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Nomenclature 
 

Roman symbols 

𝐴 Area where applied force acts 

𝐴𝑐 Intersectional area between rake face of tool and workpiece 

𝐴′ Projected area onto slip plane 

𝑏  Burgers vector 

𝐵 Correlation length 

𝑐 Semimajor axis 

𝐶 Cleavage fracture parameter 

𝑑 Semiminor axis 

𝑑𝑐 Critical uncut chip thickness 

𝑑𝑚𝑎𝑥 Maximal uncut chip thickness 

𝐷 Diameter of cavity 

𝑒  Base of natural logarithm 

𝐸 Young’s modulus 

𝐸𝑖𝑛  Energy stored in a cavity 

𝐸𝑠 Specific cutting energy 

𝐸(𝑥, 𝑦, 𝑧) Electric field in a cavity 

𝑓 Feed per revolution 

𝑓0 Off-set frequency 

𝑓𝑛 Mode frequency for 𝑛-th order 

𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 Chatter frequency 

𝑓𝑟𝑒𝑝 Repetitive frequency 

𝑓𝑟𝑒𝑠 Resonant frequency 

𝐹 Applied force on a crystal 

𝐹′ Projected force onto slip plane 

𝐹𝑐  Cutting force 

𝐹𝑡  Thrust force 

𝐺 Rigidity modulus 

𝐻 Hardness 

𝑘 Mode interval between the resonances 

𝐾𝑐  Fracture toughness 

𝑙 Contact length 

𝐿  Cavity length 

𝐿𝑐ℎ𝑎𝑡𝑡𝑒𝑟 Measurement length for chatter marks 

𝑚 Mode number (integer) (except for chapter 3) 

𝑚 Schmid factor for 𝑖-th slip or twinning system (chapter 3) 

𝑛 Refractive index 
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𝑛𝑐ℎ𝑎𝑡𝑡𝑒𝑟 Wavenumber of chatter mark 

𝑛𝑒𝑓𝑓 Effective refractive index 

𝑝 Number of coalesced a{100} dislocation 

𝑃 Plastic deformation parameter 

𝑃𝑜𝑢𝑡 Energy dissipated from a cavity per cycle 

𝑃𝑡ℎ Threshold value of the optical input power 

𝑄  Quality factor 

𝑄𝑖  Intrinsic Q factor 

𝑄𝑟  Q factor related to loss due to radiation and affected by the bending loss 

𝑄𝑏,𝑎𝑏𝑠  Q factor affected by the absorption loss of the bulk material 

𝑄𝑠,𝑎𝑏𝑠  Q factor affected by surface absorption due to the lattice transformation  

𝑄𝑠𝑐𝑎𝑡  Q factor affected by the Rayleigh scattering due to the surface roughness 

𝑄𝑇𝑃𝐴 Q factor affected by the loss due to two-photon absorption (TPA) 

𝑄𝑇𝑃𝐴,𝐹𝐶 Q factor affected by the loss due to TPA-induced free carrier absorption 

𝑅  Nose radius 

𝑅𝑎  Arithmetic surface roughness per line (one dimension) 

𝑅𝑞 Root-mean-square surface roughness 

𝑅𝑦 Theoretical surface roughness 

𝑆𝑎  Arithmetic surface roughness per area (two dimension) to 

𝑇 Rotational speed of turning spindle 

𝑇𝑖(𝜇) Parameter estimating the probability of slip activation 

𝑈 Total energy for crack initiation 

𝑈𝐸 Elastic energy 

𝑈𝑆 Surface energy 

𝑉 Cavity volume 

𝑉𝑓 Cutting speed 

𝑣𝑙 Frequency of the 𝑙-th longitudinal mode 

𝑉𝑚  Mode volume 

𝑤 Width of dislocation 

𝑊𝐿 Mechanical energy of the body (amount of work done by the applied loads) 

𝑤𝑝 Plastic work required to spread the crack 

 

Greek symbols 

𝛼 Rake angle  

𝛼𝑎𝑏𝑠 Absorption coefficient 

𝛽 Force angle 

𝛾 Specific surface energy 

𝛿 Cutting direction 

휀  Dielectric constant of the cavity 

𝜃 Angle between the applied stress and slip plane normal vector 
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𝛬 Correction factor 

𝜆  Angle between the applied stress and slip direction 

𝜆𝑚 Resonant wavelength for 𝑚-th order 

𝜆𝑒𝑓𝑓 Effective resonant wavelength 

𝜆𝑖 Input wavelength 

𝜆𝑟 Resonant wavelength 

𝜆𝐹𝑊𝐻𝑀 Full width at half maximum of the resonant wavelength 

𝜈 Poison’s ratio 

𝜌  Radius of curvature 

𝜎 Tensile stress 

𝜎𝑎 Applied tensile stress 

𝜎𝑐 Resolved tensile stress 

𝜎𝐹 Breaking stress for fracture 

𝜎𝐿 Constant load for crack initiation 

𝜏𝑝ℎ𝑜𝑡  Photon lifetime 

𝜏𝑝𝑛 Peierls-Nabarro stress 

𝜏𝑠 Resolved shear stress 

𝜏𝑐𝑟𝑖𝑡 Critical resolved shear stress 

𝜏𝑖
𝑐𝑟𝑖𝑡 Critical resolved shear stress for 𝑖-th slip system 

𝜑 Angle between the applied stress and cleavage plane normal vector 

𝜒 Fitting coefficient 

𝜔 Resonant angular frequency 

𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙 Natural vibration frequency 

 

Matrix and vector 

𝒃  Burgers vector 

𝑪𝒑 Cleavage plane normal vector 

𝑭 Applied force 

𝒍  Dislocation line 

𝑺𝒅 Slip direction vector 

𝑺𝒑 Slip plane normal vector 

 

Superscript 

𝑖  𝑖-th slip or twinning system 

𝑗  𝑗-th cleavage 

 

Abbreviations 

AFM Atomic Force Microscope 

ATT Attenuator 
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BDT Brittle-Ductile Transition 

BCC Body-Centered Cubic 

B-NPD Boron-Doped Nano-Polycrystalline Diamond 

BS Basal Slip 
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CaF2 Calcium Fluoride 

CCD Charge Coupled Device 

CRSS Critical Resolved Shear Stress 

DOC Depth Of Cut 

EBSD Electron BackScatter Diffraction 

EDFA Erbium Doped Fiber Amplifier 

EEM Elastic Emission Machining 

FCC Face-Centered Cubic 

FEM Finite Element Method 

FSR Free Spectral Range 

FFT Fast Fourier Transfer 

FWM Four-Wave Mixing 

HCP Hexagonal Closest Packed 

IFFT Inverse Fast Fourier Transfer 

LiNbO3 Lithium Niobate 

LED Light Emitting Diode 

MgF2 Magnesium Fluoride 

NC Numerical Control 

NPD Nano-Polycrystalline Diamond 

PC Prismatic Cleavage (except for chapter 6) 

PC Polarization Controller (in chapter 6) 

PCD Poly Crystalline Diamond 

PDMS Polydimethylsiloxane 

PhC Photonic Crystal 

PRS Prismatic Slip 

PWM Power Meter 

PYS Pyramidal Slip 

RC Rhombohedral Cleavage 

RT Rhombohedral Twinning 

SCD Single Crystalline Diamond 

SEM Scanning Electron Microscope 
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1. Introduction 
  Development of optical technology has drastically changed and enriched people’s lives. 

The technology has contributed to electrical devices such as cell phones, personal 

computers, digital cameras, or optical fibers, light sources of LED or laser, photodiode, 

CCD. Even now, its application is expanding and the technology becomes essential more 

and more. As a recent advanced technique, an optical microcavity is attracting interests 

as a next-generation optical device. The microcavity is capable of confining light at a 

certain spot for a certain amount of time, hence, it is a candidate for high sensitive bio-

sensors, source of low-power laser and optical frequency comb, or all-optical signal 

processing.  

  These devices have been supported by micro and nanomanufacturing processes. 

Although etching or electron beam lithography are considered to be suitable for 

fabricating materials in nanoscale, recent advancement of ultra-precision machine tool 

enabled us to obtain a nanometric surface in a machining process. Supported by 

improvement of motion and positioning accuracy of machine tools and enhancement of 

cutting edge accuracy, ultra-precision technique lead us to machine brittle materials．It 

has been natural that ceramics materials, for instance, glasses or optical materials are 

machined by brittle mode and finished by polishing, however, ultra-precision machining 

process opened a new avenue towards developing a ductile-regime machining of the 

brittle materials i.e. machining of those without brittle fracture. In 1990, Blake and 

Scattergood presented the existence of critical depth of cut in the brittle-ductile 

transitional area in diamond turning of single crystalline silicon and germanium [1]. 

When the depth of cut, which corresponds to relative magnitude of the displacement 

between a cutting tool and workpiece, is shallower than some critical value, crack-free 

surface can be achieved. Their works spurred many researchers to focus on analyzing 

the mechanism of brittle materials machining all over the world. Then, ultra-precision 

machining process is one of the strong options to fabricate ceramics, in addition to 

lithography or etching process. In particular, it has been used for manufacturing of 

complicated shapes, such as freeform optics. However, a lot of challenges still remain in 

cutting of brittle materials. Especially, machining of crystalline materials is still difficult 

because its crystallographic effect has to be considered due to the size effect caused by 

depth of cut in nanometric level. Additionally, there are not many studies which 

comprehensively discuss the surface integrity, including the subsurface region. 

  The objective of this dissertation aims to investigate the cutting mechanisms of single 

crystalline materials and establish the manufacturing process of high-Q WGM 

(Whispering Gallery Mode) crystalline microcavities using only an ultra-precision 

cutting process. The cavity performance strongly depends on the cavity shape, surface 
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quality, and material properties. For the material properties, single crystalline CaF2 

(Calcium Fluoride) and sapphire show the potential for the high-Q WGM microcavity. To 

make a crystalline microcavity, a cutting process is required because the process enables 

to make a microcavity with high form accuracy. However, the cutting process induces 

brittle fracture on the surface and distortion of crystalline lattice in subsurface region, 

due to the brittleness and crystal anisotropy. Therefore, their machinability is still an 

issue. In terms of crystallography, the surface and subsurface integrity of CaF2 and 

sapphire in ultra-precision cutting were scrutinized on the basis of the resolved stress 

model. Based on the obtained results, CaF2 WGM microcavities were manufactured by 

only the ultra-precision cutting, and the influence of the ultra-precision cutting on the 

cavity performance was clarified.
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2. State of the art 
  This chapter provides fundamentals of optical microcavity and its application. Further, 

it will give some general background information about machining of brittle materials. 

For both optics and manufacturing fields, short literature reviews are described. Finally, 

the objective of the research will be presented. 

 

2.1 Optical microcavity 

2.1.1 Characteristics 

  Recent advancement of nanofabrication technique enabled us to downsize the cavity 

size and manufacture a various cavity shape [2]. However, regardless of the cavity size 

or shape, the basic theory of the cavity system does not greatly change compared to the 

classical model. In this section, the characteristics of the cavity, principle of optical 

microcavity, quality factor, and mode volume are described. 

 

Principle of optical microcavity 

  Optical microcavity is an optical device that can confine light in a certain space, and 

generally the size is less than millimeter scale. The confinement can be realized by the 

“resonance”．Fabry-Perot cavity is chosen as an example of explaining the cavity system. 

In the Fabry-Perot cavity, two complete reflection mirrors are deployed opposite, and the 

light is repetitively reflected (Fig. 2-1(a)). When the phase shifting does not occur during 

the light path, the light can be amplified by the interaction between light and matter．

This is so-called “resonance”, and Eq.(2-1) holds [3]． 

𝑚𝜆𝑚 = 2𝑛𝐿 (2-1) 

  In other words, an optical path in the cavity 2𝑛𝐿 corresponds to the integral multiple 

of the input light wavelength 𝑚𝜆𝑚, and the light can be confined (Fig. 2-1(b)). At the 

same time, the different resonance modes exist according to the mode numbers 𝑚. 

 

 

 

Fig. 2-1 Schematic illustration of (a) Fabry-Perot cavity system and (b) 𝒎th-order modes excited in 

a Fabry-Perot cavity [3]. 

(a) (b)

Input light Output light

m-th order
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Quality factor 

  Once after light is confined in the cavity, the light attenuates by being absorbed in the 

cavity. Quality factor (Q factor) is one of the most important values to evaluate the 

duration time of confining light. Q factor is defined as “How long a cavity can confine 

light.”，and expressed by Eq.(2-2) [3]． 

𝑄 = 𝜔
𝐸𝑖𝑛

𝑃𝑜𝑢𝑡
 (2-2) 

  This equation indicates that the larger the stored energy 𝐸 is and the smaller the 

dissipated energy per cycle 𝑃𝑜𝑢𝑡 is, the longer the light can be confined in the cavity. 

Eq.(2-2) can be re-written by Eq.(2-3). 

𝑄 = 𝜔𝜏𝑝ℎ𝑜𝑡 (2-3) 

  The photon lifetime 𝜏𝑝ℎ𝑜𝑡 expresses the time until when intensity of the confined light 

attenuates to one-𝑒 times. The longer the photon lifetime is, the longer the interaction 

time between light and matter. Given that there is no loss in the cavity, the Q factor can 

be infinitely high and the cavity can eternally confine light, however, some causes are 

limiting the Q factor in reality. The overall Q factor [4] is given by Eq.(2-4). 

𝑄𝑖
−1 = (𝑄𝑟

−1 + 𝑄𝑏,𝑎𝑏𝑠
−1 + 𝑄𝑠,𝑎𝑏𝑠

−1 + 𝑄𝑠𝑐𝑎𝑡
−1 ) + (𝑄𝑇𝑃𝐴

−1 + 𝑄𝑇𝑃𝐴,𝐹𝐶
−1 ) (2-4) 

  Intrinsic Q factor Qi consists of two main parts, linear (left brackets) and nonlinear 

(right brackets). At a low power regime, the nonlinear part can be neglected. Thus, 

focusing on the linear part, the cavity demands for an extremely smooth surface, low 

absorption coefficient, and high coupling rate, which lead to the theoretically ultra-high 

Q cavity. In other words, if even one of the Q factors show a low value, the cause can be 

a bottleneck and deteriorates the intrinsic Q factor. 

 

Mode volume 

  Mode volume is also an important factor for the cavity. The mode volume is defined as 

“How small the light-confined space can be”, and expressed by Eq.(2-5) [5]． 

𝑉𝑚 =
∭휀|𝐸(𝑥, 𝑦, 𝑧)|2𝑑𝑥𝑑𝑦𝑑𝑧

𝑚𝑎𝑥[휀|𝐸(𝑥, 𝑦, 𝑧)|2]
 (2-5) 

  The distribution of light in the cavity is expressed by Eq. (2-5), and the smaller the 

mode volume is, the energy of light per volume is larger, thus, the more easily the light 

and matter interact. Mode volume is actually related to the cavity size, therefore 

downsizing of the cavity may has a great advantage for the integration. On the basis of 

Q factor and mode volume 𝑉𝑚, various kinds of the cavities are summarized by Vahala 

[2] as shown in Fig. 2-2. 
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2.1.2 Types of microcavity 

  Owing to the micro and nano manufacturing process, several sorts of microcavities 

have been developed. Most of the cavities are simply classified into three types; (1) Fabry-

Perot, (2) Whispering gallery mode (WGM), and (3) photonic crystal (PhC). In this section, 

on the basis of the classification, several kinds of microcavities are briefly introduced. 

 

Fabry-Perot cavity 

  Fabry-Perot cavity is one of the well-known cavities, and mainly utilized for the 

oscillator of the semiconductor laser [6]．Two planar mirrors which show high reflection 

rate are arranged opposite in parallel, and the input light is repetitively reflected in-

between. 1.8×1010 (at 852 nm wavelength) Q factor can be obtained [7]. However, its 

cavity length reaches to 4 mm, therefore, it is not easy to be integrated on a chip. Recently, 

the cavity system is used to research the interaction between single atom and single 

photon. In spite of a simple structure, it can achieve Q factor of 3.5×107 at 852 nm 

wavelength which could be calculated by a finesse value of 4.8×105 with a mode volume 

of 1.690 m3 [8]. In order to overcome the challenge regarding the size of Fabry-Perot 

cavity, micropillar cavities were developed. 

  The cavity consists of a circular cross section and a core of which 0.7 − 40 m diameter, 

and fabricated using the reactive ion etching of an aluminum gallium arsenide planar 

microcavity grown by molecular beam epitaxy [9, 10]. Its cavity size of 0.5 m is 

significantly smaller than other cavities, however, the Q factor is relatively lower (e.g. 

2.0×103 Q factor at 1 m diameter). For conjunction or manipulation of emitting photons, 

 

Fig. 2-2 Micro-cavities are organized by column according to the confinement method used and by 

row according to high Q and ultrahigh Q [2]. (Vahala KJ. Optical microcavities. Nature 

2003;424(6950):839-46. Reprinted with permission from Nature Publishing Group.)  
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the micropillar cavity is appropriate. In addition, quasiatom or quantum dot can be 

integrated in the cavity as an emitter.  

 

Photonic crystal 

  Highly advanced chemical manufacturing technique e.g. etching has enabled us to 

uniformly form extremely small air holes of approximately 100 nm radius on a silicon 

slab (see the part of photonic crystal in Fig. 2-2) [2]. With the feature, PhC cavity exhibits 

epic phenomena. Because of the periodically deployed holes, periodical distribution of 

refractive indexes generates on the chip. Due to the periodical crystal structure, Bragg’s 

reflection of photons occurs same as the one of electrons i.e. the photonic band gap can 

be formed. Some specific wavelength light which corresponds to the band gap is 

prohibited to propagate, thus, can be confined. The cavity size is extremely small, and it 

is easy to integrate on a chip (Q factor of 1.2×106, mode volume of 1.7 m3) [11]. For 

more practical application, deep-ultraviolet photolithography was recently hired to 

manufacture the PhC cavity that recorded the Q factor of 2.2×105 [12]. There is an 

advantage of productivity and circuit-integrity in the case of PhC cavity, however, it is 

difficult to fabricate PhC cavity made of single crystalline materials because the 

aforementioned fabrication process is not applicable to fabricate single crystalline 

materials. Hence, it is a challenge to obtain the high Q PhC cavity with crystalline 

materials. 

 

Whispering gallery mode cavity 

  WGM microcavities are circular or spherical cavities. The word WGM is originated 

from Whispering Gallery under the dome of St. Paul’s Cathedral in London [13]. Because 

of the smooth sidewall and circularity, when one whispers, the voice wave propagates 

along the sidewall by continuous reflection along the wall, and he finally can hear his 

whisper from his back side. Analogous to the principle, an optical WGM can be explained 

as follows. When light is inputted into the WGM cavity, the light propagates along the 

cavity surface based on the total internal reflection, and it comes back to the inputted 

position. If the phase of the returned light fits the one of the inputted light, a resonance 

occurs as shown in Fig. 2-3. Based on the principle, several types of the WGM cavity was 

developed. For the coupling, a taper optical fiber can be used. The input light, indeed, 

originates from the evanescent light which was formed by the total internal reflection of 

the light in an optical fiber. 

  For the first example, microsphere cavity is chosen (see the cavity in the lower row 

and left side of WGM column in Fig. 2-2). Microsphere cavity can be formed by melting 

the tip of an optical fiber using high-power CO2 laser [14]. Owing to the surface tension 

during the cooling process, a microsphere cavity can be naturally formed. In the cavity, 
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WGM resonance generates, and high Q value of 2.0×107 with 250 m diameter can be 

achieved. Recently, the WGM resonance in the microsphere is used to attempt to 

precisely measure the diameter of the sphere [15]. Although this type of cavity features 

high Q, it is difficult to assemble and integrate in the circuits. 

  Toroid cavity is a cavity proposed by Armani [16] and regarded as a high-Q microcavity 

with 100 m diameter that features the Q factor of 108 order (see the cavity in the lower 

row and right side of WGM column in Fig. 2-2). The toroid cavity can be manufactured 

by taking four steps: 

1) Thermal film growth of SiO2 (Silicon Dioxide) is conducted on silicon substrate. 

2) Disk-shaped photoresist pad is formed on the substrate by photolithography. 

3) The substrate is processed by sacrifice layer etching using Xenon difluoride gas 

4) The cavity rim is formed by melting the outside of SiO2 by CO2 laser reflow. 

  Especially, the melting process by CO2 laser is important, and the surface can be 

smooth due to the surface tension when cooling, which leads to suppression of surface 

scattering [17]. 

  Although the above-mentioned cavities are very useful for the application, its 

manufacturing process limits the utilization of single crystalline materials. Savchenkov 

simulated the theoretical Q factors of single crystalline materials based on the bulk loss, 

and showed the potential for ultra-high Q microcavities [18]. Compared to silica which 

had been conventionally used for the base material, sapphire or LiNbO3 (Lithium 

Niobate) [19] show almost the same Q factors in a wide range of wavelength, and the Q 

factor of CaF2 was much higher [18]．One of the difficulty to manufacture the single 

crystalline microcavities is that the conventional chemical manufacturing process, for 

instance, etching is prohibited. Because of the crystal anisotropy, it is difficult to make a 

form such a bulge-shape WGM cavity [20]. Laser melting can transform the phase of 

 

Fig. 2-3 Principle of WGM resonance. When light enters the cavity from an optical fiber, the light 

propagates along the spherical internal wall in the cavity based on a total internal reflection, and 

the comes back to the inputted position. If the phase of the returned light fits the one of the inputted 

light, a resonance occurs. 

Cavity

Optical fiber

Optical signal
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material, namely, the surface can be transformed from single crystalline layer to 

polycrystalline one, thus the process is also not applicable. To manufacture the WGM 

crystalline microcavities, machining process such as diamond polishing is demanded [18]. 

Grudinin used the diamond turning process to directly fabricate the crystalline materials 

[21]. Normally, single crystalline materials such as CaF2 are characterized by hardness, 

brittleness, and crystal anisotropy, therefore, it is difficult to obtain a smooth and 

homogeneous surface which is suitable for the microcavity because brittle fracture 

generate. However, by carefully choosing the cutting parameters, for example, critical 

uncut chip thickness, it is possible to machine the optical materials same as metal 

materials, and manufacture the optical devices which satisfy the demanded surface 

integrity [22]. Combination of cutting and polishing, Grudinin obtained the crystalline 

microcavity which exceeds the Q factor of 4.0×108 [21]. Except for the work, several 

researchers worked on manufacturing the single crystalline WGM microcavities by using 

machining process, and evaluated the cavity performance until today [23-28]. In contrast, 

Kudo [29] employed crystal growth method that is based on a laser heated pedestal 

growth to the fabricate sapphire microcavity. Although the Q factor was not high (Q 

factor of 1.6×104), the work suggested that single crystalline WGM microcavities could 

be manufactured without machining process.  

 

2.1.3 Comparison among microcavities 

  As above-mentioned, there are several kinds of the microcavities, and each cavity has 

 

Fig. 2-4 Q factor and mode volume among different sort of cavity types [4, 10, 11, 16, 18, 30-32]. In 

terms of Q factor, crystalline cavity is the highest. 
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its specific characteristics. On the basis of Q factor and mode volume 𝑉𝑚 , the 

microcavities are summarized in Fig. 2-4. The following cavities were chosen as 

representatives for the comparison; PhC cavity [11], micropillar cavity [10], toroid cavity 

[16], bottle cavity [30], sphere cavity [31], crystalline cavity [18], ring cavity [4], and 

hetello structure cavity [32]. 

  Crystalline cavity is the most superior in terms of Q factor, and bottle, sphere, and 

toroid cavities made of SiO2 are following. Since those cavities are finished by CO2 laser 

or polishing processes, the scattering loss can be lower. It should be noted that the high 

Q factors are also supported by the low absorption coefficients [18]. The other cavities 

are fabricated by chemical or bottom-up processes, and thus, the surface integrity or form 

accuracy can be worse than the former ones. In contrast, although Q factors are low, 

those mode volumes are also smaller, which means light-matter interaction can be more 

enhanced. Since the fabrication technique can process the nanometric surface and shape, 

the cavity size itself can be easily downsized, which can be useful for integrated circuits. 

  The Q factor and mode volume 𝑉𝑚 share the trade-off relation, therefore, it is difficult 

to conclude which cavity is the best. The decision of the usage of cavity also depends on 

the application. However, if the Q factor is too low, the opportunity that one uses the 

cavity in a practical way will be lost even if the mode volume 𝑉𝑚 is small. Moreover, 

recent advancement of ultra-precision machining process began to shows the potential 

to manufacture the high-Q and low- 𝑉𝑚  cavity. Thus, this study focuses on the 

development of WGM crystalline microcavities. Fig. 2-5 shows the limitation of the Q 

factor made of crystalline materials [18]. Notably, CaF2 and sapphire theoretically 

feature the high Q factors in a wide range of wavelength regime. Therefore, if one can 

fabricate those crystalline materials without serious damage on the surface, the more 

 

Fig. 2-5 Projected limitation of the Q factor for crystalline WGM resonators by bulk material 

attenuation. Overall, CaF2 shows the highest Q factor [18]. (Savchenkov AA, Ilchenko VS, Matsko 

AB, Maleki L. Kilohertz optical resonances in dielectric crystal cavities. Phys Rev A 

2004;70(5):051804(R). Reprinted with permission from American Physical Society.) 
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downsized WGM crystalline cavity which satisfies the high-Q and low-𝑉𝑚 will be likely 

manufactured. 

 

2.1.4 Application 

  From the past time, the cavities have been mainly used for laser diode, however, 

emergence of various kinds of microcavities expanded their practical application. In this 

section, bio sensor [33], all-optical signal processing circuit [11], and optical frequency 

comb [34] are introduced as the expected application. 

 

Bio sensor 

  Bio sensing technique, such as detection of virus, ideally demands for ultra-high 

sensitivity, miniaturization and label-free. Especially, labels can structurally and 

functionally interfere with an assay, thus, it is difficult to exactly examine the molecular 

behavior on site and in real time [33]. For label-free sensing, various kinds of methods 

[33, 35-37] are utilized. In these methods, bio-sensing using WGM cavity shows excellent 

sensitivity because light can interact with targets efficiently. When the molecule binds 

the cavity, the resonance shifts because of the increased cavity radius. One could detect 

the size and the density of the molecule by measuring the shifts [33]. 

 

All optical processing circuit 

  Network traffic has been increased day by day for the past decades due to the 

development of various network systems [38]. With recent emergence of Internet of 

Things (IoT) concepts, it is easy to guess that the network traffic can be explosively 

increasing and necessary to efficiently carry and process tremendous amount of data. 

Although optical signal data is carried through an optical fiber, its signal processing is 

conducted by electrical signal that is converted from the optical signal. As light is too 

fast to store in a small space, the signal processing is not performed by the optical signal. 

A microcavity can be one of the breakthrough devices for all optical signal processing 

circuits. For example, Tanabe used the PhC cavity to trap and delay photons and showed 

the possibility of dynamic control of light and optical memory [11]. Although it is more 

difficult to assembly into the integrated circuits, the high-Q WGM cavity can be a 

candidate as shown by Pollinger [30]. He made an add/drop filter by changing the 

coupling position of the bottle cavity and optical fibers for the aim of signal processing. 

 

Optical frequency comb 

  Optical frequency comb was developed to precisely measure the light frequency [39]. 

