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Preface

End-to-end network latency has become an important issue for parallel application on large-scale

High Performance Computing (HPC) systems. For large parallel applications executed on the next

generation of HPC systems, MPI communication latency should be lower than one microsecond.

Switch delays (e.g., about 100 nanoseconds in InfiniBand QDR) are typically larger than the wire

and flit injection delays, even when including serial and parallel converters. This is why inter-switch

topologies should have a low diameter and low average shortest path length, both of which can be

measured in terms of a number of switch hops.

In order to cope with this requirement, recently researchers have developed random topologies

applicable for inter-switch networks. Compared with the conventional Torus or Fat-tree networks,

these topologies can drastically reduce the number of hops and be efficiently applied to HPC systems,

data centers, and many-core systems.

These irregular topologies often suffer from their lack of scalability for feasible interconnection

networks. Firstly, they tend to increase the total amount of cable length between cabinets and thus

to increase the cost. Secondly, the number of table entries consumed on each switch is increased.

Thirdly, they increase the time complexity to compute assignment of Virtual Channels (VCs) to the

routing paths for deadlock-freedom.

To improve their scalability, this thesis focuses attention on layout-conscious random topolo-

gies that contain randomly connected links with length limitation. These networks achieve drastic

reduction of the total cable length with a minimal increase in the number of hops compared with

completely random networks.

This thesis aims to explore a scalable routing methodology that can be applied to the layout-

conscious random topologies to achieve feasible low-latency interconnection networks. Firstly,

a scalable routing method for the layout-conscious random topologies, LOREN (Layout-Oriented

Routing with Entries for Neighbors), is proposed. This method exploits irregularity and locality in

these topologies to achieve both the small number of hops between nodes and small routing table

sizes required. Secondly, an advanced method for the VC assignment, ACRO (Assignment of Chan-

nels in Reverse Order), is proposed. This approach has a small time complexity, yet with the same

number of VCs compared with conventional VC assignment methods.

The proposed routing methodology provides the better trade-offs between an achieved network

latency and the number of required table entries. It is evaluated by using a cycle-accurate network



Preface ii

simulator. In the evaluations, the proposed routing method LOREN is enhanced by the proposed VC

assignment method ACRO to guarantee the deadlock-freedom. The results show that the proposed

methodology can improve the network throughput by up to 67.9 % compared to a conventional

compact routing method. Moreover, the number of required routing table entries is reduced by up to

91 %, which improves scalability and flexibility for implementation.
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Chapter 1

Introduction

In this chapter, the subject of this paper, the necessity of low-latency interconnection networks for

HPC systems is introduced. Moreover, I overview the objectives and contribution of this paper. The

organization of this paper is also shown.

1.1 Background

With improving parallelism and increasing scientific computing or big data analytics, low-latency

interconnection networks are essential as well as processing performance of computational nodes for

modern computing systems [2, 3]. It is generally agreed today that a high-performance and a large-

scale computing system called exascale computing will be realized by the next-generation dedicated

parallel computers. It is also considered to use a tremendous computing system called a warehouse-

scale computer for big data processing. These parallel computers usually become large scales from

about 50,000 to 100,000 hosts (computing nodes). In these large systems, the time consumed by the

computation cannot efficiently hide the time consumed by exchanging data on the networks, which

drastically degrades the system performance.

To reduce the network latency, network topologies with the low diameter and the low average

path length can be efficiently applied to interconnection networks. The performance of off-chip

interconnection networks is usually dominated with the delay in switching fabrics (e.g., about a

hundred nanoseconds in Infiniband QDR) rather than in link and injection. Moreover, Networks-

on-Chip (NoCs) that are used for many-core architectures increase the latency for transferring short-

length packets even when using conventional wormhole-switching routers. Therefore, researchers

have recently focused attention on low-latency networks with high-radix switches, which can be

modeled as small-diameter topologies with large degrees [4–6].

Recently proposed irregular topologies adopted in inter-switch networks can significantly reduce

the latencies between computational nodes while can achieve flexible network structures [7–9], while

the traditional structured network topologies with either low-radix or high-radix switches cannot.

Moreover, small-diameter topologies for arbitrary network sizes are known to usually have irregu-
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lar structures [10]. These networks can contribute to reduce the latency by exploiting small-world

phenomena [11], and thus to improve the performance of parallel computation not only for off-chip

networks but for on-chip inter-core networks with low-radix routers [12, 13].

A lately proposed more scalable solution generates random shortcut links with their lengths lim-

ited [14, 15]. Unlike conventional non-random topologies, fully random topologies have a drawback

of an increased link length. This causes both an increased aggregate cable length on a machine room

floor for HPC systems and frequency reduction due to an increased critical path on NoCs (Networks-

on-Chip) for many-core systems. It is reported that the layout-conscious topologies achieve a com-

parable average number of hops to completely irregular topologies yet reduce the total link length.

1.2 Objectives

There are several challenges to achieve practical irregular networks. The main objective of this thesis

is to provide a feasible solution to introduce the randomized topologies for practical HPC systems

and many-core systems.

Firstly, conventional routing algorithms for non-random networks cannot be utilized in random

networks. It is thus necessary for them to use topology-agnostic routing algorithms [16]. In these

algorithms, each switch must have routing table entries for all destination switches. These table

entries enable the optimal routing with the memory space of O(|N| · log |N|) for each switch. Due to

this large memory space in routing tables, the conventional algorithms for irregular networks degrade

scalability for larger system sizes.

Secondly, routing methods for irregular networks do not naively guarantee deadlock-freedom

that has to be supported both on practical HPC networks and NoCs. Therefore, endorsing a given

livelock-free routing with deadlock-freedom is needed.

1.3 Contribution

This thesis explores a scalable routing methodology that is suitable for the layout-conscious random

topologies to achieve feasible low-latency interconnection networks for HPC systems, data centers,

and many-core architectures.

Firstly a routing method for layout-conscious random topologies LOREN (Layout-Oriented Rout-

ing with Entries for Neighbors) is introduced, which exploits irregularity and locality in these topolo-

gies to achieve both the small number of hops between nodes and small routing table sizes required.

Moreover, the proposed method called ACRO (Assignment of Channels in Reverse Order) ex-

ploits multiple Virtual Channels (VCs) [17,18] for each physical channel in order to ensure LOREN

deadlock-freedom. This approach has a small time complexity, yet with the same number of VCs

compared to conventional VC assignment methods. Note that this method is also applicable for arbi-

trary routing methods. The proposed methodology considers a given topology and the routing table,
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obtained from a livelock-free routing algorithm, to generate the VC assignment to paths.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 surveys current interconnection network technologies

including randomized topologies. Chapter 3 surveys a scalable routing methodology called compact

routing, and topology-agnostic deadlock-free routing techniques. Chapter 4 proposes LOREN, a

scalable and low-latency routing method for the layout-conscious random topologies. Chapter 5

proposes ACRO, an efficient VC assignment method with small time complexity. Chapter 6 studies

network performance of LOREN with ACRO. This study models end-to-end latency and throughput

of layout-conscious random topologies. Chapter 7 summarizes and discusses the above studies, and

then concludes this thesis.



Chapter 2

Low-latency Network Topologies

This chapter surveys current interconnection network technologies including randomized topologies.

2.1 Conventional Regular and Irregular Topologies

State-of-the-art high-performance computing systems utilize well-structured and thus scalable net-

work topologies. Table 2.1 shows the latest ranking of supercomputers and their network topolo-

gies [1]. As shown in this table, fat-tree, torus (k-ary n-cube), and dragonfly topologies are widely

used in the recent systems.

Fat-tree and torus (k-ary n-cube) topologies are traditionally used for interconnection networks

because the degree (the number of ports) is relatively small and thus low-radix switches can be

utilized. Minimal routing can be achieved on these topologies with a few number of virtual channels

for deadlock avoidance and the performance.

The recently proposed dragonfly topology [19] achieves the lower latency by exploiting high-

radix switches that were realized thanks to the recent exponential increase in the pin bandwidth.

This topology separates the whole network topology into inter-cabinet and intra-cabinet connections.

Figure 2.3 shows a possible implementation that includes four cabinets, denoted as dotted squares,

containing four hosts denoted as solid squares. In this example, the nodes within each cabinet are

fully connected to improve the performance of the local traffic. Moreover, inter-cabinet connections

can be implemented with distant links to improve the end-to-end network latency.

To achieve networks with the lowest number of hops, researchers in the field of graph theory

have had interests in the concept of Moore graphs [20]. They achieve the optimum number of

nodes in a graph with fixed degree and diameter. Hoffman-Singleton graph [21], which is one of

the well-known Moore graphs, is exploited in intra-server networks [5]. Moreover, McKay-Miller-

Širáň (MMS) graph [22] whose number of nodes is close to those of Moore graphs is utilized in Slim

Fly topologies [6].

The problem of finding the largest graphs for given degree and diameter constraints has been well

studied for decades. Thanks to the effort to approach optimal bounds, several graphs are found [23].
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Table 2.1: Top 10 supercomputers and their network topologies [1].
Rank Name Network Topology

1 Sunway TaihuLight Fat-tree

2 Tianhe-2 Fat-tree

3 Piz Daint Dragonfly

4 Titan Torus

5 Sequoia Torus

6 Cori Dragonfly

7 Oakforest-PACS Fat-tree

8 K computer Torus

9 Mira Torus

10 Trinity Dragonfly

Figure 2.1: Fat-tree topology.

Figure 2.2: Torus (k-ary n-cube) topology.
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Figure 2.3: Dragonfly topology.

