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Preface

The first manifestations of statistics for spatial data appear to have arisen

in the form of data maps. For example, Halley (1686) superimposed, onto a

map of land forms, directions of trade winds and monsoons between and near

the tropics, and attempted to assign them a physical cause (Cressie, 1993).

Importance of spatial data analysis was first advocated by Fisher(1935)

since spatial correlation might remain significant in agricultural experiment

even if the sampling design were well organised. Whittle (1954) is the first

person who proposed a spatial model to describe such a spatial correlation.

The model is an autoregressive type model which now called simultaneous

spatial autoregressive model. It is attractive as a spatial model because of

its simplicity but the estimation procedure proposed there turned out not√
N -consistent for the number N of observations and the computation is

not straightforward. Various articles have been devoted since then for the

improvement of the behaviour of the estimator but it is still not popular yet.

In this thesis, an approximation on space domain of the log-likelihood

of simultaneous spatial autoregressive model is proposed. It is proved

that the estimation procedure so as to maximise the approximation

provides us a consistent and asymptotically efficient estimator under the

assumption that the underlying process is weakly stationary. Simultaneous

spatial autoregressive model is however not always identifiable. The

non-identifiability causes not only problem in finding a global solution of

the maximum likelihood equation but also non-estimable problem in the

estimation. It is shown that several types of sub-models of the simultaneous

spatial autoregressive model are effective to avoid such a non-identifiability

problem.

Chapter 1 is a brief introduction to spatial data and its model. Various
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models including simultaneous spatial autoregressive model are introduced

together with the parameter estimation procedure ever proposed. A handy

weak stationarity condition for spatial autoregressive model is also given with

the proof.

In Chapter 2, an approximation on space domain to the log-likelihood of

the model is proposed (Rikimaru and Shibata, 2016). It looks a mimic to that

for time series autoregressive model but several new ideas will be introduced

to accommodate simultaneous spatial autoregressive model. One is to modify

the translation matrix of observations to errors to be a circulant matrix.

The modification is applicable for any simultaneous spatial autoregressive

model although only 2-dimensional model is investigated in this thesis and

also enables us to develop transparent mathematical theory. The other is

an introduction of shrinkage factor to the quadratic form of observations

to retain the asymptotic efficiency of the estimator which maximises the

approximation. It is in fact proved that the estimator based on this new

approximation is consistent and asymptotically efficient. The result of

random number experiments supports that the estimation procedure provides

us estimates which have less bias and variance than the other procedure

even if the number of observations is small. An effective random number

generation algorithm is also developed.

In Chapter 3, it is shown that simultaneous spatial autoregressive model

is not always identifiable for the given 2nd moments or the spectral density

(Rikimaru and Shibata, 2017). This implies that there could be multiple

global solutions of the maximum likelihood equation. Therefore different

estimates of parameters may come out depending on the initial value given

to the optimisation algorithm used. It is also shown that Fisher information

matrix could become singular if some of models were overlapped which

share the same 2nd moments. The singularity of Fisher information matrix

does not only destroy the asymptotic efficiency of the estimator but also

result in non-estimability of some of parameters or the instability of the

solution of the maximum likelihood equation. This suggests that we need

to check if the Fisher information matrix is singular or not when the

parameters are estimated. Several types of necessary and sufficient conditions

are given for the check. Also it is shown that unilateral or symmetric
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sub-model of simultaneous spatial autoregressive model is free from such

a non-identifiability problem.

Chapter 4 is concluding remarks of this thesis. Summarising the results

in this thesis, several problems left for future works are raised, including

extension of the theorems for the case of general d dimensional space together

with modelling the expectation by multiple regression, compatibility of the

orthogonality and the innovation property of error variables, application of

the results to spatial lag model, investigation of identifiable sub-models of

simultaneous spatial autoregressive model, and application of the results to

conditional autoregressive model.
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Chapter 1

Introduction

Spatial data analysis plays an important role in various fields of science,

for example, geostatistics, economics, environmental science, ecology,

agricultural science, image modeling, and so on. In this thesis, we concentrate

our attention into “simultaneous spatial autoregressive model” which is one

of standard autoregessive models in spatial data analysis and closely related

spatial lag model.

1.1 Spatial Data

Spatial data observed on a space is roughly classified into two categories, one

is “point pattern data” and the other is “values on a space”.

Point Pattern Data Point pattern data is a record of locations or

sites where an event occurred, for example, a record of tree locations on

an area. One of main concerns of the analysis would be the type of

occurrence patterns, essentially regular, completely random or aggregated,

where essentially regular pattern appears when events occur repulsively,

completely random pattern appears when events do not interact with each

other and aggregated pattern appears when events occur attractively. A

basic stochastic model is a point process with the intensity function which

describes the type of the pattern. For works on the analysis of this type of
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data, see for example, Pielou (1959), Getis and Boots (1978), Marquiss et

al. (1978), Ripley (1981), Diggle (1983) and Upton and Fingleton (1985)

(Cressie, 1993).

Values on a Space The data is obtained as a set of measurements at

fixed sites. An example would be the amount of rainfall at each site in

an area. It is, for example, the case when geographical distribution of the

amount of rainfall is main concern of the analysis. However, if the main

concern were the pattern of rainfall, the point pattern data, rainy or not is

an appropriate data, which would be newly collected or aggregated from the

amount of rainfall data. Therefore point pattern data and values on a space

data are not exclusive. It changes by the aim of analysis. Stochastic model

for such values on a space is random field. When the observation sites are

designed on a mesh, for example, a subset of Zd, the observations are called

lattice data. Image data is an example of such a lattice data since pixels

are arranged on a mesh. One of main concerns of the analysis is to quantify

spatial correlations and to understand mechanism of phenomena behind the

data, as well as prediction or interpolation of the value. Related works are

summarised, for example, in Cressie (1993) and Gaetan and Guyon (2010).

Point pattern data and values on a space data are totally different type

of data, reflecting the aim of data collection or the analysis. Mathematical

models for such data are also different. A typical model for the point pattern

is a point process which describes the probability of occurrence at each

site, whereas the model for the values on a space is a random field which

describes the distribution and the correlations of the values over sites. Both

are interesting but we will focus our interest on the values on a space in this

thesis because of limited time and resource.
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1.2 Simultaneous Spatial Autoregressive

Model

1.2.1 Spatial Autoregressive Model

Spatial autoregressive model is a model by which each value on a site is

explained by a linear combination of several values on the neighbourhood.

For a random field {Xv,v = (v1, v2, . . . , vd)
T ∈ N} on a lattice N ⊂ Zd with

mean zero, spatial autoregressive model is defined by the equations,∑
k∈K

βkXv+k = εv,v ∈ N , (1.1)

where βk’s are regression coefficients. The error process {εv} is weakly

stationary with mean zero and variance σ2. We also assume that {εv} has a

positive spectral density. The set K is an index set for the neighbouring

sites, including 0 . For simplicity, we assume that any Xv has mean

zero. By this model, each Xv is represented by the neighbouring values

{Xv+k,k = (k1, k2, . . . , kd)
T ̸= 0 ∈ K} with the error εv. The equation (1.1)

can be rewritten as

P (T1, T2, . . . , Td)Xv = εv

by using a transfer function

P (T1, T2, . . . , Td) =
∑
k∈K

βkT
k1
1 T k2

2 · · ·T kd
d

with forward shift operators

TiXv = Xv1,...,vi+1,...,vd , i = 1, 2, . . . , d.

Spatial autoregressive model is roughly classified into two categories. One

is unilateral spatial autoregressive model where the regression specified by

the index set K only extends over a direction and the other is multilateral

spatial autoregessive model where it extends over all directions.
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Unilateral Spatial Autoregressive Model 　

Unilateral spatial autoregressive model is, for example, defined as∑
k1,k2,...,kd≤0

βkXv+k = εv

where βk’s are regression coefficients and εv’s are error variables. This

unilateral model is often called quarter-plane order autoregressive model

because a value at a site is represented by values on the third quadrant

when the origin is at the site on a two-dimensional plane. In other words, an

order of sites is introduced in the model such that u > v as ui ≥ vi for all

i = 1, . . . , d unless u = v and the index set K for the neighbours is taken to

be Kq ∪ {0} where Kq = {k; k < 0} (Tjøstheim, 1978).

There is another popular unilateral model on a two-dimensional plane,

which is referred as half-plane model in case of two-dimensional plane. In

the model, the index set K is similar to the case of quarter-plane order and

K− ∪{0} where K− = {k; k < 0} but the order of sites is different, which is

defined as u > v when either if u1 > v1 or if u1 = v1 and u2 > v2. Then the

values on two-dimensional plane can be rearranged on a line since the order

is lexicographic (Whittle, 1954). The model is also extended for the case of

general d-dimensional space (Dimitriou-Fakalou, 2009).

When d = 1 and K is a finite set, unilateral spatial autoregressive model

becomes well known time series autoregressive model,

0∑
k=−p

βkXv+k = εv with β0 = 1.

Multilateral Spatial Autoregressive Model 　

When the spatial dependence extends over all directions, the model is

called multilateral spatial autoregressive model. We hereafter use the

word “multilateral spatial autoregressive model” in a strict sense, excluding

unilateral spatial autoregressive model. When d = 1, we call multilateral

spatial autoregressive model in particular bilateral spatial autoregressive
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model since the spatial dependence exists only for the “past” and “future”. In

case of multilateral spatial autoregressive model, the orthogonality of εv’s and

the orthogonality of εv to Xu for u ̸= v are not compatible. This is because

the spatial dependence extends over all directions. Therefore, multilateral

spatial autoregressive model is classified into two categories, simultaneous

spatial autoregressive model and conditional spatial autoregressive model,

by the choice of the orthogonality. We will discuss into detail multilateral

spatial autoregressive model under the assumption of weak stationarity of

{Xv} in the next section.

1.2.2 Weak Stationarity of Spatial Autoregressive
Model

Weak stationarity of a process or the model is one of keys for effective

statistical inference. It is hard to derive any effective statistical inference

without such an assumption, as far as a single set of observations are only

available on a lattice. The stochastic process {Xv,v ∈ N} is weakly

stationary if and only if any autocovariance between Xv and Xv+k depends

only on the lag k. A necessary and sufficient condition for a spatial

autoregressive model to be weakly stationary is given in the following

condition. A primitive idea of this condition is in Whittle(1954) but not

well known, even in the context of time series analysis. Therefore, we will

give this fact as Proposition 1.1 with the proof.

Condition 1.1.

The transfer function P (z1, z2, . . . , zd) =
∑

k∈K βkz
k1
1 zk22 · · · zkdd has no zeros

on a domain D = {(z1, z2, . . . , zd) ; |z1| = |z2| = · · · = |zd| = 1} in Cd.

Condition 1.1 is a bit mathematically sophisticated but the check is not

so hard in practice. For example, it is easily seen that the condition is

equivalent to 1 + β1 + β−1 ̸= 0, 1− β1 − β−1 ̸= 0 and β1 ̸= β−1 or |β1| > 1/2
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for Xv + β1Xv+1 + β−1Xv−1 = εv. Similar conditions can be found for any

other case, even if they are not necessarily necessary condition. A numerical

validation procedure of the condition would be to find out all roots of the

transfer function P (z1, z2, . . . , zd) and check if they are on D or not.

Two types of weakly stationary spatial autoregressive models are well

known. One is so called Simultaneous Spatial Autoregressive (SAR) model

(Whittle, 1954) and the other is Conditional Spatial Autoregessive (CAR)

model (Besag, 1974). The difference is on the property of {εv}. An

orthogonal process {εv} is assumed for SAR model and a stationary process

{εv} such that any Xv is orthogonal to {εv+k, k ̸= 0} is assumed for CAR

model.

Therefore the role of {εv} is different from SAR model to CAR model.

It is thought to be a disturbance in SAR model and an error or residual in

CAR model. In fact, the error variable {εv} in CAR model becomes Xv −
E(Xv|Xu, u ̸= v) as far as {Xv} is Gaussian. It is worthy of noting that such

two properties of {εv} are not always compatible in case of spatial models.

For other differences between SAR and CAR models, see Besag(1974), Cliff

and Ord(1975) or Haining(1979).

In this thesis, we focus on the parameter estimation of SAR model,

which is one of the oldest spatial autoregressive model but still there are

many problems unsolved, for example, space domain analysis, efficiency of

parameter estimator, random number generation or identifiability of the

model.

Proposition 1.1. Condition 1.1 is a necessary and sufficient condition for

spatial autoregressive model to be weakly stationary.

Proof of Proposition 1.1

We first prove the sufficiency. If P (z1, z2, . . . , zd) has no zeros on D, then the
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Laurent expansion

P (z1, z2, . . . , zd)
−1 =

∞∑
j1,j2,...,jd=−∞

αjz
j1
1 zj22 · · · zjdd

is valid on a product of circular annuli {(z1, z2, ..., zd) ; 1−δ < |zi| < 1+δ, i =

1, 2, .., d} for a δ > 0 (Shabat, 1992), where αj is the coefficient of zj11 zj22 · · · zjdd
in the Laurent expansion of P (z1, z2, . . . , zd)

−1. Then,

|αj | < K

(
1± δ

2

)−j1 (
1± δ

2

)−j2

· · ·
(
1± δ

2

)−jd

for a constant K where the + is for jk > 0 and the − is for jk < 0 on the

right hand side of the inequality. We then have
∑

j |αj | < ∞ so that

Xv = P (T1, T2, . . . , Td)
−1εv =

∞∑
j1,j2,...,jd=−∞

αjεv+j

is well defined. The weak stationarity of {Xv} is clear from that of {εv}.
We now prove the necessity. If {Xv} is weakly stationary, then

Karhunen’s general representation theorem of weakly stationary process

(Grenander, 1981) yields us the representation,

Xv =

∫ π

−π

· · ·
∫ π

−π

eiω
T vdWω,

where {Wω} is an orthogonal increment process such that E(∆Wω∆Wω′) = 0

for increment ∆Wω = Wω+∆ω − Wω as far as ω ̸= ω′. Since {εv} is also

weakly stationary, it has a spectral representation,

εv =

∫ π

−π

· · ·
∫ π

−π

eiω
T vdW ε

ω,

where {W ε
ω} is the other orthogonal increment process. We have then∫ π

−π

· · ·
∫ π

−π

P (eiω1 , eiω2 , . . . , eiωd)eiω
T vdWω =

∫ π

−π

· · ·
∫ π

−π

eiω
T vdW ε

ω.

