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第 1章

序論: 研究の背景と動機

本章では、まず本論文が対象とする２次元極低温フェルミ原子気体において近年注目を

集めている Berezinskii-Kosterlitz-Thouless (BKT)転移について概説する。2004年に３

次元極低温フェルミ原子気体の超流動化が 40K、6Li原子種を用い達成されて以来、この

２次元系特有の超流動現象は当該研究分野のさらなる発展につながるものとしてその実現

が期待されている。BKT転移の説明に続き２次元系を実現させるため、光学トラップに

よる次元操作の方法、及びフェッシュバッハ共鳴を用いた相互作用の制御技術を説明、後

者の応用例として３次元フェルミ原子気体超流動で実現している BCS-BEC クロスオー

バーについて述べる。その後、6Li２次元フェルミ原子気体で近年報告された BKT転移

の実験と、この系の BKT転移に対する理論を説明し、現状、実験と理論共に検討の余地

があることを指摘する。そして、強い引力相互作用に起因する量子多体現象の１つである

擬ギャップ現象から対形成揺らぎの影響を完全には考慮していない従来の BKT理論の妥

当性が評価できることを述べる。また、本研究で用いる強結合理論の検証に利用する近年

２次元フェルミ原子気体で観測された熱力学量を概観する。本章の最後に本論文の目的に

ついて説明する。

1.1 ２次元フェルミ超流動 (BKT転移)

ここでは、２次元フェルミ粒子系 [1]での超流動転移の BKT転移 [2–5]について、３

次元フェルミ超流動転移と比較しつつ概説する。

２次元系では、系の低次元性により超流動揺らぎが増強されるため、３次元系での超流

動 (超伝導)転移のような、長距離秩序を有する２次相転移が実現しないことが知られて

いる [6, 7]。一般に、フェルミ粒子超流動は、フェルミ粒子間に働く引力相互作用により、

フェルミ粒子がクーパー対とよばれる対を形成、その対が凝縮することにより生じる。こ
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の際、超流動相は、超流動秩序パラメータ

∆(r) ≡ ⟨Ψ(r)⟩, (1.1)

が有限になる相として定義される (Ψ(r)はフェルミ粒子対 (クーパー対)の場の演算子)。

ここで、超流動転移を Ginzburg-Landau(GL)理論の自由エネルギー [8, 9]

F =

∫
dDr

[
a0 |∆(r)|2 + b0

2
|∆(r)|4 + c0 |∇∆(r)|2

]
, (1.2)

を用いて議論する (ここでは、３次元系の超流動転移温度近傍で |∆(r)| は小さいため、
６次以降は無視し、また、BKT転移を記述する際に必要な超流動秩序パラメータの位置

依存する寄与の２次までを考慮している)。式 (1.2) において、D は系の次元、また a0、

b0、c0 は定数とする。３次元フェルミ超流動 (超伝導)の場合、その基礎理論である BCS

(Bardeen-Cooper-Schrieffer)理論では、超流動秩序パラメータ∆(r)は

∆(r) = ∆0e
iϕ, (1.3)

のように空間依存性を持たない量として扱われる。この時、自由エネルギー (1.2)は

F =

∫
d3r

[
a0∆

2
0 +

b0
2
∆4

0

]
, (1.4)

となる。GL理論では超流動相で、a0 < 0、b0 > 0となり、秩序パラメータの振幅 ∆0 は

この自由エネルギーを最小化する条件で決まる。また、式 (1.3)の３次元系の超流動状態

ではクーパー対の相関関数 C3D(r)は

C3D(r) = ⟨Ψ†(r)Ψ(0)⟩ −−−→
r→∞

∆2
0, (1.5)

となる。このことは、超流動状態ではクーパー対同士の相関が無限遠まで発達しており、

系に長距離秩序が存在していることを示している。このような秩序を有する相転移は、

式 (1.2)の自由エネルギーの２階微分が超流動転移温度 Tc で不連続となる２次相転移で

あり、比熱が Tc で不連続になるなどの特異な現象が現れる。一方、２次元系では、有

限温度で式 (1.5) で表現される長距離秩序相が存在しないことが理論的に示されている

(Mermin-Wagner-Hohenberg の定理) [6, 7]。そのため、２次元系は３次元系の BCS 超

流動のような長距離秩序を有する状態は有限温度で実現しない。

２次元における超流動転移は、Berezinskii、Kosterlitz、Thoulessらにより、３次元系

の BCS 状態のような長距離秩序を有する２次相転移とは異なる BKT 転移 (これは準長

距離秩序を有する相転移で後述する式 (1.13)の冪指数で特徴付けられる)によって実現す

ることが提唱されている [2–5]。BKT転移では秩序パラメータとして、３次元の式 (1.3)

とは異なる
∆(r) = ∆0e

iθ(r), (1.6)
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を考える。これは式 (1.3) の秩序パラメータに対し、位相 θ(r) の揺らぎを考慮している

ことに相当する。このとき式 (1.2)の自由エネルギーは

F =

∫
d2r

[
a0∆

2
0 +

b0
2
∆4

0 + c0∆
2
0 |∇θ(r)|2

]
. (1.7)

式 (1.7)の第３項 (≡ FFL)は超流動速度 vs = ℏ∇θ(r)/M (ここで、M はクーパー対の質

量、ℏはプランク定数 hを 2π で割った定数) を用いると、

FFL =

∫
d2r

1

2
ρs|vs(r)|2, (1.8)

と書けることから、質量密度
ρs = 2M2c0∆

2
0/ℏ2, (1.9)

を有する超流動体の運動エネルギーと解釈することができる。このとき２次元系でのクー

パー対の相関関数 C2D(r)は

C2D(r) = ⟨Ψ†(r)Ψ(0)⟩

= ∆2
0⟨e−i[θ(r)−θ(0)]⟩

−−−→
r→∞

αr−η(T ), (1.10)

となる (式 (1.10)の２行目から３行目の導出の詳細は付録 A参照)。ここで、αは定数、

η(T ) =
M2kBT

2πℏ2ρs
, (1.11)

である (kB はボルツマン定数)。３次元系での超流動状態は長距離秩序を有し、クーパー

対の相関関数は式 (1.5)のように r → ∞で一定であったが、式 (1.10)の相関関数 C2D(r)

は r → ∞ で冪的に減衰する。このような冪相関が見られる秩序は準長距離秩序と呼ば

れる。

このような２次元系と３次元系での超流動転移の違いは超流動転移温度における物理量

の振る舞いに大きな影響を与える (詳細は [1–5,10–12]を参照)。例えば、比熱は３次元の

場合、超流動転移点において不連続な飛びを示すが、２次元系の BKT転移でそのような

不連続性は見られない。一方、２次元系では図 1.1 (a) のように超流動密度 ρs が “BKT

転移温度” TBKT において有限の飛び

δρs =
2kBM

2TBKT

πℏ2
, (1.12)

を示すことが知られており [10]、実際、超流動 4He薄膜において観測されている [13]。３

次元系では図 1.1 (b)のように超流動密度は超流動転移温度 Tc 以下で 0から連続的に増
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図 1.1 (a) ２次元系における超流動密度 ρs の温度依存性の模式図。BKT 転移温度

TBKT で飛びが見られる。(b) 3次元系における超流動密度 ρs の温度依存性の模式図。

超流動転移温度 Tc 以下で連続的に有限の値となる。

表 1.1 BKT転移温度における冪指数 ηBKT の報告例

物質名 冪指数 ηBKT

励起子ポラリトン系 [14] 0.25

急冷凝縮 Hg-Xe薄膜超伝導体 [15] 0.25

In-In酸化物複合薄膜超伝導体 [16] 0.23

Pb薄膜超伝導体 [17] 0.25

FeSe0.3Te0.7 薄膜超伝導体 [18] 0.25

加する。従って、TBKT での ρs の飛びは BKT転移特有の現象である。また BKT転移温

度において、式 (1.11)で与えられる η(T )は

η(T = TBKT) = ηBKT = 0.25, (1.13)

となる。式 (1.10) の冪相関とその冪指数 η が式 (1.13) のようになることは BKT 転移

の特徴である。BKT 転移は励起子ポラリトン系 [14] や超伝導状態の薄膜金属超伝導

体 [15–18] においても観測されており、表 1.1でまとめたように冪指数 ηBKT ≃ 0.25が

測定されている。

1.2 極低温フェルミ原子気体の実験手法と BCS-BECクロス

オーバー

本論文が対象とする極低温フェルミ原子気体は、２次元フェルミ超流動を調べる新たな

舞台として、実験 [19–32]、理論 [33–45]共に注目を集めている。一般に系の次元が下がる
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図 1.2 式 (1.18)の調和ポテンシャル中に捕獲されたフェルミ原子気体 (青色)の模式

図。(a) ３次元系。(b) ２次元系。dr は 2 次元フェルミ原子気体の２次元平面 (円盤)

の半径、lz は２次元フェルミ原子気体の２次元平面に垂直方向の厚みである。

と超流動揺らぎが強くなり、1.1節で述べたように長距離秩序は実現できなくなる。このた

め、３次元フェルミ原子気体で議論されてきた BCS (Bardeen-Cooper-Schrieffer)-BEC

(Bose-Einstein condensation)クロスオーバー [46–58] が準長距離秩序である BKT転移

が実現する２次元系ではどのようになるかは興味深い問題である。極低温フェルミ原子気

体では、人工的に２次元系を作成することが可能で [20,59]、かつ、フェルミ原子間に働く

引力相互作用の強さを実験的に操作できる。これにより、この系では弱結合から強結合に

至る幅広い相互作用領域における２次元フェルミ超流動の性質を系統的に調べることが可

能である。このような可変な引力相互作用を有する２次元極低温フェルミ原子気体は不純

物や格子欠陥などを含まないクリーンなシステムであるため、励起子ポラリトン系などの

(強く相互作用する) ２次元強相関フェルミ粒子系の理解に役立つと期待されている。こ

こでは、２次元フェルミ超流動現象の研究に重要なこれら２つの実験技術と引力相互作用

強度を制御することで３次元フェルミ原子気体で実現された BCS-BEC クロスオーバー

について説明する。

1.2.1 光学トラップによる原子の捕獲と２次元フェルミ原子気体の作成

冷却原子物理 (cold atom physics) の分野では、レーザー技術を駆使することにより、

多数の原子を空間的に閉じ込めることが可能となっている (光学トラップ)。原子気体は高

温の原子源 (600 K)から供給され、レーザー光の輻射圧により数 100 µKまで冷却された

後、レーザーを用いて光学的に捕獲される [20,60–63]。レーザーにより印加される電場を

E(r, t) = E0(r)e
−iωtê+ c.c., (1.14)
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とした時、原子が感じるポテンシャル V (r)は分極率を α(ω)とすると、

V (r) = −1

2
α(ω)|E(r)|2, (1.15)

で与えられる [60]。式 (1.14)において E0(r)は電場の振幅、ω はレーザー光の周波数、t

は時間、êは電場方向の単位ベクトルである。簡単のため、２準位系 (基底状態 |g⟩、励起
状態 |e⟩でエネルギーの差は ℏω0）で分極率 α(ω) を評価すると [60]

α(ω) =
2ℏω0

∣∣∣⟨e ∣∣∣d̂ · ê
∣∣∣ g⟩∣∣∣2

(ℏω0)2 − (ℏω)2
, (1.16)

となる。d̂は電場により生じた電気双極子の演算子である。印加するレーザーの周波数 ω

が ω < ω0 の時、式 (1.16)において α(ω) > 0となり、このトラップポテンシャルはレー

ザー中の原子を閉じ込める役割を果たし、原子を捕獲することが可能となる。特に、z 方

向に伝搬するガウシアンレーザー

E0(r) ∝ exp (−(x2 + y2)/r20) cos
2(kzz), (1.17)

を印加した場合を考えると (kz は z 軸方向の波数、r0 はレーザー半径である)、r = 0付

近の原子が感じるポテンシャルは異方的な調和ポテンシャル

V (r) =
1

2
mω2

r(x
2 + y2) +

1

2
mω2

zz
2, (1.18)

で近似できる。ここで、ωr、ωz はトラップ周波数である。原子気体はこの調和ポテン

シャル中のみ運動が可能であり、ωr ≃ ωz の場合が３次元系に対応する (図 1.2 (a))。ωr

と ωz を、レーザーの形状を変化させることで操作し、ωr ≪ ωz とすることにより、z 軸

方向の原子気体の運動を制限し、２次元系を実現することができる (図 1.2 (b))。系が十

分２次元的であるための条件は次のように見積もることができる (付録 B参照)。√
2N

π

ωr

ωz
< 1. (1.19)

ここで、N は全フェルミ原子数である。実際の実験では全フェルミ原子数 N ≃ 100000

に対し、ωr : ωz ≃ 1 : 300 が実現しており [29, 30]、これは式 (1.19)を満たしていること

から原子の z 方向の運動はほとんど抑制され、それと垂直の方向にしか動けず、系は２次

元系と見なせる。

1.2.2 フェッシュバッハ共鳴による原子間の相互作用の制御

フェルミ原子気体では、フェッシュバッハ共鳴と呼ばれる機構 [64]を用いることで、原

子間に働く相互作用強度を実験的に変えることができる。以下、その方法について概説す
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図 1.3 スピン３重項の open channel (赤線)とスピン１重項の closed channel (青線)

の原子間ポテンシャルエネルギーの模式図。縦軸は相互作用ポテンシャル V (r)、横軸

は２原子間距離 r を表す。緑の破線は原子の入射エネルギーであり、open channelの

２原子間の距離が無限の時のエネルギーに相当する。図では、２つの原子が無限にはな

れたときのエネルギーをエネルギーの原点にとっている。2ν は入射エネルギーと束縛

エネルギー準位 (青の点線)とのエネルギー差で、これは束縛エネルギーに加え、open

channelと closed channelの間のゼーマンエネルギーの差も含まれる。open channel

と closed channelのエネルギー差は外部磁場 B で操作でき、closed channelの束縛エ

ネルギー準位と原子の入射エネルギーが一致するときの磁場が共鳴磁場 B0 (2ν = 0)

となり、フェッシュバッハ共鳴点に相当する。束縛エネルギー準位では、共鳴束縛状態

であるフェッシュバッハ分子が形成される (図中の赤丸と青丸はそれぞれ異なる超微細

構造状態の原子を表し、それを囲う黒丸はフェッシュバッハ分子を表す)。

る。ここでは例として、フェルミ原子気体超流動の研究でよく用いられる 6Liフェルミ原

子をガス化した場合を取り上げる。6Liを用いた研究では |1⟩ ≡ |F = 1/2, Fz = 1/2⟩と
|2⟩ ≡ |F = 1/2, Fz = −1/2⟩の２つの原子状態にある原子を捕獲、実験が行われる。ここ
で、F、Fz は原子の超微細構造状態 (hyper-fine state)とその z 成分で、核スピン I と電

子スピン S の和 F = I + S である。6Liはアルカリ金属原子であるため、最外殻に電子

を１つ有しているが、今２原子を考え、２つの原子の最外殻電子のスピンがスピン１重項

状態のものを closed channel、スピン３重項状態のものは open channelと呼ぶ (後述す

るように、open channelは散乱前後の原子状態、closed channelはフェッシュバッハ共

鳴状態にある２原子の状態である)。 各チャンネルのポテンシャルエネルギーは図 1.3の

ように、原子間の近距離では斥力相互作用、遠距離では引力相互作用のレナードジョーン
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ズポテンシャルとなる。この２つのチャンネルが結合するような相互作用が働くことによ

り、原子間に有効相互作用 Ueff が働くことが知られている。この両者を結びつける相互

作用として、次式で与えられる超微細相互作用 Hhf がある [59–61]。

Hhf = AhfI1 · S1 +AhfI2 · S2

=
Ahf

2
(I1 + I2) · (S1 + S2) +

Ahf

2
(I1 − I2) · (S1 − S2). (1.20)

式 (1.20)において、Ahf は結合定数である。Hhf において、open channel (電子スピン３

重項)と closed channel (電子スピン１重項)の結合を調べると、式 (1.20)２行目の１項

目は両者を結合させることはないが、２項目は結合させることが可能である。系は外部磁

場 B を印加するとゼーマンエネルギーにより、open channelのエネルギーは低くなり、

２つの原子が十分はなれている時 (図 1.3で r → ∞の時)、２原子の状態は open channel

になる。一方、２つの原子が接近し、図 1.3に模式的に描かれたポテンシャル V (r)のく

ぼみ部分に生じた共鳴束縛状態に遷移する際、同時に式 (1.20) の超微細相互作用により

open channelと closed channelが結合、電子スピン状態が変化することでゼーマンエネ

ルギーも変化する。その後再び、２原子が解離し、open channelの状態に戻るという過

程が生じる。この closed channelに遷移する際の、図 1.3中の束縛状態はフェッシュバッ

ハ共鳴分子と呼ばれる。原子の解離状態とフェッシュバッハ分子への遷移振幅を gとする

と、入射原子のエネルギーとフェッシュバッハ共鳴分子状態のエネルギーの差を 2ν と書

いて、この過程は２次摂動の範囲で

Ueff = − g2

2ν
. (1.21)

ここで、上の説明から分かるように 2ν には電子スピン状態の違い (１重項と３重項) に

起因するゼーマンエネルギーの差が含まれているため、外部磁場により値を変えることが

可能であり、それにより式 (1.21) で与えられる有効相互作用も外部磁場で制御可能とな

る。これがフェルミ原子気体で原子間相互作用を制御する際用いられるフェッシュバッハ

共鳴機構である。実際には、原子間相互作用にはフェッシュバッハ共鳴以外によるものも

あり、それを Ubg と書き、さらにフェッシュバッハ共鳴準位 2ν が 0となる外部磁場を共

鳴磁場 B0 とすると、B ≃ B0 近傍で 2ν = αB(B − B0)と書けることから、原子間相互

作用は

Ueff = Ubg −
g2

αB(B −B0)
, (1.22)

となる [59, 65]。式 (1.22)において、αB > 0は定数である。

冷却原子物理の分野では式 (1.22)の相互作用は s波散乱長 aを用いて表されることが

多く、その場合は

a(B) = abg

[
1− WB

B −B0

]
, (1.23)



1.2 極低温フェルミ原子気体の実験手法と BCS-BECクロスオーバー 11

図 1.4 6Li フェルミ原子の |1⟩ = |F = 1/2, Fz = 1/2⟩ と |2⟩ = |F = 1/2, Fz =

−1/2⟩ 間の s 波散乱長 a の外部磁場依存性 [66]。横軸は外部磁場 B、破線はフェッ

シュバッハ共鳴点 B0 ≃ 832 G。実線の B = 543.2 G 近傍にも共鳴幅が狭いフェッ

シュバッハ共鳴点が存在する [67]。B0 < B の a < 0 となる領域が弱結合領域、

B < B0 の a > 0 となる領域が強結合領域に相当する。[Reprinted figure with

permission from T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhães,

S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov, and C. Salomon, Phys. Rev.

Lett. 91, 020402 (2003). Copyright (2003) by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.91.020402.]

と書かれる [59,65]。ここで、abg はフェッシュバッハ共鳴と関係のない散乱長、WB は共

鳴幅である。図 1.4は 6Liフェルミ原子気体における可変な散乱長の例である [66]。共鳴

磁場 B0 = 832.18 G、WB = 262.3 G、abg = −1582aB (aB はボーア半径)である [68]。

a(B) < 0となる B > B0 の磁場領域が原子間の引力相互作用が弱い領域 (弱結合領域)、

a(B) > 0となる B < B0 の磁場領域は原子間の引力相互作用が強い領域 (強結合領域)に

相当する。弱結合領域では、図 1.5のように、弱く結合した大きなサイズのフェルミ原子

対 (クーパー対)が重なり合うように形成される。引力相互作用強度が強くなると対の重

なりはなくなり、強結合領域になると原子対は１つの分子ボゾンとみなせる領域になる。

このように、原子間の引力相互作用強度を制御できるため、３次元フェルミ原子気体に

おいて、幅広い引力相互作用強度に対し、クーパー対形成に伴う超流動現象を系統的に

研究することが可能となっている [59, 65]。なお、ここでは 6Liフェルミ原子気体を例に

フェッシュバッハ共鳴を説明したが、フェッシュバッハ共鳴を利用してフェルミ原子気体

超流動の研究は 40Kフェルミ原子気体でも可能となっている [69, 70]。
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図 1.5 引力相互作用強度に対するフェルミ原子対 (クーパー対) の形成の様子。２種

類の丸 (赤、青)は異なる原子状態にある原子を表す。弱結合領域から強結合領域へと

引力相互作用が強くなるにつれ、クーパー対が重なり合った状態から分子ボゾンの気体

とみなせる領域に連続的に移り変わる。引力相互作用強度と２次元系の散乱長 a2D(式

(1.25))の関係も示している。ここで、kF はフェルミ波数。

1.2.3 フェッシュバッハ共鳴を利用した３次元フェルミ原子気体における

BCS-BECクロスオーバーの実現

光学トラップで捕獲された 40K３次元フェルミ原子気体、及び 6Li３次元フェルミ原子

気体において、BCS-BECクロスオーバー [46–53]が実現された [54–58]。これは超流動

において、クーパー対の構造が図 1.5のように連続的に変化するという現象である。実験

では、クーパー対の重心運動量 0に凝縮する粒子数 N0 を見積もるため、クーパー対の重

心運動量分布が測定されている。図 1.6 に示す 40K ３次元フェルミ原子気体の実現 [54]

では、N0 と全原子数 N との比 N0/N が有限になる領域を超流動状態としている。この

図では、底面の水色あたりが N0/N = 0と N0/N > 0の境目であり、超流動転移温度 Tc

と考えられる。また、この図の ∆B はフェッシュバッハ共鳴磁場から測った外部磁場で

あり、物理的には原子間相互作用の強さを表している。すなわち、∆B > 0 が弱結合領

域、∆B < 0が強結合領域に対応する。弱結合領域では、引力相互作用が弱くなるにつれ

(∆B が大きくなるにつれ)、図 1.6 の水色の領域が現れる温度 (すなわち Tc) が下がる。

これは、BCS理論で知られているような引力が弱くなると Tc が下がる状況が実現してい
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図 1.6 40K３次元フェルミ原子気体で観測された凝縮粒子数 N0 の温度、相互作用依

存性 [54]。N は全フェルミ原子数、TF はフェルミ温度、∆B はフェッシュバッハ共鳴

磁場 B0 = 202 G から測った外部磁場。∆B < 0 が強結合領域、∆B > 0 が弱結合

領域に相当する。この実験では N0 > 0 の領域が超流動相と判定されている、すなわ

ち底面の水色と青色の境界がこの実験における超流動転移温度 Tc である。[Reprinted

figure with permission from C. Regal, M. Greiner, and D. S. Jin, Phys. Rev.