Although these graphs can drastically reduce the number of hops, they cannot be directly utilized with

arbitrary numbers of nodes and degrees. This is because they are customized to specific numbers of

nodes, whereas the numbers of nodes in practical HPC systems are decided depending on realistic

plans, e.g., budget or application to be executed. Optimal topologies with given numbers of nodes

and degrees have been explored, which reveals the difficulty in the optimization that is in most cases

based on heuristic approach [10].

As a workaround plan against this difficulty, randomized topologies for HPC systems are pro-

posed, which can achieve low latencies that are comparable with those in the optimized networks

based on the concept of Moore graphs. Moreover, for arbitrary network sizes, randomized net-

works can be generated with the smaller computational costs than the optimized networks. These

topologies can improve bandwidth, scalability, and fault-tolerance for both HPC networks [7–9] and

on-chip networks [12].

2.2 Layout-conscious Random Topologies

Although random topologies achieve small numbers of hops between nodes, they need a larger

amount of the total cable length, which degrades probability of implementation for practical inter-

switch networks. This problem can be solved with networks which contain randomly connected links

with length limitation [14,15]. These networks achieve drastic reduction of the total cable length with

the minimal increase in the number of hops compared with completely random networks.

Limitation of the maximum link length also reduces the number of ports in each switch that

achieves the optimum average number of hops. Let me assume a topology containing a set of nodes,

N, developed on a 2-dimensional space. When the maximum link length L is not limited, the number

of node pairs that can be connected with each other becomes |N |2 . On the other hand, the link length
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limitation reduces the number of connectable pairs approximately by O(L2). Since the order of the

total link length can be calculated by the product of the number of links by the maximum link length,

the length limitation significantly reduces the total link length. It is reported that the sufficient degree

K (the number of ports) to achieve the optimum number of hops for the given maximum link length

L can be calculated by the following formula [24].

K = exp
(

L · log |N|
√
|N|

)
Figure 2.4 shows that the order of the sufficient degree is exponentially reduced as the given maxi-

mum link length decreases.

Figure 2.5 shows that the layout-conscious random topologies, indicated as LCR, achieves the

low latency yet reduces the total cable length by random shortcut links with their length limited,

compared to the conventional topologies described in Sec. 2.1. Traditional low-radix torus and fat-

tree topologies reduce the total cable length yet achieve the worse latency. High-radix dragonfly and

Slim Fly topologies achieve the low and optimal latency respectively while they consume a huge

amount of the total cable length. A fully random topology denoted as Random can also achieve the

quasi-optimal low latency with many distant shortcut links.

In this paper, all edges in the random topologies with the link length limited that are developed on

a 2-dimensional surface are connecting between two nodes so that the Manhattan Distance between

them, which is defined in Sec. 4.1.1, is equal or less than the limitation value r. Figure 2.6 shows an

example of a layout-conscious topology that is placed on a 4× 4 2-dimensional surface. The number

of nodes |N|, the degree of each node d, and the maximum length of edges r are set to 16, 4, and 2,

respectively. The label of a node, i, is defined with the equality i = xi + yi · n, where (xi, yi) denotes a

coordinate of the node i.
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Chapter 3

Routing Techniques

Traditional and recent regular topologies introduced in Sec. 2.1 can achieve minimal and deadlock-

free routing without global information about their structures. Simple node labeling enables dimen-

sion order routing on torus topologies and up*/down* routing on fat-tree topologies. It also achieves

minimal routing on dragonfly and Slim Fly topologies.

On the other hand, it is necessary for both fully and layout-conscious random topologies to use

topology-agnostic routing algorithms [16]. We have to choose the appropriate algorithm for given

topologies based on the two characteristics: a required routing table size (Sec. 3.1) and the difficulty

in implementation for deadlock-freedom (Sec. 3.2).

3.1 Reduction of Routing Table Size

Both fully and layout-conscious random topologies require a routing table indicating the output link

for all destination nodes in every router. If the number of nodes is more than thousands, the time to

refer a certain size of memory for the table might bottleneck the operational frequency.

Moreover, the increased number of nodes degrades the possibility of the implementation with

commodity network technologies for HPC systems. For example, on Infiniband networks, a packet

only can include the information of a destination node as a destination LID (Local IDentifier) in the

header [25]. Including all nodes in table entries will lack scalability because one sub-net can use ap-

proximately 48,000 LIDs at maximum. As shown in Fig. 3.1, the next generation HPC systems with

randomized interconnection networks will obviously suffer from the increased number of computing

nodes.

Researchers in the field of distributed computing have well discussed a methodology called com-

pact routing, which is designed to reduce the size of required routing information up to a sublinear

value at the cost of the minimum increase in numbers of hops. One of them [26] can be applied

to power law graphs whose degree distribution follows a power law. This work assumes random

regular graphs in which each node has the same degree. Thus, this method cannot be applied. An-

other method called Cowen’s compact routing [27] uses topology-dependent names for nodes, and
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of Infiniband

Figure 3.1: Routing table size required for shortest path routing in randomized networks and the

upper bound for Infiniband.

achieves the maximum rate of increase in numbers of hops less than 3 with a local routing table

of size O(|N|2/3 log4/3 |N|). The size of the table is reduced to O(|N|1/2 log3/2 |N|) by the improved

implementation called Thorup’s compact routing method. [28], which proves to be optimal.

With compact routing methods, some nodes are selected deterministically from a given network

and are set as “landmarks” that cover all nodes. When a current node that a packet exists in is equal

to a “landmark” node for the destination, it is forwarded to the next hop that is contained in a header

of the packet and uses the minimal path towards the destination node. When the previous condition

is not satisfied and there is an entry for a destination node of the packet in a routing table of the

current node, the packet is forwarded based on the information. When these two conditions are not

satisfied, which means the destination node is distant from the current node, firstly a landmark node

for the destination node contained in a header of the packet is referred. Routing information for the

landmark node in a routing table of the current node is then referred and the packet is forwarded

based on the information.

An example of routing packets with compact routing methods is shown in Fig. 3.2. Figure 3.2(a)

and 3.2(b) show a given topology and generated table entries in a node #15, respectively. In Fig. 3.2(b),

each of the upper four entries contains the next hop for the shortest path towards the destination node.

Furthermore, each of the lower three entries contains the next hop for the shortest path towards one

of the landmark nodes. Let a packet be routed from the node #15 to #7. Since the entry for #7 is

contained in the table, the packet is directly forwarded to #7, as shown in Fig. 3.2(c). On the other

hand, when a packet whose destination node is #5 is routed on the node #15, the entry for the land-

mark node #4 that is nearest to #5 is referred. The packet is thus forwarded to a node #10, as shown

in Fig. 3.2(d).
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Figure 3.2: Example of compact routing methods.

In summary, with compact routing methods, a minimal path is selected in the case of nearby

destination nodes, otherwise, a path to one of the landmarks is selected to get close to the distant

destination nodes. This routing method can reduce the amount of routing information with suppress-

ing the increase of hops. However, the overall performance may be degraded because of the traffic

concentration around landmarks.
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(b) LASH-TOR routing.

Figure 3.3: Routings with virtual layers.

Table 3.1: Trade-offs on conventional algorithms.
Routing # of required VLs Time Complexity

LASH 9 for 256 SWs [18] O(|N|2) [29]

LASH-TOR 4 for 256 SWs [18] O(|N|3) [18]

3.2 Methodologies for Designing Deadlock-Free Routing

For irregular networks, the routing methods for regular topologies such as dimension order routing

(DOR) for k-ary n-cubes are not applicable. It is thus necessary to use topology-agnostic routing

methods for those networks [16]. There are some trade-offs on each routing method for arbitrary

topologies. Up*/down* routing is commonly used and easily implementable for large irregular net-

works. Its ease of implementation comes from the required number of Virtual Channels (VCs).

With the assumption of using one node as a root of the spanning tree, up*/down* routing supports

deadlock-freedom with only one VC. The weakness of this routing is that it does not support minimal

paths for most of traffics.

Conventional deadlock-free virtual channel assignment methods, LASH and LASH-TOR routing

techniques, can assign each path between source and destination nodes to Virtual Layers (VLs), each
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Figure 3.4: Qualitative comparison of deadlock-free methodologies.

of which is constructed with one of the VCs. The difference between them is whether to permit

transitions among VLs for each path. In LASH routing, paths’ transitions never occur, and each

path must be assigned to one of the VLs, as shown in Fig. 3.3(a). It supports deadlock-free minimal

paths at the cost of a relatively large number of VLs. For instance, it uses up to 9 VLs for the 256-

nodes case [18]. In LASH-TOR routing, on the other hand, each path can be split into sub-paths

among ordered VLs. Thus, it can achieve deadlock-freedom with only 4 VLs for the same 256-nodes

case [18]. However, the time complexity can reach up to O(|N|3), which makes it quite unrealistic for

large-sized networks. The trade-offs between the two routing methods are summarized in Table 3.1.

Figure 3.4 shows a qualitative comparison of three implementations of the deadlock-free method-

ologies, the conventional implementation of LASH denoted as LASH ver.1 [17], the recent imple-

mentation of LASH denoted as LASH ver.2 [29], and LASH-TOR [18]. In LASH ver.1 [17] and

LASH-TOR [18], at least a cyclic dependency check must be done for a path. Since a cyclic depen-

dency search has a time complexity of O(|C| + |E|), the minimum time complexity per VL becomes

approximately O(|N|3). In LASH ver.2 [29], on the other hand, only a cyclic dependency check per

VL is needed. This can be done by initially adding all paths to a CDG and checking the cyclic

dependencies for all edges. This solution can reduce the time complexity of search to O(|N|2).

