate (71e) 

Following the general procedure B using boron trifluoride diethyl ether complex (4x 35 μL, 1.1 mmol), 

benzyl benzyl(6-oxohexyl)carbamate 94e (142 mg, 418 μmol) and E-42 (60.0 mg, 279 μmol) were 

converted to 119 mg of 71e (92%): a colorless oil; IR (film) 2934, 2861, 1699, 1670, 1456, 1421, 1220, 

914, 771, 744, 700 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 7.42‒7.12 (m, 10H), 5.82 (ddd, J = 17.5, 

10.0, 7.5 Hz, 1H), 5.21‒5.12 (m, 4H), 4.49 (s, 2H), 3.72 (s, 3H), 3.62 (ddd, J = 5.4, 5.4, 4.6 Hz, 1H), 3.24 

(t, J = 6.9 Hz, 2H), 2.74‒2.67 (m, 2H), 2.52 (ddd, J = 17.5, 6.0, 6.0 Hz, 1H), 2.43 (ddd, J = 17.5, 7.7, 7.7 

Hz, 1H), 1.82‒1.76 (m, 2H), 1.69‒1.58 (m, 1H), 1.58‒1.45 (m, 3H), 1.42‒1.29 (m, 2H), 1.29‒1.18 (m, 

2H); 13C NMR (125 MHz, CDCl3, 60 °C) δ 167.2 (C), 156.7 (C), 138.2 (C), 137.1 (C), 136.7 (CH), 128.64 

(CH), 128.55 (CH), 128.01 (CH), 127.96 (CH), 127.7 (CH), 127.4 (CH), 117.2 (CH), 67.3 (CH2), 62.8 

(CH), 61.5 (CH3), 50.7 (CH2), 46.8 (CH2), 42.7 (CH), 31.0 (CH2), 30.0 (CH2), 27.03 (CH2), 26.96 (CH2), 

26.7 (CH2), 23.6 (CH2); HRMS (ESI), calcd for C28H37N2O4
+ (M+H)+ 465.2753, found 465.2755.  

 

NOESY experiment for 71e 

 
71e (500 MHz, CDCl3) 
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tert-butyl benzyl(5-((2R,3S)-1-methoxy-6-oxo-3-vinylpiperidin-2-yl)pentyl)carbamate (71f) 

Following the general procedure B using boron trifluoride diethyl ether complex (4x 33 μL, 1.1 mmol), 

tert-butyl benzyl(6-oxohexyl)carbamate 94f (117 mg, 383 μmol) and E-42 (57.0 mg, 264 μmol) were 

converted to 85.1 mg of 71f (75%): a colorless oil; IR (film) 2974, 2932, 1687, 1418, 1365, 1170, 914, 

772, 744 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 7.34‒7.18 (m, 5H), 5.84 (ddd, J = 17.5, 10.3, 7.2 Hz, 

1H), 5.18 (d, J = 10.3 Hz, 1H), 5.16 (d, J = 17.5 Hz, 1H), 4.42 (s, 2H), 3.74 (s, 3H), 3.65 (ddd, J = 5.4, 

5.4, 5.4 Hz, 1H), 3.16 (s, 2H), 2.76‒2.68 (m, 1H), 2.52 (ddd, J = 17.5, 6.0, 6.0 Hz, 1H), 2.43 (ddd, J = 

17.5, 7.7, 7.7 Hz, 1H), 1.86‒1.76 (m, 2H), 1.70‒1.62 (m, 1H), 1.60‒1.45 (m, 12H), 1.45‒1.30 (m, 2H), 

1.29‒1.19 (m, 2H); 13C NMR (125 MHz, CDCl3, 60 °C) δ 167.1 (C), 156.0 (C), 138.9 (C), 136.8 (CH), 

128.6 (CH), 127.6 (CH), 127.2 (CH), 117.2 (CH2), 79.7 (C), 62.9 (CH), 61.5 (CH3), 50.6 (CH2), 46.8 

(CH2), 42.8 (CH), 31.1 (CH2), 30.1 (CH2), 28.6 (CH3), 28.1 (CH2), 27.2 (CH2), 27.1 (CH2), 23.7 (CH2); 

HRMS (ESI), calcd for C25H38N2O4Na+ (M+Na)+ 453.2729, found 453.2725. 

 

NOESY experiment for 13f 

 
13f (500 MHz, CDCl3) 

 

 

 

(5S,6R)-6-benzyl-1-methoxy-5-vinylpiperidin-2-one (71g) 

Following the general procedure B using boron trifluoride diethyl ether complex (5x 34 μL, 1.4 mmol), 

2-phenylacetaldehyde 94g (49 L, 420 μmol) and E-42 (60.0 mg, 279 μmol) were converted to 52.9 mg 

of 71g (78%, dr = 11:1). For an analytical sample, 71g was purified by HPLC (PEGASIL Silica 120-5, 

250×20 mm, EtOAc, 10 mL/min, TR = 15.8 min). 71g: a colorless oil; IR (film) 2934, 1672, 1261, 1070, 



 
93 

923, 743, 700 cm-1; 1H NMR (500 MHz, CDCl3) δ 7.28 (dd, J = 7.5, 6.9 Hz, 2H), 7.22‒7.18 (m, 3H), 5.82 

(ddd, J = 17.2, 10.3, 7.5 Hz, 1H), 5.25 (ddd, J = 10.3, 1.4, 1.4 Hz, 1H), 5.15 (ddd, J = 17.2, 1.4, 1.4 Hz, 

1H), 4.17 (ddd, J = 7.7, 4.3, 3.7 Hz, 1H), 3.77 (s, 3H), 3.07 (dd, J = 14.0, 3.7 Hz, 1H), 2.93 (dd, J = 14.0, 

7.7 Hz, 2H), 2.71‒2.65 (m, 1H), 2.52 (ddd, J = 17.5, 6.6, 6.6 Hz, 1H), 2.43 (ddd, J = 17.5, 8.0, 6.6 Hz, 

1H), 1.70 (dddd, J = 13.8, 6.6, 6.6, 3.4 Hz, 2H), 1.58 (dddd, J = 13.8, 9.5, 8.0, 6.6 Hz, 1H); 13C NMR (125 

MHz, CDCl3) δ 167.8 (C), 138.3 (C), 136.4 (CH), 129.8 (CH), 128.5 (CH), 126.6 (CH), 118.0 (CH2), 64.0 

(CH), 61.8 (CH3), 42.0 (CH), 35.1 (CH2), 30.9 (CH2), 23.7 (CH2); LRMS (EI) m/z 245 (M+, 10.7%), 118 

(19.9), 117 (74), 126 (13), 124 (6), 123 (29), 122 (5), 117 (19), 107 (8), 96 (9), 95 (17), 94 (11), 91 (50), 

81 (8), 80 (12), 68 (6), 67 (5), 56 (8); HRMS (EI), calcd for C15H19NO2 M+ 245.1416, found 245.1412. 

 

NOESY experiment for 71g 

 

71g (500 MHz, CDCl3) 

 

 

 

(5S,6R)-6-(2,5-dimethoxybenzyl)-1-methoxy-5-vinylpiperidin-2-one (71h) 

Following the general procedure B using boron trifluoride diethyl ether complex (4x 36 μL, 1.2 μmol), 2-

(2,5-dimethoxyphenyl)acetaldehyde 94h8 (78.0 mg, 433 μmol) and E-42 (62.1 mg, 288 μmol) were 

converted to 81.4 mg of 71h (92%, dr = 11:1). For an analytical sample, 71h was purified by HPLC 

(PEGASIL Silica 120-5, 250×20 mm, EtOAc, 10 mL/min, TR = 19.8 min): 71h: a colorless oil; IR (film) 

3074, 2937, 2834, 1670, 1502, 1226, 1047, 923, 807 cm-1; 1H NMR (500 MHz, CDCl3) δ 6.77‒6.70 (m, 

3H), 5.96 (ddd, J = 17.8, 10.6, 7.7 Hz, 1H), 5.18 (ddd, J = 10.3, 1.4, 1.4 Hz, 1H), 5.15 (ddd, J = 17.2, 1.4, 

1.4 Hz, 1H), 4.17 (ddd, J = 8.0, 4.9, 4.0 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.70 (s, 3H), 3.18 (dd, J = 

13.8, 4.9 Hz, 1H), 2.79 (dd, J = 13.8, 8.0 Hz, 1H), 2.68‒2.62 (m, 1H), 2.53 (ddd, J = 17.5, 6.9, 6.9 Hz, 

1H), 2.43 (ddd, J = 17.5, 6.9, 6.9 Hz, 1H), 2.04 (sept-d, J = 7.2, 2.6 Hz, 1H), 1.80‒1.73 (m, 2H); 13C NMR 

(125 MHz, CDCl3) δ 167.6 (C), 153.4 (C), 151.8 (C), 136.6 (CH), 127.6 (CH), 117.6 (CH2), 117.5 (C), 
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112.2 (CH), 111.2 (CH), 62.2 (CH), 61.3 (CH3), 55.82 (CH3), 55.78 (CH3), 42.3 (CH), 30.7 (CH2), 30.3 

(CH2), 24.3 (CH2); HRMS (ESI), calcd for C17H24NO4
+ (M+H)+ 306.1705, found 306.1696. 

 

NOESY experiment for 71h 

 

71h (500 MHz, CDCl3) 

 

 

 

(5S,6R)-6-isopropyl-1-methoxy-5-vinylpiperidin-2-one (71i) 

Boron trifluoride diethyl ether complex (68 μL, 550 mol) was added to a solution of 2-methyl propanal 

94i (38 μL, 410mol), E-42 (60.0 mg, 279 mol) and CH2Cl2 (1.4 mL) at ‒20 °C. After maintaining at  

‒20 °C for 1 h, boron trifluoride diethyl ether complex (34 μL, 280 mmol) was added to the solution every 

1 h three times. After maintaining at ‒20 °C for 2 days, the solution was quenched with H2O (5 mL), and 

extracted with chloroform (2x 5 mL). The combined organic extracts were washed with brine (5 mL), 

dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:3 to 1:2 to 1:1) to give 36.8 mg of 71i (67%): a colorless oil; IR (film) 2925, 2932, 1670, 

1072, 913, 772, 745 cm-1; 1H NMR (500 MHz, CDCl3) δ 5.87 (ddd, J = 16.9, 10.3, 6.0 Hz, 1H), 5.18 (ddd, 

J = 10.3, 1.4, 1.4 Hz, 1H), 5.15 (ddd, J = 16.9, 1.4, 1.4 Hz, 1H), 3.74 (s, 3H), 3.65 (dddd, J = 10.3, 6.0, 

5.2, 4.9 Hz, 1H), 2.81‒2.74 (m, 1H), 2.53 (ddd, J = 17.8, 6.0, 4.0 Hz, 1H), 2.43 (ddd, J = 17.8, 9.7, 8.3 

Hz, 1H), 2.04 (sept-d, J = 7.2, 2.6 Hz, 1H), 1.87‒1.76 (m, 2H), 1.05 (d, J = 7.2 Hz, 3H), 0.95 (d, J = 7.2 

Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 166.8 (C), 137.8 (CH), 116.5 (CH2), 66.6 (CH), 60.3 (CH3), 43.5 

(CH), 31.4 (CH2), 29.0 (CH), 24.3 (CH3), 22.3 (CH2), 19.5 (CH3); LRMS (EI) m/z 197 (M+, 5.9%), 155 

(9), 154 (100), 123 (12), 102 (51), 97 (10), 96 (9.8), 95 (8), 89 (9), 81 (6), 80 (6), 79 (7), 78 (64), 77 (13), 

73 (7), 70 (7), 69 (20), 68 (27), 67 (16), 56 (29); HRMS (EI), calcd for C11H19NO2 M+ 197.1416, found 

197.1408.  
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NOESY experiment for 71i 

 
71i (500 MHz, CDCl3) 

 

 

 

(2S,5S,6R)-6-heptyl-1-methoxy-5-vinylpiperidine-2-carbonitrile (74a) 

Diisobutylalminium hydride (1.5 M in toluene, 110 μL, 170 μmol) was added to a solution of 71a (36.4 

mg, 144 μmol) and CH2Cl2 (1.4 mL) at ‒78 °C. After stirring for 10 min, acetonitlile (480 μL), 

cyanotrimethylsilane (54 L, 430 μmol) and tetrachlorostannane (20 L, 170 μmol) were added to the 

solution. After stirring for 30 min at ‒78 °C, the resulting mixture was allowed to warm to room 

temperature, and maintained for 1 h at room temperature. This mixture was quenched with saturated 

aqueous (+)-potassium sodium tartrate (5 mL), and extracted with chloroform (2x 5 mL). The combined 

organic extracts were washed with brine (10 mL), dried over Na2SO4, and concentrated. The residue was 

purified by silica gel column chromatography (EtOAc/hexane 1:120) to give 22.5 mg of 74a (60%) and 

10.4 mg of 122a (27%): 74a: a colorless oil; IR (film) 2929, 2857, 2234, 1466, 1044, 916 cm-1; 1H NMR 

(500 MHz, CDCl3, 60 °C) δ 5.98 (ddd, J = 17.5, 9.8, 8.0 Hz, 1H), 5.10 (d, J = 9.8 Hz, 1H), 5.08 (d, J = 

17.5 Hz, 1H), 4.28‒4.21 (m, 1H), 3.54 (s, 3H), 3.00‒2.89 (m, 1H), 2.61‒2.52 (m, 1H), 2.05 (dddd, J = 

13.8, 13.2, 4.0, 3.7 Hz, 1H), 1.93‒1.82 (m, 2H), 1.82‒1.71 (m, 1H), 1.63‒1.54 (m, 1H), 1.39‒1.21 (m, 

11H), 0.89 (t, J = 7.2 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 137.1 (CH), 117.9 (C), 116.9 (CH2), 64.5 

(CH), 61.2 (CH3), 55.1 (CH), 41.1 (CH), 31.9 (CH2), 29.9 (CH2), 29.4 (CH2), 28.7 (CH2), 27.3 (CH2), 25.3 

(CH2), 24.7 (CH2), 22.8 (CH2), 14.2 (CH3); HRMS (ESI), calcd for C16H29N2O+ (M+H)+ 265.2280, found 

265.2279; 122a: a colorless oil; IR (film) 2928, 2857, 2250, 1467, 1040, 1001, 918 cm-1; 1H NMR (500 

MHz, CDCl3, 60 °C) δ 6.07 (ddd, J = 17.8, 9.7, 9.7 Hz, 1H), 5.15 (d, J = 9.7 Hz, 1H), 5.10 (d, J = 17.8 

Hz, 1H), 3.70 (s, 3H), 3.43 (d, J = 11.5 Hz, 1H), 2.53‒2.47 (m, 1H), 2.47‒2.42 (m, 1H), 2.13 (dddd, J = 

13.5, 13.5, 11.5, 3.2 Hz, 1H), 1.95‒1.79 (m, 2H), 1.69 (dddd, J = 13.5, 3.2, 3.2, 3.2 Hz, 1H), 1.53 (dddd, 

J = 13.5, 13.5, 4.3, 4.3 Hz, 1H), 1.46‒1.37 (m, 1H), 1.37‒1.12 (m, 10H), 0.91 (t, J = 6.6 Hz, 3H); 13C 

NMR (125 MHz, CDCl3) δ 136.6 (CH), 119.6 (C), 117.4 (CH2), 69.9 (CH), 63.4 (CH3), 58.5 (CH), 41.5 
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(CH), 31.9 (CH2), 30.0 (CH2), 29.9 (CH2), 29.5 (CH2), 29.4 (CH2), 26.7 (CH2), 25.4 (CH2), 22.8 (CH2), 

14.2 (CH3); HRMS (ESI), calcd for C16H29N2O+ (M+H)+ 265.2280, found 265.2280. 