Lett. 92, 040403 (2004). Copyright (2004) by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.92.040403.]

ると考えられる。他方、強結合領域では水色の領域が現れる温度は∆B に対し、ほぼ一定

となっている。この領域では、強い引力相互作用によりフェルミ原子全てが NB = N/2

個の分子ボゾンを形成、超流動転移温度 Tc はこの理想分子ボーズ気体の BEC転移温度

TBEC =
2πℏ2

kBζ
2
3 (3/2)

N
2
3

B

MV
2
3

≃ 0.218TF, (1.24)

で決まっている。ここで、TF はフェルミ温度、V は体積、M = 2mは分子ボゾンの質量

(mはフェルミ原子の質量)、ζ(x)はリーマンのゼータ関数である。実際図 1.6において、

∆B < 0での Tc (水色部分)は 0.17TF 程度であり、式 (1.24)の値に近い。

図 1.6 に示す 40K ３次元フェルミ原子気体の実験 [54]、及び、その直後に 6Li ３次元

フェルミ原子気体での BCS-BEC クロスオーバー現象の観測 [55] が行われた。その後、



14 第 1章 序論: 研究の背景と動機

図 1.7 回転させた 6Li フェルミ原子気体の凝縮相 (N0 > 0) で観測された量子

渦 [58]。この図はクーパー対の密度分布であり、明るい部分程高密度である。超流

動状態で現れる量子渦の欠陥が黒点のように現れている。[Reprinted by permission

from Macmillan Publishers Ltd: Nature, M. W. Zwierlein, J. R. Abo-Shaeer, A.

Schirotzek, C. H. Schunck, and W. Ketterle, 435, 1047 (2005), copyright (2005).

doi:10.1038/nature03858.]

実際に系が超流動状態になっていることを検証するため、超流動現象特有の量子渦の観測

が行われた [58]。Zwierleinらは 6Li３次元フェルミ原子気体において、N0/N が有限に

なっている状況 [55]で原子気体を回転させたところ図 1.7のように、弱結合領域から強結

合領域でクーパー対密度の空間分布に黒い丸状の量子渦を多数観測した [58]。同様の現象

は磁場中の第２種超伝導体 [71]や、回転させた超流動 4He [9]でも知られている。各渦は

そのまわりを超流動体が巡回しており、このような状態が安定に存在していることは散逸

のない流れ (超流動)が実現していることの傍証である。

1.3 6Li２次元フェルミ原子気体で報告された BKT転移及び

この系に対する BKT理論

Riesと Murthyらは、前節で述べた３次元フェルミ原子気体の実験技術を２次元系に

適用、6Li２次元極低温フェルミ原子気体において、３次元超流動現象 [54, 55]で見られ

たようなクーパー対の凝縮に加え、BKT転移の特徴的な振る舞いのクーパー対の冪相関

を観測し、BKT転移が実現したと主張している [29, 30]。しかし、報告されている BKT

転移の冪指数は、BKT 転移で予想されている冪指数 ηBKT = 0.25 (式 (1.13)) と桁が異

なっている。ここでは、これらの実験 [29,30]の詳細について述べる。
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図 1.8 6Li 2次元フェルミ原子気体での BKT転移の観測実験 [29]。横軸は相互作用

強度 ln (kFa2D)、黒破線は図 1.9 (c) のクーパー対の重心運動量 0 の分布の急増が始

まる温度から決定された BKT 転移温度 T exp
BKT、図に塗られた青 ∼ 赤は図 1.9 (a) で

決定されている低運動量のクーパー対の分子数 Nq を全フェルミ原子数 N で規格化し

たものである。白破線は２次元ボーズ原子気体に対するモンテカルロ計算で得られた

BKT 転移温度 [72, 73] をフェルミ原子気体に適用した結果 [74]。[Reprinted figure

with permission from M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher,

D. Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim, Phys. Rev.

Lett. 114, 230401 (2015). Copyright (2015) by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.114.230401.]

Ries と Murthy らにより報告された BKT 転移温度 T exp
BKT(図 1.8 中の黒破線) [29] は

３次元フェルミ超流動現象 [54, 55]の観測の時同様、クーパー対の重心運動量分布の温度

依存性から決定された。図 1.8の横軸は相互作用強度を表しており、ln (kFa2D) ≲ −1は

強結合領域、−1 ≲ ln (kFa2D) ≲ 1 はクロスオーバー領域、ln (kFa2D) ≳ 1は弱結合領域

に相当している。kF はフェルミ波数、a2D は２次元系の散乱長であり、３次元での s波

散乱長 a3D との関係は [75]

a2D = lz

√
π

A
exp

(
−
√

π

2

lz
a3D

)
. (1.25)

ここで lz は２次元フェルミ原子気体の z 方向の厚み (図 1.2 (b)参照)、また、A = 0.905

である [59, 75,76]。

図 1.8の実験 [29]における T exp
BKT の詳細は次の通りである：図 1.9 (a)はこの実験で観

測されたクーパー対の重心運動量分布で ñ(k)である (k は重心運動量)。このデータから

クーパー対以外の部分を古典的なボルツマン分布と仮定し除去 (図 1.9 (a)の点線及び実

線)し、図中灰色部分をクーパー対の数 Nq として評価している。図 1.9 (b)は Nq/N の
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図 1.9 (a) 6Li ２次元フェルミ原子気体におけるクーパー対の重心運動量分布 ñ(k)

[29]。相互作用は ln (kFa2D) ∼ −0.5、温度は実験で到達した最低温度。横軸はクー

パー対の重心運動量 k の２乗。実線は高運動量領域に対しボルツマン分布でフィッ

ティングした結果で、灰色部分はそのフィッティングの線と ñ(k) の差。(b) (a) の

灰色部分から評価されたクーパー対の数 Nq の温度依存性。フェルミ原子気体の全

粒子数 N で規格化している。(c) クーパー対の重心運動量分布 ñ(k) の重心運動

量 k = 0 の値 ñ0 の温度依存性。BKT 転移温度 T exp
BKT において 1 となるように密

度 n0 で規格化している。この実験では低温側の ñ0/n0 と高温側の ñ0/n0 を直線

フィッティングし、その直線の交点から T exp
BKT が決定されている。[Reprinted figure

with permission from M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher,

D. Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim, Phys. Rev.

Lett. 114, 230401 (2015). Copyright (2015) by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.114.230401.]

温度依存性である (N は全フェルミ原子数)。低温になるにつれクーパー対の数が増加し

ている。この相互作用依存性は図 1.8のカラープロットで表されている。RiesとMurthy
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図 1.10 6Li ２次元フェルミ原子気体におけるクーパー対の１次相関関数 g1(r) [30]。

横軸は対間距離 r。上図は ln (kFa2D) ≃ −0.5（強結合側）、下図は ln (kFa2D) ≃ 0.5（弱

結合側）の結果。温度 t = T/T trap
BEC は全粒子数 N が分子ボゾンを組んだと仮定した場

合のトラップされた２次元理想ボーズ原子気体の BEC転移温度 T trap
BEC ≈ 140 nKで規

格化された温度。実験 [29]で観測された BKT転移温度 T exp
BKT は、ln (kFa2D) ≃ −0.5

では t = 0.483、ln (kFa2D) ≃ 0.5 では t = 0.485 である。直線は 5 µm ≤ r ≤
25 µm で冪関数 Crr

−η でフィッティングした結果 (Cr は定数)。[Reprinted figure

with permission from P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D.

Kedar, M. Neidig, M. G. Ries, A. N. Wenz, G. Zürn, and S. Jochim, Phys. Rev.

Lett. 115, 010401 (2015). Copyright (2015) by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.115.010401.]

らはクーパー対の重心運動量 0の凝縮の根拠として、図 1.9 (a)中のクーパー対の重心運

動量分布 ñ0 ≡ ñ(k = 0) の温度依存性を提示している [29]。彼らは図 1.9 (c) のように

ñ0 が急増し始める温度をクーパー対の凝縮が始まる温度とみなし、BKT 転移温度 T exp
BKT

としている。

この実験を行った RiesとMurthyらは BKT転移の追加検証として、クーパー対の１

次相関関数 g1(r)の分析も行っている [30]。g1(r)は、観測されたクーパー対の重心運動
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図 1.11 6Li 2 次元フェルミ原子気体における T exp
BKT での g1(r) の冪指数 ηc の

相互作用依存性 [30]。破線は ηc ≃ 1.4。[Reprinted figure with permission from

P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar, M. Nei-

dig, M. G. Ries, A. N. Wenz, G. Zürn, and S. Jochim, Phys. Rev. Lett.

115, 010401 (2015). Copyright (2015) by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.115.010401.]

量分布 ñ(k)と次のような関係式でつながっている。

g1(r) =

∫
d2kñ(k)eik·r. (1.26)

図 1.10は RiesとMurthyらにより報告された g1(r)の振る舞いの測定結果である。横軸

r はクーパー対の対間距離、温度 tはトラップポテンシャルを考慮した場合の、２次元理

想ボーズ原子気体の BEC転移温度 T trap
BEC ≈ 140 nKで規格化した温度である。図 1.8に

示された BKT転移温度 T exp
BKT(黒破線)は、図 1.10の ln (kFa2D) = −0.5では t = 0.483、

ln (kFa2D) = 0.5 では t = 0.485 に対応しており、T exp
BKT 温度以下の g1(r) において、5

µm ≤ r ≤ 25 µm の対間領域で冪的振る舞いが見られると報告、これも “BKT転移特有

の冪的振る舞い” (式 (1.10))を観測したものであると主張している。

しかし、前述したように、T exp
BKT において観測された冪指数は弱結合領域から強結合領

域まで BKT理論で予想される冪指数 0.25と桁が異なっている。すなわち図 1.11は報告
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図 1.12 超流動秩序パラメータの位相揺らぎのみを考慮した理論で計算された BKT

転移温度 T th
BKT の相互作用依存性 [33–37]。6Li２次元フェルミ原子気体で観測された

T exp
BKT(破線) [29]も比較のため示している。

された BKT転移温度 T exp
BKT での冪指数であるが、弱結合領域から強結合領域まで、

ηexp(T
exp
BKT) ≃ 1.4, (1.27)

であり、BKT理論で予想される値 ηBKT = 0.25と大きく異なっている。BKT転移温度

における冪指数 0.25は、節 1.1で述べたように、励起子ポラリトン系 [14]の他に、薄膜

超伝導体 [15–18]など (In-In酸化物複合薄膜超伝導体 [16]では冪指数は 0.23)において

も観測されている (表 1.1参照)。また、２次元ボーズ原子気体でも BKT転移温度におい

て冪指数 0.25が得られている [77]。6Li２次元フェルミ原子気体の場合だけがなぜ BKT

転移温度で式 (1.27) のような大きな値となっているのかは未解決の問題であった。本研

究では、上述の実験結果 (ñ0 の増大と g1(r)の冪構造)が本当に BKT転移の証拠となる

のかについて理論的に研究する (２章)。

さらに、上述の 6Li２次元フェルミ原子気体で得られた BKT転移温度 T exp
BKT の相互作

用依存性は、この系に対し提案された BKT理論 [33–37]による予想 (T th
BKT)と定性的に

異なる振る舞いを示す。図 1.12に示すように、T exp
BKT は強結合側 (ln (kFa2D) < 0)から

弱結合側 (ln (kFa2D) > 0)へと引力相互作用が弱くなるにつれ高くなっているが、理論的

に予想された T th
BKT は弱結合領域で減少している。この不一致についても未解決のままで

あった。

ただし、T th
BKT を与える理論側にも課題がある。図 1.12に示した BKT転移温度 T th

BKT
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図 1.13 ３次元フェルミ原子気体の平均場 BCS 超流動状態における１粒子状態密

度 ρ(ω)。横軸はエネルギー ω、縦軸は自由フェルミ気体のフェルミ面での状態密度

ρ0 = mkF/(2π
2)で規格化している (mはフェルミ原子の質量、kF はフェルミ波数)。

図中の励起ギャップ端は ω = ±|∆0|にある (∆0 は超流動秩序パラメータ)。

を与える理論 [33–37]は、超流動秩序パラメータの振幅が BKT転移より高温ですでに十

分発達、その揺らぎはないとし、秩序パラメータの位相揺らぎのみが残っているという仮

定に基づいている (この理論の枠組みについては付録 Cにまとめてある)。しかし、現時

点でこの仮定は議論があり、特に振幅揺らぎが BKT転移近傍で本当に無視して良いか否

かは、２次元フェルミ原子気体超流動 (BKT転移)に対する強結合効果を理解する上で重

要な問題である。こうした状況のため、現時点で図 1.12に示した T exp
BKT と T th

BKT の相互

作用依存性の不一致の原因が実験にあるのか理論にあるのか (あるいは両方なのか)につ

いては明らかになっていない。

1.4 擬ギャップ現象と対形成揺らぎ

上述した BKT理論 [33–37]が前提としているような「超流動秩序パラメータの振幅が

BKT 転移温度以上ですでに十分発達し、BKT 転移近傍では秩序パラメータの振幅揺ら

ぎはない」状況が本当に実現しているのであれば、超流動秩序パラメータの大きさ (の２

倍)は (少なくとも弱結合領域では)クーパー対の結合エネルギーを意味することから、１

粒子励起を表す状態密度 ρ(ω)には図 1.13に示した超流動状態密度のような励起ギャップ

が BKT転移温度近傍の正常相で開くであろう。他方、もし、BKT転移温度近傍の正常
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図 1.14 ３次元フェルミ原子気体の正常相に対し計算された１粒子状態密度 [81]。

計算は２章で説明する対形成揺らぎを考慮した非自己無撞着 T 行列近似 (TMA) を

用いている。(a) 弱結合領域 (kFas)
−1 = −0.6 (as は３次元系での s 波散乱長)。

(b) 強結合領域 (kFas)
−1 = 0.6。図は見やすいように、各温度のデータに対しオフ

セットがかけられている。各線左端に見られる横線が y 軸の原点である。[Reprinted

figure with permission from S. Tsuchiya, R. Watanabe, and Y. Ohashi, Phys.

Rev. A 80, 033613 (2009). Copyright (2009) by the American Physical Society.

https://doi.org/10.1103/PhysRevA.80.033613.]

相において “秩序パラメータの振幅揺らぎ”が存在しているならば、このギャップ構造は

図 1.13のような明確なものではなくなるであろう。従って、BKT転移近傍の１粒子励起

を理解することは、現在の２次元フェルミ原子気体に対する BKT理論 [33–37]の妥当性

を検証する上で重要である。

原子間に働く引力相互作用が正常相の１粒子励起に与える影響は３次元フェルミ原子
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気体で近年精力的に研究が行われており [78–90]、BCS-BEC クロスオーバー領域にお

いて擬ギャップと呼ばれる現象が起きると期待されている。それは強い引力相互作用に

より、クーパー対の形成と解離で特徴づけられる対形成揺らぎが超流動転移近傍の正常

相で発達、図 1.13 程明確ではないもののフェルミ面近傍の状態密度にくぼみ構造 (擬

ギャップ) が現れる多体現象である。図 1.14 は２章で説明する非自己無撞着 T 行列近

似 (T -matrix approximation: TMA) とよばれる強結合理論を用い、３次元フェルミ原

子気体の BCS-BEC クロスオーバー領域で計算された１粒子状態密度 ρ(ω) [81] である

が、(a) の 1 ≤ T/Tc ≤ 1.14 (Tc は３次元フェルミ原子気体の超流動転移温度) におい

て、ω = 0近傍に擬ギャップ (くぼみ)が現れることが分かる。また、(a)より引力相互作

用が強い (b)では T/Tc = 1において超流動秩序パラメータは存在しないにも関わらず、

−1 ≤ ω/εF ≤ 1に大きなギャップが開いていることが見てとれる。TMAはクーパー対

形成の揺らぎを考慮しており、これらの図に見られる擬ギャップはまさにこの効果による

ものである。

図 1.14 に示した状態密度の温度変化を BCS-BEC クロスオーバー全領域で調べ、擬

ギャップ構造が現れ始める温度 (擬ギャップ温度) T ∗ を決定、この現象が現れる領域を特

定した結果が図 1.15である (この図を与える論文 [81]では１粒子スペクトル強度からも

別の擬ギャップ温度 T ∗∗ を決定しているが、ここではそれについて議論しない)。この図

において、T ∗ と超流動転移温度 Tc、及び、２体束縛状態形成の目安となる温度 T = 2|µ|
(µ < 0、µ は化学ポテンシャル) で囲まれた領域が擬ギャップ領域 (PG) である。また、

この領域の右側 (NB) は強い引力相互作用による２体束縛状態としての分子ボゾンが系

の性質を支配しており、そこでは１粒子励起に２体分子の結合エネルギー程度の大きな

ギャップが開いている。

現在、極低温フェルミ原子気体の状態密度 ρ(ω)を直接観測し、擬ギャップ構造の詳細

を知る実験手段は存在しないが、光電子分光 (photoemission spectroscopy)スペクトル

とよばれる、物性物理学における光電子分光に類似の手法を用い、ある程度の情報を得る

ことは可能である。この実験では、クーパー対形成に寄与する２つの原子状態 (擬スピン

σ =↑, ↓状態) の片方の原子状態を σ =↑, ↓いずれとも異なる “第３の状態 |3⟩”に光によ
り遷移させ、光のエネルギーとそれにより |3⟩へ遷移した原子数を測定することにより、
元のフェルミ原子気体の１粒子励起スペクトルに関する情報を得る。結果として得られる

情報は光電子分光スペクトル強度とよばれる量であり、次式で与えられる。

S(k, ES) = ⟨nF(ES)A(k, ES, r)⟩r . (1.28)

ここで、⟨· · · ⟩r はトラップ中心を原点とした r の空間平均を表し、ES は１粒子エネル

ギー、k は波数、nF(ε) = 1/(eε/T + 1)はフェルミ分布関数、A(k, ES, r)はトラップの

位置 r に依存した１粒子励起スペクトルである。ここで、１粒子スペクトル強度は位置 r
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図 1.15 ３次元フェルミ原子気体における相図 [81]。縦軸はフェルミエネルギー εF

で規格化された温度、横軸は引力相互作用強度を表す。Tc は非自己無撞着 T 行列近

似で決定された超流動転移温度、T ∗ は１粒子状態密度にくぼみ構造が現れ始める擬

ギャップ温度、T ∗∗ は１粒子励起スペクトルに擬ギャップ構造が現れる温度、BCS

は対形成揺らぎを考慮していない平均場近似の超流動転移温度である。強結合領域で

は、１粒子状態密度に開く擬ギャップサイズが 2|µ| = Ebind となるため (µ は化学

ポテンシャル、Ebind は２体の束縛エネルギー)、強く結合した分子ボゾンが熱解離

する温度は T ≥ 2|µ| となる。これを用い、強結合領域で形成される分子ボゾンが熱
解離する温度の目安として T = 2|µ| の線が引かれている (µ < 0)。図中の Normal

Fermi gas (NF) は擬ギャップ現象が現れない常流動相のフェルミ原子気体を表す。

Pseudogap (PG) は T ∗(または T ∗∗) と T = 2|µ|、Tc に挟まれた擬ギャップ領域。

Normal Bose gas (NB) は T ≤ 2|µ| と Tc に挟まれた領域で２体束縛状態としての

分子ボゾンの気体として考えられる領域。Superfluid (SF) は超流動相。[Reprinted

figure with permission from S. Tsuchiya, R. Watanabe, and Y. Ohashi, Phys.

Rev. A 80, 033613 (2009). Copyright (2009) by the American Physical Society.

https://doi.org/10.1103/PhysRevA.80.033613.]

における局所状態密度と次のように関係している。

ρ(ES, r) =
∑
k

A(k, ES, r). (1.29)

図 1.16 aは 40K３次元フェルミ原子気体の超流動状態で観測された光電子分光スペク

トル S(k, ES)である。BCS理論によると、超流動状態での１粒子励起は

Ek = ±

√(
k2

2m
− µ

)2

+ |∆0|2, (1.30)
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図 1.16 40K ３次元フェルミ原子気体で観測された光電子分光型実験の光電子分光

スペクトル S(k, ES) [79]。縦軸は１粒子励起エネルギー ES、横軸はフェルミ原子

の波数 k である。縦軸はフェルミエネルギー EF で規格化している。a は超流動相

T = 0.76Tc (Tc はこの系の超流動転移温度)、bは常流動相 T = 1.24Tc。原子間相互

作用強度は (kFas)
−1 = 0.15。黒線は自由フェルミ原子気体の分散。白点はスペクト

ルのピーク位置である。図 a中の白線はボゴリューボフ分散 (式 (1.30))でフィッティ

ングした結果。[Reprinted by permission from Macmillan Publishers Ltd: Nature

Physics, J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P. Pieri,

and G. C. Strinati, 6, 569 (2010), copyright (2010). doi:10.1038/nphys1709.]

