
A Study on High Throughput Large File
Sharing System for a Global Environment

and its Applications

August 2017

Daisuke Ando

A Thesis for the Degree of Ph.D. in Engineering

A Study on High Throughput Large File
Sharing System for a Global Environment

and its Applications

August 2017

Graduate School of Science and Technology
Keio University

Daisuke Ando

Acknowledgement

Firstly, I would like to express my greatest appreciation to my adviser Senior Lecturer
Kunitake Kaneko for the continuous support of my Ph.D. study and related research.
His guidance helped me in all the time of research and writing of this thesis. I could not
have imagined having a better advisor and mentor for my Ph.D. study.

I also would like to express my special appreciation to Prof. Fumio Teraoka. His
guidance helped me in all the time of research. He has been a tremendous mentor for
me, and his guidance has been always valuable. Without his permanent help, this thesis
would no have been possible.

My sincere thanks also go to Prof. Jason Leigh for welcoming me to the LAVA in
the University of Hawaii. It was a great experience for me to study in LAVA under his
enthusiastic support. He also gave me worth comments and warm encouragement as my
committee member.

I owe my deepest gratitude to Prof. Yamato Sato for giving me valuable opportunities
and advices on research in Graduate School of Business and Commerce. He made my
experience in the Graduate School of Business and Commerce invaluable.

I would like to thank the rest of my thesis committee: Prof. Kenji Kono, Prof. Hiroaki
Nishi, Prof. Tomohiro Kudoh for their insightful comments and encouragement, but also
for the hard question which incented me to widen my research from various perspectives.

I would like to offer my special thanks to RAs, mentors, and professors in the Program
for Leading Graduate School for ”Science for Development of Super Mature Society”
for their invaluable and warm supports. In addition, I would particular like to thank
every member of Kaneko Laboratory, Teraoka Laboratory, Sato Yamato Seminar, and
LAVA for encouraging me and helping me in various ways.

Finally, I would like to show my greatest appreciation to my family for their uncondi-
tional supports and encouragements.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Abstract

Large file sharing using the Internet among people and organizations around the world
has now become widespread in a variety of industries, with the rapid growth of multi-
media devices, networking technologies, and cloud technologies. For example, video
production companies usually share source video files with post-production companies
and contract out post-production processes like video editing for low cost content cre-
ation. They need to share large numbers of large files at low cost and high throughput
regardless of network conditions such as network delays and packet loss rates. Although
low cost and high throughput file sharing on the Internet is in high demand, it remains
challenging to achieve because of the TCP-based protocols usually employed to de-
liver files, such as HTTP and FTP. TCP performance degrades when the network delay
between a server and a client is significant and/or the packet loss rate is high. While cre-
ating caches of files using a content distribution network (CDN) improves file sharing
performance, it comes with a high storage cost.
This thesis proposes Content Espresso, a large file sharing system for a global envi-

ronment, and its applications. To be successful, Content Espresso must meet eight re-
quirements: 1) High throughput file transmission regardless of network delay and packet
loss, 2) high throughput storage IO, 3) low storage demands with high availability, 4)
appending appropriate redundancy to each stored file, 5) low storage device prepara-
tion and management cost, 6) sharing a large number of files globally, 7) maintaining
metadata and access control information securely, and 8) authenticating and authoriz-
ing the users. In order to satisfy these requirements, the fundamental mechanism of
Content Espresso is designed as follows: 1) Redundancy data is appended by forward
error correction (FEC) to the original file; 2) the original file and redundancy data are
split into chunks and stored in globally dispersed storage servers called Chunk Servers;
3) stored chunks are delivered to the client on request using a User Datagram Protocol
(UDP); and 4) non-received chunks caused by storage failure or network packet loss can
be recovered by FEC in the client. Content Espresso consists of four main modules:
File Manager, Storage Allocator, Chunk Generator, Cluster Head, and Chunk Server.
Content Espresso is installed on 79 physical machines, including 72 Chunk Servers, and
evaluated by emulating global environments using the tc command. The results con-
firm that Content Espresso achieves stable file retrieval faster than 3Gbps, regardless of
network delay and packet loss rate.
This thesis also proposes two Content Espresso applications: Demitasse, a network-

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

i

oriented uncompressed UHD video playback system, and a feature that improves the
file sharing performance of web-based collaboration systems. The goal of Demitasse
is to retrieve stored video component files from Content Espresso and play them back
at the requested frame rate. Demitasse stores the uncompressed frame files as video
component files in Content Espresso and the relationship between the frame files in its
catalogue system. Demitasse was designed, implemented, and evaluated using 79 phys-
ical machines, including 72 Chunk Servers. The results confirm that Demitasse has
the ability to retrieve uncompressed UHD video frame files from Content Espresso and
play them back at 30fps. In the second application, Content Espresso improves the file
sharing performance of web-based collaboration systems, which typically operate using
web browsers. In this thesis, SAGE2 is chosen to serve as an example of such a system.
SAGE2 shares information on large high-resolution displays with other sites, enabling
people at multiple sites to work together in front of the displays. In this application,
Content Espresso-based (CE-based) file sharing is proposed for SAGE2 by introducing
a relay server. The relay server receives file retrieval requests from web browsers by
HTTP and relays them to Content Espresso using Content Espresso API. Then, the relay
server receives the file data from Content Espresso and relays it to the requesting web
browsers. This relay deals successfully with the reality that Content Espresso cannot
receive file retrieval requests from web browsers directly and that web browsers cannot
receive chunks delivered by UDP. The performance of the CE-based file sharing mech-
anism is evaluated by comparing file sharing time using the CE-based mechanism with
that using the original SAGE2 mechanism. The results confirm that the CE-based file
sharing in SAGE2 improves file sharing performance when the round-trip time (RTT)
to the remote site is larger than 10ms. The proposed mechanism can be applied to web-
based collaboration systems other than SAGE2 because it is designed and implemented
using existing browser-based technologies.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Contents

1 Introduction 1
1.1 Background . 1
1.2 Definition of file sharing in a global environment 1
1.3 Difficulties of network-based file sharing on the Internet 2
1.4 Motivation of this study . 4
1.5 Contributions . 4
1.6 Structure of this thesis . 5

2 Design of Content Espresso 7
2.1 Background . 7
2.2 Requirements . 8

2.2.1 High throughput file sharing in a global environment 9
2.2.2 Low storage cost . 10
2.2.3 Sharing a large number of files securely 10

2.3 Approach of Content Espresso . 11
2.3.1 Approach as a storage and retrieval mechanism 11
2.3.2 Approach of the overall system 12

2.4 System design . 14
2.4.1 Content Espresso modules . 14
2.4.2 FEC algorithm and FEC block size 17
2.4.3 System availability . 19

2.5 File access procedure . 21
2.5.1 File retrieval sequence . 21
2.5.2 File storage sequence . 25

2.6 Client API . 26

3 Implementation of Content Espresso 27
3.1 Implementation model of each module 27
3.2 File Manger . 28
3.3 Storage Allocator . 30
3.4 Chunk Generator . 32
3.5 Cluster Head . 35
3.6 Chunk Server . 37

CONTENTS iii

3.7 Client . 39

4 Evaluation of Content Espresso 41
4.1 Evaluation overview . 41
4.2 Evaluation environment . 41
4.3 System performance . 44

4.3.1 Metadata access performance 44
4.3.2 File retrieval performance . 46
4.3.3 File storing performance . 51

4.4 Appropriate FEC block size . 52
4.5 System availability . 54
4.6 Summary . 56

5 Demitasse: A Network-Oriented UHD Video Playback System 58
5.1 Background . 58
5.2 Catalogue System . 59

5.2.1 Cencept of the Catalogue System 59
5.2.2 System architecture . 59

5.3 Design of Demitasse . 61
5.3.1 Design overview . 61
5.3.2 Demitasse Catalogue . 61
5.3.3 Demitasse Catalogue API . 63
5.3.4 System modules . 64
5.3.5 File retrieval interval . 68
5.3.6 Frame rate adjusting mechanism 70
5.3.7 Angle-switching mechanism 70

5.4 Implementation of Demitasse . 70
5.5 Evaluation of Demitasse . 71

5.5.1 Evaluation overview . 71
5.5.2 Experimental setup . 71
5.5.3 File retrieval interval . 71
5.5.4 Frame rate control . 73
5.5.5 Frame Buffer status . 74

5.6 Summary . 86

6 Improvement of File Sharing Performance of Web-Based Collaboration
Systems 87
6.1 Background . 87
6.2 Problems of SAGE2 . 88

6.2.1 Overview of SAGE2 . 88
6.2.2 Remote collaboration on SAGE2 89
6.2.3 Problems in large file sharing 89

6.3 Design of the proposed mechanism . 90

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CONTENTS iv

6.3.1 System overview . 90
6.3.2 Ticket File format . 91
6.3.3 Relay Server . 92

6.4 Implementation . 93
6.4.1 Relay Server . 93
6.4.2 Espresso Image Viewer . 95

6.5 Performance evaluation . 95
6.5.1 Evaluation environment . 95
6.5.2 File sharing time comparison 97
6.5.3 File sharing throughput . 97

6.6 Summary . 100

7 Related Work 101
7.1 Overview . 101
7.2 Transport layer protocol . 101

7.2.1 TCP-based protocol . 101
7.2.2 UDP-based protocol . 102

7.3 Distributed storage system . 103
7.3.1 Redundancy technique . 103
7.3.2 IO unit . 103
7.3.3 Number of data centers . 106
7.3.4 Example of distributed storage system 106
7.3.5 Cost analysis . 108

7.4 Forward error correction . 108
7.5 Packet loss pattern . 109
7.6 Summary . 109

8 Conclusion 111
8.1 Summary of this thesis . 111
8.2 Future work . 112

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

List of Figures

1.1 Two approaches to network-based file sharing: client-server file sharing
and P2P file sharing. 3

1.2 Structure of this thesis. 6

2.1 Production company and post-production companies work together by
sharing content files to make digital content. 8

2.2 Content Espresso goals, requirements, and approaches to meeting them. 9
2.3 Overview of DRIP, which achieves low cost data storage and high

throughput transmission[1]. 11
2.4 Chunk Servers configured as a Chunk Server Cluster in each organiza-

tion; a Storage Allocator configures multiple storage services by select-
ing Chunk Server Clusters from a variety of options. 13