As shown in Fig. 2-6, the optical frequency comb indicates the frequency spectra which 

are ultra-precisely aligned at regular intervals on the frequency axis [34]. The optical 



Chapter 2 State of the art 

11 

 

frequency comb has been well studied, and particularly Haensch and Hall contributed 

their efforts to develop the technology. Haensch et al found that they could measure 

optical frequencies by optical frequency comb [40], and Hall et al demonstrated to 

measure absolute frequency chains by using optical combs [41]. The great achievements 

lead Haensch and Hall to share the Nobel prizes in 2005. Nowadays, the national 

standard for length is determined by optical frequency comb, and expected to be also 

applied in astronomy or medical science [39]. For optical frequency comb source, 

Ti:Sapphire laser or fiber laser are used, which are made of large optical solid-state laser 

cavity systems and expensive, and miniaturization of the comb source is still a challenge. 

A microcavity is expected to solve the problems as a novel optical frequency comb source. 

When some frequency light is inputted into the optical microcavity, FWM (Four-Wave 

Mixing) which is an effect of third-order non-linear optics generates, and another light 

which differs from the input frequency light generates at regular intervals [25].  

  Named after this phenomena, the comb generator using an optical microcavity is called 

a Kerr frequency comb. To use the Kerr frequency comb, same as the optical frequency 

comb, it is necessary to broaden the range of frequencies and make the cavity 

performance stable. However, it is a challenge to obtain a stable Kerr frequency comb 

because it is difficult to satisfy the demanded properties of ultra-high Q factor, thermal 

and mechanical stability, and anomalous dispersion (The nature that refractive index at 

shorter wavelength is smaller than the one at longer wavelength in a specific wavelength 

regime [42]). 

 

Fig. 2-6 Principle of Optical frequency comb: Consecutive pulses of the pulse train emitted by a mode-

locked laser and the corresponding spectrum. (a) Variation of electric field in the time domain (b) 

FFT spectrum in the frequency domain [34]. (Udem T, Holzwarth R, Hansch TW. Optical frequency 

metrology. Nature 2002;416(6877):233-7. Reprinted with permission from Nature Publishing Group.)  
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  It is already noted that high Q factor is demanded for the optical microcavity. Except 

that, characteristics of dispersion and thermal stability are very important for the Kerr 

frequency comb.  

  As shown in Fig. 2-6 (a), considering light pulse propagates in the cavity, the pulse 

(envelope curve) includes approximately 100 carrier waves. Due to the dispersion in the 

cavity, the propagation speed of envelop wave and carrier wave is different, which causes 

the phase shift ∆∅. This shifts makes a frequency offset 𝜔0 (indicated in Fig. 2-6 (b)). 

Based on the relation 𝑓0 = ∆∅𝑓𝑟𝑒𝑝/2𝜋, 𝑛-th mode frequency 𝑓𝑛 is described as follows: 

𝑓𝑛 = 𝑛𝑓𝑟𝑒𝑝 + 𝑓0 (2-6) 

  To determine the absolute frequency of the specific spectrum of the optical frequency 

comb or Kerr frequency comb, it is necessary to achieve an octave-spanning bandwidth 

of spectra. This is caused by the fact that an off-set frequency (i.e. zero-order mode 

frequency) which generates from Kerr frequency comb can be determined by Eq.(2-7): 

2𝑓𝑛 − 𝑓2𝑛 = 𝑓0 (2-7) 

  This is called 𝑓- 2𝑓 referencing [34]. Until today, there is no work which succeeded to 

generate an octave-spanning bandwidth Kerr frequency comb by the microcavity which 

shows anomalous dispersion over octave-spanning. There is a trade-off between the 

bandwidth of the anomalous dispersion and threshold of the input optical power for 

generation of Kerr frequency comb. Thus, when one tries to generate a Kerr frequency 

comb by enhancing the light-matter interaction, the bandwidth of anomalous dispersion 

can be narrow. The threshold value of input optical power 𝑃𝑡ℎ  to generate a Kerr 

frequency comb is described by Eq.(2.8) [43]． 

𝑃𝑡ℎ ∝
𝑉

𝑄2
 (2-8) 

  The equation shows that the input optical power 𝑃𝑡ℎ can be smaller by enhancing the 

light-matter interaction 𝑄2/𝑉. On the other hand, it is reported that the bandwidth of 

Kerr frequency comb becomes narrow by downsizing the cavity volume [44]. Therefore, 

recently some researchers began to control the cavity shape to change the effective 

refractive indexes, and design the dispersion, maintaining the enhancement of light-

matter interaction [26, 45]. 

  Due to the high input optical power, another problem arises, which is thermal stability. 

Since a high optical power is inputted into the cavity, even if the absorption coefficient 

of the cavity material is low, a little heat can generate in the cavity, and a temperature 

changes in the cavity, which leads to the change of resonant frequency. Here, Eq.(2-1) is 

re-written by Eq.(2-9).  

2π𝑟𝑛𝑒𝑓𝑓 = 𝑚𝜆𝑟 (2-9) 

  If a temperature changes in the cavity, a resonant wavelength 𝜆𝑟 changes by the TO 

(Thermo-Optic) and TE (Thermal Expansion) effects as follows; 
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1) TO effect: an effective refractive index 𝑛𝑒𝑓𝑓 changes, therefore, 𝜆𝑟 also changes. 

2) TE effect: a cavity radius 𝑟 changes, therefore, 𝜆𝑟 also changes. 

  Regarding a coefficient of thermal expansion, the coefficient is always a positive value, 

therefore, 𝑟 become larger and 𝜆𝑟 shifts towards a longer wavelength side. However, 

TO effects can make 𝑛𝑒𝑓𝑓 smaller or bigger depending on the materials, thus, 𝜆𝑟 can 

shift towards either shorter wavelength or longer one. For example, on one hand, SiO2, 

sapphire, and MgF2 (Magnesium Fluoride) show positive thermos-optical coefficients, on 

the other hand, CaF2, BaF2, PDMS (Polydimethylsiloxane) show the negative ones [45, 

46]. In the case of a negative thermos-optical coefficient, TOM (Thermo-Opto-

Mechanical) oscillation occurs, and the cavity performance become unstable. The detail 

is explained in Chapter 6. Although the optical properties of each material against TOM 

oscillation was investigated, there is no report to suppress the TOM oscillation because 

utilization of SiO2 or MgF2 in which TOM oscillation does not occur becomes a 

mainstream. However, CaF2 or BaF2 show near-zero material dispersion in telecom or 

mid-infrared bandwidth, whose feature is favorable for generation of Kerr frequency 

comb. Therefore, those materials are worth to use as a Kerr frequency comb source, and 

especially CaF2 shows high Q factor. If one could manufacture the CaF2 microcavity 

which suppresses TOM oscillation, CaF2 can be a source of stable Kerr frequency comb.  

 

2.2 Machining of brittle materials 
  For high Q microcavity, single crystalline materials are favorable as above-mentioned. 

 

Fig. 2-7 (a) Crystallographic diagram with the representative crystallographic planes and (b) 

Schematic illustration of CaF2 crystal structure formed by the Ca2+ ions and F- ions. 
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Especially, CaF2 theoretically shows the highest Q factor. Although theoretical Q factor 

of sapphire is similar to SiO2, its thermal stability is also preferable for optical 

microcavity. To manufacture the CaF2 or sapphire WGM cavity, ultra-precision 

machining process is most appropriate, however, those materials are classified into 

difficult-to-cut materials due to their brittleness. In this section, some general 

background about ultra-precision machining of brittle materials is given. 

 

2.2.1 Optical materials 

  In the following, the basic material properties of CaF2 and sapphire are briefly 

introduced. 

 

Calcium fluoride 

  In a wide range of wavelength regime, CaF2 shows an excellent permeability and 

anomalous dispersion. Its crystal structure is a cubic fluorite structure, which consists 

of the Ca2+ ions arranged in a face-centered cubic lattice and F- ions in a cubic lattice 

(Fig. 2-7). The lattice constant is given as 0.54603 nm, then CaF2 belongs to the space 

group Fm3m [50]. Cubic fluorite structure features Mohs hardness of 4, which also can 

be expressed by Knoop hardness values of 158.3 N/mm2. While CaF2 is relatively a soft 

material in minerals , it is also a brittle material originated from cleavage [51]. CaF2 has 

an excellent transparency in the range of 125 nm to 10 m wavelength i.e. in the deep 

ultra-violet spectral regime to the infrared light regime, and its reflection rate between 

two planes is 5.6 % that is extremely lower than other optical crystalline materials. 

Moreover, it shows anomalous dispersion and cancels out the effect of aberration in optic 

system. Additionally, CaF2 is less deliquescent than other crystalline materials [52], 

therefore, one can use CaF2 in a physically and chemically stable condition. The material 

properties of CaF2 is listed in Table 2-1. Because of its excellent optical property, CaF2 is 

Table 2-1 Material properties of CaF2 

Parameter Value Ref 

Permeable wavelength [m] 0.125 − 12 [47] 

Reflection loss [%] 5.6 (4 m wavelength) [47] 

Knoop hardness [kg/mm2] 158.3 [47] 

Young’s modulus [GPa] 75 (25 ℃) [48] 

Thermal conductivity [cal/cm Sec℃] 2.32×10-2 [47] 

Coefficient of thermal expansion [/℃] 24×10-6 (20 – 60 ℃) [47] 

Melting point [℃] 1360 [47] 

Specific heat [cal/g℃] 0.204 (0℃) [47] 

Fracture toughness [MPa-m1/2] 0.4 − 0.6 [49] 
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widely used in the industry e.g. spectroscopic mirror [53], 157 nm lithography system 

[54], optical windows [55]. However, CaF2 is characterized by brittleness and crystal 

anisotropy, and the optical devices prohibit the existence of cracks. For the non-crack 

surface, the machined surface has to be finished by polishing after cutting or grinding 

process. The prospective fabrications of the complicated shape (e.g. aspherical lenses, 

diffraction gratings and microcavities) is the ultra-precision machining process [56]. 

 

Sapphire 

  Next to natural diamond, sapphire is an industrial mineral which shows the extremely 

high hardness. Single-crystal sapphire (also called corundum or -Al2O3) consists of a 

lattice formed by Al3+ and O2- ions to HCP (Hexagonal Closest Packed) with a ratio c/a = 

2.73 for room temperature (c: length along c-axis. a: length along a1-, a2-, a3-axes. In 

Fig. 2-8 (b)). It belongs to the space group R-3c [57] and consist of a hexagonal crystal 

cell including a rhombohedral cell in the center of the hexagon. For the further 

consideration, only the frequently used crystal orientations are named as c-, a-, m- and 

r-planes (see Fig. 2-8). 

  Sapphire has very high mechanical durability and scratch resistance. On the Mohs 

scale, sapphire exhibits a hardness of 9 and expressed in Knoop hardness values of 

 

Fig. 2-8 (a) Crystallographic diagram with angular relationships between the common 

crystallographic planes and (b) hexagonal cell with common planes in structural cell notation [57] 
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around 1525 − 2200 N/mm2. The Young’s modulus is stated as 322 − 470 GPa in the 

literature [57]. It also has superior optical properties that is highly transparent in the 

wide range of wavelength regime (170 − 6500 nm). The material properties of sapphire 

is listed in Table 2-2. 

  Owing to the material property, sapphire shows a shock resistance, thermal and 

chemical stability and an excellent permeability in the wide range of wavelength. For 

the application, it is used for LED substrate, cover glass of watches, bearing, jewelry or 

optical windows and so on [57, 59]. The properties are also favorable for microcavities, 

and the thermal characteristics are better than those of CaF2, thus, some researchers 

also worked on development of the high-Q sapphire microcavity [28]. 

  Conventionally, sapphire substrate has been widely used in the industry as a 

functional material. The substrate is manufactured through dicing by laser or grinding, 

edge-chamfer, flattening by grinding [60] and finishing process by polishing [61]. 

However, the material properties and crystal structure makes it difficult to fabricate, 

and its machinability is still an issue.  

   

2.2.2 Ultra-precision machining 

  Not only the above-mentioned optical devices, but a lot of products have been 

supported by the advancement of manufacturing technologies. With the development in 

the industry, scale of manufacturing technique has been downsized from mili to micro or 

nano levels. Until today nano-fabrication technologies have been well studied and 

documented, and those technologies enabled us to make new products. 

  Taniguchi presented that if the speed of the development of manufacturing technique 

Table 2-2 Material properties of sapphire 

Parameter Value Ref 

Permeable wavelength [m] 0.17 – 6.5 [47] 

Reflection loss [%] 12.0 at 4 m wavelength [47] 

Knoop hardness [kg/mm2] 1525 – 2200 [57] 

Young’s modulus [GPa] 322 – 470 [57] 

Thermal conductivity [cal/cm Sec℃] 6.0×10-2 (Parallel to c-axis) 

5.5×10-2 (Perpendicular to c-axis) 

[47] 

Coefficient of thermal expansion [/℃] 6.7×10-6 (Parallel to c-axis) 

5.0×10-6 (Perpendicular to c-axis) 

[47] 

Melting point [℃] 2030 [47] 

Specific heat [cal/g℃] 0.18 at 25 ℃ temperature [47] 

Fracture toughness [MPa-m1/2] 2.14 [58] 
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was maintained at that time, one would reach to the necessity of nano-fabrication 

technique [62] as shown in Fig. 2-9 (proposed by Taniguchi [63], updated by McKeown 

[64] and Goel [65]). Stemmed from that time, various kinds of manufacturing techniques 

were developed: Ultra-precision machining, laser processing, etching, ion-milling, 

plasma processing, coating, photolithography. For the last decades, micromachining and 

its related studies have been reviewed several times [63-69]. A new review paper was 

published even in 2017, thus, still it is an technology which attracts notice [70]. This 

section especially focuses on ultra-precision machining. 

  ”Ultra-precision machining” means the achievement of dimensional tolerances in the 

order of 0.01 m and surface roughness of 1 nm. The dimensions of parts or elements of 

the produced parts may be as small as 1 mm and the resolution and repeatability of the 

machines used must be in the order of 10 nm [63]. To realize the demands for ultra-

precision machine tools, a lot of industrial companies developed the manufacturing 

technique of ultra-precision machine tool and machining process itself. In this 

dissertation, the focal point particularly goes to the material removal process between 

tool and workpiece in cutting. 

 

Fig. 2-9 Evolution of machining accuracy-Taniguchi’s predictions [63] (updated by McKeown [64]) 

beyond 2000 to include state-of-the-art manufacturing processes (shown in the red box) [65] (Goel S, 

Luo XC, Agrawal A, Reuben RL. Diamond machining of silicon: A review of advances in molecular 

dynamics simulation. Int J Mach Tool Manu 2015;88:131-64. Reprinted with permission from 

Elsevier B.V.) 
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  The simple cutting model can be expressed by the schematic illustration of interference 

between cutting tool and workpiece (Fig. 2-10). In cutting process, the cutting edge 

penetrates into the workpiece, and chip forms on the rake face of the cutting tool based 

on the plastic flow and sliding-off motion. In cutting of metals, the uncut chip thickness 

is estimated to a few 10 – 100 m. Therefore, the thickness is much larger than the edge 

radius, and the size effect of the cutting edge can be ignored. Moreover, a lot of crystal 

grains exist in the deformed region, and the workpiece material can be regarded as 

uniform continuous body in the macro viewpoint. However, one cannot apply the idea for 

ultra-precision cutting because the uncut chip thickness can be nanometric scale, and 

the edge radius cannot be ignored. In addition, crystallographic effects e.g. crystal 

orientation, lattice defect, or grain boundary of the workpiece also influences on the 

cutting performance, therefore, it is prohibited to simply apply the classical cutting 

model for the ultra-precision cutting [71]. 

  Fig. 2-10 shows the difference of chip formation according to the relationship between 

edge radius of tools and uncut chip thickness. When the uncut chip thickness is smaller 

than the edge radius, the effective rake angle becomes negative even if the rake angle is 

designed as a positive value. In this case, if one try to cut the workpiece with quite small 

depth of cut, chip cannot generate, in other words, cutting process does not occur, and 

rather the workpiece is just compressed by the tool (Plowing) [72]. The critical value to 

determine the cutting mode or plowing mode is called minimum uncut chip thickness. 

Next, if the uncut chip thickness is equal to the minimum uncut chip thickness, shear 

deformation starts i.e. chip formation occurs. When the uncut chip thickness is larger 

than the minimum uncut chip thickness, chip formation and material removal process  

start. Therefore, one always has to take consideration into the relationship between 

minimum uncut chip thickness and edge radius.  

 

Fig. 2-10 Chip formation in dependency with the minimum chip thickness in micromachining process 

(a) When the uncut chip thickness 𝒉 is far smaller than the edge radius 𝒓𝒆, chip does not form i.e. 

one cannot cut materials (plowing). (b) When 𝒉 exceeds some critical value (minimum uncut chip 

thickness), the chip starts forming. (c) When 𝒉 is much deeper than the critical value, the chip can 

be easily formed (formatted by the author) [72]. 
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2.2.3 Surface formation 

 A quality of manufactured products is determined by the surface integrity. Not 

limited to the visual sense, surface integrity influences on a lot of properties: wear 

resistance, fatigue strength, thermal conductivity, electrical conductivity, reflectivity, 

absorption coefficient. In this section, surface roughness, brittle-ductile transition, and 

subsurface quality are focused on. 

 

Surface roughness 

  The ideal turning model (Fig. 2-11) is assumed where no vibration and built-up edge 

exist between tool and workpiece. Based on the shape of the cutting tool, surface 

irregularity is formed on the workpiece in axial direction of workpiece cylinder, and this 

is surface roughness. Assuming that the depth of cut is small, and surface is finished by 

only nose part of the cutting tool, surface roughness 𝑅𝑦 and 𝑅𝑎 are given by Eqs. (2-10) 

and (2-11) [71, 73]. 

𝑅𝑦 = 𝑅 −
 

2
√4𝑅2 − 𝑓2 ≈

𝑓2

8𝑅
 (2-10) 

𝑅𝑎 ≈
 .  2𝑓2

8𝑅
 (2-11) 

  Thus, surface roughness can be decreased by using larger nose radius 𝑅 and setting 

a feed per revolution 𝑓 as small as possible. However, small feed per revolution leads to 

inefficiency of cutting if the rotational speed is kept constant. Moreover, if nose radius 

becomes too large, thrust force in the radial direction increases, which might cause the 

deterioration of surface quality or form accuracy. Therefore, an actual surface roughness 

strongly depends on the relative vibration between tool and workpiece, built-up edge, 

tool wear, shape of workpiece, material property. Recently, the surface roughness 𝑆𝑎 has 

started to be used which shows the surface roughness in two dimensions, whereas the 

surface roughness 𝑅𝑎 shows the surface roughness in one dimension. 

 

Fig. 2-11 Schematic illustration of cutting model in turning operations. 
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Brittle ductile transition 

  Brittleness has been one of the challenges in cutting. Different from metals, the 

deformation mechanism of brittle materials is not governed by ductility, therefore, it is 

well known that crack initiates in conventional cutting or grinding of brittle materials. 

It indicates that brittle materials show the ductility in some region for the past decades, 

however, Bifano firstly presented that there is a ductile-regime in machining of brittle 

materials. Bifano [74] noticed that when setting uncut chip thickness as less than critical 

value, one could grind fused silica in ductile-regime, in analogy with metal cutting i.e. 

BDT (Brittle-Ductile Transition) existed. Rooted in the term, research interests in 

ductile-regime machining of brittle material expanded all over the world. A classical 

cutting model for brittle materials was firstly proposed by Blake and Scattergood in 

turning of germanium and silicon [1]. As shown in Fig. 2-12, when feeding a cutting tool 

constantly, its uncut chip thickness differs from the cutting points, and critical uncut 

chip thickness 𝑡𝑐 is defined as the point where the first crack occurs. A side view of the 

model shows a quasi-orthogonal cutting model, and a crack occurs when depth of cut 

exceeds a critical uncut chip thickness. It is essential to identify the critical value of each 

brittle materials in this way. 

  Blake et al also noticed that a negative rake angle of the cutting tool could enhance 

the ductility of brittle materials and increase the critical uncut chip thickness. It was 

assumed that the compression stress which was formed in front of the cutting edge 

suppressed the formation of brittle fracture. The discussion is supported by various 

works that hydrostatic pressure stress field are formed by a negative rake angle tool, 

and the field promoted plastic deformation in cutting of brittle materials [48, 75-81]. 

Although the critical uncut chip thickness can differ depending on material property, its 

theoretical value 𝑑𝑐 can be calculated by Eq. (2-12) [82, 83]. 

 

Fig. 2-12 Model for ductile regime machining with nose round tool (a) Front view of the model (b) 

Side view of the model [1]. (Blake PN, Scattergood RO. Ductile-Regime Machining of Germanium 

and Silicon. J Am Ceram Soc 1990;73(4):949-57. Reprinted with permission from John Wiley & Sons) 

(a) (b)
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𝑑𝑐 = 𝜒(
𝐸

𝐻
)(

𝐾𝑐

𝐻
)
2

 (2-12) 

The equation shows that critical uncut chip thickness can be determined by elastic 

modulus 𝐸, hardness 𝐻, and fracture toughness 𝐾𝑐. Fitting coefficient 𝜒 depends on 

the tool geometry, and in the case of turning process, 𝜒 was determined as 0.15 by Bifano 

[82]. Notably, any vibration or disturbance in the cutting process are ignored in this 

model, thus, the actual critical value does not necessarily follow the equation. In addition, 

one exception regarding material property exists, which is crystal orientation [84]. 

  Discussion of slip and cleavage is inevitable in cutting of brittle materials. As shown 

in Fig. 2-13, on one hand, slip promotes the ductile fracture of materials i.e. plastic 

deformation, on the other hand, cleavage is a trigger for brittle fracture. The details of 

the mechanisms are explained in Chapter 3. In ultra-precision cutting, the activated 

deformation based on dislocation in an atomic level has to be considered because they 

strongly affect the surface integrity. The phenomenon is known as crystal anisotropy, 

and the surface quality greatly depends on the cutting crystalline planes or directions. 

There are a lot of works regarding the investigation of the influence of the crystal 

anisotropy on surface integrity in machining: silicon [79, 80, 85], CaF2 [48, 56, 86, 87], 

MgF2 [84], LiNbO3 [88, 89], sapphire [90]. 

 

Subsurface damage 

  While surface roughness indicates the geometrical evaluation of the surface quality on 

the surface, subsurface damage means the change of inner structure in the material, 

which affects fatigue strength, residual stress, or optical performance. This is caused by 

the extensive plastic flow under high temperature and high pressure in a cutting process. 

Then, the subsurface damage indicates the layer which shows a different material 

 

Fig. 2-13 Model for deformation mechanism related to cutting process: (a) Slip (b) Cleavage 

(formatted by the author) [77] 
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property from its base material. The layer causes the variation of crystal structure, 

hardness or residual stress. In general, one can suppress the subsurface layer by 

increasing the shear angle, setting a cutting condition to decrease the stress 

concentration region or supplying lubricant. However, the mechanism of the subsurface 

generation strongly depends on the material property of the workpiece or machining 

process, therefore, subsurface damage has been discussed in machining field and 

material science field, including measurement method and repairing (relaxing) method. 

[71, 91, 92]．Various kinds of measurement or analyses methods of subsurface damage 

caused by ultra-precision machining were studied e.g. TEM observation [79, 81, 85, 86, 

93-98], Raman spectroscopy [99-101], stress releasing by etching [102-104]. TEM 

observation enables us to directly observe the crystalline lattice arrangement in 

subsurface layer, therefore, this technique is a strong way for the analysis of crystalline 

materials.  

 

2.2.4 Cutting tool 

  As mentioned in section 2.2.2, the edge radius is one of the most important factors in 

ultra-precision cutting, therefore, it is necessary to choose an appropriate cutting tool 

that satisfies the demanded edge accuracy. In the case of brittle materials, its critical 

depth of cut is estimated as a few tens to hundreds nm, and thus, the edge radius has to 

be extremely sharp. Considering the existing polishing technique and material property, 

natural or synthesized diamond can be a candidate. For the diamond cutting tools, three 

types of diamond tools are commonly used; SCD (Single Crystalline Diamond) made of 

single crystalline bulk diamond, PCD (Poly Crystalline Diamond) made by sintering 

diamond particles with metal binder materials, and NPD (Nano-Polycrystalline 

Diamond) made by directly bonding nano-sized diamond grains by high-pressure high-

temperature method [105-107]. As shown in Table 2-3, each tool has its own material 

property. SCD tool is most widely used for machining of optical materials or surface 

Table 2-3 Characteristics of SCD, PCD and NPD [105] 

Parameter SCD PCD NPD 

Structure Cubic Diamond grains 

(1 – 20 m) 

Diamond grains 

(30 – 50 nm) 

Hardness [GPa] 80 – 120 50 110 – 125 

Isotropy ×(anisotropy) ○ 〇 

Fracture resistance × (111) cleavage ○ 〇 

Heat resistance [℃] 1600 600 1600 

Edge accuracy [nm] < 10 < 500 < 50 

Transparency ○ × ○ 
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finishing of metals. Advanced polishing technique makes the edge radius extremely 

sharp (< 10 nm). The edge accuracy depends on crystal orientation because its polishing 

rates actually changes due to the crystal anisotropy, thus (   ) or (   ) are often 

chosen for rake face. However, high polishing rate relates to the ease of tool wear, hence, 

there is a trade-off between the edge accuracy and tool wear rate [108]. Additionally, its 

cleavage also causes tool breakage. To overcome the disadvantage, PCD tool was 

developed. The PCD does not show cleavage, therefore, the fracture toughness was 

improved compared to SCD tool, but the edge radius becomes poorer (< 500 nm) because 

of its large grains and binders. To integrate the advantages of SCD and PCD tools, 

Sumiya developed NPD [107] that is made by synthesis of nano-sized crystalline grains 

by ultra-high pressure and high-temperature method [106]. The NPD tools feature better 

mechanical properties since the trans-granular bounadries prohibits crack propagation, 

and the nano-sized grains without bonding materials contribute to sharp edge radius. In 

diamond turning of polymer, machined surface can be deteriorated by tribo-microplasma 

[73], which can be induced by the extensive friction between insulator cutting tool and 

insulator workpiece [109]. Sumiya developed B-NPD (Boron-Doped Nano-Polycrystalline 

Diamond) which was synthesized by direct conversion sintering using graphite 

containing boron. The B-NPD tool that shows electrical conductivity and wear resistance, 

and successfully suppressed the tribo-microplasma damages in sliding tests of fused 

silica [110, 111]. 

 

2.2.5 Other fabrication process 

  Fabrication technique is not limited to machining. As summarized in section 2.2, 

various kinds of microcavities are manufactured by various kinds of fabrication methods. 

In this section, several fabrication methods are introduced: polishing, etching, laser 

machining, crystal growth. 

 

Polishing 

  As a surface finishing process, polishing is one of the most frequently used process in 

the industry, in particular for optical materials. For instance, it is essential to polish the 

ground BK7 glass lenses to eliminate brittle fracture or grinding marks [112]. One can 

flow abrasive particles between workpiece and polishing tool, or the abrasive particles 

themselves can be embedded onto the polishing tool [71]. Polishing enables us to obtain 

the uniform surface decreasing the residual strain, however, pro-longed polishing 

deteriorates the form accuracy. For the large aperture wafer, Namba developed the float-

polishing technique to obtain the uniform surface and subsurface in an atomic level. 