という分散を有するボゴリューボフ準粒子励起で表される。また、∆0 は超流動秩序パラ

メータである (負の分散は正孔の励起を表し、粒子描像ではこの分散は T = 0において、

ボゴロンと呼ばれる準粒子により完全に占有されていると解釈する)。このうち、負の分

散 (Ek = −
√(

k2

2m − µ
)2

+ |∆0|2, (µ > 0))がスペクトル中にピーク構造として現れてい

る (図 1.16中の白丸)。

この実験 [79]で重要なことは同様のピーク構造が図 1.16 bに示すように T > Tc の常

流動相でも観測されている、という点である。これはこの領域でも秩序パラメータ ∆0 の

ような “何か”が存在し、１粒子励起スペクトルが式 (1.30)のようになっていることを示

唆している。

もし T > Tc の１粒子励起スペクトルが BCS 状態同様に式 (1.30) で与えられるので

あれば、状態密度は T > Tc であっても、図 1.13のように完全なギャップが開くはずで

ある。これは上述した２次元フェルミ原子気体に対する BKT 理論 [33–37] が仮定して

いる状況である。しかし、少なくとも３次元フェルミ原子気体の弱結合側では、図 1.14
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図 1.17 ３次元フェルミ原子気体における１粒子スペクトル強度 (ε−1
F で規格化

している) [81]。(a) 弱結合領域 (kFas)
−1 = −0.6。(b) 強結合領域 (kFas)

−1 =

0.6。それぞれ図 1.14 (a)、(b) の Tc に対応している。[Reprinted figure with

permission from S. Tsuchiya, R. Watanabe, and Y. Ohashi, Phys. Rev.

A 80, 033613 (2009). Copyright (2009) by the American Physical Society.

https://doi.org/10.1103/PhysRevA.80.033613.]

(a) に示したように完全なギャップは Tc 直上でも得られない。この点を理解するために

式 (1.30)が次の方程式の解として得られることに注意する。[
ω−

[
k2

2m
− µ

]] [
ω+

[
k2

2m
− µ

]]
= |∆0|2. (1.31)

これは BCS状態における１粒子励起ギャップの起源として「粒子分散 ω = k2/(2m)− µ

と正孔分散 ω = −(k2/(2m)− µ)が µ > 0の場合 |∆0|2 により ω = 0で結合、準位反発

とバンドの再構成が起こった結果ギャップが生じる」とも解釈できることを示している。

この解釈を用いると、図 1.14 (a)の Tc に対応する１粒子スペクトル強度は図 1.17 (a)に

示すように確かに (秩序パラメータは 0であるにも関わらず)粒子・正孔分散が ω = 0 で
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結合している。しかし、それぞれの分散は粒子間相互作用の影響で δ 関数的ピークではな

く、幅を持っており、このぼやけの結果、ω = 0でのギャップ構造もぼやけてしまうと考

えられる。

他方強結合領域では、２体束縛状態の形状を反映し、化学ポテンシャルは負となる。こ

の時粒子分散 ω = (k2/(2m) + |µ|)と正孔分散 ω = −(k2/(2m) + |µ|)はもはや ω = 0で

交錯せず、両者には∆0 = 0であっても 2|µ|のギャップが存在する。実際、BCS-Leggett
理論 [47]で示されているように、強結合極限において 2|µ|は２体分子の束縛エネルギー
に等しくなる。図 1.17 (b)に示すように、図 1.14 (b)の場合 ((kFas)

−1 = 0.6)の Tc で

はこうした “分かれた分散”が ω > 0、ω < 0にそれぞれ存在し、これが図 1.14 (b)の Tc

における大きなギャップ構造を与えることになる。

以上のように、３次元フェルミ原子気体においても正常相近傍でどのような擬ギャップ

構造が現れるかは引力相互作用の強さに依存しており、前述した２次元フェルミ原子気体

における BKT理論が仮定する状況が実現するか否かは、対形成揺らぎが一般に低次元性

で増大するとしても自明な問題ではない。

1.5 2次元フェルミ原子気体における熱力学量の観測

本論文では、３章において、擬ギャップ現象の観点から２次元フェルミ原子気体の BKT

転移近傍における「超流動秩序パラメータの振幅揺らぎの重要性」を理論的に研究する。

この際、「振幅揺らぎ」と「位相揺らぎ」の両方の効果を含む「対形成揺らぎ」を自己無撞

着 T 行列近似 (Self-consistent T -matrix approximation: SCTMA)で扱うが、現状、こ

の系の状態密度を直接観測する手段がないので、SCTMA の計算結果を実験的に検証す

ることができない。また、BKT転移が報告された実験状況での光電子分光スペクトルの

実験もまだ行われていない。そこで本論文では、最近２次元フェルミ原子気体で観測可能

となった熱力学量をこの理論の枠組みで計算、実験データとの比較から間接的ではあるも

のの SCTMAの妥当性について検証する。本節では、比較を行う熱力学量についての実

験結果をまとめておく。

図 1.18は 40K２次元フェルミ原子気体で観測された Tan’s contact C [91–93] (定義は

後述の式 (1.32))である [24]。この物理量は３章で述べるように、対形成揺らぎの効果を

強く受ける。図中の “Luttinger-Ward”は３章で用いる SCTMAによる結果 [41]で、実

験結果とよく一致していることが分かる。

図 1.19、図 1.20は 6Li２次元フェルミ原子気体で観測された、ヘルムホルツの自由エ

ネルギー F、内部エネルギー U (ただし、本論文では２章以降にこの量は E と表す)、圧

力 P、及び化学ポテンシャル µ、エントロピー S である [31, 32]。これらの一連の実験で

はまず、P (図 1.19 (c))、化学ポテンシャル µ (図 1.20 (a))を測定、次にヘルムホルツの
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図 1.18 40K ２次元フェルミ原子気体の T = 0.27TF における Tan’s contact C (エ

ラーバーつきの丸) [24]。横軸は引力相互作用強度の逆数 x = 1/ ln (kFa2D)、縦軸は

Tan’s contact C を k4
F で規格化している。実線は Luttinger-Ward の手法が適用可

能な自己無撞着 T 行列近似 (SCTMA) [41]。２点鎖線は弱結合極限の T = 0 の結

果 (C/k4
F = [x2 − (3/2 − 2 ln 2)x3]/4)。水色の破線は T = 0 の量子モンテカルロ計

算の結果 [38]。[Reprinted figure with permission from M. Bauer, M. M. Parish,

and T. Enss, Phys. Rev. Lett. 112, 135302 (2014). Copyright (2014) by the

American Physical Society. https://doi.org/10.1103/PhysRevLett.112.135302.]

自由エネルギー F = µN −PV (N は全粒子数、V はシステムサイズ)を図 1.19 (a)のよ

うに決定し、Tanの関係式 [93]

C = 2πm
∂F

∂ ln a2D

∣∣∣∣
T,N

, (1.32)

から Tan’s contact C を得ている。さらに、Tanの圧力関係式 [92, 94–96]

PV = U +
ℏ2C
4πm

, (1.33)

と熱力学関係式 (Ωは熱力学ポテンシャル)

Ω = −PV = U − TS − µN, (1.34)

から U (図 1.19 (b)) と S (図 1.20 (b)) を得ている。これらの熱力学量のうち、圧力 P

については、既に SCTMAによる理論研究が行われており [42]、図 1.21 (a)∼(c)に示す

ように実験結果とのよい一致を得ている。本論文では、C や P だけでなく、U、S、µに

ついても計算、実験との比較を行う。
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図 1.19 6Li ２次元フェルミ原子気体で観測された熱力学量の温度、相互作用依存

性 [31]。(a)、(b) の赤、青、緑、紫は βEb = 0.005, 0.06, 0.26, 0.47 の結果。Eb =

ℏ2/(ma2
2D) は２体分子の束縛エネルギーで、β = 1/(kBT ) である。(a) ヘルムホル

ツの自由エネルギー F。全粒子数 N とフェルミエネルギー EF の積 NEF で規格化

している。各色の破線は各 βEb に対しビリアル展開を用いた結果。挿入図は低温領域

の F。黒い破線はフェルミ原子気体の F。(b) 内部エネルギー U の結果。黒線は自由

フェルミ原子気体の内部エネルギー。各色の破線は各 βEb に対しビリアル展開を用

いた結果。(c) 圧力 P の実験結果。カラーバー p̃ は、図中の点の値を色で表した圧力

の値であり、自由フェルミ原子気体の絶対零度の圧力 P0 = NEF/2 で規格化してい

る。曲線は観測した相互作用強度を表している。灰色の丸は各 βEb における原子密度

のピーク位置の温度と相互作用強度を表す。[Reprinted figure with permission from

K. Fenech, P. Dyke, T. Peppler, M. G. Lingham, S. Hoinka, H. Hu, and C. J.

Vale, Phys. Rev. Lett. 116, 045302 (2016). Copyright (2016) by the American

Physical Society. https://doi.org/10.1103/PhysRevLett.116.045302.]
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図 1.20 6Li ２次元フェルミ原子気体で観測された熱力学量の温度、相互作用

依存性 [32]。(a)、(b) の赤、青、緑、紫は βEb = 0.005, 0.06, 0.26, 0.47 の結果。

Eb = ℏ2/(ma2
2D) は２体分子の束縛エネルギーで、β = 1/(kBT ) である。(a)

化学ポテンシャル µ。各色の破線は各 βEb に対しビリアル展開を用いた結果。

黒線は自由フェルミ原子気体の化学ポテンシャル。(b) エントロピー S。各色の

破線は各 βEb に対しビリアル展開を用いた結果。黒線は自由フェルミ原子気体

のエントロピー。[Reprinted figure with permission from K. Fenech, P. Dyke,

T. Peppler, M. G. Lingham, S. Hoinka, H. Hu, and C. J. Vale, Phys. Rev.

Lett. 116, 045302 (2016). Copyright (2016) by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.116.045302.]

1.6 本論文の目的と構成

本論文では、可変な引力相互作用を有する２次元極低温フェルミ原子気体において、

対形成揺らぎを考慮した強結合理論を用い、近年、実験理論ともに注目を集めている

Berezinskii-Kosterlitz-Thouless(BKT) 転移温度近傍で対形成揺らぎの重要性を弱結合

領域から強結合領域まで明らかにする。
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図 1.21 6Li２次元フェルミ原子気体で観測された圧力 P [31]と自己無撞着 T 行列近

似 (SCTMA)での計算結果の比較 [42]。黒、赤、紫、青は βεB = 0.47, 0.26, 0.06, 0.0045

の結果。εB = ℏ2/(ma2
2D) は分子２体の束縛エネルギーで、紫、緑、青、赤の点は観

測データ。P0 は各温度、各化学ポテンシャルにおける自由フェルミ原子気体の圧力。

(a) βεB = 0.47, 0.26, 0.06, 0.0045 の圧力の理論と実験の比較。(b) βεB = 0.47 の

各種理論との比較：黒線は自己無撞着 T 行列近似、青の点線は Nozières-Schmitt-

Rink (NSR)理論 [42, 97]、赤の破線は強結合理論 (GG0 理論) [42]。紫の点は実験結

果。(c) βεB = 0.06の各種理論との比較。理論は (b)と同じ線種、青の点は実験結果。

[Reprinted figure with permission from B. C. Mulkerin, K. Fenech, P. Dyke, C. J.

Vale, X.-J. Liu, and H. Hu, Phys. Rev. A 92, 063636 (2015). Copyright (2015) by

the American Physical Society. https://doi.org/10.1103/PhysRevA.92.063636.]

２章では、６Li２次元フェルミ原子気体で近年報告された BKT転移の実験結果と対形

成揺らぎを非自己無撞着 T 行列近似 (TMA)の枠組みで扱い研究する。この実験では、次

の２点から BKT転移を観測したという報告をしている：

(1)重心運動量 0のクーパー対の数のある温度 T exp
BKT 以下での急増 (この急増を BKT転

移に伴うクーパー対の凝縮とみなしている)。

(2)この T exp
BKT 温度近傍でクーパー対の１次相関関数に BKT転移に特徴的な冪的振る舞
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いを観測。

本論文では、これらの実験結果が、いずれも常流動相の対形成揺らぎの効果のみ考慮すれ

ば BKT転移を仮定せずとも理論的に説明できることを示す。それに基づき、現在の観測

結果だけでは BKT転移の実験的根拠として不十分であることを指摘する。

３章では、擬ギャップ現象を幅広い相互作用領域で研究し、２次元フェルミ原子気体に

対する従来の BKT理論では考慮されていない対形成揺らぎの重要性を明らかにする。自

己無撞着 T 行列近似 (SCTMA)を用い、状態密度に現れる擬ギャップの温度変化を幅広

い相互作用領域で研究、その結果から擬ギャップ現象が現れる領域 (擬ギャップ領域)を

２次元フェルミ原子気体の温度と相互作用を軸とした相図中で明らかにする。さらに、対

形成揺らぎのうち超流動秩序パラメータの位相揺らぎのみを考慮し振幅揺らぎは無視して

いる従来の BKT理論で得られる BKT転移温度 T th
BKT 近傍において、弱結合領域では状

態密度に完全なギャップは開かないことを示す。この結果から、少なくとも弱結合領域で

は、位相揺らぎだけでなく、振幅揺らぎも加えた “対形成揺らぎ”を BKT転移近傍で考

える必要があることを指摘する。最後に、ここで用いた SCTMAの妥当性を検証するた

め、近年観測された熱力学量を SCTMAの枠組みで計算、実験結果と定量的比較を行う。

本論文に用いる非自己無撞着 T 行列近似 (TMA) [81] と自己無撞着 T 行列近似

(SCTMA) [49] の違いについて述べておく。２章で説明する相互作用の影響を受けたグ

リーン関数を計算する際に、TMA は相互作用の影響がない自由フェルミ原子気体のグ

リーン関数で決定し、SCTMAは相互作用の影響を受けたグリーン関数を用い決定する。

TMAは T 行列近似と記述されることがあるが、フェルミ原子気体の理論研究において、

SCTMAとの違いから TMAは “非自己無撞着”T 行列近似と記述されることもある。本

論文においても SCTMAとの違いを明確にするため、TMAを非自己無撞着 T 行列近似

と記述する。

本論文では、ℏ = kB = 1とし、系のサイズ V = 1とする。なお、本論文の数値計算の

環境は付録 D参照。
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第 2章

クーパー対の重心運動量分布 nQの
解析と BKT転移観測実験との比較

6Li２次元フェルミ原子気体で近年報告された Berezinskii-Kosterlitz-Thouless (BKT)

転移温度 T exp
BKT は、(1) クーパー対の重心運動量 Q = 0の nQ=0 が T exp

BKT 以下で急増す

ること、及び、(2) nQ をフーリエ変換することで得られる１次相関関数 g1(r)が冪相関を

示す領域を観測することで決定された。本章では、常流動相の対形成揺らぎを考慮した非

自己無撞着 T 行列近似 (T -matrix approximation: TMA)を用い、クーパー対の重心運

動量分布 nQ を理論的に解析、実験結果との比較を行う。そして、この実験で観測された

(1)、(2)が必ずしも BKT転移特有の現象ではなく、常流動相で発達した対形成揺らぎの

効果としても説明できることを示す。

2.1節では、本章で用いる非自己無撞着 T 行列近似 (TMA)について説明する。2.2節

では、クーパー対の重心運動量分布 nQ と相関関数を導出する。2.3節では、計算で得ら

れた nQ=0 の温度依存性を 6Li２次元フェルミ原子気体で得られた実験結果と比較する。

2.4節では、nQ からクーパー対の相関関数 g1(r)を導き、実験で測定された冪指数の温度

依存性と比較する。

2.1 非自己無撞着 T 行列近似 (TMA)

ここでは、s波の接触型引力相互作用が働く、2成分 2次元一様フェルミ原子気体の常

流動相を考える。ハミルトニアンは、

H =
∑
p,σ

ξpc
†
p,σcp,σ − U

∑
p,p′,Q

c†p+Q/2,↑c
†
−p+Q/2,↓c−p′+Q/2,↓cp′+Q/2,↑. (2.1)

ここで、c†p,σ, cp,σ はフェルミ原子の生成・消滅演算子、p = (px, py)は２次元運動量、そ

して擬スピン σ =↑, ↓は対形成に関わる２種類の原子状態を表す。ξp = εp − µは、質量
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mを持ったフェルミ原子の運動エネルギー εp = p2/(2m)をフェルミ原子の化学ポテン

シャル µから測ったものである。式 (2.1)中の −U(< 0)は擬スピン ↑、↓間に働く引力
相互作用を表し、フェッシュバッハ共鳴により可変であるとする。相互作用の結合定数 U

は実験で観測可能な２次元散乱長 a2D と

1

U
=

m

2π
ln (kFa2D) +

∑
|p|≥kF

m

p2
, (2.2)

のように関係している [98]。ただし、kF =
√
2πN はフェルミ波数であり、N はフェル

ミ原子の粒子数である。この散乱長 a2D を用いる場合、ln (kFa2D) ≲ −1は強結合領域、

ln (kFa2D) ≳ 1は弱結合領域を表す。両者の間、−1 ≲ ln (kFa2D) ≲ 1はクロスオーバー

領域である。

ここでは、引力相互作用 −U に起因する対形成揺らぎの効果を、３次元系における

BCS-BECクロスオーバー現象をよく記述することが知られている [81] 非自己無撞着 T

行列近似 (TMA)の枠組みで扱う。これを説明するために以下のフェルミ原子の１粒子温

度グリーン関数を導入する。

Gσ(p, τ) = −
⟨
Tτ

[
cp,σ(τ)c

†
p,σ(0)

]⟩
. (2.3)

式 (2.3)において、

⟨Â⟩ = 1

Z
Tr

[
e−βHÂ

]
, (2.4)

は演算子 Âの統計平均であり、Tτ は虚時間 τ に対する時間順序積、β = 1/T (T は温度)

である。また、
cp,σ(τ) = eHτ cp,σe

−Hτ , (2.5)

である。式 (2.3)を次のように、τ に関してフーリエ変換する。

Gσ(p, iωn) =

∫ β

0

dτGσ(p, τ)e
iωnτ . (2.6)

ここで、ωn = πT (2n + 1) (n = 0,±1,±2, · · · ) はフェルミオンの松原周波数である。
TMAは

G(p, iωn) =
1

iωn − ξp − ΣTMA(p, iωn)
, (2.7)

のように G(p, iωn)中に現れる自己エネルギー ΣTMA(p, iωn)で特徴付けられる (σ 依存

性は現れないため、以降 σは省略する)。具体的には、図 2.1 (a)で与えられるファインマ

ンダイアグラムで表現され、表式としては

ΣTMA(p, iωn) = T
∑

Q,iνm

Γ0(Q, iνm)G0(Q− p, iνm − iωn), (2.8)
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図 2.1 非自己無撞着 T 行列近似 (TMA)における (a)自己エネルギー ΣTMA(p, iωn)

(式 (2.8))と、(b)対形成揺らぎを表す多体散乱行列 Γ0(Q, iνm) (式 (2.10))のファイ

ンマンダイアグラム。−U (< 0)は接触型の引力相互作用、G0 は式 (2.9)で与えられ

る自由フェルミ原子気体における１粒子温度グリーン関数。相互作用は σ =↑ と ↓ の
原子間にのみ働くため、(b) の上下の G0 線の擬スピンは逆向きである。(c) 対の形成

と解離で特徴付けられる対形成揺らぎの模式図。赤、青色の球はそれぞれ異なる原子状

態 (擬スピン σ =↑, ↓)のフェルミ原子を表す。

となる。ここで、

G0(p, iωn) =
1

iωn − ξp
, (2.9)

は自由フェルミ原子気体における１粒子温度グリーン関数であり、νm = 2πm (m =

0,±1,±2, · · · )はボゾン松原周波数である。Γ0(Q, iνm) (図 2.1 (b))は対形成揺らぎ (図



36 第 2章 クーパー対の重心運動量分布 nQ の解析と BKT転移観測実験との比較

2.1 (c))を表す多体散乱行列であり、図 2.1 (b) の和をとると、

Γ0(Q, iνm) = −U − U2Π0(Q, iνm)− U3Π2
0(Q, iνm)− · · ·

= −U + UΠ0(Q, iνm)Γ0(Q, iνm)

=
−U

1− UΠ0(Q, iνm)
. (2.10)

式 (2.10)において、

Π0(Q, iνm) = T
∑
p,iωn

G0(p+Q/2, iωn + iνm)G0(−p+Q/2,−iωn)

=−
∑
p

1− nF(ξp+Q/2)− nF(ξ−p+Q/2)

iνm − ξp+Q/2 − ξ−p+Q/2
, (2.11)

は最低次の対相関関数であり、

nF(ε) =
1

eβε + 1
(2.12)

はフェルミ分布関数である。

粒子数方程式は 1粒子グリーン関数から

N = 2T
∑
p,iωn

G(p, iωn)e
iωnδ, (2.13)

のように計算される (δ は無限小の正の定数)。係数 2 は擬スピン (σ =↑, ↓) に対応する。
この粒子数方程式から化学ポテンシャル µを決定する。

図 2.2 は TMA で計算された弱結合領域 (ln (kFa2D) ≳ 1) から強結合領域

(ln (kFa2D) ≲ −1) までのフェルミ原子の化学ポテンシャル µ の温度依存性の結果であ

る。本論文では、この結果を用い、次節で説明するクーパー対の重心運動量分布や１次相

関関数を計算する。

ここで、２次元一様系において、上で説明した TMAは超流動転移を記述できないこと

を述べる。３次元系では、超流動転移温度 Tc は Thoulessの判定条件 [99]

Γ−1
0 (Q = 0, iνm = 0) = 1− UΠ0(Q = 0, iνm = 0) = 0, (2.14)

で決定することができる。式 (2.14)は TMAでは

1 = U
∑
p

1

2ξp
tanh

(
ξp
2T

)
(2.15)

となるが、これは平均場 BCS理論におけるギャップ方程式 [33–37,75,100]

1 = U
∑
p

1

2
√
ξ2p +∆2

tanh


√

ξ2p +∆2

2T

 (2.16)
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図 2.2 TMAで計算された化学ポテンシャル µの温度、相互作用依存性。相互作用は

ln (kFa2D) で測っている。TF、εF はそれぞれフェルミ温度、フェルミエネルギーで

ある。

で ∆ = 0としたものと同じである。３次元フェルミ原子気体ではギャップ方程式 (2.15)

と粒子数方程式 (2.13)を自己無撞着に解き、超流動転移温度 Tc と µを決定する [81]。し

かし、２次元系では、もし式 (2.14)の Thouless判定条件が満たされると、Q = 0近傍で

Γ0(Q, iνm = 0) ≃ 2

(
∂2Π0(Q, 0)

∂Q2

)−1

Q≡0

1

Q2
=

γ

Q2
, (2.17)

となるが、このとき TMAの自己エネルギー式 (2.8)は

ΣTMA(p, iωn) =T
∑
Q

Γ0(Q, 0)G0(Q− p,−iωn)

