
 

 

 

 

 

 

 

 

 

A Thesis for the Degree of Ph.D. in Science 

 

 

 

Thermodynamic Properties of a Strongly 

Interacting Ultracold Fermi Gas and 

Application to Neutron Star Equation of State 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

February 2018 

 

 

Graduate School of Science and Technology 

Keio University 

 

 

Pieter van Wyk 
 

 

 



Abstract

In this thesis, I theoretically investigate thermodynamic properties of an ultra-
cold Fermi gas. Including pairing fluctuations within the framework of the theory
developed by Nozières and Schmitt-Rink (NSR), I examine strong-coupling cor-
rections to the internal energy, as well as the specific heat at constant volume CV ,
over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensa-
tion) crossover region. Using the similarity between a superfluid Fermi gas in the
unitary regime and the crust regime of a neutron star interior, I also show an ap-
plication of the former atomic system as a quantum simulator for the study of the
latter.

In the normal state of an ultracold Fermi gas, CV is found to be sensitive to pair-
ing fluctuations. From the detailed temperature dependence of CV , I identify the
region where pairing fluctuations dominate over the system, as well as the region
where most atoms form bound molecules, in the phase diagram with respect to
the strength of a pairing interaction and the temperature.

Although properties of the crust regime of a neutron star is expected to be similar
to a superfluid Fermi gas in the unitary regime far below Tc, one cannot immedi-
ately use results obtained in the latter for the study of the former. This is because
the magnitude of the effective range reff is very different between the two. That is,
while reff is negligibly small in ultracold Fermi gases, one cannot ignore reff = 2.7
fm in the neutron star case. In this thesis, I theoretically make up for this dif-
ference, to examine the neutron star equation of state (EOS). For this purpose, I
first show that the NSR internal energy agrees well with the recent experiment
on a superfluid 6Li Fermi gas, far below Tc. I then extend this theory, to include
the non-vanishing effective range reff = 2.7 fm. The calculated EOS by this ex-
tended NSR scheme is found to well reproduce previous results in the low-density
regime, obtained in nuclear physics. This agreement indicates the validity of a
superfluid Fermi gas as a quantum simulator for the study of the low-density crust
regime of a neutron star interior.
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Chapter 1

Introduction

In this chapter we introduce the ultracold Fermi gas in the BCS-BEC crossover
region, as a useful system for studying strong correlation effects. After giving an
outline of ultra cold Fermi gas physics and the BCS-BEC crossover in Sec.1.1,
we discuss recent measurements on thermodynamic quantities in this system in
Sec.1.2. In Sec.1.3 the specific heat at constant volume CV is introduced as a
useful quantity for studying strong-coupling effects in the BCS-BEC crossover
region of an ultracold Fermi gas. In Sec.1.4. we give a brief introduction to
neutron star physics, and discuss how the ultracold Fermi gas could be used as
a quantum simulator to study this mysterious astronomical object. Finally, in
Sec.1.5. we give the purpose and organisation of this thesis.

1.1 BCS-BEC Crossover In An Ultracold Fermi Gas
With A Feshbach Resonance

The study of strongly correlated many-body quantum systems is one of the most
exciting challenges in modern condensed matter physics. Together with quantum
statistics (Fermi or Bose), as well as the system dimension, various novel phe-
nomena have been discussed in these systems, such as superconductivity, Bose-
Einstein condensation (BEC) [1], fractional quantum Hall state, and quantum spin
liquid [2]. Cold atom physics is turning out to be a crucial key element in unlock-
ing mysteries originating from strong correlations [3].

Due to their underlying simplicity, as well as high controllability, gasses of trapped
Fermi and Bose atoms have attracted much experimental and theoretical attention
[1, 3–42]. One of the most striking features of these systems is that one can ex-
perimentally tune the interaction between atoms by using a Feshbach resonance
[6]. Using this technique, the so-called BCS (Bardeen-Cooper-Schrieffer)-BEC
crossover phenomenon has been realised in 40K [9] and 6Li [10–12] Fermi gas.
Here the character of a Fermi superfluid continuously changes from the weak-
coupling BCS-type to BEC of tightly bound molecules that have already been
formed above the superfluid phase transition temperature Tc with increasing the
strength of a pairing interaction (see Fig.1.1). Before this achievement in cold
atom physics, this many-body phenomenon had been merely an academic prob-
lem, although it has also been discussed as a possible mechanism of the pseudogap
observed in the underdoped region of high-Tc cuprates [43–45].
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Figure 1.1: Schematic illustration of the BCS-BEC crossover in an ultracold
Fermi gas. (a) weak-coupling BCS regime, where Cooper pairs are largely over-
lapping. (b) Unitarity limit, where the pairing size is comparable to the inter-
atomic distance. (c) Strong-coupling BEC regime, where the molecular size is
much smaller than the interatomic distance. The blue and orange spheres de-
scribes Fermi atoms in different hyperfine states.
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Figure 1.2: (a) Schematic illustration of a Feshbach resonance. The orange and
blue spheres represent Fermi atoms in different hyperfine states. (b) Interaction
potential as a function of the relative distance between two atoms in the closed and
open-channel, respectively. 2ν is the threshold energy of a Feshbach resonance.

Since the realisation of superfluid 40K and 6Li Fermi gases, the BCS-BEC crossover
has become one of the central topics, as a realistic problem, not only in cold atom
physics, but also in the field of strong-coupling Fermi superfluids [46–54]. Very
recently, the BCS-BEC crossover has been discussed in the unconventional super-
conductor FeSe [55, 56].

To simply explain how to tune an atomic interaction by using a Feshbach reso-
nance, we schematically draw this phenomenon in Fig.1.2 (a). In this resonance
phenomenon, atoms (open channel) form a quasi molecular boson (closed chan-
nel) which is formed in the dip of a Lenard-Jones type interatomic potential shown
in Fig.1.2 (b), and it again dissociates into two atoms (open channel). In this case,
since the atomic hyperfine states in the open channel are different from those in
the closed channel (which is caused by the hyperfine interaction), their Zeeman
energies are different from each other under the external magnetic field. As a re-
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CHAPTER 1. INTRODUCTION

Figure 1.3: Magnetic field dependence of the s-wave scattering length as(B) near
a Feshbach resonance at B0=224.21± 0.05 G in a 40K Fermi atom gas. This inter-
action works between the hyperfine states |9/2,−9/2⟩ and |9/2,−7/2⟩. [Reprinted
figure with the permission from Macmillan Publishers Ltd: Nature, C. A. Regal,
C. Ticknor, J. L. Bohn and D. S. Jin, “Creation of ultracold molecules from a
Fermi gas of atoms,” 424, 47-50 (2003), copyright (2003).]

sult, the energy of the Feshbach molecular state (closed channel) 2ν in Fig.1.2 (b)
depends on the difference of the Zeeman energies between the two channels. This
means that the energy 2ν can be tuned by adjusting an external magnetic field.
This magnetically tunable resonance energy 2ν is also referred to as the threshold
energy of a Feshbach resonance in the interaction.

When we evaluate this Feshbach resonance process within the second order per-
turbation theory, the effective interaction Ueff between two Fermi atoms in the
open channel is obtained as

Ueff = g
1

0 − 2ν
g = −g2

2ν
, (1.1)

where g is a Feshbach coupling, and we have assumed that the total energy of the
initial atomic states equals zero. When an external magnetic field B is close to a
Feshbach resonance field B0, the threshold energy 2ν may be written as

2ν = α(B − B0), (1.2)

where α is a constant.

Atoms also feel a non-resonant weak interaction potential U0. Measuring the
interaction strength in terms of the scattering length as(B) we obtain

as(B) = abg
s

[
1 − λ

B − B0

]
, (1.3)

where abg
s is a background s-wave scattering length associated with U0, and λ is

the width of a Feshbach resonance.
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Figure 1.3 shows an example of a Feshbach resonance-induced tunable interaction
in a 40K Fermi gas. As expected from Eq.(1.3), the tunable s-wave scattering
length changes its sign at the resonance field B0 ≃ 224 G.

So far, the superfluid phase transition, as well as the BCS-BEC crossover, have
been realised in 40K and 6Li Fermi gases [3, 9, 11, 12]. In the former case, the
strength of a pairing interaction working between |F = 9/2, Fz = −9/2⟩ and
|F = 9/2, Fz = −7/2⟩ is tuned by the Feshbach technique (see Fig.1.3). Here,
F = S + I, when S is the electron spin and I is the nuclear spin. In the case
of a 6Li Fermi gas this technique is used to tune the interaction strength between
|F = 1/2, Fz = 1/2⟩ and |F = 1/2, Fz = −1/2⟩. Since the detailed atomic states
are actually irrelevant in considering the BCS-BEC crossover, they are usually
described by a pseudo-spin σ =↑, ↓.

1.2 Observed Quantities In The BCS-BEC Crossover
Region

While the tunable pairing interaction associated with a Feshbach resonance is an
advantage of cold Fermi gas physics, it was difficult to observe various physical
quantities in the BCS-BEC crossover region in the early stage of research for
superfluid 40K and 6Li Fermi gases [1, 3]. However, extensive experimental efforts
have enabled us to measure several quantities that are useful in examining strong-
coupling properties of this system in the crossover region [32, 33].

Figure 1.4 shows the results of the photoemission-type experiment on a 40K Fermi
gas developed by JILA group [25, 26]. This experiment is similar to the photoe-
mission spectroscopy in condensed matter physics, and spectral intensity involves
information about Fermi single-particle excitations. Indeed, in the weak-coupling
BCS regime shown in Fig.1.4 (a), the spectral peak line is just along the free
particle dispersion ω = k2/2m. Thus, using this experimental technique, we can
observe how single-particle properties of an ultracold Fermi gas varies as one in-
creases the strength of a pairing interaction in the BCS-BEC crossover region.

At the unitarity (which may be regarded as the centre of the BCS-BEC crossover
region), we see in Fig.1.4 (b) that the spectral intensity becomes broad, and the
peak positions (white dots) deviate from the free particle dispersion (black solid
line), to exhibit the so-called back-bending behaviour (the hump structure seen
around k = 10 µm−1 in Fig.1.4 (b)).

Regarding this, the broadening of the spectral peak indicates the short lifetime of
a quasiparticle excitation due to strong pairing interaction in the unitarity limit.
For the back bending behaviour, the peak curve is similar to the lower branch of
the Bogoliubov single-particle excitations in the BCS-theory

Eb = −

√(
k2

2m
− µ

)2

+ ∆2, (1.4)

(µ is the Fermi chemical potential, and ∆ is the superfluid order parameter), al-
though the system is in the normal state in the case of Fig.1.4 (b). When we recall
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Figure 1.4: Observed photoemission spectra in the BCS-BEC crossover regime
of a 40K Fermi gas [25]. (a) Weak-coupling BCS regime. (b) Unitarity limit. (c)
Strong-coupling BEC regime. The solid curve represents the free particle disper-
sion ω = k2/2m. The white dots are peak positions of the spectral intensity. The
white curves in (b) and (c) represent fittings with respect to the Bogoliubov-type
dispersion in the BCS theory. In panel (b), the so-called back bending structure of
the spectral weight peak is interpreted as indirect evidence for a pseudogap phe-
nomenon, associated with strong pairing fluctuations at unitarity [22]. [Reprinted
figure with the permission from Macmillan Publishers Ltd: Nature, J. T. Stewart,
J. P. Gaebler, D. S. Jin, “Using photoemission spectroscopy to probe a strongly
interacting Fermi gas,” 454, 744 (2008), copyright (2008).]

that ∆ in the BCS state is directly related to single-particle excitation gap Egap, as

Egap = 2∆, (1.5)

the back bending behaviour seen in Fig.1.4 (b) implies the existence of a quantity
which plays a similar role to ∆ for single-particle excitations. According to the
preformed pair scenario [3, 4, 22, 24, 44, 45], this quantity is sometimes referred
to as the pseudogap parameter (∆pg), which physically describes the binding en-
ergy of a preformed Cooper pair which is formed in the normal state, above Tc, due
to strong pairing interactions. Actually, preformed Cooper pairs are considered to
not be stable, but fluctuation in the unitarity regime, so that the BCS-state-like
clear excitation gap is not expected. Instead, a partially filled gap structure (which
is also referred to as the pseudogap) is expected in the single-particle density of
states. Although the direct observation of the density of states is still difficult in
the current stage of cold Fermi gas physics, strong-coupling theories that can well
explain the observed photoemission spectrum in Fig.1.4 (b) predict the pseudo-
gapped density of states in the BCS-BEC crossover region near Tc [22].
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Figure 1.5: Measured temperature dependence of thermodynamic quantities in
a unitary 6Li Fermi atom gas (red circles). A Compressibility κ normalised by
the compressibility κ0 = 3V/2εFN of a free Fermi gas at T = 0 (where εF is
the Fermi energy and N the total number of atoms). B Specific heat at con-
stant volume CV . C Condensate Fraction N0. The black and blue solid curves
shows theoretical results for a free Fermi gas, and third-order virial expansion
for a unitary Fermi gas, respectively. The black open squares show experimen-
tal measurements for a noninteracting Fermi gas. The green solid (blue curved)
line shows model calculations including (excluding) finite imaging resolution ef-
fects. The vertical dashed line shows the position of the measured superfluid
phase transition temperature Tc = 0.167TF, where TF is the Fermi temperature.
[From M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, “Revealing
the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary
Fermi Gas,” Science. 335. 563-567 (2012). Reprinted with permission from
AAAS.http://dx.doi.org/10.1126/science.1214987.]

In the strong coupling BEC regime, the photoemission spectre exhibits a double
peak structure, as shown in Fig.1.4 (c). In this region, most Fermi atoms form
tightly bound stable molecules, so that the energy difference between the two
branches is considered as the dissociation energy of the molecules.

Although the preformed pair scenario, and associated pseudogap scenario, is con-
sistent with the photoemission-type experiment shown in Fig.1.4, experiments on
the local pressure in a 6Li unitary Fermi gas is well explained by the ordinary
Fermi liquid theory [27]. Since the pseudogap does not appear in a ordinary
Fermi liquid, the existence of this many-body phenomenon is still in debate in
cold Fermi gas physics.

6



CHAPTER 1. INTRODUCTION

2.5

2.0

1.5

1.0

0.5

0.0

S
/N
k
B

0.60.40.20.0

T/TF

Figure 1.6: Measured entropy S per particle (red circles). The black solid
curves and open squares show the results for a free Fermi gas, and the self-
consistent T-matrix approximation (SCTMA) [29], respectively. [From M. J.
H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, “Revealing the
Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary
Fermi Gas,” Science. 335. 563-567 (2012). Reprinted with permission from
AAAS.http://dx.doi.org/10.1126/science.1214987.]

Besides the photoemission spectre, various thermodynamic quantities have be-
come experimentally accessible in the BCS-BEC crossover regime of an ultracold
Fermi gas. Figures 1.5, 1.6 and 1.7 show the temperature dependence of thermo-
dynamic quantities in a unitary 6Li Fermi gas [32], and the ground-state quantities
in a 6Li superfluid Fermi gas in the BCS-unitary regime [33].

If the normal phase of an ultracold Fermi gas was really well described by the
Landau theory for a normal Fermi liquid [57], the compressibility κ and specific
heat CV shown in Fig.1.5 (a) and (b) should not significantly deviate from the
case of a normal Fermi gas, except for mass renormalisation (effective mass) and
quasi-particle life time away from the Fermi level. However, it is clear that this
is not the case, especially as one approaches the phase transition temperature Tc,
from above. Indeed, CV in the case of a normal Fermi liquid is linear in tem-
perature in the low-temperature region where T/TF ≪ 1 (where TF is the Fermi
temperature). The measured CV is, however, sharply decreasing with increasing
the temperature near Tc, akin to the so-called lambda transition known in liquid
4He. This similarity has lead the authors of [32] to refer to the superfluid transi-
tion here as a “lambda transition”, although the system is a 6Li Fermi gas. Since
discussions concerning the pseudogap phenomenon, as well as preformed Cooper
pairs in an ultracold Fermi gas has mostly been confined to the single-particle
spectral weight, an alternate approach from thermodynamics to this phenomena is
expected to be useful. In this thesis, we pick up the specific heat at constant vol-
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Figure 1.7: Measured ground state (a) chemical potential and (b) internal energy
of a superfluid 6Li Fermi gas in the BCS-unitarity regime [33]. (kFas)−1 is the
interaction strength, where (kFas)−1 <∼ − 1 is the weak-coupling BCS regime, and
(kFas)−1 = 0 is the unitarity limit. The blue shaded area is the experimental mea-
surements. The dotted line shows results in the BCS-Leggett mean-field theory.

ume CV for the study of strong-coupling phenomena in the BCS-BEC crossover
region.