To avoid cyclic channel dependencies in each VL, the ordered channels [30] are introduced that

determine the following theorem.

Theorem 1 A set of paths within a network is deadlock-free if, and only if, there exists a channels’
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ordering such that each path uses the channels in a decreasing order.

This can be proved by a topological sort for a Channel Dependency Graph (CDG) induced by a set

of paths [31].



Chapter 4

LOREN (Layout-Oriented Routing with Entries
for Neighbors) for Practical Low-latency
Interconnection Networks

In this chapter, the attention is focused on the locality of connections in the layout-conscious topolo-

gies introduced in Sec. 2.2 to explore routing algorithm for these topologies. These topologies have

the following two characteristics. Firstly, randomly connected links between nodes can reduce the

average number of hops between nodes. The achieved number of hops is comparable to that of

completely randomized topologies. Secondly, the restriction of link lengths can reduce the number

of hops between nodes that are close to each other on the floor. In other words, unlike completely

irregular networks, they exhibit both small-world phenomena and local connections with randomly

connected links whose lengths are limited.

In this work, a scalable routing method for layout-conscious random topologies LOREN (Layout-

Oriented Routing with Entries for Neighbors) is proposed, which exploits irregularity and locality

in these topologies to achieve both the small number of hops between nodes and small routing table

sizes required. Unlike compact routing methods, LOREN utilizes local information for each node

to achieve distributed routing policy for the avoidance of traffic concentration on some nodes (e.g.

landmark nodes in compact routing methods).

Moreover, since the range of nodes which can be connected with direct links is limited in the

layout-conscious random topologies, LOREN can much reduce the number of entries with the lo-

cal information. If the number of entries becomes tens, we can use a high speed CAM (Content

Addressable Memory) consisting of a set of registers and comparators easily. The routing tables con-

tain both physically and topologically nearby neighbor nodes to ensure livelock-freedom and a small

number of hops between nodes. The improved performance and the possibility of implementation on

larger system sizes are evaluated and compared to those by Cowen’s and Thorup’s compact routing

methods described in Sec. 3.1.
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Table 4.1: Definition of parameters.
Parameter Definition

n Lengths of x- and y-coordinates

e(i, j) Edge between nodes i and j

(xi, yi) Coordinates of node i; i = xi + yi · n

md(i, j)
Manhattan Distance between node i and j;

md(i, j) = |xi − x j| + |yi − y j|
h(i, j) Minimal # of hops between nodes i and j

N Set of nodes; |N| = n2

E Set of edges

tmax Maximum # of table entries for each node

4.1 Problem Definition

This chapter shows definitions and assumptions for the proposed method LOREN.

4.1.1 Parameters for Graphs

In this work, cabinets each of which contains a Top-of-Rack (ToR) switch and multiple computa-

tional hosts are assumed to be placed on a 2-dimensional grid. Moreover, inter-switch networks

are modeled as undirected topologies, in which nodes and edges denote switches and links between

switches, respectively. Topologies are developed on the n × n 2-dimensional coordinate, and the

nodes are arranged on the lattice positions. Namely, the number of nodes |N| and a length of one

coordinate n satisfy the equality |N| = n2. A length of an edge between nodes i and j, e(i, j), is equal

to the Manhattan Distance between the two nodes, md(i, j). In other words, the length is equal to

|xi − x j| + |yi − y j|. In this work, diagonal links between nodes are not used because they degrade

the overall performance with longer cable lengths [32]. Additionally, the minimal number of hops

between nodes i and j is denoted with h(i, j).

4.1.2 Table Entries

Each router in a network stores routing information as a routing table, which contains a set of table

entries. An entry is defined as a set of two nodes and represented as a notation of <vdst, vnext>. In this

notation, vdst indicates a destination node and vnext denotes a node of the next hop along the shortest

path towards vdst. The maximum number of table entries that a routing table in each node can store

is defined as tmax. The parameters used in this work are summarized in Tab. 4.1. A goal of this

work is to construct a set of routing tables with the limitation of tmax so that it induces an increase in

the average number of hops between nodes as small as possible compared with that achieved by the

shortest path routing.
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(c) Shortest paths for distant nodes.

Figure 4.1: Example of shortest paths for a destination node #5 induced with table entries (tmax = 7).

4.2 Algorithm for generating Routing Table Entries in LOREN

In this section, an algorithm in LOREN is proposed to construct routing information that is included

in each node. With the routing tables generated by the proposed algorithm shown in Alg. 1, three

kinds of shortest paths are constructed as described in the following Sec. 4.2.1.

4.2.1 Construction of Table Entries for Shortest Paths

In this method, the reachability of packets is supported by entries for topologically and physically

neighboring destination nodes as shown in Sec. 4.2.1.1 and 4.2.1.2. The number of these entries

can be reduced for the layout-conscious random topologies because of their locality. Moreover, the

reduced number of hops is achieved by entries for distant destination nodes as shown in Sec. 4.2.1.3.

Small-world phenomena exhibited in the topologies can reduce the number of hops with a small

number of these entries. Consequently, the proposed method LOREN can reduce the number of

table entries required as well as the number of hops for the layout-conscious random topologies.

4.2.1.1 Shortest Paths between Adjacent Nodes

Routing information is provided between two nodes connected with an edge in a graph. That is, for

all edges e(i, j) ∈ E, an entry < j, j> is added to a node i.

4.2.1.2 Shortest Paths between Neighboring Nodes on a Coordinate

On a 2-dimensional coordinate that is defined in Sec. 4.1.1, a set of two nodes i and j is neighboring

where the Manhattan Distance between them md(i, j) is equal to one. To achieve a shortest path

between i and j, an entry of < j,mk+1> is added to each node mk ∈ {m0, ...,m|P(i, j)|−2}, where the path

is represented as the following consecutive nodes,

P(i, j) := {m0(= i), ...,m|P(i, j)|−1(= j)}.
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Algorithm 1 Generation of routing tables
Input: topology I = (N, E), max. # of table entries tmax

Output: routing table T

/* (1) Entries for nodes connected with an edge */

for all (i, j) ∈ {(i, j)|e(i, j) ∈ E} do
Add an entry < j, j> to T [i]

end for
/* (2) Entries for neighboring nodes on the coordinate */

for (i, j) ∈ {(i, j)|md(i, j) = 1, e(i, j) < E} do
Calculate path P(i, j) = {m0(= i), ...,m|P(i, j)|−1(= j)}
for 0 ≤ k ≤ |P(i, j)| − 3 do

Add an entry < j,mk+1> to T [mk]

end for
end for
/* (3) Entries for distant nodes */

Queue Q← {}
for all (i, j) ∈ {(i, j)|e(i, j) ∈ E} do

Add a pair (i, j) to tail of Q

end for
for all j ∈ N do

Create a spanning tree for dst j, G j

end for
while Q , ∅ do

pop (u, v) from head of Q

wsucc ← a successor of u in Gv

Wpreds ← predecessors of u in Gv

if <v,wsucc> ∈ T [u] then
for all wpred ∈ Wpreds do

add (wpred, v) to tail of Q

end for
else if |T [u]| < tmax then

add <v,wsucc> to T [u]

for all wpred ∈ Wpreds do
add (wpred, v) to tail of Q

end for
end if

end while

Note that < j, j> is already added to a node m|Pi, j |−2 with the addition of entries for adjacent nodes as

shown in Sec. 4.2.1.1; therefore, the entry is not added again. A packet whose destination is a node j

injected to a node i(= m0) can be forwarded along this shortest path with these routing table entries.

It is also notable that these entries are also utilized for the shortest path from the intermediate node

mk ∈ {m0, ...,m|P(i, j)|−2} \ {m0} towards the destination node j.

4.2.1.3 Shortest Paths between Distant Nodes

After generation of routing table entries for the two kinds of shortest paths mentioned in Sec. 4.2.1.1

and 4.2.1.2, there might be some empty routing entries in each node. These entries are utilized for

some of the other shortest paths between nodes separated with multiple hops from each other.
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For effective utilization of remaining empty table entries, it is desirable to give higher priority to

addition of the entries for paths with small numbers of hops than to addition of those for paths with

large numbers of hops. This is achieved by the following ways. Initially spanning trees are generated

for all destination nodes, which are represented as {G j| j ∈ N}, each of which contains shortest paths

for the destination node j. After this generation, the breadth first search is applied simultaneously to

all trees. In this search, when a node u in a tree Gv is visited, an entry <v,wsucc> is added to the node

u if possible, where wsucc represents a successor node of u in the tree Gv. If the entry is successfully

added to u or u already has the entry <v,wsucc>, the search is continued for predecessors of u in Gv,

Wpreds. Otherwise, the search for the predecessors is discontinued. In the same way as described in

Sec. 4.2.1.2, a packet whose destination is v in a node that contains an entry for v can be forwarded

along the shortest path.

As described in Alg. 1, the breadth first search for all spanning trees {G j| j ∈ N} begins with

initialization of the queue Q. Namely, each pair of an adjacent node i and a root node j is added to

Q for all nodes j ∈ N to process the search sequentially for all trees. The order of the pairs added

to Q may cause biased traffic load. In the implementation, the pairs are added in an increasing order

of the root node j, breaking ties with the adjacent node i. The impact on load balancing is evaluated

and compared in Sec. 4.4.4.