+ T
∑

Q,iνm ̸=0

Γ0(Q, iνm)G0(Q− p, iνm − iωn)

≃TγG0(−p,−iωn)
∑
Q

1

Q2

+ T
∑

Q,iνm ̸=0

Γ0(Q, iνm)G0(Q− p, iνm − iωn), (2.18)

となるため、
∑

Q 1/Q2 の部分が２次元系であるため赤外発散してしまう (３次元系の場

合はこの和は赤外発散を含まない)。これは２次元系において、ギャップ方程式 (2.15) (ま

たは Thouless判定条件)と粒子数方程式 (2.13)とを同時に満たすことができないことを

意味している。Mermin-Wagner-Hohenbergの定理 [6,7]において厳密に示されているよ
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うに、２次元系では長距離秩序を有する (BCS型の)超流動状態は実現しないが、上述の

結果はこれを TMAの範囲で示したことに相当する。

現在、準長距離秩序である BKT転移を記述するように TMAを改良する方法は存在し

ない。本研究でもこの点を考慮し、以下では常流動相のみを扱い、そこでのクーパー対形

成を議論する。

2.2 クーパー対の重心運動量分布と１次相関関数

ここでは 6Li２次元フェルミ原子気体で最近観測されたクーパー対の重心運動量分布、

及び、それをフーリエ変換して得られる１次相関関数 [29, 30]を理論的にどのように扱う

か、を説明する。前節で説明した TMAにおいて、粒子数方程式 (2.13)をN = N0 + δN

のように、自由フェルミ原子気体の寄与 N0 と対形成揺らぎの寄与 δN に分ける。ここで

N0 は自由粒子のグリーン関数を用い、

N0 = 2T
∑
p,iωn

G0(p, iωn)e
iωnδ = 2

∑
p

nF(ξp), (2.19)

と計算される (nF(ξp)はフェルミ分布関数)。他方、対形成揺らぎの補正項 δN は

δN = 2T
∑
p,iωn

[G(p, iωn)−G0(p, iωn)]

= 2T
∑
p,iωn

ΣTMA(p, iωn)G(p, iωn)G0(p, iωn), (2.20)

となるが、式 (2.8)で与えられる TMAの自己エネルギーの表式を代入して、

δN = 2T
∑

Q,iνm

Γ0(Q, iνm)×T
∑
p,iωn

G0(Q−p, iνm− iωn)G0(p, iωn)G(p, iωn). (2.21)

対形成揺らぎの項 δN を単純に “分子ボゾンになったフェルミ原子の寄与” とみなすと、

δN/2はそのように単純化された分子数を与える。このことに留意し、

δN

2
=

∑
Q

nQ, (2.22)

とおいて、クーパー対の重心運動量分布 nQ を定義する。式 (2.21)より、nQ は TMAの

範囲で

nQ = T
∑
iνm

Γ0(Q, iνm)× T
∑
p,iωn

G0(Q− p, iνm − iωn)G0(p, iωn)G(p, iωn), (2.23)

となる。
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図 2.3 非自己無撞着 T 行列近似 (TMA)での化学ポテンシャル µの相互作用依存性。

T = 0.2TF とおいている (TF はフェルミ温度)。この図において相互作用は ln(kFa2D)

で測られており、図の左側が引力が強い強結合側 (ln(kFa2D) ≲ 0)、右側が弱結合側

(ln(kFa2D) ≳ 0)に対応する。εF はフェルミエネルギー。

式 (2.22)で定義された nQ が実際に引力相互作用が強い強結合側 (ln(kFa2D) ≲ 0)で、

“クーパー対の重心運動量分布”という描写を与えることを述べる。式 (2.23)中に現れる

多体散行列 Γ0(Q, iνm)のスペクトル表示

Γ0(Q, iνm) = − 1

π

∫ ∞

−∞
dz

1

iνm − z
ImΓ0(iνm → z + iδ), (2.24)

を用いて、nQ を

nQ =− T
∑
iνm

∫ ∞

−∞

dz

π

ImΓ0(Q, iνm → z + iδ)

iνm − z

× T
∑
p,iωn

G0(Q− p, iνm − iωn)G0(p, iωn)G(p, iωn), (2.25)
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と書く。松原周波数 νm の和を実行すると、

nQ =

∫ ∞

−∞

dz

π
ImΓ0(Q, iνm → z + iδ)

× T
∑
p,iωn

G0(Q− p, z − iωn)G0(p, iωn)G(p, iωn)nB(z)

−
∫ ∞

−∞

dz

π
T

∑
p,iωn

ImΓ0(Q, iνm → z + iδ)

iωn + ξQ−p − z
G0(p, iωn)G(p, iωn)nF(ξQ−p).

(2.26)

ここで、

nB(z) =
1

eβz − 1
, (2.27)

はボーズ分布関数、また nF(ξQ−p)は式 (2.12)で与えられるフェルミ分布関数である。

図 2.3 に示すように強結合側 (ln(kFa2D) ≲ 0) では µ < 0 となり、その極限では

µ/εF ≪ −1となることから、この領域ではフェルミ分布関数 nF(ξQ−p)を含む式 (2.26)

２項目は重要ではなくなる。そこで１項目のみを残すと付録 E で示すように、強結合領

域で多体散乱行列 Γ0(Q, iνm)がボゾンのグリーン関数の形、

Γ0(Q, iνm) = −8πµ

m

1

iνm − Q2

2M + µB

, (2.28)

に近似できることから、nQ は質量M = 2m、化学ポテンシャル

µB = −2|µ| ln
(

2|µ|
Ebind

)
(< 0), (2.29)

の分子ボゾンの運動量分布

nQ = ZnB

(
Q2

2M
− µB

)
, (2.30)

に帰着する (式 (2.30)において、(Q2/(2M) − µB)はボーズ分布関数の引数である)。な

お、式 (2.29)において、

Ebind =
1

ma22D
, (2.31)

は分子ボゾンの結合エネルギーであり、式 (2.30)の導出は付録 F.1 及び Gにまとめてあ

る。式 (2.30)中の Z (> 0)はくり込み因子

Z =
|µ|

|µ|+ εF
, (2.32)

である。強結合極限 ln (kFa2D) ≪ −1では、

µ

εF
≃ −Ebind

2εF
=

−1

(kFa2D)2
≪ −1, (2.33)
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より、Z → 1となる。この極限で式 (2.30)は

nQ −−−−−−→
Ebind→∞

nB

(
Q2

2M
− µB

)
(µB < 0), (2.34)

に帰着する。

上述の議論は µ < 0 で式 (2.26) の２項目の寄与が１項目に比べて無視できる強結合

側 (ln (kFa2D) ≲ 0) で有効であるが、µ ∼ 0 (または µ/εF ≳ −1) のような弱結合側

(ln (kFa2D) ≳ 0)では２項目の寄与が無視できないため、nQ にクーパー対を形成してい

ないフェルミ原子の性質が現れる。そこで本論文では、nQ をクーパー対の重心運動量分

布とみなせる強結合側 (ln (kFa2D) ≲ 0)に限って議論することにする。

図 2.4 は強結合側 (ln (kFa2D) ≲ 0) におけるクーパー対の重心運動量分布 nQ の Q

(重心運動量) 依存性をいくつかの温度に対しプロットしたものである。中間結合領域

(−1 < ln (kFa2D) = −0.59 < 0) でも T/TF ≲ 0.5では式 (2.23)で定義された nQ はボー

ズ分布関数による近似式 (2.30)でよく表されることが分かる (図 2.4 (a1)、(a2))。また、

強結合領域 (図 2.4 (b1)∼(b3)) では、T/TF = 1 でも nQ はボーズ分布関数でよく表さ

れ、これらの温度-相互作用領域では系の性質が分子ボーズ気体の性質に近いことを示し

ている。6Li２次元フェルミ原子気体における BKT転移は T/TF ≲ 0.2で観測されてい

るので、図 2.4で考えている相互作用領域では nQ を実験で観測している “クーパー対の

重心運動量分布”と比較できる量と見なすことができる。

図 2.5 (a)は式 (2.30)に現れているくり込み因子 Z の温度依存性である。ln (kFa2D) =

−0.59の場合、図 2.4 (a1)∼(a3)は確かに T/TF ≲ 0.5の低温領域であれば nQ の Q依存

性はボーズ分布関数で与えられることを示しているが、図 2.5 (a)に示すように、このと

きの Z ≃ 0.77 < 1はこの相互作用領域ではまだ “完全な理想ボーズ原子気体”にはなっ

ておらず、フェルミ原子間相互作用による多体効果が、くり込み因子が 1からずれるとい

う形でクーパー対の重心運動量分布 nQ に影響を及ぼしていることを示している。この相

互作用効果は式 (2.30)中に現れている “分子ボゾンの化学ポテンシャル µB”が N/2個の

理想分子ボーズ気体のそれとは、ln (kFa2D) = −0.59 の場合は完全に一致しないことか

らも見てとれる (図 2.6参照)。

これに対し、ln (kFa2D) = −2でのくり込み因子は図 2.5 (a)に示す通り 1に近く、こ

の相互作用領域では、nQ はほぼ理想分子ボーズ気体に近いと考えられる。実際、この時

の µB は図 2.6に示すように理想分子ボーズ気体の化学ポテンシャルに非常に近い値をと

る。なお、図 2.5 (b)に示すように、くり込み因子は ln (kFa2D) ≲ −2でほとんど 1に近

い値となる。

低温の強結合側で有効な近似式 (2.30)でくり込み因子 Z の温度依存性が顕著ではない

(図 2.5 (a)参照)ことから、nQ の温度依存性はボーズ分布関数部分から得られることが
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図 2.4 強結合側 (ln (kFa2D) ≲ 0)におけるクーパー対の重心運動量分布 nQ の温度依

存性。横軸は重心運動量Q。実線は式 (2.23)、点線は近似式 (2.30)の結果。(a1)∼(a3)

は引力相互作用が中間結合領域の ln (kFa2D) = −0.59 の結果。(b1)∼(b3) は強結合

領域 ln (kFa2D) = −2 (< −1)での結果。

分かる。さらに、図 2.6に示すように低温での µB の振る舞いは Tα (α > 1)であること

から、Q = 0における式 (2.30)は十分低温で

nQ=0 =
Z

e|µB|/T − 1
≃ Z

T

|µB|
≫ 1. (2.35)

つまり、図 2.4では、Q = 0近傍の nQ が低温で増大しているが、それは µB の温度変化

に起因する。実際、理想ボーズ気体に対し、T/|µB|をプロットすると図 2.7に示すよう
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図 2.5 (a) くり込み因子 Z (式 (2.32)) の温度依存性。実線は ln (kFa2D) = −0.59

(図 2.4の左図 (a1)∼(a3)の場合)、破線は ln (kFa2D) = −2 (図 2.4の右図 (b1)∼(b3)

の場合)の結果。(b) T/TF = 0.15における Z の相互作用依存性。

に、T → 0で µB が 0に近づくことにより、nQ=0 が急増する。

ただし、図 2.6から分かるように、ln (kFa2D) = −0.59では、まだ µB は理想ボーズ気

体のそれとは一致せず、フェルミ原子間相互作用による多体効果の影響が残っているた

め、Q = 0近傍の nQ の振る舞いにも相互作用依存性が残ることになる。この点を使い、

2.3節では TMAの枠組みで計算された nQ の Q = 0 での温度依存性を 6Li２次元フェ
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図 2.6 式 (2.30)に現れる分子ボゾンの化学ポテンシャル µB の温度依存性。１点鎖線

は N/2個、質量M = 2mでの理想 (分子)ボーズ気体 (２次元)の化学ポテンシャル。

ルミ原子気体で行われた実験 [29]と比較する。

本節の終わりに実験 [30] で BKT 転移の観測の際に議論されたクーパー対の１次相関

関数 g1(r)を導入する。この量はクーパー対を分子ボゾンと考え、クーパー対の重心運動

量分布 nQ から次のように計算される。

g1(r) =

∫
d2r′

⟨
Ψ†(r′)Ψ(r + r′)

⟩
=

∑
Q

⟨
a†QaQ

⟩
eiQ·r

=
∑
Q

nQeiQ·r. (2.36)

ここで Ψ(r)はボゾン場の演算子、また、a†Q, aQ はボゾンの生成消滅演算子である。ま

た、nQ =
⟨
a†QaQ

⟩
である。

2.3 実験との比較 I: 重心運動量 0のクーパー対の数 nQ=0

本節、及び、2.4節では、TMA (非自己無撞着 T 行列近似)の枠組みで計算されたクー

パー対の重心運動量分布 nQ (特にQ = 0)や式 (2.36)で与えられるクーパー対の相関関

数 g1(r)を近年 6Li２次元フェルミ原子気体で行われた実験結果 [29, 30]と比較する。こ

こで、注意すべき点は前述したように TMA は BKT 転移を含む超流動転移を記述でき



2.3 実験との比較 I: 重心運動量 0のクーパー対の数 nQ=0 45

図 2.7 T/|µB|の温度依存性。ここでは例として、N/2個の理想 (分子)ボーズ気体の

場合の化学ポテンシャル µB を考えている (N はフェルミ原子数であり、横軸の TF と

は TF = πN/m (mはフェルミ原子の質量)で結ばれている)。

ず、結果、nQ や g1(r)は「正常相」での計算結果であるということである。対形成揺ら

ぎ (及びその強結合極限としての分子形成)のみを考慮したこの強結合理論が、BKT転移

を観測したとする実験結果をどこまで説明できるかを調べることで、この実験で主張され

ているこれら特徴的な「BKT転移の振る舞い」が実際にどの程度 BKT転移特有の現象

であるかを検証する。

まず本節では、nQ=0を考える。図 2.8は TMAで計算された重心運動量Q = 0のクー

パー対の数 nQ=0 (式 (2.23))である。図 2.8 (a)では強結合側 (ln (kFa2D) = −0.59)で

の 6Li２次元フェルミ原子気体の実験結果 (黒丸) [29]と比較しているが、観測された低

温での nQ=0 の上昇が理論的によく再現されていることが分かる。この実験 [29]では低

温側の nQ=0 の振る舞いと高温側の nQ=0 の振る舞いをそれぞれ直線フィットし (図 2.8

(a)中の２本の点線)、この交点を BKT転移温度 T exp
BKT と同定している (つまり、この実

験では低温での nQ=0 の急増を３次元系における BECと同じ考えで凝縮粒子数とみなし

ている)。なお、図 2.8 (a)では T exp
BKT での nQ=0 を ñQ=0 とし、縦軸を規格化している。

前節の議論から分かるように、理論計算の結果 (図 2.8 (a) の “TMA”) が低温で急増

するのはクーパー対の化学ポテンシャルとみなせる µB が 0 に近づくことによるもので

ある。つまり、BKT転移を仮定しなくても実験で観測された nQ=0 の “T exp
BKT 以下の振

る舞い”は定量的に説明することができ、BKT転移特有の現象とは見なせないことが分

かる。

図 2.8 (b)には ln (kFa2D) = −0.59以外の相互作用 (ただし強結合側 ln (kFa2D) ≤ 0)
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図 2.8 (a) TMA で計算された ln (kFa2D) = −0.59 における nQ=0 の温度依存性

(実線)。6Li ２次元フェルミ原子気体の実験で報告された BKT 転移温度 T exp
BKT =

0.129TF での nQ=0 の値 (≡ ñQ=0) で規格化されている。黒丸は実験で観測された

nQ=0 [29]。この実験では高温と低温領域のデータを直線フィッティングし (図中の

２本の点線)、その交点を BKT転移温度 T exp
BKT と決定している。(b) いくつかの相互

作用での nQ=0 の温度依存性。ln (kFa2D) = −0.59 での BKT 転移温度 T exp
BKT での

nQ=0 (≡ ñQ=0)で規格化している。黒四角は各相互作用の強度において、6Li２次元

フェルミ原子気体で報告された BKT転移温度 T exp
BKT [29]。

で nQ=0 の温度変化の計算結果を示しているが、いずれも低温で急増し、急増し始める温

度は各相互作用で BKT転移温度 T exp
BKT と判定された温度 (図中黒四角)あたりから起き

始めている。従って図 2.8 (a)での議論同様、ln (kFa2D) = −0.25や −2での実験結果に

対しても BKT転移特有の現象を観測したものとは必ずしも言えないことが分かる。

図 2.8 (b)に見られる nQ=0 の振る舞いの相互作用依存性は近似式 (2.30)におけるボゾ
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ンの化学ポテンシャル µB (図 2.6)、及び、くり込み因子 Z (図 2.5 (b))の相互作用依存

性に起因するものであるが、これら２つの効果は以下のように考えると１つの効果にまと

めて理解することができる。式 (2.30)を用いてボーズ粒子数を計算すると N 個のフェル

ミ原子が全て分子ボゾンになっているとして、

N

2
= Z

∑
Q

nB

(
Q2

2M
− µB

)

=

∫ ∞

0

QdQ

2π
nB

(
Q2

2(ZM)
− µB

)
, (2.37)

と書ける。ここで２行目を導く際、
√
ZQ → Qと変数変換した。式 (2.37)は “有効質量

M∗ = ZM” の N/2 個の分子ボゾンからなる理想ボーズ原子気体の粒子数方程式であ

る。強結合極限 (ln (kFa2D) ≪ −1) から引力を弱くしていくと図 2.5 (b) に示すように

ln (kFa2D) ≃ −2 あたりから Z が１より小さくなるが、このように有効質量M∗ が “軽

く”なると µB はボーズ分布関数 nB(z)の構造からも分かるように、より高温から 0に近

づくようになる (例えば３次元理想ボーズ気体において µB = 0となる BEC転移温度は

ボゾンの質量に反比例する)。結果、図 2.8 (b)に示すように nQ=0 が急増し始める温度は

高くなり、実験で観測したと主張されている T exp
BKT の相互作用が弱くなるにつれての上昇

が (BKT転移を仮定せずに)説明される。

以上のように、6Li２次元フェルミ原子気体で BKT転移を観測したとする実験 [29]の

根拠の１つである “T exp
BKT” 以下での重心運動量 0 のクーパー対分子数の急増はフェルミ

原子間に働く強い引力相互作用の分子形成と、強結合極限以外で残っている多体効果を

TMAの範囲で考慮すると BKT転移を仮定しなくとも説明できることが分かった。

2.4 実験との比較 II: クーパー対の１次相関関数 g1(r)

次に 6Li ２次元フェルミ原子気体での BKT 転移観測の実験的根拠となっているクー

パー対の１次相関関数 g1(r) (式 (2.36))の冪的振る舞い [30]を考える。

図 2.9 (a)∼(c)に計算で得られたクーパー対の１次相関関数 g1(r)の対間距離依存性を

示す (ln (kFa2D) = −0.59)。ここで、[30] の実験と同じように 5 µm ≤ r ≤ 25 µm で

g1(r)を

gfit1 (r) =
C

rη
, (2.38)

でフィットすると図中の破線のようになる。このフィッティングから冪指数 η を決定、そ

の温度依存性を示したものが図 2.10である。ln (kFa2D) = −0.59の結果は同じ相互作用

強度での実験結果とよく一致している。この実験ではこのような冪指数が (5 µm ≤ r ≤
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図 2.9 クーパー対の１次相関関数 g1(r) の対間距離 r 依存性。相互作用強度は

ln (kFa2D) = −0.59。(a) T/TF = 0.11。(b) T/TF = 0.09。(c) T/TF = 0.07。実

線は TMA の枠組みで解析された式 (2.36) の結果、緑点線は式 (2.39)。青破線は文

献 [30] の実験と同じように冪関数 Cr−η でのフィッティングを 5 µm ≤ r ≤ 25 µm

で行った結果。解析では T exp
BKT での kF の値 kF = 3.77 µm−1 を用いた。

25 µmで) 得られたことを BKT転移実現の根拠の１つとしているが、この結果は nQ=0

に対する前節の議論同様、BKT転移特有の現象ではないことが分かる。

[30]の実験では ln (kFa2D) = −0.59より強結合側 (ln (kFa2D) = −3.4,−7.3)でほと

んど相互作用強度に依存しない冪指数の温度依存性が得られている (図 2.10 の菱形と四

角) が、これについても (BKT 転移を仮定しない) TMA の枠組みで理解することがで

きる：ln (kFa2D) = −3.4,−7.3のような強結合領域では系はほとんど分子ボーズ気体と



2.4 実験との比較 II: クーパー対の１次相関関数 g1(r) 49

図 2.10 TMAで計算されたクーパー対の１次相関関数 g1(r)を実験 [30]と同じ相関

距離 5 µm ≤ r ≤ 25 µmで冪関数 Cr−η でフィットして決めた冪指数 η の温度依存性

(“TMA”)。破線 (ideal Bose gas)は式 (2.30)で Z = 1とした強結合極限の式を用い

た場合。ideal Bose gas は ln (kFa2D) = −7.3 の kF = 4.87 µm−1 を用い解析した。

赤丸、黒菱形、黒四角は 6Li２次元フェルミ原子気体での実験結果。

なっており、かつ図 2.5 (b)に示すように Z ≃ 1 となっていることから、nQ はほとんど

理想分子ボーズ気体のボーズ分布関数で与えられると考えられる。それをフーリエ変換

して得られる g1(r) (式 (2.36))も相互作用依存性がほとんどなくなる。実際に、nQ とし

てボーズ分布関数を用い g1(r) を計算、式 (2.38) でフィットして冪指数 η を求めると図

2.10の “ideal Bose gas”の結果となり、ln (kFa2D) = −3.4,−7.3の実験結果をよく説明

する。実験では ln (kFa2D) ≲ −3.4において η(T/TF ≃ 0.1) ≃ 1.4が得られているが、こ

の相互作用に依存しない結果は系がほとんど理想分子ボーズ気体になっているためとして

理解することができる。

最後に、理論計算において、BKT転移を仮定していないのにある対間領域で冪的振る

舞いが現れた理由について説明する。近似式 (2.30)を用いて g1(r)を計算すると Q = 0
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近傍が重要であるとして

g1(r) ≃ Z
∑
Q

nB

(
Q2

2M
− µB

)
eiQ·r

≃ ZT

∫
d2Q

4π2

1
Q2

2M − µB

eiQ·r

=
MTZ

π
K0(r

√
2M |µB|). (2.39)