In Fig.1.7, we find that although thermal fluctuations no longer exist at T = 0, the
mean-field based BCS-Leggett theory cannot explain the observed internal energy
E, nor the Fermi chemical potential µ of a superfluid 6Li Fermi gas near T = 0,
at a quantitative level. This indicates that, even far below Tc, we need to take into
account strong-coupling effects beyond the mean-field theory in the region shown
in Fig.1.7. In this thesis, we also demonstrate that the discrepancy between the
mean-field result and experimental data in Fig.1.7 can be solved when we include
effects of superfluid fluctuations in a consistent manner. As will be explained later,
the region shown in Fig.1.7 is expected to be similar to the 1S0 neutron superfluid,
expected to exist in the crust regime of a neutron star. Thus, understanding this
region would be important when one attempts to use a superfluid Fermi gas as a
quantum simulator for the study of this compact star.

1.3 Specific Heat As A Probe For Pairing Fluctua-
tions

In this thesis, we pick up the specific heat at constant volume CV (which has
recently become experimentally accessible, as shown in Fig.1.5) to clarify strong
coupling properties of an ultracold Fermi gas in the BCS-BEC crossover region.
In this section I explain the reason why this thermodynamic quantity is useful for
our purpose.

According to the weak-coupling BCS theory, the specific heat exhibits a discon-
tinuity at Tc, below which it decreases exponentially, as shown in figure 1.8 (a).
This behaviour reflects the opening of the BCS excitation gap. Above Tc, CV

shows a linear-temperature dependence, when Tc ≤ T ≪ TF, due to a nearly
constant density of states near the Fermi level. Indeed, these characteristic be-
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Figure 1.8: (a) Calculated Specific heat CV in the mean-field BCS theory. CV

above Tc is proportional to T . (b) Observed CV in Al (Tc = 1.163◦K). The open
squares and triangles are the measurements with no external magnetic field. The
open circles are measurements under a magnetic field of 300 G, which is strong
enough to destroy superconductivity in Al, so that the system is in the normal state.
[Reprint figure with permission from N. E. Phillips, “Heat Capacity of Aluminum
between 0.1◦K and 4.0◦K,” Phys. Rev. 114, 676 (1959). Copyright (1959) by the
American Physical Society. https://doi.org/10.1103/PhysRev.114.676.]

haviours have been observed in the conventional superconductor Al, as shown in
Fig.1.8 (b).

On the other hand, as shown in Fig.1.9, the specific heat of an ideal Bose gas ex-
hibits a very different temperature dependence. That is, it monotonically decreases
with increasing the temperature above the BEC phase transition temperature TBEC.
There is also no jump in the specific heat at TBEC, being in contrast to the fermion
case shown in Fig.1.8 (a). Since the formation of preformed pairs in the BCS-BEC
crossover regime may be viewed as an enhancement of the bosonic character of a
Fermi gas, CV is expected to provide useful information about paring fluctuations
above Tc.

This prospect can be further motivated by the thermodynamic relation [60]

CV = T
(
∂S
∂T

)
N,V
, (1.6)

connecting CV with the entropy S . Noting that the entropy S = kB lnW (where kB

is Boltzmann’s constant) is directly related to the total numberW of microstates
of the system, one may expect that, metastable bound states (fluctuating preformed
Cooper pairs) associated with pairing fluctuations which are enhanced in the nor-
mal state near Tc, would decreaseW, as well as S . This would lead to enhance-
ment of CV with decreasing the temperature towards Tc. Indeed, as seen in Fig.1.6
the entropy of a unitary 6Li Fermi gas becomes slightly suppressed in the normal
state near Tc = 0.167TF, compared to the non-interacting case.
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Figure 1.9: Specific heat CV in an ideal Bose gas. TBEC is the BEC transition tem-
perature. Note that the temperature dependence of CV above TBEC is qualitatively
different from a free Fermi gas (where CV ∝ T ).

We note that the specific heat has already been used for the study of strong cor-
relations in high-Tc cuprates [59]. In the underdoped regime shown in Fig.1.10
(a) and (b) the specific heat coefficient γSC smoothly varies near Tc, indicating the
absence of the specific heat jump at Tc. In this regime, the pseudogap has been
observed, although the origin of this is still unclear because of the complexity of
this strongly correlated electron system [43–45, 59]. In the overdoped regime (
Fig.1.10 (d)) γSC has a sharp peak at Tc, indicating the discontinuity of CV at this
temperature, as in the weak-coupling BCS theory. In this regime, the pseudogap
is absent. These results also make us expect that the specific heat is effective for
the study of the strong-coupling effects in the BCS-BEC crossover region of an
ultracold Fermi gas.

We also note that, as another thermodynamic quantity, usefulness of the spin sus-
ceptibility χs for the study of BCS-BEC physics in an ultracold Fermi gas has been
theoretically explored [24]. This approach is based on the idea that the preformed
Cooper pair is a (pseudo)spin singlet state, so that χs is expected to be suppressed
in the region where pairing fluctuations are enhanced. Using this so-called spingap
phenomenon, ref [24] determines the region where pairing fluctuations dominate
over system properties, which is close to the pseudogap regime (where a pseudo-
gap appears in the density of states [22]), as expected.

However, although spin susceptibility is useful for the study of strong-coupling
effects from the viewpoint of spin degrees of freedom, it is difficult to obtain
useful information from this quantity in the strong-coupling BEC regime. This is
simply because most Fermi atoms form spin-singlet pairs, so that in this region χs

is highly suppressed. In this regard, the specific heat is not suppressed, even in the
BEC regime (except near T = 0). Thus, using this, we can safely examine strong-
coupling effects over the entire BCS-BEC crossover region. This is a reason why
we pick up this thermodynamic quantity for our purpose.
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(a) Underdoped region (b) Underdoped region (c) Overdoped region

Figure 1.10: Observed specific heat coefficient γSC = [CV −CV (N)] /T , where
CV (N) is the specific heat measured under an external magnetic field
which is strong enough to destroy superconductivity. (a) and (b) under-
doped Bi2Sr2−xLaxCuO6+δ ((a) x = 0.7, and (b) x = 0.8). (c) Overdoped
Bi1.74Sr1.88Pb0.38CuO6+δ. The vertical dashed line is at Tc. [Reprint figure with
permission from H. H. Wen, G. Mu, H. Luo, H. Yang, L. Shan, C. Ren, P. Cheng,
J. Yan, L. Fang, “Specific-Heat Measurement of a Residual Superconducting State
in the Normal State of Underdoped Bi2Sr2−xLaxCuO6+δ Cuprate Superconduc-
tors,” Phys. Rev. Lett. 103, 067002 (2009). Copyright (2009) by the American
Physical Society. https://doi.org/10.1103/PhysRevLett.103.067002.]

1.4 Internal Energy Of A Superfluid Fermi Atom
Gas And Application To Neutron Star Equation
Of State

Because of the high tunability of various physical parameters, a cold atomic gas is
expected to be a useful quantum simulator for the study of unsolved many-body
quantum systems, such as high-Tc cuprates. At present, however, this expectation
has not been realised yet. This is because it is still difficult to completely replicate
any target system by an ultracold atomic gas, even when one maximally makes
use of the high controllability of the gas system [31, 44, 45].

To realise a quantum simulator made of a cold atomic gas, besides the above men-
tioned tunability, the recent theoretical development, especially in cold Fermi gas
physics, may be helpful. Although quantitative theoretical analysis on strongly in-
teracting fermions is usually difficult, the recent development of strong-coupling
theory has enabled us to (semi) quantitatively compare theoretical predictions with
experimental data in the BCS-BEC crossover regime of an ultracold Fermi gas, to
some extent [22–24]. Then, even if the replication of the target system by an
ultracold Fermi gas is incomplete, one may still quantum-simulate it by making
up for the difference between the two by this strong-coupling theory. Such a hy-
brid approach would make the realisation of a cold-Fermi-gas quantum simulator
more promising than the current approach aiming to the perfect replication of an
unsolved quantum system.

In this thesis, to explore the possibility of this new approach, we pick up the
neutron star. In this section, we give a brief overview of this highly dense astro-
nomical object, to explain how to “quantum-simulate” it using an ultracold Fermi
gas.
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Figure 1.11: Density ρ dependence of the proton fraction Yp = np/nn in non-
interacting nuclear matter. ρ0 = mnn0 is the neutron mass density at the nuclear
saturation density n0 = 0.16 fm−3. The inset shows Yp in the high density regime,
where the dashed line shows the limiting value Yp (ρ→ ∞) = 1/8 (see appendix
A).

1.4.1 Introduction To Neutron Stars

At the end of the lifecycle of a massive star (with mass M >∼ 8M⊙, where M⊙ is
the solar mass), when the mass of its iron core can no longer be sustained by the
pressure of its electrons, gravitational collapse causes the star to explode in su-
pernova. In the collapsing core of this explosion, a neutron star is considered to
be born, as one of the most extreme objects in our universe. While a neutron star
mass is comparable to M⊙, the star radius is at most 10∼15 km. Thus, neutron
stars provide us with a unique opportunity for the study of extreme forms of mat-
ter, such as exotic nuclear superfluids and superconductors, beyond the reach of
current terrestrial experiments.

Although neutron stars actually do not consist of pure neutron matter, it is at least
true that they are very rich in neutrons. To realise this situation the beta decay
plays a crucial role : Neutrons in the vacuum are unstable, and undergo beta-
decay,

n→ p + e + ν̄e, (1.7)

where n, p, e and ν̄e denote a neutron, proton, electron and electron-antineutrino
respectively. In addition to this process atomic nuclei are pressed together in the
neutron star interior, so that, after the so-called neutron drip occurs, the large
Coulomb repulsion between protons leads to the reverse beta decay,

p + e→ n + νe. (1.8)

When Eq.(1.1) and Eq.(1.2) balance out, an equilibrium state is reached with

µn = µp + µe, (1.9)
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Figure 1.12: Schematic illustration of neutron star interior. (a) Overall structure.
N, n, p, e, and µ are nuclei, fluid neutrons and protons, electrons and muons,
respectively. (b) Detailed structure around the boundary between the crust and
core regime. In the low density regime, a lattice of neutron-rich nuclei is immersed
in a fluid of neutrons and relativistic electrons. At higher densities, nuclei are
predicted to deform and connect along certain directions to form extended tubes,
sheets and bubbles of nuclear matter, which is also referred to as nuclear pasta.
[Reprinted figure with the permission from Macmillan Publishers Ltd: Nature,
W. D. Newton, “Neutron stars: A taste of pasta?,” Nature Physics, 9, 396-397,
(2013), copyright (2013).]

where µn, µp and µe are the Fermi chemical potential of a neutron, proton, and
electron, respectively. Along with this beta-equilibrium condition, charge neutral-
ity (requiring the equal number of protons and electrons) leads to a large increase
in neutron density [62–64]. We can simply see this more clearly, by considering
the non-interacting case, where

µi =

√
m2

i c4 + p2
Fic

2. (1.10)

Here, c is the speed of light in vacuum, mi and pFi denotes the mass and Fermi
momentum for i = n, p, e. In this case, defining the proton fraction Yp = np/nn

(where np and nn is the number density of protons and neutrons, respectively)
and solving Eq.(1.9), we obtain Fig.1.11 (For the derivation, see appendix A).
This figure shows that, beta-equilibrium leads to, Yp ≪ 1, that is, the system is
dominated by neutrons. (Note that ρ/ρ0 <∼ 10 in the neutron star case.)

1.4.2 Cold Atoms And Neutron Star Equation Of State
The previous section gave a very simple reason why the interior of a “neutron”
star is expected to be dominated by neutrons. Of course, protons and electrons
still exist in the crust regime. As shown in Fig.1.12, when one passes through the
neutron drip density, the crust regime is expected to be made up out of a lattice
of nuclei surrounded by fluid neutrons, as well as relativistic electrons [65]. This
is somehow similar to a metal, being composed of an ionic lattice and conduction
electrons [57]. As in the metallic case, when we theoretically deal with the crust
regime of a neutron star, in the first step, it would be allowed to approximately
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Figure 1.13: Phase shift δ (kF) reconstructed from partial wave analysis on
neutron-proton scattering data. If we assume isospin symmetry, this figure also
approximately describes the neutron-neutron interaction [66]. Note that the s-
wave interaction (1S0) is dominant in the low-density region (kF <∼ 1.7 fm−1).

ignore the nuclear lattice, and to focus on the neutron liquid [47–49].

To connect neutron star physics and cold Fermi gas physics, we conveniently
show in Fig.1.13 the phase shift data of neutron-proton interaction. Since the so-
called isospin-symmetry approximately holds between proton and neutron [66],
Fig.1.13 may also be viewed as the phase shift data of interacting neutrons. This
figure clearly shows the low density region (kF <∼ 1 fm−1) is dominated by the s-
wave interaction (1S0 in Fig.1.13), which is characterised by the s-wave scattering
length [67]

as = −18.5 fm, (1.11)

as well as the associated effective range

reff = 2.7 fm. (1.12)

In the effective range theory, these are related to the phase shift δ
(

1S0

)
as [68, 69]

k cot δ
(

1S0

)
≃ − 1

as
+

1
2

reffk2. (1.13)

In the low density region 0 ≤ kF <∼ 1 fm−1 in the crust regime of a neutron star,
using the typical value kF = 1 fm−1, one finds the value of the scaled interaction
(kFas)−1 as

(kFas)−1 =
1
−18.5

≃ −0.054, (1.14)

that is, the system is close to the unitarity limit ((kFas)−1 = 0). Because of this
strong pairing interaction in the 1S0 Cooper channel, neutrons are considered to be
nearly in the s-wave superfluid groundstate. Note that, although the temperature
from the surface to the core of a neutron star is expected to vary from T ∼ 106 K
to T ∼ 109 K, due to the large density, the scaled temperature T/TF ≪ 1, because
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Figure 1.14: Phase diagram of an ultracold Fermi gas in the BCS-BEC crossover
region. “neutron star” is the region where the system situation is very similar to
the low density crust regime of a neutron star interior. The interaction strength is
measured in terms of the inverse s-wave scattering length a−1

s , normalized by the
Fermi momentum kF. In this scale, the strength of an s-wave pairing interaction
increases with increasing the value of (kFas)−1. The unitarity limit is as (kFas)−1 =

0.

of the high density. Thus, neutron fluid in the crust regime is similar to the unitary
regime of a superfluid Fermi gas far below Tc.

In addition to this similarity, we also point out that, although the s-wave scattering
length as = −18.5 fm is fixed in the neutron star case, the “scaled interaction
(kFas)−1” varies as one goes inside the neutron star from the surface, because kF

increases with increasing the neutron density. This situation can also be realised
in a superfluid Fermi gas, where (kFas)−1 can be tuned by adjusting the value of
the scattering length as by using the Feshbach resonance technique.

Because physical properties of an ultracold Fermi gas do not depend on the de-
tailed constituent Fermi atoms (6Li or 40K), we expect any experimental results
done in the blue region shown in Fig.1.14 should be readily applicable to the
neutron matter case. This analogy indicates that the recent measurement of the
internal energy (equation of state (EOS)) of a 6Li superfluid Fermi gas in the
“neutron star” region in Fig.1.14 (see Fig.1.7 (b)) may be useful for investigating
the neutron star EOS. Since the recent discovery of the massive neutron stars PSR
J1614-2230 (with a mass M = 1.97 ± 0.04M⊙) using the Shapiro delay [70], and
PSR J0348+0342 (M = 2.01 ± 0.04M⊙) [71], the EOS of a neutron star has at-
tracted much attention, because many proposed EOS cannot explain such a heavy
star [70–74]. This problem is sometimes referred to as the two-solar mass prob-
lem, and is one of the hottest topics in neutron star physics.
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The reason why EOS is considered as a critical key to solve the two-solar mass
problem is that, together with the Tolman-Oppenheimer-Volkov (TOV) equation
[75, 76] (giving the balance between star gravity and internal pressure), EOS en-
ables us to give relation between the stars mass M and the radius R [77]. This
so-called M-R relation conveniently gives the upper limit of the neutron star mass,
so that the precise EOS is necessary for knowing this limit, as well as solving the
two-solar mass problem.

The nearest neutron star RX J1856.5-3754 is 400 light-years away from the earth
[78]. Thus, although many neutron stars have already been discovered [70], this
long distance prevents us from directly determining EOS by astronomical obser-
vations. Although, neutron hallows [79, 80] and skins [81, 82] in neutron-rich
nuclei give some information about neutron matter, since these are few-body sys-
tems, it is still not enough to construct the neutron star EOS, including many-body
effects associated with strong neutron-neutron interactions [64].

Because of these experimental difficulties, the current approaches to the neutron
star EOS heavily relies on theoretical calculations based on Monte Carlo meth-
ods [49, 83–85]. Since these methods employ a realistic pseudopotential which
is calibrated to few-body nucleon scattering experiments [49, 66, 83–85], these
approaches are supported by experiments to some extent. However, many-body
effects are a fully theoretical challenge with no experimental support.