 

NOESY experiment for 74a and 122a 

            
74a (500 MHz, CDCl3)                122a (500 MHz, CDCl3) 

 

 

 

(2R,3S,6S)-6-allyl-2-heptyl-1-methoxy-3-vinylpiperidine (74b) 

Diisobutylalminium hydride (1.5 M in toluene, 100 μL, 150 μmol) was added to a solution of 71a (29.2 

mg, 115 μmol) and CH2Cl2 (1.2 mL) at ‒78 °C. After stirring for 10 min, allyltributylstannane (110 μL, 

346 μmol) and Sc(OTf)3 (68.1 mg, 138 μmol) were added to the solution. After stirring for 30 min at ‒

78 °C, the resulting mixture was allowed to warm to room temperature, and maintained for 1 h at room 

temperature. This mixture was quenched with saturated aqueous (+)-potassium sodium tartrate (5 mL), 

and extracted with chloroform (2x 5 mL). The combined organic extracts were washed with brine (10 mL), 

dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:120 to 1:100) to give 32.9 mg of a mixture of 74b and 122b (86%, 74b:122b = 4.1:1). 

For analytical samples, two diastereomers were purified by HPLC (PEGASIL Silica 120-5, 250×20 mm, 

EtOAc/hexane 1:80, 10 mL/min) 74b: a colorless oil; IR (film) 2932, 2856, 1639, 1465, 1045, 910 cm-1; 
1H NMR (500 MHz, d-acetone, 55 °C) δ 5.92 (dddd, J = 16.9, 10.0, 7.2, 6.9 Hz, 1H), 5.83 (ddd, J = 16.9, 

9.2, 7.7 Hz, 1H), 5.08‒4.96 (m, 4H), 3.46 (s, 3H), 3.22‒3.15 (m, 1H), 2.87‒2.79 (m, 1H), 2.87‒2.64 (m, 

1H), 2.46 (ddd, J = 14.0, 6.9, 6.9 Hz, 1H), 2.12 (ddd, J = 14.0, 7.2, 7.2 Hz, 1H), 1.61‒1.54 (m, 1H), 1.54‒

1.39 (m, 4H), 1.39‒1.26 (m, 11H), 0.90 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3, mixture of two 

conformers) δ 141.6 (CH), 140.6 (CH), 137.5 (CH), 136.2 (CH), 116.4 (CH2), 115.7 (CH2), 114.2 (CH2), 

113.8 (CH2), 63.5 (CH), 63.1 (CH), 60.5 (CH3), 59.9 (CH3), 58.0 (CH), 56.6 (CH), 44.5 (CH), 38.0 (CH2), 

37.7 (CH2), 36.9 (CH), 32.1 (CH2), 32.1 (CH2), 31.1 (CH2), 30.0 (CH2), 29.7 (CH2), 29.7 (CH2), 29.4 

(CH2), 29.4 (CH2), 27.1 (CH2), 26.2 (CH2), 24.7 (CH2), 24.2 (CH2), 23.5 (CH2), 23.5 (CH2), 22.8 (CH2), 
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22.8 (CH2), 14.3 (CH3), 14.3 (CH3); HRMS (ESI), calcd for C18H34NO (M+H)+ 280.2640, found 280.2626; 

122b: a colorless oil; IR (film) 3074, 2926, 2856, 2823, 1640, 1467, 1442, 1047, 998, 912 cm-1; 1H NMR 

(500 MHz, CDCl3, 60 °C) δ 6.13 (ddd, J = 16.6, 9.5, 9.5 Hz, 1H), 5.87 (dddd, J = 16.9, 9.8, 7.5, 7.5 Hz, 

1H), 5.09‒4.98 (m, 4H), 3.55 (s, 3H), 2.65‒2.56 (m, 1H), 2.56‒2.37 (m, 3H), 2.21 (ddd, J = 13.8, 7.7, 7.5 

Hz, 1H), 1.86‒1.76 (m, 1H), 1.65‒1.24 (m, 15H), 0.89 (t, J = 7.2 Hz, 3H); 13C NMR (125 MHz, CDCl3) 

δ 138.6 (CH), 136.3 (CH), 116.5 (CH2), 116.0 (CH2), 70.3 (CH), 67.9 (CH), 63.7 (CH3), 42.5 (CH), 38.4 

(CH2), 32.0 (CH2), 31.0 (CH2), 30.2 (CH2), 30.1 (CH2), 29.5 (CH2), 26.9 (CH2), 25.8 (CH2), 22.8 (CH2), 

14.3 (CH3); HRMS (ESI), calcd for C18H34NO (M+H)+ 280.2640, found 280.2626. 

 

NOE experiment for 74b 

                

74b (500 MHz, d-acetone, 55 °C)  

 

 

 
3-((2S,5S,6R)-6-heptyl-1-methoxy-5-vinylpiperidin-2-yl)-1-methyl-1H-indole (74c) 

Diisobutylalminium hydride (1.5 M in toluene, 100 μL, 150 μmol) was added to a solution of 71a (30.0 

mg, 118 μmol) and CH2Cl2 (1.2 mL) at ‒78 °C. After stirring for 10 min, 1-methylindole (44 μL, 355 

μmol) and Sc(OTf)3 (69.8 mg, 142 μmol) were added to the solution. The resulting mixture was then 

allowed to warmed to ‒40 °C. The mixture was stirred for 22 h, quenched with saturated aqueous (+)-

potassium sodium tartrate (5 mL) and extracted with chloroform (2x 5 mL). The combined organic extracts 

were washed with brine (10 mL), dried over Na2SO4, and concentrated. The residue was purified by silica 

gel column chromatography (EtOAc/hexane 1:120 to 1:80) to give 38.3 mg of 74c (88%, dr = 14:1). For 

an analytical sample, 74c was purified by HPLC (P:EGASIL Silica 120-5, 250×20 mm, EtOAc/hexane 

1:20, 10 mL/min, TR = 14.1 min): 74c: a colorless oil; IR (film) 2928, 2856, 1468, 1045, 910, 738 cm-1; 
1H NMR (500 MHz, CDCl3, 60 °C) δ 7.88 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 8.0, 

7.5 Hz, 1H), 7.10 (dd, J = 7.5, 7.5 Hz, 1H), 6.99 (s, 1H), 5.94‒5.82 (m, 1H), 5.11‒5.03 (m, 2H), 4.24 (d, 

J = 8.0 Hz, 1H), 3.77 (s, 3H), 3.37‒3.27 (m, 1H), 3.10 (s, 3H), 3.00‒2.80 (m, 1H), 2.35‒2.15 (m, 1H), 
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1.89‒1.56 (m, 5H), 1.56‒1.27 (m, 10H), 0.92 (t, J = 6.3 Hz, 3H); 13C NMR (125 MHz, CDCl3, 60 °C) δ 

141.6 (CH), 137.4 (C), 128.0 (C), 127.4 (CH), 121.5 (CH), 120.8 (CH), 118.8 (CH), 116.9 (C), 113.9 

(CH2), 109.1 (CH), 64.0 (CH), 60.4 (CH3), 52.8 (CH), 44.6 (CH2), 37.0 (CH), 32.7 (CH3), 32.1 (CH2), 

30.0 (CH2), 29.5 (CH2), 28.2 (CH2), 26.4 (CH2), 24.7 (CH2), 22.8 (CH2), 14.2 (CH3); HRMS (FAB), calcd 

for C24H37N2O+ (M+H)+ 369.2906, found 369.2921. 
 

NOESY experiment for 74c 

 

74c (500 MHz, CDCl3, 60 °C) 

 

 

 

2-((2S,5S,6R)-6-heptyl-1-methoxy-5-vinylpiperidin-2-yl)-1-phenylethan-1-one (74d) 

Zirconocene chloride hydride (46.0 mg, 178 μmol) was added to a solution of 71a (32.8 mg, 129 μmol) 

and (CH2Cl)2 (1.3 mL) at room temperature. After stirring for 10 min, triisopropyl((1-

phenylvinyl)oxy)silane (45.5 mg, 165 μmol) and Sc(OTf)3 (12.7 mg, 25.8 μmol) were added to the 

solution. After stirring for 1 h at room temperature, this solution was quenched with saturated aqueous 

NaHCO3 (5 mL), and extracted with chloroform (2x 5 mL). The combined organic extracts were washed 

with brine (5 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:120 to 1:100) to give 30.0 mg of 74d (65%, single diastereomer): a 

colorless oil; IR (film) 2937, 2834, 1670, 1503, 1465, 1226, 1047, 923 cm-1; 1H NMR (500 MHz, CDCl3, 

60 °C) δ 7.97 (d, J = 7.5 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 5.80 (ddd, J = 17.5, 

10.0, 6.9 Hz, 1H), 5.01 (d, J = 17.5 Hz, 1H), 4.99 (d, J = 10.0 Hz, 1H), 3.60‒3.50 (m, 1H), 3.42 (s, 3H), 

3.46‒3.35 (m, 1H), 3.20‒3.08 (m, 1H), 3.02‒2.87 (m, 1H), 2.78‒2.67 (m, 1H), 1.69‒1.40 (m, 5H), 1.40‒

1.19 (m, 11H), 0.89 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 199.7 (C), 141.2 (CH), 137.6 (C), 

133.0 (CH), 128.7 (CH), 128.3 (CH), 114.1 (CH2), 62.9 (CH), 60.4 (CH3), 53.7 (CH), 37.1 (CH), 32.1 

(CH2), 29.8 (CH2), 29.4 (CH2), 27.0 (CH2), 26.4 (CH2), 25.1 (CH2), 24.3 (CH2), 23.5 (CH2), 22.8 (CH2), 

14.3 (CH3); HRMS (ESI), calcd for C23H36NO2
+ (M+H)+ 358.2746, found 358.2739.  
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NOESY experiment for 74d 

 
74d (500 MHz, CDCl3) 

 

 

 

(2S,5S,6R)-6-heptyl-1-methoxy-2-methyl-5-vinylpiperidine-2-carbonitrile (14e) 

Methyl lithium (1.14 M in Et2O, 150 μL, 170 μmol) was added to a solution of 13a (36.0 mg, 142 μmol) 

and THF (1.4 mL, freshly distilled from sodium/benzophenone) at ‒78 °C. After stirring for 10 min, 

acetonitlile (470 μL), cyanotrimethylsilane (53 L, 430 μmol) and tetrachlorostannane (20 L, 170 μmol) 

were added to the solution. The resulting mixture was then allowed to warm to room temperature, and 

maintained for 24 h at room temperature. This mixture was quenched with saturated aqueous NaHCO3 (5 

mL), and extracted with chloroform (2x 5 mL). The combined organic extracts were washed with brine 

(10 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:80) to give 32.9 mg of a mixture of 14e and 36e (83%, 14e : 36e = 

1:4.1). For analytical samples, two diastereomers was purified by HPLC (PEGASIL Silica 120-5, 250×20 

mm, EtOAc/hexane 1:20, 10 mL/min) 14e: a colorless oil; IR (film) 2928, 2856, 2228, 1452, 1041, 915 

cm-1; 1H NMR (500 MHz, CDCl3) δ 6.03 (ddd, J = 16.9, 10.6, 10.3 Hz, 1H), 5.13‒5.07 (m, 2H), 3.58 (s, 

3H), 2.87 (ddd, J = 10.0, 3.4, 3.4 Hz, 1H), 2.57‒2.51 (m, 1H), 1.93‒1.74 (m, 4H), 1.62, (s, 3H), 1.60‒1.52 

(m, 2H), 1.42‒1.21 (m, 10H), 0.88 (t, J = 7.2 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 137.0 (CH), 120.1 

(C), 117.1 (CH2), 66.5 (CH), 64.7 (CH3), 63.8 (C), 41.5 (CH), 33.4 (CH2), 31.9 (CH2), 30.1 (CH2), 29.5 

(CH2), 29.4 (CH2), 28.3 (CH2), 26.1 (CH2), 25.4 (CH2), 22.8 (CH2), 14.3 (CH3); HRMS (ESI), calcd for 

C17H31N2O+ (M+H)+ 279.2436, found 279.2428; 36e: a colorless oil; IR (film) 2928, 2856, 2241, 1457, 

1036, 916, 773 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 6.11‒5.96 (m, 1H), 5.12‒5.04 (m, 2H), 3.64 

(s, 3H), 3.10‒2.89 (m, 1H), 2.49‒2.41 (m, 1H), 2.28‒2.16 (m, 1H), 2.05‒1.86 (m, 1H), 1.74‒1.59 (m, 3H), 

1.55 (s, 3H), 1.44‒1.35 (m, 1H), 1.35‒1.17 (m, 10H), 0.89 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3, 
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60 °C) δ 138.3 (CH), 123.1 (C), 116.0 (CH2), 62.5 (CH3), 62.5 (CH), 58.5 (C), 42.7 (CH), 33.7 (CH2), 

32.0 (CH2), 29.9 (CH2), 29.4 (CH2), 27.5 (CH2), 27.5 (CH3), 27.5 (CH2), 24.3 (CH2), 22.8 (CH2), 14.1 

(CH3); HRMS (ESI), calcd for C17H31N2O+ (M+H)+ 279.2436, found 279.2435 

 

     NOESY experiments for 74e          NOE and NOESY experiments for 122e 

            

74e (500 MHz, CDCl3)      122e (500 MHz, CDCl3, 60 °C) 

 

 

 

methyl 3-((2R,3S,6S)-6-cyano-1-methoxy-3-vinylpiperidin-2-yl)propanoate (74g) 

Zirconocene chloride hydride (39.9 mg, 155 μmol) was added to a solution of 71d (26.1 mg, 108 μmol) 

and (CH2Cl)2 (1.1 mL) at room temperature. After stirring for 10 min, cyanotrimethylsilane (16 μL, 128 

μmol) and Sc(OTf)3 (5.3 mg, 10.8 μmol) were added to the solution. After stirring for 2.5 h at room 

temperature, this solution was quenched with saturated aqueous NaHCO3 (5 mL), and extracted with 

chloroform (2x 5 mL). The combined organic extracts were washed with brine (10 mL), dried over Na2SO4, 

and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:9 to 

1:5) to give 23.4 mg of a mixture of 74g and 122g (86%, 74g:122g = 1:4.3). For analytical samples, two 

diastereomers were separated by HPLC (PEGASIL Silica 120-5, 250×20 mm, i-PrOH/hexane 1:120, 10 

mL/min, 74g: TR = 19.7 min, 122g: TR = 21.0 min); 74g: a colorless oil; IR (film) 2950, 2234, 1737, 1439, 

1169, 1037, 921 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 5.95 (ddd, J = 17.8, 9.2, 8.6 Hz, 1H), 5.16 (d, 

J = 9.2 Hz, 1H), 5.11 (d, J = 17.8 Hz, 1H), 4.27‒4.20 (m, 1H), 3.69 (s, 3H), 3.55 (s, 3H), 3.03‒2.95 (m, 

1H), 2.60‒2.53 (m, 1H), 2.43‒2.30 (m, 2H), 2.12‒1.97 (m, 2H), 1.97‒1.82 (m, 2H), 1.69 (dddd, J = 14.3, 

7.2, 7.2, 7.2 Hz, 1H), 1.58 (dddd, J = 14.0, 4.3, 4.3, 4.3 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 173.9 

(C), 136.7 (CH), 117.8 (C), 117.5 (CH2), 63.7 (CH), 61.1 (CH3), 54.6 (CH), 51.8 (CH3), 41.2 (CH), 30.9 

(CH2), 26.9 (CH2), 24.5 (CH2), 24.5 (CH2); HRMS (ESI), C13H20N2O3Na+ (M+Na)+ 275.1372, found 

275.1366. 122g: a colorless oil; IR (film) 2951, 2857, 2250, 1738, 1439, 1170, 1038, 922 cm-1; 1H NMR 

(500 MHz, CDCl3, 60 °C) δ 6.07 (ddd, J = 17.2, 9.9, 9.6 Hz, 1H), 5.16 (d, J = 9.9 Hz, 1H), 5.11 (d, J = 



 
101 

17.2 Hz, 1H), 3.72 (s, 3H), 3.68 (s, 3H), 3.46 (d, J = 10.8 Hz, 1H), 2.55‒2.48 (m, 1H), 2.48‒2.42 (m, 1H), 

2.40 (ddd, J = 15.8, 9.2, 6.6 Hz, 1H), 2.31 (ddd, J = 15.8, 6.9, 6.9 Hz, 1H), 2.24‒2.08 (m, 2H), 1.95‒1.86 

(m, 1H), 1.76‒1.67 (m, 2H), 1.56 (dddd, J = 13.5, 13.5, 4.4, 4.4 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 

173.8 (C), 136.1 (CH), 119.4 (C), 118.0 (CH2), 68.6 (CH), 63.4 (CH3), 58.4 (CH), 51.8 (CH3), 42.2 (CH), 

30.7 (CH2), 29.8 (CH2), 26.6 (CH2), 25.7 (CH2); HRMS (ESI), calcd for C13H20N2O3Na+ (M+Na)+ 

275.1372, found 275.1374 

 

NOESY experiment for 122g 

 

122g (500 MHz, CDCl3) 

 

 

 

methyl 3-((2R,3S,6S)-6-allyl-1-methoxy-3-vinylpiperidin-2-yl)propanoate (74h) 

Zirconocene chloride hydride (37.6 mg, 146 μmol) was added to a solution of 71d (26.0 mg, 108 μmol) 

and (CH2Cl)2 (1.1 mL) at room temperature. After stirring for 10 min, the solution was cooled to ‒30 °C. 