From Plancherel’s theorem, we now have that

|P (eiω1 , eiω2 . . . , eiωd)|2||dWω||2 = ||dW ε
ω||2 (1.2)
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for the norm ||X||2 = E|X|2. This implies that Condition 1.1 is satisfied

because the spectral desnity fε(ω) = ||dW ε
ω||2/dω of {εv} being positive. 2

From the proof, we see that the spectral density of SAR model is given

by

f(ω) =
σ2

|P (z1, z2, . . . , zd)|2
,

since ||dW ε
ω||2 = σ2dω.

In case of CAR model, there is a requirement that εv is always orthogonral

to Xu for u ̸= v. Let us write

εv = Q(T1, T2, .., Td)ξv

with a transfer function Q(z1, z2, ..., zd) and an orthogonal process {ξv}.
Then P (z1, z2, ..., zd) = |Q(z1, z2, ..., zd)|2 is equivalent to the orthogonality

requirement. This implies that the transfer function P (z1, z2, . . . , zd) should

take only non-negative values. A common practice is to assume that

symmetric regression coefficients, βk = β−k for all k ∈ K and 1 +

2
∑

k∈K+ βk cos(k
Tω) > 0, where K+ is the positive half space of K (Besag,

1974; Besag and Moran, 1975; Besag, 1977). The assumption also leads

us to a positive spectral density ||dW ε
ω||2/ dω = σ2 P (eiω1 , eiω2 , . . . , eiωd) of

{εv}, which accommodates with the assumption on {εv} in Section 1.2.1.

Note that the variance of ξv is equal to that of εv. Now we can cancel one

P (z1, z2, . . . , zd) out from the both sides of (1.2) and we have

P (eiω1 , eiω2 , . . . , eiωd) ||dWω||2 = σ2dω

so that the spectral density of CAR model is given by

f(ω) = σ2

(
1 + 2

∑
k∈K+

βk cos(k
Tω)

)−1

.
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We here note that the autocovariance γh = E(XvXv+k) of a weakly

stationary process {Xv} also has a spectral representation,

γh =

∫ π

−π

· · ·
∫ π

−π

eiω
Thf(ω)dω.

1.2.3 Spatial Lag Model

Spatial lag model frequently used in spatial econometrics is also a type of

spatial autoregressive model. However, the model is often mixed up with

the SAR (simultaneous spatial autoregressive) model already introduced and

abbreviated as SAR model (LeSage and Pace, 2009), too. In fact the spatial

lag model looks similar to SAR model but not the same. We will clarify the

similarity and the difference in this section.

Suppose that Y is a real-valued N × p matrix of N sets of the values of

p explanatory variables. Spatial lag model is a model

x = ρWx+ Y β + ε

for N -dimensional vector x of observations with unknown scalar parameter

ρ and p-dimensional parameter vector β. The vector ε is assumed to be

a vector of realisations of independent and identically distributed variables

with mean zero and variance σ2 (Cliff and Ord, 1973; Cliff and Ord, 1981;

Ord, 1975). Spatial correlation is described by the N ×N spatial-weighting

matrix W . Typical choices of W are the following (Tiefelsdorf et al., 1999).

1. Adjacency matrix W = (wi,j) such that

wi,j =

{
1 if i and j are adjacent,
0 otherwise.

2. Inverse-distance matrix W = (wi,j) such that wi,j = 1/di,j for the

distance di,j between i and j (Tobler, 1970).

As is easily seen, spatial lag model is a simple extension of multiple

regression model. The observation vector x can be thought of a vector of
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realisations of the SAR model if β is 0. For example, in case of adjacency

matrix W , realisations of the SAR model can be written in the form of

spatial lag model except observations on the edge of the lattice, by taking

K = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}
and setting βk = −ρ for any k ̸= 0 ∈ K. However, no such stochastic process

is assumed behind spatial lag model, so that no attempt has been done to

evaluate the behaviour of parameter estimator, for example, consistency or

asymptotic efficiency of the maximum likelihood estimator, which will be

proved in Chapter 2 of this thesis.

1.3 Parameter Estimation of SAR model

A typical estimation procedure of unknown parameters {βk} and σ is based

on the likelihood under the assumptions of Gaussianity and weak stationarity.

1.3.1 Aprroximations of the Likelihood of SAR model

Let assume that N = n1n2 · · ·nd observations are available on a lattice N =

{v = (v1, v2, . . . , vd)
T ; 1 ≤ vj ≤ nj, j = 1, . . . , d}. The exact log-likelihood

of the observational vector x under Gaussianity is then

L = −1

2
log det(Σ)− N

2
log 2π − 1

2
xTΣ−1x,

where Σ is the covariance matrix of x. However, there remain several

problems in direct evaluation of L, particularly in the evaluation of det(Σ),

since it is a complicated function of the parameters {βk} and σ of SAR model,

although there exist exceptional cases. Therefore a variety of approximations

have been proposed since then. The need of a good approximation is not only

for the easiness of computation but also for the simplicity of the evaluation

of the behaviour of parameter estimator.

Whittle’s Approximation 　

Whittle (1954) proposed a maximum likelihood estimator of parameters
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based on an approximation of the log-likelihood when he first introduced

SAR model. He approximated the log-likelihood as

1

4π2

∫∫ [
log f(ω1, ω2) +

F (ω1, ω2)

f(ω1, ω2)

]
dω1dω2, (1.3)

where f(ω1, ω2) is the spectral density function and F (ω1, ω2) is the

periodogram,

F (ω1, ω2) =

n1∑
j1=−n1

n2∑
j2=−n2

γ̂j1,j2e
i(j1ω1+j2ω2)

and γ̂j1,j2 is the empirical covariance,

γ̂j1,j2 =
1

n1n2

n1−j1∑
v1=1

n2−j2∑
v2=1

Xv1,v2Xv1+j1,v2+j2 .

However, it turned out true that the estimator based on Whittle’s

approximation is not
√
N -consistent. To overcome this problem, various

improvements have been proposed since then.

Guyon’s Approximation 　

Guyon (1982) proposed a replacement of γ̂j by

γ̃j =
1

(n1 − |j1|)(n2 − |j2|) · · · (nd − |jd|)

n1−j1∑
v1=1

n2−j2∑
v2=1

· · ·
nd−jd∑
vd=1

XvXv+j

to retain
√
N -consistency. However, the estimator based on his

approximation is not asymptotically efficient because γ̃j has large variance

for large lags as is shown in Mardia and Marshall (1984).

Dahlhaus and Künsch’s Approximation 　

Dahlhaus and Künsch (1987) introduced a tapering into γ̃j to remove the

large variance for large lags. Their tapering function h(u), u ∈ [0, 1] with

smoothness parameter ρ is

h(u) =


w(2u/ρ) (0 ≤ u < 1

2
ρ),

1 (1
2
ρ ≤ u ≤ 1

2
),

h(1− u) (1
2
< u ≤ 1),
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for a continuous increasing function w with w(0) = 0 and w(1) = 1. The

tapered empirical covariance is then

γDH
j =

{
d∏

i=1

n∑
s=1

h

{(
s− 1

2

)
/ni

}2
}−1 n1−j1∑

v1=1

n2−j2∑
v2=1

· · ·
nd−jd∑
vd=1

XvXv+j

×

[
d∏

i=1

h

{(
ti −

1

2

)
/ni

}
h

{(
ti + ki −

1

2

)
/ni

}]
.

Robinson and Vidal Sanz’s Approximation 　

Robinson and Vidal Sanz (2006) proposed a discrete approximation of the

integrals in (1.3). The estimator is obtained by a recursion. They also

proved asymptotic efficiency by introduction of a truncated version of the

periodogram,

FR(ω) =
∑

|j1|≤g(n1)

∑
|j2|≤g(n2)

· · ·
∑

|jd|≤g(nd)

γ̃ke
i(ωT j)

where g(x) is a positive, integer-valued, monotonically increasing function

such that g(x) goes to infinity as x tends to infinity and for all sufficiently

large positive x, some C > 1 exists such that g(x) ≤ Cx.

Kent and Mardia’s Approximation 　

A different approach from Whittle is by Kent and Mardia (1996). They

proposed an approximation of the log-likelihood,

−1

2
log det(C)− N

2
log 2π − 1

2
xTC−1x

by using a circulant matrix C. An advantage of employing such a circulant

matrix is that det(C) or C−1 is a simple function of the autocovariances γh’s.

They proved that their approximation gives us a good approximation of the

log-likelihood up to the second derivatives but no estimation procedure nor

evaluation of the behaviour are given. A practical problem would be how to

evaluate the values of γj ’s or its derivatives although they suggested the use
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of spectral density.

All approximations above are common in frequency domain analysis. In

other words, they are all based on the underlying spectral density. Another

type of approximation is on space domain.

Cressie’s Approximation 　

Cressie (1993) suggested an approximation by writing the observation vector

x as

Bx = ε

where ε is a vector arranged εv for v ∈ N and B is the spatial dependence

matrix. This is the same idea as in spatial lag model but already an

approximation to the SAR model where the values on the edge of N are

not represented well. Then, an approximate maximum likelihood estimator

can be obtained, in principle, by maximising

1

(2πσ2)
N
2

|B| exp
(
−xTBTBx

2σ2

)
. (1.4)

If we restrict our attention into a special case B = I − ρW as in spatial

lag model, diagonally dominant sparce matrix approximation can be used

(Gaetan and Guyon, 2010; Banerjee et al., 2015, Pace and Barry, 1997a,b),

but no general efficient algorithm known for the evaluation of the value of

(1.4) as far as we have investigated.

The approximation proposed in this thesis is an approximation on

space domain, where a circulant matrix approximation is used for the

transformation from observation to error vector. The approximation is

simple and applicable for any type of SAR model without restriction. The

consistency and asymptotic efficiency of the resulting parameter estimator is

proved together with the result of small sample size numerical experiment in
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Chapter 2. We thus see that the approximation error caused by the circulant

matrix approximation is quite marginal.

1.3.2 A Space Domain Approximation

Space domain approximation proposed here is

LA =
1

2
log det (A)− N

2
log 2π − 1

2
xT Ãx,

where

A =
1

σ2

∑
k,k′∈K

βkβk′W−k1+k′1
n1

⊗ · · · ⊗W
−kd+k′d
nd

and

Ã =
1

σ2

∑
k,k′∈K

βkβk′α
|k1−k′1|
n1 · · ·α|kd−k′d|

nd W−k1+k′1
n1

⊗ · · · ⊗W
−kd+k′d
nd

with Kronecker product ⊗ and αni
= 1+1/ni for i = 1, 2, . . . , d. The matrix

Wn is an n×n circulant matrix such that the off-diagonal elements (Wn)j,j+1

are all 1 for j = 1, 2, . . . , n − 1, (Wn)n,1 = 1 and the other elements are

all 0. It is clear that W n
n = W 0

n = In and W−1
n = W T

n where In is the

n × n identity matrix. The idea behind this approximation is similar to

that for time series AR model. By transforming the observation to error

vector, the log-likelihood is simplified. However, it is not enough in the case

of SAR model. This is because the transformation matrix is triangular in

case of time series AR model but not so in case of SAR model. Therefore,

we approximated the transformation matrix by a circulant matrix and the

approximation of the inverse of the covariance matrix by A is obtained as a

result. The shrinkage factor αn introduced in Ã is to retain the asymptotic

efficiency of the parameter estimator which maximises LA. The reason why

the factor αn is called “shrinkage factor” here is that it plays a role to shrink

Ã−1.
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Numerical experiments in Section 2.7 show that our estimate has less

bias and variance than Guyon’s estimate. In the numerical experiments, we

propose a random number generation although it is limited to the case where

the transfer function is decomposed as the product of a polynomial of z1 and

a polynomial of z2. The idea is transforming from the error variables to the

observation variables by using the inverse of transfer function. The precision

is verified by the comparison between the periodograom and the spectral

density.

1.4 Non-identifiability of SAR Model

Space domain approximation we have proposed in Chapter 2 provides us an

optimal estimation procedure. However, a problem behind SAR model is that

the model is not always identifiable for given 2nd moments or the spectral

density. In other words several different SAR models share the same spectral

density. Therefore multiple solutions of the maximum likelihood equation

may exist since the Gaussian likelihood is completely determined by the

2nd moments or the spectral density. In fact, many different estimators are

available depending on the initial values for optimisation algorithm used. A

remedy would be to introduce some restriction on parameter space. Such

a restriction may come from the meaning of the SAR model. Otherwise

introduction of unilateral or symmetric SAR model would be worthwhile.

The non-identifiability of SAR model causes another problem, singularity

of Fisher information matrix. The Fisher information matrix becomes

singular if some of SAR models which share the same spectral density are

not isolated. Good properties of the maximum likelihood estimator will

be lost if it happens. Some of parameters then become un-estimable. It

would be indispensable to check if the Fisher information is non-singular

in practice since the check of non-isolation of some of models which share

the same spectral density is not so easy. Several types of necessary and
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sufficient conditions for the singularity of Fisher information matrix are given

in Section 3.4.



Chapter 2

A Simple Statistically Efficient
Approximation of the Gaussian
Likelihood of SAR Model

A good approximation of the Gaussian likelihood of SAR model is proposed.

The approximation yields us an asymptotically efficient estimator of the

parameters. It is a straightforward approximation on space domain so that

the estimation procedure becomes transparent and applicable for any SAR

model without restriction on the parameter space except the stationarity.

Numerical experiments show that our estimator has less bias and variance

than the other estimator, although our comparison is limited to the case

where random number generation and the calculation of the other estimate

are both feasible at this stage.