It is exactly this point where ultracold Fermi gases can make a significant con-
tribution to the investigation of the neutron star EOS, because many-body effects
associated with a strong pairing interaction are inherent in there. Indeed, as shown
in Fig.1.7 (b), the observed EOS in the BCS-unitary regime deviates from mean-
field BCS-Leggett theory, indicating the importance of many-body correlations
beyond the mean-field level.

However, in order to use the recent experiment on a 6Li superfluid Fermi gas
shown in Fig.1.7 (b) as data from a “cold Fermi gas quantum simulator” for the
study of the neutron star EOS, we need to correct the data so as to be able to
replicate the crust regime of a neutron star interior. That is, while the effective
range reff is negligibly small in an ultracold Fermi gas, one can’t ignore reff = 2.7
fm [67] in the neutron star case. At present, it is difficult to experimentally tune
the value of reff in cold atom physics. We thus need to make up for this difference
in a theoretical manner.

Although this is still a theoretical challenge, we could resolve ambiguity coming
from such theoretical manipulation, when we employ a reliable strong-coupling
theory which can, at least, well explain the experimental results shown in Fig.1.7.
In this thesis, we take this strategy, to evaluate the neutron star EOS in the low-
density crust regime.

We briefly note that, as seen in Fig.1.13, non-s-wave interaction channels, as well
as three-body forces [61, 86, 87], become important in the deeper region of a neu-
tron star interior, which cannot be “quantum-simulated” by an s-wave superfluid
Fermi gas. In this regard, however, a tunable p-wave interaction associated with a
p-wave Feshbach resonance has been realised [36]. In addition, in the context of
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the so-called Bose nova phenomenon [42], a three-body interaction effect has also
been discussed. Thus, utilising these could make the experiments on cold atoms
more effective in studying the deeper regions of the neutron star EOS in the future.

1.5 Purpose And Organisation Of This Thesis

In this thesis, we theoretically investigate strong-coupling properties of an ultra-
cold Fermi gas. Including pairing fluctuations within the framework of the strong-
coupling theory developed by Nozières and Schmitt-Rink (NSR), we evaluate the
specific heat at constant volume CV , over the entire BCS-BEC crossover region.
This thermodynamic quantity, which has recently been measured in a 6Li unitary
Fermi gas, is ideal for studying how strong pairing fluctuations affect properties
of the system. Analysing detailed temperature dependence of CV , we determine
the region where pairing fluctuations dominate over system properties, as well as
the region where the system may be viewed as a gas of stable molecular bosons,
in the phase diagram of an ultracold Fermi gas with respect to the temperature and
the interaction strength.

We also explore the possibility of using an ultracold Fermi gas as a quantum
simulator for the study of other systems. In contrast to the ordinary approach that
aims to replicate a target system by this atomic gas, our idea is to simply use the
situation which has already been experimentally realised, and to make up for the
difference of a target system in a theoretical manner. To demonstrate this, we
pick up the neutron star EOS in the low-density crust regime. After confirming
that the NSR theory extended to the superfluid phase below Tc can well explain
the observed EOS in the BCS-unitary region of a 6Li superfluid Fermi gas, we
further extend this scheme to include the non-vanishing effective range (reff = 2.7
fm) which is crucial for the neutron star case. The calculated neutron star EOS
is found to agree well with the previous work in nuclear physics, where realistic
neutron-neutron interactions are taken into account.

The outline of this thesis is as follows. In Chap.2, we present our theoretical for-
mulation. The NSR theory, as well as its extension to the superfluid phase are
explained. We also explain how to incorporate effects of a non-vanishing effective
range into the NSR theory, for the study of the neutron star in the low density
region. In Chap.3 we show our results of the specific heat CV in the BCS-BEC
crossover regime of an ultracold Fermi gas. In the normal state, we introduce two
characteristic temperatures T̃ and T̄ from the detailed temperature dependence of
this thermodynamic quantity. Using these we identify the region where pairing
fluctuations are crucial for system properties, as well as the region where the sys-
tem may be viewed as a molecular Bose gas, rather than a Fermi gas, in the phase
diagram with respect to temperature and interaction strength. We also show the
behaviour of CV below Tc is rather simple, in the sense that it simply decreases
with temperature in the whole BCS-BEC crossover region. At the unitarity we
compare our results with the recent experiment on a 6Li Fermi gas. In Chap.4, we
deal with the neutron star EOS. We first show that the NSR theory extended to the
superfluid state below Tc well explains the observed EOS in the BCS-unitary re-
gion of a 6Li superfluid Fermi gas far below Tc. Keeping in mind that this region
is similar to the crust regime of a neutron star interior, we further extended the
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superfluid NSR theory, to include the non-vanishing effective range reff = 2.7 fm
of an s-wave neutron-neutron interaction. We then compare the calculated EOS
with the previous work obtained by nuclear physics. In Chap.5, we summarise
this thesis.

Throughout this thesis, we set ℏ = kB = 1, and take the system volume V = 1, for
simplicity.
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Chapter 2

Strong Coupling Formalism For
Attractively Interacting Fermi
Systems

In this chapter we, explain the strong-coupling theory we employ in this thesis
to study thermodynamic properties of an ultracold Fermi gas in the BCS-BEC
crossover region. We also extend this theoretical framework to include a non-
vanishing effective range reff, being necessary for the neutron star case. In Sec.
2.1, we explain a strong-coupling theory developed by Nozières and Schmitt-Rink
(NSR) [15]. In Sec. 2.2 we extend this to the superfluid phase below the super-
fluid phase transition temperature Tc. These are used to evaluate thermodynamic
quantities, such as the specific heat and internal energy, in Chaps 3 and 4. In Sec.
2.3, we further extend the NSR formalism below Tc, to include effects of non-
vanishing effective range reff, which is applied to the study of the equation of state
of a neutron star in the low density crust regime in Chap. 4.

2.1 Strong Coupling Theory In The Normal State

2.1.1 Model Hamiltonian
We consider a two-component Fermi system described by the Hamiltonian H =
H0 + HI, where

H0 =
∑
p,σ

ξpc†p,σcp,σ (2.1)

is the kinetic term, and

HI = −
∑
p,p′,q

U(p− p′)c†p+q/2,↑c
†
−p+q/2,↓c−p′+q/2,↓cp′+q/2,↑. (2.2)

is the interaction term.

For Eq.(2.1), ξp = εp − µ = p2/(2m) − µ is the kinetic energy of a Fermi parti-
cle with mass m, measured from the Fermi chemical potential µ. In the case of
an ultracold Fermi gas this particle is a 40K or 6Li Fermi atom. For the neutron
star case, this is a neutron. cp,σ is the annihilation operator of a Fermi particle
with spin σ =↑, ↓ (in an ultracolf Fermi gas σ =↑, ↓ are actually pseudospins,
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p'+q/2,-p'+q/2,
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-U(p-p')

p+q/2,

Figure 2.1: Feynman diagram describing the pairing interaction term in HI in
Eq.(2.2). The solid and dotted lines describe the bare single-particle Green’s func-
tion in Eq.(2.15) and the coupling −U(p− p′) < 0, respectively.

0
ΩNSR

-U

0

Figure 2.2: Diagrammatic representation of fluctuation correction ΩNSR to the
thermodynamic potential Ω in the NSR theory[15]. The solid line is the bare
single-particle Green’s function G0

σ=↑,↓ in Eq.(2.18).The dashed line represents
the attractive interaction −U < 0.

describing two different atomic hyperfine states contributing to the pair forma-
tion). The interaction term in Eq.(2.2) describes an attractive two body interaction
(−U(p− p′) < 0), which is diagrammatically described as Fig.2.1.

In the BCS-BEC crossover regime of an ultracold Fermi gas, the attractive pairing
interaction in Eq.(2.2) is known to be well described by a contact-type s-wave one.
That is, one may simply take the coupling −U(p− p′) as a constant −U < 0. For
this “cold Fermi gas case”, Eq.(2.2) is simplified as

HI = −U
∑
p,p′,q

c†p+q/2,↑c
†
−p+q/2,↓c−p′+q/2,↓cp′+q/2,↑. (2.3)

In the following, using Eq.(2.3) we first explain the strong-coupling BCS-BEC
crossover theory above Tc developed by Nozières and Schmitt-Rink (NSR) [15],
and its extension to the superfluid phase below Tc. We will explain a more general
case (Eq.(2.2 )) in Sec.2.3.

2.1.2 NSR Theory In The Normal State

In the NSR theory [15], strong-coupling effects associated with the pairing in-
teraction in Eq.(2.3) can conveniently be incorporated into the theory by taking
into account fluctuation corrections to the thermodynamic potential Ω shown in
Fig.(2.2). To evaluate the NSR correction ΩNSR in Fig.(2.2) we rewrite the parti-
tion function Z as

Z = tre−H/T = tr
[
e−H0/T RI (T )

]
, (2.4)
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where
RI (T ) = eH0/T e−H/T . (2.5)

The thermodynamic potential Ω is then given by

Ω = −T log
[
tr

[
e−H0/T RI (T )

]]
= −T

log
[
tre−H0/T

]
+ log

 tr
[
e−H0/T RI (T )

]
tre−H0/T




= Ω0 + ΩI, (2.6)

where
Ω0 = −T log

[
tre−H0/T

]
= −2T

∑
p

log
[
1 + e−ξp/T

]
(2.7)

is the thermodynamic potential of a free Fermi gas, and

ΩI = −T log ⟨RI (T )⟩0 (2.8)

describe interaction corrections to the thermodynamic potential.

Using the so-called linked cluster theorem [88], one can rewrite the correction
term in Eq.(2.8) as

ΩI = −T log ⟨RI (T )⟩0 = −T
[⟨RI (T )⟩c0 − 1

]
. (2.9)

Here, the superscript “c” means that only connected diagrams are retained.

Noting that RI (1/β) in Eq.(2.5) satisfies (β = 1/T )

∂βRI (1/β) = H0RI (β) − eβH0 (H0 + HI) e−β(H0+HI)

= −H̃I (β) RI (1/β) , (2.10)

(where H̃I (β) = eβH0 HIe−βH0), we find

RI (1/β) = Tτ exp
[
−

∫ β

0
dτ H̃I (τ)

]
. (2.11)

Here Tτ is the time ordered product for the imaginary time τ. Substitution of
Eq.(2.11) into Eq.(2.9) gives,

ΩI = −
1
β

[⟨
Tτ exp

[
−

∫ β

0
dτ H̃I (τ)

]⟩c

0
− 1

]
= −1
β

∞∑
n=1

1
n!

⟨
Tτ

[
−

∫ β

0
dτ H̃I (τ)

]n⟩c

0
, (2.12)

which enables us to evaluate the fluctuation correction term ΩI in a perturbative
manner.

The first order correction (≡ Ω(1)
NSR) in terms of H̃I is given by

Ω
(1)
NSR = −

1
β

⟨
Tτ

[
−

∫ β

0
dτ H̃I (τ)

]⟩c

0

= −U
β

∑
p,p′ ,q

∫ β

0
dτ

⟨
Tτ

[
ĉ†p+q/2,↑ (τ+) ĉ†−p+q/2,↓ (τ+) ĉ−p′+q/2,↓ (τ) ĉp′+q/2,↑ (τ)

]⟩c

0
.

(2.13)
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In the second line in Eq.(2.13), an infinitesimal shift τ → τ+ = τ + δ (0 < δ ≪ 1)
has been introduced to preserve causality. Ω(1)

NSR corresponds to the first diagram
in Fig.2.2. Using the Bloch-De Dominicis theorem [88], we can evaluate ⟨· · ·⟩c0 in
Eq.(2.13) as⟨

Tτ
[
ĉ†p+q/2,↑ (τ+) ĉ†−p+q/2,↓ (τ+) ĉ−p′+q/2,↓ (τ) ĉp′+q/2,↑ (τ)

]⟩c

0

=
⟨
Tτ

[
ĉ†p+q/2,↑ (τ+) ĉ†−p+q/2,↓ (τ+)

]⟩
0

⟨
Tτ

[
ĉ−p′+q/2,↓ (τ) ĉp′+q/2,↑ (τ)

]⟩
0

+
⟨
Tτ

[
ĉ†p+q/2,↑ (τ+) ĉp′+q/2,↑ (τ)

]⟩
0

⟨
Tτ

[
ĉ†−p+q/2,↓ (τ+) ĉ−p′+q/2,↓ (τ)

]⟩
0

−
⟨
Tτ

[
ĉ†p+q/2,↑ (τ+) ĉ−p′+q/2,↓ (τ)

]⟩
0

⟨
Tτ

[
ĉ†−p+q/2,↓ (τ+) ĉp′+q/2,↑ (τ)

]⟩
0

=δp,p′ G
0
↑ (p+ q/2, τ − τ+) G 0

↓ (−p+ q/2, τ − τ+) , (2.14)

where
G 0
σ

(
p, τ − τ′) = − ⟨

Tτ
[
ĉp,σ (τ+) ĉ†p,σ

(
τ
′)]⟩

0
. (2.15)

is the bare single-particle thermal Green’s function. We briefly note that
⟨
ĉ†↑ĉ
†
↓

⟩
0
,⟨

ĉ↓ĉ↑
⟩

0
,
⟨
ĉ†↑ĉ↓

⟩
0
, and

⟨
ĉ†↓ĉ↑

⟩
0

identically vanish due to the thermal average ⟨· · ·⟩0
in terms of over H0.

The resulting Eq.(2.13) has the form,

Ω
(1)
NSR = −

U
β

∑
p,q

∫ β

0
dτG 0

↑ (p+ q/2, τ − τ+) G 0
↓ (−p+ q/2, τ − τ+)

= −U
β

∑
q,iνn

eiνnδΠ (q, iνn) , (2.16)

where

Π (q, iνn) =
1
β

∑
p,iωm

G 0
↑ (p+ q/2, iωm + iνn) G 0

↓ (−p+ q/2,−iωm) (2.17)

is the lowest-order pair-correlation function, physically describing fluctuations in
the Cooper channel. In Eq.(2.17) ωn=π(2n+1)T and νn=2πnT (n = 0,±1,±2, . . . )
are the Fermi and Bose Matsubara frequency, respectively. The single-particle
thermal Green’s function

G 0
σ (p, iωm) =

1
iωm − ξp

. (2.18)

is related to G 0
σ (p, τ) in Eq.(2.15) as

G 0
σ (p, τ) =

1
β

∑
iωn

e−iωnτG 0
σ (p, iωn) . (2.19)

Substituting Eq.(2.18) into Eq.(2.17), one can carry out the ωm-summation, giving

Π (q, iνn) = −
∑

p

1 − nF

(
ξp+q/2

)
− nF

(
ξ−p+q/2

)
iνn − ξp+q/2 − ξ−p+q/2

, (2.20)

where
nF

(
ξp

)
=

1
eξp/T + 1

(2.21)
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is the Fermi distribution function.

The second-order correction (n = 2 in Eq.(2.12)) can also be evaluated in the same
manner. This correction (≡ Ω(2)

NSR ) corresponds to the second diagram in Fig.2.2,
having the form,

Ω
(2)
NSR = −

U2

2β

∑
q,iνn

eiνnδ [Π (q, iνn)
]2 . (2.22)

For higher corrections (n ≥ 3 in Eq.(2.12)) the NSR scheme only retains the terms
describing pairing fluctuations that are diagrammatically drawn as double-ring
diagrams, where two Green’s functions propagate in the same direction (see, for
example, the third diagram in Fig.2.2). Summing these up, we obtain

ΩNSR = Ω
(1)
NSR + Ω

(2)
NSR + Ω

(3)
NSR + · · ·

= −T
∑
q,iνn

eiνnδ
∞∑

m=1

Um

m
[
Π (q, iνn)

]m

= −T
∑
q,iνn

eiνnδ lnΓ(q, iνn), (2.23)

where
Γ(q, iνn) =

−U
1 − UΠ(q, iνn)

(2.24)

is the particle-particle scattering matrix.

Due to the contact type interaction U in Eq.(2.3), the pair-correlation function
Π(q, iνn) in Eq.(2.17) exhibits an ultraviolet divergence, requiring the introduction
of an artificial momentum cutoff pc. To remedy this, we introduce the s-wave
scattering length as, being related to the bare interaction −U as

4πas

m
=

−U
1 − U

∑pc
p

1
2εp

, (2.25)

where pc is a cutoff momentum (which is actually taken to be infinitely large).

We briefly note that as is experimentally accessible in cold atom physics [9]. Us-
ing the scattering length as, we can rewrite the particle-praticle scattering matrix
Γ(q, iνn) in Eq.(2.24) into the cutoff-free form,

Γ(q, iνn) =
1

m
4πas

+

Π(q, iνn) −
∑

p

1
2εp


. (2.26)

Note that the ultraviolet divergence in Π(q, iνn) is canceled out by
∑

p 1/(2εp) in
Eq.(2.26).