Allyltributylstannane (67 L, 216 mol) and Sc(OTf)3 (15.9 mg, 32.3 mmol) were then added to the 

solution. After maintaining at ‒30 °C for 17 h, the solution was quenched with saturated aqueous NaHCO3 

(5 mL), and extracted with chloroform (3x 10 mL). The combined organic extracts were washed with 

brine (10 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:80) to give 17.2 mg of 74h (60%) and 4.1 mg of 122h (14%): 74h: a 

colorless oil; IR (film) 3077, 2938, 1740, 1437, 1169, 1043, 912 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) 

δ 5.86 (dddd, J = 17.5, 10.0, 7.5, 7.5 Hz, 1H), 5.78 (ddd, J = 16.9, 10.3, 6.6 Hz, 1H), 5.08‒4.98 (m, 4H), 

3.67 (s, 3H), 3.44 (s, 3H), 3.23‒3.13 (m, 1H), 2.82‒2.64 (m, 2H), 2.50‒2.41 (m, 2H), 2.35 (ddd, J = 16.0, 

8.0, 8.0 Hz, 1H), 2.12 (ddd, J = 14.3, 7.2, 7.2 Hz, 1H), 1.95‒1.65 (m, 2H), 1.65‒1.56 (m, 1H), 1.56‒1.37 

(m, 3H); 13C NMR (125 MHz, CDCl3, mixture of two conformers, signals of the major conformer were 

reported) δ 174.5 (C), 140.9 (CH), 137.2 (CH), 115.9 (CH2), 114.4 (CH2), 62.6 (CH), 60.5 (CH3), 56.4 

(CH), 51.6 (CH3), 37.8 (CH2), 36.7 (CH), 31.7 (CH2), 24.6 (CH2), 24.0 (CH2), 21.3 (CH2); HRMS (ESI), 
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calcd for C15H26NO3
+ (M+H)+ 268.1913, found 268.1905; 122h: a colorless oil; IR (film) 2947, 1742, 

1438, 1171, 1045, 914, 772 cm-1; 1H NMR (500 MHz, CDCl3, 60 °C) δ 6.13 (ddd, J = 17.3, 9.5, 9.5 Hz, 

1H), 5.86 (dddd, J = 17.2, 9.7, 6.9, 6.9 Hz, 1H), 5.11‒4.99 (m, 4H), 3.67 (s, 3H), 3.56 (s, 3H), 2.64‒2.56 

(m, 1H), 2.56‒2.47 (m, 2H), 2.45‒2.27 (m, 3H), 2.21 (ddd, J = 14.6, 6.9, 6.6 Hz, 1H), 2.21‒2.12 (m, 1H), 

1.70 (dddd, J = 14.0, 6.6, 6.6, 6.6 Hz, 1H), 1.65‒1.50 (m, 4H); 13C NMR (125 MHz, CDCl3) δ 174.3 (CH), 

138.0 (CH), 136.1 (CH), 116.7 (CH2), 116.6 (CH2), 69.3 (CH), 67.9 (CH), 63.7 (CH3), 51.7 (CH3), 43.2 

(CH), 38.2 (CH2), 31.2 (CH2), 30.9 (CH2), 26.8 (CH2), 26.3 (CH2); HRMS (ESI), C15H26NO3
+ (M+H)+ 

268.1913, found 268.1903. 
 

NOESY experiment for 74h 

 
74h (500 MHz, CDCl3) 
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A-2. Intramolecular Reductive Pictet-Spengler Reaction and Three-component Reaction 

Synthesis of indolealdehyde 130d 

 

 

 
benzyl 3-(2-methoxy-2-oxoethyl)-1H-indole-1-carboxylate (145) 

Benzyl alcohol (620 L, 6.0 mmol) was added to a solution of 1,1’-Carbonyldiimidazole (1.14 mg, 9.00 

mmol) and CH2Cl2 (20 mL) at 0 °C. The resulting mixture was gradually allowed to warm to room 

temperature, and maintained for 18 h at room temperature. The mixture was diluted with H2O (10 mL), 

and extracted with CH2Cl2 (2x10 mL). The combined organic extracts were washed with H2O (2x 30 mL), 

dried over Na2SO4, and concentrated to give benzyl 1H-imidazole-1-carboxylate9, which was used in the 

next reaction without further purification. 

1,8-Diazabicyclo[5.4.0]undec-7-ene (150 L, 993 mol) was added to a solution of benzyl 1H-imidazole-

1-carboxylate (1.00 g, 4.97 mmol), methyl 2-(1H-indol-3-yl)acetate 144 (940 mg, 4.97 mmol) and MeCN 

(25 mL) at room tempelature. The solution was maintained for 12 h at room temperature, diluted with 

H2O (30 mL). The resulting mixture was extracted with AcOEt (2x 30 mL). The combined organic extracts 

were washed with brine (30 mL), dried over Na2SO4, and concentrated. The residue was purified by silica 

gel column chromatography (EtOAc/hexane 1:9) to give 1.33 g of 145 (82%): white crystals, mp 59.5‒

60.5 °C; IR (film) 2952, 1733, 1455, 1397, 1358, 1247, 1161, 1082, 745cm-1; 1H NMR (500 MHz, CDCl3) 

δ 8.18 (bs, 1H), 7.62 (s, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.50‒7.46 (m, 2H), 7.44‒7.36 (m, 3H), 7.34 (t, J = 

8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 5.44 (s, 2H), 3.72 (s, 2H), 3.71 (s, 3H); 13C NMR (125 MHz, CDCl3) 

δ 171.5 (C), 150.9 (C), 135.6 (C), 135.2 (C), 130.2 (C), 128.91 (CH), 128.87 (CH), 128.6 (CH), 125.0 

(CH), 124.2 (CH), 123.2 (CH), 119.2 (CH), 115.5 (CH), 114.2 (C), 68.8 (CH2), 52.3 (CH3), 31.0 (CH2); 

HRMS (ESI), C19H17NO4Na+ (M+Na)+ 346.1055, found 346.1048. 
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benzyl 3-(2-oxoethyl)-1H-indole-1-carboxylate (130d) 

A solution of diisobutylaluminium hydride (1.0 M in hexane, 430 L, 430 mol) and CH2Cl2 (4.0 mL) 

was added dropwise via cannula to a solution of ester 145 (138 mg, 427 mol) and CH2Cl2 (4.5 mL) at ‒

78 °C. The solution was stirred for 20 min, and quenched with saturated aqueous (+)-potassium sodium 

tartrate (10 mL). The resulting mixture was vigorously for 1 h, and extracted with chloroform (2x 10 mL). 

The combined organic extracts were washed with brine (20 mL), dried over Na2SO4, and concentrated. 

The residue was purified by silica gel column chromatography (EtOAc/hexane 1:15) to give 52.5 mg of 

130d (42%): a pale yellow oil; IR (film) 3119, 3065, 3034, 2958, 2824, 2724, 1726, 1455, 1396, 1356, 

1246, 1085, 1027, 746, 697 cm-1; 1H NMR (500 MHz, CDCl3) δ 9.78 (t, J = 2.3 Hz, 1H), 8.20 (bs, 1H), 

7.63 (s, 1H), 7.51‒7.34 (m, 7H), 7.28 (ddd, J = 7.7, 6.9, 0.9 Hz, 1H), 5.46 (s, 2H), 3.76 (d, J = 2.3 Hz, 

2H); 13C NMR (125 MHz, CDCl3) δ 198.4 (CH), 150.7 (C), 135.6 (C), 135.1 (C), 130.2 (C), 128.9 (CH), 

128.9 (CH), 128.6 (CH), 125.3 (CH), 124.5 (CH), 123.3 (CH), 118.9 (CH), 115.5 (CH), 112.1 (C), 68.9 

(CH2), 40.0 (CH2); HRMS (ESI), calcd for C18H16NO3 (M+H)+ 294.1130, found 294.1130. 

 

 

 
benzyl 3-(((2S,3R)-1-methoxy-6-oxo-3-vinylpiperidin-2-yl)methyl)-1H-indole-1-carboxylate (129d) 

Boron trifluoride diethyl ether complex (16 L, 132 mol) was added to a solution of 3-indole 

acetaldehyde 37 (29.0 mg, 98.9 mol), E-42 (14.2 mg, 65.9 mol) and CH2Cl2 (1.0 mL) at ‒20 °C. After 

maintaining at ‒20 °C for 20 min, boron trifluoride diethyl ether complex (290 μL, 2.3 mmol) was added 

to the solution every 15 min twelve times. After maintaining at ‒20 °C for 20 min, the solution was 

quenched with H2O (5 mL), and extracted with chloroform (2x 5 mL). The combined organic extracts 

were washed with brine (5 mL), dried over Na2SO4, and concentrated. The residue was purified by silica 

gel column chromatography (EtOAc/hexane 1:2 to 1:11) to give 18.9 mg of 129d (68%): a colorless oil; 

IR (film) 2928, 1736, 1671, 1455, 1399, 1249, 1090, 750 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.16 (bs, 

1H), 7.56 (ddd, J = 7.7, 1.2, 0.9 Hz, 1H), 7.51‒7.46 (m, 2H), 7.46‒7.36 (m, 4H), 7.33 (ddd, J = 8.3, 7.2, 

1.2 Hz, 1H), 7.28‒7.24 (m, 1H), 5.95 (ddd, J = 17.2, 10.6, 7.5 Hz, 1H), 5.45 (s, 2H), 5.24 (ddd, J = 10.6, 

1.2, 1.2 Hz, 1H), 5.16 (ddd, J = 17.2, 1.2, 1.2 Hz, 1H), 4.11 (ddd, J = 8.0, 4.0, 4.0 Hz, 1H), 3.80 (s, 3H), 

3.20 (dd, J = 14.6, 4.0 Hz, 1H), 2.98 (dd, J = 14.6, 8.0 Hz, 1H), 2.77‒2.70 (m, 1H), 2.53 (ddd, J = 17.5, 

6.6, 6.6 Hz, 1H), 2.44 (ddd, J = 17.5, 7.2, 7.2 Hz, 1H), 1.81‒1.69 (m, 2H); 13C NMR (125 MHz, CDCl3) 

δ 167.9 (C), 150.8 (C), 136.1 (CH), 135.6 (C), 135.3 (C), 130.4 (C), 128.9 (CH), 128.8 (CH), 128.5 (CH), 
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124.9 (CH), 124.2 (CH), 123.0 (CH), 119.3 (CH), 118.2 (CH2), 117.8 (C), 115.4 (CH), 68.7 (CH2), 62.3 

(CH), 62.0 (CH3), 42.0 (CH), 30.8 (CH2), 25.0 (CH2), 23.9 (CH2); HRMS (ESI), calcd for C25H27N2O4
+ 

(M+H)+ 419.1971, found 419.1971. 

 

 

 

benzyl (6R,9S,10R)-12-methoxy-9-vinyl-6,7,8,9,10,11-hexahydro-5H-6,10-epiminocycloocta[b]- 

indole-5-carboxylate (128d) 

Zirconocene chloride hydride (23.4 mg, 90.7 μmol) was added to a solution of 129d (33.4 mg, 79.8 μmol) 

and CH2Cl2 (800 L) at room temperature. After stirring for 10 min, Sc(OTf)3 (3.9 mg, 8.0 μmol) were 

added to the solution, and stirred for 1 h at room temperature. This solution was quenched with H2O (5 

mL), and extracted with chloroform (2x 5 mL). The combined organic extracts were washed with brine (5 

mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column chromatography 

(EtOAc/hexane 1:30) to give 15.7 mg of 128d (49%): a colorless oil; IR (film) 2929, 1730, 1455, 1392, 

1328, 1215, 1147, 753 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.10 (d, J = 7.7 Hz, 1H), 7.51‒7.47 (m, 2H), 

7.45‒7.35 (m, 4H), 7.26‒7.20 (m, 2H), 5.82 (ddd, J = 16.3, 10.6, 5.4 Hz, 1H), 5.47 (d, J = 12.0, 1H), 5.43 

(d, J = 12.0, 1H), 5.11 (ddd, J = 10.6, 1.7, 1.7 Hz, 1H), 5.05‒5.01 (m, 1H), 5.02 (ddd, J = 16.3, 1.7, 1.7 

Hz, 1H), 3.74 (dd, J = 6.9, 4.0 Hz, 1H), 3.53 (s, 3H), 2.94 (dd, J = 17.2, 6.9 Hz, 1H), 2.72‒2.64 (m, 1H), 

2.50 (d, J = 17.2 Hz, 1H), 1.99‒1.94 (m, 2H), 1.38 (dddd, J = 13.2, 3.4, 3.4, 3.4 Hz, 1H), 1.09 (dddd, J = 

13.2, 13.2, 10.3, 7.8 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 151.6 (C), 140.2 (CH), 135.8 (C), 135.1 (C), 

133.3 (C), 129.3 (C), 128.93 (CH), 128.89 (CH), 128.83 (CH), 124.1 (CH), 123.0 (CH), 118.2 (CH), 116.8 

(C), 115.9 (CH), 115.5 (CH2), 68.8 (CH2), 59.7 (CH3), 56.8 (CH), 55.6 (CH), 44.7 (CH), 29.0 (CH2), 20.0 

(CH2), 17.7 (CH2); HRMS (ESI), calcd for C25H27N2O3
+ (M+H)+ 403.2022, found 403.2022. 
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Synthesis of N-methoxyoctanamide 131 

 

 

 

N-methoxyoctanamide (131) 

Octanoyl chloride 146 (2.4 mL, 14 mmol) was added to a solution of O-methylhydroxylamine 

hydrochloride (1.00 g, 12.0 mmol), pyridine (2.9 mL, 36 mmol) and CH2Cl2 (60 mL) at room temperature. 

The solution was maintained for 1 h at room temperature, poured into 0.5 M HCl (50 mL). The resulting 

mixture was extracted with chloroform (2x 40 mL). The combined organic extracts were washed with 

brine (10 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:4 to 2:1) to give 2.03 g of 131 (98%): a colorless oil; IR (film) 3182, 

2958, 2930, 2858, 1661, 1521, 1068 cm-1; 1H NMR (500 MHz, CDCl3) δ 3.76 (s, 3H), 2.40 (bs, 1H), 2.07 

(bs, 2H), 1.64 (tt, J = 7.5, 7.5 Hz, 2H), 1.37‒1.20 (m, 8H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, 

CDCl3) δ 171.4 (C), 64.0 (CH3), 33.2 (CH2), 31.7 (CH2), 29.2 (CH2), 29.0 (CH2), 25.6 (CH2), 22.6 (CH2), 

14.1 (CH3); LRMS (EI) m/z 173 (M+, 3.5%), 128 (14), 127 (89), 109 (13), 102 (14), 89 (65), 84 (5), 83 

(7), 78 (12), 10.3 (10), 59 (29), 58 (100), 56 (22); HRMS (EI), calcd for C9H19NO2 M+ 173.1416, found 

173.1416. 