2.5 Each organization has a File Manager that manages file metadata, in-
cluding selecting the storage service. 13

2.6 A Global File ID consists of a File Manager ID and a Local File ID; a
Global User ID consists of a Home File Manager ID and a Local User ID. 14

2.7 Content Espresso consists of a Chunk Server, a Cluster Head, a Storage
Allocator, a Chunk Generator, a File Manager, and a Client. 15

2.8 Each Chunk Server stores chunks and their headers as a data chunk file
and a parity chunk file to its local file system. 16

2.9 An original file is divided into data blocks and parity blocks generated
by FEC. HData and HParity can be configured by Clients. 18

2.10 The procedure of making parities and distributing to multiple Chunk
Servers. 19

2.11 The procedure of retrieval chunks from Chunk Servers and recovering
lost chunks. 19

2.12 Content Espresso’s possible causes of chunk lost can be classified into
four: Chunk Server failure, Chunk Server Cluster failure, Storage Allo-
cator failure, and File Manager failure. 20

2.13 The file retrieval sequence consists of the Authentication Phase, the
Metadata Access Phase, and the Retrieval Phase. 22

2.14 Message format of ATTR REQUEST. 22
2.15 Message format of ATTR RESPONSE. 23

LIST OF FIGURES vi

2.16 Message format of READ REQUEST. 23
2.17 The file storing sequence consists of the Authentication Phase, the Re-

source Allocation Phase, and the Storage Phase. The Authentication
Phase is the same as that of the file retrieval sequence. 24

2.18 Message format of WRITE REQUEST. 24
2.19 Message format of WRITE RESPONSE. 25

3.1 Model of epoll and thread pool. 28
3.2 Activity diagram of File Manager. 29
3.3 Activity diagram of Storage Allocator. 31
3.4 Activity diagram of Chunk Generator. 33
3.5 A Chunk Generator consists of four types of threads: Main Thread,

Worker Thread, FEC Thread, and Send Thread, and a single
type of buffer (FEC Buffer) to multiplex the storing process. 34

3.6 Activity diagram of Cluster Head. 36
3.7 Activity diagram of Chunk Server. 38
3.8 A Client consists of four types of threads: Main Thread, Recv

Thread, Order Thread, and FEC Thread, and two types of
buffers (Recv Buffer, FEC Buffer) to support high throughput
retrieval. 40

4.1 Experimental environment for evaluating the Content Espresso system. . 42
4.2 Emulated global environment for evaluating the Content Espresso system. 44
4.3 Metadata response time of the File Manager when simultaneous requests

arrive. 45
4.4 File retrieval throughput using A-1, B-2, C-3, and D-3 files. 47
4.5 File B-1 retrieval time under various delay environments. 49
4.6 File C-1 retrieval time under various delay environments. 49
4.7 File D-1 retrieval time under various delay environments. 49
4.8 File B-1 retrieval time under various loss environments. 50
4.9 File C-1 retrieval time under various loss environments. 50
4.10 File D-1 retrieval time under various loss environments. 50
4.11 File storing throughput using files shown in Table 4.3. 52
4.12 File storing throughput under various delay environments using the files

shown in Table 4.3. 53
4.13 File storing throughput using the files shown in Table 4.3. 53
4.14 File retrieval and error recovery success rates for a 127,200,000-byte file. 55
4.15 File retrieval and error recovery success rates when HData = 1, 000. . . . 55
4.16 Relationship between file availability and the number of Chunk Servers

when 10% redundancy is appended. 57
4.17 Relationship between file availability and the number of Chunk Servers

when 20% redundancy is appended. 57

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

LIST OF FIGURES vii

4.18 Relationship between file availability and the number of Chunk Servers
when 30% redundancy is appended. 57

5.1 Overview of objects and users. 60
5.2 Overview of Demitasse. Demitasse uses Catalogue System to store the

file relations between video component files and Content Espresso to
store the video component files temselves. 62

5.3 Video content description using Catalogue. 63
5.4 Demitasse has four modules: Frame Buffer, Catalogue Receiver, Frame

Receiver, and Frame Viewer. 65
5.5 Frame Buffer and the status of each entry; Frame Buffer has set the

SET FILEID POINTER, the RECEIVE FRAME POINTER, and the
VIEW FRAME POINTER. 66

5.6 Flow chart of a Catalogue Receiver thread. 67
5.7 Flow chart of a Frame Receiver thread. 68
5.8 Flow chart of a Frame Viewer thread. 69
5.9 Experimental environment for evaluating Demitasse. 72
5.10 Chunk arrival rate in Full HD at 15fps. 76
5.11 Chunk arrival rate in Full HD at 30fps. 77
5.12 Chunk arrival rate in Full HD at 60fps. 78
5.13 Frame rate stability in Full HD playback. 79
5.14 Frame rate stability in UHD playback. 80
5.15 Frame buffer status in 15fps Full HD video playback with 2 - 8 Gbps

retrieval. 81
5.16 Frame buffer status in 30fps Full HD video playback with 2 - 8 Gbps

retrieval. 82
5.17 Frame buffer status in 60fps Full HD video playback with 2 - 8 Gbps

retrieval. 83
5.18 Frame buffer status in 15fps UHD video playback with 2 - 8 Gbps retrieval. 84
5.19 Frame buffer status in 30fps UHD video playback with 2 - 8 Gbps retrieval. 85

6.1 A typical SAGE2 session; multiple SAGE2 applications are launched on
the Display Clients [2]. 88

6.2 An example of a remote collaboration environment using SAGE2 and
the image file sharing procedure. 90

6.3 Files are stored in Content Espresso; the Ticket File is shared among the
users on the existing web-based collaboration system. 91

6.4 An example of the Ticket File format; the Resource field contains the
GFID of the target file. 92

6.5 WebSocket Server, Request Manager, and Content Cache comprise the
Relay Server. 94

6.6 The Relay Server is composed of the Content Cache, the Task Queue,
and two types of threads, the WebSocket thread and the Request thread. 95

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

LIST OF FIGURES viii

6.7 Evaluation environment. 96
6.8 File sharing time comparison when a 2.4MB Full HD image file is used. 98
6.9 File sharing time comparison when a 6MB UHD image file is used. . . 98
6.10 File sharing time comparison when a 10MB 8K image file is used. . . . 99
6.11 Throughput of CE-based file sharing on SAGE2. 99

7.1 Gilbert-Elliott model. 110
7.2 Four-state Markov model. 110

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

List of Tables

1.1 Appropriate network-based file sharing techniques with different file
sizes, file receiving locations, and the number of file recipients. 3

2.1 File Manager Database: file table. 17
2.2 File Manager Database: sa table. 17
2.3 File Manager Database: fec table. 17
2.4 Client API functions. 26

3.1 File Manager’s required parameters. 28
3.2 Storage Allocator’s required parameters. 32
3.3 Chunk Generator’s required parameters. 34
3.4 Cluster Head’s required parameters. 37
3.5 Chunk Server’s required parameters. 37

4.1 Specifications of physical machines. 42
4.2 Average RTTs between machines. 42
4.3 Files and FEC block parameters for evaluation. 43
4.4 Additional round-trip network delays between Client and Clusters. . . . 43
4.5 Additional network packet loss rates between Client and Clusters. . . . 44

5.1 Demitasse Catalogue API functions. 64
5.2 Frame image specifications for the evaluation. 72
5.3 Content Espresso parameters when frame image files are stored. 72
5.4 Video specifications for the evaluation. 73

6.1 Specifications of physical machines. 97

7.1 Comparison of Content Espresso, Ceph, Gfarm, and GFS. 105

Chapter 1

Introduction

1.1 Background
File storing and sharing on the Internet by people around the world has now become
widespread, with the rapid growth of multimedia devices, networking technologies, and
cloud technologies. The growth of multimedia devices enables people to own high-
performance smartphones that can easily create high quality multimedia content such as
Full HD (1920 x 1080) and UHD (3840 x 2160) videos. A recent global survey reports
that 43% of people own a smartphone [3]. High-speed mobile networking technologies
such as 3G and LTE enable people to upload their own creative content files quickly to
Internet-based file storing and sharing services such as Dropbox [4] and Google Drive
[5]. In addition, cloud storage technologies have decreased the cost of file storing and
sharing services. As a result of these technological improvements and sharing, file stor-
ing and sharing on the Internet has become widely popular, and shows no sign of slow-
ing.

1.2 Definition of file sharing in a global environment
There are two main ways to share a file: physical sharing and network-based sharing.
In the former, most fundamental form of file sharing, the file sender writes the files to
physical media such as an optical disc, an HDD, or a USB memory stick and physically
gives the media to the file recipient. When file senders and recipients can meet in per-
son, physical-based file sharing is fast, easy, and inexpensive. Where a meeting is not
possible, the file sender has to ship the physical media to the file recipient, can cause
delays and increase cost. When the file recipient receives the physical media, the file
recipient copies the files to the local storage of the computer.
In network-based sharing, by contrast, the file sender transfers the file to the file recip-

ient over a network. Network-based sharing is not affected by the location of the sender
or the recipient. Files can be shared as long as the sender’s and recipient’s computers are
connected in some fashion. Examples of network-based sharing include sending the file

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 1. INTRODUCTION 2

via email, transferring it through an HTTP or FTP server, giving the file’s URL to the
file recipients, and using a cloud storage service. The file sender usually tries to select
the best way to send the file by taking file sharing time and cost into account. The appro-
priate method varies by file size, location, and number of file recipients. For example,
when a sender shares a small file with a single recipient and the sender and recipient can
meet in person, the sender would store the file on a USB memory stick and give it to the
recipient physically. When the recipient is located at some distance from the sender, the
file sender might use e-mail to share the file. Table 1.1 displays the typically appropriate
sharing method for each situation.
This thesis focuses on large file sharing in a global environment, which is defined in

the thesis as follows; the file sender and the file recipient are connected by the Internet,
the RTT between the file sender and the file recipient is typically long, and there is
more than one recipient. The target environment of this thesis thus involves large file
size, a wide area network (WAN) rather than a local area network (LAN), and multiple
recipients, as shown in Table 1.1.
There are two main approaches two network-based file sharing in the global environ-

ment; the client-server file sharing approach and the P2P file sharing approach, which
are described in Figure 1.1. In the client-server approach, the sender uploads the file to
the storage server and the recipient retrieves the file from that same storage server. Al-
though this approach demands two steps – uploading to the storage server and retrieval
from the storage server – it provides stable availability regardless of network condition
or hardware of either the sender or the recipient. With the P2P file sharing approach,
by contrast, the file sender communicates with the file recipient directly. Both sender
and recipient have to know information such as an IP address before beginning to share
files. Since P2P availability does depend on the networks and hardware used by sender
and recipient, it is difficult to draw general conclusions as to how easily it can be used.
Therefore, this thesis adopts the client-server file sharing approach.