In cold atom physics, the strength of a pairing interaction is frequently measured
in terms of the inverse scattering length a−1

s , normalised by the Fermi wave length
kF. In this scale the weak coupling BCS and strong coupling BEC regions are,
respectively, characterised as (kFas)−1 <∼ − 1 and (kFas)−1 >∼ 1. The (BCS-BEC)
crossover region is described by −1 <∼ (kFas)−1 <∼ 1.
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Figure 2.3: Calculated superfluid phase transition temperature Tc (a), as well as
the Fermi chemical potential µ at Tc (b) in the BCS-BEC crossover region. The
strength of the pairing interaction in measured in terms of the inverse scattering
length a−1

s , normalised by the Fermi wavelength kF. TF and εF are the Fermi
temperature and Fermi energy, respectively. In panel (a), T MF

c is the result in the
mean-field BCS theory. “TBEC ” shows the BEC transition temperature of an N/2
ideal Bose gas with molecular mass M = 2m (see Eq.(2.31)).

In the NSR scheme, the superfluid phase transition temperature Tc is determined
from the Thouless criterion [15, 16, 19, 28, 90], stating that the particle-particle
scattering matrix Γ(q, iνn) has a pole in the low energy and long wavelength limit
(q = 0, iνn = 0). The resulting Tc-equation has the same form as the mean field
BCS theory, that is

1 = −4πas

m

∑
p

[
1

2ξp
tanh

ξp

2T
− 1

2εp

]
. (2.27)

However, while the Fermi chemical potential in Eq.(2.27) can be safely taken
to be equal to the Fermi energy εF in the conventional BCS theory [89], it is
known to deviate from εF in the BCS-BEC crossover regime. In the NSR theory,
this strong-coupling correction is taken into account by solving the equation for
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Figure 2.4: Calculated Fermi chemical potential µ in the normal state above Tc.

the number N of Fermi atoms, which is obtained from the NSR thermodynamic
potential Ω = Ω0 + ΩNSR (Eqs (2.7) and (2.23)) by using the identity

N = −
(
∂Ω

∂µ

)
T
= N0 + NNSR. (2.28)

Here

N0 = −
(
∂Ω0

∂µ

)
T
= 2

∑
p

nF

(
ξp

)
, (2.29)

and

NNSR = −
(
∂ΩNSR

∂µ

)
T

= −T
∑
q,iνn

Γ(q, iνn)
∂Π(q, iνn)
∂µ

. (2.30)

For a given interaction strength (kFas)−1, we solve the Tc-equation (2.27), together
with the number equation (2.28), to self-consistently determine Tc and µ(Tc).
Above Tc, we only deal with the number equation (2.28), to determine µ(T > Tc)
for a given parameter set ((kFas)−1 ,T ).

Figure 2.3 shows the self-consistent solution for the coupled Tc-equation (2.27)
with the number equation (2.28) in the BCS-BEC crossover regime of an ul-
tracold Fermi gas. In panel (a), starting from the weak-coupling BCS regime
((kFas)−1 <∼ − 1), the superfluid phase transition temperature gradually deviates
from the weak-coupling BCS results (T MF

c ), to approach the BEC transition tem-
perature of an NB = N/2 ideal molecular Bose gas with molecular mass M = 2m,

TBEC =
π

m

 N

2ζ
(

3
2

)
2/3

= 0.218TF, (2.31)

in the strong coupling regime ((kFas)−1 >∼ 1). Correspondingly, the Fermi chem-
ical potential, µ(T = Tc), becomes negative, to approach half the binding energy
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Ebind = 1/ma2
s in the BEC regime, as shown in Fig.2.3 (b).

In addition to the solution at Tc, we also show the calculated Fermi chemical
potential µ above Tc in Fig.2.4. We will use these results in numerically evaluating
the specific heat at constant volume CV in Chap.3.

2.1.3 Internal Energy And Specific Heat Above Tc

An advantage of the NSR theory is that this strong-coupling theory is based on the
thermodynamic potential Ω. Because of this, once the Fermi chemical potential
µ(T ≥ Tc), as well as Tc, are determined in this theory, we can evaluate various
thermodynamic quantities that are related to Ω. The internal energy E is, for
example, obtained via the Legendre transformation [60],

E = Ω + TS + µN

= Ω − T
(
∂Ω

∂T

)
µ

− µ
(
∂Ω

∂µ

)
T

= E0 + ENSR. (2.32)

Here

E0 = 2
∑

p

εpnF

(
ξp

)
, (2.33)

is the non-interacting part, and

ENSR = −T
∑
q,iνn

Γ(q, iνn)
[
T
∂

∂T
Π(q, iνn) + µ

∂

∂µ
Π(q, iνn)

]
(2.34)

involves effects of pairing fluctuations, described by Γ(q, iνn) and Π(q, iνn).

In Chap.3, we examine the specific heat at constant volume CV , to construct the
phase diagram of an ultracold Fermi gas. This thermodynamic quantity is related
to the internal energy E in Eq.(2.32) as [60]

CV =

(
∂E
∂T

)
N
. (2.35)

Analytically, noting that the derivative in Eq.(2.35) must be taken with the total
number N of particles being fixed, we actually need to calculate Eq.(2.35) as

CV =

(
∂E
∂T

)
µ

+

(
∂µ

∂T

)
N

(
∂E
∂µ

)
T
, (2.36)

where (
∂µ

∂T

)
N
= −

(
∂N
∂T

)
µ(

∂N
∂µ

)
T

. (2.37)

Thus, calculating the specific heat CV requires the evaluation of four derivatives
appearing in Eqs (2.36) and (2.37), each containing strong coupling correction
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terms coming from ΩNSR in Eq.(2.23). In this thesis, to avoid this difficulty, we
numerically evaluate CV in the normal state as

CV =
E (T + δT, µ (T + δT )) − E (T − δT, µ (T − δT ))

2δT
, (2.38)

where µ (T + δT ) and µ (T − δT ) are independently solved from the number equa-
tion Eq.(2.28), with δT = 0.01TF. At Tc, we use the right-hand derivative

CV =
−E (Tc + 2δT, µ (Tc + 2δT )) + 4E (Tc + δT, µ (Tc + δT )) − 3E (Tc, µ (Tc))

2δT
.

(2.39)

2.2 NSR Theory In The Superfluid State

2.2.1 Nambu Representation
Although the NSR theory explained in the previous section was originally pro-
posed to describe the BCS-BEC crossover behaviour of Tc, this strong-coupling
formalism can be extended to the superfluid phase below Tc. To explain this ex-
tension, it is convenient to write the Hamiltonian given by the sum of Eqs (2.1)
and ((2.4)) in the Nambu representation as [20, 21, 88]

H =
∑

p

Ψ†p
[
ξpτ3 − ∆τ1

]
Ψp − U

∑
q

ρ+ (q) ρ− (−q)

≡ HMF + H′I , (2.40)

where

Ψp =

[
cp,↑
c†−p,↓

]
. (2.41)

is the two-component Nambu field, and τi is the corresponding Pauli matrices
acting on particle-hole space. In the “Mean-field BCS term”,

HMF =
∑

p

Ψ†p
[
ξpτ3 − ∆τ1

]
Ψp (2.42)

∆ is the superfluid order parameter, given by [91]

∆ = U
∑

p′
⟨c†p′,↑c

†
−p′,↓⟩MF. (2.43)

Here ⟨· · · ⟩MF is the thermal average taken in terms of HMF. In Eq.(2.42) ∆ is
taken to be real and is chosen to be parallel to the τ1-component, without loss of
generality. The interaction term beyond the mean-field BCS theory,

H′I = −U
∑

q

ρ+ (q) ρ− (−q) , (2.44)

contains the generalised density operator

ρ± (q) =
[
ρ1 (q) ± iρ2 (q)

]
/2,

ρ j (q) =
∑

p

Ψ
†
p+q/2τ jΨp−q/2. (2.45)

Since we are taking the superfluid order parameter ∆ to be parallel to the τ1-
component, ρ1 (q) and ρ2 (q) physically describe amplitude and phase fluctuations
of the superfluid order parameter [20, 21].
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Figure 2.5: NSR corrections ΩNSR to the thermodynamic potential Ω in the super-
fluid state below Tc. Π̂i j is the (i j) component of the particle-particle correlation
function, in Eq.(2.51).

2.2.2 Strong Coupling Corrections To The Thermodynamic Po-
tential In The Superfluid Phase

Extending the discussion in Sec.2.1 to the superfluid state, we evaluate fluctuation
corrections coming from H′I in Eq.(2.44) to the thermodynamic potential Ω. The
resulting superfluid thermodynamic potential Ω within the framework of the NSR
theory is given by the sum Ω = ΩMF + ΩNSR of the mean-field part ΩMF and
the fluctuation part ΩNSR. Here, the mean-field part has the same form as the
thermodynamic potential in the ordinary BCS theory, given by

ΩMF = −T ln
[
treHMF/T

]
=

∑
p

[
ξp − Ep +

∆2

2εp
+ 2T ln

[
1 − nF

(
Ep

)]]
− m∆2

4πas
, (2.46)

where Ep =
√
ξ2

p + ∆
2 represents the Bogoliubov single-particle excitations. The

fluctuation correctionΩNSR is diagrammatically described as Fig.2.5, which gives,

ΩNSR = −
T
2

∑
q,iνn

tr ln Γ̂ (q, iνn) , (2.47)

where

Γ̂ (q, iνn) = −U
[
1 + UΠ̂ (q, iνn)

]−1

=

(
Γ−+ (q, iνn) Γ−− (q, iνn)
Γ++ (q, iνn) Γ+− (q, iνn)

)
. (2.48)

is the 2 × 2 particle-particle scattering matrix in the Nambu formalism, with the
2 × 2 matrix pair correlation function having the form,

Π̂ (q, iνn) =
(
Π−+ (q, iνn) Π−− (q, iνn)
Π++ (q, iνn) Π+− (q, iνn)

)
,

Πi j(q, iνn) = T
∑
p,iωn

tr
[
τiĜ0(p+ q, iωn + iνn)τ jĜ0(p, iωn)

]
. (2.49)

In Eq.(2.49) Ĝ0(p, iωn) is the 2 × 2 matrix single particle Green’s function in the
BCS theory, given by [88]

Ĝ0(p, iωn) =
1

iωn − ξpτ3 + ∆τ1
. (2.50)
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Carrying out the Matsubara frequency summation over in Eq.(2.49) we have

Π−+ (q, iνn) = −1
4

∑
p,s=±1

tanh
E+
2T
+ s tanh

E−
2T

(E+ + sE−)2 + ν2
n

×
[
(E+ + sE−)

(
1 + s

ξ+ξ−
E+E−

)
+ iνn

(
ξ+
E+
+ s
ξ+
E+

)]
,

Π+− (q, iνn) = Π−+ (q,−iνn) ,

Π−− (q, iνn) =
1
4

∑
p,s=±1

∆2

E+E−

s (E+ + sE−)
(E+ + sE−)2 + ν2

n

[
tanh

E+
2T
+ s tanh

E−
2T

]
,

Π++ (q, iνn) = Π−− (q, iνn) , (2.51)

where ξ± = ξp±p/2, and E± = Ep±p/2.

We note that when ∆→ 0, Eq.(2.49) becomes

Π̂ (q, iνn) =
(
−Π (q, iνn) 0

0 −Π (q,−iνn)

)
. (2.52)

In this limit,ΩNSR in Eq.(2.47) is reduced to the correction term in Eq.(2.23) above
Tc.

We also briefly note that the NSR correction term ΩNSR in the superfluid state
looks to be described by different diagrams from those in the normal state (see Figs
2.2 and 2.5). This is, however, simply due to the fact that we are using the Nambu
representation in the superfluid case. Indeed, when one rewrites the diagrams in
Fig.2.5 by using the components of the Nambu Green’s function Ĝ0(p, iωn) in
Eq.(2.50), the resulting diagrams are found to have the same double ring structure
shown in Fig.2.2.

In the above formalism, the superfluid order parameter ∆ is determined from the
Thouless criterion [20, 21, 90],

detΓ̂ (q = 0, iνn = 0)−1 = 0, (2.53)

Physically, Eq.(2.53) is equivalent to the required condition for the existence of the
Gapless Goldstone mode associated with the spontaneously broken U(1) gauge
symmetry. In the present NSR formalism, the Thouless criterion in Eq.(2.53)
gives the ordinary BCS gap equation

1 = −4πas

m

∑
p

[
1

2Ep
tanh

Ep

2T
− 1

2εp

]
. (2.54)

We note that Eq.(2.54) is consistent with the definition of the superfluid order
parameter in Eq.(2.43), because the mean-field average (⟨· · · ⟩MF) also gives the
gap-equation. We also note that Eq.(2.54) is reduced to the Tc-equation (2.27)
when ∆ = 0.

As in the normal state, we actually solve the gap equation (2.54), together with
the number equation, to self-consistently determine the superfluid order parameter
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Figure 2.6: Self-consistent solution for the coupled gap equation (2.54) with the
number equation (2.28). (a) Superfluid order parameter ∆. (b) Fermi chemical
potential µ.

∆ and µ(T ≤ Tc). The latter equation is obtained from the identity in Eq.(2.28),
when, in the superfluid case,

N0 = −
(
∂Ω0

∂µ

)
T
=

∑
p

[
1 −
ξp

Ep
tanh

Ep

2T

]
, (2.55)

is now the mean-field BCS part, and

NNSR = −
(
∂ΩNSR

∂µ

)
T
= −

(
∂ΩNSR

∂µ

)
∆,T
−

(
∂ΩNSR

∂∆

)
T,µ

(
∂∆

∂µ

)
T

=
T
2

∑
q,iνn

tr
[
Γ̂ (q, iνn)

∂Π̂ (q, iνn)
∂µ

]

+
T
2

∑
q,iνn

tr
[
Γ̂ (q, iνn)

∂Π̂ (q, iνn)
∂∆

] (
∂∆

∂µ

)
T

(2.56)

Here, the factor (∂∆/∂µ)T is given by

(
∂∆

∂µ

)
T
=

∑
p

ξp

E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)]
∑

p

∆

E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)] . (2.57)
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For the derivation of Eq.(2.57) see appendix B.

Figure 2.6 shows the calculated superfluid order parameter ∆, as well as the Fermi
chemical potential µ in the BCS-BEC crossover region below Tc. We will use
this numerical data in calculating the specific heat CV and internal energy in the
superfluid phase in Chaps. 3 and 4. Regarding this, we note that ∆ in Fig.2.6
(a) remains finite even at Tc, which is, however, an artefact of the present strong-
coupling theory. Such an unphysical behaviour just below Tc is also known in
other diagrammatic theories, such as a non-self-consistent T-matrix approxima-
tion (TMA) [22] and self-consistent T-matrix approximation (SCTMA) [29], but
so far this problem has not been solved yet. In this thesis we also leave this as a
future problem, to employ the present superfluid NSR theory up to Tc, keeping in
mind that this problem may affect our results just below Tc.

2.2.3 Internal Energy And Specific Heat Below Tc

The Legendre transformation in Eq.(2.32) is also valid for the present superfluid
case. The resulting E0 and ENSR are given by, respectively

E0 =
∑

p

[
EpnF(Ep) + ξp − Ep −

∆2

2εp

]
+

m∆2

4πas
+ µNMF, (2.58)

and

ENSR =
T
2

∑
q,iνn

[
T tr

[
Γ̂ (q, iνn)

∂Π̂ (q, iνn)
∂T

]
+ µtr

[
Γ̂ (q, iνn)

∂Π̂ (q, iνn)
∂µ

]]

+
T 2

2

∑
q,iνn

tr
[
Γ̂ (q, iνn)

∂Π̂ (q, iνn)
∂∆

] (
∂∆

∂T

)
µ

, (2.59)

with

(
∂∆

∂T

)
µ

=

∑
p

1
2T 2 sech2

(
Ep

2T

)
∑

p

∆

E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)] . (2.60)

We explain the derivation of Eq.(2.60) in appendix B. We briefly note that E0 in
Eq.(2.58) is just the internal energy in the mean-field BCS theory.

The specific heat at constant volume CV is numerically calculated from the inter-
nal energy as

CV =
E (T + δT, µ (T + δT ) ,∆ (T + δT )) − E (T − δT, µ (T − δT ) ,∆ (T − δT ))

2δT
,

(2.61)
where we set δT = 0.005TF.

2.3 Superfluid NSR Theory With A Non-Vanishing
Effective Range reff (Neutron Star Case)

As mentioned previously, although the low density crust regime of a neutron star
interior is similar to the unitary regime of a superfluid Fermi gas far below Tc,
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we still need to theoretically make up for the different magnitude of the effective
range reff between the two systems. In this section, we explain how to incorporate
the non-vanishing effective range into the NSR theory below Tc.