 

 

N-methoxy-N-(pent-4-en-2-yl)octanamide (134) 

(±)-10-Camphorsulfonic acid (2.7 mg, 12 mol) was added to a solution of N-methoxyoctanamide 131 

(200 mg, 1.15 mmol), ethylvinylether 136 (130 mL, 1.35 mmol) and CH2Cl2 (2.3 mL) at 0 °C. After 

stirring for 3 h, allyltributylstannane (900 L, 2.90 mmol) and boron trifluoride diethyl ether complex 

(280 μL, 2.3 mmol) were added to the solution at 0 °C. The mixture was stirred for 1 h at 0 °C, and allowed 

to warm to room temperature. After maintaining for 30 min at room temperature, the solution was 

quenched with saturated aqueous NaHCO3 (5 mL), and extracted with chloroform (2x 5 mL). The 

combined organic extracts were washed with brine (10 mL) dried over Na2SO4, and concentrated. The 
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residue was purified by silica gel column chromatography (EtOAc/hexane 1:60 to 1:40) to give 229 mg 

of N-methoxyamide 134 (82%): a colorless oil; IR (film) 2930, 2857, 1672, 1456, 1385, 1157, 1027, 916 

cm-1; 1H NMR (500 MHz, CDCl3) δ 5.74 (dddd, J = 17.2, 10.3, 6.9, 6.9 Hz, 1H), 5.07 (ddd, J = 17.2, 1.4, 

1.4 Hz, 1H), 5.02 (ddd, J = 10.3, 1.4, 1.4 Hz, 1H), 4.52 (bs, 1H), 3.75 (s, 3H), 2.48‒2.31 (m, 3H), 2.24 

(ddddd, J = 14.0, 6.9, 6.9, 1.4, 1.4 Hz, 1H), 1.62 (tt, J = 7.5, 7.5 Hz, 2H), 1.35‒1.25 (m, 8H), 1.23 (d, J = 

6.9 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 176.6 (C), 135.3 (CH), 117.2 (CH2), 

64.8 (CH3), 53.4 (CH), 38.5 (CH2), 32.8 (CH2), 31.8 (CH2), 29.5 (CH2), 29.2 (CH2), 24.7 (CH2), 22.7 

(CH2), 18.0 (CH3), 14.2 (CH3); HRMS (ESI), calcd for C14H28NO2
+ (M+H)+ 242.2120, found 242.2112. 

 

 

 

2-(methoxy(pent-4-en-2-yl)amino)nonanenitrile (138) 

Zirconocene chloride hydride (54.0 mg, 209 μmol) was added to a solution of 134 (36.0 mg, 150 μmol) 

and (CH2Cl)2 (1.5 mL) at room temperature. After stirring for 10 min, cyanotrimethylsilane (22 μL, 180 

μmol) and Sc(OTf)3 (7.4 mg, 15.0 μmol) were added to the solution. After stirring for 2.5 h at room 

temperature. This solution was quenched with saturated aqueous NaHCO3 (5 mL), and extracted with 

chloroform (2x 5 mL). The combined organic extracts were washed with brine (10 mL), dried over Na2SO4, 

and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:80) to 

give 27.0 mg of 138 (72%, dr = 1.1:1): a colorless oil; IR (film) 2928, 2858, 2234, 1466, 1042, 914 cm-1; 
1H NMR (500 MHz, CDCl3, 1:1 mixture of diastereomers) δ 5.85‒5.74 (m, 1H), 5.13‒5.03 (m, 2H), 3.78 

(dd, J = 13.5, 6.3 Hz, 1/2H), 3.76 (dd, J = 13.5, 6.3 Hz, 1/2H), 3.62 (s, 3/2H), 3.62 (s, 3/2H), 3.11‒3.02 

(m, 1H), 2.56‒2.49 (m, 1/2H), 2.37‒2.49 (m, 1/2H), 2.19 (ddddd, J = 14.0, 6.3, 6.3, 1.2, 1.2 Hz, 1/2H), 

2.13 (ddddd, J = 14.6, 7.4, 7.2, 1.2, 1.2 Hz, 1/2H), 1.96‒1.80 (m, 2H), 1.59‒1.44 (m, 2H), 1.39‒1.23 (m, 

8H), 1.20 (d, J = 6.3 Hz, 3/2H), 1.03 (d, J = 6.3 Hz, 3/2H), 0.89 (t, J = 7.2 Hz, 3H); 13C NMR (125 MHz, 

CDCl3, 1:1 mixture of diastereomers) δ 135.3 (CH), 134.7 (CH), 118.3 (C), 117.9 (C), 117.47 (CH2), 

117.44 (CH2), 64.24 (CH3), 64.17 (CH3), 60.4 (CH), 60.4 (CH), 56.2 (CH), 56.1 (CH), 38.5 (CH2), 38.4 

(CH2), 31.8 (CH2), 31.8 (CH2), 31.6 (CH2), 31.5 (CH2), 29.2 (CH2), 29.2 (CH2), 29.2 (CH2), 29.2 (CH2), 

26.2 (CH2), 26.1 (CH2), 22.7 (CH2), 22.7 (CH2), 16.7 (CH3), 16.4 (CH3), 14.2 (CH3), 14.2 (CH3); HRMS 

(ESI), calcd for C15H29N2O+ (M+H)+ 253.2280, found 253.2269. 

 

  



 
108 

 

O-methyl-N-(pent-4-en-2-yl)-N-(undec-1-en-4-yl)hydroxylamine (45b) 

Zirconocene chloride hydride (44.4 mg, 172 μmol) was added to a solution of 134 (26.0 mg, 108 μmol) 

and (CH2Cl)2 (1.4 mL) at room temperature. After stirring for 10 min, allyltributylstannane (100 μL, 323 

μmol) and Sc(OTf)3 (63.6 mg, 129 μmol) were added to the solution. After stirring for 20 min at room 

temperature. This solution was quenched with saturated aqueous NaHCO3 (5 mL), and extracted with 

chloroform (2x 5 mL). The combined organic extracts were washed with brine (10 mL) dried over Na2SO4, 

and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane 1:80 to 

1:60) to give 16.9 mg of 139 (59%, dr = 1:1): a colorless oil; IR (film) 2927, 2855, 1458, 1375, 1043, 911, 

772 cm-1; 1H NMR (500 MHz, CD3OD, 1:1 mixture of diastereomers) δ 5.93‒5.79 (m, 2H), 5.10‒4.06 (m, 

4H), 3.543 (s, 3/2H), 3.538 (s, 3/2H), 3.08‒2.98 (m, 1H), 2.87‒2.79 (m, 1H), 2.48‒2.33 (m, 2H), 2.24‒

2.06 (m, 2H), 1.60‒1.24 (m, 12H), 1.08‒1.03 (m, 3/2H), 1.03‒0.99 (m, 3/2H), 0.95‒0.88 (m, 3H); 13C 

NMR (125 MHz, CDCl3, 1:1 mixture of diastereomers) δ137.3 (CH), 137.1 (CH), 136.7 (CH), 136.6 (CH), 

116.4 (CH2), 116.4 (CH2), 116.1 (CH2), 116.0 (CH2), 64.1 (CH3), 64.1 (CH3), 62.0 (CH), 61.8 (CH), 57.5 

(CH), 57.5 (CH), 39.0 (CH2), 38.8 (CH2), 34.7 (CH2), 33.8 (CH2), 32.0 (CH2), 32.0 (CH2), 30.7 (CH2), 

30.1 (CH2), 30.0 (CH2), 30.0 (CH2), 29.5 (CH2), 29.4 (CH2), 26.5 (CH2), 26.1 (CH2), 22.8 (CH2), 22.8 

(CH2), 14.3 (CH3), 14.3 (CH3), 14.3 (CH3), 14.3 (CH3); HRMS (ESI), calcd for C17H34NO+ (M+H)+ 

268.2640, found 268.2627. 
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Unified Total Synthesis of Stemoamide-type Alkaloids 
 

A-2. Gram-scale Total Synthesis of Stemoamide (1) 
Synthesis of 2-Siloxypyrrole 123d 

 
1-(4-Methoxybenzyl)-2-((triisopropylsilyl)oxy)-1H-pyrrole (123d)1 

4-Methoxybenzylamine (6.5 mL, 50 mmol, 1.0 equiv) was added dropwise over 1 h to a mixture of 2,5-

dihydro-2,5-dimethoxyfuran 30 (6.0 mL, 49 mmol, 1.0 equiv) and aqueous 0.04 M HCl (260 mL, 10 mmol, 

0.2 equiv) at room temperature. The resulting mixture was stirred for 10 min, and extracted with EtOAc 

(3 x 300 mL). The combined organic extracts were dried over Na2SO4, and concentrated. The residue was 

purified by silica gel column chromatography (EtOAc/hexane 2:1) to give 6.10 g of α,β-unsaturated lactam 

139d and enamide 140d (61%, 139d:140d = 1:2.2). For analytical samples, two diastereomers were 

separated by silica gel column chromatography (EtOAc/hexane 1:5 to 2:1); ,-unsaturated lactam 139d: 

a yellow solid; mp 48–49 °C; IR (film) 2837, 1673, 1513, 1455, 1245, 1177, 1032, 801 cm−1; 1H NMR 

(500 MHz, CDCl3) δ 7.20–7.15 (m, 2H), 7.03 (dt, J = 6.0, 1.7 Hz, 1H), 6.88–6.84 (m, 2H), 6.21 (dt, J = 

6.0, 2.0 Hz, 1H), 4.57 (s, 2H), 3.85 (dd, J = 2.0, 1.7 Hz, 2H), 3.79 (s, 3H); 13C NMR (125 MHz, CDCl3) 

δ 171.3 (C), 159.1 (C), 142.9 (CH), 129.5 (C), 129.4 (CH), 128.1 (CH), 114.2 (CH), 55.3 (CH3), 52.2 

(CH2), 45.4 (CH2); HRMS (ESI), calcd for C12H14NO2
+ (M+H)+ 204.1025, found 204.1021. enamide 

140d: a yellow solid; mp 45–46 °C; IR (film) 2934, 2836, 1692, 1514, 1356, 1247, 1176, 1032, 772 cm−1; 
1H NMR (500 MHz, CDCl3) δ 7.20–7.16 (m, 2H), 6.89–6.84 (m, 2H), 6.30 (dt, J = 4.9, 2.0 Hz, 1H), 5.26 

(dt, J = 4.9, 2.3 Hz, 1H), 4.56 (s, 2H), 3.79 (s, 3H), 3.11 (dd, J = 2.3, 2.0 Hz, 2H); 13C NMR (125 MHz, 

CDCl3) δ 177.0 (C), 159.3 (C), 132.7 (CH), 129.3 (CH), 128.9 (C), 114.3 (CH), 104.6 (CH), 55.4 (CH3), 

45.2 (CH2), 37.6 (CH2); HRMS (ESI), calcd for C12H14NO2
+ (M+H)+ 204.1025, found 204.1025. 

Sodium bis(trimethylsilyl)amide (1.9 M in THF, 17 mL, 32 mmol, 1.1 equiv) was added to a solution 

of α,β-unsaturated lactam 139d and enamide 140d (139d:140d = 1:2.2, 6.10 g, 30.0 mmol, 1.0 equiv) and 

THF (60 mL) at –78 °C. After maintaining for 10 min at –78 °C, triisopropylsilyl chloride (6.4 mL, 30 

mmol, 1.0 equiv) was added to the solution at –78 °C. The solution was allowed to warm to room 

temperature, and stirred for 12 h, and diluted with hexane (100 mL). The resulting mixture was filtered 

through a pad of Celite®, and concentrated. The residue was filtered through a pad of basic alumina, and 

washed with hexane. The filtrate was concentrated to give 8.15 g of 2-siloxypyrrole 123d (76%): a pale 

yellow oil; IR (film) 2945, 2867, 1557, 1513, 1462, 1248, 1030, 913, 854, 684 cm−1; 1H NMR (500 MHz, 

CDCl3) δ 7.09–7.04 (m, 2H), 6.85–6.80 (m, 2H), 6.13 (dd, J = 3.2, 2.1 Hz, 1H), 5.90 (dd, J = 3.4, 3.2 Hz, 
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1H), 5.23 (dd, J = 3.4, 2.1 Hz, 1H), 4.88 (s, 2H), 3.78 (s, 3H), 1.26 (sep, J = 7.3 Hz, 3H), 1.07 (d, J = 7.3 

Hz, 18H); 13C NMR (125 MHz, CDCl3) δ 158.9 (C), 142.4 (C), 130.9 (C), 128.4 (CH), 114.0 (CH), 111.8 

(CH), 105.1 (CH), 87.3 (CH), 55.4 (CH3), 47.5 (CH2), 18.0 (CH3), 12.5 (CH); HRMS (ESI), calcd for 

C21H34NO2Si+ (M+H)+ 360.2359, found 360.2344. 

 

 

 
Methyl-7-bromo-4-hydroxyhept-2-ynoate ((±)-134) 

Diisobutylaluminium hydride (1.0 M in Hexane, 23 mL, 23 mmol, 1.1 equiv) was added to a solution of 

ethyl 4-bromobutyrate 122 (3.0 mL, 21 mmol, 1.0 equiv) and CH2Cl2 (100 mL) at ‒78 °C. After stirring 

at ‒78 °C for 1 h, the solution was quenched with saturated aqueous (+)-potassium sodium tartrate (50 

mL) at ‒78 °C, allowed to warm to room temperature, stirred vigorously for 1 h, and extracted with CH2Cl2 

(3 x 100 mL). The combined organic extracts were washed with brine (200 mL), dried over Na2SO4, and 

concentrated to give 4-bromobutanal 133, which was immediately used in the next reaction without further 

purification. 

n-Butyllithium (1.55 M in hexane, 15 mL, 23 mmol, 1.1 equiv) was added to a solution of 

hexamethyldisilazane (5.0 mL, 23 mmol, 1.1 equiv) at –78 °C. After stirring at –78 °C for 10 min, methyl 

propiolate (2.6 mL, 31 mmol, 1.5 equiv) was added to the solution of LiN(TMS)2 at –78 °C. After stirring 

at –78 °C for 1 h, a solution of the above aldehyde 133 and THF (16 mL) was added to a solution of the 

lithium acetylide via cannula at –78 °C. The resulting solution was stirred for 30 min at –78 °C, and 

quenched with aqueous saturated NH4Cl (40 mL). The mixture was allowed to warm to room temperature, 

filtered, and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with brine 

(200 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:5) to give 2.94 g of (±)-γ-hydroxypropiolate 134 (60%). The spectral 

data of 134 was identical to chiral γ-hydroxypropiolate 134. 
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Methyl (R)-7-bromo-4-hydroxyhept-2-ynoate (134) 

Diisobutylaluminium hydride (1.0 M solution in hexane, 31 mL, 31 mmol, 1.1 equiv) was added to a 

solution of ethyl 4-bromobutyrate 132 (4.0 mL, 28 mmol, 1.0 equiv) and CH2Cl2 (140 mL) at ‒78 °C. 

After stirring at ‒78 °C for 1 h, the solution was quenched with saturated aqueous (+)-potassium sodium 

tartrate (70 mL) at ‒78 °C, allowed to warm to room temperature, stirred vigorously for 1 h, and extracted 

with CH2Cl2 (3 x 150 mL). The combined organic extracts were washed with brine (400 mL), dried over 

Na2SO4, and concentrated to give 4-bromobutanal 133, which was immediately used in the next reaction 

without further purification. 