1.3 Difficulties of network-based file sharing on the In-
ternet

The rapid growth of networking technologies has enabled the use of network-based file
sharing over the Internet. This section presents the use case for network-based file shar-
ing over the Internet through the example of a digital content production that reveals the
challenges in inherent this approach to file sharing.
Digital content producers such as photo studios, a digital cinema producers, and video

production houses create vast numbers of large files. In the initial step of creating a
video, the video producer shoots source videos and stores those files on a storage device.
Since many video producers have now started to make high-resolution content such as
Full HD (1920 x 1080 pixels), UHD (3840 x 2160 pixels), and 8K (7680 x 4320 pixels),
the size of the video files created is often nothing less than massive. For example, a

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 1. INTRODUCTION 3

Table 1.1: Appropriate network-based file sharing techniques with different file sizes,
file receiving locations, and the number of file recipients.

File Size Location # of recipients File sharing techniques
Small Face to Face single Adhoc file transmission (AirDrop)
Small LAN (Short RTT) single e-mail, NAS
Small WAN (Long RTT) single e-mail
Small Face to Face multiple NAS, HTTP/FTP Server
Small LAN (Short RTT) multiple NAS, HTTP/FTP Server
Small WAN (Long RTT) multiple Cloud storage, HTTP/FTP Server,

CDN
Large Face to Face single Physical file sharing
Large LAN (Short RTT) single NAS, HTTP/FTP Server
Large WAN (Long RTT) single Large file delivering service
Large Face to Face multiple NAS, HTTP/FTP Server
Large LAN (Short RTT) multiple NAS, HTTP/FTP Server
Large WAN (Long RTT) multiple HTTP/FTP Server, (Target of this

Thesis)

ISP ISP

End User End User

Storage Server

File Storing File Retrieval

Client-Server File Sharing

P2P File Sharing

Figure 1.1: Two approaches to network-based file sharing: client-server file sharing and
P2P file sharing.

single frame file of uncompressed UHD video is about 24MB when the file is stored in
a 24-bit bitmap format. If the frame rate of the video is 30fps (frames per second), the
video throughput is about 5.76Gbps, and a 90-minute piece of video content can be as
large as 3.8TB. In the second stage of video creation, the video producer edits the video,

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 1. INTRODUCTION 4

adds sound, incorporates visual effects, and so on. These are called post-production
processes. In order to create video content rapidly at low cost, video producers usually
share their source video files with post-production companies, thus outsourcing most or
all of the post-production process. Thus, video producers have to share a large number
of very large files with post-production companies as rapidly as possible.
However, it is difficult to achieve low cost, high throughput large file sharing using

existing file sharing procedures. First, these files are valuable assets to their owners, so
the make copies to ensure wide availability but making extra copies leads to high stor-
age consumption and increased costs. Second, a TCP-based protocol like FTP or HTTP
is usually employed for file transmission because TCP is a reliable protocol. However,
long-distance transmission using TCP leads to performance degradation. While some
TCP implementations (discussed in Section 7) solve this problem, they often demand
special operating systems or expensive hardware. Making file caches to shorten trans-
mission distances by using a CDN can avoid the performance degradation found with
TCP but creating caches increases the cost of storage.

1.4 Motivation of this study

The previous section showed that achieving high throughput large file sharing over the
Internet at low cost remains challenging. The primary motivation of this thesis is to
design and implement a low cost high throughput large file sharing system for a global
environment. In order to realize this goal, the thesis proposes a storage and retrieval
mechanism for large files using globally distributed servers [1]. In the storing procedure
of the mechanism, redundant data is added to the original file by FEC, both the redundant
data and the original file are divided into chunks, and they are stored to dispersed storage
servers. In the delivery procedure, users send a request to all the storage servers that
contain the chunks; the servers then send the chunks to users using UDP. Any chunks
lost to server failure or packet loss can be recovered by FEC.

1.5 Contributions

One of the two main contributions of this thesis is to demonstrate that UDP with FEC-
based chunk storage and delivery in a distributed storage environment can be achieved
with both low storage consumption and high throughput, regardless of client locations,
by introducing a file storing and retrieval mechanism called DRIP (Distributed chunks
Retrieval and Integration Procedure) and Content Espresso, which is a distributed large
file sharing system for digital content productions that uses DRIP. Content Espresso is
designed to take the actual situation of digital content producers into account, because
they often need to store a number of large files and share them rapidly with other people
or organizations who may be located at a great distance, even around the world. These
requirements demand nothing less than a file sharing system that works on a global scale.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 1. INTRODUCTION 5

Content Espresso is file sharing system that has a file storage function. Since Content
Espresso does not have POSIX-like API and does not provide a writing mechanism to
the stored files, it is different from usual file systems.
The other major contribution of this thesis is demonstrating two applications of

Content Espresso. The first is designing and implementing Demitasse, which is a
network-oriented file-based video playback system that shows the usefulness of Con-
tent Espresso. Video playback is an appropriate application for evaluating system per-
formance because it requires large amounts of storage space and high throughput data
delivery. This thesis uses uncompressed UHD (3840 x 2160) video content and a min-
imum throughput of 6Gbps or more at 30fps playback. Demitasse shows that Content
Espresso can play uncompressed UHD video at 30fps, so it can be concluded that Con-
tent Espresso satisfies the large file sharing demands of digital content producers. The
second application involves integrating Content Espresso into SAGE2, a web-based col-
laboration system, to show that Content Espresso can be used with web-based appli-
cations and that it improves the existing file sharing performance of SAGE2. 70% of
today’s Internet traffic is composed of HTTP-based content. Providing an access inter-
face from HTTP is necessary to deploy Content Espresso in the contemporary world.

1.6 Structure of this thesis
The structure of this thesis is given in Figure 1.2. Chapter 2 introduces the design of
Content Espresso, a low cost high throughput large file sharing system for a global en-
vironment. Content Espresso is designed based on a storage and retrieval mechanism
for large files using globally distributed servers called DRIP. DRIP solves the file trans-
mission performance issues in the global environment by using UDP and FEC. Struc-
turally, Content Espresso is composed of five modules: File Manager, Storage Allocator,
Chunk Generator, Cluster Head, and Chunk Server, and Chapter 2 also introduces these
modules. Chapter 3 shows the detailed implementation of Content Espresso. The pro-
gramming model and activity diagram of each module of Content Espresso are shown.
Chapter 4 evaluates the file sharing performance of Content Espresso in a global envi-
ronment by using 79 physical servers, including 72 Chunk Servers. The chapter evalu-
ates Content Espresso from the viewpoint of metadata access performance, file retrieval
performance, file storing performance, and system availability. In order to emulate the
global environment, the tc command is used through the evaluations.
Chapters 5 and 6 demonstrate Content Espresso applications. Chapter 5 introduces

Demitasse, a network-oriented UHD video playback system using Content Espresso,
which Demitasse uses to store the video component files and a Catalogue System to
store the information about relationships among the files. The Demitasse Client, which
is a player application, retrieves stored files and plays them back one after another. This
chapter shows the design, implementation, and evaluation of Demitasse. Chapter 6 of-
fers an example of the integration of Content Espresso into SAGE2, a web-based collab-
oration system. This chapter introduces the Relay Server, which provides a web-based

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 1. INTRODUCTION 6

Chapter 2:
Design of Content Espresso

Chapter 3:
Implementation of Content Espresso

Chapter 4:
Evaluation of Content Espresso

Content Espresso proposal Content Espresso applications

Chapter 5: Application1
Demitasse: A network-oriented video

playback system

Chapter 6: Application 2
Improvement of file sharing
performance of web-based

collaboration systems

Chapter 1:
Introduction

Chapter 7:
Related Work

Chapter 8:
Conclusion

Figure 1.2: Structure of this thesis.

collaboration systems with an HTTP-based access interface for Content Espresso. Fi-
nally, Chapter 7 provides a literature review and Chapter 8 concludes the thesis. Chapter
7 clearly shows the differences between Content Espresso and existing systems. It com-
pares them from the viewpoint of the transport layer protocol and as a distributed storage
system. Chapter 8 summarizes the thesis, outlines the limitations of Content Espresso,
and explores Content Espresso’s implications and impact.
The relationship between Content Espresso and Demitasse, which is one of the Con-

tent Espresso applications, is as follows. Chapter 2 - 4 introduce Content Espresso. Con-
tent Espresso is file sharing system and it provides a high throughput file sharing regard-
less of the network conditions. Since the requirements of Content Espresso originally
come from that of digital content productions, Content Espresso focuses on delivering
files with high and stable throughput, and it can deal with any types of file. Chapter 5 in-
troduces Demitasse, a network-oriented UHD video playback system. Demitasse aims at
playback video frame files stored in Content Espresso. Although Content Espresso can
deliver files with high throughput, it cannot satisfy the requirements of on-demand video
distribution and playback. The goal of Demitasse is to retrieve uncompressed UHD
frame files from Content Espresso and display them within the duration determined by
the frame rate. Therefore, Demitasse is one of the Content Espresso applications for
users who store video frame files in Content Espresso.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Chapter 2

Design of Content Espresso

2.1 Background

High throughput and low cost file sharing over the Internet is in great and ever-increasing
demand by many industries. It is a particularly urgent need in the digital content sector,
which includes video production, film production, and photography of all kinds. When
creating digital content, a production company and several post-production companies
often work together and must share content files, as shown in Figure 6.2. Each organi-
zation has its own solutions for storing content files and managing their metadata.
A typical video production workflow is as follow. First, the production company

shoots a high resolution video as sequential frame files and stores them without com-
pression to ensure their reusability. Since one second of video generally consists of 24
to 60 frames, a production company must manage 86,400 to 216,000 frame files for 60
minutes of video content. In addition, the size of each frame file is large. For example, a
single frame of uncompressed UHD video (3840 x 2160) is about 24MB in 24-bit bitmap
format. If the frame rate of the video is 30fps, 60 minutes of video content can reach up
to about 2.5TB. Therefore, the production company has to store a large number of large
files. Second, the production company shares these frame files with post-production
companies for post-production processes such as video editing, adding a soundtrack,
and adding visual effects. Some of the post-production companies are located near the
production company, while others are not. They have to retrieve a large number of large
files, process them according to the production company’s instructions, and return the
processed frame files to the production company. The exact files that would be shared
vary from company to company. For example, the post-production company A may be
assigned to edit chapter 1 of the video and post-production company B to edit chapter
2 of the video. After the processing, processed files are shared as new frame files so as
not to overwrite the original frame files. Finally, the production company retrieves all
the processed frame files and completes the video production.
Digital content producers need to share large numbers of large files quickly and at low

cost. Rapid file sharing can reduce the duration and thus the cost of content production.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 8

Production
Company

Post-Production A

VFX

Post-Production B

SOUND

Post-Production C

SOUND

Post-Production D

VFX

Commodity Storage

Cloud Storage Service

File Manager
Commodity Storage

File Manager

Content Sharing
for

Project !