2.1 Introduction

It is well known that the exact likelihood of SAR model has no closed form

in the parameters even when the Gaussianity is assumed, as the covariance

function is not a simple function of the parameters. Historically a lot of

approximations of the log-likelihood have been proposed. Whittle (1954) is

a pioneer. His approximation however does not seem feasible for practical

use, since the estimator is not only
√
N -consistent but also the estimation

17
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procedure requires multiple integrations on a high-dimensional unit sphere.

There are various proposals for the improvements of the method. The use

of a modified periodogram is by Guyon(1982) to retain the
√
N -consistency

and a tapered use of the periodogram is by Dahlhaus and Künsch (1987)

to improve efficiency. As far as we know, Robinson (2006) only proposed a

discrete approximation of integrations needed for the calculation.

The aim of this chapter is to derive a simple approximation on

space domain, that is, the approximation without using spectral density,

which yields us an asymptotically efficient estimator. The order of the

approximation is evaluated in Section 2.4. The consistency of the estimator

θ̂ is shown in Theorem 2.2 in Section 2.5. Theorem 2.3 in Section 2.6

shows that the estimator θ̂ is asymptotically efficient as far as the Fisher

information matrix is non-singular for large enough N . The results of

numerical experiments are given in Section 2.7, where our estimator is

compared with that by Guyon(1982).

2.2 SAR Model

We have already introduced SAR model in Chapter 1 but we define it again

to clarify the framework of the following mathematical analysis. The SAR

model considered here is for a real valued weakly stationary random field

{Xv ; v = (v1, v2)
T ∈ Z2} on a two dimensional lattice with the mean zero

and the autocovariance function γh = E(XvXv+h), h ∈ Z2. The model is

that {Xv} satisfies the equation

P (T1, T2)Xv = εv, (2.1)

where {εv ; v ∈ Z2} is a set of orthogonal random variables with the mean

zero and the variance σ2, σ > 0. The operator

P (T1, T2) =
∑
k∈K

βkT
k1
1 T k2

2
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is a two dimensional transfer function with β0 = 1. The index set K = {k =

(k1, k2)
T} is a finite set of lattice points on Z2 and the operators T1 and T2

are forward shift operators such as

T1Xv = Xv1+1,v2 and T2Xv = Xv1,v2+1.

The following stationarity assumption, which is already explained in

Section 1.2.2 in a general manner, is assumed throughout this chapter for

SAR model since the underlying random field {Xv} is weakly stationary.

Assumption 2.1. P (z1, z2) =
∑

k∈K βkz
k1
1 zk22 has no zeros on a domain

{(z1, z2) ; |z1| = |z2| = 1} in C2.

2.3 An Approximation of the Log-likelihood

Let us assume that the observations {xv , v ∈ N} are available on

a rectangular lattice N = {v = (v1, v2)
T ; 1 ≤ v1 ≤ n1, 1 ≤ v2 ≤

n2}. The N = n1n2 observations are arranged as a vector x =

(x1,1, x1,2, . . . , x1,n2 , x2,1, . . . , xn1,n2)
T in lexicographic order. To simplify the

notation, we put together the parameters βk, k ̸= 0 ∈ K and σ into

an m dimensional vector θ ∈ Θ, where K is an index set which specifies

neighbouring sites in relative to each site v. We hereafter assume that the

parameter space for each βk is a bounded open set for any k ̸= 0 ∈ K and

that for σ is {σ; σ > σ0} for a σ0 > 0 and the whole parameter space Θ is a

product of them.

The log-likelihood L of the observation x under Gaussianity is written as

L = −1

2
log det (Σ)− N

2
log 2π − 1

2
xTΣ−1x,

where Σ is the N ×N covariance matrix of x. As is shown later, in case of

SAR model, det(Σ) or Σ−1 does not take any simple form of the parameters.

It would not be a good idea to directly calculate them. The approximation
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we propose here

LA =
1

2
log det (A)− N

2
log 2π − 1

2
xT Ãx, (2.2)

where

A =
1

σ2

∑
k,k′∈K

βkβk′W−k1+k′1
n1

⊗W−k2+k′2
n2

(2.3)

and

Ã =
1

σ2

∑
k,k′∈K

βkβk′α
|k1−k′1|
n1 α

|k2−k′2|
n2 W−k1+k′1

n1
⊗W−k2+k′2

n2

with Kronecker product ⊗. We introduced such shrinkage factors αn1 =

1+ 1/n1 and αn2 = 1+ 1/n2 to retain the asymptotic efficiency. The matrix

Wn is an n×n circulant matrix such that the off-diagonal elements (Wn)j,j+1

are all 1 for j = 1, 2, . . . , n − 1, (Wn)n,1 = 1 and the other elements are all

0. It is clear that W n
n = W 0

n = In and W−1
n = W T

n where In is the n × n

identity matrix.

Key of the approximation LA is that the circulant matrix A well

approximates Σ−1. The idea is almost the same as that for the approximation

of the likelihood of time series autoregressive model, which has the

conditional likelihood

{det(BTB)}1/2

(
√
2πσ2)n

exp

(
− 1

2σ2
xTBTBx

)
of x = (x1, . . . , xn)

T given x−p+1 = x−p+2 = · · · = x0 = 0 where

B =



1

β1
. . .

...
. . . . . .

βp
. . . . . . 0

. . . . . . . . .
. . . . . . . . .

0
. . . . . . . . .

βp · · · β1 1


.
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However, things are much more complicated in SAR model. The n × n

transformation matrix B is not simple as in time series. To explain our

approximation, let us consider one dimensional bilateral model with the

transfer function P (z) =
∑p2

k=−p1
βkz

k as an example. The following circulant

matrix B plays a role of B in time series autoregressive model,

B =

p2∑
k=−p1

βkW
k
n =



1 β1 · · · βp2 β−p1 · · · β−1

β−1
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0 β−p1

β−p1
. . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . . βp2

βp2 0 . . . . . . . . . . . .
...

...
. . . . . . . . . . . . β1

β1 · · · βp2 β−p1 · · · β−1 1


given x−p1+1 = x−p1+2 = · · · = x0 = 0 and xn+1 = xn+2 = · · · = xn+p2 = 0.

The extra triangular submatrices on the lower left and the upper right corner

of B are introduced only for the simplicity of the expression of B. Then, the
product

BTB =

p2∑
k=−p1

p2∑
k′=−p1

βkβk′W
−k+k′

n

is σ2A in (2.3) in case of n1 = n and n2 = 1.

An advantage of using such a circulant matrix is the easiness of the

calculation of the eigenvalues or of the determinant. In fact, the eigenvalues

of A are easily obtained by a simple Fourier transform of βkβk′ as is shown

in (2.20) in Section 2.9.1, and

log det(A) = 2
∑
j∈N

log
∑
k∈K

βk exp(−iωT
n,jk)−N log σ2

gives us a good approximation of − log det(Σ). As is seen in Section 2.9.3,

the gradient and Hessian of LA have the explicit representations, so that
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the implementation of our algorithm is straightforward. Moreover, the

simple representation of the eigenvalues helps us to prove goodness of the

approximation, consistency and asymptotic efficiency of the estimator, which

are shown in Section 2.4, 2.5 and 2.6.

The reason why the matrix Ã is used in place of A for the quadratic

form of x in (2.2) is to ensure the asymptotic efficiency of the maximum

likelihood estimator of parameters based on LA. The approximation LA

without a shrinkage factor like αn = 1+1/n does not yield us asymptotically

efficient estimator since there is a significant edge effect of observations on a

lattice.

A practical estimation procedure would be to find out the parameter

θ which maximises LA, for example, by using a function nlminb in R

for optimisation with boundaries. The calculation of A or Ã in LA is

straightforward. The gradient and Hessian of LA given in Section 2.9.3 will

be helpful for accelerating the convergence of the algorithm.

2.4 Goodness of the Approximation

We first note that the spectral density and its derivatives are all bounded

and bounded away from zero up to the second order. The spectral density

of SAR model is given by

f(ω) =
σ2

|P (z1, z2)|2
=
∑
h∈Z2

γh zh1
1 zh2

2

where ω = (ω1, ω2)
T , and z1 = exp(iω1) and z2 = exp(iω2). The boundedness

and positivity of f(ω) is clear from the continuity. The boundedness of the

derivatives,

0 <
∣∣∂θpf(ω)

∣∣ < c1 and 0 <
∣∣∣∂2

θpθqf(ω)
∣∣∣ < c2 for a positive constant c1, c2
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follow from the formulas,

∂βsf(ω) = −2f(ω) Re

(
zs11 zs22

P (z1, z2)

)
, ∂σf(ω) =

2f(ω)

σ
,

∂2
βsβs′

f(ω) = 2f(ω)

{
2Re

(
zs11 zs22

P (z1, z2)

)
Re

(
z
s′1
1 z

s′2
2

P (z1, z2)

)
+Re

(
z
s1+s′2
1 z

s2+s′2
2

P (z1, z2)2

)}
,

∂2
βsσf(ω) =

2∂βsf(ω)

σ
and ∂2

σσf(ω) =
2f(ω)

σ2
.

Here, ∂θp and ∂2
θpθq

are simplified notations for differential operators ∂/∂θp

and ∂2/∂θp∂θq respectively. We will also use two types of matrix norms. One

is the operator norm,

||M || = max
j

(µj)

and the other is the trace class norm,

||M ||1 =
m∑
j=1

µj,

where µj ≥ 0, j = 1, 2, · · · ,m are singular values of m×m matrix M . Then,

the order of the approximation LA parallels the result of Kent and Mardia

(1996).

Theorem 2.1. The log-likelihood LA is asymptotically equivalent to the

exact log-likelihood L in the sense that,

(i)
1

N
(L− LA) = OP

(
1

n1

+
1

n2

)
,

(ii)
1

N

(
∂θpL− ∂θpLA

)
= OP

(
1

n1

+
1

n2

)
,

(iii)
1

N

(
∂2
θpθqL− ∂2

θpθqLA

)
= OP

(
1

n1

+
1

n2

)
for any θp and θq as min(n1, n2) tends to infinity.
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Proof . We first show the (i). Since the first term on the right hand side of

2

N
(L− LA) =

1

N

(
log det

(
A−1

)
− log det(Σ)

)
+

1

N
xT
(
Ã− Σ−1

)
x

is of the order of 1/n1 +1/n2 as is shown in Proposition A2 of Section 2.9.1,

it is now enough to note that

||Ã− Σ−1||1 = O(n1 + n2) (2.4)

in view of Lemma 4.2 of Kent and Mardia (1996). The evaluation on (2.4)

is shown in Proposition A3 in Section 2.9.1.

For the proofs of (ii) and (iii), it is enough to apply similar techniques

used for the proof of (i) to

2

N

(
∂θpL− ∂θpLA

)
=

1

N

(
∂θp log det

(
A−1

)
− ∂θp log det(Σ)

)
+

1

N
xT
(
∂θpÃ− ∂θp(Σ

−1)
)
x

and

2

N

(
∂2
θpθqL− ∂2

θpθqLA

)
=

1

N

(
∂2
θpθq log det

(
A−1

)
− ∂2

θpθq log det(Σ)
)

+
1

N
xT
(
∂2
θpθqÃ− ∂2

θpθq(Σ
−1)
)
x. 2

Before showing the asymptotic efficiency of θ̂ which maximise LA, we

establish the consistency. It is worthy of noting that the approximations given

in Kent and Mardia (1996) or that in Whittle (1954) does not necessarily

yield us asymptotically efficient estimator (Kent and Mardia, 1996) although

consistent.

2.5 Consistency

We need the following assumption for the consistency.
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Assumption 2.2. The limit of the Fisher information matrix I(θ) is

non-singular, whose (p, q) element is

Ipq(θ) =
1

8π2

∫∫
∂θp log f(ω) ∂θq log f(ω) dω.

The following theorem holds true when the observation x follows the SAR

model with a parameter θ0 in Θ.

Theorem 2.2. Under Assumption 2.1 and 2.2, the estimator θ̂ converges

to θ0 in probability as n1 and n2 tend to infinity.

Proof . It is enough to show that

1

N
LA − 1

N
Eθ0LA =

1

N
(LA − L) +

1

N
(L− Eθ0L) +

1

N
(Eθ0L− Eθ0LA)

(2.5)

converges to zero in probability for any θ. The convergence to zero in

probability of the first term on the right hand side of (2.5) follows from

Theorem 2.1. The convergence of the second term is clear from the law of

large numbers. Rewrite the third term as

1

2N

(
log det(A−1)− log det(Σ)

)
+

1

2N
Eθ0

(
xT
(
Ã− Σ−1

)
x
)
. (2.6)

Then the convergence to zero of the first term on (2.6) is clear from (i) of

Proposition A2 in Section 2.9.1. The second term on (2.6) is rewritten as

1

2N
tr
(
Σ0

(
Ã− Σ−1

))
,

which is bounded by

∥∥Σ0

∥∥ ∥∥Ã− Σ−1
∥∥
1
,

where Σ0 is the covariance matrix of the observation when θ = θ0. Now we

have the desired result from Proposition A3 in Section 2.9.1. 2



26
Chapter 2. A Simple Statistically Efficient Approximation of the Gaussian

Likelihood of SAR Model

2.6 Asymptotic Efficiency

We further need the following assumption for the asymptotic efficiency of θ̂.

Assumption 2.3. max (n1/n
3
2, n2/n

3
1) goes to zero as n1 and n2 tend to

infinity.

In order to prove Theorem 2.3, we need the following two propositions. The

notation LA(θ) is used in place of LA to clarify the dependence of LA on θ.

Proposition 2.1. Under Assumption 2.1, 2.2 and 2.3,

∂θLA(θ)√
N

→ N(0, I(θ)) as n1, n2 → ∞.

Proposition 2.2. Under Assumption 2.1, 2.2 and 2.3,

−
∂2
θpθq

LA(θ)

N
→ Ipq(θ) in probability as n1, n2 → ∞

for any p and q = 1, 2, . . . ,m.