Dimethylzinc (1.2 M solution in toluene, 70 mL, 84 mmol, 3.0 equiv) was added dropwise to a 

solution of (S,S)-ProPhenol (3.53 g, 5.56 mmol, 20 mol%) and methyl propiolate (6.9 mL, 83 mmol, 3.0 

equiv) and toluene (90 mL) at 0 °C. The solution was warmed to room temperature and stirred for 30 min. 

A solution of 4-bromobutanal 133 and toluene (90 mL) was added over 24 h at 0 °C using a syringe pump 

to the solution of the catalyst. The solution was stirred for an additional 3 h at 0 °C, and quenched with 

aqueous saturated NH4Cl (120 mL). The mixture was filtered, and extracted with EtOAc (3 x 200 mL). 

The combined organic extracts were washed with brine (500 mL), dried over Na2SO4, and concentrated. 

The residue was purified by silica gel column chromatography (EtOAc/hexane 1:5) to give 5.13 g of γ-

hydroxypropiolate 134 (78%, 98% ee determined by HPLC (CHIRALPAK OD-H, 250×4.6 mm, UV 210 

nm, iPrOH/hexane 1:11 (v/v), 1.0 mL/min, 134: TR= 12.1 min, ent-134: TR= 16.5 min)): a pale yellow oil; 

[]𝐷
22 = +0.76 (c 1.0, CHCl3); IR (film) 3409, 2956, 2239, 1715, 1436, 1255, 1058, 751 cm−1; 1H NMR 

(500 MHz, CDCl3) δ 4.57 (dd, J = 6.6, 6.6 Hz, 1H), 3.70 (s, 3H), 3.46 (dd, J = 6.6, 6.6 Hz, 2H), 2.11–2.03 

(m, 2H), 1.98 (bs, 1H), 1.97–1.91 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 153.8 (C), 87.5 (C), 76.7 (C), 

61.4 (CH), 53.1 (CH3), 35.3 (CH2), 33.1 (CH2), 28.2 (CH2); HRMS (ESI), calcd for C8H12O3Br+ (M+H)+ 

234.9970, found 234.9967. 
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Chiral HPLC chart of 134 (98% ee) 

CHIRALPAK OD-H, 250×4.6 mm, UV 210 nm, iPrOH/hexane 1:11 (v/v), 1.0 mL/min 

 

 

 

 

 

 

 

 

 

 

 
(R)-5-(3-Bromopropyl)furan-2(5H)-one (122) 

A suspension of palladium on polyethyleneimine (4.3 wt% on polyethyleneimine, 101 mg) and MeOH 

(36 mL) was added to a solution of γ-hydroxypropiolate 134 (5.06 g, 21.5 mmol) and 1,4-dioxane (36 

mL) at room temperature using Pasteur pipette. The flask was purged with hydrogen. After stirring under 

hydrogen atmosphere (1 atm) at room temperature for 14 h, 1 M aqueous HCl (70 mL) was added to the 

mixture. The resulting mixture was stirred for 2 h at room temperature, extracted with EtOAc (3 x 70 mL), 

dried over Na2SO4, and concentrated. The residue was diluted with aqueous saturated NaHCO3 and 

extracted with EtOAc (3 x 70 mL), dried over Na2SO4, and concentrated. The residue was filtered through 

a pad of silica gel (EtOAc/Hexane 1:3), and then purified by MPLC (Yamazen Ultra Pack Column B, 

26×300 mm, EtOAc/hexane 24:76 to 45:55, 20 mL/min, TR = 28 min) to give 3.32 g of an inseparable 

mixture of butenolide 122 (3.18 g, 72%) and lactone 136 (0.14 g, 3%). Butenolide 122: 98% ee determined 

by HPLC (CHIRALPAK AS-H, 250×4.6 mm, UV 210 nm, EtOH/hexane 1:3 (v/v), 1.0 mL/min, ent-122: 

No. TR Area Height Area (%) 

1 12.10 18055812 755803 98.8339 

2 16.54 213034 7256 1.1661 

No. TR Area Height Area (%) 

1 12.28 444358 16586 49.9345 

2 15.39 445524 13284 50.0655 
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TR= 10.1 min, 122: TR= 12.9 min); a pale yellow oil; []𝐷
23 = –77.7 (c 1.0, CHCl3); IR (film) 3087, 2923, 

2850, 1749, 1163, 814 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.45 (dd, J = 5.7, 1.4 Hz, 1H), 6.14 (dd, J = 

5.7, 2.0 Hz, 1H), 5.08 (dddd, J = 8.3, 3.7, 2.0, 1.4 Hz, 1H), 3.51‒3.41 (m, 2H), 2.11–1.96 (m, 3H), 1.80‒

1.69 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 172.9 (C), 155.9 (CH), 122.1 (CH), 82.4 (CH), 32.9 (CH2), 

31.8 (CH2), 28.1 (CH2); HRMS (ESI), calcd for C7H10O2Br+ (M+H)+ 204.9864, found 204.9865. 

 

Chiral HPLC chart of 122 (98% ee) 

CHIRALPAK AS-H, 250×4.6 mm, UV 210 nm, EtOH/hexane 1:3 (v/v), 1.0 mL/min 

 

 

 

 

 

 

 

 

 

  

No. TR Area Height Area (%) 

1 10.06 173635 12095 0.9764 

2 12.87 17608930 644765 99.0236 

No. TR Area Height Area (%) 

1 9.62 3509745 147434 49.0203 

2 12.37 3650031 104912 50.9797 
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(S)-5-((2R,3R)-2-(3-Bromopropyl)-5-oxotetrahydrofuran-3-yl)-1-(4-methoxybenzyl)-pyrrolidin-2-

one (124) and 

(R)-5-((2R,3R)-2-(3-bromopropyl)-5-oxotetrahydrofuran-3-yl)-1-(4-methoxybenzyl)-pyrrolidin-2-

one (epi-124) 

Tin (IV) tetrachloride (890 L, 7.6 mmol, 0.5 equiv) was added to a solution of a 3.11 g mixture of 

butenolide 122 and lactone 136 (122: 2.98 g, 14.5 mmol, 1.0 equiv, 136: 0.13 g, 0.63 mmol), 2-

siloxypyrrole 123d (6.54 g, 18.2 mmol, 1.2 equiv) and CH2Cl2 (380 mL) at –78 °C. The solution was 

allowed to warm to –60 °C, and stirred for 12 h at –60 °C. The resulting deep green solution was re-cooled 

to –78 °C. Methanol (1.5 mL, 37 mmol, 2.5 equiv) was added to the solution at –78 °C. Then, triethylsilane 

(36 mL, 220 mmol, 14 equiv) and titanium (IV) tetrachloride (5.0 mL, 46 mmol, 3.0 equiv) were added 

dropwise to the solution at –78 °C. The resulting white suspension was allowed to warm to room 

temperature, and stirred vigorously for 35 h at room temperature. The mixture was quenched with 

saturated aqueous NaHCO3 (200 mL), and vigorously stirred for 1 h at room temperature. The resulting 

mixture was filtered through Celite®, washed with CHCl3, and concentrated carefully. The resulting 

mixture was extracted with CHCl3 (5 x 200 mL). The combined organic extracts were washed with brine 

(200 mL), dried over Na2SO4, and concentrated. The residue was filtered through a pad of silica gel 

(EtOAc), and then purified by MPLC (Yamazen Ultra Pack Column D, 26×300 mm, EtOAc/hexane 46:54 

to 67:33, 45 mL/min, TR = 63 min) to give 4.52 g of a mixture of lactams 124 and epi-124 (76%, 124:epi-

124 = 3.7:1). For analytical samples, two diastereomers were separated by HPLC (PEGASIL Silica 120-

5, 250×20 mm, EtOAc/MeCN 4:1, 10 mL/min, 124: TR = 12.3 min, epi-124: TR = 16.0 min); lactam 124: 

a colorless oil; []𝐷
21 = –6.3 (c 1.0, CHCl3); IR (film) 2935, 2838, 1773, 1684, 1513, 1418, 1247, 1177, 

1031 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.17–7.13 (m, 2H), 6.88–6.84 (m, 2H), 4.71 (d, J = 15.2 Hz, 

1H), 4.22 (ddd, J = 10.0, 3.2, 3.2 Hz, 1H), 4.12 (d, J = 15.2 Hz, 1H), 3.79 (s, 3H), 3.60 (ddd, J = 8.0, 6.3, 

3.7 Hz, 1H), 3.36 (ddd, J = 10.0, 6.6, 6.0 Hz, 1H), 3.32 (ddd, J = 10.0, 7.7, 5.7 Hz, 1H), 2.71 (dd, J = 18.0, 

10.0 Hz, 1H), 2.56 (dddd, J = 10.0, 4.0, 3.7, 3.2 Hz, 1H), 2.53 (ddd, J = 17.5, 10.0, 5.7 Hz, 1H), 2.45 (ddd, 
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J = 17.5, 10.0, 7.2 Hz, 1H), 2.19 (dd, J = 18.0, 4.0 Hz, 1H), 2.09 (dddd, J = 13.2, 10.0, 8.0, 5.7 Hz, 1H), 

2.04–1.94 (m, 1H), 1.85–1.76 (m, 1H), 1.72 (dddd, J = 13.2, 10.0, 7.2, 6.3 Hz, 1H), 1.52 (dddd, J = 14.0, 

10.3, 10.0, 4.6 Hz, 1H), 1.19 (dddd, J = 14.0, 10.6, 5.4, 3.2 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 175.9 

(C), 175.4 (C), 159.5 (C), 129.3 (CH), 128.4 (C), 114.5 (CH), 79.4 (CH), 59.3 (CH), 55.4 (CH3), 45.0 

(CH2), 40.9 (CH), 34.4 (CH2), 32.9 (CH2), 30.9 (CH2), 30.1 (CH2), 28.7 (CH2), 19.6 (CH2); HRMS (ESI), 

calcd for C19H25NO4Br+ (M+H)+ 410.0967, found 410.0963. lactam epi-124: a colorless oil; []𝐷
22 = +5.5 

(c 1.0, CHCl3); IR (film) 2932, 2837, 1176, 1681, 1513, 1246, 1177, 1031 cm−1; 1H NMR (500 MHz, 

CDCl3) δ 7.18–7.13 (m, 2H), 6.89–6.85 (m, 2H), 4.78 (d, J = 14.9 Hz, 1H), 4.11 (ddd, J = 8.6, 5.7, 4.0 Hz, 

1H), 4.01 (d, J = 14.9 Hz, 1H), 3.80 (s, 3H), 3.62 (ddd, J = 8.3, 6.3, 4.0 Hz, 1H), 3.41 (ddd, J = 10.3, 7.2, 

5.4 Hz, 1H), 3.40 (ddd, J = 10.3, 7.2, 5.4 Hz, 1H), 2.62 (dddd, J = 9.5, 7.2, 5.7, 4.0 Hz, 1H), 2.52 (ddd, J 

= 17.5, 10.0, 6.0 Hz, 1H), 2.46 (ddd, J = 17.5, 9.7, 7.2 Hz, 1H), 2.30 (dd, J = 18.6, 9.2 Hz, 1H), 2.24 (dd, 

J = 18.6, 7.5 Hz, 1H), 2.07 (dddd, J = 13.8, 9.7, 8.3, 6.0 Hz, 1H), 2.04–1.95 (m, 1H), 1.89–1.79 (m, 1H), 

1.79–1.64 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 175.2 (C), 175.1 (C), 159.5 (C), 129.5 (CH), 128.1 

(C), 114.5 (CH), 80.5 (CH), 57.3 (CH), 55.4 (CH3), 44.6 (CH2), 41.6 (CH), 34.2 (CH2), 33.0 (CH2), 30.1 

(CH2), 28.6 (CH2), 28.3 (CH2), 18.9 (CH2); HRMS (ESI), calcd for C19H25NO4Br+ (M+H)+ 410.0967, 

found 410.0969. 

 

NOESY experiment for 124 and epi-124 

 
124 and epi-124 (500 MHz, CDCl3)  

 

 
 (S)-5-((2R,3R)-2-(3-Bromopropyl)-5-oxotetrahydrofuran-3-yl)pyrrolidin-2-one (158) and 

(R)-5-((2R,3R)-2-(3-bromopropyl)-5-oxotetrahydrofuran-3-yl)pyrrolidin-2-one (epi-158) 

Cerium ammonium nitrate (18.0 g, 32.8 mmol, 3.0 equiv) was added to a solution of lactam 124 and epi-

124 (4.48 g, 124:epi-124 = 3.7:1, 10.9 mmol, 1.0 equiv), MeCN (550 mL) and H2O (55 mL) at room 

temperature. After stirring at room temperature for 24 h, the solution was concentrated at 0 °C to 1/5 

volume. Then, solid NaHCO3 (ca. 20 g) was added to the solution. The resulting mixture was filtered, and 
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extracted with CHCl3 (5 x 100 mL). The combined organic extracts were dried over Na2SO4, and 

concentrated. The residue was purified by silica gel column chromatography (EtOAc/MeOH 1:0 to 19:1) 

to give 2.97 g of secondary lactams 158 and epi-158 (94%, 158: epi-158 = 3.7:1). For analytical samples, 

two diastereomers were separated by HPLC (PEGASIL Silica 120-5, 250×10 mm, Et2O/MeCN 2:3, 10 

mL/min, 158: TR = 34.0 min, epi-158: TR = 37.5 min). The ee of secondary lactam 158 was determined as 

98% ee by HPLC (CHIRALPAK AD-H, 250×4.6 mm, UV 210 nm, EtOH/hexane 1:1 (v/v), 1.0 mL/min, 

ent-158: TR= 20.2 min, 158: TR= 29.8 min). The ee of secondary lactam epi-158 was determined as 98% 

ee by HPLC (CHIRALPAK AD-H, 250×4.6 mm, UV 210 nm, EtOH/hexane 1:1 (v/v), 1.0 mL/min, epi-

158: TR= 11.3 min, ent-epi-158: TR= 15.9 min): lactam 158: a white solid; []𝐷
22 = 33.1 (c 1.0, CHCl3); 

mp 109–110 °C; IR (film) 3216, 2932, 1771, 1693, 1438, 1423, 1268, 1201, 1181 cm−1; 1H NMR (500 

MHz, CDCl3) δ 7.93 (bs, 1H), 4.30 (ddd, J = 9.5, 6.3, 3.2 Hz, 1H), 3.80 (ddd, J = 7.2, 6.6, 6.0 Hz, 1H), 

3.49 (ddd, J = 10.0, 7.2, 5.2 Hz, 1H), 3.45 (ddd, J = 10.0, 6.8, 6.0 Hz, 1H), 2.68 (dd, J = 18.0, 9.2 Hz, 1H), 

2.47 (dd, J = 18.0, 7.7 Hz, 1H), 2.39–2.25 (m, 4H), 2.14–2.03 (m, 1H), 2.03–1.88 (m, 2H), 1.79–1.68 (m, 

2H); 13C NMR (125 MHz, CDCl3) δ 179.4 (C), 175.3 (C), 81.1 (CH), 55.3 (CH), 45.9 (CH), 33.7 (CH2), 

33.2 (CH2), 30.5 (CH2), 30.3 (CH2), 28.5 (CH2), 25.3 (CH2); HRMS (ESI), calcd for C11H17NO3Br+ 

(M+H)+ 290.0392, found 290.0398. lactam epi-158: a colorless oil; []𝐷
19 = 52.4 (c 0.5, CHCl3); IR (film) 

3216, 2927, 1773, 1692, 1262, 1200, 1183 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.71 (bs, 1H), 4.37 (ddd, 

J = 8.3, 4.9, 3.4 Hz, 1H), 3.72 (ddd, J = 7.5, 7.2, 6.6 Hz, 1H), 3.51 (ddd, J = 10.0, 7.2, 5.4 Hz, 1H), 3.45 

(ddd, J = 10.0, 7.2, 5.7 Hz, 1H), 2.77–2.69 (m, 1H), 2.46–2.26 (m, 5H), 2.15–2.06 (m, 1H), 2.06–1.97 (m, 

1H), 1.97–1.89 (m, 1H), 1.79–1.69 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 179.2 (C), 175.1 (C), 82.0 

(CH), 56.7 (CH), 46.2 (CH), 34.7 (CH2), 33.5 (CH2), 31.2 (CH2), 30.0 (CH2), 28.6 (CH2), 25.2 (CH2); 

HRMS (ESI), calcd for C11H17NO3Br+ (M+H)+ 290.0392, found 290.0389. 