File Manager
(Metadata Server)

File Manager

File Manager

File Manager

Commodity Storage

Commodity Storage

Commodity Storage

Commodity Storage

Content Sharing
for

Project "

Figure 2.1: Production company and post-production companies work together by shar-
ing content files to make digital content.

Low storage and sharing costs also contribute to reducing the overall cost of a given
production. Therefore, digital content producers need high throughput large file sharing
in a global environment at low cost. The demand for high throughput large file sharing
in a global environment is found not only in the digital content production sector but also
in many other industries. Content Espresso is designed to satisfy the demand. Content
Espresso has been designed for users with the following characteristics: 1) most of their
files are larger than 1MB; 2) they maintain thousands or even hundreds of thousands of
files; 3) they share a meaningful number of files with users in other countries; 4) they
do not need to retrieve partial files; 5) they prioritize a low cost file sharing system. The
remainder of this chapter details requirements, design approach, and actual design of
Content Espresso.

2.2 Requirements

The goals that Content Espresso should achieve are defined as follows; high throughput
file sharing in a global environment, low storage cost, and secure storage. This section
breaks the three goals of Content Espresso down into system requirements.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 9

High throughput
file delivering

Low storage cost

Sharing a large number
of files securely

High throughput IO storage

File transmission throughput is
not affected by network delay

or packet loss

Low storage consumption
with high availability

Low storage device
preparation cost

Owner based metadata &
access control information

management

Goal Requirements

Mechanism

Mechanism

UDP + FEC

Distributed chunking

Mechanism
FEC
Distributed chunking

System

Approach

Using commodity servers

System File Manager

Authentication & Authorization System Yamata-no-Orochi

128-bit Hierarchical IDDeal with large number of files System

Select appropriate availability
for each file from various

storage services
System Storage Allocator

Requirement 1-1

Requirement 1-2

Requirement 2-1

Requirement 2-2

Requirement 2-3

Requirement 3-2

Requirement 3-1

Requirement 3-3

Figure 2.2: Content Espresso goals, requirements, and approaches to meeting them.

2.2.1 High throughput file sharing in a global environment

High throughput file sharing in a global environment is the main motivation behind
Content Espresso. A global environment is defined as one in which the locations of file
senders and recipients are unknown and could be anywhere in the world. Therefore,
network conditions such as the RTT between storage servers and the file retrievers and
packet loss among the file senders, storage locations, and file recipients cannot be known
in advance. High throughput file sharing in a global environment can be achieved if
the following two requirements are satisfied: file transmission retains high throughput
regardless of network delays and packet loss (Requirement 1-1) and storage IO with
high throughput (Requirement 1-2).

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 10

2.2.2 Low storage cost

Low storage cost is the second major motivation behind Content Espresso. Low storage
cost can be achieved if these three requirements are satisfied: low storage consumption
with high availability (Requirement 2-1), appending appropriate redundancy for each
stored file (Requirement 2-2), and low storage device preparation and management cost
(Requirement 2-3). In order to achieve high availability, the system usually appends
redundant data to the stored data, which causes high storage consumption. Although
redundancy is necessary to ensure high availability, the ideal system would adopt a tech-
nique that maximally reduces redundancy while keeping availability as high as possible.
In addition, the system should be able to manage files while taking specific required
availability levels into consideration. The specific availability level required depends
on the files. If a system does not allow changes in availability level for each file with
an approach such as redundant array of independent disks (RAID) [6], all files must
be stored at the highest availability level, which wastes storage resources and increases
storage costs. To achieve minimal storage consumption with the availability required,
the system should be able to select an appropriate availability level for each file. Storage
preparation and management costs also must be considered, and the system should be
designed to keep those costs low.

2.2.3 Sharing a large number of files securely

Sharing a large number of files globally requires that files have global unique identifiers
(Requirement 3-1). Content Espresso assumes that a large number of users share a large
number of files. A global-scale file sharing system requires a global unique file identifier.
In the digital cinema industry, about 700 films are released every year in year in the US
and Canada [7]; a single film usually consists of more than 100,000 files. Thus, a system
must have a global unique file identifier and user identifier that have enough characters
to identify all these content files and users.

The security of the stored files is also an important aspect of Content Espresso, be-
cause these files are their owners’ assets. Although there are many aspects to storage
security, Content Espresso focuses on preventing file leakage though access by unau-
thorized users. Thus, maintaining the metadata and access control information securely
(Requirement 3-2) and authenticating and authorizing users (Requirement 3-3) are es-
sential. The system should be able to manage metadata and access control information
entirely within the file owner’s organization. Because of the need to share files and the
sheer shale of operations, the system should also support multi-domain authentication
and authorization to guarantee that only legitimate users can access the files.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 11

+
Redundancy
through FEC

Split into
chunks

Storing
chunks UDP transmission

Client

Recover
lost chunks

Original
File

Global Dispersed
Chunk Servers

Figure 2.3: Overview of DRIP, which achieves low cost data storage and high throughput
transmission[1].

2.3 Approach of Content Espresso

Content Espresso is designed to satisfy all the requirements laid out in the previous
section. The design approach of Content Espresso can be divided into two elements;
the design approach for storage and retrieval purposes, and the design approach of the
overall system. Figure 2.2 depicts the requirements and corresponding elements of the
approach.

2.3.1 Approach as a storage and retrieval mechanism

In order to realize Requirement 1-1, Requirement 1-2, and Requirement 2-1, the storage
and retrieval mechanism DRIP (Distributed chunks Retrieval and Integration Procedure)
is used [1]. The key techniques of DRIP are to append redundant data to the original file
using FEC, splitting the original file and redundant data into chunks, sending them to
dispersed storage servers, and delivering the stored chunks with UDP. Figure 2.3 offers
an overview of DRIP.
In the first step, a file is split into blocks and redundant data added by FEC to each

block. Then, both the file data and the redundant data are divided into chunks that are
sent to storage servers called Chunk Servers all over the world, with a sequence number
assigned to each chunk. The size of an FEC block and the amount of redundant data
are determined by the users who are storing the file. DRIP can work with any FEC
algorithm, but the implementation shown here utilizes a low-density generator matrix
(LDGM) coding [8] for FEC, because LDGM has an advantage over Reed-Solomon cod-
ing in lost bit recovery time with large-sized blocks [9]. The sequence number assigned
to each chunk describes the position of the chunk in the file. When a Client retrieves a
stored file, the Client sends a data retrieval request to the Chunk Servers. The Chunk
Servers send the chunks that compose the requested file to the Client through UDP. The
Client receives the chunks one after another and reorders them by each chunk s̓ sequence

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 12

number. Even if some chunks are not delivered because of packet loss in the network or
temporary server failure, the Client can recover lost chunks using the redundant data.

2.3.2 Approach of the overall system
In order to satisfy Requirement 2-2, Requirement 2-3, Requirement 3-1, and Require-
ment 3-2, the approach to designing Content Espresso adopted principles detailed in the
paragraphs below.
First, the system uses the storage and retrieval mechanism proposed in the previous

subsection and commodity storage servers called Chunk Servers. The storage and re-
trieval mechanism contributes to low storage cost and high throughput file transmission
using multiple Chunk Servers. While Content Espresso utilizes multiple globally dis-
persed Chunk Servers, establishing globally dispersed storage servers usually carries a
high cost. The system should provide high IO throughput by using inexpensive com-
modity servers that can sometimes be low-IO throughput servers. Content Espresso
uses commodity storage servers that organizations own or rent from existing data center
services as Chunk Servers to reduce storage preparation costs. The system aggregates
Chunk Servers into a Chunk Server Cluster in each organization, which also lowers
costs.
Second, the system introduces a Storage Allocator that selects and aggregates the var-

ious Chunk Server Clusters and configures storage services to meet user demands in
terms of disk IO, storage space, availability, and price. For example, a Storage Allocator
selects a sole, highly available Chunk Server Cluster and configures a highly available
storage service at a single location to store files that require high availability. Con-
tent Espresso has multiple Storage Allocators, each of which can build multiple storage
services to meet differing user demands without the need to buy or rent additional hard-
ware. Figure 2.4 shows the positions of the Chunk Servers, the Chunk Server Clusters,
the Storage Allocator, and the storage services.
Third, the system introduces a File Manager that is established for each organization

to manage file metadata and user information inside that organization. Metadata includes
the file owner’s identifier, access control information, selected storage service, etc. The
File Manager generates and manages Local User IDs and Local File IDs to manage users
and file metadata. The Local User ID is a user identifier assigned to each user, while
the Local File ID is a unique file identifier assigned to the file by the user who is storing
it on Content Espresso. The File Manager that assigns the Local User ID to a user is
called the Home File Manager of the user. The length of a Local User ID is 32 bits; that
of a Local File ID is 96 bits. The length of these IDs is long enough to manage users
and content files inside even very large organizations. Figure 2.5 shows the relationship
among File Managers, Storage Allocators, and storage services.
Fourth, the system utilizes a Global File ID (GFID), a globally unique hierarchical

128-bit file identifier that enables sharing a very large number of files among several or
even many organizations. Content Espresso assigns a global unique 32-bit File Manager
ID to each File Manager and ensures the global uniqueness of the GFID and the Global

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 13

Storage
Service

Storage
Service

Storage
Service

Storage
Allocator

Chunk Server Cluster Chunk Server Cluster Chunk Server Cluster Chunk Server Cluster

…

Select clusters for each storage service

…

…

Figure 2.4: Chunk Servers configured as a Chunk Server Cluster in each organization; a
Storage Allocator configures multiple storage services by selecting Chunk Server Clus-
ters from a variety of options.