Conventionally, polishing technique has been difficult to apply for the micro order parts, 

nevertheless, EEM (Elastic Emission Machining) that was developed by Mori made it 
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possible to enhance the surface integrity of the microcomponents with significantly low 

load [113, 114]. By applying some energy of motion on microparticles and flowing onto 

the workpiece, some chemical reaction occurs between the workpiece and the surface of 

the particles, and the smooth surface can be achieved in an atomic level. Recently, EEM 

is used for manufacturing of mandrels that is used for ellipsoidal focusing mirrors for 

soft x-ray microscopy, thus, it can be utilized for polishing the optical materials which 

have cylinder shape [115]． 

 

Etching 

  Etching is a chemical fabrication process which removes materials by chemical or 

electrical-chemical method, and the micro or nanotextured surface can be obtained by 

chemical erosion. Etching process does not generate plastic deformation, therefore, it 

does not change the subsurface structure compared to cutting or grinding process. Since 

one can make a small parts by etching, toroid cavity and PhC cavity are manufactured 

by etching [11, 16]. However, etching process requires a clean room and safety 

environment for human because the processing media is dangerous. In addition, when 

applying etching on single crystalline materials, the etching speed differs from crystal 

orientation [116] (the surface are mainly processed along cleavages) , therefore, it is 

difficult to obtain the uniform spherical shape such as WGM microcavities made of single 

crystalline materials. 

 

Laser machining 

  Laser is light which shows a high density of optical energy amplified by a cavity, which 

has been used for sensing technique. However, the laser machining with high output 

power has been considered as a useful method in the industry, which is applied on metals, 

ceramics, polymer or composite material [117]. For example, drilling holes on sapphire 

wafer was conducted by pulsed-laser [118]. For manufacturing of cavity rim part of toroid 

cavity, laser process is used [16]. In order to extend the laser machining in nanoscale, 

recently, there is a work to accumulate pulsed-laser at a tip of AFM (Atomic Force 

Microscope) cantilever by using near-field effect, and remove material in nanoscale by 

local abrasion [119]. Also, laser can be used as an assisting tool for cutting of difficult-to-

cut materials [120]. Since tool wear does not have to be considered for laser machining, 

once the optimal machining condition is determined, one could fabricate workpiece as 

long as the laser oscillation occurs. However, laser machining requires a lot of energy 

consumption to oscillate, and the processed surface can melt. Therefore, the surface 

roughness can be worse than other fabrication process. Also, high temperature at the 

processing point can cause the variation of crystalline structure, and thus the phase of 

single crystal can transform, which prohibits the usage for crystalline microcavities. 
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Crystal growth 

  Crystal growth method is generally used to artificially make a crystal, but it can be 

applied for manufacturing of microcavities. One manufactured the CaF2 cavities and 

sapphire ones using Czochralski method [29, 121, 122]. During melting the base material 

with high power CO2 laser, Kudo controlled the velocity of lifting the base crystal to make 

a form of the microcavity. The scattering loss from the cavity can be suppressed because 

brittle fracture does not generate in this process. This is a bottom-up method, therefore, 

it can be useful for miniaturization of the microcavity. For example, Chen used the 

crystal growth method to manufacture a nanosized microcavity [32]. However, crystal 

can easily grow towards the specific direction, thus, the final shape can be formed by its 

original crystal structure, which leads to the deterioration of the form accuracy.  

 

2.2.6 Comparison among fabrication process 

  Until this section, several fabrication methods were introduced. To clarify the 

advantages and disadvantages of each fabrication process, it is worth summarizing the  

fabrication process in terms of surface roughness, subsurface damage, geometry-

variation, crack formation, and form accuracy (see Table 2-4).  

  Machining has an advantage of geometry-variation and form accuracy because the 

final shape can be formed by the shape of cutting tool and numerically-controlled 

machine tool. Although crack initiation is a challenge, the machined surface can be 

attained by ductile-regime cutting. Because of the plastic deformation, SSD cannot be 

inevitable. The best surface integrity can be obtained by polishing. Owing to the principle, 

subsurface structure can be organized in an atomic level [94]. However, pro-longed 

polishing deteriorates the form accuracy. Especially for the microcavity, the high form 

accuracy is crucial, otherwise, the resonance does not occur. Additionally, considering the 

form accuracy also influences on the dispersion tailoring of the cavity [26], and thus, 

current polishing is less likely to use in this dissertation. Etching can avoid the change 

Table 2-4 Comparison among nano fabrication processes related to manufacturing of microcavities 

(〇: good, △: medium ×: bad) 

Parameter Cutting Polishing Etching Laser Crystal growth 

Surface roughness 

Ra [nm] 

5−20 [123] ≤ 1 [94] 10−35 

[123] 

45−140 

[123] 

≤ 65 [29] 

Subsurface damage △ 〇 〇 × 〇 

Crack formation △ 〇 〇 △ 〇 

Geometry-variation 〇 × × △ × 

Form accuracy 〇 △ × × × 
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of subsurface structure or crack initiation, on the other hand, in the case of crystalline 

materials etching has a disadvantage of form accuracy because of the anisotropy, and is 

difficult to form a bulged-shape such as spherical shape. Laser machining also causes 

SSD because high energy can be absorbed in a material. Surface roughness also can be 

worse in the case of laser processing. Crystal growth was a good candidate for 

manufacturing the microcavities. Since the surface can be formed naturally, its 

subsurface structure is identical with the base material and no crack occurs. 

Nevertheless, because the microcavities are formed according to its crystal structure, it 

is assumed to be difficult to enhance the Q factor and dispersion tailoring, crystal growth 

can be out of option. 

  As above discussed, each process has its own advantage and disadvantage, thus, an 

appropriate fabrication process should be hired depending on the required microcavity 

type. Indeed, researchers use appropriate approaches for their demanding microcavity. 

Aiming to manufacture WGM crystalline microcavities, ultra-precision machining is one 

of the most-prone fabrication processes as shown by Grudinin [21], although there are 

some challenges. 

  

2.3 Short literature review on machining of single 

crystalline brittle materials 
  Originated from the Blake, Bifano, Blackly, Scattergood and Nakasuji between 1989 

to 1991 [22, 67, 68, 82], a lot of researchers have studied the ultra-precision machining 

of brittle materials. There is too much literature to review, therefore, in this section, the 

review in this dissertation especially focuses on single crystalline optical materials and 

semiconductor materials. 

  Silicon has been one of the most useful semiconductor materials in the industry, which 

spurred researchers study the silicon machining as reviewed by Goel [65]. As mentioned 

in section 2.2.3, the negative rake face angle can enhance the ductility in cutting of brittle 

materials [1]. In the case of silicon cutting, for example, Yan experimentally examined a 

mechanism of crack formation, and the large negative rake angle suppressed the brittle 

fracture [78]. He also analyzed stress and temperature distribution by FEM (Finite 

Element Method) to analyze the mechanism in silicon cutting, and showed that 15 GPa 

hydrostatic pressure was formed and the temperature at cutting point was elevated to 

300 ℃ . At the same time, an effective negative rake angle could be increased by 

designing larger the edge radius, which resulted in increasing the thrust force and 

decreasing the uncut chip thickness [124]. The high-temperature and high-pressure 

phenomena in the vicinity of cutting point was also indicated by Goel’s molecular 

dynamics simulation [125, 126]. When focusing on influence of crystal anisotropy in 
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silicon cutting, several researchers experimentally investigated the variation of the 

surface integrity by altering cutting direction [1, 77, 127]. After the works, Shibata used 

Schmid factor to quantitatively discuss the anisotropic BDT in silicon turning. The 

Schmid factor shows the ease of activation of slip systems in terms of geometrical 

relationship between applied force and slip systems. Shibata also investigated the 

subsurface layer by TEM observation, therefore, comprehensively discussed the surface 

integrity in silicon cutting. Later, Yan introduced the slip factor which corresponds to 

Schmid factor, and discussed the material deformation behavior in silicon cutting, and 

investigated the phase transformation in subsurface layer (e.g. amorphous layer, 

strained layer, or line defects). 

  Although the amount of machinability study of CaF2 does not correspond to the one of 

silicon, those materials have been very important industrial ceramics, hence, various 

researchers attempted to theoretically or experimentally analyze the material 

deformation mechanisms [48, 49, 56, 76, 86, 94, 103, 127-132]. 

  Furukawa examined the machinability of single crystalline materials, poly-crystalline 

materials, amorphous materials in ultra-precision scale. They chose CaF2 as one of them, 

and found the regularity on the machined surface, in which cleavage took a key role [127]. 

Yan investigated the cutting mechanisms of CaF2 more in details, and discussed the 

influence of negative rake angle, lubricant, or crystallographic effects in face turning 

process [48, 76]. The achievement was used for manufacturing WGM CaF2 cavities as 

shown by Grundinin [21]. In the meanwhile, the similar anisotropic behavior on surface 

integrity was observed in grinding process by Namba [103]. He also conducted ultra-

precision float-polishing on the CaF2 ground surface whose crystalline structure were 

regularly aligned i.e. strain-free surface was achieved [94]. Recently, Wang noticed that 

asymmetric crystal anisotropy existed in a single groove in plunge-cut tests (cracks were 

observed in one-side of the single groove.). He used a crystal plasticity FEM which 

assimilates slip rate to analyze the mechanism [86]. For quantitative discussion on 

crystal anisotropy, fracture toughness parameter was recently employed by Chen [49]. 

  Sapphire shows high hardness, therefore, main machining processes have been 

grinding [133, 134] and polishing [61]. Due to the hardness, compared to conventional 

grinding, assisted grinding process (e.g. elliptical vibration) are greatly helpful for 

sapphire machining, which can enhance the surface integrity or wear resistance [135, 

136]. For polishing, chemical mechanical polishing method is also used [137-139]. To 

avoid tool wear, laser machining is also a candidate for sapphire machining, therefore, 

various fabrication processes have been studied [118]. Recent interests in the usage of 

sapphire goes to manufacturing parts with microfeatures or microgrooves as seen in 

optical microcavities [28], and thus, rather cutting process is more suitable for free-form 

microoptics, therefore, also some researchers conducted the scribing process [140, 141] 



Chapter 2 State of the art 

28 

 

or cutting [90]. Regarding crystal anisotropy, Matsumura experimentally investigated 

the anisotropic machinability of r-plane sapphire [90], however, the discussion in terms 

of crystallography was not sufficiently conducted. 

 

2.4 Objective of this study 

2.4.1 Motivation and objective 

  As reviewed in section 2.1, various kinds of optical microcavities exist according to its 

application. This dissertation focuses on high-Q microcavities, and WGM microcavity 

made of crystalline materials is chosen. In particular, to generate Kerr frequency comb 

with stability, the following properties are required. 

1. Ultra-high Q factor 

2. Anomalous dispersion 

3. Thermal and mechanical stability 

  First, combination of ultra-precision cutting and polishing is normally used to 

manufacture crystalline WGM microcavities as shown by Grudinin [21] or Wang [25]. 

However, pro-longed polishing deteriorates the form accuracy of the microcavity which 

is manufactured by cutting. Therefore, the WGM cavities are ideally manufactured by 

only cutting. Secondly, the refractive index of dielectric materials changes depending on 

wavelength, which is known as a dispersion. The dispersion can be determined by 

material dispersion and the microcavity shape, and it is assumed that the desired shape 

can be obtained by only ultra-precision cutting. Thirdly, the cavity which features a 

negative thermo-optical coefficient which causes the periodical thermal instability of the 

cavity performance by TOM oscillation. To overcome the challenges, it is necessary to 

design and manufacture the cavity structure which quickly diffuses the heat from the 

cavity part, which can be possible by ultra-precision cutting. To achieve the cavity that 

satisfies the aforementioned properties, CaF2 is one of the ideal materials for the 

microcavities because CaF2 shows high permeability, its Q factor is theoretically the 

highest [18]. In addition, CaF2 shows anomalous dispersion in wide wavelength regime, 

however, its thermal stability is poor because of its negative thermos-optical coefficient 

[18]. Until today, there is no CaF2 microcavity which fulfills the demanded properties i.e. 

high-Q, anomalous dispersion, and thermal stability on TOM oscillation. Although the 

theoretical Q factor of sapphire is not as high as CaF2, its thermal stability makes also 

sapphire a candidate for WGM crystalline microcavities [28]. 

  As reviewed in section 2.3, CaF2 and sapphire are difficult-to-cut materials, and 

characterized by its brittleness and crystal anisotropy. Concerning CaF2, most 

researchers focused on face turning or flattening to manufacture an aspherical lens, 

stepper for lithography. Mostly, (   )  cleavage plane is selected, therefore, their 
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investigation mainly remains in (   ) plane [48, 49, 76, 86]. There is no work which 

investigated the machinability of CaF2 in cylindrical turning process where cutting 

crystalline planes and crystalline directions constantly change, and the anisotropic 

deformation behavior of CaF2 cutting should be discussed quantitatively. Also, there is 

few studies which discusses the SSD in CaF2 cutting [86], therefore, it is necessary to 

comprehensively discuss the surface and subsurface integrity. Sapphire has been often 

used as a functional material, therefore, various researchers worked on grinding [133-

136] , or polishing [137-139], whereas there is few work regarding cutting [90]. For 

instance, Matsumura investigated the anisotropic deformation behavior of sapphire by 

using cubic boron nitride ball-end mill, however, the crystallographic evaluation was not 

sufficiently conducted [90]. Nevertheless, for manufacturing the microparts such as 

WGM sapphire microcavities, the cutting mechanism of sapphire should be clarified. 

  In this dissertation, plunge-cut tests were conducted to investigate the BDT 

mechanism. In particular, influence of crystal anisotropy on the surface integrity was 

discussed by changing the cutting crystalline planes and crystalline directions. To 

discuss the material deformation behavior in terms of slip system and cleavages, the 

resolved stress model was used. The UPCT (Ultra-Precision Cylindrical Turning) tests 

of CaF2 were also performed to discuss the surface integrity and subsurface formation, 

aiming to manufacture the WGM microcavities. 

  In the meanwhile, the machinability of (    )-plane single crystalline sapphire was 

also investigated by plunge-cut tests. In the deformation process of sapphire, it is 

reported that twinning contributes to the ductility [142], therefore, the anisotropic 

deformation behavior was comprehensively discussed in terms of slip systems, twinning 

and cleavages. For both materials, some weighting factors were also introduced to 

scrutinize the experimental results including possible secondary slip, twinning, and 

cleavages. 

  By using the obtained results, WGM microcavities were manufactured. Influence of 

crack, SSD, and cavity shape on Q factor was evaluated. Dispersion-tailored microcavity 

for controlling the dispersion was manufactured and evaluated. A hybrid microcavity 

was manufactured and evaluated for the thermal stability of the CaF2 cavity.  

 

2.4.2 Organization of the dissertation 

  The summary of organization of the dissertation is shown in Fig. 2-14. 

  In Chapter 1, the background and purpose of the dissertation is briefly introduced. 

  In Chapter 2, the principle, types, manufacturing methods, and application of optical 

microcavities are described. Particularly focusing on WGM crystalline microcavities, 

some general background and challenges regarding ultra-precision cutting of crystalline 

materials are presented. Through the review on machining of single crystalline CaF2 and 
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sapphire, the objective of the dissertation is declared. 

  In Chapter 3, fundamentals of material fracture behavior and analytical model is 

provided. To analyze the anisotropic material deformation of the crystalline materials, 

resolved stress model under the tensile loading condition is adapted for the plunge-cut 

tests. 

  In Chapter 4, machinability of the CaF2 substrates and cylinder are evaluated in the 

plunge-cut tests and UPCT tests, respectively. With respect to the machined surface and 

subsurface, the following factors are evaluated: influence of process parameter, type of 

tool and crystal anisotropy. The plastic deformation parameter and cleavage fracture 

parameter were computed. 

  In Chapter 5, machinability of the sapphire substrates is evaluated in the plunge-cut 

tests. Additionally, indentation tests and TEM observation are conducted. Same as CaF2, 

the crystal anisotropy and material fracture behavior are discussed based on the 

computation of the fracture parameters.  

  In Chapter 6, WGM microcavity is manufactured, and the performance was evaluated. 

Especially, influence of brittle fracture and shape dependency on cavity performance is 

investigated. The cavity is designed based on electro-magnetic field analyses. Also, 

dispersion tailored cavity is designed and manufactured. Based on the FEM simulation 

of heat diffusion, the hybrid cavity is designed and manufactured. 

  In Chapter 7, conclusions of the dissertation are summarized. 

 

Fig. 2-14 Organization of the present dissertation 

Chapter 1 & 2 Introduction & State of the art

Chapter 3 Analytical model of material fracture behavior

Chapter 5 Investigation of the 
cutting performance 
of sapphire

Chapter 6 Manufacturing of WGM microcavity

Chapter 4 Investigation of the 
cutting performance 
of CaF2

Chapter 7 Conclusions
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3. Analytical model of material fracture 

behavior 
  This chapter provides fundamentals of material fracture system in cutting. Further, it 

will give an analytical model of material fracture behavior in this dissertation.  

 

3.1 Material fracture system 
  In ultra-precision cutting, the uncut chip thickness reaches to a few tens or hundreds 

nanometers, therefore, the cutting mechanism has to be analyzed in the viewpoint of 

nanoscale. In general, slip system and cleavage are essential to discuss the BDT of 

crystalline materials (Fig. 2-13). Plastic deformation is induced by a lot of slip dislocation, 

whereas cleavage causes the brittleness, hence, it is necessary to consider the influence 

of those fracture mechanisms on the surface integrity. For HCP crystal such as sapphire, 

it is reported that twinning deformation also contributes to the ductility i.e. plastic 

deformation [142]. In this section, each fracture mechanism and analytical model is 

introduced. 

 

3.1.1 Slip system 

  Slip system that consists of slip plane and slip direction portends the ductile-regime 

cutting. A simple model where some stress is applied on crystal is shown in Fig. 3-1 [144]． 

When shear stress acting, the atoms move by a distance of one atom through repetition 

of breaking and forming the bonds between atoms. The plane along which the atom 

glides is called slip plane. Slip can be explained by a concept of dislocations which is a  

 

Fig. 3-1 Schematic illustration of slip activation involving breakage and formation of the bonds 

(formatted by the author) [143] 
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one-dimensional line defect. For screw dislocations the dislocation line vector 𝒍  is 

parallel to the Burgers vector 𝒃, whereas the two vectors are perpendicular each other 

in the case of dislocation. Dislocations can glide over a certain plane (slip planes), which 

are defined by Burgers vector 𝒃 and dislocation line vector 𝒍. Normally the dislocation 

glide over the most densely packed planes, which corresponds to slip planes. Then, slip 

always occurs in the direction of the Burgers vector 𝒃 (along the most closely packed 

directions in the slip planes), which is called slip direction for crystalline materials. As 

the slip planes and directions depend on its crystalline structure and element 

 

Fig. 3-2 Schematic illustration of dislocation mode; The screw dislocation is defined by the 

geometrical relation of Burger’s vector 𝒃  and dislocation line vector 𝒍𝟏  ( 𝒍  ∥  𝒃 ). The edge 

dislocation is defined by the geometrical relation of Burger’s vector 𝒃 and dislocation line vector 𝒍𝟑 

(𝒍 ⊥ 𝒃). The relation of 𝒃 and 𝒍𝟐 show mixture characteristics (formatted by the author). [144]  

 

Fig. 3-3 Schematic illustration of resolved shear stress model under tensile loading condition [143] 
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composition, the slip systems vary depending on the materials.  

  For movement of the dislocation, the necessary shear stress is given by Peierls-

Nabarro model [143]: 

𝜏𝑝𝑛 =
2𝐺

 − 𝜐
exp(

−2𝜋𝑤

𝑏
) (3-1) 

  If the width of the dislocation 𝑤 (several atomic spacing) is bigger, and the Burger’s 

vector 𝑏 is smaller, the Peierls-Nabarro stress is smaller according to Eq. (3-1). Thus, a 

dislocation takes place on the closed-packed plane in the closest-packed direction. When 

the dislocation barriers are short, the critical stress which is required to activate a 

dislocation glide is relatively high. Dislocation easily glides for broad dislocations, where 

the atomic spacing is great. Therefore, these materials are ductile and only small 

stresses are required to produce large strains whereas ceramics tend to have narrow 

lattice spacing, which requires the high stresses for the movement of dislocations. 

Because of that, the ceramics become hard and brittle. 

  A large number of dislocations induce plastic deformation, which is necessary for 

ductile-regime cutting. Plastic deformation occurs when an applied stress exceeds a 

critical value. This means that slip begins on specific planes along specific directions. 

The critical value is called critical resolved shear stress (CRSS). The deformation is 

usually associated with slip mechanism (note that other mechanism may be involved.). 

As shown in Fig. 3-3, when loading a tensile force 𝑭 on a crystal cylinder which has a 

cross-sectional area 𝐴, the induced stress 𝜎𝑎can be described by Eq. (3-2) [144]: 

𝜎𝑎 =
𝐹

𝐴
 (3-2) 

  In this model, slip plane normal vector 𝑺𝒑 (i.e. slip plane) is inclined to the tensile 

loading axis with the angle 𝜃, and the slip direction 𝑺𝒅 is inclined to the same axis with 

angle 𝜆. Slip occurs on the specific slip plane, and a projected area onto a slip plane 𝐴′  

is given as follows: 

𝐴′ =
𝐴

cos𝜃
 (3-3) 

  Slip direction 𝑺𝒅 is also inclined to the tensile loading axis with the angle 𝜆, therefore, 

the force is resolved to slip direction: 

𝐹′ = 𝐹cos𝜆 (3-4) 

  From those equations, the resolved shear stress (RSS) 𝜏𝑠 is obtained: 

𝜏𝑠 =
𝐹

𝐴
cos𝜃cos𝜆 (3-5) 

  The part of cos𝜃cos𝜆 is known as the ‘Schmid factor’ 𝑚, which determines how easily 

a slip system is activated. Schmid factor features maxima when 𝜃=𝜆=45 °, and varies in 

the range of −0.5 < 𝑚 < 0.5. When the RSS value exceeds some critical value, a slip 
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occurs, and the critical value is named as critical resolved shear stress (CRSS). The value 

can be determined for each slip system (primary slip or secondary ones), and the slip 

system that firstly reaches at CRSS is firstly activated. In other words, it is necessary to 

apply stress which surpasses the CRSS value to deform materials. 

 

3.1.2 Cleavage 

  Brittle fracture can always deteriorate machined surface, and has been intensively 

discussed. In the case of crystalline materials, the fracture originates from so-called 

‘cleavage planes’, where the density of the atoms is high. Analogous to slip it occurs on 

some specific plane where a tensile stress surpasses a critical value. Sohncke formulated 

the law as Eq.(3-6) [143]: 

𝜎𝑐 =
𝐹

𝐴
cos2𝜑 (3-6) 

  For separation of crystal body along cleavage planes, the tensile stress acting on the 

cleavage plane should be considered and is given by 𝐹cos𝜑. Same as Eq. (3-3), a projected 

area is 𝐴/cos𝜑, and the resolved tensile stress is obtained by Eq. (3-6) (Fig. 3-4). 

  The primitive model in regards to brittle fracture was proposed by Griffith [143, 145]. 

He considered that crack initiation relates to the releasing of growing strain energy, and 

attempted to quantitatively analyze the mechanism in terms of energy equilibrium. 

Assuming that a perfect glass contains only one small crack, for a static-crack system, 

the total energy can be described as below: 

𝑈 = (−𝑊𝐿 + 𝑈𝐸) + 𝑈𝑆 (3-7) 

  

Fig. 3-4 Schematic illustration of resolved tensile stress model under tensile loading condition [143] 
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  The thermodynamic equilibrium is expressed by the mechanical energy of the body 

𝑊𝐿, elastic energy 𝑈𝐸, and the surface energy 𝑈𝑆. Each term is expressed as follows: 

𝑊𝐿 = 2𝑈𝐸 (3-8) 

𝑈𝐸 = 𝜋𝑐2
𝜎𝐿

2

𝐸
 (3-9) 

𝑈𝑆 = 4𝑐𝛾 (3-10) 

  With the equations, Eq. (3-7) is written by Eq. (3-11). 

𝑈 = −𝜋𝑐2
𝜎𝐿

2

𝐸
+ 4𝑐𝛾 (3-11) 

  The minus sign shows strain energy released by the growth of a crack. The tensile 

stress acts on the surface of the crack. For constant load and plane strain conditions, the 

following relation is obtained: 

𝜎𝐿 = √
2𝛾𝐸

( − 𝜐2)𝜋𝑐
 (3-12) 

  For plane stress condition, 𝜐 = 0. Although Griffith’s theory was a breakthrough for 

understanding of brittle fracture, the theory could be applied to amorphous materials, 

such as glasses. In the case of metal, one had to consider the different nature of plastic 

deformation in metals. Orowan extended the Griffith’s theory considering the plastic 

deformation. Orowan showed that the work of plastic deformation which takes place in 

the region of a thinner material in comparison of the crack length plastic deformation 

can contribute to the surface energy of the crack, and reflected the relation on the Eq. 

(3-9) for plane stress condition: 

 

Fig. 3-5 Griffith’s crack model. An elliptical microcrack exists in a glass and the tensile stress 

distributes from the origin of crack (formatted by the author) [143]. 
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𝜎𝐿 = √
2𝐸(𝛾 + 𝑤𝑝)

𝜋𝑐
 (3-13) 

  Therefore, Eq.(3-8) can be re-written. 

𝑈 = −𝜋𝑐2
𝜎𝐿

2

𝐸
+ 4𝑐(𝛾 + 𝑤𝑝) (3-14) 

  The plastic work is much larger than the surface energy, which is estimated by Orowan. 

This lead Orowan’s relation to incorporate the plastic-deformation energy in the vicinity 

of fracture surface and neglect the surface energy. 

𝜎𝐿 ≈ √
2𝐸𝑤𝑝

𝜋𝑐
 (3-15) 

  Considering that plastic deformation is formed by a large number of dislocations, a 

role of dislocation has to be considered. Zener suggested that crack can be nucleated at 

pile-ups of dislocations, where sufficient stress for the nucleation of cracks form. The 

pile-up concept is essential to the explanation of the role of dislocation, and Cottrell 

considered the model of crack formation by dislocation pile-ups in a BCC (Body-Centered 

Cubic) metal. He considered the intersection of a/2 <111> dislocation forms a <100> 

dislocations wedging the crack. The fracture stress is calculated by the specific surface 

energy, and the Burgers vector of the dislocation and the number of dislocations: 

𝜎𝐹 =
2𝛾

𝑝𝑏
 (3-16) 

  Here, it can be concluded that brittle fracture can be originated from plastic 

deformation, and pile-up phenomena caused by slip or twin form cracks [143]. 

 

3.1.3 Twinning 

  Twinning may be also a contributing factor for plastic deformation except slip. When 

applying force to a crystal body, atoms move a fractional atomic spacing. Then, the 

crystal lattice structure is re-arranged, which is a major difference between slip and 

twinning. Whereas a crystal structure does not change due to a slip, twinning greatly 

changes the atomic arrangement. Twins are categorized into two groups; “mechanical 

twins” and “annealing twins”. Mechanical twins are induced by mechanical deformation 

process such as indentation, i.e. also known as “deformation twins”, and found in HCP 

crystals. For example, basal twins induced by grinding process are directly observed by 

TEM observation in sapphire [96]. Annealing twins take place in FCC (Face-Centered 

Cubic) crystals. The twins occur in crystal growth process, therefore, it is also called 

growth twins. Similar to Schmid’s law for slip, twinning system can be also operated by 

CRSS. As shown in Fig. 3-6, mirror symmetry can be seen at the boundary of twin planes 



Chapter 3 Analytical model of material fracture behavior 

37 

 

where a fractional portion of crystal lattice changes compared to the previous crystal 

structure. Thus, twin bands are formed. It is still controversial that the mechanism of 

twinning relates to dislocations, however, it is anticipated that the plastic deformation 

is sustained by slip and twinning deformation in the case of HCP crystal such as sapphire 

[143, 144]. 