The following Theorem 2.3 shows the asymptotic efficiency of θ̂ when the

observation x follows the SAR model with a parameter θ ∈ Θ.

Theorem 2.3. Under Assumption 2.1, 2.2 and 2.3, θ̂ is asymptotically

efficient, that is,

√
N(θ̂ − θ) → N

(
0, I(θ)−1

)
as n1, n2 → ∞.

Proof . The desired result follows from Proposition 2.1 and 2.2. Note the

Taylor expansion of the equation ∂θpLA(θ̂)/
√
N = 0,

∂θpLA(θ)√
N

+
m∑
q=1

(
∂2
θpθq

LA(θ̃)

N

)
√
N(θ̂q − θq) = 0,
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where θ̃ is a mid-value between θ and θ̂. 2

We give the proofs of Proposition 2.1 and 2.2 at the rest of this section.

The following lemmas are necessary for the proofs.

Lemma 2.1. Under Assumption 2.1, 2.2 and 2.3,

E

(
∂θpLA(θ)√

N

)
= O

(
max

(
n1

n3
2

,
n2

n3
1

) 1
2

)

for any θp.

Proof . The proof is divided into the two parts.

(a) When θp = βs

Note that

E (∂βsLA(θ)) =
∑
j∈N

exp
(
iωT

n,js
)∑

k∈K
βk exp(iωT

n,jk)

− 1

σ2

∑
k∈K

βkα
|k1−s1|
n1

α|k2−s2|
n2

E
{
xT
(
W−k1+s1

n1
⊗W−k2+s2

n2

)
x
}

(2.7)

because

xT
(
W−k1+s1

n1
⊗W−k2+s2

n2

)
x = xT

(
W k1−s1

n1
⊗W k2−s2

n2

)
x.

It is easily seen that the first term on the right hand side of (2.7) is evaluated

as

N

4π2

∫
zs11 zs22

P (z1, z2)
dω +O(1),

and the second term is evaluated as

− N

4π2

∫
zs11 zs22

P (z1, z2)
dω +O

(
max

(
n1

n2

,
n2

n1

))
. (2.8)
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In fact, by noting

E
{
xT
(
W−k1+s1

n1
⊗W−k2+s2

n2

)
x
}

= (n1 − |k1 − s1|)(n2 − |k2 − s2|)γ−k1+s1,−k2+s2

+ (n1 − |k1 − s1|)|k2 − s2|γ−k1+s1,−n2−k2+s2

+ |k1 − s1|(n2 − |k2 − s2|)γ−n1−k1+s1,−k2+s2

+ |k1 − s1||k2 − s2|γ−n1−k1+s1,−n2−k2+s2 , (2.9)

we have

α|k1−s1|
n1

α|k2−s2|
n2

E
{
xT
(
W−k1+s1

n1
⊗W−k2+s2

n2

)
x
}

= Nγ−k+s +O

(
max

(
n1

n2

,
n2

n1

))
(2.10)

since

α|k1−s1|
n1

α|k2−s2|
n2

(n1 − |k1 − s1|)(n2 − |k2 − s2|) = N +O

(
max

(
n1

n2

,
n2

n1

))
,

and the other terms on the right hand side of (2.9) are negligible even if they

are multiplied by α
|k1−s1|
n1 α

|k2−s2|
n2 . We finally have (2.8) from

−N

σ2

∑
k∈K

βk γ−k+s = − N

4π2

∫
zs11 zs22

P (z1, z2)
dω.

(b) When θp = σ

Note that

E (∂σLA(θ))

= −N

σ
+

1

σ3

∑
k,k′∈K

βkβk′

[
α|k1−k′1|
n1

α|k2−k′2|
n2

E
{
xT
(
W−k1+k′1

n1
⊗W−k2+k′2

n2

)
x
}]

.

The second term on the right hand side is evaluated as

N

σ
+O

(
max

(
n1

n2

,
n2

n1

))
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because the evaluation

α|k1−k′1|
n1

α|k2−k′2|
n2

E
(
xT
(
W−k1+k′1

n1
⊗W−k2+k′2

n2

)
x
)

= Nγ−k+k′ +O

(
max

(
n1

n2

,
n2

n1

))

holds true by similar reason as for (2.10). 2

We hereafter use the notation λn,j(M), n = (n1, n2)
T , j = (j1, j2)

T , j1 =

1, 2, . . . , n1, j2 = 1, 2, . . . , n2 for the eigenvalues of N ×N matrix M .

Lemma 2.2. Under Assumption 2.1, 2.2 and 2.3,

E

(
∂θpLA(θ)√

N

∂θqLA(θ)√
N

)
→ Ipq(θ) as n1, n2 → ∞

for any p and q = 1, 2, . . . ,m.

Proof . We prove the proposition through the evaluation of the moment

generating function of ∂θpLA(θ)/
√
N . The moment generating function is

written as

M(t) = E

(
exp

(
1

2
√
N

m∑
p=1

tp

(
∂θp log det(A)− xT∂θpÃx

)))

= exp

(
1

2
√
N

m∑
p=1

tp∂θp log det(A)

)
det

{
I +

1√
N

m∑
p=1

tp

(
Σ

1
2 ∂θpÃ Σ

1
2

)}− 1
2

(2.11)
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of t = (t1, t2, . . . , tm)
T since

E

(
exp

(
− 1

2
√
N

m∑
p=1

tpx
T∂θpÃx

))

=

∫
e
− 1

2
√
N

∑m
p=1 tpy

TΣ
1
2 ∂θp Ã Σ

1
2 y · 1

(
√
2π)N

e−
1
2
yTydy

=
1

(
√
2π)N

∫
e
− 1

2
yT

(
I+ 1√

N

∑m
p=1 tp Σ

1
2 ∂θp Ã Σ

1
2

)
y
dy

= det

(
I +

1√
N

m∑
p=1

tp Σ
1
2 ∂θpÃ Σ

1
2

)− 1
2

where y = Σ− 1
2x.

We first see that

∂2
tptqM(t)

∣∣∣
t=0

=
1

2N

∑
j∈N

λn,j

(
Σ

1
2 ∂θpÃ Σ

1
2

)
λn,j

(
Σ

1
2 ∂θqÃ Σ

1
2

)
+O

(
max

(
n1

n2

,
n2

n1

))

=
1

2N
tr
(
Σ2 ∂θpÃ ∂θqÃ

)
+O

(
max

(
n1

n2

,
n2

n1

))
for any p and q = 1, . . . ,m from Lemma 2.1. From Lemma 3.1 (b) of Kent

and Mardia (1996),∣∣∣tr(Σ2 ∂θpÃ ∂θqÃ
)
− tr

(
Σ2 ∂θpΣ

−1 ∂θqΣ
−1
)∣∣∣

=
∣∣∣tr(Σ2

(
∂θpÃ− ∂θpΣ

−1
)
∂θqÃ

)
+ tr

(
Σ2 ∂θpΣ

−1
(
∂θqÃ− ∂θqΣ

−1
))∣∣∣

≤ ||Σ||2||∂θpÃ− ∂θpΣ
−1||1||∂θqÃ||+ ||Σ||2||∂θpΣ−1|| ||∂θqÃ− ∂θqΣ

−1||1

holds true. We have now

tr
(
Σ2 ∂θpÃ ∂θqÃ

T
)
= tr

(
Σ2 ∂θpΣ

−1 ∂θqΣ
−1
)
+O(n1 + n2) (2.12)
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from Lemma A1, A2 and Proposition A3 in Section 2.9.1. It is enough to

note that

Ipq(θ) = lim
n1,n2→∞

1

2N
tr
(
Σ2 ∂θpΣ

−1 ∂θqΣ
−1
)
,

which is proved in Proposition B1 in Section 2.9.2. 2

Proof of Proposition 2.1. It is enough to show the asymptotic normality

of ∂θpLA(θ)/
√
N for any p = 1, 2, . . . ,m from Lemma 2.1 and 2.2. We prove

that logM(t) is asymptotically quadratic as N tends to infinity for proof of

asymptotic normality. From (2.11), we have that

logM(t) =
1

2
√
N

m∑
p=1

tp∂θp log det(A)−
1

2

N∑
j=1

log

(
1 +

1√
N

m∑
p=1

tpλj (∆p)

)

=
1

2
√
N

m∑
p=1

tp∂θp log det(A)−
1

2

N∑
j=1

{
1√
N

m∑
p=1

tpλj (∆p)

− 1

2N

(
m∑
p=1

tpλj (∆p)

)2

+
1

3N
√
N

(
m∑
p=1

spλj (∆p)

)3


=
m∑
p=1

tpE

(
∂θpLA(θ)√

N

)
+

1

2

m∑
p,q=1

tptqE

(
∂θpLA(θ)√

N

∂θqLA(θ)√
N

)

− 1

6N
√
N

∑
j∈N

(
m∑
p=1

spλj (∆p)

)3

, (2.13)

where ∆p = Σ
1
2 ∂θpÃ Σ

1
2 and sp is a mid value between 0 and tp for p =

1, 2, . . . ,m.

The third term of (2.13) tends to zero as N tends to infinity since

N∑
j=1

λj (∆p)λj (∆q)λj (∆r) = tr
(
Σ3 ∂θpÃ ∂θqÃ ∂θrÃ

)
≤ N ||Σ||3 ||∂θpÃ∂θqÃ|| ||∂θrÃ|| = O(N)
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from Lemma A1 and A2 in Section 2.9.1. 2

Proof of Proposition 2.2. It is enough to show that the moment

generating function M(t) of each −∂2
θpθq

LA(θ)/
√
N − Ipq(θ) converges to

1. It is equivalent to show

lim
n1,n2→∞

exp

(
− t

2N
∂2
θpθq log det(A)

)
E

(
exp

(
t

2N
xT ∂2

θpθqÃ x

))
= exp (tIpq(θ)) (2.14)

for any p and q = 1, 2, . . . ,m. By taking the logarithm of the both sides of

(2.14), we see that it is equivalent to prove the convergence of

− t

2N
∂2
θpθq log det(A)−

1

2
log det

(
I − t

N
Σ

1
2 ∂2

θpθqÃ Σ
1
2

)
(2.15)

to t Ipq(θ) as n1 and n2 tend to infinity. The first term on (2.15) is evaluated

as

t

2N
∂2
θpθq log det(Σ) + O

(
1

n1

+
1

n2

)
from the (iii) of Proposition A2 in Section 2.9.1, and the second term is

evaluated as

−1

2

∑
j∈N

log

(
1− t

N
λn,j

(
Σ

1
2 ∂2

θpθqÃ Σ
1
2

))

=
t

2N

∑
j∈N

λn,j

(
Σ

1
2 ∂2

θpθqÃ Σ
1
2

)
+O

(
1

N

)

=
t

2N
tr
(
Σ ∂2

θpθqÃ
)
+O

(
1

N

)

=
t

2N
tr
(
Σ ∂2

θpθqΣ
−1
)
+O

(
1

n1

+
1

n2

)
,

where the last equality can be proved in a similarly way as in (2.12).

Combining those result, we see that (2.15) is evaluated as

t

2N
tr(Σ2 ∂θpΣ

−1 ∂θqΣ
−1) + O

(
1

n1

+
1

n2

)
.
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Note here that

∂2
θpθq log det(Σ) = −tr

(
Σ−2∂θpΣ ∂θqΣ

)
+ tr

(
Σ−1∂2

θpθqΣ
)

and

∂2
θpθqΣ

−1 = Σ−1
(
∂θpΣ Σ−1∂θqΣ + ∂θqΣ Σ−1∂θpΣ− ∂2

θpθqΣ
)
Σ−1.

We now obtain the desired result from Proposition B2 in Section 2.9.2. 2

2.7 Numerical Experiments

The aim of this section is to numerically check the behaviour of the estimator

θ̂ and compare it with other estimator. A naive estimation procedure would

be to find out the maximum of the exact likelihood. The autocovariances

which appear in the covariance matrix Σ are not simple functions of the

regression parameters but the integral functions as

γh =
σ2

4π2

∫∫
zh1
1 zh2

2

|P (z1, z2)|2
dω.

This integration is a burden in practice for the calculation of the exact

likelihood, since no residue theorem is known for such a multivariable complex

function. This is the reason why Whittle (1954) proposed an approximation

of the likelihood on frequency domain, which is later improved by Guyon

(1982). We therefore compare our estimator with the Guyon type estimator

θ̂G which maximises

LG = − 1

4π2

∫∫
log |P (z1, z2)|2dω +

∑
k1,k2

ck1,k2 γ̃k1,k2 , (2.16)

where ck1,k2 are the Fourier coefficients of f(ω)−1 = |P (z1, z2)|2/σ2 and γ̃k1,k2

are the empirical covariances,

γ̃k1,k2 =
1

(n1 − |k1|)(n2 − |k2|)
∑

v,v+k∈N

XvXv+k.
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2.7.1 Random Number Generation

An algorithm has been developed for generation of random numbers which

follow SAR model for numerical experiments, as the direct use of the equation

(2.1) as for time series autoregressive model does not work well. This is

probably because {εv} is not innovation of {Xv} in any sense. The following

algorithm instead works well, although it is applicable only for the case when

the transfer function P (z1, z2) is decomposed as the product P1(z1)P2(z2) of

P1(z1) =

p2∑
k=−p1

bkz
k
1 and P2(z2) =

p′2∑
k=−p′1

b′kz
k
2 .