Storage
Service

Storage
Allocator

File Manager

Organization 2

File Manager

Organization 1

File Manager

Organization N

Storage
Allocator

Storage
Service

Storage
Service

Storage
Service

Users Users Users

Select a storage service for each file

…

…

……

Figure 2.5: Each organization has a File Manager that manages file metadata, including
selecting the storage service.

User ID (GUID) by introducing a hierarchical identifier structure, as shown in Figure
2.6. The GFID is composed of the 32-bit File Manager ID and the 96-bit Local File ID.
The GUID is composed of the 32-bit File Manager ID and the 32-bit Local User ID.
Since the system ensures that the File Manager ID is globally unique, the GFID and the
GUID are guaranteed to be globally unique as well.

Finally, the system uses the Yamata-no-Orochi [10, 11] authorization and authentica-
tion system to achieve secure file sharing in a multi-domain environments.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 14

File Manager ID
(32 bits) Local File ID (96 bits)

Global File ID (128bit)

Home File Manager ID
(32 bits)

Local User ID
(32 bits)

Global User ID (64bit)

Figure 2.6: A Global File ID consists of a File Manager ID and a Local File ID; a Global
User ID consists of a Home File Manager ID and a Local User ID.

2.4 System design

2.4.1 Content Espresso modules
Content Espresso consists of four main modules: Chunk Server, Storage Allocator, File
Manager, and Client. In addition, there are two sub-modules: Cluster Head and Chunk
Generator. Figure 2.7 shows the whole architecture of Content Espresso.

Chunk Server and Cluster Head

The Chunk Server stores chunks to the local file system and sends them to the Client
using UDP upon receiving a file retrieval request from users. Content Espresso has
two types of chunks: data chunk and parity chunk. The data chunk is a chunk that
composes the original file. The parity chunk is a chunk that composes the redundancy
data produced by the FEC coding. The data and parity chunks are gathered and stored
as a data chunk file and a parity chunk file at the Chunk Servers, respectively.
When the chunks are stored, 8-byte header including a Sequence Number is appended

to each chunk. Figure 2.8 shows the chunk management architecture. The chunk size
should be less than the MTU (Maximum Transmission Unit) of an IP packet because
Content Espresso recovers lost chunks caused by packet loss. Content Espresso utilizes
1,272-byte chunk size taking the block size of the local file system into consideration.
Each chunk is stored as 1,280-byte data (header + chunk) and 16 chunks are stored as a
20,480-byte file, which is 5 times of typical block size 4,096 bytes.
The Cluster Head is a sub module of the Chunk Server and exists at least one for each

Chunk Server Cluster as the access interface for the Chunk Servers. The Cluster Head
relays a file retrieval request to all the Chunk Servers inside the cluster using multicast to
reduce the request time lag and the request traffic. Since the Cluster Head does not have
any information about which Chunk Server stores which chunks, it relays all the retrieval
requests to all the Chunk Servers that belong to the same cluster. Upon receiving a file
storage request, the Cluster Head receives chunks from the Chunk Generator, which is
a sub module of the Storage Allocator, and sends them to the Chunk Servers with the

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 15

File Manager 1

Storage Allocator 1

File Management Domain 1

Chunk Generators

Storage Allocator N’
Chunk Generators

…

Clients

Chunk Servers

Cluster 1

Cluster Head

File Manager N

File Management Domain N
Clients

Chunk Servers

Cluster 2

Cluster Head

Chunk Servers

Cluster N’’

Cluster Head

…

……

Figure 2.7: Content Espresso consists of a Chunk Server, a Cluster Head, a Storage
Allocator, a Chunk Generator, a File Manager, and a Client.

round-robin algorithm to avoid burst loss when some Chunk Servers fail.

Storage Allocator and Chunk Generator

Content Espresso has multiple Storage Allocators that aggregate multiple Chunk Server
Clusters and the Storage Allocator provides various storage services to users. The Stor-
age Allocator has a database containing two tables: chunk table and cluster table. It
manages the clusters and placement of chunks. The chunk table stores the mapping
of the Global File ID and the cluster in which the chunks of the file are stored. The
cluster table stores the information of the clusters such as the IP address of the Cluster
Head. For each retrieval request from the File Manager, the Storage Allocator accesses
the database, gets the IP address list of the Cluster Head whose cluster stores the re-
quested file, and relays the request to the Cluster Heads.
The Storage Allocator has multiple Chunk Generators, sub modules of the Storage

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 16

Chunk Size
(1272 bytes)

Data chunk

Header
(8 bytes)

Data chunk

Data chunk

Data chunk

…

Data chunk file

Parity chunk

Parity chunk

Parity chunk

Parity chunk

Parity chunk file

/chunks/GFID/data

/chunks/GFID/parity
…

Figure 2.8: Each Chunk Server stores chunks and their headers as a data chunk file and
a parity chunk file to its local file system.

Allocator. The Chunk Generator receives files from the Client, appends redundancy
data to the files, splits them into chunks, and sends them to the Cluster Head when a file
storage request comes from the Storage Allocator. The Chunk Generators are located
over the world to reduce the file storage time because they use TCP for file storage. The
Storage Allocator assigns the Chunk Generator to each file storage request in terms of
the workload and location of the Chunk Generator.
The Storage Allocator manages and monitors the Chunk Server Clusters. When the

Storage Allocator receives a Chunk Server failure report from the Cluster Head, it as-
signs a Chunk Generator and the Chunk Generator retrieves available chunks from other
Chunk Servers in the cluster, recovers the chunks stored in the failed Chunk Server using
FEC, and restores them to the Chunk Servers.

File Manager

The File Manager manages the file metadata and the user information for access control
using a database. The database has three tables: file table, fec table, and sa table as
shown in Table 2.1 to 2.3. The file table stores the file metadata. The fec table stores
the information of available FEC algorithms. The sa table stores the information of the
Storage Allocators such as their IP addresses.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 17

Table 2.1: File Manager Database: file table.
Field Description
file id Global File ID
sa id Storage Allocator ID
filesize Original file size
fec filesize Total file size after generating parity
fec id FEC ID
owner id Global User ID of file owner
chunk size Chunk size
data block height HData (Explained in Subsection 2.4.2)
parity block height HParity (Explained in Subsection 2.4.2)

Table 2.2: File Manager Database: sa table.
Field Description
sa id Storage Allocator ID
hostname Host name of Storage Allocator

Table 2.3: File Manager Database: fec table.
Field Description
fec id FEC Identifier
fec info FEC Information

For each retrieval request from the Client, the File Manager assigns the Session ID,
accesses the database, gets the IP address of the Storage Allocator, and relays the request
to the Storage Allocator. The File Manager also authenticates Clients and authorizes
them for each access. Content Espresso utilizes the Yamata-no-Orochi authentication
and authorization system.

Client

The Client issues a file store or retrieval request to Content Espresso through the File
Manager. In the file store process, the Client sends a file to one of the Chunk Generators.
In the file retrieval process, the Client receives chunks from the Chunk Servers and
recovers lost chunks using the FEC code. The Client has user authentication information
used for authentication by the File Managers.

2.4.2 FEC algorithm and FEC block size
Content Espresso allows users to select a FEC algorithm and FEC block size. It supports
LDGM (Low Density Generator Matrix) as the FEC algorithm in the current implemen-
tation. LDGM utilizes the same generator matrix file for generating redundancy data and

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 18

Chunk Size
(1272 bytes)

Making
Parity

Data Block Parity Block

HData

Chunk Size
(1272 bytes)

Original File

Making
Parity

HParity

…

Making
Parity

Block 0

Block 1

Block N-1

HParity

HParity

HData

HData

Dividing
into

Blocks

…
…

…
…

…

…

Figure 2.9: An original file is divided into data blocks and parity blocks generated by
FEC. HData and HParity can be configured by Clients.

recovering lost chunks. The matrix file is dependent on FEC block size and redundancy
rate.
Figure 2.9 depicts the relationship among the original file, the data block, and the

parity block. A FEC block composed of the data chunks is called a data block and that
composed of parity chunks is called a parity block. Users can select the size of data
block and the redundancy rate when they store files. The data block size is calculated
based on the chunk size and the number of chunks of one data block. The number
of chunks of a data or parity block is defined as the data block height (HData) and the
parity block height (HParity), respectively. Thus, the data block size can be calculated as
ChunkS ize × HData.

The data block height in LDGM should be more than 1,000 because less than 1,000
data block height causes performance degradation in lost chunk recovery. The redun-
dancy rate can be calculated as HParity/HData. Thus, in case that the data block height is
1,000 and the parity block height is 200, the redundancy rate is 200/1, 000 = 0.2. Since
the FEC parameter is defined by the chunk size, the data block size, and the redundancy
rate, the File Manager stores the FEC parameter as the metadata for each file.
Figures 2.10 and 2.11 depict the procedure of making parities and recovering lost

chunks when Content Espresso stores and retrieves the file. After the parity data is
appended at the Chunk Generator, the Chunk Generator stores the chunks to Chunk
Servers by adding the sequence number by using the round-robin algorithm.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 19

Chunk Size
(1024 Byte)

Block 1

10
00

Block 2 Block N

Data
Block
(1MB)

Chunk Servers

Encode

Parity
Block

Sending a file

Client

S
triping to m

ultiple C
hunk S

ervers

SEQ:0

SEQ:1

SEQ:2
SEQ:3 SEQ:4

Chunk Generator

Figure 2.10: The procedure of making parities and distributing to multiple Chunk
Servers.