4.2.2 Example of Table Entries for Destination Node

Figure 4.1 shows shortest paths for a destination node #5 induced by generated routing tables. In this

example, the upper bound of a number of table entries is set to tmax = 7. A starting point of a dashed

arrow that is depicted with filled circle represents the node which has an entry of <5, vend>, where

vend is denoted by an end point of the dashed arrow. For instance, a node #0 has an entry <5, 8>. The

dashed arrows in Fig. 4.1(a), 4.1(b), and 4.1(c) show paths for adjacent nodes, neighboring nodes,

and distant nodes as described in Sec. 4.2.1.1, 4.2.1.2, and 4.2.1.3, respectively. As shown in these

figures, the adjacent nodes of a node #5 are intermediate nodes for the other shortest paths to a node

#5 that are described in Sec. 4.2.1.2 and 4.2.1.3. It is notable that the new entries that would be

duplicated with existing entries for the adjacent nodes are not added for these shortest paths.

4.3 Routing Algorithm in LOREN

In the proposed method LOREN, after generating routing table entries as described in Sec. 4.2.1,

entries in each node u are sorted in an increasing order in the number of hops between u and vdst,

h(u, vdst).

A node of the next hop for a packet in a node u whose destination node is v is determined

with the following procedure. Among routing table entries in the node u, the entry <vdst, vnext> that

minimizes the Manhattan Distance between nodes vdst and v, md(vdst, v), is referred. If there are some

ties, they are broken in the order as described above. This breaking of ties is achieved by referring
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(c) Established path from node #15 to #5.

Figure 4.2: Example of routing from node #15 to #5 (tmax = 7).

the forefront entry among the entries in a routing table of the node u, in which entries are sorted as

mentioned before.

An example of routing packets is shown in Fig. 4.2. A given topology and generated table entries

are the same as the example in Fig. 4.1. Let a packet be routed from a node #15 to a #5. A routing

table that a node #15 has is shown in Fig. 4.2(a). For all entries in this table, the Manhattan Distance

between a destination node of each entry and the destination of the packet, a node #5, is calculated.

Afterwards, an entry <6, 10> is selected from these entries and referred to forward the packet, which

has the smallest Manhattan Distance between nodes #6 and #5, md(6, 5) = 1. The packet is thus

forwarded to a node #10. A routing table in a node #10 is shown in Fig. 4.2(b). In the same way,

an entry <6, 6> is selected that has the smallest Manhattan Distance. Note that an entry <9, 9> also
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Figure 4.3: Maximum number of entries tmax and achieved path length (64 nodes).
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Figure 4.4: Maximum number of entries tmax and achieved path length (1,024 nodes).

has the smallest Manhattan Distance. In this case, an entry <6, 6> is selected based on the order of

entries in the table. After the packet is forwarded to the node #6, there are routing table entries for a

shortest path between nodes #6 and #5, as shown in Fig. 4.1(b). The packet is then forwarded along

this path.

The livelock-freedom in LOREN is proved as follows.

Proof 1 Let <tgv(u), u′> be referred in a node u to forward a packet whose destination is a node v.

An order ≻v is defined as follows; u ≻v u′ if one of the following conditions is satisfied.

1. md(tgv(u), v) > md(tgv(u′), v)

2. md(tgv(u), v) = md(tgv(u′), v) and h(u, tgv(u)) > h(u′, tgv(u′))

Let me consider a packet in u for a destination v that is forwarded to u′, where v , u′ is satisfied.

If h(u, tgv(u)) > 1, u′ has an entry such that tgv(u) = tgv(u′) and h(u′, tgv(u′)) = h(u, tgv(u)) −
1 are satisfied. This entry induces a path towards tgv(u). Otherwise, u′ has an entry such that

md(tg(u′), v) = md(tg(u), v) − 1 is satisfied, which induces a path between neighboring nodes as

mentioned in Sec. 4.2.1.2. In both cases, the order u ≻v u′ is satisfied.
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By forwarding the packet repeatedly, the order of a node u′ strictly reduces that the packet is for-

warded to. This leads to the fact that the packet can finally reach a node u′ such that md(tgv(u′), v) =

0 and h(u′, tgv(u′)) = 1 are satisfied. This is because of md(tgv(u′), v) ≥ 0 and h(u′, tgv(u′)) ≥ 1. In

this case, u′ is adjacent to v; therefore, the packet is immediately forwarded to v with an entry for

adjacent nodes as described in Sec. 4.2.1.1. 2

4.4 Evaluations

In this section, the following three methods are compared.

• LOREN: the proposed routing method.

• Cowen’s method [27]: a conventional compact routing method introduced in Sec. 3.1.

• Thorup’s method [28]: an advanced compact routing method from Cowen’s method, which

reduces a local routing table size by up to O(|N|1/2 log3/2 |N|) with optimization of selection of

“landmark” nodes.

Routing methods are applied to the layout-conscious random topologies that are defined in Sec. 2.2.

4.4.1 Number of Table Entries and Path Length

In this evaluation, the impact of the number of table entries to the average and maximum path lengths

is analyzed. The limitation of maximum table entries tmax is varied to evaluate the number of path

hops. In Cowen’s and Thorup’s methods, the number of entries for each node depends on the input

parameter 0 < α < 1. Consequently, this value α also influences the achieved path lengths. In this

section, all possible values of tmax and the corresponding maximum and average path lengths are

evaluated.

Figure 4.3 and 4.4 show the results for 64- and 1,024-node layout-conscious random topologies,

respectively. These topologies are generated as regular graphs, in which all nodes have the same

degree. The degree of each node is set to four for both networks. Moreover, the maximum link

lengths are set to two and eight for 64- and 1,024-node networks, respectively. These topologies are

also evaluated with graph analysis for localized traffics in Sec. 4.4.3 and with a network simulator in

Chap. 6. Due to the increased simulation time, the evaluation results for the case of more than 1,024

nodes cannot be shown.

10 different layout-conscious random topologies are generated and used for this evaluation. Eval-

uated values in the figures represent the average from different topologies. In these figures, legends

of the two conventional methods and the proposed method are represented as “Cowen’s,” “Thorup’s,”

and “LOREN”, respectively. These legends are used in the subsequent evaluations. Additionally, in

this evaluation, the minimal path length is presented with a legend of “Shortest.”
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For 64 nodes, LOREN achieves the shorter average path lengths than Cowen’s and Thorup’s

compact routing algorithms. Figure 4.3(a) shows that it can reduce the average number of hops by

up to 7.9 % compared to Thorup’s method. This is because completely or nearly shortest paths in the

layout-conscious networks are achieved with localized information that LOREN provides. On the

other hand, roundabout paths via “landmarks” are taken in most source-and-destination pairs with

Cowen’s and Thorup’s compact routing methods.

As described in Sec. 3.1, Cowen’s and Thorup’s methods keep the maximum rate of increase in

path lengths less than three, which is not supported by LOREN. Compared with Cowen’s method,

LOREN increases the maximum number of hops by 4.9 % and by 19.3 % at minimum for 64 and

1,024 nodes, respectively. For 1,024 nodes, there are some cases that the maximum path lengths

achieved with Cowen’s method are equal to the minimal path length. On the other hand, LOREN

increases the maximum path length by at least 40.8 % compared with minimal routing. By contrast,

LOREN suppresses the minimum increase of the average number of path hops by 0.4 % compared

with Cowen’s algorithm, and by 6.4 % compared with minimal routing, as shown in Fig. 4.4(a).

Moreover, LOREN reduces the average number of path hops by up to 2.0 % compared to Thorup’s

method. These results are derived from small-world phenomena in the layout-conscious random

topologies that can be utilized with its distributed routing manner.

In this evaluation, the smallest numbers of tmax that Cowen’s algorithm can take are 18 and 116

for 64 and 1,024 nodes, respectively. Moreover, modification of the parameter α can also achieve

32 and 502 of tmax for 64 and 1,024 nodes, respectively, which are nearest to |N |
2 . Therefore, as

the maximum numbers of table entries for the evaluation in Sec. 4.4.3, Sec. 4.4.4, and Chap. 6,

tmax = 18, 32 for 64 nodes and tmax = 116, 502 for 1,024 nodes are adopted.

4.4.2 Minimal Table Entries and Table Size Required for each Algorithm

As shown in Fig. 4.3 and Fig. 4.4, the minimum number of tmax that LOREN can take is smaller than

that for the compact routing methods. Hence it is notable that LOREN improves the adaptation to

various numbers of table entries given. In this section, this flexibility is evaluated and compared with

those of Cowen’s and Thorup’s algorithms in detail. Namely, the minimal number of table entries

and the resulted table size required for each algorithm are evaluated.

4.4.2.1 Minimal Table Entries

As described in Sec. 4.4.1, Cowen’s and Thorup’s compact routing algorithms vary the maximum

number of table entries tmax with the parameter α. In this section, the smallest values of tmax are

evaluated that the algorithms can take for given topologies. The LOREN algorithm constructs three

kinds of shortest paths mentioned in Sec. 4.2.1. Among them, those between distant nodes which

are defined in Sec. 4.2.1.3 are constructed using redundant empty entries; therefore, they are optional

in the algorithm. By contrast, those between adjacent nodes and between neighboring nodes, which
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are described in Sec. 4.2.1.1 and 4.2.1.2, respectively, are indispensable for livelock-freedom in the

algorithm. Accordingly, the numbers of table entries that are required for establishing these two

shortest paths are evaluated.

In this evaluation, the maximum link length and the maximum degree of each node are set to four

and four, respectively. Due to their time complexities to generate table entries, the number of nodes

is varied among 64 to 4,096 for Cowen’s and Thorup’s algorithms and among 64 to 1,048,576 for

LOREN. For each network size, 1,000 topologies are generated from different seeds and the average

and standard deviation are evaluated.