We here assume that b0 = b′0 = 1 for the unique of the decomposition. From

Assumption 2.1, P1(z1) can be factorized as

P1(z1) = c

p1∏
j=1

−1∏
k=−p2

(1− αjz1)(1− αkz
−1
1 )

on |z1| = 1 for a constant c ̸= 0. The inverse function

P1(z1)
−1 = c−1

p1∏
j=1

−1∏
k=−p2

(1− αjz1)
−1(1− αkz

−1
1 )−1

can be expanded on |z1| = 1. In fact, if |αj| < 1,

(1− αjz1)
−1 =

∞∑
ℓ=0

(αjz1)
ℓ (2.17)

and else if |αj | > 1,

(1− αjz1)
−1 =− (αjz1)

−1

∞∑
ℓ=0

(αjz1)
−ℓ. (2.18)

Note that there is no case where |αj | = 1 from the stationarity assumption

Assumption 2.1. Similar expansion is possible for (1−αkz
−1
1 )−1 by replacing

z1 by z−1
1 in the above. As a result, we have a random number generation

algorithm from {εv} through the formula,

xv = P1(T1)
−1P2(T2)

−1εv,
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where the expansions (2.17) or (2.18) are truncated into finite sums.

Figure 2.1 is an example of random number experiments. The vertical

line shows the periodogram and the spectral density and the horizontal line

shows the frequency ω. The periodogram

f̂(ω) =
1

N

n1−1∑
k1=−n1+1

n2−1∑
k2=−n2+1

w(k1) w(k2) xv1,v2xv1+k1,v2+k2 exp(i(ω1k1 + ω2k2))

is shown by the solid lines in the nine panels for 0 ≤ ω1 < π, where the

first row panels are for ω2 = π/9, 2π/9, 3π/9, the second row panels are for

ω2 = 4π/9, 5π/9, 6π/9 and the third panels are for ω2 = 7π/9, 8π/9, 9π/9.

The dotted line is the true density f(ω) for the transfer function P (z1, z2) =

(1+β1,0z1+β−1,0z
−1
1 )(1+β0,1z2+β0,−1z

−1
2 ) with β1,0 = 0.6, β−1,0 = 0.3, β0,1 =

0.4, β0,−1 = 0.5 and σ = 0.01. The number of the observations are n1 = 60

and n2 = 60, and the window used here is w(k) = 0.2 − 0.25 cos(πk/(ni −
1)+π)+0.3 cos(2πk/(ni− 1)+2π)− 0.25 cos(3πk/(ni− 1)+3π) for i = 1, 2.

2.7.2 Parameter Estimation

In view of the easiness of random number generation as is demonstrated in

the previous section, we restrict our attention into the case when the transfer

function is a product two single variate functions as P (z1, z2) = P1(z1)P2(z2),

particularly when P (z1, z2) = (1+β1,0z1+β−1,0z
−1
1 )(1+β0,1z2+β0,−1z

−1
2 ). In

the following, the estimate θ̂ or the estimate θ̂G is obtained by a non-linear

optimisation function nlminb in R.

For the θ̂, the explicit formulas of the gradient ∂θpLA(θ) and Hessian

∂2
θpθq

LA(θ) given in Section 2.9.3 are used for the maximisation of LA(θ) in

(2.2) by the R function nlminb.

Since the parameter σ is obtained from the formula

σ2 =
1

N

∑
k,k′∈K

βkβk′α|k1−k′1|
n1

α|k2−k′2|
n2

xT
(
W−k1+k′1

n1
⊗W−k2+k′2

n2

)
x
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Figure 2.1: Estimation of spectral density from generated random numbers

as the solution of ∂σLA(θ) = 0, the parameter σ is excluded from the

parameters for the maximisation of LA.

For the θ̂G, the hardest part is the approximation of the first term on

the right hand side of (2.16). In this experiment, we make use of the series

expansion suggested in Whittle(1954),∫∫
log |P (z1, z2)|2dω

=

∫
log
∣∣1 + β1,0z1 + β−1,0z

−1
1

∣∣2 dω1

∫
log
∣∣1 + β0,1z2 + β0,−1z

−1
2

∣∣2 dω2

=
∞∑
j=1

(2j)!

j!j!j
{(β1,0β−1,0)

j + (β0,1β0,−1)
j}. (2.19)

The summation is truncated at j = 40 in this experiment.

Table 2.1 and Table 2.2 are the summaries of 60 times random number
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experiments for the case when n1 = n2 = 30 and n1 = n2 = 40 respectively.

Computational time for both estimates θ̂ and θ̂G are almost the same, 0.6

second and 0.9 second respectively. The machine used is a Windows 7 Home

Premium PC with a Intel Core i7-3667U 2.00 GHz dual-core processor with

8 GB of memory. However the accuracies of the estimates are not the same.

The θ̂ has less bias than the θ̂G for β1,0 and β−1,0 with no notable difference

in the bias for the other parameters and less standard deviation for whole

parameters in Table 2.1. Almost the same observation follows from Table 2.2,

that is, the θ̂ has less bias than the θ̂G for β1,0 with no notable difference in the

bias for other parameters and less standard deviation for whole parameters.

Also it is worthy of noting that the Guyon type estimation procedure

may involve instability. Even for such a simple case, 32 times in the 60

experiments nlminb results in false convergence with the code 8 for both cases.

The code says that the gradient may be computed incorrectly, the other

stopping tolerances may be too tight, or either the function of the gradient

may be discontinuous near the current iterate. Most probable reason would

be that the computation of (2.19) or its gradient is not accurate enough.

This suggests that there would be cases where the estimation procedure for

θ̂G becomes unstable for more complex SAR model.

Table 2.1: Average and standard deviation of the estimates when n1 = n2 =
30.

β1,0 β−1,0 β0,1 β0,−1 σ
0.1 0.8 0.2 0.7 0.01

Average θ̂ 0.09855 0.7962 0.2066 0.6926 0.01000

θ̂G 0.08698 0.8133 0.2007 0.7015 0.01006

Standard θ̂ 0.05916 0.05971 0.05855 0.05726 0.000984

deviation θ̂G 0.06322 0.06732 0.06084 0.06143 0.001020
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Table 2.2: Average and standard deviation of the estimates when n1 = n2 =
40.

β1,0 β−1,0 β0,1 β0,−1 σ
0.1 0.8 0.2 0.7 0.01

Average θ̂ 0.10037 0.7978 0.1999 0.6970 0.01005

θ̂G 0.09560 0.8046 0.1978 0.7001 0.01007

Standard θ̂ 0.04614 0.04810 0.03570 0.03562 0.0006973

deviation θ̂G 0.04753 0.05059 0.03635 0.03662 0.0007050

2.8 Remarks

We have demonstrated the goodness of the estimator which maximises the

approximate log-likelihood LA. Applications of the SAR model are wide

spread from astronomy to ecology. We hope that our estimation procedure

will help people in such various fields of applications for analysing spatial

data, together with the random number generation algorithm developed in

Section 2.7.1. Also a remaining work would be to prove the theorems without

Gaussianity of the underlying random field.

Optimisation algorithm used here for numerical experiments is an

implementation of Newton-Raphson type algorithm with constraint nlminb

in R. However, a problem of such a Newton-Raphson type algorithm

is that the convergence of the algorithm becomes slow or even does

not converge as an increase of the number of parameters. A possible

alternative is to employ Bayesian Markov chain Monte Carlo (MCMC).

The algorithm is advantageous over Newton-Raphson type algorithm

because calculation of the likelihood for given parameters values is

only needed, and no search path is constructed. They are already

implemented as an R package, CARBayes for CAR model and HSAR for

Hierarchical spatial lag model, based on the approximation of the likelihood

proposed by Cressie (1993) and Banerjee et al. (2003). It is part of

the Comprehensive R Archive Network (CRAN) and is freely available
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at https://cran.r-project.org/web/packages/CARBayes/index.html or

https://cran.r-project.org/web/packages/HSAR/index.html. Unfortunately,

there is no implementation of MCMC algorithm for SAR model probably

because there was no good approximation of the likelihood. We hope that

an implementation of MCMC algorithm for SAR model soon appears based

on our approximation proposed.

2.9 Appendix

2.9.1 Fundamental Lemmas and Propositions

Several fundamental lemmas and propositions which are used in this chapter

are given in this section.

Lemma A1. (Kent and Mardia,1996, p.386) ||Σ||, ||∂θpΣ|| and ||∂2
θpθq

Σ||
are all uniformly bounded and bounded away from zero with respect to n1 and

n2.

Lemma A2. ||A||, ||∂θpA|| and ||∂2
θpθq

A|| are all uniformly bounded and

bounded away from zero with respect to n1 and n2.

We only show the outline of the proof of Lemma A2. It is enough to note

that the eigenvalues of A, ∂θpA and ∂2
θpθq

A are written as the following finite

sums,

λn,j(A) =
1

σ2

∑
k∈K

∑
k′∈K

βkβk′ exp(iωT
n,j(−k + k′)), (2.20)

λn,j(∂θpA) =
2

σ2

∑
k∈K

βk cos(ω
T
n,j(−k + s)),

λn,j(∂
2
θpθqA) =

2

σ2
cos(ωT

n,j(−s′ + s))
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when θp = βs and θq = βs′ for ωn,j = (ωn1,j1 , ωn2,j2)
T with ωn1,j1 = 2π(j1 −

1)/n1 and ωn2,j2 = 2π(j2−1)/n2 (Martin, 1986). The convergence is uniform

since only ωn,j depends on n1 and n2. Note that this lemma holds true even

if A is replaced by Ã.

Proposition A1. ||A−1−Σ||1, ||∂θpA−1−∂θpΣ||1 and ||∂2
θpθq

A−1−∂2
θpθq

Σ||1
are all of the order of n1 + n2 for any θp and θq.

Proof . Let us introduce the singular auxiliary matrix Un such that (Un)j,k =

δj+1,k for j, k = 1, 2, . . . , n, and denote UT
n as U−1

n although UT
n is not the

inverse matrix but a generalised inverse of Un. We can then decompose W g
n

into W g
n = U g

n + (UT
n )

n−g. Since the matrix A is circular, the inverse matrix

is nicely written as

A−1 =
∞∑

h1=−∞

∞∑
h2=−∞

γhW
h1
n1

⊗W h2
n2
.

This is due to the fact that the eigenvectors of A are also circular, whose

elements are of the form exp(iωn,j), and the eigenvalues of A−1 are given by

{λn,j(A)}−1 =
σ2

|P ( exp(iωn1,j1), exp(iωn2,j2) )|
2 =

∑
h∈Z2

γh exp(iωn,j)

which is shown in (2.20) of Section 2.9.1.

From the representation,

Σ =

n1−1∑
h1=−n1+1

n2−1∑
h2=−n2+1

γhU
h1
n1

⊗ Uh2
n2
,
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we see that

A−1 − Σ

=

2n1−1∑
h1=1

n2−1∑
h2=−n2+1

γhU
−n1+h1
n1

⊗ Uh2
n2

+
−1∑

h1=−2n1+1

n2−1∑
h2=−n2+1

γhU
n1+h1
n1

⊗ Uh2
n2

+

n1−1∑
h1=−n1+1

2n2−1∑
h2=1

γhU
h1
n1

⊗ U−n2+h2
n2

+

n1−1∑
h1=−n1+1

−1∑
h2=−2n2+1

γhU
h1
n1

⊗ Un2+h2
n2

+

2n1−1∑
h1=1

2n2−1∑
h2=1

γhU
−n1+h1
n1

⊗ U−n2+h2
n2

+

2n1−1∑
h1=1

−1∑
h2=−2n2+1

γhU
−n1+h1
n1

⊗ Un2+h2
n2

+
−1∑

h1=−2n1+1

2n2−1∑
h2=1

γhU
n1+h1
n1

⊗ U−n2+h2
n2

+
−1∑

h1=−2n1+1

−1∑
h2=−2n2+1

γhU
n1+h1
n1

⊗ Un2+h2
n2

.

(2.21)

We can prove that the || · ||1 norms of the first two terms on the right hand

side of (2.21) are of the order n2, the next two terms are of the order n1 from

the following Lemma A3 and Lemma A4 and the others are of the order of

constant. For example, the norm of the first term is bounded by

2n1−1∑
h1=1

n2−1∑
h2=−n2+1

|γh| (n1 − |n1 − h1|)(n2 − |h2|),

which is further bounded by a constant times of(
n1−1∑
h1=1

ηh1h1 +

2n1−1∑
h1=n1

ηh1(2n1 − h1)

)(
n2−1∑
h2=1

ηh2(n2 − h2) +
0∑

h2=−n2+1

η−h2(n2 + h2)

)
(2.22)

for 0 < η < 1. We see that the terms in each brackets on (2.22) are of the

order n1η
n1 and n2 respectively since

n∑
h=1

hηh =
{1− (n+ 1)ηn + nηn+1}η

(1− η)2
=

η

(1− η)2
+O(nηn).
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Then the first term on the right hand side of (2.21) is of the order n2. The

proofs for the other terms are similar. 2

Lemma A3. For any 0 < η < 1, there exists a positive finite constant C1

such that

1. |γs| ≤ C1η
|s1|+|s2|,

2.
∣∣∂θpγs∣∣ ≤ C1η

|s1|+|s2|,

3.
∣∣∣∂2

θpθq
γs

∣∣∣ ≤ C1η
|s1|+|s2|

for any θp and θq.

Proof . We only give the proof of (i) since the other proofs are similar. As

same as in time series, 1/P (z1, z2) exists and is regular on a domain R =

{(z1, z2) ; 1− δ < |z1|, |z2| < 1 + δ, δ > 0}. In the Laurent expansion

1

|P (z1, z2)|2
=
∑
s

(∑
k

αk+sαk

)
zs11 zs22

on the domain R, the coefficients of the expansion are bounded as∣∣∣∣∣∑
k

αk+sαk

∣∣∣∣∣ < Cη|s1|+|s2|,

for an η = max(1/(1 + δ), 1 − δ). Note that |zsjj | < (1 + δ)sj if sj > 0 and

|zsjj | < (1− δ)sj else for j = 1, 2. Therefore we have

|γs| =

∣∣∣∣∣∑
k

∑
k′

αkαk′E(εv+kεv+k′+s)

∣∣∣∣∣ ≤ σ2Cη|s1|+|s2|.