ここでK0(x)は変形ベッセル関数である。図 2.9には、式 (2.39)の結果を載せているが、

TMA の結果とよく一致していることが分かる。式 (2.38) でのフィッティングをする領

域は x = r
√
2M |µB| ≫ 1であり、この領域では式 (2.39)は K0(x)の漸近式 [101]を用

い次のように書くことができる。

g1(r) ≃
MTZ√

2π

1√
r
√
2M |µB|

e−r
√

2M |µB|. (2.40)

冪領域は温度が下がるにつれ、|µB|は 0に近づくため (図 2.6参照)、式 (2.40)中の指数

関数的減衰の寄与が重要になるのは r が大きな領域になる。そのため、低温になるにつ

れ、冪的振る舞いが近似的に見られる領域が広くなる。

以上まとめると、本章前半で示したように、6Li２次元フェルミ原子気体において BKT

転移を観測したとする最近の実験 [29, 30]がその根拠としている２つの実験結果はいずれ

も BKT転移を仮定しない理論により定量的に説明することができる。
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擬ギャップ現象と対形成揺らぎの
効果

2章では、近年 6Li２次元フェルミ原子気体で報告された BKT転移について、その根

拠とされた２つの実験結果 (重心運動量 Q = 0 のクーパー対の重心運動量分布 nQ=0 、

及び、クーパー対の１次相関関数の冪指数)が BKT転移を仮定せずとも対形成揺らぎの

効果を取り入れた非自己無撞着 T 行列近似 (TMA) により常流動相の現象として理解で

きることを示した。本章では、２次元フェルミ原子気体の理論研究に用いられる「超流動

秩序パラメータの位相揺らぎのみを考慮した BKT理論」の妥当性を擬ギャップ現象の視

点から議論する。そして、その結果から従来の BKT理論で無視していた超流動秩序パラ

メータの振幅揺らぎの重要性を指摘する。また、擬ギャップの研究から、前章で用いた

TMAは弱結合領域においてこの現象を過大評価することを明らかにし、それを解決する

手段として自己無撞着 T 行列近似 (Self-consistent T -matrix approximation: SCTMA)

が有効であることを示す。

3.1節では擬ギャップを研究する上で重要な物理量である１粒子状態密度と１粒子スペ

クトル強度について説明する。3.2節では前章で用いた TMAの枠組みで１粒子状態密度

を計算、対形成揺らぎにより現れる擬ギャップを議論する。そして、TMAの弱結合領域

における擬ギャップサイズが過大評価されることを擬ギャップサイズと実験で観測された

Tan’s contactとよばれる量との比較から明らかにする。3.3 節では、TMAの問題点を克

服する理論である SCTMAについて説明する。3.4節では、SCTMA で擬ギャップ現象

を研究し、状態密度に擬ギャップが現れる温度領域 (擬ギャップ領域)を弱結合領域から

強結合領域まで明らかにする。3.5 節では、最近２次元フェルミ原子気体で観測された内

部エネルギーや圧力、エントロピーといった熱力学量を SCTMAの枠組みで計算、実験

との比較からこの強結合理論の妥当性を議論する。
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図 3.1 ２次元自由フェルミ原子気体の１粒子状態密度 ρ(ω) のエネルギー依存性。µ

はフェルミ原子の化学ポテンシャル。横軸はフェルミエネルギー εF、縦軸は ρ0 (式

(3.4)参照)で規格化している。

3.1 １粒子状態密度とスペクトル強度の定義

１粒子状態密度 ρ(ω)は次式で与えられる。

ρ(ω) =
∑
p

A(p, ω). (3.1)

ここで、A(p, ω)は１粒子スペクトル強度であり、１粒子温度グリーン関数 G(p, iωn)を

解析接続 (iωn → ω + iδ)したものと次のように関係している。

A(p, ω) = − 1

π
ImG(p, iωn → ω + iδ). (3.2)

１粒子温度グリーン関数は例えば、前章で説明した TMAの場合、式 (2.7)で与えられる。

他方、自由フェルミ原子気体の場合、グリーン関数は式 (2.9)で与えられ、その場合１粒

子スペクトル強度は
A(p, ω) = δ(ω − ξp), (3.3)

となる。これを式 (3.1)に代入すると、１粒子状態密度は

ρ(ω) =
m

2π
Θ(ω + µ) ≡ ρ0Θ(ω + µ). (3.4)
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ここで、Θ(x) は階段関数である。この時、状態密度は ω ≥ −µ で一定値 ρ0 となる (図

3.1)。

3.2 非自己無撞着 T 行列近似 (TMA)で計算された１粒子状

態密度と擬ギャップ現象

式 (3.2)中の１粒子グリーン関数として、TMAでの表式 (2.7)を用いた場合の１粒子

状態密度 ρ(ω)を図 3.2 に示す。弱結合領域 (ln (kFa2D) = +1)の場合、図 3.2 (a) から

分かるように、T/TF = 1 ではフェルミ面 (ω = 0) 付近に特別な構造は見られないが、

T/TF = 0.4ではくぼみ構造 (擬ギャップ構造)が現れる。そしてより温度を下げ、位相揺

らぎのみを考慮した BKT理論 [33–37] (付録 C参照)が与える BKT転移温度 (T th
BKT)で

は BCS理論でよく知られた超伝導状態密度と同じような明確なギャップ構造を有する状

態密度が得られる。ただし、今用いている TMAは超流動相を記述できないので、ここで

得られた “BCS理論的状態密度”は超流動秩序パラメータによるものではなく、対形成揺

らぎに起因するものである (擬ギャップ現象)。

図 3.2 (a) (弱結合領域 ln (kFa2D) = 1)に見られる擬ギャップ現象は引力相互作用が強

くなるとより顕著になる。図 3.2 (b) (ln (kFa2D) = 0)では、T/TF = 1において、すで

に ω = 0付近に擬ギャップが現れており、図 3.2 (c) (ln (kFa2D) = −1) に示す強結合領

域の場合は T/TF = 1の時点で既に大きなギャップが開いている。

擬ギャップ現象は相転移現象ではなく、また生じる構造も図 3.2 (a)の T/TF = 0.4 の

場合のように、完全なギャップ (ω ∼ 0 で ρ(ω) ≃ 0 となるギャップ) が開くとは限らな

い。しかし、ここではこの現象を考えるための目安として ω = 0付近に “くぼみ”が生じ

た場合を擬ギャップ現象が現れたとし、その時の擬ギャップサイズ Egap を図 3.3のよう

に「擬ギャップの低エネルギー側のピークの位置と、くぼみの底の位置の差」として導入

する。図 3.2 (c)の強結合領域の場合、低温領域 (T = T th
BKT)での擬ギャップサイズは

Egap

εF
≃ 9 (3.5)

であるが、一方、式 (2.31)の２体分子の束縛エネルギー Ebind はこの相互作用において

Ebind

εF
=

1

εFma22D
=

2

(kFa2D)2
= 2e2 = 14.8 (3.6)

となり、状態密度に現れるギャップが分子の解離と関係すると考えると、2Egap ≃ 18εF

が式 (3.6)と同程度の大きさとなる。

他方、図 3.2 (a)に示した弱結合領域の場合、結合エネルギーは

Ebind

εF
= 0.27 (3.7)
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図 3.2 非自己無撞着 T 行列近似 (TMA)の枠組みで計算された１粒子状態密度 ρ(ω)。

横軸はフェルミエネルギー εF で規格化されたエネルギー ω。縦軸は自由フェルミ原子

気体の１粒子状態密度 ρ0 = m/(2π) で規格化されている。(a) ln (kFa2D) = 1。(b)

ln (kFa2D) = 0。(c) ln (kFa2D) = −1。T = T th
BKT は位相揺らぎのみを考慮した理

論 [33–37]で計算された BKT転移温度。

であるのに対し、T = T th
BKT でのギャップサイズは

Egap

εF
≃ 2, (3.8)
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図 3.3 本論文で用いる１粒子状態密度 ρ(ω) に開く擬ギャップのサイズ Egap の評価

方法。ω < 0 で ρ(ω) がピークとなるエネルギー ω1 と、擬ギャップ中の ρ(ω) が最小

となるエネルギー ω2 から、擬ギャップサイズを Egap = |ω1 − ω2|のように決定する。

となり両者は非常に大きな差がある。後述するように、弱結合側に生じるこの “大きな擬

ギャップ”はここで用いている TMAの問題点であり、次節で説明する SCTMA (自己無

撞着 T 行列近似) を用いるとこのような大きなギャップ構造は弱結合側で現れなくなる

(後述するように、３次元系に対し TMAを適用する場合このような問題は生じない)。

TMA が弱結合領域でも、低温で２体分子の結合エネルギー Ebind に比べ非常に大き

な BCS理論的ギャップを与える原因を説明するために、この近似で計算された化学ポテ

ンシャル µ の温度変化を図 3.4 に示す。２章で説明したように、２次元系では BCS 的

な超流動転移は起こらないことを反映し、式 (2.14) で与えられる Thouless の判定条件

が有限温度 (T > 0) で満たされることはない。しかし、この図から分かるように、低温

では µ(T ) は Thouless の判定条件を満たす化学ポテンシャル (≡ µTh(T )) に (わずかに

それよりは小さいものの) 非常に近い値をとる。また、引力相互作用がある程度強い図

3.4 (b)、(c)の場合は分子ボゾンの形成を反映し、µ < 0となっているが、図 3.4 (a)は

ln (kFa2D) = 1の “弱結合領域”でも T/TF ≲ 0.2で µ < 0となり、(TMAの範囲では)

フェルミ面が消失することを示している。

低温で µ ≃ µTh であることはこの領域で低エネルギーの対形成揺らぎが強くなっ

ていることを示している。これを利用し、対形成揺らぎを表す式 (2.10) の Γ0(Q, iνm)

が Q = 0、νm = 0 で大きな値をとるとして、式 (2.8) の TMA の自己エネルギー
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図 3.4 TMA で計算された化学ポテンシャルの温度依存性 (実線)。破線は式 (2.14)

で与えられる Thoulessの判定条件を満たす化学ポテンシャル µTh。図では、低温で両

者が一致しているように見えるが、T > 0では常に µ < µTh となっている。

ΣTMA(p, iωn)を次のように近似する。

ΣTMA(p, iωn) = T
∑

Q,iνm

Γ0(Q, iνm)G0(Q− p, iνm − iωn)

≃ G0(−p,−iωn)× T
∑

Q,iνm

Γ0(Q, iνm)

≃ −G0(−p,−iωn)∆
2
PG. (3.9)
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ここで、

∆PG =

√
−T

∑
Q,iνm

Γ0(Q, iνm), (3.10)

は擬ギャップパラメータとよばれる [81, 82]。式 (3.9) の近似では対形成揺らぎを表す

Γ0(Q, iνm)は∆PG という “定数”になるため、この近似は (対形成揺らぎに対する)静的

(static)近似とよばれる。この静的近似の自己エネルギーを式 (2.7)の１粒子グリーン関

数の自己エネルギーとして用いると

Gstatic
TMA(p, iωn) = − iωn + ξp

ω2
n + ξ2p +∆2

PG

. (3.11)

ここで、式 (3.11) は ∆PG を超流動秩序パラメータ ∆ で置き換えると BCS 平均場理論

における１粒子グリーン関数 (の対角成分) [102]と同じになり、結果得られる状態密度も

ギャップサイズ Egap = ∆PG で完全にギャップが開いたものになる。さらに、付録 F.1

に示すように、図 3.4で見られるような µ < 0となる低温領域では式 (3.10)で与えられ

る擬ギャップパラメータは

∆PG = 2

√
εF

(
εF +

Ebind

2

)

= 2εF

√
1 +

1

(kFa2D)2
, (3.12)

となるため、弱結合極限 (ln (kFa2D) → ∞、または (kFa2D) → ∞)で

∆PG → 2εF, (3.13)

となる。また、化学ポテンシャルはこの極限で

µ → −1

2
Ebind → −0, (3.14)

となる。これらの結果は、TMA ではこの極限で期待される自由フェルミ原子気体

(∆PG → 0, µ → εF) が得られず、2εF という非物理的な大きな１粒子励起ギャップ

が開いてしまうことを示している。なお、図 3.2 (a) (弱結合領域 ln (kFa2D) = 1) の

T = T th
BKT でのギャップサイズは Egap ≃ 2εF であり、上の静的近似での結果とよく一致

している。

現在、フェルミ原子気体の１粒子状態密度 ρ(ω) を直接観測する実験手段は存在しな

いものの、弱結合領域での擬ギャップが TMA では過大評価されていることは、観測

可能量である Tan’s contact C から実験的にもある程度理解することができる。これ

を説明するために、まず 40K ２次元フェルミ原子気体で Tan’s contact が観測された
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図 3.5 (a) Tan’s contact が観測されている弱結合領域 ln (kFa2D) = 0.853、温度

T/TF = 0.27における TMAの枠組みで計算された１粒子状態密度 ρ(ω)。破線は静的

近似でのグリーン関数 (式 (3.11))を用いて計算された ρ(ω)。(b) ln (kFa2D) = 0.853

における化学ポテンシャル µ(T )、及び、µTh の温度依存性。(a) での温度 (T/TF =

0.27)では µ ≃ µTh となっている。

ln (kFa2D) = 0.853 (> 0：弱結合側)、T/TF = 0.27 [24]では、TMAで計算された状態密

度 ρ(ω)において図 3.5 (a)に示すように大きな擬ギャップが開いていることに着目する。

この相互作用、温度領域では図 3.5 (b)に示すように µ ≃ µTh となっていることから、前

述した静的近似が有効であり、実際、静的近似でのグリーン関数 (式 (3.11))を用いて計

算された ρ(ω)は TMAの結果とほぼ同じ大きさの擬ギャップが開く (図 3.5 (a)参照：こ
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の図において TMAの結果は Egap = 1.686εF を与え、他方静的近似における擬ギャップ

パラメータも∆PG = 1.75εF と Egap に近い値となっている)。

以上の点を踏まえ、Tan’s contact C が [103]

C = m2U2

∫
⟨Ψ†

↑(r)Ψ
†
↓(r)Ψ↓(r)Ψ↑(r)⟩d2r (3.15)

で与えられることに注意すると (Ψ(r)はフェルミ原子の場の演算子)、TMAの枠組みで

はこの量は
CTMA = −m2T

∑
Q,iνm

Γ0(Q, iνm), (3.16)

のように多体散乱行列と関係し [104,105]、かつ式 (3.10)より次のように擬ギャップパラ

メータとも関係付けられることが分かる。

C = m2∆2
PG. (3.17)

このことと、図 3.5 (a)の状況では Egap ≃ ∆PG であることから、もし TMAの結果のよ

うに大きな擬ギャップが開いているとすると、そこから見積もられる Tan’s contactは

CTMA ≃ m2E2
gap = 0.711k4F, (3.18)

となるはずであるが、40K２次元フェルミ原子気体で観測された値は

Cexp = 0.223k4F (ln (kFa2D) = 0.853, T/TF = 0.27), (3.19)

であり [24]、CTMA より小さな値である。Cexp を再現するには Egap の値は

Egap =
√
0.223

k2F
m

= 0.944εF, (3.20)

であり、図 3.5 (a)のギャップサイズはこの図の半分程度でなくてはならない。

ここで、３次元系の場合、TMAでは弱結合領域において大きな擬ギャップが開かない

ことについて述べる。３次元系では、T > 0で Thoulessの判定条件 (式 (2.14))が満たさ

れるため、µ = µTh となる温度で系は超流動転移する。そのため、２次元系の弱結合領域

ln (kFa2D) = 1 (図 3.4 (a))で見られる「低温 (T ≃ 0.3TF)で µ ≃ µTh となり、さらに

T ≲ 0.2TF でフェルミ面が消失 (µ < 0)する振る舞い」は３次元系の弱結合側では見られ

ない (弱結合領域では µ ≃ εF > 0となる) [81]。２次元系では µ ≃ µTh となり、化学ポ

テンシャルが減少する領域で対形成揺らぎが強くなり、擬ギャップパラメータ (式 (3.10))

が成長するが、３次元系ではこのような温度領域は存在しないため、弱結合側の１粒子状

態密度に大きな擬ギャップは開かず、弱結合極限で自由フェルミ原子気体の状態密度に帰

着する [81]。
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3.3 自己無撞着 T 行列近似 (SCTMA)

前節で述べたように、２次元系の対形成揺らぎの理論的取扱いは TMAでは弱結合側で

不十分である。そこで、本節では以降 TMAより高次の対形成揺らぎを扱える自己無撞着

T 行列近似 (SCTMA)を用い、２次元フェルミ原子気体の擬ギャップ現象を調べる。

SCTMAでは、１粒子温度グリーン関数

G(p, iωn) =
1

iωn − ξp − ΣSCTMA(p, iωn)
, (3.21)

の中の自己エネルギーは図 3.6 に示すファインマンダイアグラムで表されるものを用い

る。具体的表式は

ΣSCTMA(p, iωn) = T
∑

Q,iνm

Γ(Q, iνm)G(Q− p, iνm − iωn). (3.22)

TMAとの違いは、図 3.6 (a)の自己エネルギーの上のループや図 3.6 (b)の多体散乱行列

Γ中のグリーン関数は式 (3.21)で与えられる “くり込まれたグリーン関数”であるという

点である (TMAでは自由粒子のグリーン関数 G0 が用いられている)。対形成揺らぎ (図

3.6 (c))を表す多体散乱行列 Γ(Q, iνm)は

Γ(Q, iνm) =
−U

1− UΠ(Q, iνm)
, (3.23)

であり、最低次の対相関関数 Π(Q, iνm)は

Π(Q, iνm) = T
∑
p,iωn

G(p+Q/2, iωn + iνm)G(−p+Q/2,−iωn), (3.24)

である。この式 (3.24) は TMA とは異なり、くり込まれたグリーン関数が用いられる。

このため、SCTMAでは式 (3.21)のグリーン関数を決定する際に、自己エネルギーのダ

イアグラムの上のループ (図 3.6 (a) 参照) や多体散乱行列 Γ 中のグリーン関数 (図 3.6

(b)参照)を自己無撞着に決定する必要がある。

SCTMAにおいても、化学ポテンシャル µは粒子数方程式

N = 2T
∑
p,iωn

G(p, iωn)e
iωnδ, (3.25)

から決定する。SCTMAも TMA同様、BKT転移を含む２次元系での超流動転移を記述

することはできない。すなわち、TMAと同様、SCTMAでも超流動転移温度を決定する

Thoulessの判定条件 [99]

Γ−1(0, 0) = 1− UΠ(0, 0) = 0 (3.26)
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図 3.6 自己無撞着 T 行列近似 (SCTMA) における (a) 自己エネルギー

ΣSCTMA(p, iωn) (式 (3.22)) と、(b) 対形成揺らぎを表す多体散乱行列 Γ(Q, iνm)

(式 (3.23)) のファインマンダイアグラム。−U (< 0) は接触型の引力相互作用、G

は自己エネルギー ΣSCTMA を含むフェルミ原子気体の１粒子温度グリーン関数 (式

(3.21))。TMA ではこのグリーン関数が自己エネルギーを含まない自由粒子のグリー

ン関数になっている (図 2.1 参照)。(c) 対の形成と解離 (対形成揺らぎ) を模式的に表

した図。ぼやけた赤、青色の球はそれぞれ異なる原子状態 (擬スピン σ =↑, ↓) にある
フェルミ原子を表す。TMA の場合 (図 2.1 (c)) とは異なり、SCTMA ではこれらの

フェルミ原子は自己エネルギー (式 (3.22)) の補正を受けたグリーン関数 (式 (3.21))

で記述される。

が有限温度で満たされることはない。ただし、式 (3.25) で決まる µ は式 (3.26) で決定

される化学ポテンシャル µSCTMA
Th に低温で漸近する (図 3.7 (a)∼(c))。しかし、弱結合

領域 (ln (kFa2D) = 1) の TMA (図 3.4 (a)) と SCTMA (図 3.7 (a)) の µ を比較する

と、µ ≃ µTh となる温度領域は TMA より SCTMA の方がより低温領域に限定されて

おり、これは後者のほうが低エネルギー長波長における対形成揺らぎが抑制されること



62 第 3章 擬ギャップ現象と対形成揺らぎの効果

図 3.7 SCTMA で計算された化学ポテンシャル µ の温度依存性。破線は Thouless

の判定条件式 (3.26) を満たす化学ポテンシャル µSCTMA
Th 。(c) において、この領域で

は低温領域の数値計算が大変であるため、T/TF ≳ 0.3のみの計算となっている。

を示している。実際、図 3.5 (a)と同じ相互作用強度 (弱結合 ln (kFa2D) = 0.853)、温度

(T/TF = 0.27) での１粒子状態密度 ρ(ω) も SCTMA で計算すると、図 3.8 に示すよう

に、TMA で見られたような大きな擬ギャップ構造よりはるかに小さいくぼみ構造が現

れる。
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図 3.8 SCTMA で計算された１粒子状態密度 ρ(ω)。相互作用強度、温度は図 3.5と

同じ ln (kFa2D) = 0.853、T/TF = 0.27。破線は静的近似の式 (3.31)のグリーン関数

を用いた場合の結果。

SCTMA の方が TMA に比べ擬ギャップ現象が抑制される理由は次の２つである。１

つ目の理由は対形成揺らぎを表す多体散乱行列 Γ(Q, iνm) がくり込まれたグリーン関数

で構成されているため、対形成揺らぎにより擬ギャップが生じ、フェルミ面近傍の状態密

度が減少すると、その影響が Γ(Q, iνm) にフィードバックされ、対形成揺らぎが抑制さ

れるためである。TMAでは自由粒子のグリーン関数が多体散乱行列の構成に使われるた

め、このようなフィードバックはない。

２つ目の理由はくり込まれたグリーン関数を用いると、相互作用による準粒子の寿命の

効果が考慮されるため、“ぼやけた１粒子励起スペクトル”が擬ギャップ構造を不明瞭に

するためである。準粒子の寿命やそれに伴う１粒子励起スペクトルのぼやけは TMAのグ

リーン関数でも考慮されているが、自己エネルギー内の１粒子グリーン関数が全てくり込

まれたグリーン関数である SCTMAに比べ、自由粒子のグリーン関数 (このグリーン関数

に対するスペクトル強度は自由粒子の分散に沿って δ 関数的な鋭いピークを有する)を用

いている TMAはこの効果は顕著ではない。実際、両者のスペクトル強度を比較すると、

図 3.9 (a)、(b)に示すように、TMAに比べ、SCTMAは幅広いスペクトル構造を与える。

SCTMAの場合、式 (3.15)で与えられる Tan’s contactは

CSCTMA = −m2T
∑

Q,iνm

Γ(Q, iνm), (3.27)
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図 3.9 １粒子励起スペクトル強度 A(p, ω)。(a) SCTMA。 (b) TMA。相互作用強