 

3.2 Analytical procedure of material fracture 

mechanism 
  Material fracture mechanisms are formulated by various researchers as mentioned in 

Section 3.1. Especially, a resolved stress model describes a tendency for plastic 

deformation or brittle fracture, therefore, the model has been often used for analyses of 

anisotropic fracture mechanisms. 

  Schmid factor expresses a tendency for activation of slip which are associated with 

plastic deformation in terms of geometrical relation between applied force and slip 

system [143]: 

𝑚 = cos𝜃cos𝜆 (3-17) 

  Simply, the more an absolute magnitude of Schmid factor 𝑚 is, the more prone the 

corresponding slip systems are operated. Therefore, the calculation was used for the 

explanation of material fracture behavior. In the case of the indentation tests, this 

relation was extended to consider the indenter geometry (explanation will be given in 

Eq.(3.15)) [146, 147]. However, simple geometrical calculation of Schmid factor does not 

explain all of the possible slip activation because the CRSS values differ depending on 

 

Fig. 3-6 Schematic illustration of twinning deformation (formatted by the author)[143] 
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slip systems. Especially for low-symmetry crystal sapphire, several slip and twinning 

systems exist [148]. 

  Nowak’s model was a breakthrough for that [147]. He proposed a new resolved shear 

stress model in nanoindentation tests as follows: 

𝑇𝑖(𝜇) ∝
𝜏𝑖

𝜏𝑖
𝑐𝑟𝑖𝑡

min
𝑖

𝜏𝑖
𝑐𝑟𝑖𝑡⁄

𝛬 
(3-18) 

  This equation shows that a parameter estimating the possibility of slip activation is 

expressed by a correction factor 𝛬 and a ratio of CRSS for 𝑖-th slip system to minimum 

CRSS among all of the slip systems. A correction factor 𝛬 denotes orientation of the 

indented crystal surface [147]. The factor was introduced to compensate the orientation 

of indenter facets which causes the different crystal rotation caused by a slip. The CRSS 

values mean the minimum required stress for slip activation, therefore, the values can 

be utilized for ranking the ease of each slip activation. By considering the ratio of those, 

the weighted Schmid factor was calculated for all possible slip systems. 

 

3.2.1 Calculation of deformation and fracture parameters 

  As described by Eq. (3-14), Schmid factor 𝑚 can be calculated by the product of cosine 

values cos𝜃cos𝜆. The values are expressed as below: 

cos𝜃 =
𝑺𝒑 ∙ 𝑭

‖𝑺𝒑‖ ∙ ‖𝑭‖
 (3-19) 

cos𝜆 =
𝑺𝒅 ∙ 𝑭

‖𝑺𝒅‖ ∙ ‖𝑭‖
 (3-20) 

  Therefore, cosine  value shows the relation of the inner product of slip plane normal 

vector 𝑺𝒑 and applied force vector 𝑭 divided by slip plane normal vector 𝑺𝒅 norm and 

applied force 𝑭 norm. Cosine 𝜆 value is expressed in the same procedure. Applied force 

𝑭  is substituted by resultant force 𝑭𝒓  in cutting which can be measured by a 

dynamometer. 

  Based on the idea of Nowak and other researchers [147], the obtained 𝑖-th Schmid 

factor 𝑚𝑖 is ranked by 𝑖-th CRSS values as follows: 

𝑃𝑖 =
𝑚𝑖

𝜏𝑖
𝑐𝑟𝑖𝑡

min
𝑖

𝜏𝑖
𝑐𝑟𝑖𝑡⁄

 
(3-21) 

  The i-th Schmid factor mi is weighted based on the ratio of CRSS values for i-th slip 

system to minimum CRSS values among all of the possible slip systems. The weighted 

Schmid factor 𝑃𝑖  is named as plastic deformation parameter 𝑃𝑖  in this dissertation. 

CRSS values are estimated from the literature (Munoz’s data for CaF2 [129] and 

Clayton’s data for sapphire [148]). It should be noted that the CRSS values are different 
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according to the literature due to the difficulty of the measurement or calculation, 

especially for sapphire [147-149]. In the dissertation, Clayton’s results were used 

because he comprehensively discussed all of the deformation system i.e. slip systems, 

twinning and cleavages [148]. As mentioned in section 3.1.3, twinning is induced by 

shear stress and contributes to plastic deformation for HCP crystals. It has been a 

controversial matter to consider the CRSS value for twinning because its deformation 

process is different from slip [147], however, it is evident that twinning is also involved 

in the ductility, therefore, the plastic deformation parameter 𝑃  was calculated for 

twinning systems. 

  The CRSS values depend on the temperature, and the more a temperature increases, 

the more easily slip is activated, in other words, the CRSS values decrease. In reality, 

some slip systems are not activated under the room temperature. However, it is reported 

that the temperature in the vicinity of the cutting edge is elevated to 200 ℃ in ductile-

regime cutting of silicon [124]. According to Munoz’s report, the primary slip system 

{   }〈   〉 and the secondary one {   }〈   〉 could be activated at around 200 ℃ . 

Therefore, the CRSS values are estimated at the temperature of around 200 ℃. Other 

slip plane {   } also exists, however, the slip system was activated at more than 400 ℃ 

temperature, therefore, the {   } slip plane is omitted in the dissertation. For sapphire, 

various deformation systems (rhombohedral twinning, basal twinning, basal slip, 

prismatic slip, and pyramidal slip) exist as shown in Table 3-2, and RT is the easiest to 

be activated in terms of CRSS. The twinning process is assumed to be unidirectional and 

is possible under compressive load in respect to the c-axis, whereas the slip process is 

bidirectional. In regards to the pyramidal slip, it is activated only by tensile loading along 

the c-axis [148]. Hence, the absolute values of the plastic deformation parameter 𝑃 

values for slip systems are used, whereas only negative values of the one is used for 

twinning. Only for pyramidal slip the positive value is used for the calculation. 

  Similar parameters also can be calculated for cleavage. As noted in section 3.1.2, 

cleavage can be described by using the relationship of the angle between applied force 

vector 𝑭 and the cleavage plane normal 𝑪𝒑. Therefore, the tendency for anisotropic 

cleavage can be postulated as follows: 

𝜎𝑐 ∝
𝐹

𝐴
𝑐𝑜𝑠2𝜑𝛬 (3-22) 

  Cosine 𝜑 is described, analogous to Eq.(3.17): 

𝑐𝑜𝑠𝜑 =
𝑪𝒑 ∙ 𝑭

‖𝑪𝒑‖ ∙ ‖𝑭‖
 (3-23) 

  For cleavage fracture, the energy of two new surface to form a pair of halved surfaces, 

2𝛾, are required [150]. The necessary tensile stress for separation of materials along 

cleavage is proportional to surface energy 𝛾 as described by Eq.(3-16), therefore, the 
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tendency for cleavage can be quantified by surface energy 𝛾 for specific planes. In this 

dissertation, the cleavage fracture parameter 𝐶𝑗 for 𝑗-th cleavage plane is defined as 

follows: 

𝐶𝑗 =
𝑐𝑜𝑠2𝜑

𝛾𝑗
min

𝑗
𝛾𝑗⁄

 
(3-24) 

  In a similar manner, cleavage is also quantified incorporating surface energy. 

Cleavages occur at room temperature, therefore, possible cleavages have to be considered.  

For CaF2, perfect {111} cleavage is a primary cleavage, and partially {110} cleavage is 

confirmed as a secondary cleavage [51] (see Table 3-3). For sapphire, basal cleavage, 

prismatic cleavage and rhombohedral cleavage exist [148, 151]. By merging the existing 

experimental data, the cleavage fracture parameter 𝐶 is computed. 

 

3.2.2 Calculation flow 

  Schematic illustration of the calculation procedure is shown in Fig. 3-7. 

Crystallographic information (slip system, cleavage, workpiece orientation) and the force 

inclination angle are inputted at first. If the material is sapphire, some transformation 

procedure is demanded. Sapphire is expressed by Miller-Bravais indices 

(ℎ 𝑘 𝑖 𝑙)[𝑢 𝑣 𝑡 𝑤], therefore, the expression has to be transformed into Miller indices 

(𝐻 𝐾 𝐿)[𝑈 𝑉 𝑊] . After that, the hexagonal coordinate system is converted into 

Cartesian coordinate system [152-154], namely, the coordinate system is adjusted to the 

following calculation. By using the crystallographic information of the workpiece and 

Table 3-1 Slip systems of CaF2 (CRSS values are estimated from the Munoz’s data [129] at the 

temperature of 200℃) 

Slip system Miller index CRSS 𝜏𝑖
𝑐𝑟𝑖𝑡 [MPa] 

Primary slip system {   }⟨   ⟩ 3.42 

Secondary slip system {   }⟨   ⟩ 17.04 

 

 

Table 3-2 Slip and twinning systems of sapphire (CRSS values are estimated from the Clayton’s data 

[148] at the temperature of 200 ℃) 

Slip (Twinning) system Miller-Bravais index CRSS 𝜏𝑖
𝑐𝑟𝑖𝑡 [GPa] 

Rhombohedral twinning (RT) {    2}⟨      ⟩ 0.41 

Basal twinning (BT) (    )⟨     ⟩ 2.23 

Basal slip (BS) (    )⟨  2  ⟩ 2.23 

Prismatic slip (PRS) {  2  }⟨     ⟩ 1.65 

Pyramidal slip (PYS) {     }⟨     ⟩ 4.49 
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applied force vector, the analysis condition is initialized. Rodrigues’ rotation formula is 

employed to calculate every force vector as an axis of main plane normal vector. Those 

procedures are complemented in Appendix. For every force direction, the angular 

relationship between slip (cleavage) system and force vector is calculated e.g. Schmid 

factor for slip systems. By incorporating the CRSS values and surface energies, the 

calculated values are weighted, and then the plastic deformation parameter 𝑃  and 

cleavage fracture parameter 𝐶 are obtained.  

 

3.3 Summary 
  This chapter describes a fundamental of material fracture mechanism related to the 

cutting process i.e. slip, cleavage, and twinning. The analysis procedure of anisotropic 

fracture behavior on the basis of the above-mentioned mechanisms is presented, and 

adapted to the cutting process. The contents are summarized as follows: 

1. General background and fundamental mechanisms of slip, cleavage, and twinning 

are introduced, which strongly affect the surface integrity in ultra-precision cutting. 

2. For analysis of anisotropic fracture behavior, resolved stress model was presented 

and adapted to the cutting process. CRSS and surface energy are incorporated so 

that one can comprehensively discuss the anisotropic fracture behavior including all 

possible slip, twinning system and cleavage planes. 

Table 3-3 Cleavage planes and surface energy of CaF2 (Surface energy values are taken from 

Janicki’s data [51]) 

Cleavage plane Miller index Surface energy 𝛾 [J/m2] 

Perfect cleavage {   } 0.384 

Partial cleavage {   } 0.723 

 

 

Table 3-4 Cleavage planes and surface energy of sapphire (Surface energy values are taken from 

Wiederhorn [151] and Clayton’s data [148]) 

Cleavage plane Miller-Bravais index Surface energy𝛾 [J/m2] 

Basal cleavage (BC) (    ) ≤ 40 

Prismatic cleavage (PC) {     } 7.3 

Rhombohedral cleavage (RC) {    2} 6 

 

 



Chapter 3 Analytical model of material fracture behavior 

42 

 

 

Fig. 3-7 Calculation flow of the plastic deformation parameter and cleavage fracture parameter 
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4. Investigation of the cutting performance 

of CaF2 
  This chapter describes the influence of process parameters and crystal anisotropy on 

the machinability of CaF2 in cutting tests. In section 4.1, the plunge-cut tests were 

conducted. The parameters proposed in chapter 3 are calculated to discuss the 

anisotropic deformation behavior in plunge-cut tests. In section 4.2, UPCT tests were 

carried out, and the surface integrity was discussed. The SSD induced by UPCT was also 

investigated by TEM observation. 

 

4.1 Plunge-cut test 
  A plunge-cut test is one of the fundamental processes to investigate the BDT in cutting 

of brittle materials [79, 84, 86]. In the tests, the CDC values and surface morphologies 

were examined. 

 

4.1.1 Experimental setup 

  On the ultra-precision 4-axis vertical machine tool (UVM-450C, TOSHIBA MACHINE 

Ltd.), plunge-cut tests were conducted. CaF2 substrate (13 mm × 38 mm × 1 mm) was 

directly fixed by a vacuum chuck system which consists of a base plate, a dynamometer 

(9256A1, Kistler), an adapter plate, and a vacuum chuck on the X stage as shown in Fig. 

4-1(a). CaF2 was pre-polished to remove existing cracks before the experiments. (   ), 

(   ), and (   ) planes were selected for cutting crystalline plane (main plane). As a 

type of tool, SCD was used. The used tools are different depending on the tests, however, 

only rounded-nose tools were used through the whole tests. One of the used SCD tools 

(with 0.2 mm rounded-nose radius, −20° rake, 8° clearance) is shown in Fig. 4-1 (b). By  

 

Fig. 4-1 Experimental setup. (a) Image of plunge-cut tests (b) SEM image of the used SCD tool (Tool 

#1, 0.2 mm nose radius, −20° rake angle, 8° clearance angle)  
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SEM (Scanning Electron Microscope) observation, the edge radius is estimated as less 

than 50 nm. The value is relatively close to the reference value (see Table 2-3), however, 

it should be noted that the estimation is a more qualitative manner compared to AFM 

measurement [155]. The DOC (Depth Of Cut) 𝑎𝑝 continuously changes with a constant 

cutting slope 𝐷/𝐿 (Fig. 4-2 (b)). The cutting slope was set to 1/500, which means that 

DOC reaches from 0 to 2 m when length of the groove is 1mm. Continuous motion of x- 

and z-axes fed by NC (Numerical Control) program enabled us to set the cutting slope. 

Once the tool reaches to maximal DOC, the tool is fed to the same direction but decrease 

the DOC with the same 𝐷/𝐿. Owing to the procedure, it is possible to avoid the high 

impact force which acts on the tool edge and causes the tool breakage. The cutting 

direction 𝛿 was increased in increments of 30 ° until 330 ° (Fig. 4-2 (a)). The tests were 

repeated three times for each cutting condition. The machined grooves were observed by 

FE-SEM (Merlin Compact VP, Carl Zeiss) for each cutting direction 𝛿. The DOC was 

measured using a WLI (White Light Interferometer, New View TM6200, Zygo). The CDC 

Table 4-1 Process parameter of the plunge-cut tests of CaF2 

Parameter Value 

Cutting speed 𝑉𝑓 [mm/min] 20, 50, 100, 200, 500, 1000, 1500 

Depth of cut 𝑎𝑝 [nm] 0 – 2000 

Cutting slope 𝐷/𝐿 1/500 

Cutting direction 𝛿 [°] 0 – 330 ( increments of 30 ) 

Crystal orientation of cutting plane (100), (110), (111) 

Type of cutting tool SCD 

Nose radius 𝑅 [mm] 0.2, 0.05, 0.01 

Rake angle 𝛼 [°] 0, −10, −20, −30 

Atmosphere Dry 

 

 

 

Fig. 4-2 Schematic illustration of the experimental procedure. (a) Cutting direction 𝜹 is rotated by 

30 ° till a full rotation. (b) Once cutting tool reaches to the maximum depth, then goes up with the 

same cutting slope 𝑫/𝑳. The CDC values are measured by WLI measurement where the black spots 

firstly appear. 
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was defined as the depth where a first crack appears. Since WLI methods is based on the 

light interferometer, the surface is required to be smooth enough for measurement. 

Therefore, missing data point (indicated as black spots in Fig. 4-2 (c)) is caused by cracks. 

Ethanol or acetone was used to eliminate dust on the surface before the measurement. 

The average value of the measured CDC was utilized. The process forces were measured 

by a dynamometer (9256A1, KISTLER). Experimental condition is listed in Table 4-1, 

and the rake angle was changed by rotating the a-axis. 

 

4.1.2 Machinability of (100) plane 

  On (   ) plane, influence of the process parameters (cutting speed, rake angle, nose 

radius) and crystal anisotropy are investigated.  

 

Process parameter 

  For the investigation of influence of process parameter, the cutting crystalline plane 

and directions are fixed as (   ) plane and [   ] direction (cutting direction 𝛿 is 0 ° 

on (   ) plane). The cutting tool with −20 ° rake and 0.2 mm nose radius was employed. 

Fig. 4-3 shows that the CDC values do not change significantly according to the cutting 

speed, analogous to the other work e.g. CaF2 [49], germanium and silicon [1]. The cutting 

speed is related to the cutting power for material removal in cutting, and thus critical 

cutting speed which generates the energy enough to cut materials. In principle, a high 

cutting speed is sometimes favorable to enhance the surface quality and reduce the 

machining time and cutting force [156, 157]. For instance, in the scratch of c-plane 

sapphire, increasing the scratch velocity improved the strain rate and suppressed the 

 

Fig. 4-3 Relationship between cutting speed 𝑽𝒇 and critical depth of cut CDC 
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growth of cracks [141]. Notably, high cutting speed also causes the crack initiation 

because an induced residual stress will be released by brittle fracture. Therefore, there 

should be an optimal cutting velocity in cutting of CaF2. However, the optimal value was  

 not clearly identified in the range of 20 − 1500 mm/min. In the following tests, the  

 cutting speed was set as 200 mm/min. 

  It is widely anticipated that rather tool geometry has a great influence on the surface 

quality in diamond turning process [156]. Indeed, several reports show that the variation 

of rake angle affects the BDT phenomena [1, 49, 76]. However, as shown in Fig. 4-4 (a), 

rake angle does not significantly affect the CDC values, and the results are different 

from the previous works [1, 48, 49, 76, 80]. Normally, utilization of negative rake face 

angle can restrain the crack formation because a hydrostatic pressure is formed in a 

compressive stress field underneath the cutting edge. On the other hand, a great 

negative rake angle rather deteriorates the surface because the chip formation is apt not 

to occur, rather plowing occurs (see section 2.2.2 and [48]). Interestingly, the smaller the 

nose radius is, the smaller the CDC value is. Nose radius is one of the essential 

parameters which affect the cutting performance such as regenerative chatter, or surface 

integrity. For example, Chen showed that using a smaller nose radius lead to reduce the 

thrust force and suppress chatter [158]. Such as rake angle, there is also an optimal 

value depending on material [159]. In general, the contact area between the tool and 

machined surface increases with the increments of nose radius. Plastic deformation 

region is strongly affected by the contact area, where the hydrostatic pressure forms. 

Since the compressive stress region is smaller, it is assumed that the hydrostatic 

 

Fig. 4-4 Influence of rake angle 𝜶 and nose radius 𝑹 on (a) critical depth of cut CDC and specific 

cutting energy 
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pressure can be also smaller or stress acting on the material does not distribute and 

rather the stress is easy to focus on a small zone so that the crack easily initiates.  

  Since the cutting energy depends on the tool geometry, the cutting energy is 

normalized according to the inherent area which contributes to cutting volume. This is 

so-called specific cutting energy, and that enables us to evaluate the cutting energy fairly 

and independently from the tool geometry. The specific cutting energy represents the 

energy required for a unit volume of workpiece [140]. In the plunge-cut process, it can be 

replaced that the acting force per cross-sectional area of the groove. The specific cutting 

energy 𝐸𝑠 is given as: 

𝐸𝑠 =
𝐹𝑐
𝐴𝑐

 (4-1) 

  Fig. 4-4 shows the energy-DOC curve in accordance with nose radius (0 ° rake angle). 

The specific cutting energy becomes rapidly higher as DOC decreases, which originates 

from the size effect in a small volume of cutting. Similar results are obtained in other 

work [140]. Since the DOC becomes larger, the cutting mode transits from ductile-regime 

to brittle-regime, in other words, the BDT takes place. It is well known that the force 

curve is normally fluctuated and does not increase in brittle-regime because the cutting 

energy dissipates from brittle fracture. Therefore, Wang [140] noticed that one could 

predict the CDC value from the curves, and the real CDC relatively fit the predicted 

CDC. Based on the results, the curve shifts towards right-top direction when the CDC is 

higher, however, the obtained results in this tests do not follow the idea. One of the 

reasons might originate from the uncertainty of the estimated DOC. Although the 

machining process was conducted by an NC program, the workpiece is not perfectly 

parallel. Therefore, the actual obtained grooves are sometimes longer or shorter than the 

expected ones, and the DOC is estimated from the width of actual grooves which can be 

observed by optical microscope. In addition, the cutting force itself is very small, and 

thus it is difficult to identify the actual starting point of the groove and force curve.  

  Compared to previous studies, the used nose radius is quite smaller (usually more than 

1 mm), therefore, the tendency of the CDC values can change if extending to more than 

1 mm nose radius. There is a limitation of the nose radius in this study considering of 

manufacturing a microcavity, hence, here it is concluded that a nose radius significantly 

affects the CDC values compared to other process parameters. The ease of hydrostatic 

compressive stress generation can be a major reason. 
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Crystal anisotropy 

  For the following tests, the SCD tool with −20 ° rake and 0.2 mm nose radius was 

used. Fig. 4-5 shows the CDC values and classification of surface morphology of the 

machined grooves on (   ). The CDC value and surface morphology change depending 

on the cutting directions. The surface morphologies in the vicinity of BDT are shown in 

Fig. 4-6: type I—a smooth surface with fine lamellar fracture (Fig. 4-6 (a)); type II—

lamellar step and fracture sculpted by the cleavage planes (Fig. 4-6 (b) and (c)). Based 

on the crystal structure (Fig. 4-7), the CDC values and surface morphologies are 

characterized by a four-folded symmetry along the [   ] and [    ] axes (in the cutting 

directions of 0 º, 90  º, 180 º, and 270 º). For analysis of crystal anisotropy, the plastic 

deformation parameter 𝑃  and cleavage fracture parameter 𝐶  are computed. The 

tendency for activation of each deformation system are shown in the 𝑃-𝛿  and 𝐶 -𝛿 

curves in Fig. 4-8. The maximal CDC values coincide with the high 𝑃-parameter values 

of {   }〈   〉 slip system in the directions of 0 º, 90 º, 180 º, and 270 º. Thus, it is 

anticipated that the slip systems contribute to promote the plastic deformation and 

enhance the ductile-regime cutting in those directions. On the other hand, the 𝐶 -

parameter value is also the highest for the same directions. In the case of plunge-cut 

tests of sapphire, the high 𝐶-parameter corresponds to the minimal CDC, however, those 

do not fit the CaF2 case. The detailed discussion will be introduced in Chapter 5. The 

type I brittle fracture in 0 º cutting direction is observed in the perpendicular direction 

to the cutting direction, which corresponds to (       ) cleavage (Fig. 4-6 (a) and red line 

of the part of (       )  in Fig. 4-7) and the high 𝐶 -parameter of (       ). The sculpted 

fracture (Fig. 4-6 (b) and (c), and part of the Type II) in 30 º and 60 º cutting directions 

 

Fig. 4-5 CDC values and classification of surface morphology of (100) plane 
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are regularly formed by respectively (       )  and (   )  cleavages which are also 

sustained by the corresponding high 𝐶 -parameter value of each cleavages. At the 

beginning of the grooves and along the outside of the grooves, the lamellar steps 

regularly run along which do not correspond to {   } and {   } cleavages.  

 

 

Fig. 4-6 Surface morphologies of (100) plane: (a) type I—a smooth surface with fine lamellar fracture; 

(b), (c) type II—lamellar step and fracture sculpted by cleavage (a black arrow indicates the cutting 

direction) 

 

Fig. 4-7 Schematic illustration of the surface morphologies on (100) 
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  From the top view of machined surface, the step can correspond to 〈  2〉. There is a 

report that such steps were also observed in the direction of 〈2  〉, or 〈  2    〉 in heating 

process [130], therefore, the steps can be a part of the directions and related to cleavage 

or slip. 

 

4.1.3 Machinability of (110) plane 

  In the following sections, the influence of crystal anisotropy was investigated. In the 

plunge-cut experiments of (   ) plane, two-folded symmetry features the CDC values 

and various fracture types of the machined grooves (Compare Fig. 4-9, Fig. 4-10, Fig. 

4-11, and Fig. 4-12): type I— a cleavage (     )  fracture running along the vertical 

 

    

Fig. 4-8 Variation of (a) plastic deformation parameter 𝑷 and (b) cleavage fracture parameter 𝑪 of 

(100) plane 
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direction to the cutting direction (Fig. 4-11 (a)),and a cleavage (     ) fracture along the 

same direction as the Type I fracture (Fig. 4-11 (b)); type II— a line fracture 

perpendicular to the cutting direction caused by the (   ) cleavage (Fig. 4-11 (c)); type 

III— a smooth surface with coming-off lamellar fracture that could be induced by the 

(    ) cleavage and elastic recovery (Fig. 4-11 (d)); type IV— a (    ) fracture (Fig. 4-11 

(e)); type V— a line brittle fracture induced by the (    ) cleavage and a large fracture  

sculpted by the combination of the (       ), (     ), and (    ) cleavages (Fig. 4-11 (f)). 

 

Fig. 4-9 CDC values and classification of surface morphology on (110) plane 

 

Fig. 4-10 Schematic illustration of the surface morphologies on (110) 
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Except for 150º cutting direction, the CDC values does not rapidly change. Especially the 

CDC values are maximal at the cutting directions of 0 º and 90 º, which are associated 

with the high 𝑃  parameters (see Fig. 4-12 (a)). Rather, the 𝑃  parameter values 

decrease in the direction of 150º and 330º where the corresponding CDC values are 

minimal compared to other cutting directions, therefore, the low value of 𝑃 parameter 

also indicates the low CDC values. Overall, the line fracture which are formed in the 

perpendicular direction to the cutting direction on each cutting direction firstly, and each 

fracture type corresponds to the cleavage planes which feature higher 𝐶 parameters in  

   

   

 

Fig. 4-11 Surface morphologies of (110): (a), (b) type I— a line fracture along cleavage (�̅�𝟏�̅�) (c) type 

II— a line fracture perpendicular to the cutting direction caused by the (𝟏𝟏𝟏) cleavage (d) type III— 

a smooth surface with turned-up lamellar fracture that could be induced by the (�̅�𝟏𝟏) cleavage and 

elastic recovery (e) type IV— a (�̅�𝟏𝟏) fracture (f) type V— a line brittle fracture induced by the 

(𝟏�̅�𝟎) cleavage and a large fracture sculpted by the combination of the (𝟏𝟏𝟏    ), (�̅�𝟏�̅�), and (𝟏�̅�𝟎) 

cleavages  (a black arrow indicates the cutting direction) 
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Fig. 4-12 (b). The tendency was seen in the cutting direction of 0 º in plunge-cut tests of 

(   ) plane which shows higher CDC values. The fracture type will be discussed in the 

next section, including the results of (   ) plane. 

 

4.1.4 Machinability of (111) plane 

  Similar to other works [76, 86], three-fold symmetry manifests itself in the CDC values 

and corresponding surface morphologies in the case of (   ) plane (Fig. 4-13 and Fig. 

4-14): Type I—a microtorn fracture (Fig. 4-14 (a) and (c)), Type II—a trapezoidal fracture 

(Fig. 4-14 (b)), Type III—a smooth surface with a fine lamellar fracture (Fig. 4-14 (d)). 