2
Lemma A4. ∣∣∣∣Uh1

n1
⊗ Uh2

n2

∣∣∣∣
1
= (n1 − |h1|)(n2 − |h2|)

for any 0 ≤ |h1| ≤ n1 − 1 and 0 ≤ |h2| ≤ n2 − 1.
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Proof . Note that

U = (Uh1
n1

⊗ Uh2
n2
)(Uh1

n1
⊗ Uh2

n2
)T = Uh1

n1
(Uh1

n1
)T ⊗ Uh2

n2
(Uh2

n2
)T .

Since

Uh
n (U

h
n )

T =

(
In−h 0
0 0

)
for h > 0, Uh

n (U
h
n )

T =

(
0 0
0 In−|h|

)
for h < 0

and Uh
n (U

h
n )

T = In for h = 0, the matrix U has only 0 or 1 eigenvalues where

the number of 1’s is (n1 − |h1|)(n2 − |h2|). This leads us the desired result.

2

We need the following propositions for the proofs of Theorem 2.1, 2.2 and

2.3.

Proposition A2.

(i) log det(A−1)− log det(Σ) = O(n1 + n2),

(ii) ∂θp log det(A
−1)− ∂θp log det(Σ) = O(n1 + n2),

(iii) ∂2
θpθq log det(A

−1)− ∂2
θpθq log det(Σ) = O(n1 + n2)

for any θp and θq.

Proof of (i). By noting that

log det(A−1)− log det(Σ) = log det
(
Σ−1A−1

)
= log det

{
I + Σ−1(A−1 − Σ)

}
= log

n1∏
j1=1

n2∏
j2=1

(
1 + λn,j(Σ

−1(A−1 − Σ))
)

≤
n1∑

j1=1

n2∑
j2=1

λn,j(Σ
−1(A−1 − Σ))

≤||Σ−1|| ||A−1 − Σ||1,
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the desired result follows from Lemma A1 and Proposition A1. Reversing

the roles of Σ and A leads us to the lower bound of the same order.

Proof of (ii). It is enough to show that∣∣tr (A ∂θpA
−1
)
− tr

(
Σ−1 ∂θpΣ

)∣∣
is of the order n1 +n2, which can be proved in a same way as in the proof of

(2.12).

Proof of (iii). It is enough to show∣∣tr (∂θpA−1∂θqA
)
− tr

(
∂θpΣ ∂θqΣ

−1
)∣∣+ ∣∣∣tr(A ∂2

θpθqA
−1
)
− tr

(
Σ−1∂2

θpθqΣ
)∣∣∣ ,

is the order of n1 + n2. The proofs are similar to the proof of (2.12). 2

Proposition A3. ||Ã−Σ−1||1, ||∂θpÃ−∂θpΣ
−1||1 and ||∂2

θpθq
Ã−∂2

θpθq
Σ−1||1

are all of the order of n1 + n2 for any θp and θq.

Proof . We only give the proof for ||Ã−Σ−1||1. Because of the boundedness
of ||Ã|| and ||Σ−1||, we have

||Ã− Σ−1||1 ≤ ||Ã|| ||Σ−1|| ||Σ− Ã−1||1

≤ C
(
||Σ− A−1||1 + ||A−1 − Ã−1||1

)
for a constant C > 0. The fact that ||Σ − A−1||1 = O(n1 + n2) is already

proved in Proposition A1 and the fact that ||A−1 − Ã−1||1 = O(n1 + n2) is

proved in the following lemma. 2

Lemma A5. ||A−1−Ã−1||1, ||∂θpA−1−∂θpÃ
−1||1 and ||∂2

θpθq
A−1−∂2

θpθq
Ã−1||1

are all of the order of n1 + n2 for any θp and θq.

Proof . We first note that

1− α|k1−k′1|
n1

α|k2−k′2|
n2

= O

(
max

(
1

n1

,
1

n2

))
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and

||W−k1+k′1
n1

⊗W−k2+k′2
n2

||1 = O(N) .

Because of the boundedness of ||A−1|| and ||Ã−1||,

||A−1 − Ã−1||1 ≤ ||A−1|| ||Ã−1|| ||A− Ã||1

≤ C

∣∣∣∣∣∑
k∈K

∑
k′∈K

βkβk′

(
1− α|k1−k′1|

n1
α|k2−k′2|
n2

)∣∣∣∣∣ ∣∣∣∣∣∣W−k1+k′1
n1

⊗W−k2+k′2
n2

∣∣∣∣∣∣
1

follows for a constant C > 0 and the desired result follows.

Similarly, we can prove ||∂θpA−1 − ∂θpÃ
−1||1 is of the order of n1 + n2. It

is enough to note that

||∂βs
A− ∂βs′

Ã||1 =

∣∣∣∣∣∑
k∈K

βk

(
1− α|k1−s1|

n1
α|k2−s2|
n2

)∣∣∣∣∣ ∣∣∣∣W−k1+s1
n1

⊗W−k2+s2
n2

∣∣∣∣
1

because ||W−k1+s1
n1

⊗W−k2+s2
n2

||1 = ||W k1−s1
n1

⊗W k2−s2
n2

||1, and

||∂σA− ∂σÃ||1 =
2

σ3
||A− Ã||1.

In order to prove that ||∂2
θpθq

A−1 − ∂2
θpθq

Ã−1|| is of the order n1 + n2, it is

enough to note that

||∂2
βsβs′

A− ∂2
βsβs′

Ã||1 =
2

σ2

∣∣∣1− α|s1−s′1|
n1

α|s2−s′2|
n2

∣∣∣ ∣∣∣∣∣∣W−s1+s′1
n1

⊗W−s2+s′2
n2

∣∣∣∣∣∣
1
,

||∂2
βsσA− ∂2

βsσÃ||1 =
2

σ
||∂βsA− ∂βsÃ||1,

and

||∂2
σσA− ∂2

σσÃ||1 =
6

σ2
||A− Ã||1.

2
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2.9.2 Lemma and Proposition Used for the Proof of
Theorem 2.3

Lemma B1. Under Assumption 2.1 and 2.2,

Ipq(θ) =
1

2σ4

∑
h∈Z2

 ∑
k,k′∈K

βkβk′ ∂θpγ−k+k′−h

∑
ℓ,ℓ′∈K

βℓβℓ′ ∂θqγ−ℓ+ℓ′+h

 ,

(2.23)

for any p and q = 1, 2, . . . ,m.

Proof . We first note that

∂βs log f(ω) = −2Re

(
zs11 zs22

P (z1, z2)

)
,

∂σ log f(ω) =
2

σ
,

∂βsγh = − σ2

2π2

∫
zh1
1 zh2

2

|P (z1, z2)|4
Re
(
z−s1
1 z−s2

2 P (z1, z2)
)
dω

and

∂σγh =
σ

2π2

∫
zh1
1 zh2

2

|P (z1, z2)|2
dω.
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(a) When θp = βs and θq = βs′

1

2σ4

∑
h∈Z2

∂βsγh

 ∑
k,k′,ℓ,ℓ′∈K

βkβk′βℓβℓ′ ∂βs′γ−k+k′−ℓ+ℓ′−h


= − 1

4π2σ2

∑
h∈Z2

∂βsγh

×
∫ ∑

k,k′∈K βkβk′z
−k1+k′1
1 z

−k2+k′2
2

∑
ℓ,ℓ′∈K βℓβℓ′z

−ℓ1+ℓ′1
1 z

−ℓ2+ℓ′2
2

|P (z1, z2)|4

× z−h1
1 z−h2

2 Re
(
z
−s′1
1 z

−s′2
2 P (z1, z2)

)
dω

= − 1

2σ2

∑
h∈Z2

(∂βsγh) (βs′+h + βs′−h)

=
1

4π2

∫ ∑
h∈Z2(βs′+h + βs′−h)z

h1
1 zh2

2

|P (z1, z2)|2
Re

(
zs11 zs22

P (z1, z2)

)
dω

=
1

2π2

∫
Re

(
zs11 zs22

P (z1, z2)

)
Re

(
zs11 zs22

P (z1, z2)

)
dω = Ipq(θ).

(b) When θp = βs and θq = σ

− 1

8π4σ

∑
h∈Z2

∫ ∑
k,k′∈K βkβk′z

−k1+k′1−h1

1 z
−k2+k′2−h2

2

|P (z1, z2)|2
Re

(
zs11 zs22

P (z1, z2)

)
dω

×
∫ ∑

ℓ,ℓ′∈K βℓβℓ′z
−ℓ1+ℓ′1−h1

1 z
−ℓ2+ℓ′2−h2

2

|P (z1, z2)|2
dω

= − 1

2π2σ

∫
Re

(
zs11 zs22

P (z1, z2)

)
dω = Ipq(θ).
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(c) When θp = σ and θq = σ

Since

∑
k,k′∈K

βkβk′ ∂σγ−k+k′−h = 2σ and
∑
ℓ,ℓ′∈K

βℓβℓ′ ∂σγ−ℓ+ℓ′+h = 2σ,

the right hand side of (2.23) is written as 2/σ2. 2

Proposition B1. Under Assumption 2.1 and 2.2,

Ipq(θ) = lim
n1,n2→∞

1

2N
tr(Σ2 ∂θpΣ

−1 ∂θqΣ
−1),

for any p and q = 1, 2, . . . ,m.

Proof . We can show

tr(Σ2 ∂θpΣ
−1 ∂θqΣ

−1) = tr
(
Σ−2 ∂θpΣ ∂θqΣ

)
= tr

(
A2 ∂θpA

−1 ∂θqA
−1
)
+O(n1 + n2)

as similarly as in (2.12). Then

tr
(
A2 ∂θpA

−1 ∂θqA
−1
)
= Ipq(θ)

follows from the fact that

tr
(
W ℓ1

n1
⊗W ℓ2

n2

)
=

{
N if ℓ1 = ℓ2 = 0
0 otherwise.

2
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2.9.3 Representation of Gradient and Hessian

The gradient and the Hessian of LA are represented as follows.

∂βsLA =
∑
j∈N

exp(iωT
n,js)∑

k∈K βk exp(iωT
n,jk)

− 1

σ2

∑
k∈K

βkα
|k1−s1|
n1

α|k2−s2|
n2

xT
(
W−k1+s1

n1
⊗W−k2+s2

n2

)
x,

∂σLA =− N

σ
+

1

σ3

∑
k,k′∈K

βkβk′α|k1−k′1|
n1

α|k2−k′2|
n2

xT
(
W−k1+k′1

n1
⊗W−k2+k′2

n2

)
x,

∂2
βsβs′

LA =−
∑
j∈N

exp(iωT
n,j(s+ s′)){∑

k∈K βk exp(iωT
n,jk)

}2
− 1

σ2
α|s1−s′1|
n1

α|s2−s′2|
n2

xT
(
W−s1+s′1

n1
⊗W−s2+s′2

n2

)
x,

∂2
βsσLA =

2

σ3

∑
k∈K

βkα
|k1−s′1|
n1

α|k2−s′2|
n2

xT
(
W−k1+s1

n1
⊗W−k2+s2

n2

)
x,

and

∂2
σσLA =

N

σ2
− 3

σ4

∑
k,k′∈K

βkβk′α|k1−k′1|
n1

α|k2−k′2|
n2

xT
(
W−k1+k′1

n1
⊗W−k2+k′2

n2

)
x.





Chapter 3

Non-identifiability of SAR
Model

SAR model is widely used for spatial data analysis, observed at a set of grid

points in a space. However a problem, not so well known, is that there exists

no unique model unlike time series AR model for given autocovariances or

spectral density. We show that such a non-identifiability of the model implies

existence of multiple maximum likelihood estimates under Gaussianity

and causes non-estimability of parameters and the singularity of Fisher

information matrix. Several types of necessary and sufficient conditions for

the singularity are given.

3.1 Introduction

An SAR model for a random field {Xv;v = (v1, v2, . . . , vd)
T ∈ Zd} with the

mean zero and the autocovariance function γh = E(XvXv+h),h ∈ Zd is the

model which satisfies the equation

P (T1, T2, . . . , Td)Xv = εv, v ∈ Zd, (3.1)

where {εv;v ∈ Zd} is a set of uncorrelated random variables with the mean

zero and the variance σ2, σ > 0. Here the operator

P (T1, T2, . . . , Td) =
∑
k∈K

βkT
k1
1 T k2

2 · · ·T kd
d

51
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is an n-dimensional transfer function with the real coefficients βk,k ∈ K
where K is a set of finite points k = (k1, k2, ..., kd) on Zd, which always

includes 0, and β0 = 1. We denote the number of elements of K is m, so that

the number of regression parameters as m−1. The operators Tj, j = 1, . . . , d

are shift operators such as

TjXv = Xv1,...,vj+1,...,vd .

We assume the following for the weakly stationary of the simultaneous

spatial autoregressive model throughout this chapter.

Assumption 3.1. P (z1, z2, . . . , zd) =
∑

k∈K βkz
k1
1 zk22 · · · zkdd has no zeros

on the domain D = {(z1, z2, . . . , zd) ; |z1| = |z2| = · · · = |zd| = 1} in Cd.

The spectral density of the SAR model (3.1) is then

f(ω) =
σ2

|P (z1, z2, . . . , zd)|2
,

where zj = exp(iωj), j = 1, . . . , n and ω = (ω1, ω2, ..., ωd).

3.2 Non-identifiability of SAR Model

We first note that any polynomial P (z1, z2, . . . , zd) is decomposable into a

product of prime factors hk(z1, z2, . . . , zd), k = 1, 2, ..., p as

P (z1, z2, . . . , zd) =

p∏
k=1

hk(z1, z2, . . . , zd).

Therefore, there exist 2p choices in selecting hk(z1, z2, . . . , zd) or

hk(z1, z2, . . . , zd) for k = 1, 2, ..., p to have a transfer function P (z1, z2, . . . , zd)

which leads us to the spectral density

f(ω) =
σ2∏p

k=1 hk(z1, z2, . . . , zd)hk(z1, z2, . . . , zd)
. (3.2)
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There is also freedom to add a factor of the form czℓ11 zℓ22 · · · zℓdd to the

transfer function P (z1, z2, . . . , zd) for any constant c and integers ℓ1, ℓ2, . . . , ℓd,

since the constant c can be absorbed into the parameter σ2.