2.3.1 Effective Range Theory
To deal with the non-vanishing effective range reff = 2.7 fm [67] in the neutron
star case, we start from the general interaction Hamiltonian in Eq.(2.2), instead of
the contact-type interaction in Eq.(2.3). (Note that reff = 0 in the case of Eq.(2.3)).

We expand the interaction potential U(p− p′) into partial-wave components [68],
as

U(p− p′) = Us(p, p′) + Up(p, p′) + Ud(p, p′) + · · · , (2.62)

where s, p and d represent the s-wave, p-wave and d-wave components, respec-
tively.

Then, since only the s-wave channel is non-vanishing in the low-momentum limit,
we have U(0) = Us(0, 0). Here, we assume that the s-wave component Us(p, p′)
gives the dominant contribution in the low-density crust regime of a neutron star.
To include the effective range reff we consider the following separable interaction
[15, 34]

U(p− p′) ≃ Us(p, p′) = U(0)γpγp′ . (2.63)

The detailed expression for the basis function γp is specified soon later.

For the separable s-wave interaction Us(p, p′), we consider the two-body scatter-
ing T -matrix Γ2b(p, p′, ω+) which obeys the equation [34],

Γ2b(p, p′;ω+) = −Us(p, p′) −
∑

k

Us(p, k)
1

ω+ − 2εk
Γ2b(k, p′;ω+), (2.64)

where ω+ = ω + iδ, with δ being an infinitesimally small positive number.

Taking Γ(p, p′;ω+) = γpΛ(ω+)γp′ , one finds that Λ(ω+) obeys,

1
Λ(ω+)

= − 1
U(0)

−
∑

k

γ2
k

ω+ − 2εk
. (2.65)

The scattering T -matrix Γ2b(p, p′;ω+) in Eq.(2.64) is related to the so-called s-
wave phase shift δs (p) as [68],

1
p cot δs (p) − ip

= − m
4π
Γ(p, p; 2εp + iδ), (2.66)

where the phase shift δs (p) can be expanded as [68, 69]

p cot δs (p) = − 1
as
+

1
2

reff p2 − Pr3
eff p4 + · · · . (2.67)

For this expression, as is the s-wave scattering length, reff is the effective range,
and P is the s-wave shape parameter. Setting p→ 0 in Eqs (2.66) and (2.67), and
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noting that Γ(0, 0; 0+) = Λ(0+), one finds,

4πas

m
= − U(0)

1 − U(0)
∑

p
γ2

p

2εp

, (2.68)

which relates the s-wave scattering length as to U(0).

Substituting Eq. (2.68) and Eq.(2.65) into Eq. (2.66), we obtain

1
p cot δs (p) − ip

=
γ2

p

− 1
as
− 4π

m

∑
p′
γ2

p′

[
1

2εp′ − (2εp + iδ)
− 1

2εp′

] . (2.69)

In the effective range theory, the first two terms on the right side of Eq.(2.67) are
only retained [34, 68]. This situation can be achieved when we choose the basis
function γp in Eq. (2.69) as

γp =
1√

1 +
(

p
pc

)2
, (2.70)

where pc is a cutoff momentum. Substituting Eq.(2.70) into Eq.(2.69), we find

pc =
1

reff

1 + √
1 − 2reff

as

 . (2.71)

The outline of this derivation is explained in appendix C.

In this effective range theory we also find from Eq.(2.68),

U(0) =
2π
m

 1
reff

1 + √
1 − 2reff

as

 − 1
2as

−1

. (2.72)

Equation (2.72) shows how to obtain the value of U(0) for a given parameter set
(as, reff). To emphasise this, we write U(0) ≡ U(as, reff) in what follows.

In the case of an ultracold Fermi gas, the effective range reff is negligibly small, so
that pc → ∞, giving γp = 1 in Eq. (2.63). This recovers the contact-type s-wave
interaction employed in Secs 2.1 and 2.2. In the neutron star case, on the other
hand, the scattering length and effective range equal as = −18.5 fm and 2.7 fm
[66], respectively, which gives

pc = 0.79 fm−1. (2.73)

We use this cutoff momentum in considering the neutron star equation of state in
Chap. 4.

We now incorporate the above-mentioned effective range theory into the super-
fluid BCS Hamiltonian in Eq.(2.40). For this procedure, a crucial difference be-
tween the cases of the contact-type interaction (reff = 0) and Eq.(2.63) (reff , 0) is
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that the Hartree energy in the former case is absent because of the infinitesimally
small coupling constant U → +0 (see Eq.(2.25) with pc → ∞).

In contrast, the bare coupling constant U(0) = U(as, reff) in Eq.(2.72) does not
vanish when reff , 0. In this case, we need to retain the Hartree term, in the mean-
field Hartree-Foch approach [31]. In this approximation HI in Eq.(2.2) becomes

HHF
I = −1

2
U(0)NMF

∑
p,σ

ξpc†p,σcp,σ +
1
4

U(0)N2
MF

= −1
2

U(as, reff)NMF

∑
p,σ

ξpc†p,σcp,σ +
1
4

U(as, reff)N2
MF, (2.74)

when

NMF =
∑
p,σ

⟨c†p,σcp,σ⟩MF (2.75)

is the total number of Fermi particles in the mean-field approximation.

As a result, HMF and H′I in Eq.(2.40) are modified to be, respectively

HMF =
∑

p

Ψ̂†p
[
ξ̃pτ3 − ∆pτ1

]
Ψ̂p +

∑
p

ξ̃p + ∆2
p

U(as, reff)

 + 1
4

U(as, reff)N2
MF,(2.76)

H′I = −U(as, reff)
∑

q

ρ̃+ (q) ρ̃− (−q) . (2.77)

In Eq.(2.76), ξ̃p = ξp − U(as, reff)NMF/2 involves the so-called Hartree shift
−U(as, reff)NMF/2, and

NMF =
∑
p,σ

⟨c†p,σcp,σ⟩MF =
∑

p

[
1 −
ξ̃p

Ẽp
tanh

Ẽp

2T

]
, (2.78)

with Ẽp =

√
ξ̃2

p + ∆
2
p. The superfluid order parameter ∆p now depends on the

momentum p as
∆p = γp∆, (2.79)

when

∆ = U(as, reff)
∑

p

γp⟨c†p,↑c
†
−p,↓⟩MF

= U(as, reff)
∑

p

γp
∆p

2Ẽp
tanh

Ẽp

2T
. (2.80)

Substituting Eq.(2.79) into Eq.(2.80), we obtain the gap equation

1 = U(as, reff)
∑

p

γ2
p

2Ẽp
tanh

Ẽp

2T
. (2.81)

The interaction term in Eq.(2.77) is similar to Eq.(2.44), but the generalised den-
sity operator ρ̃± (q) now involves the basis function as

ρ̃±(q) =
∑

p

γpΨ̂
†
p+q/2τ±Ψ̂p−q/2. (2.82)
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Figure 2.7: (a) NSR fluctuation correction ΩNSR to the thermodynamic potential
Ω in the presence of a non-vanishing effective range reff. Π̂i j is the (i j) compo-
nent of the particle-particle correlation function in Eq.(2.86). −U(as, reff) < 0
is the bare attractive interaction in Eq.(2.68). The double-solid line represents
the single-particle Green’s function involving the Hartree shift, which obeys the
Dyson equation is shown in panel (b). Note that the correction term corresponding
to the first term in Fig.2.5 has been taken into account in ΩMF, in Eq.(2.84), in the
present case, so that ΩNSR in panel (a) starts from the second order in terms of the
bare interaction −U(as, reff).

2.3.2 Superfluid NSR Theory In The Presence Of Non-Vanishing
Effective Range

Starting from H = HMF + H′I (when HMF and H′I are, respectively, given in Eqs.
(2.76) and (2.77)), we evaluate strong-coupling corrections ΩNSR to the thermo-
dynamic potential Ω within the framework of NSR theory. This procedure is
essentially the same as in the absence of the effective range (reff = 0) explained in
Sec.2.2, except for the presence of (1) the basis function γp in Eq.(2.70), and (2)
the Hartree shift −U(as, reff)NMF/2 in the single-particle dispersion Ẽp. The for-
mer affects the vertex part of the pair correlation function Πi j in evaluating ΩNSR,
as diagonally shown in Fig.2.7 (a). (Compare this figure with Fig.2.5 (reff = 0))
The latter is simply incorporated into the NSR theory by replacing the single-
particle Green’s function Ĝ0 in Eq.(2.50) with

ĜHF
0 (p, iωn) =

1
iωn − ξ̃pτ3 + γp∆τ1

. (2.83)

This modification is diagrammatically described by the Dyson equation in Fig
2.7(b).

The resulting NSR thermodynamic potential Ω = ΩMF+ΩNSR is given by the sum
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of the mean-field term

ΩMF = −T ln
[
tre−HMF/T

]
= −2T

∑
p

[
ln

[
1 + e−Ẽp/T

]
+ ξ̃p − Ẽp

]
+

∆2

U(as, reff)
+

1
4

U(as, reff)N2
MF, (2.84)

and the fluctuation correction

ΩNSR =
T
2

∑
q,iνn

tr
[
ln

[
1 + U(as, reff)Π̂(q, iνn)

]
− U(as, reff)Π̂(q, iνn)

]
, (2.85)

where the pair-correlation involving the basis function γp is given by

Πi j(q, iνn) = T
∑
p,iωn

γ2
ptr

[
τiĜHF

0 (p+ q, iωn + iνn)τ jĜHF
0 (p, iωn)

]
. (2.86)

We briefly note that ΩMF is the thermodynamic potential in the mean-field level,
so that the mean-field particle number NMF in Eq.(2.77), as well as the mean-field
order parameter ∆ in Eq.(2.81), respectively, satisfies the saddle point conditions,(

∂ΩMF

∂NMF

)
T,µ,∆
= 0,(

∂ΩMF

∂∆

)
T,µ,NMF

= 0. (2.87)

Using the NSR thermodynamic potential Ω = ΩMF + ΩNSR, we derive the number
equation,

N = −
(
∂Ω

∂µ

)
T

= NMF + NNSR, (2.88)

where NMF is given in Eq.(2.78), and

NNSR = −
(
∂ΩNSR

∂µ

)
T

= −
(
∂µ∗

∂µ

)
T

(
∂ΩNSR

∂µ∗

)
T
, (2.89)

Here we have used the fact that ΩNSR in Eq.(2.85), only depends on µ through the
effective chemical potential µ∗ = µ + U(as, reff)NMF/2.

In Eq.(2.89), (∂ΩNSR/∂µ
∗)T can be evaluated in the same way as Eq.(2.56). On

the other hand, (
∂µ∗

∂µ

)
T
= 1 +

U(as, reff)
2

(
∂NMF

∂µ

)
T

= 1 +
U(as, reff)

2

(
∂NMF

∂µ∗

) (
∂µ∗

∂µ

)
T
, (2.90)

36



CHAPTER 2. STRONG COUPLING FORMALISM FOR ATTRACTIVELY
INTERACTING FERMI SYSTEMS

which gives (
∂µ∗

∂µ

)
T
=

1

1 − 1
2

U(as, reff)
(
∂NMF

∂µ∗

)
T

. (2.91)

Equation (2.91) is just the Stoner factor appearing in the density response function
[92].

2.3.3 Internal Energy Far Below Tc

In Chap.4, we discuss the internal energy E (equation of state) and effects of the
non-vanishing effective range within the framework explained in this section. In
the present case, E0 and ENSR in Eq.(2.32) have the forms, respectively,

EMF =
∑

p

[
ẼpnF(Ẽp) + ξ̃p − Ẽp

]
+

∆2

U(as, reff)
+

1
4

U(as, reff)N2
MF + µNMF, (2.92)

and

ENSR = ΩNSR − T
(
∂ΩNSR

∂T

)
µ

+ µNNSR. (2.93)

In Chap.4, using Eq.(2.92) and Eq.(2.93), we examine the internal energy in the
low-density crust regime of a neutron star, by setting as = −18.5 fm and reff = 2.7
fm. In this thesis take T/TF = 0.02 to consider the region near the ground state.
Although we can’t set T/TF = 0 because of computational problems; however we
have numerically confirmed that our results do not change within the temperature
range T/TF = [0.005, 0.06], so that thermal effects are considered to be almost
absent at this temperature. In considering the neutron star case, we measure the
EOS in units of MeV, by using the neutron mass m = 939 MeV/c2 (where c the
speed of light).
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Chapter 3

Specific Heat In The BCS-BEC
Crossover Region Of An Ultracold
Fermi Gas

In this chapter we theoretically investigate strong-coupling properties of an ultra-
cold Fermi gas in the BCS-BEC crossover region. Within the framework of the
NSR theory explained in Secs.2.1 and 2.2, we examine the specific heat at con-
stant volume CV . In the normal state, using the advantage of this quantity that
it remains finite in the whole BCS-BEC crossover region, we identify the region
where pairing fluctuations dominate over system properties, as well as the region
where the system is well described by a gas of tightly bound molecules, in the
phase diagram of an ultracold Fermi gas with respect to the interaction strength
and temperature. In the superfluid phase below Tc we show that CV is simply
monotonically increasing with increasing temperature.

In Sec.3.1 we first show the calculated CV at Tc. In Sec.3.2, we examine the
temperature dependence of CV above Tc, to construct the phase diagram of this
system. We proceed to the superfluid state in Sec.3.3, which is followed by the
comparison of our result with the recent experiment on an 6Li unitary Fermi gas
in Sec.3.5.

3.1 Specific Heat At Tc

Figure 3.1 shows the calculated specific heat at constant volume CV in the BCS-
BEC crossover regime of an ultracold Fermi gas at Tc. (Note that we approach
Tc from the normal state.) In the weak coupling regime ((kFas)−1 <∼ − 1), the
calculated CV (T = Tc) is found to be well-described by the specific heat CF

V of a
free Fermi gas, given by [89]

CF
V(T ≪ TF) =

π2

2

(
T
TF

)
N. (3.1)

On the other hand, our result in the strong-coupling BEC regime ((kFas)−1 >∼ 1)
approaches the specific heat CB

V of an ideal Bose gas of N/2 bosons with molecular
mass M = 2m, at the Bose-Einstein transition temperature TBEC = 0.218TF (see
Eq.(2.31)), given by [15, 16, 28, 58]
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CV

(           )T=Tc

Figure 3.1: Calculated specific heat at constant volume CV at Tc in the BCS-BEC
crossover regime of an ultracold Fermi gas. CF

V and CB
V ≃ 0.96N are the specific

heat of an ideal Fermi gas at T = Tc, and ideal Bose gas at the BEC transition
temperature, respectively.

CB
V (T = TBEC) =

15
4

NB ×
ζ(5/2)
ζ(3/2)

= 0.963N, (3.2)

where ζ(3/2) = 2.612 and ζ(5/2) = 1.341 are Riemann’s zeta functions.

This agreement (CV ≃ CB
V (T = TBEC)) is consistent with the BCS-BEC crossover

behaviours of Tc and µ (Tc) in Fig.2.3, where one sees Tc ≃ TBEC and µ ≃ Ebind/2
(where Ebind = 1/ma2

s is the molecular binding energy) in the BEC regime, indi-
cating that the system is very close to an ideal Bose gas.

However, while Tc and µ (Tc) almost monotonically changes from the weak-coupling
result to the strong-coupling result (except for a slight hump structure in the case
of Tc around (kFas)−1 = 0 (see Fig.2.3 (a))), we find in Fig.3.1 that CV(T = Tc)
experiences a large enhancement as one passes through the BCS-BEC crossover
region. Regarding this, we point out that this behaviour is consistent with the ar-
gument in Sec.1.3, that strong pairing fluctuations in the crossover regime near Tc

is expected to enhance CV due to the suppression of the entropy S , through the
relation in Eq.(1.6).

The non-monotonic behaviour of CV(T = Tc) seen in Fig.3.1 can also be under-
stood from the viewpoint of the stability of preformed Cooper pairs near Tc. To
explain this, it is convenient to write the fluctuation correction NNSR to the number
equation in Eq.(2.30) in the spectral representation as [88],

NNSR = 2
∫ ∞

−∞
dωnB (ω) ρB (ω) . (3.3)

In Eq.(3.3),
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Figure 3.2: Calculated intensity of Im
[
Π

(
q, ωq + iδ

)]
in Eq.(3.9). We set

(kFas)−1 = 2 and T/TF = 0.218, where µ < 0 is realised. The dotted line shows
ω = q2/4m − 2µ. The intensity is normalised by Nε−1

F .

nB (ω) =
1

eω/T − 1
(3.4)

is the Bose distribution function, and

ρB (ω) =
∑

q

AB (q, ω) , (3.5)

may be viewed as the “molecular Bose density of states”, where

AB (q, ω) = − 1
2π

Im
[
Γ (q, ω+)

∂

∂µ
Π (q, ω+)

]
. (3.6)

Here, Γ (q, ω+) = Γ (q, iνn → ω + iδ), and, Π (q, ω+) = Π (q, iνn → ω + iδ) are the
analytic continued particle-particle scattering matrix and pair-correlation function,
respectively. In the present NSR theory, the former has the form (see Eq.(2.26))

Γ (q, ω+) =
1

m
4πas

+ Π (q, ω+) −
∑

p

1
2εp

, (3.7)

and thus

AB (q, ω) = − 1
2π

[
ReΓ (q, ω+)

∂

∂µ
ImΠ (q, ω+) + ImΓ (q, ω+)

∂

∂µ
ReΠ (q, ω+)

]
= − 1

2π

[
ReΓ (q, ω+)

∂

∂µ
ImΠ (q, ω+)

− ImΠ (q, ω+) |Γ (q, ω+)|2
∂

∂µ
ReΠ (q, ω+)

]
, (3.8)

with

ImΠ (q, ω+) = π
∑

p

tanh
(
ξp+q/2

2T

)
δ

(
ω −

[
p2

m
+

q2

4m
− 2µ

])
. (3.9)
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Figure 3.3: The number NST of stable molecules and the contribution NSC of scat-
tering states, physically describing the number of fluctuating preformed Cooper
pairs. We take T = Tc.