 

Chiral HPLC chart of 158 (98% ee) 

CHIRALPAK AD-H, 250×4.6 mm, UV 210 nm, EtOH/hexane 1:1 (v/v), 1.0 mL/min 

 

 

 

No. TR Area Height Area (%) 

1 20.21 50178 1700 0.9481 

2 29.81 5242525 67533 99.0519 
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Chiral HPLC chart of epi-158 (98% ee) 

CHIRALPAK AD-H, 250×4.6 mm, UV 210 nm, EtOH/hexane 1:1 (v/v), 1.0 mL/min 

 

 

 

 

 

 

 

 

 

(3aR,10aS,10bR)-Octahydro-2H-furo[3,2-c]pyrrolo[1,2-a]azepine-2,8(1H)-dione (48) and 

(3aR,10aR,10bR)-octahydro-2H-furo[3,2-c]pyrrolo[1,2-a]azepine-2,8(1H)-dione (epi-48) 

Trimethylsilyl trifluoromethanesulfonate (TMSOTf; 360 L, 2.0 mmol, 20 mol%) was added to a mixture 

of NaH (63% in mineral oil, 570 mg, 15 mmol, 1.5 equiv), tetrabutylammonium iodide (369 mg, 999 

No. TR Area Height Area (%) 

1 16.81 273165 6184 49.7531 

2 25.49 275876 3897 50.2469 

No. TR Area Height Area (%) 

1 11.28 5093292 198311 99.1763 

2 15.88 42304 1596 0.8237 

No. TR Area Height Area (%) 

1 10.51 1555834 66392 49.7829 

2 14.77 1569405 48490 50.2171 
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mol, 10 mol%) and DMF (100 mL) at room temperature. After stirring for 10 min at room temperature, 

the resulting mixture was cooled to 0 °C. A solution of secondary lactams 158 and epi-158 (2.90 g, 

158:epi-158 = 3.7:1, 9.99 mmol, 1.0 equiv) and DMF (90 mL) was added to the mixture at 0 °C via 

cannula. The reaction mixture was stirred for 6 h, quenched with aqueous 1 M HCl (100 mL), and stirred 

for 30 min. Then, solid LiCl was added to the mixture until the mixture was saturated. The resulting 

mixture was filtered and extracted with CHCl3 (6 x 100 mL). The combined organic extracts were dried 

over Na2SO4, and concentrated. The remaining DMF was azeotropically removed with toluene. The 

residue was filtered through a pad of silica gel (EtOAc/MeOH 9:1), and then purified by MPLC (Yamazen 

Ultra Pack Column D, 26×300 mm, EtOAc/MeOH 85:15, 45 mL/min) to give 1.19 g of desired tricyclic 

compound 48 (57%) and 393 mg of undesired tricyclic compound epi-48 (19%); tricyclic compound 48: 

a colorless oil; []𝐷
21 = –122.9 (c 1.0, CHCl3); IR (film) 2937, 1776, 1681, 1418, 1185, 1015 cm−1; 1H 

NMR (500 MHz, CDCl3) δ 4.29 (ddd, J = 10.3, 10.3, 2.9 Hz, 1H), 4.18–4.12 (m, 1H), 3.99 (ddd, J = 10.6, 

6.3, 6.3 Hz, 1H), 2.85 (dddd, J = 12.6, 10.3, 8.6, 6.3 Hz, 1H), 2.71–2.63 (m, 1H), 2.65 (dd, J = 17.5, 8.6 

Hz, 1H), 2.51 (dd, J = 17.5, 12.6 Hz, 1H), 2.45–2.37 (m, 3H), 2.07 (dddd, J = 12.0, 6.3, 5.7, 4.0 Hz, 1H), 

1.91-1.81 (m, 1H), 1.71 (dddd, J = 12.0, 10.9, 10.6, 10.6 Hz, 1H), 1.63–1.49 (m, 2H); 13C NMR (125 

MHz, CDCl3) δ 174.8 (C), 174.1 (C), 79.9 (CH), 56.1 (CH), 44.9 (CH), 40.2 (CH2), 34.6 (CH2), 31.1 

(CH2), 30.6 (CH2), 25.5 (CH2), 22.7 (CH2); HRMS (ESI), calcd for C11H16NO3
+ (M+H)+ 210.1130, found 

210.1128. tricyclic compound epi-48: a white solid; []𝐷
20 = 30.3 (c 1.0, CHCl3); mp 114–115 °C; IR 

(film) 2936, 2870, 1773, 1683, 1290, 1201 cm−1; 1H NMR (500 MHz, CDCl3) δ 4.36 (ddd, J = 10.9, 9.7, 

5.4 Hz, 1H), 3.84 (ddd, J = 14.6, 10.0, 3.2 Hz, 1H), 3.54 (ddd, J = 9.2, 7.5, 7.2 Hz, 1H), 3.18 (ddd, J = 

14.6, 8.9, 3.4 Hz, 1H), 2.64 (dd, J = 16.0, 6.9 Hz, 1H), 2.52–2.25 (m, 5H), 2.20 (dddd, J = 12.9, 8.6, 7.2, 

4.3 Hz, 1H), 1.93–1.81 (m, 2H), 1.75 (dddd, J = 13.2, 10.9, 7.2, 5.7 Hz, 1H), 1.65 (dddd, J = 12.9, 9.5, 

9.5, 7.5 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 174.5 (C), 174.1 (C), 83.4 (CH), 61.0 (CH), 48.8 (CH), 

40.5 (CH2), 33.1 (CH2), 30.5 (CH2), 30.3 (CH2), 24.3 (CH2), 22.3 (CH2); HRMS (ESI), calcd for 

C11H16NO3
+ (M+H)+ 210.1130, found 210.1133. 

 

 

Stemoamide (1) 

n-Butyllithium (1.55 M in hexane, 4.4 mL, 6.8 mmol, 1.2 equiv) was added to a solution of (Me3Si)2NH 

(1.4 mL, 6.7 mmol, 1.2 equiv) and THF (7 mL) at –78 °C. The solution was maintained for 15 min at –

78 °C. The solution of LiN(TMS)2 was added to a solution of tricyclic compound 48 (1.19 g, 5.69 mmol, 

1.0 equiv) and THF (50 mL) via cannula at –78 °C. The resulting white suspension was allowed to warm 
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to –40 °C, stirred for 1 h at –40 °C, and cooled to –78 °C. Methyl iodide (460 L, 7.4 mmol, 1.3 equiv) 

was then added dropwise to the solution at –78 °C. After stirring for 15 min at –78 °C, the mixture was 

allowed to warm to room temperature. After stirring for 2 h at room temperature, the mixture was 

quenched with aqueous 1 M HCl (30 mL). The organic layer was separated, and the aqueous layer was 

extracted with CHCl3 (5 x 50 mL). The combined organic extracts were dried over Na2SO4, and 

concentrated. The residue was purified by silica gel column chromatography (EtOAc/MeOH 1:0 to 19:1) 

to give 1.07 g of (–)-stemoamide (1: 84%): a white solid; []𝐷
20 = –213.1 (c 0.5, MeOH) [lit. []𝐷

26 181 

(c 0.89, MeOH)2a, []𝐷
30 219.3 (c 0.5, MeOH)2b, []𝐷

25 183.5 (c 1.36, MeOH)2c, []𝐷
25 191.6 (c 0.5, 

MeOH)2d]; mp 190–191 °C; [lit. mp 190–191 °C,2a mp 187–188 °C,2b mp 186–187 °C,2c mp 185–

186 °C2d]; IR (film) 2932, 1762, 1683, 1425, 1193, 998 cm−1; 1H NMR (500 MHz, CDCl3) δ 4.20 (ddd, J 

= 10.3, 10.3, 2.9 Hz, 1H), 4.19-4.13 (m, 1H), 3.99 (ddd, J = 10.9, 6.3, 6.3 Hz, 1H), 2.69–2.62 (m, 1H), 

2.60 (dq, J = 12.3, 6.9 Hz, 1H), 2.45–2.36 (m, 4H), 2.08–2.01 (m, 1H), 1.91–1.81 (m, 1H), 1.71 (dddd, J 

= 12.0, 10.9, 10.9, 10.9 Hz, 1H), 1.59–1.49 (m, 2H), 1.31 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) 

δ 177.5 (C), 174.1 (C), 77.7 (CH), 55.9 (CH), 52.7 (CH), 40.2 (CH2), 37.4 (CH), 34.8 (CH2), 30.7 (CH2), 

25.7 (CH2), 22.6 (CH2), 14.1 (CH3); HRMS (ESI), calcd for C12H18NO3
+ (M+H)+ 224.1287, found 

224.1287. 
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A-2. Total Syntheses of Saxorumamide (2) and Isosaxorumamide (3) 

 
Saxorumamide (2), isosaxorumamide (3), 11-epi-saxorumamides (166 and 167) 

Diisobutylalminium hydride (1 M in hexane, 120 L, 120 mol, 3.0 equiv) was added to a solution of 

stemoamide (1: 8.9 mg, 40 mol, 1.0 equiv) and CH2Cl2 at –78 °C. The resulting solution was maintained 

for 1 h at –78 °C, and quenched with aqueous saturated (+)-potassium sodium tertrate (10 mL). The 

mixture was vigorously stirred for 1 h, extracted with CHCl3 (3 x 10 mL). The combined organic extract 

was washed with brine (20 mL), dried over Na2SO4, and concentrated. The crude lactol 165 was used in 

the next reaction without further purification. For analytical sample, the crude mixture was purified by 

silica gel column chromatography (EtOAc/MeOH 1:0 to 9:1) to give two diastereomers of lactol 165 (dr 

= 1.1:1); a colorless oil; 1H NMR (500 MHz, CDCl3, 1.1:1 mixture of C11-diastereomers) 5.25 (d, J = 

4.6 Hz, 1/2H), 5.11 (d, J = 3.4 Hz, 1/2H), 4.09–4.02 (m, 3/2H), 3.95–3.87 (m, 2/2H), 3.83 (ddd, J = 10.3, 

2.3, 2.3 Hz, 1/2H), 2.70–2.58 (m, 2/2H), 2.42 (ddd, J = 12.3, 9.7, 6.9 Hz, 1/2H), 2.40–2.31 (m, 4/2H), 

2.23–2.13 (m, 2/2H), 2.13–2.05 (m, 2/2H), 2.05–1.97 (m, 2/2H), 1.94 (dddd, J = 12.3, 6.3, 6.3, 2.3 Hz, 

1/2H), 1.84 (dddd, J = 12.0, 10.6, 10.6, 10.6 Hz, 1/2H), 1.78–1.70 (m, 2/2H), 1.65 (dddd, J = 12.0, 10.6, 

10.6, 10.6 Hz, 1/2H), 1.58–1.37 (m, 4/2H), 1.13 (d, J = 6.9 Hz, 3/2H), 1.06 (d, J = 6.6 Hz, 3/2H). 

    Boran trifluoride diethylether complex (25 L, 200 mol, 5.0 equiv) was added to a solution of lactol 

165 and 2-siloxyfuran 73 (36 L, 120 mol, 3.0 equiv), and CH2Cl2 (1.3 mL) at room temperature. After 

stirring for 36 h, the reaction mixture was quenched with aqueous saturated NaHCO3 (5 mL) and extracted 

with CHCl3 (4 x 10 mL). The combined organic extracts were dried over Na2SO4 and concentrated. The 

residue was purified by silica gel column chromatography (EtOAc/MeOH 19:1 to 9:1) to give 5.9 mg of 

a mixture of four diastereomers 2, 3, 166, and 167 (2:3:166:167 = 25:19:32:24). For analytical samples, 

four diastereomers were separated by HPLC (PEGASIL Silica 120-5, 250×10 mm, EtOAc/MeOH 4:1, 10 

mL/min, an inseparable mixture of 3 and 166: TR = 12.3 min, 2: TR = 13.4 min, 167: TR = 18.4 min). The 

spectral data of saxorumamide (2) and isosaxorumamide (3) are reported in page 124. 11-epimer 166: 1H 

NMR (500 MHz, CDCl3, an inseparable mixture of 166 and 3, peaks of 166 were reported)  7.28 (dq, J 

= 1.7, 1.4 Hz, 1H), 4.76 (ddq, J = 9.2, 1.7, 1.7 Hz, 1H), 4.13–4.06 (m, 1H), 3.98 (ddd, J = 10.6, 6.3, 6.3 
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Hz, 1H), 3.72 (ddd, J = 10.3, 2.9, 2.9 Hz, 1H), 3.59 (dd, J = 9.2, 7.5 Hz, 1H), 2.68–2.61 (m, 1H), 2.48 

(ddq, J = 9.5, 7.2, 7.2 Hz, 1H), 2.42–2.31 (m, 2H), 2.26–2.19 (m, 1H), 2.15–1.99 (m, 2H), 1.93 (dd, J = 

1.7, 1.4 Hz, 3H), 1.81–1.62 (m, 2H), 1.55–1.33 (m, 2H), 1.23 (d, J = 7.2 Hz, 3H). 11-epimer 167: pale 

yellow crystals; []𝐷
23 = –37.9 (c 0.1, CHCl3); mp 193–194 °C; IR (film) 2925, 2855, 1756, 1667, 1455, 

1261, 1083, 802 cm−1; 1H NMR (500 MHz, CDCl3) 6.97 (dq, J = 1.7, 1.4 Hz, 1H), 4.89–4.86 (m, 1H), 

4.22 (dd, J = 8.3, 0.9 Hz, 1H), 4.07–4.01 (m, 1H), 3.92 (ddd, J = 10.9, 6.9, 6.3 Hz, 1H), 3.73 (ddd, J = 

10.2, 9.7, 2.9 Hz, 1H), 2.72–2.65 (m, 1H), 2.59–2.51 (m, 1H), 2.47 (ddd, J = 12.0, 9.7, 6.9 Hz, 1H), 2.42–

2.31 (m, 2H), 2.00–1.92 (m, 2H), 1.95 (dd, J = 1.7, 1.4 Hz, 3H), 1.74–1.60 (m, 2H), 1.45–1.29 (m, 2H), 

1.24 (d, J = 6.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) 174.7 (C), 174.1 (C), 146.7 (CH), 131.1 (C), 80.6 

(CH), 80.3 (CH), 80.0 (CH), 56.3 (CH), 51.3 (CH), 40.5 (CH2), 38.5 (CH), 35.1 (CH2), 31.0 (CH2), 25.9 

(CH2), 22.1 (CH2), 13.1 (CH3), 10.9 (CH3); HRMS (ESI), calcd for C17H24NO4
+ (M+H)+ 306.1705, found 

306.1703. 

 

  

(3aR,10aS,10bR)-2-(5-(Tert-butyldimethylsilyl)-4-methylfuran-2-yl)-1-methyl-

3a,4,5,6,9,10,10a,10b-octahydro-8H-furo[3,2-c]pyrrolo[1,2-a]azepin-8-one (180) 

n-Butyllithium (1.64 M in hexane, 210 L, 340 mol, 1.5 equiv) was added to a solution of tert-

butyldimethyl(3-methylfuran-2-yl)silane 2133 (79 L, 340 mol, 1.5 equiv) and THF (1.1 mL) at –78 °C. 