Example 3.1. Let us consider a simple one-dimensional SAR model,

Xv + β1Xv+1 + β−1Xv−1 = εv. (3.3)

Then there exist 22 = 4 different choices of transfer function for the spectral

density

f(ω) =
σ2
0

(z − α1)(z − α2)(z−1 − ᾱ1)(z−1 − ᾱ2)
, (3.4)

where z = eiω and α1, α2 ∈ C are the roots of the polynomial P (z) =

z + β1z
2 + β−1 . In fact, there exist the following four different transfer

functions for the spectral density (3.4).

P1(z) = − 1

α1 + α2

z−1(z − α1)(z − α2) = 1− 1

α1 + α2

z − α1α2

α1 + α2

z−1,

P2(z) = − 1

ᾱ1 + ᾱ2

z(z−1 − ᾱ1)(z
−1 − ᾱ2) = 1− ᾱ1ᾱ2

ᾱ1 + ᾱ2

z − 1

ᾱ1 + ᾱ2

z−1,

P3(z) =
1

1 + α1ᾱ2

(z − α1)(z
−1 − ᾱ2) = 1− ᾱ2

1 + α1ᾱ2

z − α1

1 + α1ᾱ2

z−1

and

P4(z) =
1

1 + ᾱ1α2

(z−1 − ᾱ1)(z − α2) = 1− ᾱ1

1 + ᾱ1α2

z − α2

1 + ᾱ1α2

z−1.

It is easy to show that each transfer function has real coefficients, providing

us an SAR model (3.3) with different coefficients. The variance parameter

σ2 varies from transfer function to transfer function, σ2 = σ2
0/|α1 + α2|2 for

P1(z) and P2(z), and σ2 = σ2
0/|1+α1ᾱ2|2 for P3(z) and P4(z). It is easy to see

that P1(z) and P2(z) become identical if and only if α1 and α2 are real and

α1α2 = 1, and the P3(z) and P4(z) become identical if and only if α1 and α2
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are real and α1 = α2. By noting Assumption 3.1, we see that such conditions

are summarized as β1 = β−1 with β2
1 < 1/4, that is, time reversible SAR

model. However, it does not mean unique transfer function for the spectral

density of time reversible SAR model. The conditions α1 = α2 and α1α2 = 1

are not compatible because of Assumption 3.1. Only two of the four transfer

functions become identical and two others are not time reversible. We now

see that there is no unique SAR model for the given spectral density (3.4) .

3.3 Maximum Likelihood Estimate

It is well known that the exact likelihood of SAR model has no closed form

in terms of parameters even if the Gaussianity is assumed. Historically,

a lot of approximations of the log-likelihood have been proposed. One of

such approximations is that based on a modified periodogram, proposed by

Guyon (1982). However, the estimation procedure is not only expensive

in computation but also inaccurate because it requires multiple integration

of the spectral density for each parameter value. In this respect, the

approximation recently proposed by Rikimaru and Shibata (2016) is stronger

and more straightforward, and closed on space domain. They also proved

that the parameter estimator which maximises the approximation LA in the

following is asymptotically efficient.

Let us assume that the observations {xv,v ∈ N} are on a rectangular

lattice N = {v = (v1, v2, . . . , vd)
T ; 1 ≤ vj ≤ nj, j = 1, 2, . . . , d}. The N =

n1n2 · · ·nd observations are arranged to make a vector x in lexicographic

order. By combining the m − 1 dimensional regression parameter vector β

whose elements are arranged in lexicographic order of k ̸= 0 ∈ K with σ, we

have the whole parameter vector θ. An approximation of the log-likelihood

of θ proposed by Rikimaru and Shibata (2016) is then

LA =
1

2
log det (A)− N

2
log 2π − 1

2
xT Ãx,
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where

A =
1

σ2

∑
k,k′∈K

βkβk′W−k1+k′1
n1

⊗ · · · ⊗W
−kd+k′d
nd

and

Ã =
1

σ2

∑
k,k′∈K

βkβk′α
|k1−k′1|
n1 · · ·α|kd−k′d|

nd W−k1+k′1
n1

⊗ · · · ⊗W
−kd+k′d
nd .

Here the symbol ⊗ is Kronecker product and αnj
= 1 + 1/nj, j = 1, 2, . . . , d

are shrinkage factors to retain
√
N consistency. The asymptotic efficiency

proved that the covariance matrix of the parameter estimator converges to

the lower bound given by the inverse of the Fisher information matrix I(θ),

whose elements are given by

Ipq(θ) =
1

2 · (2π)d

∫
· · ·
∫

∂ log f(ω;θ)

∂θp

∂ log f(ω;θ)

∂θq
dω, p, q = 1, 2, ...,m,

(3.5)

(Whittle, 1954; Guyon, 1982; Robinson and Vidal Sanz, 2006), provided

that I(θ) is non-singular which is a key assumption for the proof. It is

rather unusual that the Fisher information matrix is singular in ordinary

theory of statistics, but it often happens in the case of SAR model. Before

investigating when and why it happens, we will see other problems caused by

non-identifiability of SAR model in maximum likelihood estimation by the

following example.

Example 3.2. Consider the same SAR model (3.3) as in Example 3.1.

Assume that {Xv} has the spectral density (3.4) with α1 = −0.85, α2 =

−9.15 and σ0 = 0.1. Then four possible transfer functions for the spectral

density are :

Transfer
function

β1 β−1 σ

P1(z) 0.10000 0.77775 0.01000
P2(z) 0.77775 0.10000 0.01000
P3(z) 1.04244 0.09683 0.01139
P4(z) 0.09683 1.04244 0.01139
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This suggests that the Gaussian likelihood function has the same value

for such four sets of parameter values, since they share the same covariance

structure. Therefore the likelihood function always has four maximum points

on parameter space unless some of four transfer functions are identical. In

fact, the following result of numerical experiment demonstrates this. In the

experiment, N = 1000 random numbers are generated for {Xv} by using the

transfer function P1(z) with

β1 = − 1

α1 + α2

= 0.1 , β−1 = − α1α2

α1 + α2

= 0.77775

and

σ = − σ0

α1 + α2

= 0.01.

Then, the following four maximum likelihood estimate are obtained by

maximising LA in this experiment.

β̂1 β̂−1 σ̂ max LA

Estimate1 0.10146 0.77066 0.00973 3124.091
Estimate2 0.77066 0.10146 0.00973 3124.091
Estimate3 1.04858 0.09804 0.01116 3124.091
Estimate4 0.09804 1.04858 0.01116 3124.091

Therefore, although the maximum likelihood estimator is consistent and

asymptotically efficient as is proved, there is no global unique solution. This

implies that we always have several different estimates of parameters, which

may depend on the initial values of parameters for optimisation algorithm.

There would be no good way to avoid such a problem in practice, because

the problem is not over-parametrisation but non-identifiability of transfer

function for given spectral density or autocovariances. Only a possible

remedy would be to restrict our attention into a specific region of parameter

space, which is meaningful for the underlying problem and effective for

restricting the transfer function into a unique one. We might have to search

for all possible solutions anyway since it would not be so easy to restrict the

region beforehand.
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3.4 Singularity of the Fisher Information

Matrix I(θ)

We have seen that several different parameters, θ1,θ2, ...,θ2p are mapped

from a given SAR spectral density. The problem of SAR model is not only on

such a non-identifiability but also on the singularity of the Fisher information

matrix which is closely related to the non-identifiability. We will concentrate

our attention into the singularity of Fisher information matrix I(θ) in (3.5),

which is also the limit of

− 1

N

∂2 log f(x,θ)

∂θ∂θT
. (3.6)

Let θj(f), j = 1, 2, . . . , r be all possible mappings of a spectral density

f to the parameter θj(f). We call a parameter θ non-singular if the Fisher

infomation matrix I(θ) is non-singular.

Definition Parameter θ = θj(f) has multiplicity if there exists a k ̸= j and

δ ̸= 0 such that θj(fn) − θk(fn) = anδ for a nonzero sequence {an} which

converges to zero and a sequence of spectral densities {fn} which converges

to f , where θj(fn) and θk(fn) are all non-singular parameters.

Theorem 3.1. Fisher information matrix I(θ0) becomes singular if θ0 has

multiplicity.

Proof . If θ0 = θ0(f) has multiplicity then we can find a sequence fN of

spectral density which converges to f . Then there exists a small enough

ϵ > 0 and a sequence {nN} such that θ1(fnN
)−θ2(fnN

) = N− 1
2
+ϵ(1+ o(1))δ

for a nonzero δ from the multiplicity of θ0. We have then two corresponding

maximum likelihood estimators θ̂1 and θ̂2, which are zeros of the gradients

of the log-likelihood

gk(θ) =
∂ log f(x,θ)

∂θk
, k = 1, 2, ...,m.
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By Taylor expansion, we see that

0 = (θ̂1 − θ̂2)
T ∂

∂θ
gk(θ

∗
k), k = 1, 2, ...,m (3.7)

holds true for θ∗
k between θ̂1 and θ̂2. Rewrite (3.7) as

0 = N
1
2
−ϵ
(
(θ̂1 − θ1)− (θ̂2 − θ2) + (θ1 − θ2)

)T 1

N

∂

∂θ
gk(θ

∗
k), k = 1, 2, ...,m.

Then, by setting θ1 = θ0 +N− 1
2
+ϵ δ and θ2 = θ0 −N− 1

2
+ϵ δ , we have

0 = δT I(θ0)

since θ1 and θ2 are non-singular parameters. 2

Example 3.3 Let θ1 = (β1, β−1, σ)
T and θ2 = (β−1, β1, σ)

T be parameter

vector for P1(z) and P2(z) in Example 3.1. Suppose that there exists θ1 and

θ2 in the neighbourhood of θ0. When we set θ1 = θ0+aNδ and θ2 = θ0−aNδ

where aN = N− 1
2
+ϵ and δ = (δ,−δ, 0)T , θ1 and θ2 go to θ0 respectively as

N tends infinity.

The following example illustrates what happens if the Fisher information

matrix is singular. It would be clear if we note that the Hessian matrix of

the log-likelihood (3.6) is likely to be singular if it happens.

Example 3.4. Let us consider the same SAR model as in Example 3.1. As

is already seen, if β1 = β−1 and β2
1 < 1/4, then the transfer functions P1 and

P2 or P3 and P4 are identical and the Fisher information matrix becomes

singular as

I(θ) =

 a a b
a a b
b b c

 ,

where

a =
−1 + 8β2

1 + (
√
1− 4β2

1)
3

β2
1(
√
1− 4β2

1)
3

, b =
−2(1−

√
1− 4β2

1)

σβ1

√
1− 4β2

1

and c =
4

σ2
.
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From the maximum likelihood equation,

0 =
1√
N

∂ log f(x,θ)

∂θ

∣∣∣∣
θ̂

≈ 1√
N

∂ log f(x,θ)

∂θ
+

1

N

∂2 log f(x,θ)

∂θ∂θT
·
√
N(θ̂ − θ),

we see that
a
√
N
{
(β̂1 + β̂−1)− (β1 + β−1)

}
+ b

√
N(σ̂ − σ)

a
√
N
{
(β̂1 + β̂−1)− (β1 + β−1)

}
+ b

√
N(σ̂ − σ)

b
√
N
{
(β̂1 + β̂−1)− (β1 + β−1)

}
+ c

√
N(σ̂ − σ)


is asymptotically normally distributed, so that we can only estimate β1+β−1

and σ but not individual β1 or β−1.

3.4.1 Conditions for Non-Singularity of I(θ)

As is seen from Example 3.4, singularity of the Fisher information matrix I(θ)

causes more serious problem, non-estimability of individual parameters. It

would be worthy of investigating what kind of conditions is necessary for the

singularity of I(θ) because the Fisher information matrix is a complicated

function of parameters and it is not feasible to check it as it is. We first

derive a simple necessary and sufficient condition directly derived from the

quadratic form of I(θ),

Q = yT I(θ)y =
1

2 · (2π)d

∫
· · ·
∫ ( m∑

j=1

yj
∂ log f(ω)

∂θj

)2

dω. (3.8)

Clearly a necessary and sufficient condition for the non-singularity is that

the vector y = (y1, y2, . . . , ym) is zero whenever Q = 0. Thus, we have the

following theorem.

Theorem 3.2. A necessary and sufficient condition for I(θ) to be

non-singular is

∂ log f(ω)

∂θj
, j = 1, 2, ...,m are linearly independent.
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Corollary 3.1. A sufficient condition for non-singularity of I(θ) is that

∂γk

∂θj
, j = 1, 2, ...,m are linearly independent for a k.

Proof . We see that

Q =
m∑

p,q=1

ypyqIpq(θ) = lim
n1,...,nd→∞

1

2N

m∑
p,q=1

ypyqtr

(
Σ2∂Σ

−1

∂θp

∂Σ−1

∂θq

)

= lim
n1,...,nd→∞

1

2N
tr


(
Σ−1

m∑
j=1

yj
∂Σ

∂θj

)2


from Proposition B1 in Chapter 2 by noting that ∂Σ−1/∂θp =

Σ−1(∂Σ/∂θp)Σ
−1. Since the eigenvalues of Σ−1 are bounded away from 0, we

have

tr


(
Σ−1

m∑
j=1

yj
∂Σ

∂θj

)2
 ≥ C tr


(

m∑
j=1

yj
∂Σ

∂θj

)2


for a constant C > 0. It is enough to note that at most N elements of the

matrix
∑m

j=1 yj ∂Σ/∂θj are
∑m

j=1 yj ∂γk/∂θj. 2

Corollary 3.2. If βk = β−k for any k ∈ K, then I(θ) is singular.

Proof . If βk = β−k for all k ∈ K, then

P (z1, z2, . . . , zd) = P (z−1
1 , z−1

2 , . . . , z−1
d ).