Figure 4.5 shows that the two compact routing methods remarkably increase the required number

of table entries for large system sizes. Due to the increased simulation time, the evaluation results

for the case of more than 4,096 nodes by Cowen’s and Thorup’s compact routing methods cannot be

shown. The average values for a 4,096-node layout-conscious random topology are 257 in Cowen’s

method and 150 in Thorup’s method. These results arise from the increased numbers of “landmarks”

and the numbers of the next hops that each node has to contain. On the other hand, LOREN achieves

little increase in numbers of table entries for large network sizes. This is attributed to the same

limitation of link lengths for every number of nodes, which can keep the number of hops between

neighboring nodes almost constant. For 4,096 nodes, the number of required table entries is reduced

by 91 % compared to that with Cowen’s method. it is also reduced by 85 % compared to that with

Thorup’s method. Moreover, the increase from 4,096 nodes to 1,048,576 in LOREN is limited to

23 %.

4.4.2.2 Minimal Routing Table Size

The resulted routing table sizes of each node for Cowen’s, Thorup’s, and LOREN algorithms can be

calculated from the results in Sec. 4.4.2.1. In addition, the routing table size required for minimal

routing is calculated, which is shown with a legend of “Shortest.” In this routing, it is assumed that

table entries for all the other nodes are required in each node.

The results are shown in Fig. 4.6. Due to the increased simulation time, the evaluation results

for the case of more than 4,096 nodes by Cowen’s and Thorup’s compact routing methods cannot

be shown. The rate of increase with LOREN algorithm for a larger number of nodes is the smallest

among all four algorithms. Since minimal routing requires the table size of |N| log |N|, it needs the

size of 20 M bits for 1M nodes. On the other hand, LOREN can achieve the size of 1,140 bits for

the same system size. Hence, LOREN is the preferable way to achieve the next generation of high

performance computing systems that have interconnection networks with 1M switching fabrics or

more.
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Figure 4.5: Number of table entries required for algorithms.
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Figure 4.6: Routing table size required for algorithms.

4.4.3 Performance under Randomly Imbalanced Traffic

In this section, randomly imbalanced traffics are applied to LOREN and the two compact routing

methods.

4.4.3.1 Definition of Randomly Imbalanced Traffic

In this evaluation, each node in a network has a destination node. Two imbalanced traffics, hotspot(β)

and local(γ) are defined as follows.



4. LOREN (Layout-Oriented Routing with Entries for Neighbors) for Practical Low-latency
Interconnection Networks
4.4. Evaluations 27

 0

 0.2

 0.4

 0.6

h
o
tsp

o
t(0

.1
)

h
o
tsp

o
t(0

.3
)

h
o
tsp

o
t(0

.7
)

lo
cal(1

.0
)

lo
cal(2

.0
)

lo
cal(3

.0
)

E
ff

ec
ti

v
e 

B
an

d
w

id
th

Cowen’s
Thorup’s
LOREN

(a) 64 nodes, tmax = 18.
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(b) 64 nodes, tmax = 32.
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(c) 1,024 nodes, tmax = 116.

 0

 0.2

 0.4

h
o
tsp

o
t(0

.1
)

h
o
tsp

o
t(0

.3
)

h
o
tsp

o
t(0

.7
)

lo
cal(1

.0
)

lo
cal(2

.0
)

lo
cal(3

.0
)

E
ff

ec
ti

v
e 

B
an

d
w

id
th

Cowen’s
Thorup’s
LOREN

(d) 1,024 nodes, tmax = 502.

Figure 4.7: Effective bandwidth under imbalanced traffic.

• hotspot(β): The value 0 ≤ β ≤ 1 denotes probability for each node to set a “hot-spot” node as

a destination node. A destination node of each node is otherwise selected randomly from all

nodes in the network with probability 1 − β.

• local(γ): A destination node v for each node u is selected with the probability that is propor-
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(a) 64 nodes, tmax = 18.
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(c) 1,024 nodes, tmax = 116.
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(d) 1,024 nodes, tmax = 502.

Figure 4.8: Average efficiency under imbalanced traffic.

tional to md(u, v)−γ, satisfying γ > 0.

Let S be a set of source-and-destination pairs in the generated traffic. A pair of a source node i and

a destination node j is represented as (i, j) ∈ S . In this section, a path from i to j is represented as

consecutive edges, P′(i, j) := {e(i,m0), e(m0,m1), ..., e(mk′ , j)}, satisfying k′ = |P′(i, j)| − 2. A set of
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all paths in the traffic is defined as P′ := {P′(i, j)|(i, j) ∈ S }.

4.4.3.2 Effective Bandwidth

Let a congestion factor of an edge e, τ(e), be the number of paths in P′ that include the edge e. The

effective bandwidth for each traffic is defined as the following equality [33, 34].

Γ(P′) =
1
|S |

∑
(i, j)∈S

1
max{τ(e)|e ∈ P′(i, j)}

In this evaluation, 10,000 random traffic patterns for each imbalanced traffic are generated, and the

average effective bandwidth is calculated.

Figure 4.7 shows the results with the hotspot traffics for β = 0.1, 0.3, 0.7 and with the local traffics

for γ = 1.0, 2.0, 3.0. It is shown that LOREN can achieve the better performance than Cowen’s and

Thorup’s algorithms except in the case of the hotspot traffics for 1,024 nodes. Due to the increased

simulation time, the evaluation results for the case of more than 1,024 nodes cannot be shown. As

shown in Sec. 4.4.1, LOREN increases the number of hops between nodes in these cases, which leads

to a large number of edges that each path contains and thus to high degree of congestion. In contrast,

LOREN effectively improves the bandwidth especially for the local traffics. This is because of the

reduced number of hops between physically nearby nodes and the balanced load. When tmax is large,

it improves the bandwidth by 10.2 % and 4.1 % for 64- and 1,024-node networks, respectively.

4.4.3.3 Average Efficiency

Efficiency for a path between nodes i and j is defined as a multiplicative inverse of the path length,

h(i, j)−1 [35]. It quantifies the characteristic of small-world phenomena developed by a routing

method. The average efficiency is the average value for all paths in the traffic. In the same way

as Sec. 4.4.3.2, 10,000 random patterns are generated for each traffic and the average is calculated.

Figure 4.8 shows that LOREN can improve the average efficiency by up to 6.7 % and 3.2 %

for 64- and 1,024-node networks, respectively. Due to the increased simulation time, the evaluation

results for the case of more than 1,024 nodes cannot be shown. The improvement in the average

efficiency is slightly smaller than that in the effective bandwidth as shown in Sec. 4.4.3.2. These

results illustrate the fact that LOREN can improve the bandwidth not only by the reduced number

of hops but by the balanced load achieved with the distributed routing manner. In summary, the

proposed method LOREN can be efficiently applied to the practical localized or imbalanced traffic.

4.4.4 Bias of Traffic Load

In this evaluation, load on each edge, L(e) is calculated as the following equality.

L(e) = |{(i, j)|P′(i, j) ∋ e}|

An all-to-all traffic is adopted and the average and standard deviation among all edges are calculated.
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Table 4.2: Load on edges under all-to-all traffic.
(a) 64 nodes, tmax = 18.

Method avg. std.

Cowen’s 71.61 57.31

Thorup’s 73.29 62.49

LOREN 71.82 53.22

(b) 64 nodes, tmax = 32.

Method avg. std.

Cowen’s 69.09 51.95

Thorup’s 69.95 52.77

LOREN 67.25 50.51

(c) 1,024 nodes, tmax = 116.

Method avg. std.

Cowen’s 1966 1506

Thorup’s 1990 1458

LOREN 2184 1165

(d) 1,024 nodes, tmax = 502.

Method avg. std.

Cowen’s 1804 1138

Thorup 1784 1077

LOREN 1826 1056

Table 4.2 shows the results. Due to the increased simulation time, the evaluation results for the

case of more than 1,024 nodes cannot be shown. For all cases the standard deviation with LOREN is

smaller than that with Cowen’s and Thorup’s compact routing methods, which means that LOREN

can balance the traffic load compared to compact routing algorithm. This measurement is obvious for

the case of 1,024 nodes and tmax = 116. Although the average traffic load is increased by 11.1 %, the

standard deviation is reduced by up to 22.6 %. Therefore, LOREN is a more scalable and preferable

way to construct interconnection networks with larger numbers of nodes and smaller numbers of

table entries.

4.4.5 Load Distribution

In this section, load distribution on layout-conscious random topologies is visualized to compare

the proposed algorithm LOREN and a conventional compact routing method. Due to the increased

simulation time, the evaluation results for the case of 1,024 nodes are shown.

Thorup’s compact routing algorithm generates a cluster for each landmark node. As shown

in Sec. 3.1, Thorup’s algorithm sets a portion of nodes in a given topology as landmark nodes to

route packets. Each node in the topology is grouped into one of the clusters. When a destination

node of a packet is distant from a current source node, the packet is forwarded towards one of the

landmark nodes that the destination node belongs to. Figure 4.9 shows an example of landmarks and

their clusters induced by Thorup’s algorithm. In this example, 18 landmarks labeled with ’L’ are set

among 1,024 nodes in the network. The landmarks are colored with the different colors from each

other. Each landmark generates a cluster that is denoted as a set of nodes that are colored with the

same color.

Figure 4.10 shows a heat-map scale of load distribution for a uniform traffic on the topology

and the landmarks that are shown in Fig. 4.9. The uniform traffic is generated randomly for 1,000

times. The number of paths that pass through each node is calculated to evaluate the average value
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for each node. The heat-map scale is generated using the minimum and the maximum values, 2,149

and 75,544, in the entire values of all nodes. The high, middle, and low loads are displayed with red,

white, and blue colored squares, respectively.