度 ln(kFa2D) = 0.853、温度 T = 0.27TF は図 3.5 (a)、図 3.8と同じものである。ス

ペクトル強度は ε−1
F で規格化している。

となる [41, 106]。TMAの結果を示した図 3.5 (a)や SCTMAの結果を示した図 3.8 (弱

結合: ln (kFa2D) = 0.853、T/TF = 0.27)の場合にこれを評価すると、式 (3.16)で計算

した CTMA = 0.766k4F より小さな値、

CSCTMA = 0.238k4F, (3.28)

となる。これは 40K２次元フェルミ原子気体での実験結果の値 Cexp = 0.223k4F [24]に近

い。ただしこの結果は、図 3.8 (SCTMA)での擬ギャップサイズが TMAの結果を示した

図 3.5 (a)でのそれより小さいことと一貫性はあるものの、TMAの場合 (図 3.5 (a))とは

異なり、SCTMAでは C とギャップサイズ Egap は単純には結びつかないことに注意す
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る必要がある。実際 SCTMAにおいて、静的近似 [107]

ΣSCTMA(p, iωn) = T
∑

Q,iνm

Γ(Q, iνm)G(Q− p, iνm − iωn)

≃ −∆2
PGG(−p,−iωn), (3.29)

を行って擬ギャップパラメータ

∆PG =

√
−T

∑
Q,iνm

Γ(Q, iνm), (3.30)

を導入すると、C = m2∆2
PG となるが、この近似のもとでの１粒子温度グリーン関数は次

のようになる (導出は付録 F.2参照)。

Gstatic
SCTMA(p, iωn) = −

iωn + ξ∗p

ω2
n + ξ∗2p + ∆̃2

PG(p, iωn)
. (3.31)

ここで、ξ∗p = εp − µ∗ であり、有効化学ポテンシャル µ∗ [87, 107, 108] は次式で決定さ

れる。
−µ∗ = −µ+Re [ΣSCTMA(p = 0, ω+ = −µ∗ + iδ)] . (3.32)

式 (3.31)は式 (3.11)と同じ形をしているが、∆PG の部分が

∆̃PG(p, iωn) = ∆PG

√√√√√ 2

1 +

√
1 +

4∆2
PG

ω2
n+ξ∗2p

, (3.33)

に置き換わっているため、SCTMA では、静的近似であってもギャップサイズ Egap は

Tan’s contactとは直接は結びつかなくなる。実際式 (3.31)を用い状態密度を計算すると

図 3.8の破線のように BCS理論のような完全なギャップではなく、V字型の擬ギャップ

となる。

3.4 自己無撞着 T 行列近似 (SCTMA)による擬ギャップ領域

の特定

現在２次元フェルミ原子気体の BKT転移温度に対しては、超流動秩序パラメータの位

相揺らぎのみを考慮した理論 [33–37]が用いられているが、これは「擬ギャップ」の視点

からは、平均場 BCS理論で得られるような明確なギャップが状態密度に開いている状況

と言える。3.2節で見たように TMAは低温でこの状況に合致した擬ギャップを T th
BKT 近

傍で与えるが、Tan’s contactに関する実験結果との比較から、少なくとも弱結合領域で

は擬ギャップが過大評価されていることが分かった。他方、SCTMAは弱結合領域におい
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図 3.10 (a)∼(c) SCTMAで計算された１粒子状態密度 ρ(ω)の温度依存性。(a) 弱結

合領域 ln (kFa2D) = 1、(b) 中間領域 ln (kFa2D) = 0、(c) 強結合領域 ln (kFa2D) =

−1。(d) (a)∼(c) での各温度を表した図。実線は位相揺らぎのみを考慮した BKT 理

論で得られた BKT転移温度 T th
BKT [33–37]。

て、TMAより小さな擬ギャップを与え、またその構造も ω = 0近傍の状態密度の値も有

限であった (図 3.8)。また、SCTMAで計算された Tan’s contact C の値は実験結果とよ

く一致しており、この近似の場合 C は直接的には擬ギャップサイズ Egap と結びつけるこ

とはできないものの、擬ギャップの原因である対形成揺らぎが TMAに比べ、観測された

C を説明できる程度に抑制されていることを示している。図 3.8のような “完全なギャッ

プではない”擬ギャップ構造が T th
BKT 近傍で実現している場合、「超流動秩序パラメータ

の振幅が十分発達して一定」となり、位相揺らぎのみが残っているとする現在の BKT理

論 [33–37] はその前提が崩れることになる。そこで本節では、まず擬ギャップが現れる領

域 (擬ギャップ領域)を SCTMAの枠組みで特定、T th
BKT がその領域内にあることを確認

する。その上で、弱結合側の T th
BKT 近傍において、どの程度、既存の BKT理論が前提と

する状況が実現しているのかを明らかにする。
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図 3.11 SCTMA で計算された化学ポテンシャル µ と、式 (3.32) から決定された有

効化学ポテンシャル µ∗ の温度依存性。

図 3.10 は SCTMA で計算された１粒子状態密度の温度依存性である。また、図 3.11

にはこの計算に必要な化学ポテンシャルの計算結果 (これは粒子数方程式 (3.25)を解いて

得られる)を示している。図 3.10 (a)の弱結合領域 ln (kFa2D) = 1の場合、T/TF = 1か

ら温度を下げると、次第に ω = 0 近傍にくぼみ (擬ギャップ)が現れる。ただし、図 3.2

(a)に示す TMAの場合 (ln (kFa2D) = 1)とは大きく異なり、T th
BKT でも完全なギャップ

は開かず、依然くぼみ (ω = 0でも ρ(ω) > 0)構造のままである。

図 3.10 (b)に示す中間結合領域 (ln (kFa2D) = 0)では、２次元自由フェルミ原子気体

の状態密度の特徴である階段構造 (図 3.1参照) が T/TF = 1でも図 3.10 (a)に示す弱結

合領域 ln (kFa2D) = 1での結果に比べよりぼやけているが、これは強い引力相互作用に

より準粒子の寿命が短くなり、１粒子励起スペクトルが幅広くなっていることの反映とし

て考えられる。しかし、図 3.10 (b)の場合も温度を下げるにつれ擬ギャップ構造が ω = 0

近傍に見られるようになる。ただし、図 3.2 (b)に示す TMAの場合 (ln (kFa2D) = 0)に

比べ、擬ギャップは小さい。ほぼ完全なギャップが開くのは図 3.10 (c)に示す強結合の場

合 (ln (kFa2D) = −1)で TMAの場合 (図 3.2 (c))程大きなギャップサイズではないもの

の、T ≲ 0.6TF では、ρ(ω) ≃ 0の領域が ω = 0近傍に広がるようになる。

図 3.10 (a) において、擬ギャップが未だ現れていない T/TF = 1 の状態密度は相互作

用の影響で全体的に連続的なエネルギー依存性を示しているものの、大体 ω/εF ∼ −0.5

から大きな値となっている。これは自由フェルミ原子気体の結果 (図 3.1) と比較する
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図 3.12 擬ギャップ温度 T ∗ の決定方法。１粒子状態密度において、ω ∼ 0近傍で図中

の実線のようにくぼみ構造が現れ始める (平らな構造 (点線はその平らな様子を表す))

温度を擬ギャップ温度 T ∗ と定義する。T < T ∗ では破線のように、くぼみ構造が現

れる。

と µ ≃ 0.5εF のように考えられるが、一方、図 3.11 (ln (kFa2D) = 1) に示すように、

T/TF = 1で µは負である。この不一致の理由は、１粒子励起スペクトル (式 (3.3)中の

ω = ξp = εp − µ)に現れる化学ポテンシャル µが引力相互作用の影響 (自己エネルギー

ΣSCTMA(p, iωn) の補正) により有効化学ポテンシャル µ∗(式 (3.32)) に置き換わること

による。実際、図 3.11 (ln (kFa2D) = 1)に示すように、µ∗(T/TF = 1)/εF ≃ 0.5 > 0と

なっている。これは中間結合領域の結果である図 3.10 (b) (ln (kFa2D) = 0) に対しても

言えることで、図 3.11からは µ(T/TF = 1)/εF ≃ −1.4であり、単純に考えると 2|µ|程
度のギャップがこの温度の１粒子励起スペクトルに期待されるが、粒子が感じる有効化学

ポテンシャルは図 3.11に示すように µ∗(T/TF = 1)/εF ≃ 0であるため、図 3.10 (b)に

おいて T/TF = 1 の ρ(ω) は ω = 0 付近に特別な構造を有さない単調増加関数となって

いる。

図 3.10に示した１粒子状態密度 ρ(ω)の温度変化から、図 3.12のように ω = 0にくぼ

み (擬ギャップ) が現れ始める温度を擬ギャップ温度 T ∗ として定義、これを弱結合領域

から強結合領域に至るまで SCTMA の枠組みで決めると図 3.13 のようになる。この図

にはそれ以外にもいくつかの特徴的な温度 (Ebind、µ∗(T ) = 0を満たす温度)、及び実験

(T exp
BKT)、理論 (T th

BKT)で決められた BKT転移温度も併せてプロットしており、それに基

づき相図を作成している。



3.4 自己無撞着 T 行列近似 (SCTMA)による擬ギャップ領域の特定 69

図 3.13 ２次元フェルミ原子気体における相図。実線は状態密度の ω = 0 近傍にく

ぼみ構造が現れる擬ギャップ温度 T ∗。エラーバー付きの破線は実験で報告されている

BKT 転移温度 T exp
BKT [29]。点線は超流動秩序パラメータの振幅は一定とし、位相揺

らぎのみを考慮した理論で決定された BKT転移温度 T th
BKT [33–37]。１点鎖線は有効

化学ポテンシャル µ∗ が 0 となる温度で、物理的にはフェルミ面が消失する温度を示

す。２点鎖線は２体分子の結合エネルギー Ebind = 1/(ma2
2D) で、クーパー対分子が

熱解離する温度の目安を与える。この相図において、T ≤ T ∗ は擬ギャップが現れる

擬ギャップ領域 (Pseudogap (PG))、T ≥ T ∗ はそうした多体効果が見られない常流

動フェルミ原子気体領域 (Normal Fermi gas (NF))。また、µ∗(T ) < 0 (１点鎖線左

側)は強く結合した分子ボゾンでよく記述される領域 (Molecular Bose gas (MB))で

ある。本研究では BKT転移温度は決定できないが、[33–37]で決定された T th
BKT 以下

を BKT相 (BKT)と書いている。なお、この T th
BKT 以外の境界は相転移を伴わないク

ロスオーバー温度である。

図 3.13において、T < T ∗ では、擬ギャップが状態密度に現れる。SCTMAでは BKT

転移温度を決めることはできないが、位相揺らぎのみを考慮した BKT理論で得られてい

る BKT転移温度 T th
BKT を採用すると、T th

BKT ≤ T ≤ T ∗ は正常相でありながら、強い引

力相互作用に起因した対形成揺らぎにより、擬ギャップ構造が状態密度に現れる擬ギャッ

プ領域 (PG)と考えることができる。T ≤ T th
BKT は BKT相 (BKT)であり、T ≥ T ∗ は

相互作用効果はあるものの、擬ギャップは現れない通常のフェルミ原子気体 (NF)の領域

である (ただし、T th
BKT を与える理論の妥当性については後で議論する)。図 3.13には有

効化学ポテンシャル µ∗ が 0 となる温度も示されている (１点鎖線) が、これより左の強

結合側では µ∗ < 0であり、２体レベルの分子が系を支配するようになる。実際強結合側
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では２体分子の束縛エネルギー Ebind も急速に増大、かつ擬ギャップ温度 T ∗ も急速に上

昇するが、これはこの領域での T ∗ が２体分子の解離エネルギーと密接に関係しているこ

との現れである。このことに留意し、図 3.13 では µ∗ < 0 の領域を分子ボーズ気体領域

(MB)としている。ただし、相転移を伴う BKT相以外、NF、PG、MBを分ける境界は

あくまでもクロスオーバー温度である。

弱結合側の擬ギャップ温度 T ∗ の相互作用依存性に着目する。図 3.13 において、弱結

合領域 (ln (kFa2D) ≫ 1)から相互作用強度を強くすると、T ∗ は上昇する。これは、引力

相互作用が強くなり、対形成揺らぎが顕著になることを反映したものと考えられる。しか

し、0 ≲ ln (kFa2D) ≲ 2 では、対形成揺らぎはひき続きより強くなっていると考えられ

るにも関わらず、擬ギャップ温度 T ∗ はほぼ一定値をとる。また、この領域では、図 3.14

(a)に示すように T ∗ だけでなく、擬ギャップサイズ Egap もあまり大きな相互作用依存性

を示さない。こうした結果は、引力相互作用の増大は擬ギャップ現象に必須の対形成揺ら

ぎを増大させるものの、同時に準粒子の寿命も散乱効果の増大により短くするため、後者

については擬ギャップ現象を “ぼかす” 効果があることによるものと考えられる。実際、

図 3.14 (b)において擬ギャップの構造のくぼみを無視すると、状態密度の構造は引力相互

作用が強くなるにつれ、２次元自由フェルミ原子気体における階段関数的なものから、そ

れが崩れた構造へと変化しており、１粒子励起スペクトルが次第に広がっている (短寿命

化でなだらかになっていることを示唆している)。

図 3.13において、T th
BKT (そして T exp

BKT も) は擬ギャップ領域 (PG)内にある。従って、

もし T th
BKT 近傍における１粒子状態密度が BCS状態密度のように「完全に開いたギャッ

プ構造」を有していれば、そのギャップサイズを超流動秩序パラメータの振幅と考えるこ

とで、「超流動秩序パラメータの振幅は十分発達し、位相のみが揺らいでいる」という２次

元フェルミ原子気体に対する従来の BKT理論の前提条件は正当化されるであろう。しか

し、こうした仮定は図 3.13における分子ボゾン領域 (MB) では成り立つものの (図 3.10

(c)参照)、図 3.10 (a)、(b)から分かるように、中間結合から弱結合領域では成り立って

いない。TMA では弱結合極限でも大きなギャップ構造が得られるが、SCTMA では図

3.10 (a) (ln (kFa2D) = 1)より弱結合側 (ln (kFa2D) ≥ 1)に行っても図 3.15に示すよう

に T th
BKT における擬ギャップ構造は次第に小さくなっていく (弱結合極限では T th

BKT → 0

となり [35]、その極限では自由フェルミ原子気体の状態密度に帰着すると期待されるた

め、図 3.15の結果は物理的に妥当なものである)。

弱結合側で明確な１粒子励起ギャップが開かないという点は状態密度 ρ(ω)より詳細な

１粒子励起の情報を含むスペクトル強度 A(p, ω) (式 (3.2))からも確認することができる

(式 (3.1) に示したように ρ(ω) は A(p, ω) の運動量 p の和を実行することで得られる)。

図 3.16 に示すように、低温における A(p, ω) は強結合領域 (図 3.16 (c) の場合) 以外、

ω = 0付近に明確なギャップ構造は存在していない。式 (3.11)で与えられる TMAにお
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図 3.14 図 3.13 で T ∗ があまり相互作用依存性を示さない相互作用領域 (0 ≲
ln (kFa2D) ≲ 2) における (a) 擬ギャップサイズ Egap と (b) 状態密度。(b) 中の

A、B、C は (a) の相互作用強度 ln (kFa2D) = 2, 1, 0 の状態密度の結果を表す。温度

は T/TF = 0.15。

ける静的近似のグリーン関数 (あるいはこの式の ∆PG を超流動秩序パラメータ ∆で置き

換えて得られる平均場 BCS理論のグリーン関数)を解析接続 (iωn → ω + iδ)したものを

G =
1

(ω + iδ − ξp)−
∆2

PG

(ω+iδ+ξp)

, (3.34)
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図 3.15 弱結合領域 (ln (kFa2D) ≥ 1) における T th
BKT での状態密度 ρ(ω) (SCTMA

による計算)。

と書くと、状態密度に∆PG(BCS状態では∆)のギャップが開く理由は µ > 0の場合、粒

子分散 (ω = ξp) と正孔分散 (ω = −ξp)が ∆2
PG(または ∆)により、(ω, p) = (0,

√
2mµ)

で結合、準位反発した結果と理解することができる。こうした粒子-正孔の結合は SCTMA

の結果の図 3.16 (a)、(b) (ln (kFa2D) = 1, 0)の場合にも見て取れるが、実際には準粒子

の寿命の効果により、それぞれの分散はかなり広がっており、ω = 0での準位反発による

ギャップも明確に見ることはできない (しかし、A(p, ω) を ω 固定で pの和を実行するこ

とで得られる ρ(ω) は、ω = 0 付近の擬ギャップによりその値が減少していることから、

ω = 0 でのスペクトル強度の減少が反映されている)。他方で、式 (3.34) で µ < 0 の場

合、粒子分散は ω = εp + |µ|、正孔分散は ω = −(εp + |µ|)と完全に分離、2|µ|のギャッ
プが開く。図 3.16の場合、これは (c) (強結合領域 ln (kFa2D) = −1)において実現して

いる (SCTMAでは 2|µ∗|のギャップが開く)。

以上の結果から、T th
BKT 近傍で１粒子状態密度 ρ(ω)に擬ギャップは現れるものの、強

結合領域以外では完全なギャップ構造となっておらず、超流動秩序パラメータという視点

で見ると、位相揺らぎだけでなく振幅揺らぎも併せて重要であることが分かる。現時点で

後者の効果まで取り入れ、２次元フェルミ原子気体の弱結合領域から強結合領域までの

BKT転移を系統的に記述できる理論は存在せず、本研究の成果を取り入れ、位相揺らぎ

のみを考慮した現在の BKT理論をどう拡張するかはフェルミ原子気体分野の発展におい

て重要な課題である。
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図 3.16 SCTMAで計算された１粒子励起スペクトル A(p, ω)。(a) ln (kFa2D) = 1、

T = 0.122TF = T th
BKT。(b) ln (kFa2D) = 0、T = 0.14TF。(c) ln (kFa2D) = −1、

T = 0.3TF。破線は粒子分散 ω = εp − µ∗、点線は正孔分散 (ω = −[εp − µ∗])。µ∗ は

式 (3.32)の有効化学ポテンシャルであり、(a)、(b)では正、(c)では負となっている。

スペクトル強度は ε−1
F で規格化している。

3.5 自己無撞着 T 行列近似 (SCTMA)による熱力学量の計算

と実験との比較

前節では、弱結合領域における自己無撞着 T 行列近似 (SCTMA)の妥当性の根拠の１

つとして、ln (kFa2D) = 0.853、T/TF = 0.27において、40K２次元フェルミ原子気体で
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図 3.17 6Li ２次元フェルミ原子気体で熱力学量が観測された温度、相互作用領

域 [31, 32]。(A) βEbind = 0.47、(B) βEbind = 0.26、(C) βEbind = 0.06、(D)

βEbind = 0.005。この実験では、ln (kFa2D) ≳ 1 の図中の４本の線 (A)∼(D) に沿っ

て、化学ポテンシャル µ、圧力 P、内部エネルギー E、エントロピー S が測定されて

いる。参考のため、文献 [33–37]で理論的に得られた T th
BKT、及び、文献 [29]で報告さ

れている T exp
BKT も図中に示している。

測定された Tan’s contact [24]の強結合理論による計算結果との良い一致を挙げた。本節

では、6Li２次元フェルミ原子気体に対し、図 3.17に示した弱結合領域 ln (kFa2D) ≳ 1の

４本の線 (A)∼(D) (βEbind = 0.47, 0.26, 0.06, 0.005) に沿って近年測定された熱力学量

(化学ポテンシャル µ、内部エネルギー E、圧力 P、エントロピー S) [31,32]を SCTMA

による計算結果と比較、弱結合領域におけるこの理論の妥当性についてさらなる検討を加

える。

文献 [31,32]で測定された熱力学量のうち、化学ポテンシャル µは粒子数方程式 (3.25)

を解くことで得られ、前節で議論した状態密度 ρ(ω)やスペクトル強度 A(p, ω)の計算の

際にすでに用いられている。図 3.18 は弱結合領域 ln (kFa2D) ≳ 1 (４本の線 (A)∼(D)

(図 3.17)) における SCTMA で計算された化学ポテンシャルと 6Li ２次元フェルミ原子

気体での実験結果 [32](エラーバーつきの短い縦線) を比較しているが、βEbind = 0.26の

低温での結果に若干両者の差が見られるものの、それ以外については SCTMAの結果は

実験をよく説明していることが分かる。
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図 3.18 SCTMAで計算された化学ポテンシャル µ(T )と 6Li２次元フェルミ原子気

体での実験結果 [32]との比較。βEbind = 0.47, 0.26, 0.06, 0.005の４本の線は図 3.17

に示した曲線 (４本の線 (A)∼(D)) に沿った結果 (弱結合領域 ln (kFa2D) ≳ 1) であ

り、短い縦線が誤差を含む実験結果である。理論、実験それぞれ同じ色同士が対応して

いる。SCTMAの計算は 0.1TF ≤ T ≤ TF で行っている。

化学ポテンシャル µが決まると、SCTMAでは、熱力学ポテンシャル (グランドポテン

シャル) Ωが計算できる [52,106]。この時、熱力学ポテンシャルは

Ω = Ω0 +ΩFL, (3.35)

と書け、
Ω0 = −2T

∑
p,iωn

ln [−G0(p, iωn)] = −2T
∑
p

ln
(
1 + e−βξp

)
, (3.36)