 

       

Fig. 4-12 Variation of (a) plastic deformation parameter 𝑷 and (b) cleavage fracture parameter 𝑪 of 

(110) plane 
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The 𝑃-parameters are maxima in the vicinity of 90 º, 210 º, and 330 º cutting directions,  

and those parameters decrease at the 30 º, 150 º, and 270 º directions where the CDC 

values are minimal (Fig. 4-16). Type I fracture was observed at the cutting directions of 

every 60 º from 0 º. Microtorn fractures in the directions of 0 º and 60 º were regularly 

formed along (    ) and (    )  cleavages. Unique brittle fracture of Type II can be 

 

Fig. 4-13 CDC values and classification of surface morphology of (111) 

 

     

Fig. 4-14 Surface morphologies of (111): (a) and (c) Type I—a microtorn fracture (b) Type II—a 

trapezoidal fracture (d) Type III—a smooth surface with a fine lamellar fracture 
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observed in the directions of 30 º, 150 º, and 270 º where most of the 𝐶 parameters are 

intersecting near 0.3. It is difficult to identify which cleavage dominates the surface 

morphologies but rather it is assumed that the fact that those cleavages take place at 

the same time results in this unique trapezoidal fracture. The lamellar fracture was 

observed in 90 º, 210 º, and 330 º directions. The same type fracture was also observed in 

cutting of (   ) and (   ) planes where the CDC values are high. As shown in Fig. 

4-17, cracks are formed by median crack by compressive stress and lateral crack by 

residual tensile elastic stress [65, 160]. The fact that the CDC values are high shows the 

higher ductility, therefore, the surface can be more elastic. Right after the tool passes, 

the combination of the cracking and the residual elastic tensile stress beneath the 

cutting tool can form a lamellar fracture in a coming-off manner. In the origin of the 

crack initiation, the machined surface was pulled to elastically recover by the tensile 

stress, then the surface come off with crack generation. Fig. 4-18 shows the collected 

continuous chip along the groove of 210 º cutting direction on (   ) plane which exhibits 

the high CDC value. The chip was formed as a saw-tooth type chip [161], which can be 

seen in metal cutting, and can be an evidence that the ductile-regime cutting was 

performed. 

  From the above-mentioned results and discussion, on each main planes (   ), (   ), 

and (   ), anisotropy of the BDT can be discussed by the computed parameters and 

CDC values. 𝑃 parameter, which means the tendency of possible slip activation, agrees 

well with the CDC values, whereas 𝐶 parameters misfit the CDC values. Nevertheless, 

the fracture morphologies can be rather described by 𝐶 parameters, thus it can be said 

 

Fig. 4-15 Schematic illustration of surface morphologies on (111) 
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that the brittle fracture can be characterized by the corresponding cleavages. The 

experimental results indicate that the CDC value was over 50 nm on any crystalline 

plane and crystalline direction, therefore, one could cut the CaF2 in ductile-mode cutting 

in arbitrary crystalline direction. Notably, the derived values were based on the 

experimental results in this dissertation. For example, the minimal values of 𝑃 

parameters on (100) plane exist in cutting directions of 45 º, 135 º, 225 º, and 315 º, where 

the cutting tests were not performed. Therefore, the actual minimal CDC value can be 

lower in other crystalline plane or direction. 

 

   

 

Fig. 4-16 (a) Plastic deformation parameter 𝑷 and (b) Cleavage fracture parameter 𝑪 of (111) plane 
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Fig. 4-17 Schematic illustration of a fine lamellar fracture and coming-off brittle fracture [65, 160]. 

 

Fig. 4-18 Saw-tooth chip along the 210° cutting direction on the (111) plane. 
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4.2 Cylindrical turning test 

4.2.1 Experimental setup 

  UPCT (Ultra-Precision Cylindrical Turning) was carried out using an ultra-precision 

aspheric surface machine tool (ULG-100E, TOSHIBA MACHINE Ltd.). A CaF2 cylinder 

workpiece with 35 mm length and 6 mm diameter was used. The CaF2 was fixed in a 

brass jig by adhesive wax, and then clamped by a collet chuck (Fig. 4-19). The collet 

chuck was mounted onto a vacuum chuck. The crystal orientation of the end face was set 

as (   ) , (   ) , or(   ) . Firstly, a workpiece was turned in brittle-regime (rough 

cutting) to form the CaF2 cone with 1 mm diameter under the following cutting condition: 

1000 min-1 rotational speed, 20 m/rev feed per revolution, and 2 m depth of cut. After 

rough cutting, pre-finish cutting was conducted to eliminate the large cracks under the 

following cutting conditions: 1000 min-1 rotational speed, 3.0 m/rev feed per revolution, 

and 100 nm depth of cut, and 5 m total removal depth. Finally, the surface was finished 

by ductile-regime cutting with 1 m total removal depth.  

  Variation of the condition of finish cutting is listed in Table 4-3. It should be noted that  

 

Fig. 4-19 Experimental setup of UPCT 

  

Fig. 4-20 Observation points of UPCT 
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a cutting speed is proportional to rotational speed. As a cutting tool, SCD tool was mainly 

used (partially B-NPD tool). The specification of the tools is listed in Table 4-2. The DOC 

𝑎𝑝 in a radial direction is set to 50 nm. Based on the results of the plunge-cut tests, it 

was assumed to obtain the surface without cracks around the entire surface according to 

the quasi-turning model [1] (see Fig. 2-12). As described in section 4.1, the surface 

integrity of CaF2 depends on crystalline planes and directions. Since the cutting 

crystalline planes and directions simultaneously and continuously change, the whole 

Table 4-2 Specification of the used tools in UPCT tests 

Specification Tool #1 Tool #2 Tool #3 

Nose radius 𝑅 [mm] 0.2 0.05 0.01 

Rake angle 𝛼 [°] –20 0 0 

Open angle [°] 90 40 40 

Orientation of rake face (   ) (   ) (   ) 

 

 

Table 4-3 Variation of process parameter of the UPCT tests 

Parameter Value 

Cutting speed 𝑉𝑓 [m/min] 0.94, 2.20, 3.14, 4.71 

Rotational speed 𝑇 [min-1] 300, 700, 1000, 1500 

Feed per revolution 𝑓 [m/rev] 0.1, 0.3, 0.7, 1, 3, 5, 7 

Depth of cut 𝑎𝑝 [nm] 50 

Orientation of end face of workpiece (   ), (   ), (   ) 

Lubricant Water-soluble oil (diluted by 1:100 ratio) 

 

 

   

Fig. 4-21 Crystallographic diagrams of the observation points which are viewed from the end face (a) 

(100), (b) (110), and (c) (111) planes. 
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cylindrical surface is necessary to be investigated. The entire surface is divided into 24 

points (Fig. 4-20), and the surface morphologies and surface roughness 𝑆𝑎 at each point 

were observed by optical microscope (VHX-600 and VHX-5000, KEYENCE) and the WLI. 

Each observation point is named with the order of English alphabet (Fig. 4-21), and the 

observation point (a) is determined as 0 ° (starting point). For each end face, the 

observation point (a) is identified by [   ] for (   ), [    ] for (   ), and [    ] for 

(   ) (see Fig. 4-21). Since the machined surface is characterized by some symmetry 

based on the crystal structure, the representative observation points for evaluation of 

surface morphologies are limited depending on the crystal orientation of the end face. 

For example, six observation points are set in the case of (   ) plane (Fig. 4-21 (a)). 

 

4.2.2 Evaluation of surface morphology and surface roughness 

Process parameter 

  For each test, crystal orientation of the end face of CaF2 are set to (   ), respectively. 

The surface roughness 𝑆𝑎  values at 24 measured points was averaged. Variation of 

surface roughness 𝑆𝑎  depending on rotational speed 𝑇 and feed per revolution 𝑓 is 

shown in Fig. 4-22 and Fig. 4-23, respectively. Analogous to the results of plunge-cut 

tests in section 4.1.2, the surface roughness was not affected by rotational speed (cutting 

speed). The maximal rotational speed of work spindle is 1500 min-1 and rather the 

diameter of the cavity does not exceed over 1 mm, therefore, it means little to deeply 

investigate the influence of cutting speed in this study. Determining that 1000 min-1 

 

Fig. 4-22 Variation of surface roughness 𝑺𝒂 in accordance with rotational speed 𝑻  

Workpiece:
Material: CaF2
Orientation of end face: (100)

Process parameter:
Rotational speed T [min-1]:Variable
Feed per revolution f [m/rev]: 1.0
Depth of cut ap [nm]:50

Cutting tool:
Type: SCD
Rake angle  [º]: -20
Nose radius R [mm]: 0.2

1000 min-1

700 min-1
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rotational speed 𝑇 is optimal in this test, the following tests were performed. Compared 

to the cutting speed, a feed per revolution affects the surface quality more. Although the 

surface is smooth in low feed regime (𝑓 = 0.1 − 0.7 m/rev), the brittle fracture begins 

to exhibit over 1.0 m/rev feed per revolution (see Fig. 4-23) and the 𝑆𝑎 value increases. 

In turning, the critical uncut chip thickness can be determined by combination of DOC 

and feed per revolution [1, 162]. Even if the DOC is smaller than the CDC value, the feed 

per tooth is too large, cutting mode turns to be brittle-regime. The maximal uncut chip 

thickness 𝑑𝑚𝑎𝑥 is given as follows [163]: 

𝑑𝑚𝑎𝑥 = 𝑅 − √𝑅2 + 𝑓2 − 2𝑓√2𝑅𝑎𝑝 − 𝑎𝑝
2 (4-2) 

  For 1 m/rev feed per revolution 𝑓, the 𝑑𝑚𝑎𝑥 can be calculated as around 20 nm. This 

value is much lower than the minimal value (approximately 50 nm) of the CDC in the 

plunge-cut tests. One of the reasons might be a shape of workpiece. Since the size of 

workpiece is very small (cylinder of 1 mm diameter and 1 − 2 mm length), the dynamic 

stiffness decreases compared to conventional substrate or wafer. Therefore, the cutting 

process can be much more unstable by the thrust force between tool and workpiece 

compared to face turning or plunge-cut. This also leads that a deflection in a radial 

direction easily occurs. In addition, the surface quality can be influenced by edge 

geometry i.e. size effect. It is assumed that the plowing could be conducted, however, the 

surface quality is enhanced in a low feed regime. Thus, the cutting edge is assumed to 

be extremely sharp e.g. less than 10 nm as shown by Sumiya [105]. Though it is difficult 

 

Fig. 4-23 Variation of surface roughness 𝑺𝒂 in accordance with feed per revolution 𝒇 
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to identify the causes for the mismatch of the results between the plunge-cut tests and 

UPCT tests (0.1 ≤ 0.7 m/rev), one could find some optimal cutting condition to achieve 

a crack-free surface. 

 

Crystal anisotropy 

  As described in section 4.1, the machined surface strongly relates to cutting crystalline 

planes and directions. Similar tendency was seen in the case of UPCT. The 𝑆𝑎 values 

and surface morphologies are characterized by three-fold symmetry when the end face is 

set as (   ), as shown in Fig. 4-24 and Fig. 4-25. The plastic deformation parameter 𝑃 

and cleavage fracture parameter 𝐶 could not be calculated in the case of the UPCT 

because the process force was not measured by a dynamometer due to the experimental 

setup. However, the anisotropic deformation behavior can be still discussed in a 

qualitative manner. For example, the surface morphologies at observation points (a) and 

(e) are smooth, whose crystalline plane and cutting directions correspond to (   ) 

planes and 90 ° directions in the plunge-cut tests where the 𝑃 parameter and CDC value 

 

Fig. 4-24 Surface morphologies of the machined cylindrical surface with end face (111). (Each point 

corresponds to the observation points of Fig. 4-21 (c). A black arrow indicates a cutting direction.) 
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were high. When cutting at observation points (b) − (d) and (f) − (g), some cracks 

appear along some specific directions e.g. the microtorn fracture runs along the cleavage 

planes as shown in Fig. 4-24 and Fig. 4-26. The torn fracture is similar to the type I 

fracture that was observed in plunge-cut of (   )  plane (Fig. 4-14 and Fig. 4-15). 

Considering the results of the plunge-cut tests, it is anticipated that the plastic 

deformation parameter 𝑃 at these observation points is relatively lower than that at (a)  

or (e). 

  Strong dependency on the crystal anisotropy was seen in the case of end face (   ) 

plane (see Fig. 4-27 and Fig. 4-28). The surface morphologies and CDC values exhibit 

two-fold symmetry i.e. the symmetric cycle appears at every 180 °. Analogous to the case 

of (   )  end face, the qualitative discussion can be done. Although the cutting 

   

Fig. 4-25 Variation of surface roughness 𝑺𝒂 in accordance with crystal anisotropy ((111) end face) 

 

Fig. 4-26 Variation of geometrical relation of crystal model with end face (111) (Each point 

corresponds to the observation points of Fig. 4-21 (c)) 
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crystalline plane is the same at observation points (a) and (f), the machined surface is 

rough at (a), whereas the smooth surface was obtained at (f). When referring the plunge-

cut test on (   ), the cutting direction at (a) corresponds to 270 ° directions where the 

CDC value and 𝑃 parameter value were low. On the other hand, the CDC value and 𝑃 

parameter values are high in the direction of 90 ° i.e. at (e). The microtorn fracture which 

runs parallel to the cutting direction at observation point (d) and the sculpted fracture 

at observation point (e) were seen, both of which are assumed to be induced by {   } 

cleavages (see Fig. 4-29).  

 

Fig. 4-27 Surface morphologies of the machined cylindrical surface with end face (110). (Each point 

corresponds to the observation points of Fig. 4-21 (b). A black arrow indicates a cutting direction.) 
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  The pyramidal fracture was seen at observation point (g) which is well known fracture 

induced by {   } cleavage. The surface quality at observation points (h) − (k) is apt to 

be smooth. Considering the crystallographic diagrams at (i), (j), the cutting crystalline 

 

Fig. 4-28 Variation of surface roughness 𝑺𝒂 in accordance with crystal anisotropy ((110) end face) 

 

Fig. 4-29   Variation of geometrical relation of crystal model with end face (110) (Each point 

corresponds to the observation points of Fig. 4-21 (b)) 
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plane and cutting directions relatively correspond to (   ) plane and [   ] directions.   

  The CDC value and 𝑃 value were high in the case of (   ) plane and 0 °, 90 °, 180 °, 

and 270 ° cutting directions, thus, in the vicinity of the cutting (   ) plane and [   ]  

directions, the ductility is high, and the corresponding machined surface can be smoother. 

It should be mentioned that the surface morphology at (i) is slightly worse near the (   ) 

 

Fig. 4-30  Surface morphologies of the machined cylindrical surface with end face (100). (Each point 

corresponds to the observation points of Fig. 4-21 (a). A black arrow indicates a cutting direction.) 

 

Fig. 4-31 Variation of surface roughness 𝑺𝒂 in accordance with crystal anisotropy ((100) end face) 

 

(f)(e)

(a) (b) (c)

(d)
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plane and [   ] cutting direction. That can be a remaining crack originated from crack 

formation in rough cutting or some cleavage phenomena, however, the reason was 

unclear from the observation. A triangular crack was observed in the images of point (g). 

The triangular crack was well reported by other works [76, 86], and corresponds to the 

{   } cleavage families. It is evident that the brittle fracture dominates the machine 

surface at (l). Considering the previous results of plunge-cut and UPCT, 𝑃 values can be 

extremely low at this point, and the brittle fracture which takes places in rough cutting 

process can remain even in the ductile-regime cutting. 

  On the contrary to the results of end faces (   ) and (   ), homogeneous surface was 

obtained at the entire observation points in the case of (   ) , although four-fold 

symmetry was expected, considering the crystal symmetry (Fig. 4-21(a)). At the entire 

cylindrical surface, the surface roughness 𝑆𝑎 was below 1.7 nm, and few visible brittle 

fracture was observed (Fig. 4-30 and Fig. 4-31). The 𝑃 value at (a) corresponds to the 

case of plunge-cut of (   ) plane at 45 ° directions, and is low, however, the obtained 

surface is very smooth. The machined surface at (d) in Fig. 4-32 could be deteriorated, 

since the point corresponds to the results of plunge-cut tests of (110) plane at 150° 

directions where the CDC and 𝑃 values were quite low (Fig. 4-9, Fig. 4-10, and Fig. 4-12). 

In the UPCT, a cutting model is different because feed force also acts, therefore, the 

applied force vector can be also different from plunge-cut process. It is assumed that the 

force vector can act on the directions which always activate the slip systems well or 

prohibit cleavage. Although the questions about the obtained surface quality still remain, 

it is concluded that the cylindrical surface with the end face of (   ) plane is most 

suitable. It should be remarked that the surface quality sometimes changes even if the 

cutting condition is the same. One problem was found that a chatter-like vibration was 

 

Fig. 4-32 Variation of geometrical relation of crystal model with end face (100). (Each point 

corresponds to the observation points of Fig. 4-21 (a)) 
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observed as shown in Fig. 4-33. The chatter frequency was calculated by Eq.(4-3):  

𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 =
𝑉𝑓
6 

/
𝐿𝑐ℎ𝑎𝑡𝑡𝑒𝑟

𝑛𝑐ℎ𝑎𝑡𝑡𝑒𝑟
 (4-3) 

  From the equation, the chatter frequency 𝑓𝑐ℎ𝑎𝑡𝑡𝑒𝑟 is calculated as 4.85 kHz. Since the 

diameter of workpiece is quite small and the acting force can fluctuate due to the crystal 

anisotropy [77], the cutting process can be unstable. To suppress the instability, the 

thrust force should be reduced. The thrust force can be reduced using a smaller nose 

radius as reported by Nath [159]. In addition, the negative rake angle is favorable for 

ductile cutting, however, rather the negative rake causes the increase of thrust force 

[164]. Therefore, the tool geometry also has to be considered. 

 

Fig. 4-33  Deterioration of the machined surface caused by chatter vibration [165] (Kakinuma Y, 

Azami S, Tanabe T. CIRP Ann-Manuf Techn 2015;64(1):117-20. Reprinted with permission from 

Elsevier B.V..).  

 

Fig. 4-34  Influence of tool geometry on surface roughness of CaF2 cylinder with end face (111). [165] 

((Kakinuma Y, Azami S, Tanabe T. CIRP Ann-Manuf Techn 2015;64(1):117-20. Reprinted with 

permission from Elsevier B.V..)) 
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Tool geometry 

  To reduce the thrust force, a smaller nose radius tool (0.05 mm nose radius and 0 ° 

rake angle) is introduced (see the specification of tool #2 in Table 4-2). The Sa values 

were investigated on each CaF2 with end faces (   ) , (   ) , and (   ) . For all 

crystalline planes, a homogenous surface was obtained, and fluctuated surface induced 

by chatter vibration was not seen (Fig. 4-34, Fig. 4-35, and Fig. 4-36). One of the reasons 

can be the rake angle i.e. the thrust force was reduced by the use of 0 ° rake angle tool. 

 

Fig. 4-35 Influence of tool geometry on surface roughness of CaF2 cylinder with end face 

(110).[165](Kakinuma Y, Azami S, Tanabe T. CIRP Ann-Manuf Techn 2015;64(1):117-20. Reprinted 

with permission from Elsevier B.V..) 

 

Fig. 4-36  Influence of tool geometry on surface roughness of CaF2 cylinder with end face 

(100).[165](Kakinuma Y, Azami S, Tanabe T. CIRP Ann-Manuf Techn 2015;64(1):117-20. Reprinted 

with permission from Elsevier B.V..) 
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Normally, the negative rake angle enhances the ductility of brittle materials because of 

the induced hydrostatic pressure formed by compressive stress region. Rather, the 

reduction of the compressive stress region can lead to reduce the thrust force which 

causes the instability of UPCT process. A nose radius could also contribute to the 

stabilization of the UPCT process. When changing the nose radius, the contact area 

between the tool and workpiece also changes. The contact length 𝑙 can be calculated 

from the geometrical relationship shown in Fig. 4-37: 

𝑙 = 𝑅 (𝜋 − cos−1 (
𝑓

2𝑅
) − sin−1 (

𝑅 −
𝑎𝑝

cos𝛼⁄

𝑅
)) (4-4) 

  The tool contact lengths were calculated as 4.8 m and 2.5m for tools #1 and #2, 

respectively. Although the difference is a micrometric scale, this can be crucial for the 

UPCT of the small workpiece. In UPCT, the material flow is related to the contact area 

of the tool (process force) because plastic flow area is assumed to be relatively small. 

  Overall, the surface quality strongly depends on the selection of an appropriate tool 

and crystal orientation. Although the surface quality was investigated, the SSD is also 

very essential for the optical devices. The process parameter and crystal anisotropy can 

affect the SSD formation. The subsurface quality will be investigated. 

 

 

Fig. 4-37  Characterization of tool contact length in cylindrical turning 

 

Table 4-4 Specification of the used tools in comparison of tool type 

Specification Tool #4 Tool #5 

Nose radius 𝑅 [mm] 0.2 0.2 

Rake angle 𝛼 [°] 0 0 

Open angle [°] 90 90 

Tool type SCD B-NPD 

Orientation of rake face (100) − 
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Tool type 

  Since the cylindrical turning process is a continuous cutting (not intermittent), the 

surface integrity can be also influenced by frictional effect. SCD is much harder than 

CaF2, thus, hardness of the tool type will not significantly affect the surface integrity, for 

example, PCD or NPD tools. However, in the case of ceramics, the friction coefficient at 

the interface can affect the surface quality. The ceramics cutting partially includes the 

friction between the flank face of the tool and finished surface (friction between 

insulators), hence, the friction coefficient of each materials cannot be ignored because a 

triboplasma can take place due to the stored electrons between the tool and workpiece 

[166]. Focusing on the electrical property of the tool, the B-NPD tool is used to investigate 

the influence of friction on surface integrity. The specification of the used tools is listed 

in Table 4-4. For the observation points, (   ) plane was selected, which corresponds to 

point (a) in Fig. 4-21. 

  For both surfaces machined by SCD and B-NPD tools, there was no major difference 

regarding the surface morphologies and surface roughness 𝑆𝑎  under wet and dry 

conditions (Fig. 4-38). It was assumed that the surface can be affected by triboplasma 

phenomena especially under dry condition such as in the case of BK7 glasses [110] or 

polymer [73]. Since the process force is assumed to be lower compared to other process 

such as sliding or turning of polymer, the machined surface was not affected by electrical 

phenomena. 

 

Fig. 4-38  Image of surface and corresponding surface roughness 𝑺𝒂 machined by (a) B-NPD (b) 

SCD under wet condition and (c) B-NPD (d) SCD under dry condition  

Sa 1.973 nmSa 1.904 nm 50μm

(c) B-NPD (dry)

50μm

(d) SCD (dry)
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  Overall, the surface quality strongly depends on the selection of the tool geometry and 

crystal orientation. Although the surface quality was investigated, the SSD is also very 

essential for the optical devices. The process parameter and crystal anisotropy can affect 

the SSD formation. In addition, the triboplasma phenomena induced by friction can also 

cause the subsurface quality because the friction coefficient is strongly related to the 

subsurface stress [167]. In the next section, the subsurface integrity will be also 

investigated in terms of the tool type. 

 

4.2.3 Evaluation of subsurface damage 

  As described in section 2.2.3, the SSD has been widely studied in manufacturing, 

material science, and optics fields [91, 92]. The SSD can be induced by various 

mechanisms, and the subsurface crystalline structure is changed by crystal shear and 

rotation (Fig. 4-39 (a)) [168]. The valid measurement methods (e.g. XRD (X-Ray 

Diffraction), EBSD (Electron BackScatter Diffraction), Raman spectroscopy, TEM, 

releasing residual stress by etching) are selected depending on a material, size of 

specimen, or purpose. In this dissertation, TEM is chosen to elucidate the variation of 

crystalline lattice arrangement induced by ultra-precision cutting process. A field 

emission TEM (FE-TEM, TECNAI TM G2 F20 S-Twin) was used. Before the 

measurement, FIB was hired to slice the TEM specimen to around 50nm (Quanta 200 3 

Di). The SSD of the cylindrical surface was viewed from the end face as shown in Fig. 

4-39 (b). The obtained TEM images were rotated to adjust the cutting plane to the 

horizontal direction. 

 

Fig. 4-39  Schematic illustration of the related mechanisms to SSD and its observation. (a) Plausible 

material flow under cutting process [65, 168]. (b) TEM observation of SSD on cylindrical surface. 
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Process parameter 

  Following the previous results, influence of process parameters (DOC and tool 

geometry) on SSD was investigated. For TEM observation, the cylindrical surface with 

end face (   )  was selected. Firstly, the influence of tool geometry on SSD was 

investigated and compared (Fig. 4-40). The machined surface at an observation point (a) 

with (   ) end face (see Fig. 4-21 (a)) was chosen for the investigation of influence of 

process parameters. To focus on the nose radius, the tools #2, #3, and #4 were used and 

compared. To evaluate the SSD under the same surface roughness, the feed per 

revolution 𝑓 was determined as 0.1 m/rev for tool #3 (0.01 mm nose radius). Although 

the 𝑆𝑎 values are similar for each machined surface (approximately 𝑆𝑎 2 nm), the SSD 

depth tends to decrease in dependency with reduction of nose radius. As discussed in 

section 4.2.2, nose radius has a great influence on the surface integrity e.g. small nose 

radius contributes to obtain the smooth and homogeneous surface (Fig. 4-34). It indicates 

that the tool geometry affects the SSD more than surface roughness because the SSD 

changes with a few ten nanometric order. A decrease in the contact length between tool 

and workpiece is assumed to result in reduction of the process force, which influences 

surface integrity. In addition, plastic flow in severe stress zone is also affected by the tool 

contact length i.e. nose radius. The tool contact lengths are calculated as 4.8, 2.5, and 

1.0 m for tool #4, tool #2, and tool #3, respectively. Thus, the difference of the tool contact 

length also contributes to the reduction of the SSD. 

  Since the DOC determines the surface integrity, the influence of the DOC was also 

investigated. The tool #2 (0.05 mm nose radius) was used for the tests, and the DOC 𝑎𝑝 

was set as 20, 50, and 100 nm. It should be noted that smooth surfaces with 

approximately 𝑆𝑎 2 nm were obtained for each surfaces. It was assumed that the deeper 

the DOC is, the more the SSD depth increases (Fig. 4-41). The deeper DOC leads to the 

 

Fig. 4-40  TEM images of machined surface (010) plane machined with the tool of (a) 𝑹 0.2 mm (b) 

𝑹 0.05 mm, and (c) 𝑹 0.01 mm. 
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increase of cutting volume and plastic deformation zone, therefore, the subsurface layer 

is more severely affected. Although one boundary line was observed in Fig. 4-41 (b), there 

are some boundary lines when the DOC is higher in Fig. 4-41 (c), which is assumed to be 

formed by a larger amount of dislocations compared to small DOC. However, when the 

DOC was set as 20 nm, the SSD depth was higher compared to the case of 50 nm DOC. 

The edge radius was estimated as less than 50 nm (Fig. 4-1). Hence, it is anticipated that 

plowing was performed because of the size effect and the higher compressive stress in 

front of the cutting tools caused the deeper SSD.  

 

Fig. 4-41  TEM images of machined surface at the cutting direction of [001] with DOC of (a) 20 nm, 

(b) 50 nm, (c) 100 nm 

 

Fig. 4-42  Variation of SSD depth in dependency with observation points (crystal anisotropy) 
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  Even if the plowing occurs, the workpiece can be cut because the UPCT process is 

repeated (i.e. repetition of cutting and plowing), however, the residual compressive stress 

induced by plowing deteriorates the machinability, thus the SSD depth was higher. It is 

concluded that the DOC can affect the SSD, and the SSD depth was smallest when the 

DOC is 50 nm from the experiments.  