It is enough to note that

∂ log f(ω)

∂βk

=
∂ log f(ω)

∂β−k

holds true since

∂ log f(ω)

∂βk

= − zk11 zk22 · · · zkdd
P (z1, z2, . . . , zd)

− z−k1
1 z−k2

2 · · · z−kd
d

P (z−1
1 , z−1

2 . . . , z−1
d )
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on the domain D. 2

Example 3.5. Consider a 2-dimensional SAR model,

Xv1,v2 + β1,0Xv1+1,v2 + β−1,0Xv1−1,v2 + β0,1Xv1,v2+1 + β0,−1Xv1,v2−1 = εv1,v2 ,

then the spectral density is

f(ω1, ω2) =
σ2

|1 + β1,0z1 + β−1,0z
−1
1 + β0,1z2 + β0,−1z

−1
2 |2

.

There exists only two transfer functions P (z1, z2) = 1+β1,0z1+β−1,0z
−1
1 +

β0,1z2 + β0,−1z
−1
2 and P (z−1

1 , z−1
2 ) for this spectral density. This is because

P (z1, z2) is prime polynomial. It is clear that P (z1, z2) and P (z−1
1 , z−1

2 ) are

identical if and only if β1,0 = β−1,0 and β0,1 = β0,−1. Then I(θ) is singular in

this case from Theorem 3.1 as well as from Corollary 3.2.

A practical procedure to check if the Fisher information matrix is singular

would be through the matrix,

B = (βℓ1 βℓ2 · · · βℓL
)

where

βℓj
=


βk1+ℓj + βk1−ℓj

βk2+ℓj + βk2−ℓj
...

βkm+ℓj + βkm−ℓj

 , j = 1, . . . , L.

Here ℓj, j = 1, 2, ..., L and kj, j = 1, . . . ,m are ordered indices in L ∪ {0}
and K respectively, where L = {ℓ > 0 |k − ℓ or k + ℓ ∈ K for a k ∈ K}
with the half-space order > defined in Chapter 1 and the order of indices is

lexicographic one.

Theorem 3.3. A necessary and sufficient condition for the non-singularity

of I(θ) is that B is of full rank.
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Proof . We may restrict our attention into the non-singularity of the first

(m−1)×(m−1) submatrix of I(θ), since the last row and column off-diagonal

elements are all 0 and the diagonal element is (2/σ)2. By introducing a

polynomial Y (z1, z2, . . . , zd) =
∑

k ̸=0∈K yk z
k1
1 zk22 · · · zkdd , the Q in (3.8) when

ym = 0 can be rewritten as

Q =
2

(2π)d

∫ {
Re

(
Y (z1, z2, . . . , zd)

P (z1, z2, . . . , zd)

)}2

dω.

Thus, Q = 0 implies

Y (z1, z2, . . . , zd)P (z1, z2, . . . , zd) + Y (z1, z2, . . . , zd)P (z1, z2, . . . , zd) = 0.

A necessary and sufficient condition for the non-singularity of I(θ) is now

that ∑
k ̸=0∈K

yk (βk−ℓ + βk+ℓ) = 0 for any ℓ ∈ L ∪ {0}

implies yk for k ̸= 0 ∈ K. This completes the proof. 2

Example 3.6. The matrix B for the SAR model in Example 3.1 is derived

from

β0 =

 β−1+0 + β−1−0

β0+0 + β0−0

β1+0 + β1−0

 = 2

 β−1

1
β1

 ,

β1 =

 β−1+1 + β−1−1

β0+1 + β0−1

β1+1 + β1−1

 =

 1
β1 + β−1

1

 ,

and β2 =

 β−1+2 + β−1−2

β0+2 + β0−2

β1+2 + β1−2

 =

 β1

0
β−1


as

B =

 2β−1 1 β1

2 β1 + β−1 0
2β1 1 β−1

 .
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The determinant

det(B) = 2(β1 − β−1)(1 + β1 + β−1)(1− β1 − β−1)

is zero if and only if β1 = β−1 since 1+β1+β−1 ̸= 0 and 1−β1−β−1 ̸= 0 from

Assumption 3.1. Thus, we see that the condition β1 = β−1 with β2
1 < 1/4

is not only necessary and sufficient condition for some of transfer functions

being identical, but also for the singularity of the Fisher information matrix

in this example.

3.4.2 Unilateral SAR Model

It is taken it for granted that unilateral SAR model including AR model in

time series,

P (T1, T2, · · · , Td) =
∑

k∈Kq∪{0}

βkT
k1
1 T k2

2 · · ·T kd
d

is always identifiable and the Fisher information matrix I(θ) is non-singular.

However, it would be worthy of proving in the frame work of SAR model.

Then, it becomes clearer that the problems we have discussed are due to the

lack of unilaterality of general SAR model.

Theorem 3.4. Unilateral SAR model is always identifiable and the Fisher

information matrix I(θ) is always non-singular.

Proof . It is only possible to choose hk(z1, z2, ..., zd), k = 1, 2, ..., p to find out

transfer function P (z1, z2, ..., zd) for the spectral density (3.2). Any other

choice contradicts with the unilaterality of the model. Therefore unilateral

SAR model is always unique for given spectral density. On the other hand
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the quadratic form (3.8) is then rewritten as

Q =
2

(2π)d

∫ {
Re

(
Y (z1, z2, . . . , zd)

P (z1, z2, . . . , zd)

)
− ym

σ

}2

dω

=
1

2(2π)d

∫ [{
Y (z1, . . . , zd)

P (z1, . . . , zd)

}2

+ 2

∣∣∣∣Y (z1, . . . , zd)

P (z1, . . . , zd)

∣∣∣∣2 +{Y (z−1
1 , . . . , z−1

d )

P (z−1
1 , . . . , z−1

d )

}2

−2ym
σ

{
Y (z1, . . . , zd)

P (z1, . . . , zd)
+

Y (z−1
1 , . . . , z−1

d )

P (z−1
1 , . . . , z−1

d )

}
+

4y2m
σ2

]
dω,

where Y (z1, z2, . . . , zd) =
∑

k∈Kq
yk z

k1
1 zk22 · · · zkdd is a polynomial of z1z2 · · · zd.

Since P (z1, z2, . . . , zd) and Y (z1, z2, . . . , zd) are both analytic non zero

function on the domain D, we have∫ {
Y (z1, . . . , zd)

P (z1, . . . , zd)

}k

dω = −
∫
D

{
Y (z1, . . . , zd)

P (z1, . . . , zd)

}k
1

z1 · · · zd
dz1 · · · dzd = 0

and∫ {
Y (z−1

1 , . . . , z−1
d )

P (z−1
1 , . . . , z−1

d )

}k

dω = −
∫
D

{
Y (z−1

1 , . . . , z−1
d )

P (z−1
1 , . . . , z−1

d )

}k
1

z1 · · · zd
dz1 · · · dzd = 0

for any integer k. Therefore

Q =
2

(2π)d

∫ {
2
|Y (z1, z2, . . . , zd)|2

|P (z1, z2, . . . , zd)|2
+

y2m
σ2

}
dω

is zero if and only if Y (z1, z2, . . . , zd) = 0 and ym = 0. This proves the

non-singularity of I(θ). 2

3.4.3 Symmetric SAR Model

The following theorem shows that symmetric SAR model,

P (T1, T2, . . . , Td) = P (T−1
1 , T−1

2 , . . . , T−1
d )

is always identifiable and the Fisher information matrix I(θ) is non-singular.

Theorem 3.5. Symmetric SAR model is always identifiable and the Fisher

information matrix I(θ) is always non-singular.
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Proof . Since the transfer function is real valued, P (z1, z2, · · · , zd) =

P (z1, z2, . . . , zd), the spectral density is written as

f(ω) =
σ2

P (z1, z2, . . . , zd)2
.

Therefore, the transfer function is uniquely determined from the spectral

density f(ω) as P (eiω1 , eiω2 , . . . , eiωd) = σf(ω)−1/2, when the negative sign is

not available because the constant term of P (eiω1 , eiω2 , . . . , eiωd) is 1 but the

constant term of Laurent expansion of f(ω)−1/2 is given by
∫
f(ω)−1/2dω.

On the other hand, the quadratic form (3.8) is written as

Q =
2

(2π)d

∫ {
Y (z1, z2, . . . , zd)

P (z1, z2, . . . , zd)
− ym

σ

}2

dω,

where Y (z1, z2, . . . , zd) =
∑

k∈K−
yk(z

k1
1 zk22 · · · zkdd + z−k1

1 z−k2
2 · · · z−kd

d ).

Therefore, Q = 0 is equivalent to

Y (z1, z2, . . . , zd) =
ym
σ
P (z1, z2, . . . , zd)

but the left hand side has no constant term but the right hand side has

the constant term ym/σ. This implies that ym = 0 if Q = 0 so that

Y (z1, z2, . . . , zd) = 0. This proves the non-singularity of I(θ).

3.5 Remarks

We have shown that SAR model can be non-identifiable from the covariance

structure or the spectral density. This is because several different regression

parameters with different standard deviation of the disturbance are mapped

from a spectral density. Therefore, we have to carefully estimate parameters

based on the second moments, for example, estimation by Gaussian

maximum likelihood principle. There could be many other estimates even if

an estimate had been obtained by giving an initial value to an optimisation

algorithm. Except for cases when non-identifiability causes no problem, for

example, in case of prediction of unknown value of Xv, a practical procedure
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would be to find out all estimates and pick up one which is most meaningful

for the underlying phenomena. This non-identifiability of SAR model has

been already mentioned by Whittle (1954) and also in the context of two

sided moving average model by Rosenblatt (1980). A cure would be to

employ bispectrum, which is also applicable for SAR model. But we leave it

for future investigation, together with an investigation of possible mappings

from a spectral density to parameters. Other strategy would be to put

some constraints on parameter space like symmetry of transfer function as

described in Section 3.4.3.

Another problem we have investigated in this chapter is possible

singularity of the Fisher information matrix, where not all parameters

are estimable. Theorem 3.1 demonstrates that it happens when

some of parameters mapped from a spectral density are duplicated.

Non-identifiability of SAR model leads us not only to multiple estimates

of parameters but also non-estimable parameters. We need to check such

a singularity before estimation. Otherwise, we may face non-convergence

of optimisation algorithm or instability of the estimate. Several types of

conditions given in Section 3.4 would be useful for the check. There are a

lot of open problems left, for example, converse of Theorem 3.1 or any other

type of necessary and sufficient condition for the non-singularity than that

given in Theorem 3.3.
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Concluding Remarks

We have derived a space domain approximation of the Gaussian likelihood

of SAR model. An advantage of this approximation is on the simplicity.

The computation only requires simple matrix operations, not only for values

of the likelihood but also for the derivatives up to the order 2. The idea

behind our approximation comes from the approximation of the likelihood of

time series autoregressive model, where the observations are transformed into

error variables which are independent and identically distributed. However,

the transformation matrix is not only triangular but much more complicated

in case of SAR model because of high dimensionality of the space. We have

introduced a circular matrix approximation to the transformation matrix to

solve this problem. It is then written in a simple form of circulant matrices

Wn ’s whose elements are 0 or 1 by using Kronecker products.

The space domain approximation is not only advantageous to the

approximation of the Gaussian likelihood but also to the proof of the

consistency and asymptotic efficiency of the estimator. The simplicity of the

approximation enabled us to do an advanced evaluation of the approximation

error. The proof of the asymptotic efficiency is quite fragile and would not

be possible without such an explicit formula of the approximation because

of correlations spread over high dimensional space. An example is on the

introduction of shrinkage factor αn in Ã to decrease the edge effect of
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observations on a lattice. The shrinkage factor αn = 1 + 1/n could not be

found without such a careful evaluation of the expectation of the quadratic

form of observations. No other form of the shrinkage factor αn = 1 + c/n is

possible without losing the asymptotic efficiency.

Random number experiments are conducted to compare the estimation

procedure numerically with other procedure such as Guyon’s approximation.

The result shows that the estimation procedure is less bias and variance

even when the observation size is relatively small like as 30× 30 or 40× 40,

although the experiment is not exhaustive. One of reasons why we did not

do any exhaustive experiment is that we had to develop random number

generation algorithm from scratch in case of SAR model. We could find no

article which suggests us a good random number generation algorithm. We

tried every intuitive generation algorithm, but none of them was successful.

It is probably because random number generation as a sequence following

the regression formula does not fit well to the generation of random numbers

on a space. Since initial values needed for the generation is are not a set of

several values but a set of values on the edge of the lattice, the effect of initial

values does not decay even after large number of random number generations.

The random number generation algorithm introduced in Chapter 2 is based

on an explicit representation of target variable by error variable, that is ,

MA(∞) representation. As is shown by estimated spectral density with the

true spectral density, this algorithm worked well. It could be generalised

to any transfer functions if multivariable Laurant expansion were employed,

although a product of two one dimensional transfer functions case was focused

there.

The non-identifiability of SAR model in Chapter 3 has been investigated

when looking for the reason why singularity of Fisher information matrix

arises, where parameters become non-estimable. The non-identifiability

implies several different models for a given autocovariances or spectral density

so that the Fisher information becomes singular if some of the models which
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share the same spectral density are identical or duplicated.

What we have learned from this investigation is that casual use of SAR

model may cause serious problems since the model can be non-identifiable

or some of parameters are not estimable, although local optimality of the

estimator has been established in Chapter 2 as far as parameters for which

the Fisher information matrix is non-singular. A remedy would be to

introduce some restriction on parameter space. A natural restriction may

come from the meaning of the model for underlying phenomena. Otherwise,

introduction of unilateral or symmetric SAR model is one of options. There

would be many other options. We leave it for future investigation. The

necessary and sufficient conditions for the singularity given in Chapter 3 are

also helpful to check the reliability of estimated values.

There are many works have to be done. Generalisation of the results in

Chapter 2 for d-dimensional case is one of interesting projects. Robustness of

the estimation is also interesting when the underlying process is not Gaussian.

Extension for the case when multivariate values would be straightforward but

worthy of investigation. Application of the results in this thesis to the case

of CAR model is most challenging because we expect that some of problems

may disappear and some new problems appear although SAR models and

CAR models look similar.
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