は自由フェルミ原子気体の熱力学ポテンシャル、

ΩFL =2T
∑
p,iωn

[
ln

(
G−1

0 (p, iωn)G(p, iωn)
)
−

[
G−1

0 (p, iωn)G(p, iωn)− 1
]]

− T
∑

Q,iνm

ln
[
−U−1Γ(Q, iνm)

]
, (3.37)

は相互作用による補正項を表す。また、熱力学ポテンシャル Ωは

Ω = −P

= E − TS − µN, (3.38)
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のように、内部エネルギー E や圧力 P、エントロピー S と関係している (序論に述べた

ように、ここでは体積 V = 1としている)。ここで内部エネルギーは式 (2.1)のハミルト

ニアン (ただし化学ポテンシャルの項を除く)の期待値から計算され、SCTMAの枠組み

では次のような式で与えられる [52,106]。

E = ⟨H + µN⟩ =2T
∑
p,iωn

εpG(p, iωn)

− UT
∑

Q,iνm

[Π(Q, iνm)−Π(Q, iνm)Γ(Q, iνm)Π(Q, iνm)] . (3.39)

前節の議論で登場した Tan’s contact C は熱力学ポテンシャル Ωと

C = 2πm
∂Ω

∂ ln a2D

∣∣∣∣
T,µ

= 2πm
∂F

∂ ln a2D

∣∣∣∣
T,N

= 2πm
∂E

∂ ln a2D

∣∣∣∣
S,N

, (3.40)

のように関係している [41, 75, 93]。ここで、F = E − TS はヘルムホルツの自由エネル

ギーである。SCTMAでは、式 (3.40)は式 (3.27)と等価である (付録 H参照)。さらに、

SCTMAでは式 (3.40)を満たすため、Tanの圧力関係式

P = E +
C

4πm
, (3.41)

を厳密に満たす [96]。すると、式 (3.38)、(3.41)から、エントロピー S が次のように得ら

れる。

S = β

[
2E +

C

4πm
− µN

]
. (3.42)

式 (3.41)、(3.42)を用いると、化学ポテンシャル µが決まっていれば、４つの熱力学量 E、

C、P、S のうち２つさえ分かれば残り２つを求めることができる。SCTMAは近似理論

ではあるが、式 (3.35)の熱力学ポテンシャルの表式や、Tanの圧力関係式 (3.41)が厳密

に成立するという利点がある。なお、文献 [31, 32]の実験でも弱結合領域 ln (kFa2D) ≳ 1

の４本の線 (A)∼(D) (図 3.17)に沿って、圧力 P とヘルムホルツの自由エネルギー F を

測定、式 (3.40)を用い Tan’s contact C を得ている (ただし、これらの文献では C の具

体的結果は示されていない)。そして、残り２つの内部エネルギー E とエントロピー S を

式 (3.41)、(3.42)から得ている。

以下では、４つの熱力学量のうち、内部エネルギー E と Tan’s contact C をそれぞれ

式 (3.39)、(3.27) から求める。そして、式 (3.41)、(3.42)を用い、圧力 P、エントロピー

S を求める。

上述の手順に従い、まず第１段階として計算された内部エネルギー E と Tan’s contact

C の結果を図 3.19、図 3.20に示す。図 3.19には自由フェルミ原子気体の場合の内部エネ

ルギーも併せ示してあるが、考えている系が引力相互作用系であることから、相互作用が
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図 3.19 図 3.17 に示された４本の線 (A)∼(D) (弱結合領域 ln (kFa2D) ≳ 1) に

沿って SCTMA で計算された２次元フェルミ原子気体の内部エネルギー E。計算は

0.2TF ≤ T ≤ TF の範囲で行っている。また参考のため、２次元自由フェルミ原子気体

の結果も示している (Free Fermi gas)。文献 [31]の実験結果はエラーバーを含む短い

縦線で示されており、同じ色同士がそれぞれ比較すべき理論、実験の結果である。

ある場合の結果はそれより低エネルギーのものとなっている。また、6Li２次元フェルミ

原子気体での実験結果 [31]も図 3.19には示しているが、SCTMAの結果は実験とよく一

致していることが分かる。(文献 [31,32]には Tan’s contactの実験データが示されていな

いので、図 3.20では実験との比較は示されていない。)

次に、第２段階として、図 3.19、図 3.20の結果から、式 (3.41)、(3.42)を用い、圧力 P

とエントロピー S を計算した結果を図 3.21と図 3.22にそれぞれ示す。引力相互作用系で

あることを反映し、計算された圧力 P は自由フェルミ原子気体に比べ小さくなる (図 3.21

(a))。また、これを文献 [31]での実験結果と比較できるようにスケールすると、弱結合領

域 ln (kFa2D) ≳ 1の (A)∼(D)の線上 (図 3.17) の結果いずれも誤差の範囲内で SCTMA

の計算結果と実験結果はよく一致する (図 3.21 (b))。図 3.22 (a) に示すエントロピーは

図 3.17 に示した (A)∼(D) (ln (kFa2D) ≳ 1) のいずれの場合もほぼ同じ結果を与えるこ

とが分かる。この “βEbind 依存性”は E や C、P とは異なるが、S についてもやはり実

験結果をよく再現することが図 3.22 (b)から見て取れる。

以上の結果から、SCTMA は弱結合領域 ln (kFa2D) ≳ 1 (図 3.17 中の４本の線

(A)∼(D)) での熱力学量 µ、E、P、S を定量的に正しく記述できることが分かる。前述し

たように (E,C, P, S)は式 (3.41)、(3.42) で関係しているので、このうち２つが実験をよ
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図 3.20 図 3.17 に示された４本の線 (A)∼(D) (弱結合領域 ln (kFa2D) ≳ 1) に沿っ

て SCTMAで計算された Tan’s contact C。計算は 0.2TF ≤ T ≤ TF の範囲で行って

いる。

く説明できれば、残り２つの物理量に対しても計算の正しさが保証される。文献 [31, 32]

では C に関するデータが示されていないが、上述したように、E、P、S に関し、SCTMA

の計算結果は実験結果とよく一致していることから、C に対しても正しい結果を与えてい

る。以上を踏まえると、２次元フェルミ原子気体の弱結合領域から中間結合領域にかけて

の多体現象を理論的に研究する上で、SCTMAはよい出発点になる。
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図 3.21 (a) 図 3.17 に示された４本の線 (A)∼(D) (弱結合領域 ln (kFa2D) ≳ 1) に

沿って SCTMAで計算された圧力 P の温度依存性。Free Fermi gasは自由フェルミ

原子気体の圧力。(b) (a) に示した SCTMA での計算結果と 6Li ２次元フェルミ原子

気体の実験結果 [31]との比較。横軸は βµ、縦軸は、各温度、化学ポテンシャルを自由

フェルミ原子気体の圧力の式に代入した値 P0 = −mT 2Li2(−eβµ)/(2π) [109]で規格

化している。ここで、Li2(x)はポリログ関数。
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図 3.22 (a) 図 3.17 に示された４本の線 (A)∼(D) (弱結合領域 ln (kFa2D) ≳ 1) に

沿って SCTMAで計算されたエントロピー S の温度依存性。(b) βEbind = 0.47で計

算された SCTMAの結果と観測されたエントロピー [32](エラーバーを含む破線)との

比較。ここでは、実験、理論ともに相互作用依存性が顕著ではないため (実験は図 1.20

(b) 参照)、βEbind = 0.47に着目し、実験との比較を行っている。エントロピー S は

式 (3.42) 中に温度の逆数を含み、低温領域では誤差が大きくなるため、低温程高精度

の計算が必要となる。



81

第 4章

まとめ

本博士論文では、可変な引力相互作用を有する２次元極低温フェルミ原子気体における

対形成揺らぎの効果を理論的に研究した。近年 Berezinskii-Kosterlitz-Thouless (BKT)

転移を観測したとする実験の検証、及び、超流動秩序パラメータの位相揺らぎのみを考慮

した２次元フェルミ原子気体に対する BKT 理論の妥当性を擬ギャップ現象の視点から

行った。

本論文前半では、6Li２次元フェルミ原子気体で BKT転移を観測したとする報告につ

いて、その根拠となっている実験結果が全て対形成揺らぎの効果を考慮した強結合理論

により BKT転移を仮定せずに定量的に説明できることを示した。すなわち、実験は (1)

クーパー対の重心運動量 0 の分布のある温度 (T exp
BKT) 以下での急増 (2) T exp

BKT 近傍での

BKT転移に特徴的なクーパー対の１次相関関数の冪的振る舞いの観測、を BKT転移実

現の根拠としているが、本研究では、BKT転移を仮定せず、常流動相の対形成揺らぎの

みを考慮した非自己無撞着 T 行列近似 (TMA) の枠組みで考慮することでこれら２つの

現象を理論的に再現できることを示した。この結果は、現在得られている実験結果だけで

は BKT転移の根拠とはならず、本当にこの超流動転移が実現しているかを検証するには

さらなる実験が必要であることを示している。

本論文の後半では、２次元フェルミ原子気体に対する従来の BKT理論では考慮されて

いない “超流動秩序パラメータの振幅揺らぎ”の重要性を擬ギャップ現象の視点から研究

した。弱結合領域の１粒子励起を記述する上では不十分な TMAを改善できる自己無撞着

T 行列近似 (SCTMA)を用い、対形成揺らぎの発達により１粒子状態密度に擬ギャップ

が現れ始める温度 (擬ギャップ温度)を弱結合領域から強結合領域まで明らかにした。こ

の結果から、擬ギャップが現れる領域 (擬ギャップ領域)を温度と相互作用強度に関する

相図上で特定した。超流動秩序パラメータの振幅は十分発達、その揺らぎはないとし、位

相揺らぎのみが存在していると仮定している従来の BKT理論で計算された BKT転移温

度 T th
BKT 付近での擬ギャップ構造が、実際には弱結合領域で完全なギャップとはなってお



82 第 4章 まとめ

らず、ω = 0での有限な値を持ったくぼみ構造となっていることを明らかにした。この結

果は、この相互作用領域では振幅揺らぎも重要であり、現在の BKT理論はこの点を改善

する必要があることを示している。本論文ではさらに、ここで用いた SCTMAの妥当性

を検証するため、近年 6Li ２次元フェルミ原子気体で観測された熱力学量をこの理論を用

い計算、実験結果との比較を行った。化学ポテンシャル、圧力、内部エネルギー、Tan’s

contact、エントロピーいずれも理論と実験との一致はよく、擬ギャップについては現在

比較できる実験はないため検証できないものの、この系に対する SCTMAの有効性を示

した。

本論文で用いた強結合理論 (TMA, SCTMA) は現時点で BKT 転移を記述できない。

本論文の成果により、従来の BKT理論では無視されていた対形成揺らぎの効果が BKT

転移近傍で重要であることが明らかになったため、BKT転移を扱えるようこれらの理論

を拡張することは重要課題の１つである。２次元フェルミ原子気体の対形成揺らぎの効果

を明らかにすることは、銅酸化物高温超伝導体や励起子ポラリトン系などの２次元強相関

系の量子多体物性を理解する上では非常に重要であり、本研究の結果は当該研究分野の実

験、理論の今後の方向性に指針を与え、さらなる発展を促すもので重要である。
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付録 A

２次元フェルミ原子気体における
クーパー対相関関数 C2D(r)の表式
(1.10)の導出

ここでは式 (1.10) で与えられる２次元系におけるクーパー対相関関数の表式の導出を

説明する。超流動秩序パラメータ

∆(r) = ⟨Ψ(r)⟩, (A.1)

を振幅部分∆0 と位相部分 θ(r)に分け、次のように表す。

∆(r) = ∆0e
iθ(r). (A.2)

ここで、Ψ(r)はクーパー対の場の演算子であり、式 (A.2)では振幅∆0(実数)の空間依存

性はないとした。

クーパー対の相関関数
C2D(r) = ⟨Ψ(r)†Ψ(0)⟩ (A.3)

を計算するために、Ginzburug-Landau(GL)理論の自由エネルギー F を考える。秩序パ

ラメータの振幅部分 ∆0 は空間的に一定であるとし、位相部分 θ(r)のみが空間依存性を

有するとすると、GL理論の方は

F =

∫
d2r

[
a0∆

2
0 +

b0
2
∆4

0 + c0∆
2
0 |∇θ(r)|2

]
, (A.4)

となる。式 (A.3)を評価する際、重要になるのは式 (A.4)の最終項のみなのでその部分を

抜き出し、J = 2c0∆
2
0 とおき、相関関数の寄与で重要な位相揺らぎの自由エネルギー FFL

は

FFL =
1

2

∫
d2rJ |∇θ(r)|2, (A.5)



86付録A ２次元フェルミ原子気体におけるクーパー対相関関数C2D(r)の表式 (1.10)の導出

と書く。位相 θ(r)を

θ(r) =
∑
q

θqe
iq·r, (A.6)

とフーリエ変換すると、自由エネルギーの “位相揺らぎ部分”FFL (式 (A.5))は

FFL =
J

2

∑
q

q2θqθ
∗
q. (A.7)

式 (A.7)の FFL を用いて、式 (A.3)で与えられるようなクーパー対の相関関数 C2D(r)

を評価すると、

C2D(r) = ∆2
0⟨e−i[θ(r)−θ(0)]⟩FL

= ∆2
0⟨e−i

∑
q θq(e

iq·r−1)⟩FL

= ∆2
0

∏
q′

∫
dθq′dθ∗q′e

−i
∑

q(e
iq·r−1)θqe−βFFL∏

q′

∫
dθq′dθ∗q′e−βFFL

. (A.8)

この積分は θq を実部と虚部に分けることでそれぞれガウス積分で実行できる。その際、

θ−q = θ∗q であることに注意すると、結果は

C2D(r) = ∆2
0 exp

[
−
∑
q

kBT

Jq2
[
1− cos(q · r)

]]
. (A.9)

式 (A.9)の指数関数部分は次のように評価できる。∑
q

T

Jq2
[1− cos(q · r)] = 1

(2π)2
T

J

∫
dq

q

∫ 2π

0

dϕ[1− cos (qr cosϕ)]

≃ 1

2π

T

J

∫
r−1

dq

q
. (A.10)

ここで、２行目では、qr < 1では cos (qr cosϕ) ≃ 1とし、q 積分の下限を r−1 としてい

る。また、qr ≫ 1では cos (qr cosϕ)は激しく振動するので、積分への寄与はないものと

した。式 (A.10)は q 積分が紫外発散するのでカットオフ r−1
c を導入して、

∑
q

T

Jq2
[1− cos(q · r)] = T

2πJ

∫ r−1
c

r−1

dq

q

= − T

2πJ
ln
(rc
r

)
. (A.11)

この結果を式 (A.9)に代入すると

C2D(r) = exp

[
kBT

2πJ
ln

(rc
r

)]
=

rc
r

kBT

2πJ

=
A

rη
, (A.12)

となり、式 (1.10)が得られる (式 (1.10)中では η = M2kBT/(2πℏ2ρs)、A = αである)。
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付録 B

２次元フェルミ原子気体のトラップ
周波数に対する条件式 (1.19)の導出

ここでは、実験で系が十分２次元的であるための条件式 (1.19) を導出する。式 (1.18)

のような調和ポテンシャルを量子化したエネルギー E2Dtrap は

E2Dtrap =

(
nx +

1

2

)
ωr +

(
ny +

1

2

)
ωr +

(
nz +

1

2

)
ωz, (B.1)

となる。ここで、nx, ny, nz は x, y, z 方向の量子数 (nα = 0, 1, 2, · · · (α = x, y, z))、ωr,

ωz はトラップ周波数である (ℏ = 1としている)。フェルミ原子気体は２原子状態を擬ス

ピン σ =↑, ↓とした際に、各量子数 nα に２原子まで占有できる。ωr ≪ ωz の場合、２次

元方向の量子数 (nx, ny)が優先的に占有される。

z 方向の量子数の占有はなく、xy 方向の量子数に限り占有される状況を考える (簡単の

ため、擬スピン状態のうち、１つの状態 (σ =↑)に着目する)。xy 方向のエネルギーとし

て、図 B.1の水色の部分 (nx, ny の最大量子数は nr)までの量子数が占有された場合、擬

スピン状態 σ =↑のフェルミ原子数 N↑ (全フェルミ原子数 N とすると、N = N↑ +N↓、

N↑ = N↓ = N/2)は図 B.1の水色部分の原子数 πn2
r/4 と一致する。このとき、nr は

nr = 2

√
N↑

π
. (B.2)

z 方向のエネルギーが占有されない状況 (nz < 1)は、nr においても

nrωr < ωz, (B.3)
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図 B.1 擬スピン状態 ↑の調和ポテンシャルのエネルギー E2Dtrap (式 (B.1)) のうち、

xy 方向の調和ポテンシャル中の量子数 (nx, ny)の占有を表した図。図の水色部分 (量

子数の最大値 nx = nr、ny = nr) まで量子数が占有されている。量子数 nx, ny の値

が 1となっているものを黒丸、0の値をとるものを白丸で表している。

となる場合である。式 (B.2)を式 (B.3)に代入し整理すると

1 > nr
ωr

ωz
= 2

√
N↑

π

ωr

ωz

=

√
2N

π

ωr

ωz
, (B.4)

となり、式 (1.19)が得られる。
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付録 C

位相揺らぎのみを考慮した２次元
フェルミ原子気体における BKT

理論

ここでは、超流動に対する平均場近似の汎関数経路積分表示 [8]について説明し、その

後、平均場近似まわりの超流動秩序パラメータの位相揺らぎを考慮した BKT理論 [33–37]

について概説する。

C.1 超流動平均場近似の経路積分表示

式 (2.1)で与えられるハミルトニアンに対する分配関数 Z の経路積分表示は [8, 33–37]

Z =

∫
D[Ψ, Ψ̄]e−S[Ψ,Ψ̄]. (C.1)

ここで D[Ψ, Ψ̄]は汎関数積分を表し、Ψ、Ψ̄はグラスマン数である。作用 S[Ψ, Ψ̄]は

S[Ψ, Ψ̄] =

∫ β

0

dτ

∫
d2r

[∑
σ

Ψ̄σ(x)[∂τ + ξ̂p]Ψσ(x)− UΨ̄↑(x)Ψ̄↓(x)Ψ↓(x)Ψ↑(x)

]
,

(C.2)

である。ここで、x = (r, τ) であり、r は２次元位置座標、τ は虚時間である。また、

β = 1/T (T は温度)、σ =↑, ↓ は擬スピン、ξ̂p = −∇2/(2m) − µ (µ は化学ポテンシャ

ル)、U は接触型の引力相互作用 (式 (2.2))である。式 (C.2)の相互作用を次のハバード-

ストラトノヴィッチ変換を用いて書き換えられる [8, 33–37]：

1 =

∫
D[∆,∆∗] exp

[
−
∫ β

0

dτ

∫
d2r

∆(x)∆∗(x)

U

]
. (C.3)



90 付録 C 位相揺らぎのみを考慮した２次元フェルミ原子気体における BKT理論

ここで ∆(x) (∆∗(x)) はクーパー対に関係した補助場である。∆∗ → ∆∗ − UΨ̄↑Ψ̄↓、

∆ → ∆− UΨ↓Ψ↑ と変換すると、式 (C.1)の分配関数は次のように書くことができる。

Z =

∫
D[Ψ, Ψ̄]

∫
D[∆,∆∗] exp

[
−
∫ β

0

dτ

∫
d2r

[∑
σ

Ψ̄σ(x)[∂τ + ξ̂p]Ψσ(x)

−∆∗Ψ↓(x)Ψ↑(x)−∆Ψ̄↑(x)Ψ̄↓(x) +
∆(x)∆∗(x)

U

]]
.