Chunk Servers

Recover lost chunks
by using FEC

Received
chunks

Recovered
chunks SEQ: 0

Client

SEQ: 1

SEQ: 2
SEQ: 3

Chunk retrieval by using UDP

Integration

Data
Block
(1MB)

Parity
Block

Figure 2.11: The procedure of retrieval chunks from Chunk Servers and recovering lost
chunks.

2.4.3 System availability

Content Espresso ensures the system availability by using FEC and distributing chunks
to the multiple Chunk Server Clusters and Chunk Servers. Figure 2.12 depicts the Con-
tent Espresso and its possible causes of chunk lost.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 20

Storage Allocator

Client

Chunk Servers

Chunk Server Cluster 1

Cluster Head

Chunk Servers

Chunk Server Cluster N

Cluster Head

File Manager

Chunk Server
failure

Chunk Server
Cluster failure

Storage Allocator
failure

File Manager
failure

Cluster router

Aggregation router

Client router

Figure 2.12: Content Espresso’s possible causes of chunk lost can be classified into four:
Chunk Server failure, Chunk Server Cluster failure, Storage Allocator failure, and File
Manager failure.

Chunk Server failure

Content Espresso assumes that each Chunk Server is composed by commodity hardware.
Thus, software failure and hardware failure are main causes of the Chunk Server failure.
Software failure of Chunk Server consists of unexpectedly OS shutdown, Chunk Server
process is killed, software bug, and so on. Hardware failure of Chunk Server consists
of power module failure, HDD failure, NIC (Network Interface Card) failure, and so
on. In order to tolerate the Chunk Server failure, Content Espresso distributes chunks to
multiple Chunk Servers by using round-robin algorithm.

Chunk Server Cluster failure

A Chunk Server Cluster is located in a single location. Thus, the power outage or net-
work failure at the location causes the Chunk Server Cluster failure. In addition, each
Chunk Server Cluster has a Cluster Head, which is the interface of the Cluster. Thus,
the Cluster Head failure also causes the Chunk Server Cluster failure. In order to tol-

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 21

erate the Chunk Server Cluster failure because of the power outage or network failure
at the location, Content Espresso distributes chunks to multiple Chunk Server Clusters
by using round-robin algorithm. The number of necessary clusters is dependent on the
redundancy rate of store files. In case that Content Espresso stores the files with 20%
redundancy rate, more than ten clusters are necessary, in general.

File Manager and Storage Allocator failure

A File Manager manages the metadata of stored files and users have to access the File
Manager before starting file retrieval. A Storage Allocator has the mapping of stored
files and the used Chunk Server Clusters. Thus, all users cannot access the files that are
managed in the File Manager or the Storage Allocator when the File Manager or the
Storage Allocator failures, respectively. Content Espresso does not have the mechanism
to tolerant the File Manager failure and the Storage Allocator failure. In practically,
existing solutions such as database replication and preparing hot standby server can be
used to ensure the File Manager and Storage Allocator availability.

2.5 File access procedure

This subsection shows the procedures of the file retrieval and storing in Content
Espresso. Messages among each module are sent by TCP except between the Clus-
ter Head and the Chunk Server and between the Chunk Server and the Client in the file
retrieval. TCP connections are established when the process of each module starts to
reduce the overhead of connection establishment.

2.5.1 File retrieval sequence

The file retrieval procedure consists of three phases: Authentication Phase, Metadata
Retrieval Phase, and File Retrieval Phase. Figure 2.13 shows the details of these phases.

Authentication Phase

A Client accesses the File Manager that manages the metadata of the target file and
sends an AUTHSYSTEM REQUEST message. The message contains the identifier of
the authentication system that the Client supports and the File Manager responds to
the request using an AUTHSYSTEM RESPONSE message. Then, the Client sends an
AUTHENTICATION REQUEST message to the File Manager and the File Manager
authenticates the Client. The authentication procedure depends on authentication types.
In the current implementation, Content Espresso supports Yamata-no-Orochi as the user
authentication and authorization system.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 22

Client File Manager
Storage

Allocator
Cluster
Head

Chunk
Server

AUTHSYSTEM_REQUEST

READ_REQUEST

ATTR_RESPONSE

AUTHSYSTEM_RESPONSE

READ_FINISH
READ_FINISH

ATTR_REQUEST

Authentication

Authentication Phase

DB Access

Buffer Creation
for Retrieval

Metadata Access Phase

Recover
Lost Chunks

Retrieval
Phase

DB Access

DB Access

READ_REQUEST

CHUNK_DATA

READ_REQUEST
READ_REQUEST

Recover
Lost Chunks

Figure 2.13: The file retrieval sequence consists of the Authentication Phase, the Meta-
data Access Phase, and the Retrieval Phase.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Length

Session ID (128 bits)

Global File ID (128 bits)

0 1 2 3

Figure 2.14: Message format of ATTR REQUEST.

Metadata Retrieval Phase

The Client sends an ATTR REQUEST message to the File Manager that man-
ages the metadata of the target file. Figure 2.14 depicts the packet format of the
ATTR REQUEST message. When the File Manager receives the request message
from the Client, the File Manager authorizes the request, accesses the database
to obtain the metadata of the requested file, and sends the results to the Client

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Length

Session ID (128 bits)

File Size (64 bits)

File Size with FEC (64 bits)

Data Block Height (32 bits)

Parity Block Height (32 bits)

Chunk Size (32 bits)

0 1 2 3

Figure 2.15: Message format of ATTR RESPONSE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Length

Session ID (128 bits)

Global File ID (128 bits)

Send Rate (64 bits)

Client Address (128 bits)

of Client UDP Port (16 bits) Client UDP Port (16bits x N)

0 1 2 3

Figure 2.16: Message format of READ REQUEST.

in an ATTR RESPONSE message. Figure 2.15 depicts the packet format of the
ATTR RESPONSE message.

File Retrieval Phase

The Client sends a READ REQUEST message to the File Manager. Figure 2.16 depicts
the packet format of the READ REQUEST message. When the File Manager receives
the message from the Client, it authorizes the request, accesses the database to obtain
the IP address of the Storage Allocator that manages the requested file, and relays the
request message to the Storage Allocator. The Storage Allocator accesses the databases
to obtain the number of Chunk Servers and the cluster that stores the chunks of the file,
calculates the chunk transmission rate, and sends the READ REQUEST message to the
Cluster Heads.
After the Cluster Heads receives the request, they relay it to the Chunk Servers using

multicast. Upon receiving the request, each Chunk Server transmits the data chunks and
the parity chunks corresponding to the Global File ID to the Client IP address using UDP.
The Client receives the chunks and recovers the undelivered chunks after a timeout. If
non-recovered blocks exist, the Client sends the READ REQUEST message to the File
Managers again. Otherwise, the Client sends a READ FINISH message to the File

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 24

Client File Manager
Storage

Allocator
Chunk

Generator
Chunk
Server

Storage
Phase

DB Access

DB Access

WRITE_REQUEST

Resource Allocation
PhaseWRITE_RESPONSE

WRITE_REQUEST

Cluster
Head

WRITE_REQUEST

WRITE_RESPONSE

WRITE_RESPONSE

WRITE_FILE

Append FEC
Split into chunks

WRITE_CHUNK

WRITE_CHUNK

WRITE_FINISH

WRITE_FINISH

WRITE_FINISH

WRITE_FINISH

DB Access

WRITE_FINISH

Figure 2.17: The file storing sequence consists of the Authentication Phase, the Resource
Allocation Phase, and the Storage Phase. The Authentication Phase is the same as that
of the file retrieval sequence.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Length

Session ID (128 bits)

Global File ID (128 bits)

File Size (64 bits)

Client Address (128 bits)

Storage Service & FEC Parameters

0 1 2 3

Figure 2.18: Message format of WRITE REQUEST.

Manager. The format of the READ FINISH message is the same as the first 20 bytes of
the READ REQUEST message.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code Length

Session ID (128 bits)

Global File ID (128 bits)

Chunk Generator Address (128 bits)

Client Address (128 bits)

Chunk Generator Port

0 1 2 3

Figure 2.19: Message format of WRITE RESPONSE.

2.5.2 File storage sequence
The file storage procedure consists of three phases: the Authentication Phase, Resource
Allocation Phase, and Storage Phase. Figure 2.17 shows the details of these phases.
The Authentication Phase is the same as that in the file retrieval sequence.

Resource Allocation Phase

The Client sends a WRITE REQUEST message to the Home File Manager. Figure 2.18
depicts the packet format of the WRITE REQUEST message. The WRITE REQUEST
message contains the File ID, the File Size, the Client Address, the type of storage ser-
vice, and the FEC parameters. When the File Manager receives the message, it accesses
the database to reserve the Global File ID and sends the request message to the Storage
Allocator. If the Global File ID in the message is zero, the Global File ID is automati-
cally assigned by the File Manager.
The Storage Allocator assigns the request a storage service and a Chunk Generator to

store content files and returns a WRITE RESPONSE message to the Client via the File
Manager. The WRITE RESPONSE message contains the File ID, the Chunk Generator
Address, and the Chunk Generator port number. Figure 2.19 depicts the packet format
of the WRITE RESPONSE message.

Storage Phase

After the Client receives the WRITE RESPONSE message from the File Manager, it
sends the file data to the Chunk Generator assigned by the Storage Allocator. The Chunk
Generator splits the file data into FEC data blocks and generates parity blocks using the
FEC parameter indicated by the Client. Then the Chunk Generator splits each block
into chunks and sends them to each Cluster Head with assigning the sequence number
to each chunk. The Cluster Head also distributes the received chunks to Chunk Servers
inside the same cluster.
After finishing storing chunks, the Cluster Head returns a WRITE FINISH message

to the Storage Allocator via the Chunk Generator. The Storage Allocator stores the

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 2. DESIGN OF CONTENT ESPRESSO 26

Table 2.4: Client API functions.