The resulting solution was allowed to warm to 0 °C, stirred for 30 min at 0 °C, and re-cooled to –78 °C. 

The resulting solution of lithiated furan was added to a suspension of stemoamide (1, 51.0 mg, 228 mol, 

1.0 equiv) and THF (1.2 mL) via cannula at –78 °C. The resulting solution was maintained for 2 h at –

78 °C, quenched with aqueous saturated NH4Cl (5 mL), allowed to warm to room temperature, and stirred 

for 1 h. The mixture was extracted with CHCl3 (5 x 10 mL). The combined organic extracts were washed 

with brine (20 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 1:1 to 4:1) to give 79.5 mg of enol ether 180 (87%); a white solid; []𝐷
21 

= –137.8 (c 1.0, CHCl3); mp 132–133 °C; IR (film) 2929, 2858, 1689, 1419, 823, 731 cm−1; 1H NMR (500 

MHz, CDCl3) 6.28 (s, 1H), 4.25 (ddd, J = 12.0, 10.9, 2.6 Hz, 1H), 4.12–4.05 (m, 2H), 3.46 (ddq, J = 

12.0, 6.9, 1.7 Hz, 1H), 2.71 (ddd, J = 12.6, 12.6, 1.5 Hz, 1H), 2.42 (ddd, J = 16.9, 11.7, 8.9 Hz, 1H), 2.34 

(ddd, J = 16.9, 9.5, 1.7 Hz, 1H), 2.34–2.29 (m, 1H), 2.08 (s, 3H), 2.08–1.92 (m, 2H), 1.97 (d, J = 1.7 Hz, 

3H), 1.80–1.56 (m, 3H), 0.91 (s, 9H), 0.28 (s, 3H), 0.27 (s, 3H); 13C NMR (125 MHz, CDCl3) 174.7 (C), 

154.1 (C), 150.4 (C), 143.6 (C), 132.4 (C), 111.5 (CH), 105.5 (C), 81.0 (CH), 56.9 (CH), 56.7 (CH), 40.5 

(CH2), 34.1 (CH2), 30.9 (CH2), 26.5 (CH3), 25.3 (CH2), 21.2 (CH2), 18.0 (C), 11.4 (CH3), 10.6 (CH3),    
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–5.7 (CH3); HRMS (ESI), calcd for C23H36NO3Si+ (M+H)+ 402.2464, found 402.2460. 

 

 
(1S,2S,3aR,10aS,10bR)-2-(5-(Tert-butyldimethylsilyl)-4-methylfuran-2-yl)-1-methyldecahydro-8H-

furo[3,2-c]pyrrolo[1,2-a]azepin-8-one (182) 

Dichloroacetic acid (44L, 540 mol, 5.0 equiv) was added to a solution of enol ether 180 (42.6 mg, 106 

mol, 1.0 equiv), sodium cyanoborohydride (33.1 mg, 527 mol, 5.0 equiv) and CH2Cl2 (11 mL) at –

78 °C. The resulting suspension was stirred for 14 h at –78 °C, quenched with saturated aqueous NaHCO3 

(10 mL), and extracted with CHCl3 (2 x 10 mL). The combined organic extracts were washed with brine 

(10 mL), dried over Na2SO4, and concentrated. The residue was purified by silica gel column 

chromatography (EtOAc/hexane 2:1 to 1:0) to give 40.5 mg of furan 182 (95%); a white solid; []𝐷
23 = 

–108.2 (c 1.0, MeOH); mp 111–112 °C; IR (film) 2930, 2856, 1692, 1459, 1420, 824 cm−1; 1H NMR (500 

MHz, CDCl3) 6.13 (s, 1H), 4.56 (d, J = 9.2 Hz, 1H), 4.11–4.06 (m, 1H), 4.01–3.95 (m, 1H), 3.95 (ddd, 

J = 10.6, 6.3, 6.3 Hz, 1H), 2.65 (dd, J = 12.8, 12.8 Hz, 1H), 2.43 (ddq, J = 13.2, 9.2, 6.6 Hz, 1H), 2.40–

2.35 (m, 2H), 2.21–2.14 (m, 2H), 2.05 (s, 3H), 2.03–1.95 (m, 1H), 1.82–1.71 (m, 2H), 1.52–1.40 (m, 2H), 

1.07 (d, J = 6.6 Hz, 3H), 0.88 (s, 9H), 0.23 (s, 6H); 13C NMR (125 MHz, CDCl3) 174.3 (C), 157.2 (C), 

153.5 (C), 132.1 (C), 111.0 (CH), 81.0 (CH), 79.2 (CH), 56.4 (CH), 55.7 (CH), 41.2 (CH), 40.6 (CH2), 

36.2 (CH2), 31.0 (CH2), 26.5 (CH3), 26.0 (CH2), 22.4 (CH2), 17.9 (C), 15.5 (CH3), 11.5 (CH3), –5.6 (CH3), 

–5.7 (CH3); HRMS (ESI), calcd for C23H38NO3Si+ (M+H)+ 404.2621, found 404.2619. 

 

NOESY experiment for 182 

 
182 (500 MHz, CDCl3)  
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Saxorumamide (2) and Isosasorumamide (3) 

mChloroperbenzoic acid (69~75 wt% containing H2O, 9.4 mg, 38 mol, 1.2 equiv) was added to a solution 

of furan 182 (9.8 mg, 24 mol, 1.0 equiv) and CH2Cl2 (3.3 mL) at room temperature. The resulting mixture 

was stirred for 2 h at room temperature, filtered through a pad of silica gel (EtOAc/Hexane 1:1 to 1:0), 

and concentrated. The residue was dissolved in THF (3.3 mL), and cooled to –40 °C. Tetrabutylammonium 

fluoride (94 L, 94mol, 3.0 equiv) was added to the solution at –40 °C. After stirring for 30 min at –

40 °C, AcOH (5 L, 90 mol, 3 equiv) and NaBH4 (6.1 mg, 160 mol, 5.0 equiv) were added to the 

solution at –40 °C. The resulting solution was stirred for 30 min, quenched with aqueous 1 M HCl (5 mL), 

and extracted with CHCl3 (4 x 10 mL). The combined organic extracts were dried over Na2SO4, and 

concentrated. The residue was purified by preparative layer chromatography (EtOAc/MeOH 9:1) to give 

4.5 mg of saxorumamide (2: 46%) and 3.8 mg of isosaxorumamide (3: 39%). saxorumamide (2): a white 

amorphous solid; []𝐷
22 = –107.3 (c 0.35, MeOH); IR (film) 3294, 2939, 2872, 1755, 1646, 1461, 1074 

cm−1; 1H NMR (500 MHz, CDCl3)  7.00 (dq, J = 1.7, 1.7 Hz, 1H), 4.93 (ddq, J = 2.3, 1.7, 1.7 Hz, 1H), 

4.08 (ddd, J = 14.3, 2.9, 2.9 Hz, 1H), 3.92 (ddd, J = 10.6, 6.3, 6.3 Hz, 1H), 3.86 (dd, J = 8.6, 2.3 Hz, 1H), 

3.78 (ddd, J = 10.3, 10.3, 2.9 Hz, 1H), 2.60 (ddd, J = 13.9, 12.3, 1.2 Hz, 1H), 2.43–2.33 (m, 3H), 2.15–

2.06 (m, 2H), 2.00 (dddd, J = 12.3, 6.3, 6.3, 2.9 Hz, 1H), 1.95 (dd, J = 1.7, 1.7 Hz, 3H), 1.83–1.69 (m, 

2H), 1.47–1.32 (m, 2H), 1.14 (d, J = 6.6 Hz, 3H); 13C NMR (125 MHz, CDCl3)  174.6 (C), 174.3 (C), 

146.0 (CH), 131.3 (C), 83.7 (CH), 80.3 (CH), 80.2 (CH), 56.3 (CH), 55.2 (CH), 40.6 (CH2), 37.8 (CH), 

36.1 (CH2), 30.9 (CH2), 25.9 (CH2), 22.6 (CH2), 16.0 (CH3), 11.0 (CH3); HRMS (ESI), calcd for 

C17H24NO4
+ (M+H)+ 306.1705, found 306.1700. isosaxorumamide (3): a white amorphous solid; []𝐷

22 

= –59.7 (c 0.13, MeOH); IR (film) 3296, 2933, 2872, 1757, 1682, 1456, 1072, 1043, 754 cm−1; 1H NMR 

(500 MHz, CDCl3)  7.17 (dq, J = 1.7, 1.7 Hz, 1H), 4.80 (ddq, J = 6.9, 1.7, 1.7 Hz, 1H), 4.12–4.06 (m, 

1H), 3.92 (ddd, J = 10.6, 6.0, 6.0 Hz, 1H), 3.88 (ddd, J = 10.0, 10.0, 2.9 Hz, 1H), 3.52 (dd, J = 8.0, 6.9 

Hz, 1H), 2.62 (ddd, J = 13.8, 12.0, 1.2 Hz, 1H), 2.38 (dd, J = 10.6, 4.6 Hz, 2H), 2.19–2.08 (m, 3H), 2.06–

1.99 (m, 1H), 1.94 (dd, J = 1.7, 1.7 Hz, 3H), 1.81–1.61 (m, 2H), 1.50–1.35 (m, 2H), 1.14 (d, J = 6.0 Hz, 

3H); 13C NMR (125 MHz, CDCl3)  174.2 (C), 174.1 (C), 147.3 (CH), 130.9 (C), 85.7 (CH), 83.1 (CH), 

79.8 (CH), 56.0 (CH), 55.7 (CH), 40.5 (CH2), 39.8 (CH), 36.1 (CH2), 31.0 (CH2), 26.0 (CH2), 22.7 (CH2), 

16.7 (CH3), 10.9 (CH3); HRMS (ESI), calcd for C17H24NO4
+ (M+H)+ 306.1705, found 306.1710. 

 

*The optical rotations for natural samples of saxorumamide (2) and isosaxorumamide (3) were reported 

as []𝐷
20 = –15.4 (c 0.35, MeOH) and []𝐷

20 = –152 (c 0.13, MeOH), respectively.4 Unfortunately, 1H 

NMR spectra of their natural samples apparently contain impurities, see their supporting information. 
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A-3. Total Synthesis of Stemonine (4) 

 
14,15-Dehydrostemonine (197) and 13-epi-14,15-dehydrostemonine (epi-197) 

1,1,3,3-Tetramethyldisiloxane (24 μL, 130 μmol, 1.5 equiv) was added to a mixture of stemoamide (1, 

19.9 mg, 89.1 μmol, 1.0 equiv), IrCl(CO)(PPh3)2 (0.7 mg, 0.9 μmol, 1 mol %) and toluene (6.0 mL), which 

was kept in water bath at 20 °C. The resulting solution was stirred for 1 h at 20 °C. Then, MeCN (30 mL) 

and triisopropyl((3-methylfuran-2-yl)oxy)silane 735 (75 μL, 250 μmol, 2.8 equiv) and 2-nitrobenzoic acid 

(75.0 mg, 449 μmol, 5.0 equiv) were added to the solution at 20 °C. After stirring for 24 h at 20 °C, the 

solution was acidified with aqueous 0.05 M HCl (10 mL). The mixture was extracted with aqueous 0.05 

M HCl (3 x 10 mL). The combined extracts were basified with aqueous saturated NaHCO3 (10 mL), and 

extracted with CHCl3 (3 x 30 mL). The combined organic extracts were dried over Na2SO4, and 

concentrated. The residue was purified by preparative layer chromatography (EtOAc) to give 11.6 mg of 

197 (43%) and 8.3 mg of epi-197 (30%): 14,15-dehydrostemonine (197): a white solid; []𝐷
23 = –202.3 

(c 1.0, MeOH); mp 64–65 °C; IR (film) 2934, 2873, 1759, 1456, 1359, 1324, 1185, 1007, 729 cm−1; 1H 

NMR (500 MHz, CDCl3) δ 6.99 (qd, J = 1.6, 1.4 Hz, 1H), 4.84–4.79 (m, 1H), 4.20 (ddd, J = 10.9, 10.3, 

3.7 Hz, 1H), 3.66–3.60 (m, 1H), 3.43–3.37 (m, 1H), 3.33 (ddd, J = 8.0, 6.6, 6.6 Hz, 1H), 2.92 (ddd, J = 

15.8, 10.6, 1.7 Hz, 1H), 2.42 (dq, J = 12.3, 6.9 Hz, 1H), 2.35–2.29 (m, 1H), 2.25 (ddd, J = 12.3, 10.3, 5.4 

Hz, 1H), 1.99–1.90 (m, 1H), 1.94 (dd, J = 1.6, 1.4 Hz, 3H), 1.87–1.79 (m, 1H), 1.63–1.50 (m, 4H), 1.41 

(dddd, J = 12.6, 12.3, 10.9, 5.4 Hz, 1H), 1.24 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 178.4 

(C), 174.2 (C), 146.5 (CH), 131.4 (C), 85.0 (CH), 79.1 (CH), 63.2 (CH), 58.3 (CH), 53.1 (CH), 46.5 (CH2), 

39.4 (CH), 34.5 (CH2), 27.3 (CH2), 26.8 (CH2), 21.4 (CH2), 14.1 (CH3), 10.9 (CH3); HRMS (ESI), calcd 

for C17H24NO4
+ (M+H)+ 306.1705, found 306.1701. 13-epi-14,15-dehydrostemonine (epi-197): a 

colorless oil; []𝐷
23 = –83.7 (c 1.0, MeOH); IR (film) 2934, 2872, 1748, 1455, 1323, 1186, 1097, 1003, 

727 cm−1; 1H NMR (500 MHz, CDCl3) δ 7.01 (dq, J = 2.0, 1.7 Hz, 1H), 5.00–4.96 (m, 1H), 4.26 (ddd, J 

= 10.6, 10.6, 3.4 Hz, 1H), 3.58 (ddd, J = 9.5, 5.7, 5.7 Hz, 1H), 3.47 (ddd, J = 6.9, 6.9, 3.7 Hz, 1H), 3.13–

3.07 (m, 1H), 2.89 (ddd, J = 15.2, 11.5, 0.6 Hz, 1H), 2.43 (dq, J = 12.6, 6.9 Hz, 1H), 2.36–2.30 (m, 1H), 

2.20 (ddd, J = 12.6, 10.6, 5.7 Hz, 1H), 1.94 (dd, J = 2.0, 1.7 Hz, 3H), 1.84–1.75 (m, 2H), 1.63–1.35 (m, 

5H), 1.24 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 178.6 (C), 174.4 (C), 146.8 (CH), 131.2 (C), 

82.1 (CH), 79.0 (CH), 62.8 (CH), 57.9 (CH), 53.0 (CH), 46.0 (CH2), 39.7 (CH), 34.6 (CH2), 27.1 (CH2), 

24.6 (CH2), 23.3 (CH2), 14.2 (CH3), 11.0 (CH3); HRMS (ESI), calcd for C17H24NO4
+ (M+H)+ 306.1705, 

found 306.1702. 
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NOESY experiment for 197 and epi-197 

 
197 and epi-197 (500 MHz, CDCl3)  

 

 

Isomerization of 13-epi-14,15-dehydrostemonine (epi-197) 

 

 
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 5 L, 30 mol, 2 equiv) was added to a solution of epi-197 

(4.4 mg, 14.4 mol, 1.0 equiv) and CH2Cl2 (1 mL) at room temperature. After stirring for 3 h, the resulting 

solution was quenched with H2O (5 mL), and extracted with CHCl3 (3 x 5 mL). The combined organic 

extracts were washed with brine, dried over Na2SO4, and concentrated. The residue was purified with 

silica gel column chromatography (EtOAc/Hexane 2:1 to 1:0) to give 4.2 mg of 197 and epi-197 (95%, 

197: epi-197 = 1.2:1). 