(C.4)

または、南部スピノル

ψ =

(
Ψ↑
Ψ̄↓

)
, ψ̄ = (Ψ̄↑, Ψ↓), (C.5)

を導入し、

Z =

∫
D[Ψ, Ψ̄]

∫
D[∆,∆∗] exp

[
−
∫ β

0

dτ

∫
d2r

(
ψ̄[−G−1]ψ +

|∆(x)|2

U

)]
. (C.6)

式 (C.6)において、Gは南部-ゴルコフグリーン関数で、次式で与えられる。

G−1(x, x′) =

(
−∂τ − ξ̂p ∆(x)

∆∗(x) −∂τ + ξ̂p

)
δ(x− x′). (C.7)

式 (C.6)はフェルミオン場 (Ψ, Ψ̄)に関して２次形式なので積分を実行でき、結果は

Z =

∫
D[∆,∆∗]e−Seff [∆,∆∗], (C.8)

となる。ここで、

Seff [∆,∆∗] =

∫ β

0

dτ

∫
d2r

|∆(x)|2

U
− Tr ln[−G−1]. (C.9)

経路積分表示において、BCS平均場近似は式 (C.8)の分配関数 Z 中の ∆、∆∗ を熱力

学ポテンシャル Ω = −T lnZ に対する鞍点条件

∂Ω

∂∆
= 0, (C.10)

で決まる鞍点解
∆(x) = ∆0, (C.11)

で代表させたものに相当する。式 (C.9)に鞍点解 (式 (C.11))を代入すると、“平均場近似

の作用”SMF は

SMF = −
∑
p

[
2 ln

[
2 cosh

(
βEp

2

)]
− βξp

]
+

β|∆0|2

U
. (C.12)
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ここで Ep =
√

ξ2p +∆2
0 はボゴリューボフ１粒子励起である。また、BCS平均場近似の

分配関数は式 (C.12)の SMF を用い、

ZMF = e−SMF = e−βΩ0 . (C.13)

式 (C.13)において、

Ω0 = −
∑
p

[
2T ln

[
2 cosh

(
βEp

2

)]
− ξp

]
+

|∆0|2

U
, (C.14)

は BCS理論における熱力学ポテンシャルである。

鞍点条件 (式 (C.10)) からは BCS理論におけるギャップ方程式 [33–37,75,100] が得ら

れる：

1 = U
∑
p

1

2Ep
tanh

(
βEp

2

)
. (C.15)

また、化学ポテンシャルを決定するための粒子数方程式は、式 (C.14)の熱力学ポテンシャ

ルから熱力学的恒等式 N = −(∂Ω0/∂µ)を用いて次のように得られる。

N =
∑
p

[
1− ξp

Ep
tanh

(
βEp

2

)]
. (C.16)

C.2 平均場近似まわりの超流動秩序パラメータの位相揺らぎ

を考慮した BKT理論

ここでは、２次元フェルミ原子気体に対し用いられている平均場近似に位相揺らぎを考

慮した BKT理論 [33–37]を概説する。式 (C.1)で与えられる分配関数において、フェル

ミオン場を表すグラスマン数 Ψ を Ψ(x) → Ψ(x)eiθ(x)/2 と変数変換し、式 (C.8) の ∆、

∆∗ の汎関数積分を
∆(x) = ∆0e

iθ(x), (C.17)

とおいて、位相揺らぎ θ(x)の効果を加味する。C.1節と同様、Ψ、Ψ̄についての積分を実

行すると、

Z =

∫
D[θ]e−Seff [θ]. (C.18)

ここで、作用 Seff [θ]は次式で与えられる。

Seff [θ] =
β|∆0|2

U
−

∫ β

0

dτ

∫
d2r

∑
p

[
2

β
ln

[
2 cosh

(
β

2
Ẽp

)]
− ξ̃p

]
. (C.19)
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式 (C.19)において、

Ẽp =
√

ξ̃2p +∆2
0, (C.20)

ξ̃p =
p2

2m
− µ̃, (C.21)

µ̃ = µ− i
∂τθ

2
+ i

∇2θ

4m
− (∇θ)2

8m
. (C.22)

式 (C.19)の Seff [θ]は、∇θ、∂τθ について２次まで考慮し、式 (C.12)の平均場近似での

作用 SMF を用いると、次のように表すことができる。

Seff [θ] = SMF + SFL[θ]. (C.23)

式 (C.23)の表記において、

SFL[θ] =

∫ β

0

dτ

∫
d2r

[
J

2
(∇θ)2 +

W

2
(∂τθ)

2

]
, (C.24)

は位相揺らぎの効果を表す作用であり、J、W はそれぞれ

J =
1

4m

∑
p

[
1− ξp

Ep
tanh

(
Ep

2T

)
− 1

2T

p2

2m
sech2

(
Ep

2T

)]
, (C.25)

W =
1

4

∑
p

[
∆2

0

E3
p

tanh

(
Ep

2T

)
+

1

2T

ξ2p
E2

p

sech2
(
Ep

2T

)]
, (C.26)

である。

超流動密度 ρs は Ginzburg-Landau(GL) 理論 [8, 9] における自由エネルギーの表式

(1.8)と式 (C.23)の作用との比較から得られる。位相揺らぎについて、虚時間方向の依存

性はない場合を考えると、

Seff [θ] = SMF +

∫
d2r

Jβ

2
(∇θ)2, (C.27)

となるが、このうちの位相部分 (最終項)を式 (1.8)の

βFFL =

∫
d2r

1

2
βρs|vs(r)|2, (C.28)

の位相部分と同一視する。後者において、∇θ(r)の係数 J は超流動密度 ρs と

ρs = (2m)2J, (C.29)

の関係がある。この係数 J を式 (C.25)と等しいとおくことにより、

ρs = m
∑
p

[
1− ξp

Ep
tanh

(
Ep

2T

)
− 1

2T

p2

2m
sech2

(
Ep

2T

)]
, (C.30)
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を得る。

こうして得られた ρs を用いると、BKT転移温度 TBKT は、KT-Nelsonの公式 [10]

ρs
M2TBKT

=
2

π
, (C.31)

を満たす温度として決定される (M = 2mはクーパー対の質量)。

超流動密度 ρs を決定する際、超流動秩序パラメータの振幅 ∆0 と化学ポテンシャル µ

を決定する必要がある。このうち前者 (∆0) は平均場近似のギャップ方程式 (C.15) で決

定される。他方、µは粒子数方程式から決定するが、これに対しては位相揺らぎの効果を

とり入れたものが用いられる [33–37]。その表式を得るために、まず θ(r, τ)について波数

q、及びボゾンの松原周波数 νm = 2πTm (m = 0,±1,±2, · · · )を用いて次のようにフー
リエ変換する。

θ(r, τ) =
1√
β

∑
q,iνm

θ(q, iνm)e−iνmτe−iq·r. (C.32)

すると SFL[θ]は次のように書ける。

SFL[θ] =
∑
q,iνm

[
Jq2 +Wν2m

]
θ(q, iνm)θ(−q,−iνm). (C.33)

これを式 (C.23)の Seff [θ]に用い、式 (C.18)の θ に関する汎関数積分を実行すると、分

配関数 Z は次のようになる。

Z = e−SMF exp

 ∑
q,iνm

ln

[
1

2
[Jq2 +Wν2m]

]. (C.34)

よって、位相揺らぎの効果を加味した熱力学ポテンシャル Ω = −T lnZ は

Ω = Ω0 − T
∑
q,iνm

ln

[
1

2
[Jq2 +Wν2m]

]
, (C.35)

となる。この熱力学ポテンシャルを用いると、粒子数方程式は

N = −∂Ω

∂µ
= NMF +

∑
q

T
∑
iνm

∂W
∂µ [ν2m + c2sq

2] +W
∂c2s
∂µ q2

W (ν2m + c2sq
2)

, (C.36)

である。ここで、NMF は式 (C.16) で与えられ、cs =
√
J/W である。松原周波数

νm = 2πTm の和を実行すると、位相揺らぎの効果を含む粒子数方程式として次式を
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得る。

N = −∂Ω

∂µ

= NMF − 1

β

∑
q

βq ∂cs
∂µ

eβcsq − 1

=
∑
p

[
1− ξp

Ep
tanh

(
βEp

2

)]
−

∑
q

q

eβcsq − 1

∂

∂µ

√
J

W
. (C.37)
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付録 D

本論文で用いた数値計算の環境

本論文で用いた数値計算の環境は下記の通りである。

１．計算機の環境

・PCモデル: Intel(R) Xeon(R) CPU E5-2687W v3 @3.10GHz

・コア数: 20コア

・メモリ: 252 GB　

・ディスク容量: 2700 GB

２．計算に用いた言語

数値計算に用いた言語: Fortran 90

３．コンパイル環境

インテル Parallel Studio XE 2015 (Composer | Professional | Cluster) Edition
(released 26 August 2014) aka Compiler v15.0

Composer XE 2015 Update 3 2015.04.20 15.0.3 20150407
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付録 E

強結合領域における非自己無撞着 T

行列近似 (TMA)

ここでは、化学ポテンシャル µが負で、|µ|/T ≫ 1、|µ| ≫ εF となるような強結合領域

における多体散乱行列 Γ0(Q, iνn)の表式を TMAにおいて求める。この時、フェルミ分

布関数 nF(ε) → 0となることに注意すると、式 (2.11)の対相関関数 Π0(Q, iνn)は

Π0(Q, iνn) = −
∑
p

1

iνn − ξp+Q/2 − ξ−p+Q/2

= −m

4π
lnα+

m

2π
ln (pc)

≃ −m

4π

1

2µ

[
iνn − 1

2

Q2

2(2m)
+ 2µ ln

(
− µ

εF

)]
+

m

2π
ln (pc), (E.1)

と近似される。ここで、pc は運動量のカットオフ、無次元量 αは

α = k−2
F

[
Q2

4
− 2mµ− imνn

]
. (E.2)

式 (E.1)において、３行目は εF/|µ| ≪ 1の条件を利用し、O(εF/|µ|)まで展開した。こ
の時、式 (2.10)で与えられる多体散乱行列 Γ0(Q, iνn)は

Γ0(Q, iνn) =
−U

1− UΠ0(Q, iνn)

=
1

−U−1 +Π0(Q, iνn)

= −4π

m

2µ

iνn − Q2

2(2m) + 2µ
[
ln

(
−2µ
Ebind

)]
= −8πµ

m

1

iνn − Q2

2(2m) + µB

. (E.3)
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ここで、
1

U
=

m

2π
ln (kFa2D) +

m

2π
ln pc. (E.4)

また、Ebind は２体分子の束縛エネルギーで

Ebind =
1

ma22D
, (E.5)

で与えられる。式 (E.3)中の

µB = −2|µ| ln
(

2|µ|
Ebind

)
, (E.6)

を分子ボゾンの化学ポテンシャル µB とみなすと、式 (E.3)は係数 (−8πµ/m)を除き、質

量M = 2m、化学ポテンシャル µB の分子ボゾンのグリーン関数とみなすことができる。
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付録 F

強結合理論に対する静的近似におけ
る諸計算

F.1 非自己無撞着 T 行列近似 (TMA)の低温領域の解析

TMAの枠組みにおいて、低温で低エネルギー、長波長領域の対形成揺らぎが発達、

Γ−1
0 (Q = 0, iνm = 0) ≃ 0, (F.1)

となる場合を考える。この時、TMA の自己エネルギー (式 (2.8)) に静的近似 [81] の式

(3.9)を用いたグリーン関数 (式 (3.11))を用い、粒子数方程式を作ると、

N = 2
∑
p,iωn

G(p, iωn)e
iωnδ

=
∑
p

[
1− ξp

Ep
tanh

(
βEp

2

)]
. (F.2)

ここで、δ は無限小の正の定数とし、Ep は擬ギャップパラメータ (式 (3.10))を含むエネ

ルギー、

Ep =
√
ξ2p +∆2

PG, (F.3)

である。式 (F.2) は式 (3.11) からも予想されるように、BCS 理論における粒子数方程

式と形式的に同一の表式である [33–37, 75, 100]。粒子数方程式 (F.2) を µ < 0 でかつ

T ≪ |µ|の低温領域で ∆PG について解くと

∆PG ≃ 2
√
εF(εF − µ). (F.4)

µ < 0 でかつ T ≪ |µ| の低温領域では、Γ0(Q, iνm) 中の対相関関数 Π0(Q, iνm) の
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Q = 0, iνm = 0の部分は

Π0(Q = 0, iνm = 0) =
∑
p

1

2ξp
=

1

4π

∫ ∞

0

dpp
1

p2

2m − µ
, (F.5)

となることを用いると、低エネルギー、長波長領域の対形成揺らぎが発達している領域

(式 (F.1)) では、

0 = −U−1 +Π0(Q = 0, iνm = 0)

≃ −m

2π
ln (kFa2D)−

m

2π

∫ ∞

kF

dp
1

p
+

1

4π

∫ ∞

0

dpp
1

p2

2m − µ
. (F.6)

これを解くと、化学ポテンシャル µは

µ ≃ −1

2
Ebind, (F.7)

となり、|µ|は２体分子の結合エネルギー (Ebind = 1/(ma22D)) の半分の値となる。この

結果を式 (F.4)の ∆PG に代入すると、

∆PG ≃ 2

√
εF

(
εF +

Ebind

2

)
. (F.8)

Ebind → ∞の強結合極限では、

∆PG −−−−−−→
Ebind→∞

√
2EbindεF. (F.9)

F.2 自己無撞着 T 行列近似 (SCTMA)におけるグリーン関数

(式 (3.31))の導出

SCTMAの場合も、低エネルギー、長波長領域の対形成揺らぎが発達して、

Γ−1(Q = 0, iνm = 0) ≃ 0, (F.10)

となる領域では TMA同様に静的近似を用いることができる [107]。SCTMAの自己エネ

ルギー (式 (3.22))は

ΣSCTMA(p, iωn) ≃ ΣH +G(−p,−iωn)× T
∑

Q,iνm

Γ(Q, iνm). (F.11)

式 (F.11)では、定数シフトの寄与 ΣH も残している。ただし、本論文ではグリーン関数

(式 (3.21)) を考える際、この補正項は化学ポテンシャル µ に吸収させ、吸収させた化学
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ポテンシャルを有効化学ポテンシャル µ∗ [87,107,108]として考える。この時、式 (F.11)

の２項目を Σ′(p, iωn)とすると、この Σ′(p, iωn)に対し、TMA同様に静的近似

Σ′(p, iωn) = G(−p,−iωn)× T
∑

Q,iνm

Γ(Q, iνm), (F.12)

を導入する (式 (3.29)に相当)。擬ギャップパラメータ (式 (3.30))を用いると、式 (F.12)

は

Σ′(p, iωn) =
∆2

PG

iωn + ξ∗−p +Σ′(−p,−iωn)
, (F.13)

となる。

式 (F.13)は自己エネルギーに対し、自己無撞着な方程式である。式 (F.13)で p→ −p、
iωn → −iωn とすると

Σ′(−p,−iωn) =
∆2

PG

−iωn + ξ∗p +Σ′(p, iωn)
, (F.14)

となるので、これを式 (F.13)に代入すると、Σ′(p, iωn)に対する次の２次方程式を得る:[
iωn + ξ∗p

]
Σ′2(p, iωn) +

[
ω2
n + ξ∗2p

]
Σ′(p, iωn) +

[
iωn − ξ∗p

]
∆2

PG = 0. (F.15)

これを解くと、

Σ′(p, iωn) =
−[ω2

n + ξ∗2p ]±
√

[ω2
n + ξ∗2p ]2 + 4[ω2

n + ξ∗2p ]∆2
PG

2[iωn + ξ∗p]

=
1

2

1

iωn + ξ∗p

[[
iωn + ξ∗p

][
iωn − ξ∗p

] [
1±

√
1 +

4∆2
PG

ω2
n + ξ∗2p

]]
. (F.16)

式 (F.16) を解析接続 (iωn → ω + iδ) したものが、粒子の寿命を与えることを利用する

と、式 (F.16)の２つの解のうち、物理的に正しいものは “−”の方であることが分かる。

1−
√
1 + x = −x/(1 +

√
1 + x)と書けることを用いると、結果として静的近似の下での

SCTMAの自己エネルギーは

Σ′(p, iωn) =
∆̃2

PG(p, iωn)

iωn + ξ∗p
, (F.17)

となる。ただし、

∆̃2
PG(p, iωn) =

2∆2
PG

1 +

√
1 +

4∆2
PG

ω2
n+ξ∗2p

. (F.18)

式 (F.17)の自己エネルギーを用いると、SCTMAの１粒子温度グリーン関数は

G(p, iωn) = −
iωn + ξ∗p

ω2
n + ξ∗2p + ∆̃2

PG(p, iωn)
, (F.19)
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となり、静的近似のグリーン関数 (式 (3.31))が得られた。

TMA のグリーン関数 (式 (3.11)) は “静的” な擬ギャップパラメータ ∆PG(式 (3.10))

を用いた表式であったが、SCTMAでは “動的”な擬ギャップパラメータ ∆̃PG(p, iωn)が

１粒子グリーン関数に現れる。この違いが１粒子励起を考える際に、準粒子の寿命となっ

て現れる。
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静的近似のもとでのクーパー対の重
心運動量分布 nQの表式

式 (2.23)で与えられるクーパー対の重心運動量分布に対し、TMAの１粒子グリーン関

数を静的近似における表式 (3.11) で置き換えると、

nQ = T
∑
iνm

Γ0(Q, iνm)T
∑
p,iωn

G0(Q− p, iνm − iωn)G0(p, iωn)
iωn + ξp

(iωn)2 − E2
p

. (G.1)

フェルミオンの松原周波数 ωn = πT (2n+ 1) (n = 0,±1,±2, · · · )を実行すると、

nQ = −T
∑
iνm

Γ0(Q, iνm)

×
∑
p

[
− nF(ξp)

ξp + ξQ−p − iνm

2ξp
∆2

PG

+
iνm + ξp − ξQ−p

iνm − ξp − ξQ−p

nF(−ξQ−p)

[iνm − ξQ−p − Ep][iνm − ξQ−p − Ep]

+
1

2Ep

nF(Ep)

Ep + ξQ−p − iνm

Ep + ξp
Ep − ξp

+
1

2Ep

nF(−Ep)

Ep − ξQ−p + iνm

Ep − ξp
Ep + ξp

]
. (G.2)

低温領域でかつ強結合領域の場合、|µ/T | ≫ 1 かつ |µ| ≫ εF が成立するが、その場合、

式 (G.2)は４項目が支配的となる。そこで、その項のみ残すと

nQ = −T
∑
iνm

Γ0(Q, iνm)
∑
p

1

2Ep

nF(−Ep)

Ep − ξQ−p + iνm

Ep − ξp
Ep + ξp

. (G.3)

強結合領域において、多体散乱行列 Γ0(Q, iνm)は式 (E.3)で与えられることを用いると、

nQ =
8πµ

m

∑
p

1

2Ep

Ep − ξp
Ep + ξp

T
∑
iνm

1

iνm − Q2

2(2m) + µB

1

iνm + Ep − ξQ−p
. (G.4)
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ボゾンの松原周波数 νm = 2πm (m = 0,±1,±2, · · · )の和を実行すると

nQ = −8πµ

m

∑
p

1

2Ep

Ep − ξp
Ep + ξp

×

 nB

(
Q2

2(2m) − µB

)
Q2

2(2m) − µB + Ep − ξQ−p

+
nB(ξQ−p − Ep)

− Q2

2(2m) + µB − Ep + ξQ−p

 .

(G.5)

強結合領域 |µ| ≫ εF かつ、µB ≃ 0 の時、１項目が支配的であり、２項目は無視できる。

また、１項目は Q = 0近傍での nQ が大きくなることを用いると、pの和は解析的に実

行することができ、式 (G.5)は

nQ =
2|µ|
∆2

PG

[√
µ2 +∆2

PG − |µ|
]
nB

(
Q2

2(2m)
− µB

)
. (G.6)

式 (G.6)の係数を Z とし、式 (F.4)を用いると、

Z =
2|µ|
∆2

PG

[√
µ2 +∆2

PG − |µ|
]
=

2|µ|
4εF(εF + |µ|)

[√
(|µ|+ 2εF)2 − |µ|

]
=

|µ|
|µ|+ εF

.

(G.7)

この係数 Z を用いると、式 (G.6)は

nQ = ZnB

(
Q2

2(2m)
− µB

)
. (G.8)
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SCTMAにおける式 (3.40)と式
(3.27)が等価であることの証明

ここでは、式 (3.40)と式 (3.27)が等価であることを示す。熱力学ポテンシャル Ω (式

(3.35))を T、µ固定で ln a2D に関して偏微分すると、式 (3.35)中の自由フェルミ原子気

体の熱力学ポテンシャル Ω0 は
∂Ω0

∂ ln a2D

∣∣∣∣
T,µ

= 0. (H.1)

そのため、式 (3.40)は熱力学ポテンシャルの相互作用の補正項 (式 (3.37))が残り、

∂Ω

∂ ln a2D

∣∣∣∣
T,µ

=2T
∑
p,iωn

[
∂ lnG(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

−G−1
0 (p, iωn)

∂G(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

]

+ T
∑

Q,iνm

Γ(Q, iνm)
∂Π(Q, iνm)

∂ ln a2D

∣∣∣∣
T,µ

+ U−1T
∑

Q,iνm

Γ(Q, iνm)Π(Q, iνm)
∂U

ln a2D

∣∣∣∣
T,µ

, (H.2)

となる。ここで、多体散乱行列 Γ(Q, iνm)は式 (3.23)で書けることを用いた。

式 (H.2)の１行目において、

∂ lnG(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

= G−1(p, iωn)
∂G(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

, (H.3)

と書けることから、

∂ lnG(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

−G−1
0 (p, iωn)

∂G(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

= −ΣSCTMA(p, iωn)
∂G(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

, (H.4)
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となる。ここで、式 (3.21)と式 (2.9)を用いた。

式 (H.2)の２行目において、最低次の対相関関数 Π(Q, iνm) (式 (3.24))に関しては、

∂Π(Q, iνm)

∂ ln a2D

∣∣∣∣
T,µ

= T
∑
p,iωn

[
∂G(p+Q/2, iωn + iνm)

∂ ln a2D

∣∣∣∣
T,µ

G(−p+Q/2,−iωn)

+G(p+Q/2, iωn + iνm)
∂G(−p+Q/2,−iωn)

∂ ln a2D

∣∣∣∣
T,µ

]
= 2T

∑
p,iωn

G(Q− p, iνm − iωn)
∂G(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

. (H.5)

ここで、１行目に関しては変数変換 p+Q/2 → p、iνn + iωn → iωn、２行目に関しては

変数変換 −p+Q/2 → p、−iωn → iωn とし、３行目を導いた。

式 (H.2)の３行目では、式 (3.23)より、

Γ(Q, iνm)Π(Q, iνm) = 1 + U−1Γ(Q, iνm). (H.6)

松原周波数 iνm に依存しない寄与は、松原周波数 iνm の和を実行すると 0になり、また、

∂U

ln a2D

∣∣∣∣
T,µ

= −U2 m

2π
, (H.7)

となるため、式 (H.2)の３行目は

U−1T
∑

Q,iνm

Γ(Q, iνm)Π(Q, iνm)
∂U

ln a2D

∣∣∣∣
T,µ

= −m

2π
T

∑
Q,iνm

Γ(Q, iνm). (H.8)

以上の結果を用いると、式 (H.2)は

∂Ω

∂ ln a2D

∣∣∣∣
T,µ

=− 2T
∑
p,iωn

ΣSCTMA(p, iωn)
∂G(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

+ 2T
∑
p,iωn

T ∑
Q,iνm

Γ(Q, iνm)G(Q− p, iνm − iωn)

 ∂G(p, iωn)

∂ ln a2D

∣∣∣∣
T,µ

− m

2π
T

∑
Q,iνm

Γ(Q, iνm)

=
m

2π

−T
∑

Q,iνm

Γ(Q, iνm)

 . (H.9)

ここで、２行目の四角括弧が自己エネルギー (式 (3.22)) になることを用いた。式 (H.9)

の左辺は式 (3.40)との関係から、C/(2πm)と書けることから、式 (H.9)は

C = −m2T
∑

Q,iνm

Γ(Q, iνm), (H.10)

となり、SCTMAの枠組みで式 (3.40)が式 (3.27)と等価であることが示された。
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Rev. Lett. 106, 105301 (2011).

[23] P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hu, M. Mark, S. Hoinka, M. Lingham,

P. Hannaford, and C. J. Vale, Phys. Rev. Lett. 106, 105304 (2011).
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