 

Crystal anisotropy 

  Whereas the 𝑆𝑎 values are almost the same, the subsurface quality changes according 

to the process parameter or tool geometry. The idea leads to the influence of crystal 

anisotropy. For the investigation of anisotropic deformation behavior of the SSD in UPCT, 

the workpiece with end face (   )was chosen because the surface roughness did not vary  

 

Fig. 4-43  TEM image at point (a) with end face (100). Region A (non-deformed region) and B 

(deformed region) are analyzed by FFT and IFFT. 

 

Fig. 4-44  Schematic illustration of the variation of crystalline structure in UPCT at point (a) with 

end face (100) (a) before deformation and (b) after deformation. 
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depending on the tool geometry and it is easy to obtain the smooth surface from the 

experimental results. Considering the symmetry of crystalline structure, six observation 

points (a) to (f) were investigated (see the corresponding observation points in Fig. 4-21 

(a)). 

  Variation of the SSD depth according to the observation points is shown in Fig. 4-42, 

and it is obvious that the SSD depth significantly differs. Especially, the SSD depth is 

the lowest at point (a). In order to analyze the crystalline lattice arrangement, FFT (Fast 

Fourier Transfer) and IFFT (Inverse Fast Fourier Transfer) analyses were employed to 

clearly show the crystalline structure in a real space. Since the raw TEM image includes 

both diffraction spots and appearance of specimen, it is difficult to clearly observe the 

crystalline lattice arrangement. Once the TEM image was processed by FFT, only 

diffraction spots were chosen to analyze the crystalline lattice information by IFFT 

 

Fig. 4-45  TEM image at point (b) with end face (100). Region A (non-deformed region), B (boundary 

region), and C (rotational region) are analyzed by FFT and IFFT. 

 

Fig. 4-46  Schematic illustration of the variation of crystalline structure in UPCT at point (b) with 

end face (100) (a) before deformation, (b) after deformation, and (c) after rotation. 
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processing. The TEM image of SSD at point (a) is shown in Fig. 4-43, closing up of non-

deformed layer (Region A) and deformed layer (Region B) through FFT and IFFT 

analyses. Comparing the FFT and IFFT images, the crystalline lattice changes from a 

non-deformed layer (Fig. 4-43, Region A) to a deformed layer (Fig. 4-43, Region B). On 

one hand, it is observed that the crystalline lattice is arranged regularly with its original 

crystalline structure (the diffraction spots construct the cubic structure i.e. the view from 

(   ) plane). On the other hand, although the crystalline lattice in Region B is also 

regularly arranged, its arrangement differs from the original crystalline structure. It 

indicates that the original non-deformed layer is deformed by slip induced by cutting 

process, which leads to the occurrence of deformed layer (Region B). 

 

Fig. 4-47  TEM image at point (c) with end face (100). Region A (non-deformed region), B (deformed 

region) are analyzed by FFT and IFFT. 

 

Fig. 4-48  Schematic illustration of the variation of crystalline structure in UPCT at point (c) with 

end face (100) (a) before deformation and (b) after deformation. 
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  In Fig. 4-44, variation of the crystalline lattice arrangement is illustrated. Since the 

crystalline lattice arrangement changes from (a) before deformation to (b) after 

deformation states illustrated in Fig. 4-44, it is anticipated that slip takes place along 

the slip system (   )[    ] and (   )[   ], which the slip plane corresponds to the 

cutting plane. Since the slip direction viewed from (   ) plane is identical to the cutting 

direction, the non-deformed layer is deformed along to the cutting plane. 

  Fig. 4-45 shows a TEM image of the SSD at point (b). Although the crystalline lattice 

arrangement changes along the slip direction at the boundary line (Region B), rather 

crystalline lattice rotates counterclockwise beneath the surface. Since the crystal 

rotation is induced by slip under tensile loading [144], the crystal shear in Region B can 

 

Fig. 4-49  TEM image at point (d). Region A (non-deformed region) and B (deformed region) are 

analyzed by FFT and IFFT. 

 

Fig. 4-50  Schematic illustration of the variation of crystalline structure in UPCT at point (d) with 

end face (100) (a) before deformation and (b) after deformation. 
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be a trigger for the crystalline rotation as shown in Fig. 4-46. 

  Fig. 4-47 shows a TEM image of the SSD at point (c). The non-deformed layer (Region 

A) and deformed layers (Region B) are clearly identified from the image. The slip system 

(   )[    ] and (   )[       ] contribute to the deformation as illustrated in Fig. 4-48. 

Similar tendency for the SSD formation was seen at point (d) as shown in Fig. 4-49 and  

Fig. 4-50. Since the same deformation mechanism was observed at point (e) and (f) i.e. 

the SSD induced by slips were seen along the slip direction, therefore, the detailed 

schematic illustration was omitted (Fig. 4-51 and Fig. 4-52). 

  Overall, the SSD depth changes depending on the observation points. In other words, 

 

Fig. 4-51  TEM image at point (e). Region A (non-deformed region) and B (deformed region) are 

analyzed by FFT and IFFT. 

 

Fig. 4-52   TEM image at point (f). Region A (non-deformed region) and B (deformed region) are 

analyzed by FFT and IFFT. 
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crystal anisotropy can influence on the SSD formation compared to surface roughness, 

and the SSD depth was shallow especially at point (a). This is because the cutting 

crystalline plane (   )  is a slip plane, and the slip occurs parallel to the cutting 

direction. It is considered that the subsurface layer is pulled to the parallel direction by 

slip, and the SSD depth was shallow. Notably, the discussion in a depth direction in the 

TEM image is omitted because the FIB is destructive, therefore, it is impossible to see 

the same specimen from the different view. Additionally, from the front view of TEM 

image (viewing from the parallel direction to the cutting direction), activation of slip 

system is hard to identify because all of the slip system exist in a depth direction. For 

the cylindrical surface machined by tool #2 (0.05 mm nose radius), points (a), (d), and (e) 

were also observed. The SSD depth in dependency with nose radius are shown in Fig. 

4-53. At every observation point the tool #3 reduces the SSD depth. As noted in section 

4.2.2, the deviation of the contact area that is determined by tool geometry could 

contribute to the increments of SSD depth. It is concluded that although the surface 

roughness value does not vary depending on the tool geometry and crystal anisotropy 

(limited to the case of end face (   )), the SSD depth significantly changes. 

 

Tool type 

  As shown in Fig. 4-54, the SSD depth also significantly depends on the tool type. Even 

though the surface roughness is uniform, the SSD depth changes with different 

atmosphere and tool type. For both cutting atmosphere, the B-NPD tool reduced the SSD 

depth compared to the SCD tools. It is clear that the lubrication also affects the SSD 

depth. 

  Since the undoped diamond tools are insulators, tribo-microplasma occurs and affects 

the sliding performance in both dry and oil-lubricated condition [166], and the induced 

 

Fig. 4-53   Comparison of SSD depth depending on crystalline direction and nose radius. 
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tribo-plasma affected the surface integrity [73, 110]. Not limited to the surface, the tribo-

plasma can affect the subsurface quality as the friction coefficient at the interface 

between cutting tool and surface affects the subsurface stresses [167]. Owing to the boron 

doping, its frictional property is enhanced, and it is confirmed that the friction coefficient 

was lowered by boron-doping under both dry and wet conditions as shown by Sumiya 

[169]. The main reason is concluded as the formation of an oxide layer where solid 

lubrication effect is functioning on the diamond surface [110]. Considering the cutting 

model, the friction occurs on a rake face and a flank face, and thus, necessary cutting 

energy is assumed to be lower for the same amount of cutting. This is because the SSD 

depth decreased in the case of B-NPD.  

 

4.3 Summary 
  In this chapter, the machinability of the CaF2 was evaluated in plunge-cut tests and 

UPCT tests. Specifically, the anisotropic behavior of the machined surface and SSD 

formation were discussed. The contents are summarized as follows. 

 

1. In the plunge-cut tests, nose radius of the cutting tools affected the CDC values 

whereas there was no major difference among other process parameters (rake face 

and cutting speed). The contact length in the gap of tools and surface which 

contributes to the plastic flow area is assumed to be dominant on the surface integrity. 

2. The surface morphologies and CDC values are significantly dependent on the cutting 

crystalline planes and directions. The CDC values vary in the range of 80−400 nm. 

Those are characterized by two-, three-, four-fold symmetry on the basis of cubic 

 

Fig. 4-54  Variation of SSD depth depending on tool type and cutting atmosphere 
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crystalline structures. For the discussion of variation of the CDC values, the plastic 

deformation parameter 𝑃 which describes the slip mobility was used, and showed a 

good agreement with the corresponding CDC values. The crack morphologies were 

observed via FE-SEM, and the direction of brittle fracture coincide with the cleavage 

fracture parameter 𝐶 that describes the possibility of cleavage. Overall, primary slip 

system {   }〈   〉 , {   }  and {   }  cleavages are dominant on the anisotropic 

deformation behavior. 

3. In the UPCT tests, similar tendency regarding the crystal anisotropy was found. 

Even though the axial DOC and uncut chip thickness was set as below CDC values, 

the surface integrity strongly depends on the corresponding cutting crystalline 

planes and directions. Although the discussion was qualitative, the obtained results 

agreed well with the plunge-cut tests. To suppress the thrust force, the smaller nose 

radius and 0 ° rake angle were used, and homogeneous surface were obtained 

regardless of the crystalline structure. 

4. The subsurface integrity was investigated on the cylindrical surface via TEM 

observation. Even if the surface roughness is uniform, the SSD depth vary depending 

on process parameters, tool geometry, tool type or crystal anisotropy from 10 to 100 

nm scale. For the process parameters, the lower process force is assumed to be 

required to decrease the SSD depth. The geometrical relation between slip systems 

and cutting planes caused the deviation of SSD depth. 
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5. Investigation of the cutting performance 

of sapphire 
  This chapter provides the influence of cutting parameters and crystal anisotropy on 

the machined surface of sapphire in plunge-cut tests. In section 5.1, the plunge-cut tests 

were conducted. The proposed parameters in chapter 3 were calculated to discuss the 

anisotropic fracture behavior in the plunge-cut tests. In order to scrutinize the 

anisotropic fracture mechanism, indentation tests and TEM observation were conducted. 

 

5.1 Experimental setup 
  Since the plunge-cut tests were conducted in a same manner in the case of CaF2, the 

detailed explanation of the experimental procedure is omitted (see section 4.1.1). The 

variation of process parameters is listed in Table 5-1. Considering manufacturing of the 

microcavity, similar values which were used in plunge-cut tests of CaF2 were set to the 

cutting parameters.  

 

5.2 Evaluation of surface quality 
Process parameter 

  Although the CDC value slightly decreased in increments of cutting speed Vf in the 

range of 200 − 1000 mm/min in [    ] direction on (     ) plane (Fig. 5-1), there was 

no major difference. Thus, the results were similar to the CaF2 case. The cutting speed 

defines the strain rate [141]. The higher the cutting speed, the bigger the induced stress 

in the material. More cutting power can be consumed in the same time window, which 

could lead to the slight reduction of CDC values. It should be noted that the extremely 

low scratch speed regime (less than 1 mm/min), the scratch speed affected the surface 

integrity [141]. In the case, higher scratch speeds lead to greater plastic deformation 

Table 5-1 Process parameter of the plunge-cut tests of sapphire 

Parameter Value 

Cutting speed 𝑉𝑓 [mm/min] 10, 20, 200, 400, 800, 1000 

Depth of cut 𝑎𝑝 [nm] 0 – 1500 

Cutting slope 𝐷/𝐿 1/500 

Cutting direction 𝛿 [°] 0 – 330 ( increments of 30 ) 

Crystal orientation of cutting plane (    ) and (     ) 

Type of cutting tool SCD, NPD, B-NPD 

Nose radius 𝑅 [mm] 0.5 

Rake angle 𝛼 [°] 0, −10, −20 

Atmosphere Dry 
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portion, while avoiding chipping and brittle fracture. While conducting the high cutting 

speed more than 200 mm/min, the chipping frequently occurred on the cutting tool. To 

avoid the chipping, the low cutting speed (10 − 30 mm/min) was sometimes set in 

cutting process [170]. To prevent the tool breakage, in the following tests, lower cutting 

speed 20 mm/min was used. 

  The influence of rake angle with a B-NPD tool was examined. By applying a negative 

rake angle, the CDC value slightly increases (Fig. 5-2). As before discussed, since the 

hydrostatic compressive stress is formed in front of the tool, the crack propagation can 

be suppressed, and the CDC value increases [49]. However, similar to CaF2 case, there 

was no major difference between rake angles, even though the larger nose radius (𝑅 0.5 

mm) was used, compared to the ones for CaF2 (𝑅 0.01, 0.05, and 0.2 mm). To investigate 

the validity of the obtained results, it is considered that the nose radius is necessary to 

be larger. 

 

Fig. 5-1  Variation of CDC values in accordance with cutting speed  

 

Fig. 5-2  Variation of CDC values in accordance with rake angle  
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Crystal anisotropy 

  For the investigation of crystal anisotropy, the NPD tool was hired. The cutting speed 

and rake angle were set as 20 mm/min and 0 °, respectively. Other cutting condition is 

listed in Table 5-1. 

  The machined grooves and their corresponding CDC values are shown in Fig. 5-3. The 

CDC values change depending on the cutting direction, same as CaF2. Interestingly, the 

surface morphology and CDC values were featured by a two-fold symmetry along a  

specific axis (indicated by a red-dotted line), although those were expected to exhibit the 

three- or six-fold symmetry based on its hexagonal crystalline structure or rhombohedral 

lattice system (see Fig. 5-7). In the tests, the NPD tool was partially fractured as shown 

in Fig. 5-9 during the tests. Therefore, the same tests were conducted using SCD tool. 

Though the CDC values were slightly different, the surface morphologies were featured 

by two-fold symmetry, therefore, the tendency was reasonably close. 

  Overall, the surface morphologies were classified into four categories (Fig. 5-5 and Fig. 

5-7): Type I – a fracture formed by RC and PC (Fig. 5-5 (d)), Type II – a shallow fracture 

induced by RC and interchanging pattern of ductile and brittle surface. (Fig. 5-5 (c) and  

 

Fig. 5-3  Images of the machined grooves and variation of the CDC values machined by NPD tool. 
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Fig. 5-8), Type III – a lamellar fracture formed by PC (Fig. 5-5 (a) and (e)), and Type IV 

– pull-out fracture (Fig. 5-5 (f) and (g)). Notably, the Type II fracture was originally 

expected in the 270 ° direction due to the three-fold symmetry (rhombohedral family) or 

six-fold symmetry (hexagonal structure). In the direction of 60 ° and 300 °, lamellar 

fracture along {  2  } planes were observed. In the direction of 0 °, lamellar steps along 

{  2  } planes are also formed. The cleavage along this plane is not reported, however, 

some terrace which might relate to cleavage process is reported by in-situ TEM 

observation [97]. Therefore, the observed lamellar fracture in 60 ° and 300 ° directions 

can also originate from cleavage or other deformation system, such as the case of CaF2 

(some steps were formed in a specific direction which is not reported previously, as 

discussed in section 4.1.2). Otherwise, the lamellar step or fracture can be formed by 

plastic flow. To clarify the origin of formation mechanism, residual stress analysis by X-

ray can be used, however, notably the analysis area is quite small, therefore, it was 

difficult to identify what actually occurred. Same as the case of CaF2, the 𝑃 and 𝐶 

parameters were calculated, estimating the inclination angle 𝛽  as 45 ° from the 

measured process forces which is complemented in Appendix. 

 

 

Fig. 5-4  Images of the machined grooves and variation of the CDC values machined by SCD tool. 
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Fig. 5-5  Surface morphologies of the (0001) plane: (a), (e) Type III – a lamellar fracture formed by 

PC (c) Type II – a shallow fracture induced by RC and interchanging pattern of ductile and brittle 

surface, (d) Type I – a fracture formed by RC and PC, and (f),(g) Type IV – pull-out fracture. In 

transitional area, the lamellar fracture along {𝟏𝟏𝟐 𝟎} planes were formed. 
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Fig. 5-6 Variation of (a) Plastic deformation parameter 𝑷 (b) Cleavage fracture parameter 𝑪 of 

(0001) sapphire 

 

Fig. 5-7  Schematic illustration of surface morphology of (0001) sapphire 
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  The possibility of activation of each deformation system is indicated by 𝑃  and 𝐶 

parameter values (Fig. 5-6). Conventionally, a slip system is a dominant deformation 

system for the ductility, however, rather the obtained results were sustained by 𝑃 

parameter values of twinning. The maximum of CDC values agrees well with the 𝑃 

parameter values of rhombohedral twinning (RT) in the directions of 90 °, 210 °, and 

330 °. The computation results are similar to the results of (   ) plane CaF2 (see section 

4.1.4). Here, the 𝐶 parameter values are minimum in the same directions, whereas 𝐶 

parameter values exhibit the maxima in the directions of 30, 150, and 270 °. In those 

directions, the CDC values were low, and the 𝑃 parameters were the minima. On the 

contrary to CaF2, the variation of CDC values was supported by both 𝑃  and 𝐶 

parameter values. Compared to CaF2 (158.3 kg/mm2 Knoop hardness and 75 GPa Young’s 

modulus [48]), sapphire is much harder (1500 to 2200 kg/mm2 Knoop hardness and 345 

GPa Young’s modulus [57]). Thus, the results also show that one can use either or both 

of 𝑃 and 𝐶 parameters for the analysis of anisotropy according to the materials. 

  The unique surface morphology (Type II) was seen in the directions of 30 ° and 150 °, 

in form of interchanging patterns of smooth and rough surface i.e. ductile fracture and 

brittle fracture (Fig. 5-8). When more than two slip systems are activated, they promote 

slip dislocations simultaneously that share an intersection, and the dislocations pile up 

at this intersection plane. At the boundary, the stress grows locally so that cracks 

initiate[171]. For HCP crystals, the twinning is also considered to contribute the 

deformation process. Since the 𝑃 parameter values are close each other for PYS, PRS,  

 

Fig. 5-8  Machined surface with interchanging pattern of ductile region and brittle region in cutting 

directions of 30 ° and 150 °. 
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 BT, BS (the same values for PYS and BT), the twinning can be also initiator for the 

unique interchanging patters. Brittle fracture occurs on the machined surface due to the 

pile-up of BS, PRS, and PYS. After removing the brittle fracture, the plastic deformation 

can occur initiate by slip or twinning. The repetition of the pile-up and glide mechanisms 

was assumed to be a reason for interchanging patterns of the surface. 

  In some machined surface e.g. 180 ° direction, regularly aligned triangular pits existed 

where the machined surface was pulled off along RC as shown in Fig. 5-10. The pits are 

similar to etched pits on c-plane sapphire wafers [151, 172], the pyramidal face coincide 

with the rhombohedral planes that face towards each other with the interval of 120 ° 

and 57 ° inclined to c axis (Fig. 5-10). As the surface energy of rhombohedral plane is 

 

Fig. 5-9 Images of the tool used after (a1) 3 scratches, (a2) 9 scratches, and (a3) 39 scratches., and 

(b) chipping on the tool used after 39 scratches 

 

Fig. 5-10  The pyramidal shaped holes (similar to etch pits) on (0001) plane for the 180 ° direction. 

The holes are formed on a cleaved (0001) surface and under the machined surface. 
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lowest in sapphire, the pull-off process added an additional energy that induced the 

tensile stress on newly formed surface (the surface after pulled off), and the weakest 

atomic bonding planes were fractured. Since the cutting process was performed under 

dry condition, the surface, chemical etching effect is unlikely as the root of this 

phenomenon. Notably, the existence of pre-defects caused by crystal growth cannot be 

ignored. 

  The expected symmetry for anisotropic behavior was also indicated by the computation 

results of 𝑃 and   parameter i.e. three-fold symmetry. Different directional movement 

(positive or negative) of activated deformations and interaction among themselves can 

be a trigger for the abnormal machined surface in 270 ° cutting direction. The error of 

crystalline direction in manufacturing sapphire substrate is less than 2 °, therefore, the 

misalignment of the crystal orientation is less likely. 

  During the tests, the NPD tool was slightly broken as shown in Fig. 5-9. The breakage 

part was partially involved in the ductile regime cutting in 240 ° to 330 ° cutting 

directions, therefore, the breakage was also anticipated to be a cause for the abnormal 

symmetry. Meanwhile, the same cutting tests with SCD tool was also conducted without 

any tool breakage, and the results showed the same tendency with the case of the NPD 

tool (compare Fig. 5-3 and Fig. 5-4). Thus, the tool breakage or even tool type was not 

the reason for the unexpected symmetry. 

  To elucidate the mechanism, additional tests were conducted, and the obtained results 

were comprehensively discussed in the next section. 

 

5.3 Discussion 
  In this section, indentation tests were conducted to investigate the factor of the 

unexpected symmetry in terms of mechanical property. Additionally, TEM observation 

was conducted to the specific cutting directions to observe the material deformation 

behavior in subsurface region. 

 

Table 5-2 Process parameter of the indentation tests of sapphire 

Parameter Value 

Indentation Load [mN] 300, 500, 700, 900, 1100, 1300, 1500 

Loading speed [mN/s] 35.0335 

Dwell time [s] 5 

Indenter type Triangular pyramid indenter with 115° 

tip angle (Berkovich indenter) 

Environment Temperature 22°Celcius 

Relative humidity 50% 
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Indentation test 

  Indentation tests were performed on the dynamic ultra-micro hardness tester (DUH-

211S, SHIMAZU) and it was equipped with a triangular pyramidal indenter with 115 ° 

diamond tip (Berkovich indenter). The tests were performed at a room temperature and 

a relative humidity of 50 %. Sapphire substrate was fixed onto the stage of the machine 

by mechanical clamping system. Analogous to the plunge-cut, the indentation 

orientation is also important for investigation of the anisotropy. The material 

deformation mechanism could vary depending on the direction of the indenter facets, 

therefore, the technique was also used in a low strain regime [147]. By varying the 

 

Fig. 5-11 Schematic illustration of (a) Berkovich-indentation process and (b) Indenter orientation in 

regards to the plunge-cut orientation 

 

Fig. 5-12 Indenter orientation dependency on (a) Young’s modulus and (b) Vickers hardness 

 

(a) (b)

Y
X

120°

Berkovich
indenter

115°
Z

X

Sapphire

0°

90°

180°

270° W E

Indentation
marks

Orientation
Plunge-cuts

  2  

     

N

S

(a) (b)



Chapter 5 Investigation of the cutting performance of sapphire 

93 

 

direction of the indenter, the influence of indenter orientation was investigated (denoted 

as E (east), N (north), W (west), S (south) as shown in Fig. 5-11). The indentation tests 

were conducted five times, and the mean values of Young’s modulus and Vickers 

hardness were calculated. The indentation condition is listed in Table 5-2.  

  For Young’s modulus and Vickers hardness, the values decrease according to the 

increase of indentation loading. Although the maximal indentation depth is over 

approximately 1 m, the size effect can be a reason for the variation of those values. 

Overall, there is a deviation of Young’s modulus between E and W orientation, whereas 

a deviation of Vickers hardness between N and S orientation. Considering the 

unexpected symmetry of the plunge-cut results, the mechanical properties were expected 

to show between N and S orientation since the indenter facets of N orientation push the 

material to 90 °, 210 °, and 330 ° directions whereas the ones of S orientation contribute  

to the deformation towards 30 °, 150 °, and 270 ° directions. The BDT mechanism was 

governed by both the ductility and brittleness, thus both mechanical properties were 

assumed to contribute to the abnormal symmetry. In other experiments, the similar 

results could be found [147], namely, in the indentation tests of (0001) sapphire with 

 

Fig. 5-13 Measurement procedure of TEM observation of plunge-cut grooves: (a) The SSD is viewed 

from a perpendicular direction to cutting direction (b) Pick-up point for TEM observation. The 

machined groove in front of a place where a first crack appears. (c) Extracted TEM-foil after the FIB-

cut framed by support pillars. 
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Berkovich indenter, one could observe that a material piled up and brittle fracture 

propagated along one direction. Therefore, it can be said that the brittleness-related 

parameter such as hardness value that is related to crack initiation is more dominant 

on the abnormality of the obtained symmetry. Indeed, the computation results of 𝐶 

parameters coincided well with variation of the CDC values. For example, the higher 

CDC values agreed well with the lower 𝐶 parameters. However, the discussion is still a 

primitive stage because a reason for disagreement of the hardness values is not clarified. 

For more in-depth investigation, the subsurface quality was analyzed via TEM to 

scrutinize the actual activated mechanism underneath the surface. 

 

Subsurface structure 

  The subsurface structure was observed by TEM. The machined groove was sliced by 

FIB to obtain a thin specimen (Fig. 5-13 (a)), same as CaF2 (thickness: 50 – 100 nm). To 

mainly focus on observing the slip or twinning, the ductile-machined surface was chosen 

from SEM images (Fig. 5-13 (b)). The machined surfaces with NPD tool were used for 

TEM observation since the ductile surface was wider than the one machined by SCD tool. 

  For the 30 ° direction of the groove at approximately 100 nm where the type II surface 

morphology was seen, one defect line perpendicular to (    ) plane was seen as shown 

in Fig. 5-14. As shown in a close-up image of a part of the lines (Fig. 5-15), basal twin 

(BT) was formed in the subsurface region, although the 𝑃  parameter of BT was 

relatively lower than other systems (Fig. 5-6). Notably, the boundary line of BT was not 

clearly observed from the TEM image. Therefore, the BT was identified from FFT images. 

The FFT spots in region II consists of the mixture of FFT spots in region I and III. One 

 

Fig. 5-14 TEM micrograph of subsurface at 30 ° cutting direction viewed from [𝟏�̅�𝟏𝟎] direction. 
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parallelogram is formed by four FFT spots in region I (indicated by yellow lines). For 

region III, one parallelogram is formed in the same procedure (indicated by red lines). 

By merging the parallelogram as shown in the inset of Fig. 5-15, the mirror symmetry 

relation appears each other, therefore, this is considered as twinning. The similar FFT 

images are shown, which feature the mirror symmetry along the (    ) plane that was 

seen in Zheng’s work [173]. In previous TEM observation of abraded alumina surfaces 

the BT was found underneath the abraded (    ) sapphire that was ground at room 

temperature [96]. Therefore, the deformation is most likely BT. On the other hand, 

several twin bands were seen in the TEM image which shows the subsurface in 270 ° 

direction as shown in Fig. 5-16. Analogous to the subsurface in 30 ° direction, the defect 

lines are identical to the basal planes. The crystalline lattice arrangement in the 

expanded image of region A shows the mirror symmetry as before discussed i.e. BTs are 

formed (Fig. 5-17). There are also a few twin bands in region B as shown in Fig. 5-18. 

The multiple twin bands can be one of the plausible reasons for the unexpected symmetry. 

Although the slip and twinning contributes to the plastic deformation in HCP crystal, 

those deformation systems are sometimes barriers when intersecting each other [143] 

because the dislocations pile up at this intersection plane. Although only BT was found 

in the subsurface region, other deformation system e.g. RT, BS, PRS might also generate  

 

Fig. 5-15 Close-up view of the defect line. FFT images of region I and III feature the mirror symmetry 

along (0001) plane, which can be sustained by the FFT image of region II 
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since those 𝑃 parameters were close each other (see Fig. 5-6), and the slip and twinning 

intersection occurred in a very initial stage in the cutting process compared to 30 ° 

directions. Here, it is concluded that the occurrence of the intersection of deformation  

 

Fig. 5-16 TEM micrograph of SSD at 270° direction viewed from [𝟏𝟏�̅�𝟎] direction. 