The results demonstrate that Thorup’s algorithm cannot distribute the traffic load, especially on

the landmark nodes. It is observed that, while the landmark nodes have the high load, the peripheral

routers are low utilized. This behavior derives from the concentration of the packets from the nodes

distant to the landmark nodes.

On the other hand, LOREN can avoid traffic concentration for all nodes in the topology with

distributed local routing information for each node. Figure 4.11 shows a heat-map scale of load

distribution induced by LOREN on the same topology as in Fig. 4.11. In this evaluation, a uniform

traffic is generated randomly in the same way as Fig. 4.10. Moreover, the same maximum and

minimum values are used to generate the heat-map scale. The results illustrate that LOREN can

reduce the average traffic load for all nodes in the topology. Any high traffic load does not occur

on certain nodes, which is seen on the landmark nodes in Thorup’s algorithm as shown in Fig. 4.10.

Moreover, compared to Thorup’s algorithm, the load is well-flattened between the center nodes and

the edge nodes.



4. LOREN (Layout-Oriented Routing with Entries for Neighbors) for Practical Low-latency
Interconnection Networks
4.4. Evaluations 32

0 L

1

2 L

3 L L

4 L

5 L

6 L

7

8 L L

9

10

11

12 L

13

14 L

15 L

16 L L

17

18

19

20

21 L

22

23

24

25

26

27 L

28 L

29

30 L

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 4.9: Example of landmarks and their clusters induced by Thorup’s algorithm (18 landmarks

and clusters).
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Figure 4.10: Load distribution by Thorup’s algorithm (with 18 landmarks, 75 entries) across all

switches in 32x32 layout-conscious random topologies (the maximum link length of 8, the degree of

4) on a heat-map scale.



4. LOREN (Layout-Oriented Routing with Entries for Neighbors) for Practical Low-latency
Interconnection Networks
4.4. Evaluations 34

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

75,544

2,149

(# of paths)

Figure 4.11: Load distribution by LOREN (with 116 entries) across all switches in 32x32 layout-

conscious random topologies (the maximum link length of 8, the degree of 4) on a heat-map scale.



Chapter 5

ACRO (Assignment of Channels in Reverse
Order) for Deadlock-free Routing

In this chapter, multiple Virtual Channels (VCs) for each physical channel are exploited, as used in

LASH [17, 29] and LASH-TOR [18] routings described in Sec. 3.2, in order to support deadlock-

freedom for arbitrary routing methods. The proposed methodology named Assignment of Channels

in Reverse Order (ACRO) takes a given topology and the routing table, obtained from a livelock-free

routing algorithm, as inputs to generate the VC assignment to paths. This approach has a small time

complexity, yet with the same number of VCs when compared with conventional methods.

5.1 Problem Definition

According to the general models [30], the configuration of an interconnection network is defined as

follows.

Definition 1 An interconnection network I is represented by a directed graph I = (N,C), where N is

a set of switches and C is a set of physical channels.

Definition 2 A deterministic routing function R : N × N → C returns the physical output channel

cout to be taken from a node ni for packets whose destination node is nd.

In the methodology, a topology and a routing table, represented in Fig. 5.1, are given as an

interconnection network and a routing function, respectively. The routing table in Fig. 5.1(b) takes

a current node ni and a destination node nd as inputs, and returns the next node nnext. Therefore, the

output channel cout in Def. 2 is determined as follows: cout is (ni, nnext) if ni , nd; otherwise, cout

becomes clocal,nd .

The definition of a VL Li in a network I is the same as that adopted in LASH-TOR [18]; that is, Li

can be treated as a virtual network that is isomorphic to the original physical network I. Additionally,

in this work, Li is defined as a strictly and decreasingly ordered set. It contains sorted physical
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(b) Routing Table.

Figure 5.1: An example of given inputs.

channels of I such that every path within Li is restricted to use the corresponding VCs in a decreasing

order. Namely, each VL is a sorted set of C and is denoted as Li := {ci,|C|−1, ..., ci,0}.
Given the inputs of a topology and a routing table, a strictly and decreasingly ordered set of layers

L = {L|L|−1, ..., L0} is determined such that for every (source, destination) pair, the path can reach the

destination by using channels in decreasing order within each Li and transitions among layers in a

decreasing order within L.

5.2 CDG (Channel Dependency Graph) Generation for Each Destina-
tion

As shown in Sec. 3.2, in the conventional implementation of LASH-TOR [18], at least a cyclic

dependency check must be done for a path. Since a cyclic dependency search has a time complexity

of O(|C| + |E|), the minimum time complexity per VL becomes approximately O(|N |3). In the recent

improvement on LASH [29], only a cyclic dependency check per VL is needed. This can be done

by initially adding all paths to a CDG and checking the cyclic dependencies for all edges. Detected

cycles are removed by moving a portion of paths included in each cycle to the next VL. Then, the

dependency check is done again. It is iterated until no cyclic dependency is detected. This solution

is called an offline-manner which can reduce the time complexity of search to O(|N|2). Here, the

extension of this offline-manner for LASH-TOR, called ACRO is proposed to balance the number of

VLs and the time complexity.

The details of the proposed ACRO algorithm are shown in Alg. 2. A set of paths from a set of

nodes N to a destination node nd is determined as T ′nd
= (N,Cnd), satisfying Cnd ⊂ C. T ′nd

forms a

directed tree whose root is nd, and all edges are directed toward the direction of nd. T ′nd
produces a
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Figure 5.2: Creation of CDG for src. #0.
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(b) CDG for dst. #0.

Figure 5.3: Creation of CDG for dst. #0.

CDG for the destination nd. Here, it is represented as Tnd = (C, End), where End denotes a set of the

channel dependencies. Tnd is a set of directed trees, as shown in Fig. 5.3(b), and the node of the CDG

is corresponding to ’channel.’ To avoid any confusion, a node in a CDG is called a ’channel.’

In this work, all of the channel dependencies with all paths in a traffic are determined as a set of

CDGs for the destination nodes rather than the source nodes. This choice can be explained by the

fact that, and as shown in Fig. 5.2(b), if a CDG is generated for each source node, the number of

referred elements in the table for each destination node is equal to the number of hops between the

source and destination nodes (Fig. 5.2(a)). Therefore, the time complexity becomes O(|N| · log |N |)
for each source node, where O(log |N|) comes from the characteristics of irregular networks [11]. On

the other hand, and as depicted in Fig. 5.3(b), if a CDG is generated for each destination node, only a

column of the table is needed to be referred to (Fig. 5.3(a)). As a result, the time complexity becomes

only O(|N|) for each destination node.
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5.3 Heuristic Approach to Reduce VLs

In this work, a heuristic approach to reduce VCs is achieved with a hash table, which improves the

scalability of the algorithm.

5.3.1 Weight Values of Channel in CDG

VCs in each VL should be ordered properly to minimize the number of required VLs for deadlock-

freedom. In this section, a simple heuristic approach is introduced to minimize the number of paths

and the length of each path moved to the next VL.

Cchild(n, c) is defined as a set of channels which are children of the channel c in a CDG Tn. Two

weight values, hn,c and wn,c, are introduced for c. hn,c represents the “height” of c, and wn,c represents

the number of the “deepest” leaves of c. These values are calculated by the following equations:

hn,c =

 0 (if Cchild(n, c) = ∅)
1 +max Hchild(n, c) (otherwise)

where

Hchild(n, c) := {hn,c′ |c′ ∈ Cchild(n, c)}

and

wn,c =


1 (if Cchild(n, c) = ∅)∑
c′∈C′(n,c)

wn,c′ (otherwise)

where

C′(n, c) := {c′|c′ ∈ Cchild(n, c), hn,c′ = max Hchild(n, c)}

5.3.2 Hash Table for Each Channel

After introducing the weight values of a channel in a given CDG, it has to be determined which

channel of the cycle to be broken in order to minimize the length and the number of paths moved

to the next VL. Consequently, this leads to minimize the number of VLs needed. In the proposed

algorithm, a hash table for each channel c, Hc, is introduced. It manages the number and length of

the longest paths that would be moved to the next VL by the channel.

Note that the longest paths are adopted as the objectives of the heuristic, rather than all paths

including shorter paths. This is because considering all paths would make the memory complexity

in the algorithm quite large. Moreover, the number of dependencies to be solved is dominant to the

longest paths, and shorter paths are negligible.

The values of the tables are initially calculated as follows. If a channel c has any parent in Tn,

a value in Hc corresponding to the key hn,c is incremented by wn,c. Note that this increment is not

applied in the case of a root channel c because if the smallest order is set to this root channel, no path

would be moved to the next VL.



5. ACRO (Assignment of Channels in Reverse Order) for Deadlock-free Routing
5.4. Assignment of VLs to Paths in Reverse Order 39

5.4 Assignment of VLs to Paths in Reverse Order

To make sure whether a channel is reachable in Tn, an |N| × |C| boolean table is introduced. Each

element of the table is initially set to a boolean value ’False’, which is specified by m(n, c) in Alg. 2.

The termination condition of the algorithm is that all channels c ∈ C are reachable in Tn for all

destinations n ∈ N.

The VLs and VCs are assigned for each path in the reverse order. Namely, unlike the conventional

virtually layered networks, the VLs and VCs are assigned in the order from the destination node to

the source node.

After generating a new VL Li as an empty ordered set, the order of channels is fixed in a one-by-

one fashion. Among the channels whose orders are not assigned yet, a channel umin, which minimizes

the largest key with a non-zero value in Hu, f (u), is selected to append to the head of Li. If there are

some ties, they are broken by selecting one of them which minimizes the value of Hu[ f (u)].