Function Argument
int loginToFileManager (int authType)
int sendAttrRequest (FILE ID fileId)
int allocateFecBuffer (EspressoBuffer& eb)
int allocateRecvBuffer (char∗ recvBuffer)
int recvContent (EspressoBuffer∗ eb, LdgmDecode∗ ldgm, un-

signed char* recvBuffer, FILE ID fileId, uint64 t
sendRate, uint16 t nUdpPort)

int setWriteInfo (uint32 t nCluster, uint32 t nCs, uint32 t chunk-
Size, uint32 t dBlockHeight, uint32 t pBlock-
Height)

int sendContent (FILE ID& fileId)

Global File ID and utilized clusters’ information to the database and sends the finish
message to the File Manager. When the File Manager receives the WIRTE FINISH
message, it stores the total file size including FEC data and relays the message to the
Client. The format of the WRITE FINISH message is the same as the first 20 bytes of
the WRITE REQUEST message.

2.6 Client API
Content Espresso provides an API written in C++ to access the File Manager
to store and retrieve files. Table 2.4 describes the main functions of the API.
loginToFileManager() is the function to login to the Home File Manager.
sendAttrRequest() is the function to send a request to the File Manager to re-
trieve the metadata of the requested file. allocateRecvBuffer() is the func-
tion to allocate memory for receiving arrival chunks. allocateFecBuffer() is
the function to allocate memory to reorder arrived chunks and recover lost chunks.
recvContent() is the function to send a request to the File Manager to retrieve
the chunks. sendContent() is the function to send a request to the File Manager to
store the files.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Chapter 3

Implementation of Content Espresso

All Content Espresso modules are implemented in C++ in CentOS 6.0. The File
Manager and Storage Allocator use MariaDB 10.1.8 [12] as the database man-
agement system. In order to improve performance, Content Espresso modules
have multiple threads, and to prevent those multiple threads from accessing criti-
cal sections simultaneously, Content Espresso modules use the std::mutex and
std::condition variables that are provided in C++11.

3.1 Implementation model of each module

Content Espresso assumes that many Clients request file retrieval and storage simultane-
ously. Therefore, the File Manager, Storage Allocator, Chunk Generator, Cluster Head,
and Chunk Server all need to be designed and implemented to deal with large numbers
of concurrent requests. In order to achieve parallelization in servers, many implementa-
tion models have been proposed. Content Espresso adopts a thread pool and epoll()
approach because the thread pool and epoll()model has advantages of response time
and resource utilization ratio. The number of threads in the thread pool must be chosen
by the operator before starting the process that takes the available resources into account.
Figure 3.1 describes the thread pool and epoll() implementation model, which

consists of multiple worker threads and an accept thread. The accept thread accepts
the TCP connection request from another module. When the accept thread accepts the
request, it registers the accepted socket descriptor in the epoll buffer. Each worker thread
waits until the message arrives by using epoll wait(). When the request comes to
the registered socket, epoll wait() returns and announces the arrival of message to
the process. epoll() has two types of triggers: a level trigger and an edge trigger.
These triggers are conditions for epoll wait() to announce the arrival of messages
to the process; users have to select one of the two types of trigger. The level trigger is
used when the receiving buffer is not empty, while the edge trigger triggered when a
new packet arrives. Content Espresso modules adopt the edge trigger so that receiving
arrival messages are not forgotten.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 28

Worker
Threads

…
Accept
Thread

!"#$$%&'(!)

2. Register to
epoll buffer1. Request from

other module

Module

Other
Module

TCP
Connection

3. epoll_wait()

Figure 3.1: Model of epoll and thread pool.

Table 3.1: File Manager’s required parameters.
Type Name Description
uint16 t fm port Port number of File Manager
uint32 t sa id Identifier of Storage Allocator to store files
uint16 t sa port Port number of Storage Allocator
uint32 t thread num Number of worker threads
std::string log file Path to the log file

3.2 File Manger

File Manager is composed of a main thread and multiple worker threads. When File
Manager starts, it reads the configuration file and obtains the required parameters with
the init() function. The required File Manager parameters are shown in Table 3.1,
and the activity diagram of File Manager is shown in Figure 3.2.
The main File Manager thread creates the worker threads. The main thread waits un-

til the Client module sends a request to establish a TCP connection. When that request
arrives at the File Manager, the main thread accepts the request and adds the accepted
socket descriptor to the epoll buffer. Each worker thread makes a connection to the
database and connections to all of the Storage Allocators that are written in the configu-
ration file. The socket descriptors of the Storage Allocators are kept by the std::map

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 29

Figure 3.2: Activity diagram of File Manager.

called SA MAP. Then, the worker thread waits using epoll wait() until the message
arrives at the socket descriptors that are added to the epoll buffer. When that message
arrives, one of the worker threads awakens, receives the message, checks the message
type, and calls the function according to the message type.

File Manager accepts three message types from the Client (READ REQUEST,
WRITE REQUEST, and ATTR REQUEST) and three message types from the Stor-

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 30

age Allocator: READ FINISH, WRITE RESPONSE, and WRITE FINISH. When the
message is an ATTR REQUEST, the worker thread acquires the metadata of the re-
quested file from the database and sends it to the Client module. When the message
is a READ REQUEST, the worker thread creates a Session ID and inserts it and the
socket descriptor into the requested Client, the mutex into the socket descriptor, and
the message type to the SESSION MAP to store the session information. Then, the
worker thread acquires the socket descriptor of the Storage Allocator from the SA MAP
and sends the READ REQUEST on to the Storage Allocator. After the Client mod-
ule finishes file retrieval, the File Manager receives a READ FINISH notice from the
Client. The worker thread sends the READ FINISH message to the Storage Allocator
and deletes the session information from the SESSION MAP.
When the message is a WRITE REQUEST, the worker thread creates the Session ID

and inserts the session information into the SESSION MAP in the same way as with a
READ REQUEST. Then, the worker thread generates a file ID and allocates a database
entry to store file information like file size and FEC parameters. After that, the worker
thread acquires the socket descriptor of the Storage Allocator from the SA MAP and
sends the WRITE REQUEST on to the Storage Allocator. Content Espresso is designed
so that the Storage Allocator is chosen by the File Manager after taking the required stor-
age service into consideration. In the current implementation, the Storage Allocator is
determined by the configuration file. An automatic Storage Allocator selection mecha-
nism is a future goal. After the process of storing the file is completed, the File Manager
receives a WRITE FINISH notice from the Storage Allocator, stores the file informa-
tion to the database, sends the WRITE FINISH message to the Client, and deletes the
session information from the SESSION MAP.

3.3 Storage Allocator
Storage Allocator is composed of a main thread and multiple worker threads. When
Storage Allocator starts, it reads the configuration file and obtains the required param-
eters with the init() function. The required Storage Allocator parameters are shown
in Table 3.2, while the Storage Allocator activity diagram is shown in Figure 3.3.
The main thread of the Storage Allocator creates a Chunk Generator accept thread

and worker threads. The main thread and the Chunk Generator accept thread wait until a
request to establish a TCP connection comes from a File Manager or a Chunk Generator.
When the request arrives, the main thread and the Chunk Generator accept thread add the
accepted socket descriptor to the epoll buffer. Each worker thread makes a connection to
the database and connections to all the cluster heads that are written in the configuration
file. Then, the worker thread waits, using epoll wait(), until the message comes to
the socket descriptors that are added to the epoll buffer. When the message comes, one
of the worker threads awakens, receives the message, checks the message type, and calls
the function according to that type.
Storage Allocator accepts three message types from File Manager

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 31

Figure 3.3: Activity diagram of Storage Allocator.

(READ REQUEST, WRITE REQUEST, and READ FINISH) and two message
types from Chunk Generator: WRITE RESPONSE and WRITE FINISH. When an
arriving message is a READ REQUEST, the worker thread creates a Session ID and
inserts it and session information like the socket descriptor into the requested Client,

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 32

Table 3.2: Storage Allocator’s required parameters.
Type Name Description
uint16 t ch port Port number of Cluster Head
uint32 t cluster num Number of Chunk Server Clusters
std::string ch addr 0 IP address of Cluster Head 0
std::string ch addr 1 IP address of Cluster Head 1
std::string ch addr ... IP address of Cluster Head ...
std::string ch addr n IP address of Cluster Head n
uint32 t thread num Number of worker threads
uint16 t cg accept port Port number of Chunk Generator
std::srting log file Path to the log file

the mutex into the socket descriptor, and the message type to the SESSION MAP.
Then, the worker thread accesses the database to acquire the Cluster IDs of the Cluster
Heads that manage the chunks of the requested file and sends the READ REQUEST to
those Cluster Heads. Content Espresso is designed so that the Cluster Head and Chunk
Generator modules are chosen by the Storage Allocator after the required storage
service is taken into consideration. In Content Espresso’s current implementation,
the Cluster Heads and the Chunk Generator are determined by the configuration file.
Automated Cluster Head and Chunk Generator selection mechanisms are future goals.
When the arriving message is a WRITE REQUEST, the worker thread creates a Ses-

sion ID and inserts the session information into the SESSION MAP, just as occurs with a
READ REQUEST. Then, the worker thread selects the clusters for storing the requested
file and allocates the database entry to store the File ID and the Cluster IDs. After that,
the worker thread sends the WRITE REQUEST on to the Chunk Generator. When the
arriving message is a WRITE RESPONSE, the worker thread acquires the socket infor-
mation from the SESSION MAP and relays it to the File Manager. When the arriving
message is a WRITE FINISH message, the worker thread fixes the allocated database
entry from which the previous WRITE REQUEST came, acquires the socket informa-
tion from the SESSION MAP, sends the WRITE FINISH message to the File Manager,
and deletes the socket information from the SESSION MAP.