Eq.(3.5), Eq.(3.8) and Eq.(3.9) indicate that the “molecular density of states” ρ (ω)
in quantitatively different in the weak-coupling BCS region where µ ≥ 0, and the
strong-coupling BEC region where µ < 0. Equation (3.9) indicates that ρ (ω) is
always non-negative in the BCS region where µ ≥ 0. We note that µ (T = Tc) is
positive when (kFas)−1 <∼ 0.3 (see Fig.2.3) (b).

On the other hand, when µ < 0, ρB (ω) has a finite gap ∆EB
G = 2 |µ|, because

Eq.(3.9) vanishes when ω ≤ 2 |µ|, unless Γ (q, ω+) has poles in the region 0 ≤ ω <
2 |µ|. To confirm this, we show in Fig.3.2 ImΠ (q, ω+) in the BEC region when
µ < 0. Clearly ImΠ (q, ω+) vanishes in the low energy region ω ≤ q2/4m + 2 |µ|.

However, Γ (q, ω+) actually has real poles in this gapped energy region, so that
ρB (ω) has δ-function peaks at these poles. The appearance of these real poles
physically means the appearance of stable molecules in the strong-coupling regime,
when µ < 0. Expanding the denominator of Γ (q, ω+) in Eq.(3.7) around a real pole
ω = ωq, we have

Γ (q, ω+) �
1

m
4πas

+

Π (
q, ωq

)
+

[
ω+ − ωq

] ∂
∂ω
Π

(
q, ω+ = ωq

)
−

∑
p

1
2εp


=

1[
ω+ − ωq

] ∂
∂ωq
Π

(
q, ωq

) . (3.10)

The number NST of stable molecules is then evaluated as
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NST = −
∑

q:poles

∫ ∞

−∞

dω
2π

nB (ω) Im

 ∂
∂µ
Π (q, ω+)[

ω+ − ωq

]
∂
∂ωq
Π

(
q, ωq

)
= −

∑
q:poles

∫ ∞

−∞

dω
2π

nB (ω)
∂
∂µ
Π (q, ω+)
∂
∂ωq
Π

(
q, ωq

) Im
[

1
ω+ − ωq

]

=
∑

q:poles

∫ ∞

−∞

dω
2

nB (ω)
∂
∂µ
Π (q, ω+)
∂
∂ωq
Π

(
q, ωq

)δ (ω − ωq

)

=
1
2

∑
q:poles

nB

(
ωq

) ∂
∂µ
Π

(
q, ωq

)
∂
∂ωq
Π

(
q, ωq

) , (3.11)

where the summation is taken over the real poles of Γ (q, ω+), under the condition
ImΠ (q, ω+) = 0.

Then, the correction term NNSR in Eq.(3.7) is given by the sum of the number NST

of “stable” molecules in Eq.(3.11) and the so-called scattering states NSC [15, 19],
that is

NNSR = 2NST + 2NSC. (3.12)

Physically, NSC may be interpreted as the number of fluctuating preformed Cooper
pairs associated with strong pairing fluctuations.

Figure 3.3 shows that NST, as well as NSC = NNSR/2 − NST (where NNSR is cal-
culated from Eq.(2.30)) in the BCS-BEC crossover region at Tc. Starting from
the weak coupling regime, the scattering states NSC gradually increases with in-
creasing interaction strength, indicating the enhancement of pairing fluctuations
near Tc. This corresponds to the amplification of CV (T = Tc) around the unitarity
limit seen in Fig.3.1. However, NSC is suddenly suppressed in the strong cou-
pling BEC regime when the Fermi chemical potential becomes negative (around
(kFas)−1 = 0.3). Instead, the stable molecules (NST) dominantly contribute to the
number equation there. These molecules have a definite binding energy, which
eventually becomes the large two-body bound state energy Ebind = 1/ma2

s deep
inside the BEC regime, so that effects of pairing fluctuations on CV is suppressed
there. Finally CV approaches CB

V in Eq.(3.2), as shown in Fig.3.1.

3.2 Specific Heat Above Tc

Fig.3.4 (a) shows the calculated specific heat CV above Tc. In this figure, one
sees that the detailed temperature dependence remarkably depends on the inter-
action strength, implying that this thermodynamic quantity is sensitive to system
properties in the BCS-BEC crossover. We briefly note that the internal energy,
which is related to CV as Eq.(2.35) always monotonically decreases with decreas-
ing temperature, as shown in Fig.3.4 (b). This indicates that CV is a more useful
quantity than E in considering properties of an ultracold Fermi gas in the BCS-
BEC crossover regime.

For the following two subsections, we separately examine the origin of the temper-
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Figure 3.4: Calculated Specific heat at constant volume CV (a), and the internal
energy E (b) in the BCS-BEC crossover regime of an ultracold Fermi gas above
Tc. EG =

3
5εF is the internal energy of a free Fermi gas at T = 0.

ature dependence of CV in the strong ((kFas)−1 >∼ 0) and weak coupling ((kFas)−1 <∼ 0)
side.

3.2.1 The Strong Coupling Side (kFas)−1 >∼ 0

Figure.3.5 shows the specific heat CV in the strong-coupling side of the crossover
region. When (kFas)−1 = 0.2, CV remarkably increases with decreasing temper-
ature near Tc, giving the amplification of CV(T = Tc) in the unitarity regime in
Fig.3.1. As mentioned previously, this behaviour is due to the suppression of en-
tropy S by the formation of fluctuating preformed Cooper pairs near Tc. However,
this behaviour is found to soon disappear as one increases the interaction strength.
When (kFas)−1 = 0.6, Fig.3.5 shows that CV monotonically increases with in-
creasing the temperature near Tc, which is the opposite tendency compared to the
(kFas)−1 = 0.2 case.

As shown in Fig.3.3 long-lived stable molecules appear in the BEC side when
(kFas)−1 >∼ 0.3. However, since the binding energy Ebind in this regime is still
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Figure 3.5: Calculated specific heat CV in the strong coupling BEC side of the
crossover region (0.2 ≤ (kFas)−1 ≤ 0.6).

small, the thermal dissociation of these molecules can easily occur near Tc, which
is expected to dominantly contribute to the temperature dependence of CV in this
regime (at least near Tc). Indeed, simply considering this effect by dealing with a
two-level system with energy ω = 0 and ω = Ebind, we obtain

CV =

(Ebind

2T

)2

sech2
(Ebind

2T

)
. (3.13)

This model specific heat monotonically increases with increasing the temperature,
when T <∼ Ebind/2, as the behaviour of CV(T >∼ Tc) when (kFas)−1 = 0.6 in Fig.3.5.
Thus, the increase of CV with increasing temperature near Tc in this regime is
attributed to the thermal dissociation of (weakly bound) stable molecules.

As we go deeper inside the BEC regime, Fig.3.6 shows that the enhancement of
CV near Tc revives, although it is not so remarkable as that in the unitary regime
(see Fig.3.5 for (kFas)−1 = 0.2). As the interaction strength increases, Fig.3.6
(b) and (c) shows that CV near Tc is well described by that of an ideal gas of N/2
Bose molecules with a molecular mass M = 2m, although this agreement becomes
worse at high temperatures. From this result, when we introduce the characteristic
temperature T̃ in this regime, as the temperature at which CV takes a minimum
value (vertical dashed line in Fig.3.6), the system in the region Tc ≤ T <∼ T̃ may
be viewed as an ideal molecular Bose gas, rather that an interacting Fermi gas.
Indeed, one finds that most of the Fermi atoms form stable molecules, giving
NST = N/2, in this regime (see Fig.3.6 (d)∼(f)). Above T̃ , these molecules start to
thermally dissociate into Fermi atoms, leading to NST < N/2, as shown in Fig.3.6
(d)∼(f).

Before ending this subsection, we analytically show that the specific heat CV is
reduced to CB

V in the BEC limit. In this limit, µ/εF ≪ −1, so that one can ignore
the Fermi distribution function nF

(
ξp

)
in the pair correlation function Π (q, iνn) in

Eq.(2.17), which gives
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Figure 3.6: (a)∼(c) Calculated specific heat CV(T ≥ Tc) in the strong-coupling
BEC regime. CB

V is the specific heat in an ideal gas of N/2 bosons with a molecular
mass mB = 2m. (d)∼(f) Temperature dependence of the number NST of stable pairs
in Eq.(2.8). The characteristic temperature T̃ is given as the temperature at which
CV takes a minimal value (vertical dotted line) in the BEC regime.

Π (q, iνn) = −
∑

p

1
iνn − ξp+q/2 − ξp−q/2

=
∑

p

1
2εp
− m

∫ ∞

0

dp
2π2

q2

4
− 2mµ − miνn

p2 +
q2

4
− 2mµ − miνn

=
∑

p

1
2εp
− m

4π

√
m

[
q2

4m
− 2µ − iνn

]
. (3.14)

Substituting this into the particle-particle scattering matrix Eq.(2.26), we obtain

Γ (q, iνn) =
4π
m

1 1
as
−

√
m

[
q2

4m
− 2µ − iνn

]

=
4π

m2as

1 +
√

1
Ebind

[
−iνn +

q2

4m
− µB + Ebind

]
iνn −

q2

4m
+ µB

, (3.15)

where
µB = 2µ + Ebind, (3.16)

with Ebind = 1/ma2
s being the binding energy of a two-body bound molecule.

Because Ebind/εF = 2/ (kFas)2 → ∞ in the extreme BEC limit, the square root in
Eq.(3.15) is further approximated to
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√
1

Ebind

[
−iνn +

q2

4m
− µB + Ebind

]
=

√
1 − 1

Ebind

[
iνn −

q2

4m
+ µB

]
→ 1. (3.17)

Then Eq.(3.15) is reduced to

Γ (q, iνn) =
8π

m2as

1

iνn − q2

4m + µB

, (3.18)

which is just the Bose Green’s function mass 2m and chemical potential µB, mul-
tiplied by the factor 8π/m2as.

Substituting Eq.(3.18) into Eq.(2.34), we can evaluate the NSR strong coupling
correction ENSR to the internal energy in the deep BEC limit as,

ENSR = −T 2
∑
q,iνn

eiνnδ 1
m

4πas
+ Π (q, iνn) −∑

p
1

2εp

∂

∂T
Π (q, iνn)

= −T 2 ∂

∂T

∑
q,iνn

eiνnδ log
(
iνn −

q2

4m
+ µB

)
= −T

∑
q,iνn

eiνnδ iνn

iνn − q2

4m + µB

=
∑

q

(
q2

4m
− µB

)
nB

(
q2

4m
− µB

)
. (3.19)

The internal energy E in Eq.(2.32) in the BEC limit is obtained as

E =
∑

q

(
q2

4m
− µB

)
nB

(
q2

4m
− µB

)
+ 2µ

∑
q

nB

(
q2

4m
− µB

)
=

∑
q

q2

4m
nB

(
q2

4m
− µB

)
− Ebind

∑
q

nB

(
q2

4m
− µB

)
≡EB − EbindNB, (3.20)

where we have dropped the free Fermi gas term E0 in Eq.(2.32) because µ/εF ≪
−1. In the last line EB is the kinetic energy of NB molecular bosons with a molec-
ular mass 2m. When all the Fermi atoms form tightly bound molecules in the
extreme BEC regime, one may take NB = N/2, leading to

E =
∑

q

q2

4m
nB

(
q2

4m
− µB

)
− Ebind

N
2
. (3.21)

Since CV = (∂E/∂T )V,N is simply obtained from the first term in Eq. (3.21), it
is just the same as the specific heat in an ideal gas with N/2 two-body bound
molecules.

With increasing temperature above T̃ , the gradual decrease of the number NB of
stable pairs from N/2, shown in Figs.3.6 (d)∼(f), indicates the thermal dissoci-
ation of molecular bosons. The last term EbindNB in Eq. (3.20) shows that this
phenomenon naturally increases CV , giving the deviation from CB

V seen in Figs3.6
(a)∼(c).
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Figure 3.7: Temperature dependence of specific heat CV in the weak coupling
BCS side ((kFas)−1 <∼ 0) of the crossover. CF

V is the specific heat of a free Fermi
gas, given in Eq.(3.22). The characteristic temperature T̄ is determined as the
temperature at which CV becomes has a minimum value.

3.2.2 The Weak Coupling Side (kFas)−1 <∼ 0

We now turn our attention to the weak coupling BCS side ((kFas)−1 <∼ 0). We see
in Fig.3.7 (c) that the remarkable amplification of CV seen at Tc soon disappears
with increasing temperature, to approach the specific heat CF

V of a free Fermi gas,
given by

CF
V = 2

∑
p

εp
∂nF(ξp)
∂T

. (3.22)

This means that fluctuating preformed Cooper pairs gradually disappears as the
temperature increases from Tc. We briefly note that CF

V in Eq.(3.22) approaches
the classical Dulong-Petit law [89] (CV = 3N/2) from below, in the high temper-
ature limit.

Introducing another characteristic temperature T̄ as the temperature at which CV

takes a minimum value in this region, the lower (T <∼ T̄ ) and the higher (T >∼ T̄ )
temperature side may be viewed as a Fermi gas with strong pairing fluctuations,
and a normal Fermi gas, respectively. As one approaches the weak coupling
regime, the characteristic temperature T̄ decreases as shown in Fig.3.7 (a)∼(c),
which means the shrinkage of the fluctuation regime with decreasing interaction
strength, as expected.

3.3 Specific Heat Below Tc

Figure.3.8 shows the specific heat CV in the superfluid state of a ultracold Fermi
gas in the BCS-BEC crossover region. In contrast to the case of the normal state
above Tc, the overall temperature dependence below Tc is not so dependent on
the strength of a pairing interaction. In the weak-coupling BCS regime both Bo-
goliubov single-particle excitations accompanied by pair-breaking and a gapless
collective Goldstone mode are considered to contribute to CV (T ≤ Tc). In the
strong coupling BEC regime, the former becomes irrelevant because the binding
energy Ebind = 1/ma2

s is much larger than Tc(≃ 0.218TF), so that most pairs re-
main even at Tc. Thus, the latter collective excitations dominate over CV in this
regime, as in the case of the ordinary Bose superfluid.
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3.4 Phase Diagram Of An Ultracold Fermi Gas

When we compare the two characteristic temperature T̃ and T̄ introduced in the
previous section with the pseudogap temperature T ∗ [22, 23] (below which the
pseudogap appears in the density of states near the Fermi level), as well as the
spingap temperature Ts [24] (below which the spin susceptibility is anomalously
suppressed by the preformed pair formation), we find that T̄ is close to T ∗ and
Ts as shown in Fig.3.9. In this regard, we recall that the right side of T ∗ and
Ts is sometimes referred to as the pseudogap regime in cold Fermi gas physics,
where strong pairing fluctuations dominate over system properties. Thus, from
the viewpoint of the specific heat CV , T̄ is found to physically give the boundary
between the pseudogap regime and the normal Fermi gas regime (although there
is no phase transition at T̄ ).

As mentioned previously, the region bellow the characteristic temperature T̃ , ob-
tained in the strong coupling BEC regime, may be physically viewed as an ideal
molecular Bose gas. Thus, together with the above discussion, the temperatures
T̃ works as the boundary between the pseudogap regime and the molecular Bose
gas regime.

We note that no characteristic temperature corresponding to T̃ has so far been ob-
tained from analysis on the density of states ρ(ω) (which only gives the pseudogap
temperature T ∗), or the spin susceptibility χs (which only gives the spin gap tem-
perature Ts). This is because, in the BEC regime, ρ(ω) almost vanishes around
ω = 0 due to the opening of large pseudogap [22, 23], and χs is also suppressed
due to the spin-singlet pair formation, so that it is difficult to extract useful infor-
mation from these quantities there. In contrast, the specific heat does not vanish
even in the strong coupling regime, leading to T̃ . This is an advantage of using
this thermodynamic quantity for the study of BCS-BEC crossover physics.