For each CDG Tn, if the channel umin does not have a parent in Tn, the following procedures are

performed. Since the packet whose destination is n can reach umin in the current VL Li, the boolean

value of ’True’ is assigned to m(n, umin). Furthermore, edges from all the children of umin to umin

itself are removed if they exist.

The deletion of the edges denotes that the dependency between the child of umin and umin will

be dissolved in either of the following two ways. If the order of the child is not assigned yet, it

will be inevitably larger than that of umin. This means that the dependency is dissolved within the

current Li. Otherwise, the order of the child is surely smaller than that of umin, which cannot dissolve

the dependency. Even after all the channel orders are assigned in Li, the termination condition is

not satisfied. This leads to the generation of a VL Li+1. The dependency will be dissolved by the

transition between the child in Li+1 and umin in Li.

After its execution, the deletion is reflected to the values of the hash tables by the decrement of

Hc′[hn,c′] by wn,c′ for each child of umin, c′ ∈ Cchild(n, umin).

5.4.1 Deadlock-Free Routing with ACRO

This chapter shows a possible implementation and shows the proofs of the livelock- and deadlock-

freedom for the proposed method ACRO.

5.4.1.1 Implementation on Switches

A possible implementation of ACRO is that each switch has a mapping table for VLs. The table

holds boolean values which represent whether an order of each input channel is larger than that of

each output channel.

Packets are restricted to be injected to an output channel of the first hop with a VL L|L|−1, which

has the maximum order among all VLs. In the subsequent hops, the table entries mentioned above
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are referred to in each switch. If the input channel has larger order than the output channel within a

VL Li that is used in the input, the same VL Li is used in the output; otherwise, Li−1 is used. It is

important to mention that the number of table entries for each switch is independent of the number of

switches |N|; but, it depends on the number of input and output channels and the number of required

VLs. This reduced amount of information for VL mapping enables a scalable implementation for

larger system sizes.

5.4.2 Livelock- and Deadlock-Freedom with ACRO

Livelock- and deadlock-freedom supported by ACRO is proved by the following two theorems:

Theorem 2 A path exists between an arbitrary source-and-destination pair with ACRO.

Proof 2 With the proposed algorithm described in Alg. 2, a path between an arbitrary source-and-

destination pair is contained in a strictly ordered set of layers L′ = {L|L′ |−1, ..., L0}. When |L′| > 1

is satisfied, transitions between layers are performed in the switches given by the strictly ordered set

N′ = {n|L′ |−2, ..., n0}. Deadlock-freedom among VLs is supported with this path division. Moreover,

each subpath in each VL uses the channels in a strictly decreasing order, which supports deadlock-

freedom within each VL. 2

Theorem 3 The VC and VL assignment with ACRO and its implementation described in Sec. 5.4.1.1

can endorse a given topology and a routing table with both livelock- and deadlock-freedom.

Proof 3 Each VC belonging to c in a VL Li is labeled with a two-digit identifier (i, Idx(i, c))|C|, where

Idx(i, c) is the order of c in Li, and (i, j)|C| = i · |C| + j. Given these labeling to VCs, a packet in

each switch with the implementation in Sec. 5.4.1.1 uses a pair of input and output channels which

are labeled in strictly decreasing order. Since all packets are initially injected to the VL with the

maximum order, VCs traversed by the packets always have labels equal to or larger than those in the

same channel containing the established paths in Theorem 2; therefore, packets are transferred with

VCs whose labels are in a strictly descending order until reaching the destination nodes. 2

5.5 Evaluations

In this section, the proposed VC assignment method is evaluated and compared with the conventional

VC assignment methods proposed in LASH and LASH-TOR. As shown in Section 4.2, a topology

of switches and a routing table are given as inputs. Note that the routing table takes source and

destination nodes, and returns the next node.

5.5.1 Number of Required VLs

In this section, the impact of the network size and the node degree to the number of VLs is analyzed.

Here, the degree is corresponding to the number of ports of a switch.
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5.5.1.1 Implementation of VC Assignment Algorithm

In this evaluation, the VC assignment algorithm in LASH is implemented as follows. Let GCD,i be a

CDG created by a set of paths in Li. For a given path between a source node ns and a destination node

nd, the algorithm searches a set of VLs L to find Li ∈ L. The path induces the channel dependencies,

which could be added to GCD,i without generating a cycle of channel dependencies. If Li is found,

the dependencies are added to GCD,i. Otherwise, a new VL and the corresponding CDG are created

and the channel dependencies are added to the new CDG.

The VC assignment algorithm in LASH-TOR is implemented in a similar way as that in LASH:

let GCD be a set of CDGs created by sets of paths in a set of VLs L. For the same inputs as in

LASH, the algorithm searches L and N to find {L′, S }, satisfying L′ ⊆ L and S ⊂ N. The path

would be split into the subpaths according to the transition node s j ∈ S . Each subpath would

induce the channel dependencies, which could be added to each GCD,i ∈ GCD without generating

a cycle of dependencies within each Li ∈ L′ respectively. If {L′, S } is found, the dependencies are

added to GCD; otherwise, a new VL and the corresponding CDG are created and added to L and

GCD, respectively. GCD then incorporates the dependencies obtained from {L′, S } that satisfies the

condition mentioned above, and is exhibited by the additional VL. The original implementation of

LASH-TOR can limit the number of VLs by permitting non-minimal paths with up*/down* routing

on the final VL. On the other hand, the proposed method ACRO completely supports paths induced

by a given routing table. Thus, it does not use the alternative longer paths. For fairness of comparison,

the number of maximum VLs are not limited in LASH-TOR; therefore, up*/down* routing is not

used in the last VL during this evaluation.

5.5.1.2 Experimental Results

Surely connected regular random topologies are adopted in this evaluation, in which all of the edges

are bidirectional. The number of nodes is set to |N| = 64 and 256. Due to the increased simulation

time, the evaluation results for the case of more than 256 nodes cannot be shown. The number of

degree d is varied from 4 to 12. In this evaluation, a hundred topologies are generated from different

seeds for each (|N|, d) pair. The corresponding routing tables take exactly one minimal path for a

source-and-destination pair.

Fig. 5.4 and Fig. 5.5 show the maximum, minimum, and average numbers of required VLs for

64- and 256-node topologies, respectively. These results show that ACRO efficiently reduces the

number of VLs compared with the VC assignment methodology in LASH routing. For 64-node

topologies, it reduces the average and maximum numbers of required VLs by up to 37% and 50%,

respectively. Furthermore, for 256-node topologies, it reduces the average and maximum numbers

of required VLs by up to 60% and 63%, respectively. Another interesting result is that the heuristic

used in ACRO achieves almost the same number of required VLs as the VC assignment methodology

in LASH-TOR routing in which paths are assigned to VLs sequentially.
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Moreover, ACRO accomplishes as small variance in the number of required VLs as LASH-TOR.

In this evaluation, a difference of 2 between the maximum and the minimum numbers of required

VLs is observed for LASH in the case of (|N|, d) = (64, 3). On the other hand, the differences for

ACRO and LASH-TOR never exceed 1.

5.5.2 Time and Memory Complexity

The original algorithm for the VC assignment in LASH [17] is accelerated by a recent implementa-

tion [29]. In this implementation, the time complexity and the memory complexity of VC assignment

algorithm are as follows:

Proposition 1 The time complexity of the algorithm for VC assignment in LASH is

O(∇ · (|C| + |E|) + |N|2)

while the memory complexity is

O(∇ · D(I) · |N|2 + ∇ · (|C| + |E|)).

In this proposition, ∇ and D(I) are a number of required VLs and the diameter of a topology,

respectively. Parameters in the above proposition are to be hereinafter used.

On the other hand, the time and memory complexities of VC assignment algorithm in LASH-

TOR [18] are as follows:

Proposition 2 The time complexity of the algorithm for VC assignment in LASH-TOR is

O(|N|2 · D(I) · ∇ · (|C| + |E|))

while the memory complexity is

O(∇ · (|C| + |E|))

From the proposed ACRO algorithm shown in Alg. 2, the time and memory complexities are

summarized as follows. The generation of CDGs for all the destinations has a time complexity of

O(|E| · |N|) and a memory complexity of O(|C| · |N|). A time complexity to calculate all weight values

hn,c,wn,c is O(|E| · |N|), while the memory complexity is O(|C| · |N|). Initialization of the values in

hashes Hc has a time complexity of O(|C| · |N|) and a memory complexity of O(|C| · D(I)). Checking

whether umin has any parent in Tn needs a time complexity of O(∇ · |C| · |N|) in total. The selection

of the channel which minimizes the fitness function f (u) has a time complexity of O(|C|2 · ∇) in

total. Moreover, the modification of Hc′ and f (c′) needs time complexities of O(∇ · |C| · |N|) and

O(∇ · |C| · D(I)) in total, respectively.

The findings mentioned above are followed by these propositions:
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Proposition 3 The time complexity of the ACRO algorithm is

O(∇ · |C| · (|N| + |C| + D(I)) + |N| · |E|)

while the memory complexity is

O(|C| · (|N| + D(I)).

Given that a topology is randomly generated and the degree d is quite smaller than the network

size |N|, the proportionalities D(I) ∝ log |N|, |C| ∝ |N|, and |E| ∝ |N| are satisfied [11]. From these

proportionalities, it can be said that ACRO reduces the time complexity by a factor of O(|N| · log |N |)
when compared with that of the VC assignment algorithm in LASH-TOR, yet with almost the same

number of required VLs.