 

Fig. 5-17 Close-up view of region A. FFT images of region I and III feature the mirror symmetry 

along (0001) plane, which can be sustained by the FFT image of region II 
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systems can be a trigger for the unexpected symmetry. However, the origin of multiple 

twinning formation only for this direction is still unclear. The crystalline lattice is 

regularly arranged at the surface (Fig. 5-19). Normally, the crystalline lattice which is 

machined by cutting or grinding is severely damaged, and sometimes the phase 

 

Fig. 5-18 Close-up view of region B. Several defect lines were observed in region B, and it is assumed 

that crystalline lattice arranges with mirror symmetry along (0001) plane boundary as shown in the 

close-up view. 

 

Fig. 5-19 Close-up view of region C. Compared to the CaF2, the crystalline lattice regularly arranges, 

and no crystal shear or rotation was found. 
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transforms to amorphous, for instance, in the case of silicon [79]. The surface shown in 

Fig. 5-19 was cut in ductile-regime, therefore, the surface should be uniform. If slip 

systems are dominant on the ductility, the crystalline lattice should be sheared or rotated 

as discussed in Chapter 4. Thus, this might be an evidence that the twinning which 

deforms with a certain amount of crystal body can be a trigger for generation of the 

plastic deformation in cutting of sapphire. 

  In this chapter, the machinability of sapphire was discussed from surface to subsurface 

region. Although the ductile surface can be achieved, the tool was easily chipped off due 

to the hardness of sapphire, hence, it can be said that it is difficult to manufacture the 

sapphire microcavity by only cutting. In the following chapter, only CaF2 microcavity is 

fabricated. 

 

5.4 Summary 
  In this chapter, the machinability of the sapphire was evaluated in plunge-cut tests. 

Specifically, the anisotropic behavior of the machined surface was discussed. The 

contents are summarized as follows. 

 

1. In the plunge-cut tests, there was no major difference of the CDC values by variation 

of rake face and cutting speed. For plunge-cut tests, low cutting speed 20 mm/min 

was used in this dissertation to avoid the tool breakage. 

2. On (    ) plane, CDC values changed in dependency with the cutting crystalline 

directions (100 nm −  300 nm in the case of SCD). The value and surface 

morphologies were characterized by two-fold symmetry while the three-fold or six-

fold symmetry was expected on the basis of the hexagonal crystalline structure and 

rhombohedral lattice family. Variation of CDC values coincided well with the 

computed 𝑃  and 𝐶  parameters. Different from CaF2, the CDC value was also 

characterized by 𝐶 parameter which describes the possibility of cleavage generation. 

For example, the higher CDC values coincided with the higher 𝑃  and lower 𝐶 

parameters.  

3. The hardness values show the anisotropy depending on the indentation orientation 

(facets) in the indentation tests. The anisotropy can be related to the unexpected 

symmetry in the plunge-cut tests. The basal twins were observed in TEM observation. 

Whereas one twin band was observed in the 30 ° direction, multiple basal twin bands 

were formed in 270 ° direction which shows the unexpected surface morphology and 

CDC value. The intersection of the slip and twinning deformation systems is 

assumed to be a trigger for the unexpected BDT phenomena. 
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6. Manufacturing of WGM optical 

microcavity 
  This chapter provides the performance of the microcavity manufactured by cutting. 

Firstly, mono-material microcavity made of CaF2 was manufactured. The influence of 

brittle fracture, cavity shape and subsurface quality on cavity performance was 

evaluated. Secondly, a trapezoidal microcavity was manufactured for the purpose of 

designing the cavity dispersion. Finally, a novel hybrid microcavity that consists of CaF2 

and brass was manufactured to suppress the thermal instability. 

 

6.1 Mono-material optical microcavity 
  As reviewed in section 2.1, high Q microcavity can be attained by crystalline materials. 

Firstly, the CaF2 microcavity that theoretically shows the highest Q in crystalline 

materials was manufactured, and its cavity performance was evaluated. As described in 

section 2.1.1, there are several factors that are related to the Q factor. In a fabrication 

process, the following properties have to be considered (Fig. 6-1). 

1. Scattering loss 

2. Absorption loss 

3. Light distribution 

  The scattering loss from the surface can be determined by the surface quality e.g. 

surface roughness or existence of brittle fracture on the surface. The SSD formation can 

change the material property, in this case, the absorption coefficient. The light 

distribution that relates to the mode volume varies depending on the cavity shape. In 

this section, each influence on the cavity performance (brittle fracture, SSD, and cavity 

shape) was experimentally investigated. 

 

Fig. 6-1 Schematic illustration of influential factors on cavity performance which can be induced in 

a fabrication process.  

Scattering loss
⇒Surface roughness

Absorption loss
⇒Subsurface damage

Light distribution
⇒Cavity shape

Side view
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6.1.1 Manufacturing procedure 

  Microcavities were manufactured by UPCT on 4-axis aspheric machine tool. The 

detailed manufacturing procedure is described as follows (Fig. 6-2). 

(1) The CaF2 cylinder with 6 mm diameter was turned to decrease the diameter until 

approximately 500 m through rough cutting, pre-finish cutting and finish cutting 

as described in section 4.2.1 (Fig. 6-2 (a) and (b)). The total DOC was set as 10 m in 

pre-finish and finish cutting. 

(2) The tool was fed at the inclined direction to rotational axis to form a triangular shape 

in a cross-sectional view (Fig. 6-2 (c), (d), and (e)). 

(3) Final cavity shape was obtained with a specific aperture angle 𝜓. The angle can be 

attained by controlling the inclination rate of tool path to the rotational axis by NC.  

  The cutting condition listed in Table 6-1 was used for finishing and forming. The used 

tools were also listed in Table 4-2 and Table 4-4. The used cutting condition is based on 

the experimental results of the UPCT tests in chapter 4. After completing the cutting 

process, the workpiece was cleaned by ethanol or acetone. 

  For the measurement of high Q, the measurement method is also important. The 

measurement procedure is depicted in Fig. 6-3. A laser source TLD (TSL-510, SANTEC) 

was used as a laser source with 1 mW input power (100 kHz line width and 1 pm 

wavelength resolution). For the compensation of phase shifting, a PC was used. The 

tapered fiber with a diameter of 3 m was used to couple the microcavity and waveguide. 

The procedure is described in details as follows: 

 

Fig. 6-2 Manufacturing procedure of mono-material microcavity. (a), (b) Initial CaF2 cylinder with 

6mm diameter is cut to decrease the diameter till less than approximately 500 m. (c), (d), (e) By 

applying the diagonal tool path, the required cavity is obtained. (f) The final micro cavity geometry 

is determined by aperture angle 𝝍. 

Tool path

Tool path

3   2   1

1   2   3

(a) (b) (c)

(d)(e)(f)

Aperture angle 
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(1) PC and optical fiber were aligned to obtain a desired resonant mode. 

(2) The input wavelength was constantly changed from the shorter wavelength to the 

longer one, and the transmittance intensity of each wavelength was scanned by PWM 

(Power Meter). 

(3) The highest peak was chosen from all of the observed peaks that are induced by 

multiple resonances in the measurement. 

  The Q factor was calculated by Eq. (6-1). 

𝑄 =
𝜆𝑟

𝜆𝐹𝑊𝐻𝑀
⁄  (6-1) 

  To interpolate the experimental data, Lorentz fitting method was used for the 

calculation of Q factor. Using Q factor, the trapping time 𝜏𝑝ℎ𝑜𝑡 is given as follows: 

𝜏𝑝ℎ𝑜𝑡 =
𝑄

2𝜋𝑓𝑟𝑒𝑠
 (6-2) 

 

6.1.2 Results and discussion 

Surface quality dependency on cavity performance 

  The microcavity with 168 ° aperture angle was manufactured with tool #1 (0.2 mm 

nose radius, −20° rake angle) as shown in Fig. 6-4 (a) (here, named as type A). For a 

comparison, a microcavity whereon the brittle fracture exists was also manufactured as 

shown in Fig. 6-4 (b) (here named as type B). Although the same cutting condition was 

used, brittle fracture generated in the case of type B. The diameter of the type B cavity 

was approximately 300 m, whereas the type A cavity shows 400 m diameter. Since the 

UPCT of CaF2 is unstable as shown in the occurrence of chatter vibration (see Fig. 4-33), 

Table 6-1 Process parameter for manufacturing microcavity 

Parameter Value 

Cutting speed 𝑉𝑓 [m/min] 0.94 – 1.57 

Rotational speed 𝑇 [min-1] 1000 

Feed per revolution 𝑓 [m/rev] 0.1 – 0.5 

Depth of cut 𝑎𝑝 [nm] 50 

Orientation of end face of workpiece (   ), (   ) 

Lubricant Water-soluble oil (diluted by 1:100 ratio) 

 

 

 

Fig. 6-3 Schematic illustration of measurement procedure of Q factor 

PWMTLD
PC

Microcavity
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slight difference e.g. the difference of diameter can cause the instability of the UPCT 

process. Otherwise, the misalignment of the tool position to the center of the workpiece 

in sub-nanometric scale is also a plausible reason. 

  The surface profile of the type A cavity was obtained by WLI (Fig. 6-5). It is clearly 

seen that a triangular shape was formed. Due to the obtained shape, the surface 

roughness could not be correctly measured. Nevertheless, the machined surface is fine 

(see Fig. 6-4 (a)), and no brittle fracture was seen at the whole cylindrical surface, 

therefore, the surface roughness 𝑆𝑎  value can be estimated up to 6 nm or less, 

considering the previous results of UPCT in Chapter 4. Since the used wavelength for 

evaluation of cavity performance is around 1550 nm, the required surface roughness 

 

Fig. 6-4 Comparison of crack influence on cavity performance. (a) Type A: microcavity whereon no 

crack was observed through optical microscopy. (b) Type B: microcavity with some brittle fracture. 

Both cavities show the same aperture angle i.e. cavity shape. 

 

Fig. 6-5 3D profile of the microcavity surface obtained by WLI. 

50m
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(b)

50m100m

100m
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value can be, at least, less than 70 nm for preventing light scattering (the standard value 

was calculated from res/20 [174]). 

  For both cavities, the cavity performance was evaluated. The type A cavity shows 1.4

×105 Q factor and 115 ps of trapping time, whereas the Q factor of 8.8×103 and 7 ps of 

trapping time was obtained in the case of type B cavity. Influence of brittle fracture on 

the cavity performance is apparent from the experimental results. In other words, if the 

Q value exceeds the 105 scale, it is less likely that brittle fracture affects the cavity 

performance in the following measurement. This result also indicates that even if a 

homogenous surface was obtained, existence of a few brittle fracture significantly 

deteriorate the cavity performance. 

 

Shape dependency on cavity performance 

  Since the machine tool can be operated by NC programming, one can manufacture a 

microcavity with an arbitral feature, assuming that the cutting can be conducted in 

ductile-regime and the tool geometry is not considered. By changing the aperture angle 

of the cavity, influence of the cavity shape on cavity performance was evaluated. 

  Before manufacturing of the microcavities, it is necessary to know the tendency of 

shape dependency on the cavity performance. Electro-magnetic field analyses of the 

cavity were performed by a finite element method (COMSOL Multiphysics), assuming 

that the cavity diameter is 500 m. The analysis results are shown in Fig. 6-6. The 

distribution of light changes accordingly, and the smaller the aperture angle is, the more 

inner the light tends to distribute. Especially, the red part shows the densest in the light 

 

Fig. 6-6 Electromagnetic field analyses of the resonance in the cavity. The aperture angles are (a) 

168 °, (b) 150 °, (c) 120 °, and (d) 90 °. 

(d) 90 (c) 120 

(a) 168 (b) 150 

Mode volume 22649 m3 Mode volume 17412 m3
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distribution, which is apt not to be affected by scattering loss from the surface according 

to the reduction of the aperture angle. Additionally, the mode volume was also calculated. 

The mode volume decreases when the aperture angle decreases, which means that the 

light-matter interaction can be stronger. 

  The manufactured microcavities are shown in Fig. 6-7, and each Q factor was 

measured (Table 6-2). The Q factor tends to increase according to the reduction of the 

aperture angle. However, there is little difference between 120 ° and 90 ° microcavities, 

and rather the cavity performance can be deteriorated in the case of 90 ° microcavity. 

Although the cutting tool was set perpendicular to the rotational axis and its nose is 

rounded, the surface quality can change as the tool position is not perpendicular to the 

microcavity surface. Additionally, the smaller the aperture angle is, the more unstable 

the cutting process is, due to the decreased dynamic stiffness. This could lead the slight 

instability of the cutting process, and deteriorate the surface integrity. In this research, 

the aperture angle of 120 ° is determined as an optimal value. 

 

Fig. 6-7 Image of manufactured cavity with aperture angles (a) 168 °, (b) 150 °, (c) 120 °, and (d) 90 °. 
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Subsurface quality dependency on cavity performance 

  As discussed in section 4.2.3, the SSD depth and its morphology are different 

depending on the tool geometry and tool type even if the surface roughness is almost 

same. Therefore, it is worth investigating the influence of SSD on the cavity performance. 

As shown in Fig. 6-8, the same shape microcavities (120 ° aperture angle) were 

manufactured using different tools (tools #2, #3, and #5 which are listed in Table 4-2.). 

Although the size of the resonance part is different, the part wherein the resonance 

occurs is limited in approximately 8m×10 m rectangle region as shown in Fig. 6-6 (c). 

Therefore, the difference of the resonance part among the microcavities is assumed not 

to affect the cavity performance. The over 105 Q factor was obtained for each microcavity; 

6.6×105 of Q factor for the microcavity with tool #5 (0.2 mm nose radius and B-NPD), 

1.4×106 of Q factor for the one with tool #2 (0.05 mm nose radius and SCD), 4.6×106 of 

Q factor for the one with tool #3 (0.01 mm nose radius and SCD). Thus, the tool #3 

enhanced not only the SSD depth but also the cavity performance greatly. When using 

the CaF2 with (   ) end face orientation, the surface roughness values did not change 

depending on the tool type and crystal anisotropy.  

 Although the cutting direction and crystalline plane do not correspond to the UPCT 

tests (the diagonal tool path was hired in manufacturing of the cavity whereas the UPCT 

Table 6-2 Variation of Q factor in dependency with the aperture angle of cavity 

Aperture angle of microcavity [°] Q factor 

168 4.0×105 

150 7.1×105 

120 1.4×106 

90 1.2×106 

 

 

Fig. 6-8  Image of manufactured cavity. the shape of cavity shape which contributes to the resonance 

is the same, however, manufactured by using different SCD tools (a) Tool #5 (0.2 mm nose radius, B-

NPD), (b) Tool #2 (0.05 mm nose radius, SCD), and (c) Tool #3 (0.01 mm nose radius, SCD). The 

detailed specification is listed in Table 4-2. 

(b) 

120°

100m
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100m
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Height: 20m
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tests were conducted by feeding the tool parallel to the axial direction), it can be assumed 

that the surface roughness value does not differ. A resonance region in the microcavity 

does not change among the microcavities (see Fig. 6-6 (c)). The SSD depth varies in 

dependency with tool geometry (Fig. 4-40). The variation of SSD depth according to 

crystal anisotropy was also evaluated among tools #2 and #3, whose results show the 

difference of SSD depth in a nanometric size. Although the deviation of SSD depth is a 

few to ten nanometer scale, it is considered that the SSD depth affects the cavity 

performance. Notably, the difference of SSD between tool #5 and tool #2 was bigger than 

the one between tool #2 and #3, however, the Q factor did not greatly change. As 

aforementioned regarding the surface roughness, the criterion which is demanded for 

optical devices exists e.g. surface roughness 𝑆𝑎 values has to be lower than the value of 

the used light wavelength 𝜆/20 nm. Therefore, there might be also some critical value of 

SSD which significantly changes the optical performance. 

  Considering the surface roughness, the Q factor could be estimated as follows [21]: 

𝑄 ≈
 𝜆𝑚

3 𝐷

8𝑛𝜋2𝐵2𝑅𝑞
2
 (6-3) 

  Since the cavity size is demanded to be smaller, lower surface roughness values is 

demanded. To achieve the crack-free surface, the surface roughness 𝑆𝑎 has to be lower 

of less than around 3 nm (see Fig. 4-34, Fig. 4-35, and Fig. 4-36). The existence of brittle 

fracture deteriorated the Q factor (Fig. 6-4). It can be said that partial deterioration of 

the surface roughness affected the Q factor from 105 order to 104. Considering the Q 

factor limited by absorption in the cavity, the Q factor could be also estimated [21]: 

𝑄 =
2𝜋𝑛

𝛼𝑎𝑏𝑠𝜆𝑚
 (6-4) 

  It is assumed that the variation of crystalline structure in subsurface layer causes the 

increase of absorption coefficient which relates to the resonance. Indeed, the reduction 

of the SSD enhanced the Q factor from 5.5×105 to 4.6×106. In terms of the surface 

integrity, the existence of the brittle fracture (surface roughness) was dominant on the 

cavity performance for the low Q factor regime (from 104 to 105), whereas the SSD was 

dominant for the high Q factor regime (more than 106). 

  In this study, the 4.6×106 was the highest Q factor. It should be noted that Grudinin 

obtained the CaF2 microcavity with Q factor of up to 107 by only precision turning [21]. 

Since the influence of crack on the cavity performance was discussed, the crack existence 

is less likely. The SSD affected the cavity performance, therefore, the SSD formation can 

be a plausible reason for deterioration of Q factor. For enhancement of Q factor, polishing 

has been frequently used [21, 23-25]. Nevertheless, the polishing technique is demanded 

to avoid because the polishing changes the cavity shape manufactured by cutting. The 

microcavity shape is important not only for the high Q but the microcavity dispersion.   



Chapter 6 Manufacturing of WGM optical microcavity 

107 

 

6.2 Dispersion-tailored microcavity 
  In previous section, the validity of the proposed cutting technique on manufacturing 

of microcavity was discussed. As aforementioned, the polishing technique is required to 

be avoided although the technique enables to enhance the surface integrity i.e. Q factor 

because the microcavity shape can change by polishing. In this section, a trapezoidal 

microcavity is manufactured which shows a possibility to realize an octave-spanning 

optical Kerr frequency comb. 

 

6.2.1 Design of the dispersion-tailored microcavity 

  Dispersion in the cavity means variation of a refractive index of material in 

dependency with light frequency. Due to the dispersion an interval of resonant 

frequencies does not align with equally spaced intervals, which is called FSR (Free 

Spectral Range). The dispersion of a cavity is determined by combination of the 

geometrical and material dispersions. The FSR spacing changes when a dispersion exists 

in the cavity. The second-order dispersion 𝛽2 is given as [175]: 

𝛽2 = −
 

4𝜋2𝑅
∙
∆(∆𝑣𝑙)

(∆𝑣𝑙)3
 (6-5) 

∆𝑣𝑙 =
𝑣𝑙+𝑚 − 𝑣𝑙−𝑚

2𝑚
 (6-6) 

∆(∆𝑣𝑙) =
𝑣𝑙+𝑚 − 2𝑣𝑙 + 𝑣𝑙−𝑚

𝑚2
 (6-7) 

  The 𝛽2 was calculated according to the designed cavity shape (Fig. 6-9). Whereas the 

triangular microcavity and spherical microcavity feature positive values at around 1550 

nm wavelength regime, the 𝛽2 value for a trapezoidal microcavity was negative in the 

range of 1313 to 2771 nm wavelength. The negative value indicates that an anomalous 

dispersion can be obtained over one octave. Therefore, a trapezoidal microcavity shown 

in Fig. 6-9 (b) is more appropriate for anomalous dispersion. 

 

Fig. 6-9  Variation of the dispersion for (a) triangular, (b) trapezoidal and spherical shape [176]. 
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Fig. 6-10  Images of (a) experimental setup for manufacturing of the trapezoidal microcavity, and 

(b) used straight-nose SCD tool. 

 

Fig. 6-11  Fabrication flow of trapezoidal microcavity. (a), (b) CaF2 cylinder was firstly turned to 

form a conical shape. (c), (d) CaF2 was cut with tool #3 by applying the diagonal tool path. (e) Bulged-

shape cavity was cut by straight nose tool (f) Finally the trapezoidal cavity was obtained. 
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6.2.2 Manufacturing procedure 

  The manufacturing procedure of the trapezoidal cavity is shown in Fig. 6-11. Since it 

is more difficult to fabricate the shape compared to the triangular ones, 5-axis machine 

tool (FANUC, ROBONANO -0iB) was used (Fig. 6-10 (a)). For finish cutting, the tool #3 

(0.01 mm and 0 ° rake) was used. The straight-nose SCD tool was used for forming the 

trapezoidal part of the cavity as shown in Fig. 6-10 (b). The detailed procedure is 

described as follows (Fig. 6-11): 

(1) Same as the case of triangular shape, the CaF2 cylinder was firstly turned to form a 

conical shape (Fig. 6-11 (a) and (b)). 

(2) The CaF2 was cut with tool #3 (nose radius of 0.01 mm) by applying the diagonal tool 

path (Fig. 6-11 (c) and (d)). 

(3) The bulged-shape microcavity was cut by straight nose tool as shown in Fig. 6-11 (e), 

and finally the trapezoidal cavity was obtained (Fig. 6-11 (f)). 

 

6.2.3 Results and discussion 

  The manufactured trapezoidal microcavity is shown in Fig. 6-12. the trapezoidal shape 

was successfully formed without visible brittle fracture or scratches. The surface 

roughness on the resonance part was difficult to measure, therefore, the surface 

roughness at the same height as the resonance part (the red-pasted area in the WLI 

image (Fig. 6-12(b))) was measured, and the surface roughness 𝑆𝑎 was approximately 3 

 

Fig. 6-12  Appearance of trapezoidal microcavity captured by (a) micrograph and (b) WLI. 
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nm. This is the same value of the polished surface in other work [18]. 

  The Q factor of 1.2×106 was obtained, which corresponds to the cavity manufactured 

in section 6.1 and trapped light for 0.98 ns. Since the Q factor was higher than the 

microcavity with brittle fracture (Fig. 6-4 (b)), it is evident that there was no brittle 

    

 

Fig. 6-13 Cavity performance of the trapezoid microcavity. (a) The transmittance spectra. The inset 

image shows the spectra in a wide range of wavelength. (b) Calculated and measured dispersion of 

the trapezoidal cavity. (c) The dispersion in the wide range [176]. 
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fracture on the resonance part (Fig. 6-12). Notably, the surface roughness on the side 

wall of the cavity could not be measured due to the difficulty of the measurement, 

however, the surface was assumed to be smooth, for the Q factor is over 106. The 

dispersion of the cavity was measured. Firstly, the wavelength from 1480 to 1640 nm 

was scanned at the input power of 10 W to measure the resonance wavelengths. The 

transmittance spectra are partially shown in the inset of Fig. 6-13 (a). The dispersion 

was calculated by using Eq. (6-5) to Eq. (6-7), substituting m = 50. The experimental 

results coincide well with the calculated values (Fig. 6-13 (b)). Due to the limitation of 

measurement of wavelengths, the dispersion was not evaluated over the whole 

wavelength regime, however, the tendency of the experimental results can follow the 

calculated ones. Notably, the similar microcavity was designed in previous study [26], 

however, the negative dispersion bandwidth is broader than the previous one. 

 

6.3 CaF2-brass hybrid cavity 
  Until previous section, only turning process was used to manufacture a CaF2 

microcavity. For stable generation of an optical Kerr frequency comb, it is necessary to 

diffuse heat induced by resonance. As mentioned in section 2.1.4, CaF2 shows a negative 

thermos-optic coefficient, therefore, when the optical input power is high, the cavity 

performance becomes unstable due to the thermal issue. In this section, suppression of 

the TOM oscillation was attempted by manufacturing a microcavity with a hybrid 

structure. 

 

6.3.1 Design of the hybrid cavity 

  As explained in section 2.1.4, since the effective refractive index 𝑛𝑒𝑓𝑓  and cavity 

radius 𝑟 change due to the input optical power, it is necessary to design a novel type 

cavity. Since the thermal conductivity of CaF2 is quite low, the conventional structure 

has to be modified (Fig. 6-14 (a)). One solution is to combine a different material with 

CaF2. The material has to be much more thermally conductive than CaF2, and easy to be 

 

Fig. 6-14  Schematic illustration of the designed cavities (a) conventional structure (b) microcavity 

pedestaled on brass (denoted as junction type) (c) hybrid structure (denoted as embedded type) 

■: CaF2
■: Brass

(a) (b) (c)

CaF2 Brass Brass



Chapter 6 Manufacturing of WGM optical microcavity 

112 

 

handled and machined. Then, the material can be a heatsink for the CaF2 cavity, similar 

to Pavlov’s approach [27] in the case of MgF2. Two types of the cavity structure were 

proposed as shown in Fig. 6-14 (b) and (c). The junction type cavity is a semi-hybrid 

cavity whose CaF2 microcavity part is placed on a brass material (Fig. 6-14 (b)). The 

hybrid cavity consists of CaF2 microcavity with a through hole and brass with a stylate 

rod. 

  Before manufacturing of the hybrid cavity, validity of the designed cavity structure 

was confirmed by FEM simulation. The temperature distribution was simulated by the 

Table 6-3 Temperature distribution simulation condition 

Parameter Value 

Thermal conductivity [W/(m·K)] 9.7 (CaF2), 401 (cooper) 

Density [kg/m3] 3180 (CaF2), 8960 (cooper) 

Heat capacity [J/(kg·K)] 911.3 (CaF2), 385 (cooper) 

Cavity radius [m] 247 (CaF2) 

Q value 1.0×107 

Optical input power 𝑃𝑖𝑛 [W] 1 

Wavelength [nm] 1550 

Refractive index 1.4261 

Absorption coefficient [cm-1] 2.0×10-5 

 

 

 

Fig. 6-15   FEM simulation of heat flow in the time domain: (a) Given optical input power. Cross 

section and thermal diffusion of the (b) conventional structure, (c) semi-hybrid structure, and (d) 

hybrid structure. 
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same software (COMSOL, Multiphysics) which was used to simulate the distribution of 

electromagnetic field in section 6.1.2. The simulation conditions are listed in Table 6-3. 

Copper is a main element of the brass rod [177], therefore, the material properties of 

copper was employed (built in COMSOL database). The input heat source of 4.42 W/m 

was calculated from 1.0×107 Q factor, 1 W optical input power, and 2.0×10-5 cm-1 

absorption coefficient. The initial input heat was given with an area that corresponds to 

the simulated electromagnetic field. 

  The heat distribution behavior varies depending on the cavity structure in the time 

domain as shown in Fig. 6-15. The simulation results of heat diffusion in each cavity 

structure in each time window (0, 5, 10, 15, and 20 ms) correspond to (b𝑛), (c𝑛), and (d𝑛) 

(𝑛 = 2, 3, 4, 5, 6). Similar tendency was seen in the case of both conventional structure 

and semi-hybrid cavity (Fig. 6-15 (b) and (c)). The induced heat remains around the 

resonance region after stopping providing the input heat. On the contrary to those cases, 

the heat quickly diffuses from the resonance part in the case of hybrid cavity (Fig. 6-15). 

Table 6-4 Experimental condition for drilling process 

Parameter Value 

Rotational speed [min-1] 10000 

Cutting speed [m/min] 0 − 12.6 

Hole depth [mm] 0.5 

Crystal orientation of main plane (100) 

Lubrication Water-soluble oil in 1:100 ratio 

Cutting tool Cemented carbide end-mill (0.4mm 

diameter) 

 

 

 

Fig. 6-16   Schematic illustration of manufacturing procedure of hybrid cavity. (a) A through hole 

was formed by a drilling process into CaF2 wafer. (b) A stylate brass rod was manufactured by 

straight nose tool. (c) The CaF2 wafer was mounted onto the stylate brass and fixed by wax. (d) The 

CaF2 and brass jig were turned by UPCT simultaneously, and the final cavity shape and structure 

was formed. 