 

 
Stemonine (4) 

Rhodium on alumina (5 wt%, 2.9 mg) was added to a solution of butenolide 197 (5.8 mg, 19 mol) and 

EtOH (1.0 mL). The flask was purged with hydrogen. The mixture was stirred under hydrogen atmosphere 

(1 atm) at room temperature for 3 h, filtered through a pad of Celite®, washed with EtOAc, and 

concentrated. The residue was filtered through a pad of basic alumina, and then purified with silica gel 

column chromatography (EtOAc/Hexane 2:1 to 1:0) to give 5.7 mg of stemonine (4) (98%): a white solid; 

[]𝐷
22 = –108.6 (c 0.2, acetone) [lit.6 []𝐷

21 81.1 (c 0.2, acetone)]; mp 53–54 °C; IR (film) 2934, 2874, 

1768, 1455, 1188, 1009, 729 cm−1; 1H NMR (500 MHz, CDCl3) δ 4.22 (ddd, J = 10.9, 10.0, 3.4 Hz, 1H), 

4.18 (ddd, J = 11.2, 7.5, 5.4 Hz, 1H), 3.68 (ddd, J = 11.7, 5.7, 5.2 Hz, 1H), 3.53 (dd, J = 15.8, 4.0 Hz, 1H), 

3.30 (ddd, J = 9.5, 7.5, 6.3 Hz, 1H), 2.89 (dd, J = 15.8, 11.2 Hz, 1H), 2.61 (ddq, J = 12.3, 8.6, 6.9 Hz, 1H), 
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2.42 (dq, J = 12.3, 6.9 Hz, 1H), 2.37 (ddd, J = 12.6, 8.6, 5.4 Hz, 1H), 2.35–2.29 (m, 1H), 2.26 (ddd, J = 

12.3, 10.0, 5.2 Hz, 1H), 1.95 (dddd, J = 13.1, 7.2, 6.3, 1.2 Hz, 1H), 1.85 (dddd, J = 11.7, 7.2, 7.2, 1.2 Hz, 

1H), 1.65 (ddddd, J = 14.9, 13.2, 11.2, 4.0, 1.7 Hz, 1H), 1.60–1.49 (m, 3H), 1.48–1.36 (m, 2H), 1.26 (d, J 

= 6.9 Hz, 3H), 1.24 (d, J = 6.9 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 179.6 (C), 178.5 (C), 83.4 (CH), 

79.1 (CH), 64.3 (CH), 58.8 (CH), 53.2 (CH), 46.5 (CH2), 39.4 (CH), 35.0 (CH), 34.54 (CH2), 34.49 (CH2), 

27.3 (CH2), 26.7 (CH2), 20.9 (CH2), 15.1 (CH3), 14.1 (CH3); HRMS (ESI), calcd for C17H26NO4
+ (M+H)+ 

308.1862, found 308.1864. 
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B. Comparison of Synthetic Routes for Total Syntheses and Formal Syntheses of Stemoamides  

1. Enantioselective Total Synthesis 

group year starting material LLS total yield scale of 
stemoamide 

Williams 1994 
(R)-(–)-methyl-3-hydroxy-2-

methyl propionate 
25 steps 5.6% N/A 

Mori 1996 
(5S)-5-(hydroxymethyl)-2-

pyrrolidinone 
13 steps 8.3% 6.3 mg 

Jacobi 2000 
(5S)-5-(hydroxymethyl)-2-

pyrrolidinone 
7 steps 4.2% 18 mg 

Sibi 2004 
(5S)-5-(hydroxymethyl)-2-

pyrrolidinone 
14 steps 7.0% N/A 

Olivo 2006 succiniimide 13 steps <14.1%* 25 mg 

Somfai 2007 
(5S)-5-(hydroxymethyl)-2-

pyrrolidinone 
12 steps 19.6% 6.8 mg 

Honda 2011 
(5S)-5-(hydroxymethyl)-2-

pyrrolidinone 
9 steps 23.4% 32.2 mg 

Hong 2012 4-chlorobutanoyl chloride 12 steps 18.7% 24.7 mg 

Sato/Chida 2016 (+)-dimethyl L-tartrate 22 steps 2.2% 8.9 mg 

Sato/Chida 2017 ethyl 4-bromobutyrate 7 steps 19.2% 1.07 g 

* Yields of first three steps are not reported 

 

2. Racemic Total Synthesis 

group year starting material LLS total yield scale of 
stemoamide 

Narasaka 1996 4-Methyl-3-penten-2-one 14 steps 1.1% 12 mg 

Jacobi 1997 4-chlorobutanoyl chloride 7 steps 19.9% 438 mg 

Bates 2009 succinimide 11 steps 5.70% N/A 

Hong 2011 propargyl bromide 9 steps 30.1%** 166 mg 

Zhang, Qiu 2014 3-Methyl-2(5H)-furanone 7 steps 5.1% 24 mg 

** They originally counted the steps starting from 4-buromobutanal, which is not generally commercially 

available. 
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3. Enantioselective Formal Synthesis 

group Year starting material possible LLS 

Gurjar 2002 diacetone-D-glucose 22 steps 

Cossy 2006 2,4-pentanedione 11 steps 

Chavan 2012 (–)-methyl Pyroglutamate 18 steps 

 

4. Racemic Formal Synthesis 

group Year starting material possible LLS 

Cossy 2006 dihydrofuran 12 steps 

Rosales/Rodriguez-

Garcia/ Oltra 
2014 succinimide 6 steps 

Pilli 2015 TMS-siloxyfuran 6 steps 
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C. Comparison of Spectral Data with Natural Products 

Comparison of 1H NMR of saxorumamide (2) 

 

 our synthetic sample natural sample 

Proton 1H NMR (500 MHz, CDCl3) 1H NMR (300 MHz, CDCl3) 

13 7.00 (qd, J = 1.7, 1.7 Hz, 1H) 6.99 (m, 1H) 

12 4.92 (ddq, J = 2.3, 1.7, 1.7 Hz, 1H) 4.96 (dd, J = 3.8, 2.0 Hz, 1H) 

5 4.08 (ddd, J = 14.3, 2.9, 2.9 Hz, 1H) 4.08 (dd, J = 14.0, 2.3 Hz, 1H) 

9a 3.92 (ddd, J = 10.9, 6.3, 6.3 Hz, 1H) 3.93 (m, 1H) 

11 3.86 (dd, J = 8.9, 2.3 Hz, 1H) 3.87 (dd, J = 8.8, 2.0 Hz, 1H) 

8 3.78 (ddd, J = 10.3, 10.3, 2.9 Hz, 1H) 3.78 (ddd, J = 13.0, 10.2, 2.7 Hz, 1H) 

5 2.60 (ddd, J = 13.8, 12.3, 1.2 Hz, 1H) 2.60 (dd, J = 14.0, 12.4 Hz, 1H) 

2, 10 2.43–2.33 (m, 3H) 2.38 (m, 1H), 2.37 (m, 2H) 

7, 9 2.15–2.06 (m, 2H) 2.12 (m, 1H), 2.10 (m, 1H) 

1 2.00 (dddd, J = 12.3, 6.3, 6.3, 2.9 Hz, 1H) 2.02 (m, 1H) 

16 1.95 (dd, J = 1.7, 1.7 Hz, 3H) 1.94 (dd, J = 1.7, 1.7 Hz, 3H) 

1, 6 1.83–1.69 (m, 2H) 1.77 (m, 1H), 1.74 (m, 1H) 

6, 7 1.47–1.32 (m, 2H) 1.42 (m, 1H), 1.38 (m, 1H) 

17 1.14 (d, J = 6.6 Hz, 3H) 1.10 (d, J = 6.6 Hz, 3H) 
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Comparison of 13C NMR of saxorumamide (2) 

 

 our synthetic sample natural sample 

Carbon 13C NMR (125 MHz, CDCl3) 13C NMR (100 MHz, CDCl3) 

3, 15 174.6 (C), 174.3 (C) 174.1 (C), 174.1 (C) 

13 146.0 (CH) 145.8 (CH) 

14 131.3 (C) 131.2 (C) 

11 83.7 (CH) 83.6 (CH), 

8, 12 80.3 (CH), 80.2 (CH) 80.1 (CH), 80.1 (CH) 

9a 56.3 (CH) 56.0 (CH) 

9 55.2 (CH) 55.1 (CH) 

5 40.6 (CH2) 40.4 (CH2) 

10 37.8 (CH) 37.6 (CH) 

7 36.1 (CH2) 36.0 (CH2) 

2 30.9 (CH2) 30.7 (CH2) 

6 25.9 (CH2) 25.8 (CH2) 

1 22.6 (CH2) 22.4 (CH2) 

17 16.0 (CH3) 15.9 (CH3) 

16 11.0 (CH3) 10.8 (CH3) 
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Comparison of 1H NMR of isosaxorumamide (3) 

 

 our synthetic sample natural sample 

Proton 1H NMR (500 MHz, CDCl3) 1H NMR (300 MHz, CDCl3) 

13 7.17 (dq, J = 1.7, 1.7 Hz, 1H) 7.15 (t, J = 1.6 Hz, 1H) 

12 4.80 (ddq, J = 6.9, 1.7, 1.7 Hz, 1H) 4.78 (ddd, J = 6.9, 3.9, 1.8 Hz, 1H) 

5 4.12–4.06 (m, 1H) 4.08 (m, 1H) 

9a 3.92 (ddd, J = 10.6, 6.0, 6.0 Hz, 1H) 3.92 (m, 1H) 

8 3.88 (ddd, J = 10.0, 10.0, 2.9 Hz, 1H) 3.88 (m, 1H) 

11 3.52 (dd, J = 8.0, 6.9 Hz, 1H) 3.52 (dd, J = 7.9, 6.9 Hz, 1H) 

5 2.62 (ddd, J = 13.8, 12.0, 1.2 Hz, 1H) 2.62 (m, 1H) 

2 2.38 (dd, J = 10.6, 4.6 Hz, 2H) 2.38 (dd, J = 10.5, 4.4 Hz, 2H) 

7, 9, 10 2.19–2.08 (m, 3H) 2.15 (m, 1H), 2.12 (m, 1H), 2.12 (m, 1H) 

1 2.06–1.99 (m, 1H) 2.01 (m, 1H) 

16 1.94 (dd, J = 1.7, 1.7 Hz, 3H) 1.93 (dd, J = 1.9, 1.7 Hz, 3H) 

1, 6 1.81–1.61 (m, 2H) 1.75 (m, 1H), 1.70 (m, 1H) 

6, 7 1.50–1.35 (m, 2H) 1.42 (m, 1H), 1.40 (m, 1H) 

17 1.14 (d, J = 6.0 Hz, 3H) 1.13 (d, J = 8.0 Hz, 3H) 
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Comparison of 13C NMR of isosaxorumamide (3) 

 

 our synthetic sample natural sample 

Carbon 13C NMR (125 MHz, CDCl3) 13C NMR (100 MHz, CDCl3) 

3, 15 174.2 (C), 174.1 (C) 174.0 (C), 174.0 (C) 

13 147.3 (CH) 147.0 (CH) 

14 130.9 (C) 130.8 (C) 

11 85.7 (CH) 85.6 (CH) 

12 83.1 (CH) 82.9 (CH) 

8 79.8 (CH) 79.7 (CH) 

9a 56.0 (CH) 55.9 (CH) 

9 55.7 (CH) 55.6 (CH) 

5 40.5 (CH2) 40.4 (CH2) 

10 39.8 (CH) 39.7 (CH) 

7 36.1 (CH2) 36.0 (CH2) 

2 31.0 (CH2) 30.8 (CH2) 

6 26.0 (CH2) 25.9 (CH2) 

1 22.7 (CH2) 22.6 (CH2) 

17 16.7 (CH3) 16.5 (CH3) 

16 10.9 (CH3) 10.7 (CH3) 
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Comparison of 1H NMR of stemonine (4) 

 
 our synthetic sample Williams’ synthetic sample 

Proton 1H NMR (500 MHz, CDCl3) 1H NMR (400 MHz, CDCl3) 

8 4.22 (ddd, J = 10.9, 10.0, 3.4 Hz, 1H) 
4.24–4.12 (m, 2H) 

13 4.18 (ddd, J = 11.2, 7.5, 5.4 Hz, 1H) 

9a 3.68 (ddd, J = 11.7, 5.7, 5.2 Hz, 1H) 3.67 (dt, J = 10.1, 5.0, 5.0 Hz, 1H) 

5 3.53 (dd, J = 15.8, 4.0 Hz, 1H) 3.53 (dd, J = 15.9, 4.8 Hz, 1H) 

3 3.30 (ddd, J = 9.5, 7.5, 6.3 Hz, 1H) 3.33–3.27 (m, 1H) 

5 2.89 (dd, J = 15.8, 11.2 Hz, 1H) 2.88 (dd, J = 15.8, 11.1 Hz, 1H) 

15 2.61 (ddq, J = 12.3, 8.6, 6.9 Hz, 1H) 2.61 (ddq, J = 12.3, 8.4, 6.9 Hz, 

1H) 10 2.42 (dq, J = 12.3, 6.9 Hz, 1H) 

2.46–2.22 (m, 4H) 
14 2.37 (ddd, J = 12.6, 8.6, 5.4 Hz, 1H) 

7 2.35–2.29 (m, 1H) 

9 2.26 (ddd, J = 12.3, 10.0, 5.2 Hz, 1H) 

2 1.95 (dddd, J = 13.1, 7.2, 6.3, 1.2 Hz, 1H) 1.96–1.90 (m, 1H) 

1 1.85 (dddd, J = 11.7, 7.2, 7.2, 1.2 Hz, 1H) 1.88–1.81 (m, 1H) 

6 1.65 (ddddd, J = 14.9, 13.2, 11.2, 4.0, 1.7 Hz, 

1H) 1.69–1.30 (m, 6H) 1, 6, 14 1.60–1.49 (m, 3H) 

2, 7 1.48–1.36 (m, 2H) 

17 1.26 (d, J = 6.9 Hz, 3H) 1.26 (d, J = 7.1 Hz, 3H) 

12 1.24 (d, J = 6.9 Hz, 3H) 1.23 (d, J = 7.8 Hz, 3H) 

 

*The structure of stemonine was unambiguously determined by X-ray crystallographic analysis by 

Koyama and Oda in 1970.7 However, 1H and 13C NMR data of the natural sample were not reported. The 

Williams’ group compared with an authentic sample of stemonine, as well as 1H NMR, IR, and mass 

spectra of the natural product gifted by Yang Ye, Shanghai Institute of Materia Medica.6 
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Comparison of 13C NMR of stemonine (4) 

 
our synthetic sample Williams’ synthetic sample 

13C NMR (125 MHz, CDCl3) 13C NMR (100 MHz, CDCl3) 

179.6 (C) 179.5 (C) 

178.5 (C) 178.4 (C) 

83.4 (CH) 83.4 (CH) 

79.1 (CH) 78.9 (CH) 

64.3 (CH) 64.1 (CH) 

58.8 (CH) 58.5 (CH) 

53.2 (CH) 53.1 (CH) 

46.5 (CH2) 46.3 (CH2) 

39.4 (CH) 39.2 (CH) 

35.0 (CH) 34.9 (CH) 

34.54 (CH2) 
34.3 (CH2) 

34.49 (CH2) 

27.3 (CH2) 27.2 (CH2) 

26.7 (CH2) 26.6 (CH2) 

20.9 (CH2) 20.7 (CH2) 

15.1 (CH3) 14.9 (CH3) 

14.1 (CH3) 13.9 (CH3) 

 

*The structure of stemonine was unambiguously determined by X-ray crystallographic analysis by 

Koyama and Oda in 1970.7 However, 1H and 13C NMR data of the natural sample were not reported. 

The Williams’ group compared with an authentic sample of stemonine, as well as 1H NMR, IR, and 

mass spectra of the natural product gifted by Yang Ye, Shanghai Institute of Materia Medica.6  
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