5.5.3 Algorithm Execution Time

In this section, execution time of ACRO itself is compared with that of the conventional VC assign-

ment methods; LASH and LASH-TOR described in Section 5.5.1.1. All methods were implemented

with Python scripts that use a NetworkX package. They are executed on a server with two Intel Xeon

CPUs E5-2470 @ 2.30 GHz (2x8 cores) and 128GB memory. The number of nodes is varied among

|N| = 64, 256 and 1024, and the number of degree d is set to 16. Due to the increased simulation

time, the evaluation results for the case of more than 1,024 nodes cannot be shown. Ten topologies

are generated from different seeds for each node.

The average and standard deviation values are shown in Fig. 5.6. The results show that ACRO

completed its VC assignment in about 30 minutes for 1,024 nodes. On the other hand, LASH and

LASH-TOR consumed about 589 and 700 minutes for the same network size, respectively. In this

experiment, ACRO was executed 2.3, 8.4, and 19.9 times faster than LASH-TOR for 64, 256, and

1,024 nodes, respectively. These results demonstrate the small time complexity of ACRO, previously

mentioned in Section 5.5.2.
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Algorithm 2 Assignment of Virtual Layers.
Input: I = (N,C), a Routing Table

Output: a Set of Virtual Layers L

for all n ∈ N do
Create a CDG Tn = (C, En)

end for
for all n ∈ N do

Calculate sets of weight values;

{(hn,c,wn,c)|c ∈ C} (See Sec. 5.3.1)

end for
for all c ∈ C do

Create an empty hash table Hc

for 0 ≤ ∆ < D do
Hc[∆]← 0

end for
end for
/* Initially calculate fitness values */

for all n ∈ N do
for all c ∈ C do

if c has any parent in Tn then
Hc[hn,c]← Hc[hn,c] + wn,c

end if
end for

end for
for all c ∈ C do

f (c)← max({∆|0 ≤ ∆ < D,Hc[∆] > 0} ∪ {0})
end for
Set boolean values {m(n, c) = False|n ∈ N, c ∈ C}

/* Set Virtual Layers repeatedly */

i← 0

repeat
Create a new empty strictly ordered set Li

Create a set U, a copy set of C

while U , ∅ do
From U remove umin which minimizes f (u),

breaking ties by Hu[ f (u)]

Add umin to the head of Li

for all n ∈ N do
if umin has no parent in Tn then

m(n, umin)← True

for all c′ ∈ Cchild(n, umin) do
Remove an edge (c′, umin) in Tn

Hc′ [hn,c′ ]← Hc′ [hn,c′ ] − wn,c′

while Hc′ [ f (c′)] = 0 ∧ f (c′) > 0 do
f (c′)← f (c′) − 1

end while
end for

end if
end for

end while
Add Li to the head of L

i← i + 1

until ∀n ∈ N ∀c ∈ C, m(n, c) = True
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Figure 5.4: Number of required VLs (64 nodes)
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Figure 5.5: Number of required VLs (256 nodes)
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Figure 5.6: Execution time of each algorithm (d = 16).



Chapter 6

Network Simulation Results

In this chapter, the network performance of LOREN introduced in Chap. 4 with ACRO proposed

in Chap. 5 is evaluated. This evaluation measures the end-to-end latency and throughput on layout-

conscious random topologies.

A cycle-accurate network simulator Booksim [36] is used for evaluation. For the two compact

routing algorithms and LOREN algorithm, deadlock-freedom is supported with the proposed method

ACRO that assigns traffics to multiple virtual channels. Network parameters for the simulation are

shown in Tab. 6.1.

Figure 6.1 to 6.4 show simulation results under uniform, transpose, shuffle, and reverse traf-

fics [37]. Due to the increased simulation time, the evaluation results for the case of more than 1,024

nodes cannot be shown. For 64 nodes, LOREN can reduce the saturation throughput by 13.2 %

compared to Thorup’s compact routing method in a uniform traffic with the number of table entries

of tmax = 18, as shown in FIg. 6.1(a). In this case, LOREN achieves almost the same throughput as

Cowen’s algorithm. However, in the same traffic with tmax = 32, LOREN degrades the throughput

by 6.6 % compared to Cowen’s algorithm. In this case, Cowen’s compact routing method can utilize

a larger number of landmarks, which leads to distributed the traffic load and thus to improvement

of the network capacity. Additionally, LOREN degrades the throughput under transpose and shuffle

traffics. For these deterministic traffic patterns, LOREN fails to distribute the concentration of flows

in some of links in the network. On the other hand, in a reverse traffic, LOREN can increase the

throughput by 25.0 % and 14.8 % for tmax = 18 and tmax = 32, respectively. Moreover, LOREN

achieves the lower latency than the compact routing methods in most cases with 64 nodes. It reduces

the latency by up to 5.0 %.

For 1,024 nodes, LOREN can achieve the better throughput especially with the small number of

table entries. In the case of a uniform traffic and tmax = 116, the throughput is increased by 67.9 %

compared to that with Cowen’s algorithm, which is shown in Fig. 6.1(c). The increase is also shown

in most of the other traffic patterns. As a result, LOREN develops capacity to balance traffic load.

Although LOREN increases the zero-load latencies with tmax = 116, it can fill the gap with a large

number table entries of tmax = 502.
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Table 6.1: Network parameters.
Simulation period 100,000 cycles

Packet size 1 flit

Number of VCs
2 (for 64 nodes)

6 (for 1,024 nodes)

Buffer size per VC 8 flits

Number of pipeline stages 4
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Figure 6.1: Network performance under uniform traffic.

In summary, LOREN, which utilizes local routing information, can achieve comparable latencies

to those with Cowen’s algorithm, which exploits global routing information. Moreover, LOREN can

avoid load concentration with the distributed routing manner, which Cowen’s routing method has to

face because of the large amount of flows to “landmark” nodes.
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Figure 6.2: Network performance under transpose traffic.
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Figure 6.3: Network performance under shuffle traffic.
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Figure 6.4: Network performance under reverse traffic.



Chapter 7

Conclusions

This thesis aims to achieve practical low-latency interconnection networks by introducing a scalable

routing methodology for layout-conscious random topologies. Lately proposed random topologies

can drastically reduce the number of hops compared to conventional regular topologies such as Torus

or Fat-tree. However, they cannot be naively utilized because of a huge amount of a total cable

length and the difficulty in implementation of routing tables. To provide a feasible solution, attention

is focused on the layout-conscious random topologies that have random shortcut links with their

lengths limited. They can achieve a comparable average number of hops between nodes while can

drastically reduce the total cable length.

The firstly proposed method LOREN (Layout-Oriented Routing with Entries for Neighbors) ex-

ploits locality of connections between nodes in the layout-conscious topologies to achieve both the

small number of hops between nodes and small routing table sizes required. As shown in Fig. 7.1, the

proposed routing method LOREN can reduce the required table size compared to the conventional

compact routing methods. Moreover, the achieved table size is significantly less than that required

for shortest path routing and the upper bound for implementation with Infiniband [25]. Note that

in this figure, due to the increased simulation time, the evaluation results for the case of more than

4,096 nodes by Cowen’s and Thorup’s compact routing methods cannot be shown.

The secondly proposed method ACRO (Assignment of Channels in Reverse Order) can be ap-

plied to arbitrary livelock-free routing methods to ensure deadlock-freedom for the path between any

pair of source and destination nodes. Figure 7.2 shows the achieved trade-offs between the time com-

plexity and the required number of VCs by ACRO and the conventional deadlock-free methodologies

introduced in Sec. 3.2. As LASH-TOR [18], ACRO can reduce the number of Virtual Channels (VC)

by assigning each sub-path that is derived from each path to one of the ordered VCs. Moreover,

ACRO can reduce the time complexity of the algorithm by introducing a cyclic dependency check

for each VC, in the same way as the recent implementation of LASH (LASH ver.2) [29].

Experimental results show that combination of LOREN and ACRO can improve the scalability

and flexibility for implementation yet can reduce the network latency. The proposed VC assignment

method ACRO can reduce the average number of VCs by up to 63% when compared with a conven-
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Figure 7.1: Routing table size required for the proposed algorithm LOREN and conventional algo-

rithms in randomized networks and the upper bound for Infiniband.
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Figure 7.2: Qualitative comparison of the proposed method ACRO and the conventional deadlock-

free methodologies.

tional algorithm that has the same time complexity, while it also reduces the time complexity by a

factor of O(|N| · log |N|), when compared with another conventional algorithm that requires almost the

same number of VCs. Moreover, the proposed routing methodology can reduce the average latencies
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Table 7.1: Qualitative comparison of alternative solutions (’+’: good, ’o’: fair, ’-’: poor).
Topology Torus Fat-tree Dragonfly SlimFly Random LCR LCR

Routing DOR Up*/Down* MIN MIN MIN MIN LOREN+ACRO (proposed)

Latency - - o + + o o

Table + + o o - - o

# of VCs + + o o - - o

Total Cable length + + - - - + +

by 7.9 % and improve the network throughput by up to 67.9 % compared to a conventional compact

routing method. Moreover, the number of required routing table entries is reduced by up to 91 %.

Table 7.1 shows a qualitative comparison of the conventional and proposed solutions. DOR

(Dimension Order Routing) for Torus, up*/down* routing for Fat-tree, minimal routing (MIN) for

Dragonfly and Slim Fly can achieve minimal routing and be implemented with a reduced number of

table entries and VCs. However, the combinations of these routing methods and the regular topolo-

gies suffer from either the increased network latency or total cable length. Although fully-random

and layout-conscious random (LCR) topologies can achieve the low latency, a conventional minimal

routing method increases the number of table entries and VCs. In contrast, the union of the proposed

methods LOREN and ACRO can reduce them yet can maintain the low latency.
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