We note that, as the boundary between the normal Bose gas regime and the pseu-
dogap regime, it has been proposed that T = 2|µ| in the BEC regime (where
µ < 0) [22, 23]. This proposal is based on the fact that 2|µ| eventually coin-
cides with the binding energy Ebind = 1/(ma2

s) of a molecular boson in the BEC
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Figure 3.9: Comparison of T̃ and T̄ with various characteristic temperatures dis-
cussed in the BCS-BEC crossover regime of an ultracold Fermi gas. T ∗ is the
pseudogap temperature, below which a dip appears in the single-particle density
of states near the Fermi level [22, 23]. Ts is the spingap temperature, below which
the spin susceptibility is suppressed by the formation of preformed Cooper pairs
[24]. The right side of these characteristic temperatures is called the pseudogap
regime in the literature. T̃ and T̄ are introduced in this thesis. In this figure, except
for Tc, no phase transitions occur at these characteristic temperatures.

limit. Stable molecules are thus expected to appear below 2|µ| ∼ Ebind, over-
whelming thermal dissociation. However, when we compare 2|µ| with T̃ , we find
that 2|µ| ≫ T̃ . This indicates that, although stable molecules are expected to ap-
pear around 2|µ| ∼ Ebind, this does not immediately indicate the realisation of a
molecular Bose gas. Instead, to realise a gas of long-lived stable molecules, the
temperature needs to be further decreased down to T̃ . In this sense, the region
between 2|µ| and T̃ may be regarded as the crossover region between a gas of
metastable molecules and that of long-lived stable molecules.

Summarising our results and discussions, we obtain the phase diagram of an ultra-
cold Fermi gas shown in Fig.3.10. Using the two characteristic temperatures T̄ and
T̃ , we can divide the normal state above Tc into (1) normal Fermi gas regime (NF),
(2) pseudogap regime (PG), and (3) molecular Bose gas regime (MB). Although
there is no phase transition at T̄ or T̃ , this phase diagram would be useful in un-
derstanding strong-coupling properties of this system in the BCS-BEC crossover
region.
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3.5 Comparison With Experiment
Finally, in this section we compare our result with the recent experiment on a 6Li
unitary Fermi gas [32] in Fig.3.11. The overall behaviour of our result agrees with
the experimental data, especially in the superfluid phase below Tc. However, the
calculated CV in the pseudogap regime (Tc ≤ T <∼ T̄ ) is somehow larger than the
observed CV . In this regard, we note that the experimental group states that a finite
spacial resolution inherent in this experiment in a trapped geometry could lead to
a possible suppression of the specific heat near Tc [32]. Thus, further analysis in-
cluding these effects are needed to quantitatively explain this experimental result,
which remains as our future problem.
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Chapter 4

Application To Neutron Star
Equation Of State

In this chapter we propose an idea to study the low density crust regime of a neu-
tron star, by using a superfluid Fermi atomic gas near the unitary regime. In this
idea, we first construct a reliable strong-coupling theory which can well explain
the ground state properties of an ultracold Fermi gas, and apply it to the neutron
star equation of state, by making up for the difference between the two systems
in a theoretical manner. In Sec.1.4, we show that the superfluid NSR theory ex-
plained in Sec.2.2 well explains the recent experiment of a 6Li superfluid Fermi
gas in the BCS-unitary regime. Being based on this result, we apply the extended
NSR theory (including the non-vanishing effective range reff = 2.7 fm) presented
in Sec.2.3, to calculate the neutron star equation of state (EOS) in Sec.4.2. In
Sec.4.3 we examine how thermodynamic properties of an interacting Fermi gas
vary when we tune reff. In Sec.4.4 we discuss corrections to the neutron star EOS
due to higher order density corrections.

4.1 EOS Of A Superfluid Fermi Gas In The BCS-
Unitary Regime

Figure 4.1 shows self-consistent solutions for the Fermi chemical potential µ and
the superfluid order parameter ∆ obtained by the superfluid NSR theory explained
in Sec.2.2. We find that our results agree well with recent experiments on 6Li
superfluid Fermi gases [33, 94], as well as theoretical Monte-Carlo simulation
[93].

We note that the mean-field based BCS-Leggett strong-coupling theory cannot
quantitively explain the observed µ and ∆, as shown in Fig.4.1. That is, even at
low temperatures where thermal fluctuations are considered to be almost absent,
we still need to take into account strong-coupling corrections beyond the mean-
field level. For this purpose, Fig.4.1 indicates that the NSR scheme works well
near T/TF = 0. Indeed, when we evaluate the internal energy E by using the NSR
results for µ and ∆ in Fig.4.1, it is found to well explain the recent experiment, as
shown in Fig.4.2. (Note that the BCS-Leggett theory again overestimates E.)

As mentioned in Sec.2.3.3, in our numerical calculations targeting the ground
state we set the temperature to T/TF = 0.02. We briefly note that, except in the
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Figure 4.1: Self-consistent solutions for the coupled gap equation (2.54) with
the number equation (2.55) and (2.56) in the BCS-Unitary regime of a superfluid
Fermi gas. (a) Chemical potential µ. (b) Superfluid order parameter ∆. In both
cases, the effective range reff = 0 fm. In panel (a) the shaded line is the experi-
mental result on a 6Li Fermi gas [33]. In panel (b) “QMC” shows the result by
quantum Monte-Carlo simulation [93]. “6Li” shows the experimental results by
Bragg spectroscopy [94].

weak coupling regime ((kFas)−1 <∼ − 1), Tc is much higher than T/TF = 0.02 (see
Fig.2.3 (a)). Thus, our results around the unitarity limit may be regarded as those
in the ground state at T/TF = 0.

4.2 Neutron Star Equation Of State In The Low Den-
sity Regime

In Sec. 4.1, we have confirmed that the superfluid NSR theory can correctly deal
with strong-coupling effects on the internal energy in the unitary regime of a su-
perfluid atomic Fermi gas near T = 0, we now extend this scheme to include the
non-vanishing effective range reff = 2.7 fm, for the study of EOS of a neutron star
in the low density crust regime. (This extension has been explained in Sec.2.3).
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in the BCS-Leggett theory. “DMC” and “AFMC” show the results from diffusion
Monte-Carlo and auxiliary field Monte Carlo simulations, respectively [93]. “6Li”
shows the experimental result on a 6Li superfluid Fermi gas [33].

Figure.4.3 shows the calculated Fermi chemical potential µ, as well as the su-
perfluid order parameter ∆ = γp/∆p within the framework of the superfluid NSR
theory for the s-wave neutron interaction (where as = −18.5 fm and reff = 2.7
fm). In this figure, sine the Fermi momentum kF is proportional to n1/3 (where n
is the neutron density), the x-axis is related to the depth of a neutron star, from the
surface. In panel (a), comparing “NSR(reff = 2.7 fm)” and “NSR(reff = 0 fm)”, we
find that effects of the non-vanishing effective range becomes remarkable in the
high density region when kF >∼ 0.8 fm−1. Regarding this, we recall that the effective
range reff = 2.7 fm gives the momentum cutoff pc = 0.79 fm−1 (see Eq.(2.73)). As
a result, effects of this cutoff become crucial when the Fermi energy εeff = k2

F/2m
becomes comparable to the cutoff energy ω = p2

c/2m.

However, Fig.4.3 (b) shows that the difference between “NSR(reff = 2.7 fm)”
and “NSR(reff = 0 fm)” has already been remarkable when kF ∼ pc = 0.79
fm−1, indicating that the superfluid order parameter is more sensitive to the cutoff
momentum pc than the chemical potential µ.

We note that the present superfluid order parameter,

∆p = γp∆ =
∆√

1 +
(

p
pc

)2
, (4.1)

depends on the momentum p. Thus, ∆ shown in Fig.4.3 (b) does not immediately
give the so-called superfluid energy gap Egap. (Note that Egap = ∆when reff = 0, or
pc → ∞, as far as µ > 0.) Indeed, when we evaluate the threshold energy Egap of
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Figure 4.3: Self-consistent solution for the coupled gap equation (2.81) with the
NSR number equation (2.88) (solid line). (a) Fermi chemical potential µ. (b)
Superfluid order parameter ∆ = γp/∆p. We set as = −18.5 fm, reff = 2.7 fm,
and mn = 936 MeV/c2 for the study of neutron matter. Energy is measured in
units of MeV. For comparison, we also show the NSR results with reff = 0 (dotted
line), as well as the mean field BCS-Leggett result (dashed line). In panel (a) the
dashed-dotted line shows the effective chemical potential µ∗ = µ+U(as, reff)NMF/2
calculated from the NSR theory with reff = 2.7 fm. In panel (b) the dashed-dotted
line shows the threshold energy of the Bogoliubov single-particle dispersion Ẽp =√
ξ̃2

p + ∆
2
p. The solid squares, solid circles, solid triangles, and solid diamonds,

show the results for the threshold energy by quantum Monte-Carlo simulation
[47], renormalisation group [95], deterministic quantum Monte-Carlo simulation
[96], and auxiliary field Monte-Carlo simulation [97], respectively.

the Bogoliubov single-particle dispersion Ẽp =

√
ξ̃2

p + ∆
2
p, it is given as the value

of ∆p at the momentum p̃F satisfying

0 = ξ̃p̃F =
p̃2

F

2m
− µ∗, (4.2)

when
µ∗ = µ + U(as, reff)NMF/2 (4.3)

is the Fermi chemical potential including the Hartree shift (we show µ∗ in Fig.4.3
(a)). As shown in Fig.4.3 (b) the energy gap Egap is actually found to be smaller
than ∆. We also find that the present Egap agrees with previous work in the low-
density regime where kF <∼ pc = 0.79 fm−1.

When kF >∼ pc = 0.79 fm−1, our Egap becomes larger than the previous result [95].
This is because the present simple effective range theory in the s-wave scattering
channel overestimates the phase shift (or the interaction strength) of the s-wave
neutron-neutron interaction when kF >∼ pc = 0.79 fm−1 (see Fig.4.4 (b)), leading to
the overestimation of ∆. In addition, non-s-wave interactions, such as the p-wave
one , becomes strong in the high density region, as shown in Fig.4.4 (b). While ref
[95] involves this realistic situation of the neutron star interior to some extent, our
approach ignores these. Thus, the present approach is restricted to the low density
region kF <∼ pc = 0.79 fm where the simple effective range theory works.
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Figure 4.4: (a) Calculated neutron star equation of state (solid line), within the
framework of the superfluid NSR theory with as = −18.5 fm and reff = 2.7 fm.
The dotted and dashed line show the results in the NSR theory with reff = 0 fm, and
BCS-Leggett theory with reff = 0 fm, respectively. The solid squares [83], circles
[84], diamonds [47], and triangles [85], show the results starting from various
model interactions proposed in nuclear physics, with the name of the model being
written in parentheses. (b) Neutron-neutron scattering phase shift δ(kF). The solid
line shows the phase shift in the present s-wave effective range theory. The dotted
line shows the phase shift in the 1S0 channel [64, 98]. The vertical dotted line
shows the position at the cutoff momentum pc = 0.79 fm−1. In panel (b), we also
show the phase shift in the 3P2 channel.

Regarding the above discussion, we note that the Hartree shift (the last term in
Eq.(4.3)) largely increases the Fermi momentum p̃F =

√
2mµ∗ (see the differ-

ence between µ and µ∗ in Fig.4.3 (a)). This correction is crucial for the above-
mentioned agreement of Egap with the previous work. When µ is used instead of
µ∗ in Eq.(4.2) (when we ignore the correction from the Hartree shift) a smaller p̃F

gives a larger value of the threshold energy Egap in Fig.4.3 (b).

Using the basic data set shown in Fig.4.3, we compute the neutron star equation
of state (EOS) as a function of kF, as shown in Fig.4.4 (a). In the low-density
region (where kF <∼ pc), our combined NSR theory with the effective range theory
agrees well with previous EOS results obtained in nuclear physics [47, 83–85]. As
these previous results are based on pseudopotentials calibrated so as to reproduce
nucleon scattering experiments it is difficult to ascertain to what extent many-body
effects are included. Our results shown in Fig.4.4 (a), together with the results
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Figure 4.5: (a) Calculated effective chemical potential µ∗ = µ + U(as, reff)NMF/2.
(b) Superfluid order parameter ∆ (c) Internal energy E. (d) Stoner factor (∂µ∗/∂µ)T
in Eq. (2.91). We take as = −18.5 fm. The dashed line shows the result at
kF = pc = 0.79 fm−1. The dotted line shows the case of a neutron star (reff = 2.7
fm).

presented in Sec 4.2, thus help to give experimental support in this regard. That
is, although the inclusion of non-vanishing effective range (reff = 2.7 fm) is still
a theoretical challenge, the inclusion of strong-coupling corrections by the NSR
scheme is fully supported by the recent experiment on a 6Li superfluid Fermi gas,
as shown in Fig.4.2.

We see in Fig.4.4 (a) that our EOS gradually deviates from previous results when
kF >∼ pc. As mentioned previously, this is simply because the present simple ef-
fective range theory does no longer agrees with the phase shift in the 1S0 channel
in this regime, as shown in Fig.4.4 (b). In addition, in the higher density region
other partial wave channels (such as 3P2 shown in Fig.4.4 (b)), which are included
in the previous results, should become important. Extending the present NSR
approach to include these points is our exciting future problem. We briefly note
that, because the conventional NSR theory with reff = 0 also includes the above
mentioned issues, the agreement with the previous work up to kF = 2 fm−1 seen in
Fig.4.4 (a) is accidental.

4.3 Effects Of A Finite Effective Range On Thermo-
dynamic Properties

We show in Fig.4.5 several physical quantities at various values of the effective
range (0 ≤ reff ≤ 3 fm). Although the present approach is valid for the low density
region, kF <∼ pc = 0.79 fm−1, we also show the results in the region kF >∼ pc,
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for reference. In panel (a), one sees that the effective chemical potential µ∗ in
Eq.(4.3) is not so sensitive to the effective range in the low density region (kF <∼ pc).
Since the Hartree shift U(as, reff)NMF/2 increases with increasing the value of reff

(see Eq.(2.72)), this means that the effective range effects on the (bare) chemical
potential µ are compensated by the Hartree shift to some extent. On the other
hand, since Fermi particles near the Fermi surface are important for the Cooper-
pair formation, the pairing is suppressed when the Fermi momentum kF exceeds
the cutoff momentum kc. Because of this, the superfluid order parameter ∆ is
sensitive to reff as seen in Fig.4.5 (b).

At a glance, the reff-dependence of ∆ shown in Fig.4.5 (b) makes us expect that
the internal energy E is also sensitive to reff , because of the reff-dependence of
the superfluid condensation energy (which is deeply related to ∆). However, the
calculated internal energy E shown in panel (c) is actually not so sensitive to reff

in the low density regime. This indicates that, although the loss of superfluid
condensation energy by the suppression of ∆ increases E, (at least compared to
the NSR case for reff = 0 fm). The Hartree energy term −U(as, reff)N2

MF/2 lowers
E, which compensates the former effective range effect. Figure 4.4 (a) implies
that such a compensation phenomenon occurs in the low density region, so that
EOS is still comparable to that in the case when reff = 0 fm when kF <∼ pc. This
indicates the importance of the Hartree-term, in quantitatively investigating EOS
in the crust regime of a neutron star interior.

In Fig.4.5 (d), we show the Stoner factor (∂µ∗/∂µ)T associated with density fluc-
tuations in Eq.(2.91). When the bare attraction interaction U(as, reff) is non-zero
density fluctuations are known to be enhanced by this interaction. However, al-
though the Stoner enhancement really occurs ((∂µ∗/∂µ)T > 1) in the present case,
Fig.4.5 (d) shows that this enhancement is not so remarkable in the low density
region (kF <∼ pc). In this sense, density fluctuations are not so important in this
region.

4.4 Correction From Density Fluctuations To The
Equation Of State

The NSR theory is based on the assumption that pairing fluctuations (fluctuations
in the Cooper channel) associated with a strong attractive interaction dominates
over system properties. Regarding this assumption, Fig.4.5 (b) shows that the
superfluid order is suppressed in the presence of a non-vanishing effective range,
especially when kF >∼ pc. In addition, as mentioned previously, Figs.4.5 (a) and (c)
imply the importance of the Hartree term when reff , 0. Furthermore, the Stoner
factor, associated with density fluctuations, appears in the NSR theory when reff ,
0, becomes large when kF >∼ pc (see Fig.4.5) (d). These facts make us expect
that other interaction channels, such as density fluctuations, may also become
important in the case when the non-vanishing effective range exists, which the
current NSR theory completely ignores.

Thus, although we can not include all the possible diagrams coming from H′I
in Eq.(2.77), in this section we evaluate all the second order diagrams that are
ignored in the NSR theory. For this purpose we rewrite the interaction term H′I in
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Figure 4.6: Effects of Ecorr in Eq.(2.93) to the internal energy when reff = 2.7 fm.
The inset shows Ecorr.