■: CaF2 ・ ■: Brass

(a) (b) (c) (d)
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  The area wherein heat distributes is smaller than that of other structure (compare Fig. 

6-15 (b5), (c5), (d5)). Therefore, it is evident that the hybrid structure made of the brass 

is functioning as a heatsink for quick heat diffusion. For the suppression of TOM 

oscillation, the CaF2-brass hybrid microcavity was attempted to manufacture in this 

dissertation. 

 

6.3.2 Manufacturing procedure 

  In addition to UPCT, additional fabrication process is necessary for manufacturing of 

hybrid structure microcavity. In order to make a through hole into the CaF2, drilling 

process was used. The manufacturing procedure is depicted in Fig. 6-16 , and the detailed 

explanation is described as follows: 

1. The CaF2 workpiece (diameter of 6 mm, thickness of 0.5 mm) was prepared. In the 

CaF2, a through hole of approximately 400 m diameter was drilled using a cemented 

carbide tool under the condition listed in Table 6-4. One fed the cutting tool manually 

by NC operation with 100 nm steps (Fig. 6-16 (a)). 

2. A stylate brass rod was manufactured from a brass cylinder with diameter of 6 mm 

under the cutting condition listed in Table 6-1 (Fig. 6-16 (b)). The straight-nose 

diamond tool (see Fig. 6-10 (b)) was used to form a stylate part with 370 m diameter. 

3. The CaF2 workpiece was glued by wax onto the stylate brass into a through hole of 

CaF2 (Fig. 6-16 (c)). Then, both materials were simultaneously turned under finish-

cutting condition. Finally, the demanded hybrid structure shown in Fig. 6-16 (d) was 

manufactured. 

 

6.3.3 Results and discussion 

  A through hole of 400 m was formed without any large chipping around the hole (Fig. 

6-17 (a)), and the brass stylate rod was manufactured (Fig. 6-17 (b)). The brass rod is 

embedded in the CaF2 workpiece through a hole (Fig. 6-17 (c)). As the diameter of the 

hole in the CaF2 and brass cylinder is not identical and fixture procedure of the CaF2 

and brass was conducted manually, the brass rod was not perfectly aligned at the cavity  

 

Fig. 6-17 Images of (a) the CaF2 workpiece with a through hole of 400 m diameter. (b) The brass 

with a stylate rod of 370 m (c) the CaF2 mounted onto brass through a stylate rod part. 

(a) CaF2

400m

100m

(c) CaF2 + Brass

370m

(b) Brass

100m 100m

30m
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center. Therefore, the brass rod touches the inner hole at a certain area, and air or wax 

exists at the rest area. After fabrication, a hybrid cavity with 500 m diameter was 

obtained as shown in Fig. 6-19. A trapezoidal–like shape was manufactured because the  

cutting process can be more unstable than when the triangular shape cavity made of 

mono-material was manufactured. Brittle fracture which causes the significant 

scattering loss from the cavity was not seen on the whole cylindrical surface, and the 

surface roughness 𝑆𝑎  of approximately 2 nm was obtained. However, it should be 

mentioned that some debris on the upper base side of the microcavity and microbrittle 

 

Fig. 6-18 EDX analyses of the hybrid cavity. The heatsink part consists of Cu and Zn while Ca and 

F correspond to the cavity part. 

 

Fig. 6-19 SEM images of the manufactured hybrid cavity that consists of the CaF2 and brass 

materials. 

Cu Zn

Ca F

100m 100m

100m 100m

Cavity(CaF2)

Heatsink(Brass)

100m

Total diameter 560 m 

20m
Upper base

Lateral side

Debris

Micro-brittle fracture
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fracture on the surface along the lateral side of the cavity were confirmed, which can 

cause the deterioration of Q factor. Although the CaF2 cylinder was partially supported 

from the inside (the brass rod), there is an air gap or wax between the inner surface of 

CaF2 and cylindrical surface of brass. The total thickness of CaF2 cavity is around 100 

m, therefore, the dynamic stiffness of the CaF2 material can be much more decreased 

than that of the non-drilled CaF2 material. It is obvious that copper (Cu) and zinc (Zn) 

are in the heatsink part, then, calcium (Ca) and fluorine (F) exist around the brass 

cylinder by EDX analyses. Thus, the result is an evidence that the brass rod is embedded 

inside the CaF2 through a hole. It should be noted that aluminum (Al) was detected, 

which originates from the SEM stub. Carbon (C) is assumed to come from the adhered 

wax between the cavity and cylindrical brass. For comparison, the conventional 

structure cavity (mono-material) was also manufactured. To enhance the surface 

integrity, the surface was polished.

  The Q value of the conventional structure cavity measures 1.0×107, whereas the Q 

value is 2.8×105 in the case of the hybrid cavity. Therefore, Q value was deteriorated to 

the order of 105. As discussed in section 6.1.2, Q value was deteriorated by the existence 

of brittle fracture to 103, 104 order. Although no brittle fracture is observed on the upper 

base of the hybrid cavity, the brittle fracture on the lateral side could deteriorate the Q 

factor. The cause for their existence might be the adhering debris that originates from 

the chip. 

 

 

Fig. 6-20 The EDX spectrum of the whole cavity. Notably, aluminum (Al) of the SEM stub is detected. 

Carbon (C) originates from the element of wax. 

Ca

C

Cu

Zn

F

Cu Zn
CaAl
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  The aforementioned measurement setup (Fig. 6-3) was adapted to measure the TOM 

oscillation. Between TLD and PC, EDFA (Erbium Doped Fiber Amplifier) was inserted 

to amplify the input light. Further, ATT (Attenuator) was installed between microcavity 

and PWM to attenuate the light power (Fig. 6-21). 

  In the range of 1550.15 to 1550.30 nm wavelengths, several resonance peaks are 

observed in the case of the conventional structure cavity, whereas only one resonance 

peak appeared in the case of hybrid cavity (Fig. 6-22). As mentioned in section 2.1.4, the 

cavity performance (here, transmittance spectra) can be unstable by TOE oscillation that 

consists of the competition between TO and TE effects. The transmittance spectra of the 

conventional cavity form those jig-gag peaks due to the effects. The detailed mechanism 

is explained as follows (Fig. 6-23): 

(1) The input wavelength 𝜆𝑖 continuously shifts from a shorter to a longer wavelength. 

(2) When 𝜆𝑖 corresponds to the resonance wavelength𝜆𝑟, the light is confined in the 

cavity. In other words, resonance occurs. 

(3) Due to the TO effects, the effective refractive index 𝑛𝑒𝑓𝑓 decreases, which leads that 

𝜆𝑟 shifts to a shorter wavelength. 

(4) Due to TE effects, the effective radius 𝑟𝑒𝑓𝑓  becomes larger because the cavity 

expands. Therefore, 𝜆𝑟 shifts to a longer wavelength. 

(5) When 𝜆𝑟 corresponds to 𝜆𝑖, the light is confined again. Thus, resonance occurs twice 

in one loop. 

 

Fig. 6-21 Adapted measurement setup for TOM oscillation. 

 

Fig. 6-22 Transmittance spectra for (a) conventional structure cavity and (b) hybrid cavity.  

ATT PWMTLD
PC

Micro-cavity
EDFA
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(6) 𝜆𝑟 overtakes 𝜆𝑖  because 𝑟𝑒𝑓𝑓 becomes too large due to TE effects. After a certain 

time, the temperature in the cavity decreases and the TE effects become smaller. The 

value of 𝜆𝑟 moves towards that of 𝜆𝑖, and the procedure returns to state (1). 

  When the value of 𝜆𝑟 cannot reach that of 𝜆𝑖 in state (6) the oscillation ends. Due to 

this loop, a lot of resonance peaks were seen in the range of quite short wavelength 

regime for the conventional cavity. However, only one resonance peak was observed for 

a longer time window, and the resonance spectra form triangular shapes induced by TE 

effects (repetition of states (4), (5), and (6)). The phenomenon can be seen for SiO2 or 

MgF2 [25], which is also the desired optical characteristic for CaF2. In the hybrid cavity, 

the induced heat quickly dissipates through the heatsink. Therefore, the absolute time 

windows of TO and TE effects are shorter than those in the case of the conventional 

cavity. This leads the idea that TO effects, which take place in a shorter time window, 

are assumed to be suppressed, and the resonance occurred only once. It can be concluded 

that the thermal effects did not interfere the resonance, and the performance was 

stabilized. 

 

6.4 Summary 
  In this chapter, the CaF2 microcavities were manufactured by UPCT and the 

performance was evaluated. The contents are summarized as follows: 

1. The CaF2 microcavity was manufactured by UPCT based on the experimental results 

which was described in chapter 4. Whereas the cavity with brittle fracture shows the 

 

Fig. 6-23  Mechanism of unstable resonance caused by TOM oscillation. (1) 𝝀𝒊 shifts from a shorter 

to a longer wavelength side. (2) When 𝝀𝒊 corresponds to 𝝀𝒓, resonance occurs. (3) Because of TO 

effects, 𝝀𝒓 shifts to a shorter wavelength. (4) Owing to cavity expansion induced by TE effects, 𝝀𝒓 

shifts to a longer wavelength (5) When 𝝀𝒓 corresponds to 𝝀𝒊, the light is trapped again (6) Due to 

TE effects, 𝝀𝒓 overtakes 𝝀𝒊 
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Q factor of approximately 104, the microcavity without any fracture shows a Q factor 

of over 105. The cavity shape also influenced on the cavity performance, and the Q 

factor was apt to increase in dependency with the reduction of the aperture angle. 

The subsurface quality could also affect the cavity performance, and the reduction of 

the SSD depth contributed to the enhancement of the Q factor by using different nose 

radius tools. Considering the above-mentioned influential factors on the cavity 

performance, as the highest Q value, 4.6×106 was obtained. 

2. For the aim of anomalous dispersion, the trapezoidal microcavity was manufactured. 

1.2×106 Q factor was obtained for the trapezoidal microcavity. The dispersion of 

manufactured trapezoidal cavity was experimentally measured, and showed a good 

agreement with the calculated values which are in the range of anomalous dispersion. 

3. The CaF2-brass hybrid microcavity was manufactured by combination of UPCT and 

drilling process, and the thermal instability on cavity performance was assumed to 

be stabilized by suppression of TO effect. 
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7. Conclusions 
 

  In this dissertation, the surface and subsurface integrity of single crystalline calcium 

fluoride (CaF2) and sapphire in ultra-precision cutting process were elucidated in the 

viewpoint of crystallography. On the basis of the obtained results, the whispering gallery 

mode (WGM) CaF2 microcavity was manufactured using an ultra-precision cutting 

technique, and the cavity performance was related to the surface and subsurface 

integrity and cavity shape that were formed by ultra-precision cutting. 

 

  In Chapters 2, the current microcavities and their fabrication process were explained. 

Considering the form accuracy, surface quality, and material properties, the ultra-

precision cutting was regarded as an appropriate fabrication process in this dissertation, 

and the state-of-the-art studies were explained. Challenges of the machinability of single 

crystalline CaF2 and sapphire in cutting were described and necessity of WGM 

crystalline microcavity was presented. 

 

  In Chapter 3, the material fracture system that contributes to the ultra-precision 

cutting process of single crystalline materials were introduced; slip system, cleavage, 

and twinning. Firstly, the concept of slip, cleavage, and twinning was presented to 

explain how those mechanisms are related to the material deformation behavior. The 

influence of crystal anisotropy on the machined surface can be affected by those fracture 

systems. To analyze the ease of activation of the fracture systems, resolved stress models 

were explained. For slip system, Schmid factor was especially focused as a representative 

indicator for analyses of stress resolving. A similar factor was also presented in the case 

of cleavage. Those factors enabled to evaluate the influence of crystal anisotropy on the 

surface. For both CaF2 and sapphire, several slip systems and cleavages exist, and the 

possibility of each activation is different from the system. Therefore, those factors were 

weighted by incorporation of critical resolved shear stress and surface energy, and those 

parameters were named as plastic deformation parameter 𝑃  and cleavage fracture 

parameter 𝐶. 

 

  In Chapter 4, the plunge-cut tests were conducted to investigate the cutting 

performance of CaF2. Nose radius of the tool was a main influential factor on the CDC 

value in plunge-cut tests. The surface morphologies and CDC values significantly 

changed in dependency with the cutting crystalline planes and directions, and those were 

characterized by a certain symmetry based on its cubic crystalline structure. For 

instance, when cutting (   ) plane, the surface morphologies and CDC values were 
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characterized by four-fold symmetry. The 𝑃 and 𝐶  values were computed using the 

crystallographic information and experimentally obtained force vector to analyze the 

main deformation mechanism that affect the surface quality. Overall, the 𝑃  value 

coincided well with the higher CDC values on each plane and vice versa. The observed 

brittle fracture was formed by the combination of {   } and {   } cleavages that agree 

with the high 𝐶 parameter value. Primary slip system {   }〈   〉, {   } cleavage, and 

partially {   } cleavages were dominant on the surface integrity. 

  Next, the ultra-precision cylindrical turning (UPCT) tests were performed for the 

purpose of manufacturing of WGM microcavity. Tool geometry (nose radius and rake 

angle) greatly influenced on the surface integrity. The influence of crystal anisotropy on 

the machined surface was also found in the case of UPCT. The process force could not be 

measured due to the experimental setup, hence, the 𝑃 and 𝐶 parameter values were 

not calculated, nevertheless, the similar tendency with the plunge-cut tests was seen in 

UPCT tests. For instance, the machined surface without any fracture coincided with the 

cutting crystalline plane and direction where the 𝑃 parameter value and CDC value 

were high in plunge-cut tests. Same as plunge-cut tests, the surface roughness and 

machined surface morphology were characterized by a certain symmetry. Whereas the 

surface roughness value and morphologies varied according to the observation points i.e. 

crystalline plane and direction in the case of end face orientation (   ) and (   ), the 

homogenous surface without brittle fracture was obtained at the whole cylindrical 

surface when the end face was set as (   ). It is anticipated that the high 𝑃 parameter 

was kept in the case of end face (   ). 

  The subsurface damage (SSD) was also investigated via transmission electron 

microscopy (TEM) in UPCT tests. Even though the surface roughness was the same 

value in the nanometric level, the SSD depth and crystalline lattice structure were 

different depending on process parameter. Smaller nose radius and depth of cut reduced 

the SSD depth, therefore, the lowering of the thrust force that originated from the 

reduction of the tool contact length between tool and workpiece was assumed to be a 

main factor for SSD formation. The SSD depth also changed in dependency with the 

crystal anisotropy in the range of approximately 10 − 30 nm, though the uniform 

surface was achieved at the entire cylindrical surface under the cutting condition which 

was optimized to minimize the SSD depth. TEM images revealed that the crystal shear 

and lattice rotation occurred in subsurface region, and the slip system was assumed to 

be a main factor on variation of SSD. When the cutting direction was identical to the slip 

planes which can be activated, the SSD depth was lower. 

 

  In Chapter 5, machinability of the sapphire was evaluated in plunge-cut tests. On 

(    ) plane, the surface morphology and CDC values were characterized by two-fold 
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symmetry while the three-fold or six-fold symmetry was expected based on its hexagonal 

crystalline structure or rhombohedral lattice family. Basically, variation of the surface 

morphology and CDC values coincided well with the computed 𝑃 and 𝐶 parameters, 

and high CDC values coincided with the high 𝑃 parameter and low 𝐶 parameters and 

vice versa. 

  The SSD was also investigated in cutting direction of 30 ° and 270 ° (〈     〉 directions), 

both of which were expected to show the same surface morphology. Whereas only one 

basal twinning was observed in 30 ° cutting direction, several basal twins were observed 

in 270 ° cutting direction. Therefore, multiple basal twinning could cause the self-

intersection, and rather the surface could be deteriorated. 

  Although it was found that the ductile-regime cutting could be conducted on sapphire 

substrate, the cutting tool was easily broken due to the high hardness of sapphire, thus, 

it was anticipated that manufacturing of the sapphire microcavity by cutting was 

difficult. 

 

  In Chapter 6, the CaF2 microcavities were manufactured by UPCT and the 

performance was evaluated. The CaF2 microcavity was successfully manufactured by 

UPCT based on the experimental results which were obtained in Chapter 4. The 

existence of brittle fracture, cavity shape and SSD quality significantly affected the 

cavity performance, and as the highest Q factor, 4.6×106 was obtained. 

  For the aim of anomalous dispersion, the trapezoidal microcavity was manufactured 

by UPCT. The dispersion of manufactured trapezoidal cavity was experimentally 

measured, and showed a good agreement with the calculated values which are in the 

range of anomalous dispersion. 

  The CaF2-brass hybrid microcavity was manufactured by combination of UPCT and 

drilling process, and the thermal issue on cavity performance was assumed to be 

stabilized by suppression of TO effect. 

 

  To meet the high-level demands for the microcavity, the conventional fabrication 

process (etching or laser machining) are prohibited. For high Q, single crystalline 

materials such as CaF2 or sapphire are the appropriate materials, and required to be 

formed of the spherical type to generate WGM resonance. Ultra-precision cutting is one 

of the promising fabrication methods, however, those materials are classified into 

difficult-to-cut materials. This dissertation provides the investigation of the cutting 

mechanisms of those materials based on the experimental results for aiming the 

manufacturing of WGM microcavities. A series of the experimental approach on 

crystalline materials in this dissertation is applicable to other crystalline materials e.g. 

MgF2, silicon, BaF2, LiNbO3. Therefore, this dissertation can be a bridge between 
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machining process and manufacturing of the optical components with microfeatures. 

Although it is difficult to discuss the anisotropic machinability of single crystalline 

materials, the resolved stress model with incorporation of the energy-related parameters 

enabled to quantitatively analyze the anisotropic deformation behavior. The proposed 

approach can be also utilized for the machinability at an elevated temperature. The 

obtained Q factor of 4.6×106 is reasonably high in the category of the microcavity 

manufactured by only cutting process. In addition, the machining process made it 

possible to manufacture a trapezoidal microcavity which features an anomalous 

dispersion, or CaF2-brass hybrid cavity which has a stability on a thermal issue. Thus, 

the cutting approach is valid for the microcavity with an advantage of flexibility on cavity 

shape. It should be remarked that the Q factor of the manufactured microcavity was 

relatively lower than other researchers works that hired the polishing process [18, 21, 

23, 25, 28] (108 or 109). However, the polishing process deteriorates the form accuracy 

that is required for the cavity dispersion, therefore, another process has to be also 

considered. For instance, elastic emission machining [113, 114] is a candidate to remove 

only the SSD perfectly, maintaining the form accuracy.  
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Appendix 
 

The appendix includes the utilized experimental equipment (specifications) 

 

A) Specification of the used machine tools and measurement 

equipment 

  Firstly, specification of the used machine tools is listed. 

 

Table A-1 Specification of 4-axis ultra-precision vertical machine tool (UVM-450C) 

 

Table A-2 Specification of 4-axis ultra-precision aspherical machine tool (ULG-100E (HYC)) 

 

Table A-3 Specification of 5-axis ultra-precision vertical machine tool (Robonano -0iB) 

 

 

Maker / Type TOSHIBA MACHINE / UVM-450C 

Travel in each axis X: 450 mm, Y: 450mm, Z: 200mm, A: −45° 

− 45° 

Minimum / Maximum rotation speed  

[min-1] 

10000 – 80000 

XY stage [mm] 450×450 

Resolution of position [nm] X, Y, Z: 10 

CNC System FANUC Series 30i-MODEL A 

Size of Machine tool [mm] 2100×2450×2150 

Weight of Machine tool [kg] 5000 

Maker / Type TOSHIBA MACHINE / ULG-100E(HYC) 

Travel in each axis X:220mm, Y:20mm, Z:150mm, C: 360° 

Work spindle speed [min-1] 0 − 1500 

Resolution of position [nm] X, Y, Z: 1 

CNC System FANUC Series 30i-MODEL A 

Weight of Machine tool [kg] 2200 

Maker / Type FANUC / Robonano -0iB 

Travel in each axis X:280mm, Y:40mm, Z:150mm, B, C: 360° 

Work spindle speed [min-1] 0 – 250 (50,000 optionally) 

Resolution of position [nm] X, Y, Z: 1 

CNC System FANUC Series 30i-MODEL A 

Weight of Machine tool [kg] 1700 
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  Secondly, specification of the used measurement devices is listed. 

 
Table A-4 Specification of 3-axis dynamometer 

 

Table A-5 Specification of charge amplifier 

 

Table A-6 Specification of white light interferometer 

 

Table A-7 Specification of FE-SEM 

 

 

 

 

 

 

Maker / Type Kistler / Type9256C1 

Measurement force [N] −250 − 250 

Dynamic resolution of force [N] 0.002 

Sensitivity [pC/N] Fx:25, Fy:13, Fz:25 

Weight of dynamometer [kg] 0.75 

Maker / Type Kistler / Type5070A 

Software DynoWare 2.31 

Measurement error [%] Maximum ±1 

Weight [kg] 0.75 

Maker / Type Zygo / New View TM6200 

Vertical resolution [nm] 0.1 

Measurement range [nm] 0 − 15000 

Step height [%] Accuracy ≤ 0.75 

Repeatability ≤ 0.5 

RMS repeatability [nm] ≤ 0.1 

Maker / Type Carl Zeiss Optics / Merlin Compact VP 

Magnification 12 – 2,000k × 

Resolution [nm] ≤ 0.6 

Accelaration voltage [V] 20 − 30000 

Probe current [nA] ≤ 300 

Modes Secondary electron, Energy selective 

backscattering, STEM, EDS, EBSD 
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Table A-8 Specification of FE-TEM 

 

Table A-9 Specification of a dynamic ultra-micro hardness tester 

 

  

Maker / Type FEI / Technai TM G2 F20 S-Twin 

Magnification 12 – 1,030k × 

Acceleration voltage [kV] 200 

Resolution of point [nm] 0.18 

Tilt of specimen [°] ±20 

Observation mode Bright-field, Dark-field 

Maker / Type SHIMADZU / DUH-211S model 

Indenter type Triangular pyramid indenter with tip angle 

of 115 ° 

Loading method Electromagnetic coil 

Test force range [mN] Full scale of 0.1 to 1961 

Test force accuracy ±19.6 N or ±1% 

Measureent method Differential transformer 

Measurement range [m] 0 − 10 

Measurement increment [m] 0.0001 
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B) The detailed computation procedure of the plastic deformation 

parameter 𝑃 and cleavage fracture parameter 𝐶 

 

  Transformation of Miller-Bravais indices and hexagonal system into Miller indices 

system and Cartesian system 

  The crystallographic information about sapphire is given in Miller-Bravais (4-index) 

indices, therefore, the indices are converted into Miller (3-index) indices by conversion 

matrices [153] (see Fig. B-1). The crystallographic plane (ℎ 𝑘 𝑖 𝑙). is transformed to the 

normal direction of the plane in three-axis hexagonal system (𝐻 𝐾 𝐿). Then, the third 

a-axis is not necessary to be written for the following relation holds. 

𝑖 =  −(ℎ + 𝑙) (B-1) 

  Whereas it is easy to calculate the vectors or distance in Cartesian coordinate systems 

e.g. CaF2, the computation procedure in other crystal structure e.g. hexagonal or 

monoclinic structure are more complex. To calculate the distance between two points in 

an arbitrary coordinate system, a metric tensor 𝒈 is introduced. The hexagonal lattice 

vectors are described by the real space metric tensor 𝒈  for calculating the 

crystallographic direction [154]. 

𝑔 = 
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  To compute the corresponding basis vectors (orthogonal vector) for a plane within the 

reciprocal space, the metric tensor 𝒈∗ is given as follows: 

𝑔∗ = 
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  The equal Miller-indices for a hexagonal direction [𝑢 𝑣 𝑡 𝑤]  are rewritten as 

[𝑈 𝑉 𝑊]  by the transformation matrix 𝑫 , which originates from the angular 

relationships between the auxiliary axis and orthogonal axis: 

𝐷 = (
2    
 2   
    

) (B-4) 

  The vectors of the crystallographic directions are written in the hexagonal coordinate 

system, wherein the axis of the first two coordinates are non-perpendicular to each other 

but 120 ° contorted. Therefore, the calculated vectors in the of (𝑎1 𝑎2 𝑎3)
𝑇  are 

transformed by a translation matrix in the Cartesian coordinate system (𝑥 𝑦 𝑧)𝑇: 
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𝐷 = 
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  From there on, the crystallographic plane normal and direction are handled as normal 

vectors expressed in the Cartesian coordinate system (Fig. B-2). 

 

Initialization and force direction 

  For the calculation the crystal system has to be orientated. With the pre-known the 

main orientation plane of the substrate and the side face orientation of the substrate,  

the vectors of the resultant force 𝑭𝒓 depending on the specific force inclination angle 𝛽 

and the force direction on the main plane can be computed using the Rodrigues-rotation 

calculation specification. The Rodrigues calculation formula describes a three-

dimensional rotation for a given axis and rotation angle. Rodrigues’ rotation formula is 

an efficient computing method of a rotation by an angle 𝜃 about a fixed axis given by 

the unit vector 𝝎 = (𝜔1 𝜔2 𝜔3). 

  In an orthogonal cutting model, the resultant process force 𝑭𝒓  is expressed by 

synthesis of cutting force vector 𝑭𝒄 and thrust force vector 𝑭𝒕 (Fig. B-3). As shown in 

 

Fig. B-1 Transformation of Miller-Bravais indices into Miller-indices 

 

Fig. B-2 Transformation of the Miller-indices into the notation of the Cartesian coordinate system 
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Fig. B-4 and Fig. B-5, the inclined angle 𝛽 can be calculated from the measured process 

force in the plunge-cut tests. The process force can vary depending on the time (DOC) 

and cutting crystalline plane and directions, however the variation range of the inclined 

angle 𝛽 was limited. The variation was stabilized in the range of 20 ° to 30 ° for CaF2, 

and 40 ° to 60 ° for sapphire, therefore, the values of 25 ° for CaF2 and 50 ° for sapphire 

were used, respectively. At first, a vector on the main orientation plane is inclined about 

the angle 𝛽by adding the angular component while transforming the orientation vectors, 

which were transformed into Cartesian coordinates by the algorithm shown in the 

section before, in spherical coordinates. The inclined vector (the resultant force vector) 

is, then, rotated by the Rodrigues’ rotation formula around the normal vector of the main 

orientation plane with the angular step with 𝛿 . To align the starting vector of the 

Rodrigues’ rotation with the actual orientation face vector, the angle between the 

projected starting vector on the main plane and the orientation face vector is calculated 

and then added as an angular deviation. Furthermore, due to the fact that the Rodrigues’ 

rotation is based on the right-handed coordinate system, the rotation is computed anti-

clockwise, whereas the actual experimental order is set to be a clock wise rotation. After 

calculating all force vectors, the order is adapted to match a clockwise rotation. 

 

 

 

 

 

 

 

 

Fig. B-3 Schematic illustration of the calculation (a) Relation of force vectors in orthogonal cutting 

model (b) presentation of force vectors with the 15° step of cutting direction 𝜹  ((100) cutting 

crystalline plane of CaF2) 
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Fig. B-4 Measured force curve in the plunge-cut tests of CaF2 ( (100) plane and 120 ° cutting direction) 

 

Fig. B-5  Measured force curve in the plunge-cut tests of sapphire ( (0001) plane and 0 ° direction) 
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