Eq.(2.77) in the following two forms :

H′I = −U(as, reff)
∑
p,p′,q

γpγp′ρ+(p, q)ρ−(p′,−q), (4.4)

H′I = −U(as, reff)
∑
p,p′,q

γ(p+p′+q)/2γ(p+p′−q)/2n+(p, q)n−(p′,−q). (4.5)

These are convenient forms in considering superfluid fluctuations and density cor-
rections, respectively. In Eq.(4.4) and Eq.(4.5), we have introduced

ρ±(p, q) =
1
2
Ψ
†
p+q/2[τ1 ± iτ2]Ψp−q/2, (4.6)

n±(p, q) =
1
2
Ψ
†
p+q/2[τ3 ± 1]Ψp−q/2. (4.7)

The second order correction Ωcorr to the thermodynamic potential Ω in terms of
H′I is obtained from Eq.(2.12) as,

Ωcorr = −
1

2β

∫ β

0
dτ

∫ β

0
dτ′⟨H′I(τ)H′I(τ′)⟩c. (4.8)

Using Eq. (4.4) for both H′I’s in Eq. (4.8) results in contribution from the second-
order diagram Ω(2)

NSR in Fig.2.7 (a), which has already been included in ΩNSR in
Eq. (2.85).

Actually, ΩNSR, may also be regarded as a contribution coming from fluctuations
in the density channel. Indeed, when we choose Eq.(4.5) for both HI’s in Eq.
(4.8), the second-order correction Ω(2)

NSR is again obtained. Since this contribution
is already included in the NSR theory, we don’t have to include this case here.
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The correction that contributes toΩcorr is obtained, when we choose one H′I as Eq.
(4.4) and one as Eq. (4.5). This gives

Ωcorr = −U(as, reff)2T
∑

p,p′,q,νn

γ(p+p′+q)/2γ(p+p′−q)/2γpγp′

×
[
Π
ρn
++(p, q, iνn)Πnρ

−−(p′,−q, iνn) + Πρn+−(p, q, iνn)Πnρ
+−(p′,−q, iνn)

]
= −2U(as, reff)2T

∑
p,p′,q,νn

γ(p+p′+q)/2γ(p+p′−q)/2γpγp′

× Πρn++(p, q, iνn)Πρn++(p′, q, iνn), (4.9)

where

Π
ρn
i j (p, q, iνn) = T

∑
νn

tr
[
τiĜ(p+ q/2, iωn + iνn)n jĜ(p− q/2, iωn)

]
, (4.10)

Π
nρ
i j (p, q, iνn) = T

∑
νn

tr
[
niĜ(p+ q/2, iωn + iνn)τ jĜ(p− q/2, iωn)

]
. (4.11)

and we use the symmetry properties,Πnρ
−−(p,−q, iνn) = Πρn+−(p,−q, iνn) = Πρn++(p, q, iνn),

and Πnρ
+−(p, q, iνn)) = Πρn++(p, q, iνn). These correlation functions physically de-

scribe couplings between superfluid and density fluctuations [20].

Summing up the Matsubara frequencies in Πρn++ in Eq.(4.9), gives

Π
ρn
++(p, q, iνn)) = − ∆+

4Ẽ+

[ (
1 +
ξ̃−

Ẽ−

) [
1 − nF(Ẽ+) − nF(Ẽ−)

iνn + Ẽ+ + Ẽ−
− nF(Ẽ+) − nF(Ẽ−)

iνn − Ẽ+ + Ẽ−

]
+

(
1 − ξ̃−

Ẽ−

) [
1 − nF(Ẽ+) − nF(Ẽ−)

iνn − Ẽ+ − Ẽ−
− nF(Ẽ+) − nF(Ẽ−)

iνn + Ẽ+ − Ẽ−

] ]
(4.12)

where ∆± = ∆p±q/2, ξ̃± = ξ̃p±q/2, and Ẽ± = Ẽp±q/2.

Substituting Eq.(4.12) into Eq.(4.9), we obtain, after carrying out the νn-summation,

Ωcorr =
U(as, reff)2

4

∑
p,p′,q

[
1 −
ξ̃p−q/2

Ẽp−q/2

] [
1 −
ξ̃p′−q/2

Ẽp′−q/2

]
×

γpγp′γ(p+p′+q)/2γ(p+p′−q)/2∆p+q/2∆p′+q/2

Ẽp+q/2Ẽp′+q/2

[
Ẽp+q/2 + Ẽp−q/2 + Ẽp′+q/2 + Ẽp′−q/2

] . (4.13)

For simplicity, we have taken the zero-temperature limit in Eq.(4.13). The correc-
tion Ecorr to the internal energy E, is then obtained from from Eq.(4.13) as

Ecorr = Ωcorr − T
(
∂Ωcorr

∂T

)
µ

+ µNcorr, (4.14)

where

Ncorr = −
(
∂µ∗

∂µ

)
T

(
∂Ωcorr

∂µ∗.

)
T
, (4.15)

Fig.4.6 shows E + Ecorr (we briefly note that we have resolved the gap equation
Eq.(2.81), together with the number equation N = NMF + NNSR + Ncorr including
the correction term in Eq.(4.15)). The correction Ecorr is found to be actually very
small compared to the NSR internal energy E, at least in the low density region.
Thus, the inclusion of superfluid fluctuations described by the diagrammatic series
in Fig.2.7 (a) is considered to be effective in the low-density crust regime of a
neutron star.
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Summary

To summarise, we have theoretically investigated effects of strong pairing fluc-
tuations in the BCS-BEC crossover regime of an ultracold Fermi gas. Including
fluctuations in the Cooper channel within the framework of the strong-coupling
NSR (Nozières and Schmitt-Rink) theory [15], we examined how the specific heat
at constant volume CV is affected by pairing fluctuations in the whole BCS-BEC
crossover regime in the normal and superfluid state. We have also discussed a
possible approach of this highly tunable Fermi atomic system to the study of the
equation of state (EOS) of a neutron star in the low density crust regime.

We found that the temperature dependence of the specific heat CV is complicated
and is sensitive to the strength of a pairing interaction in the normal state above Tc.
Analysing the detailed behaviour of CV , we succeeded in obtaining the character-
istic temperatures T̃ and T̄ . Using these, we determine the region where system
properties are dominated by pairing fluctuations, as well as the strong-coupling re-
gion where the system may be regarded as an almost ideal molecular Bose gas, in
the phase diagram of an ultracold Fermi gas with respect to the temperature and in-
teraction strength. From the comparison of these characteristic temperatures with
the previous pseudo gap temperature T ∗ [22] and spin gap temperature Ts [24],
we pointed out that the above-mentioned regime with strong pairing fluctuations
corresponds to the so called pseudogap regime discussed recently [22, 44, 45].

We also compared the calculated CV with the recent experiment in a 6Li unitary
Fermi gas [32]. Our result was shown to agree with the observed CV in a semi
quantitative level.

We further extended the superfluid NSR theory [20, 21] so that it can deal with the
case with non-vanishing effective range reff , 0. Combining this with the recent
EOS experiment on a 6Li superfluid Fermi gas in the BCS-unitarity regime [33],
we have explored the possibility that an ultracold Fermi atomic gas can be used as
a quantum simulator for the study of the EOS in the low density crust regime of
a neutron star interior. After checking that the superfluid NSR theory can quan-
titatively explain the observed internal energy in the BCS-unitarity regime of a
6Li superfluid Fermi gas, we employ the extended superfluid NSR theory with the
realistic value reff = 2.7 fm of the effective range of the neutron-neutron interac-
tion, to evaluate the neutron star EOS. In the low density regime (kF <∼ 1 fm−1),
our results agree well with the previous ones obtained in nuclear physics. We em-
phasise that, in our approach, inclusion of many-body effects are fully supported
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by the recent EOS experiment in cold Fermi gas physics, except for effects of
the non-vanishing effective range. This is quite different from the previous work,
where such experimental support is up to construction of few body interactions,
and inclusion of many-body effects is a fully experimental challenge. Our result
indicates that an ultracold Fermi atom gas may be used as a quantum simulator
for the study of other systems in a more flexible manner than the current approach
(where perfect replication of a target system is attempted), when the difference
between the Fermi gas system and target system is made up for by using a reliable
strong-coupling BCS-BEC crossover theory.

Since humanity does not currently possess the technology to directly measure the
neutron star EOS, our idea for using the thermodynamic properties of a strongly
interacting Fermi gas along with strong coupling theory provides a novel route, in
addition to astrophysical observations and nuclear physics, in studying this mys-
terious object.

In this thesis, we have restricted our theoretical approach to the NSR level. In-
clusion of higher-order pairing fluctuations beyond this scheme would be an im-
portant future problem, in order to obtain more quantitative agreement with the
observed specific heat in the normal state of a 6Li unitary Fermi gas near Tc. For
this purpose, inclusion of spacial inhomogeneity coming from the trapping ge-
ometry would also be important. In addition, we have only dealt with the case
of an s-wave pairing interaction. Since a tunable p-wave interaction associated
with a p-wave Feshbach resonance has been realised in ultracold Fermi gasses
[7, 35, 36, 41], it is also an interesting future problem to explore the possibility
that this p-wave interacting Fermi gas is usefull to study the deeper region of a
neutron star interior.

Since understanding strong coupling properties of an ultracold Fermi gas in the
BCS-BEC crossover region is a crucial issue for, not only the development of
cold Fermi gas physics, but also various complicated many-body systems that
are waiting for a quantum simulator, our results would contribute to the future of
various research fields.

64



Acknowledgments

First and foremost I would like to give thanks to professor Yoji Ohashi. His kind
guidance, advice and teaching helped me realise I still have a long way to go,
but have also made me enthusiastic about the journey ahead. I am grateful for
the research environment he has provided, which has allowed me to concentrate
on my work without restrictions. I thank him also for being strict when the time
called for it, and pushing me to go beyond what I think I could possibly achieve
in these 5 short years. His guidance always displayed a true passion for physics,
and the education of the students in his lab.

I am also extremely grateful to professor Masanori Matoba, professor Shinichi
Watanabe, and professor Jun Yamauchi for reading my thesis and for their kind
advice through my PhD examination process.

I would like to thank Dr. Daisuke Inotani for the multitude of invaluable advice
he gave me concerning my research, and to Dr. Tajima Hiroyuki for being an
example every graduate student should strive for. I am also grateful to my other lab
mates (previous and present) Ryo Hanai, Morio Matsumoto, Daichi Kagamihara,
Miki Ota, Digvijay Khagra, Soumita Mondal, Manabe Koki and Sato Ryohei who
helped to make the Ohashi group laboratory a fruitful research environment.

I would like to give special thanks to professor Akira Ohnishi for his kind guid-
ance and advice concerning the second part of my thesis.
Finally, I cannot say thank you enough to my mother and father, Sandra and Pieter
Roelof van Wyk, for teaching me the value of diligence and hard work. Without
their love and support I would not be where I am today.

65





Appendix A

Proton Fraction In Non-Interacting
Nuclear Matter

In this appendix, we evaluate the neutron population from the beta-equilibrium
condition in Eq.(1.9), together with charge neutrality. Considering Eq.(1.9) (where
the Fermi chemical potential is given in Eq.(1.10)), we find.√

m2
nc4 + p2

Fnc2 =

√
m2

pc4 + p2
Fpc2 +

√
m2

ec4 + p2
Fec

2

≃
√

m2
nc4 + p2

Fpc2 +

√
(βmn)2 c4 + p2

Fpc2, (A.1)

where we assumed charge neutrality pFp = pFe, and mn ≃ mp, me ≃ βmp, where
β = 1/1836.12 [99].

Using pFi = ℏ
(
3π2ni

)1/3
(i = n, p) and defining the proton fraction Yp = np/nn, we

can rewrite Eq.(A.1) as√
1 + αn̄2/3

n =

√
1 + αn̄nYp

2/3 +

√
β2 + αn̄nYp

2/3. (A.2)

In Eq.(A.2) n̄n = nn/n0, with n0 = 0.16fm−3 being the nuclear saturation density
[61], and we have defined

α =
ℏ2

(
3π2n0

)3/2

m2
nc2 = 0.124 (A.3)

(using ℏc = 197 MeVfm and mn = 939 MeV/c2).

The total mass density is given by

ρ = mnnn + mpnp + mene

=
(
1 + (1 + β) Yp

)
mnnn. (A.4)

Normalising Eq.(A.4) in terms of the the neutron mass density ρ0 = mnn0 at the
nuclear saturation density, and substituting into Eq.(A.2), we have√

1 + α
[

ρ̄

1 + (1 + β) Yp

]2/3

=

√
1 + α

[
ρ̄Yp

1 + (1 + β) Yp

]2/3

+

√
β2 + α

[
ρ̄Yp

1 + (1 + β) Yp

]2/3

, (A.5)
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MATTER

where ρ̄ = ρ/ρ0. Equation (A.5) is a self-consistent equation for the proton frac-
tion Yp for a given ρ̄. The solution of Eq.(A.5) is shown in Fig.1.11. In the high
density limit (ρ̄ ≫ 1) Eq.(A.5) gives Yp = 1/8.
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Derivation Of Eq.(2.57) And
Eq.(2.60)

To derive Eq.(2.57) and Eq.(2.60) from the gap-equation Eq.(2.54) , we conve-
niently define

g (T, µ,∆) =
∑

p

[
1

2Ep
tanh

Ep

2T
− 1

2εp

]
. (B.1)

We note that g (T, µ,∆) = 1 when ∆ and µ satisfy the gap equation (2.54). In such
a case, one finds

0 =
(
∂g
∂µ

)
T
=

(
∂g
∂µ

)
∆,T
+

(
∂∆

∂µ

)
T

(
∂g
∂∆

)
µ,T

(B.2)

when Eq.(2.54) is satisfied.

Here, Eq.(B.1) gives(
∂g
∂µ

)
∆,T
= −

∑
p

ξp

2E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)]
,(

∂g
∂∆

)
µ,T
=

∑
p

∆

2E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)]
. (B.3)

Substituting Eq.(B.3) into Eq.(B.2), we obtain

(
∂∆

∂µ

)
T
= −

(
∂g
∂µ

)
∆,T(

∂g
∂∆

)
µ,T

=

∑
p

ξp

E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)]
∑

p

∆

E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)] . (B.4)

Similarly, taking the derivative of Eq.(B.1) with respect to T while keeping the
chemical potential µ fixed,

0 =
(
∂g
∂T

)
µ

=

(
∂g
∂T

)
∆,µ

+

(
∂∆

∂T

)
µ

(
∂g
∂∆

)
µ,T
. (B.5)
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Using Eq.(B.3) and (
∂g
∂T

)
µ,∆

= −
∑

p

1
4T 2 sech2

(
Ep

2T

)
(B.6)

one reaches

(
∂∆

∂T

)
µ

= −

(
∂g
∂T

)
∆,µ(

∂g
∂∆

)
µ,T

=

∑
p

1
2T 2 sech2

(
Ep

2T

)
∑

p

∆

E2
p

[
1

2T
sech2

(
Ep

2T

)
− 1

Ep
tanh

(
Ep

2T

)] . (B.7)
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Derivation Of Eq.(2.71)

Γ

ip
c

-ip
c

-p-iδ

p+iδ

Imz

Rez

Figure C.1: Integral contour Γ in Eq.(C.2). Four poles of the integrant are also
shown (red ×).

To derive the expression for the momentum cutoff pc in Eq.(2.71) in the effec-
tive range theory, we introduce the function,

Ip =
4π
m

∑
p′
γ2

p′

[
1

2εp′ − (2εp + iδ)
− 1

2εp′

]
=

2p2
c

π

∫ ∞

0
dp′

p′2

p′2 + p2
c

[
1

p′2 − p2 − iδ
− 1

p′2

]
, (C.1)

where we have redefined mδ→ δ in obtaining the second line.

To evaluate Eq.(C.1), we also introduce the complex integral,

IΓ =
1
2

∫
Γ

dz
z2

z2 + p2
c

1
z2 − p2 − iδ

=
1
2

∫
Γ

dz
z2

(z + ipc) (z − ipc) (z + [p + iδ]) (z − [p + iδ])
, (C.2)

where the path Γ is given in Fig.C.1. Evaluating the residues at the poles z = ipc
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and z = p + iδ, one has

IΓ =
π

2

[
pc

p2 + p2
c
+

ip
p2 + p2

c

]
. (C.3)

Taking the radius of the contour to infinity, we reach

Ip =
2p2

c

π

[
IΓ −

π

2pc

]
= pc

(
γ2

p − 1
)
+ ipγ2

p. (C.4)

Using this, we can evaluate the momentum summation in the denominator in
Eq.(2.69) when the basis function γp in Eq.(2.70) is used, which gives Eq.(2.71).
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