3.4 Chunk Generator

Chunk Generator is composed by a main thread, worker threads, FEC threads, and send
threads. When Chunk Generator starts, it reads the configuration file and obtains the
parameters with the init() function. The Chunk Generator required parameters are
shown in Table 3.3, while the Chunk Generator activity diagram is shown in Figure 3.4.
The main thread of the Chunk Generator creates worker threads. The main thread

waits until the all the worker threads finish. Each worker thread creates an FEC thread

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 33

Figure 3.4: Activity diagram of Chunk Generator.

to make parity data for the retrieved file data. Each FEC thread creates a send thread to
split the file data and parity data into chunks and send them to the Cluster Heads.
After the worker thread creates the FEC thread, it makes a connection with the Stor-

age Allocator and waits until the WRITE REQUEST message comes from the Storage
Allocator. When it arrives, the worker thread parses the message and creates the buffer

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 34

Data
Block 0 Parity

Block 0

Data
Block 1 Parity

Block 1 …

Data
Block N-1 Parity

Block N-1

FEC Buffer

Create
parity
blocks

FEC ThreadWorker Thread

File data

Storage Allocator

WRITE_REQUEST
WRITE_RESPONSE

Send Thread

Cluster
Head 1

Cluster
Head N

Cluster
Head 2

Client

Receive
file data

Split into chunks
and distribute to
Cluster Heads

Main Thread

Figure 3.5: A Chunk Generator consists of four types of threads: Main Thread,
Worker Thread, FEC Thread, and Send Thread, and a single type of buffer
(FEC Buffer) to multiplex the storing process.

Table 3.3: Chunk Generator’s required parameters.
Type Name Description
uint16 t cg port Port number of Chunk Generator
std::string cg addr IP address of Chunk Generator
uint32 t ch num Number of Chunk Server Clusters
uint16 t ch port Port number of Cluster Heads
uint16 t sa port Port number of Storage Allocator
std::string sa addr IP address of Storage Allocator
std::string ch addr 0 IP address of Cluster Head 0
std::string ch addr 1 IP address of Cluster Head 1
std::string ch addr ... IP address of Cluster Head ...
std::string ch addr n IP address of Cluster Head n
uint32 t thread num Number of worker threads
std::string log file Path to the log file

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 35

to receive the file data from the Client. Then, the worker thread informs the send thread
of the FEC parameters and Cluster Head information, creates a socket to accept the TCP
connection from the Client, and sends the WRITE RESPONSE message to the Storage
Allocator.
When the file data comes from the Client, the worker thread sends a one-FEC block

receiving finish signal to the FEC thread for each FEC block occupied by the retrieved
file data. Then, the worker thread closes the connection to the Client and waits until
the all file storing processes completes before sending the WRITE FINISH message to
the Storage Allocator. The FEC thread waits until the one-block receiving finish signal
appears. When the FEC thread receives that signal, it creates parity data for each FEC
block. The FEC thread sends one-FEC block encoding finish signal to the send thread
for each FEC block encoded, and waits to receive the sending finish signal from the send
thread. When that signal arrives, the FEC thread checks that the status of all FEC block
indicates that sending has been complete and sends the write finish signal to the worker
thread.
The send thread establishes a TCP connection with all the Cluster Heads and waits

until the writing parameter comes from the main thread. Then, the send thread parses the
received parameters and waits until the one-FEC block encoding finish signal appears,
after which the send thread splits the file data and parity data into chunks and sends them
to the Cluster Heads. After all the FEC blocks are sent, the send thread sends a sending
finished signal to the FEC thread.

3.5 Cluster Head
The Cluster Head is composed of a main thread and multiple worker threads. When
the Cluster Head starts, the Cluster Head reads the configuration file and obtains the
required parameters with the init() function. The required Cluster Head parameters
are shown in Table 3.4, while the Cluster Head activity diagram is shown in Figure 3.6.
The main thread of the Cluster Head creates the worker threads. The main thread waits

until a request to establish a TCP connection comes from a Storage Allocator or a Chunk
Generator, after which the main thread accepts the request and adds the accepted socket
descriptor to the epoll buffer. Each worker thread makes a connection to all Chunk
Servers that are part of the same cluster and adds the connected socket descriptor to the
Chunk Server vector. The Chunk Server vector is implemented by std::vector and
maintains the connections to the Chunk Servers. Then, the worker thread waits, using
epoll wait(), until the message arrives at the socket descriptors that are added to the
epoll buffer. When that message arrives, one of the worker threads awakens, receives the
message, checks the message type, and calls the appropriate function for the message
type.
Cluster Head accepts two message types: READ REQUESTs from the Storage Al-

locator and WRITE REQUESTs from the Chunk Generator. When the arriving mes-
sage is a READ REQUEST, the worker thread uses multicast to relay that message

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 36

Figure 3.6: Activity diagram of Cluster Head.

to all the Chunk Servers in that cluster. Cluster Head uses multicast so as to reduce
delays in chunk sending start time among Chunk Servers. If the arriving message is
a WRITE REQUEST, the worker thread receives the chunks and distributes them to
Chunk Servers using TCP and a round-robin algorithm. After sending all the chunks

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 37

Table 3.4: Cluster Head’s required parameters.
Type Name Description
uint16 t ch port Port number of Cluster Heads
uint16 t cs udp port Port number of Chunk Server (UDP)
uint16 t cs tcp port Port number of Chunk Server (TCP)
std::string multicast family Multicast address of Chunk Server
uint32 t cs num Number of Chunk Servers
std::string cs addr 0 IP address of Chunk Server 0
std::string cs addr 1 IP address of Chunk Server 1
std::string cs addr ... IP address of Chunk Server ...
std::string cs addr n IP address of Chunk Server n
uint32 t thread num Number of worker threads
std::string log file Path to the log file

Table 3.5: Chunk Server’s required parameters.
Type Name Description
uint16 t cs write port Port number of Chunk Server (TCP)
uint16 t cs read port Port number of Chunk Server (UDP)
std::string multicast family Multicast address of Chunk Server
uint32 t thread num Number of worker threads
std::string log file Path to the log file

from the Chunk Generator module, the worker thread sends a WRITE FINISH message
to the Chunk Generator.

3.6 Chunk Server
The Chunk Server is composed of a main thread and multiple worker threads. When
the Chunk Server starts, the Chunk Server reads the configuration file and obtains the
parameters through the init() function. The required Chunk Server parameters are
shown in Table 3.1, while the Chunk Server activity diagram is shown in Figure 3.7.
The main thread of the Chunk Server module creates worker threads. The main thread

creates a UDP socket to receive the READ REQUEST and a TCP socket to receive the
WRITE REQUEST from the Cluster Head, then waits until request to establish a TCP
connection comes from the Cluster Head. When that request arrives at the Chunk Server,
the main thread accepts the request and adds the accepted socket descriptor to the epoll
buffer. The worker thread waits, using epoll wait(), until the message comes to the
socket descriptors that are added to the epoll buffer. When that message arrives, one of
the worker threads awakens, receives the message, checks the message type, and calls

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 38

Figure 3.7: Activity diagram of Chunk Server.

the function according to the type of the message.
The Chunk Server accepts two types of messages: READ REQUESTs and

WRITE REQUESTs from the Cluster Head. When the arriving message is UDP and
a READ REQUEST, the worker thread parses the received message and acquires the
file retrieval parameters shown in Table 3.5. Then, the worker thread creates the buffer
for reading the chunk data from the local storage system and sets up the file-sending

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 39

parameters to the rate control module. The worker thread reads the data chunks from the
local file system and sends them to the Client with UDP. When the arriving message is
a WRITE REQUEST, the worker thread creates a buffer for receiving chunks, receives
the data chunks and the parity chunks, and stores both the data chunks and the parity
chunks in the local files system with the Chunk Server.

3.7 Client
Figure 6.6 shows the implementation details of how the Client receives files. The Client
process consists of main thread, recv thread, order thread, and an FEC thread for high
throughput chunk receiving and processing. When the Client starts, the main thread of
the File Manager creates the recv thread, order thread, and FEC thread. Then, the main
thread connects to the Home File Manager and authenticates it.
When the Client sends a file retrieval request to Content Espresso, the main thread

of the Client sends the ATTR REQUEST message including the GFID of the requested
file to the File Manager that maintains the file. The GFID includes the File Manager ID,
which indicates the File Manager that the Client should send the request. Since Content
Espresso does not have a File Manager ID-resolving mechanism in its current imple-
mentation, the Client contains the mapping of the File Manager ID and its IP address.
After sending the ATTR REQUEST, the File Manager returns the file metadata, such

as file size and FEC parameters. The main thread allocates Recv Buffer to receive chunks
and FEC Buffer to reorder and recover chunks. Then, the main thread sends a file re-
trieval request to the File Manager. After that, the recv thread receives chunks and stores
them in the Recv Buffer. The order thread orders chunks by checking the sequence num-
ber inside the chunk headers and storing them in the FEC Buffer. The FEC thread checks
each data and parity block and starts recovering unreceived chunks when enough chunks
have been received to build original blocks.
When the Client sends a file storage request to Content Espresso, the main thread

of the Client sends a WRITE REQUEST message to the Home File Manager. Then,
the main thread receives the assigned GFID, IP address, and port number of the Chunk
Generator. After that, the main thread sends the file data to the Chunk Generator. When
the entire storage procedure has finished, the main thread receives a WRITE FINISH
message.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 3. IMPLEMENTATION OF CONTENT ESPRESSO 40

Recv
Buffer

Data
Block 0 Parity

Block 0

Data
Block 1 Parity

Block 1 …

Data
Block N-1 Parity

Block N-1

FEC Buffer

Order chunks

File request to
the File Manager

Order ThreadFEC Thread

Recover
chunks

Recover
chunks

Recover
chunks

File Manager

Receive chunks

Recv Thread

Chunk arrival

Main Thread

Chunk Servers

Figure 3.8: A Client consists of four types of threads: Main Thread, Recv
Thread, Order Thread, and FEC Thread, and two types of buffers (Recv
Buffer, FEC Buffer) to support high throughput retrieval.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Chapter 4

Evaluation of Content Espresso

4.1 Evaluation overview
Content Espresso is designed to achieve large file sharing in a global network envi-
ronment, with digital content productions used as an example. The previous chapter
explained how Content Espresso is designed and implemented to achieve that goal.
This chapter evaluates Content Espresso by measuring metadata access performance,
file storing performance, and file retrieval performance in an assumed Chunk Server
environment by emulating a WAN.

4.2 Evaluation environment
In order to evaluate the performance of the Content Espresso system, 79 physical ma-
chines were set up; 72 Chunk Servers, 1 File Manager, 1 Storage Allocator, 1 Chunk
Generator, and four Clients. The Chunk Servers, File Manager, and Storage Allocator
were all connected to an experimental network with 1Gbps links. The Chunk Generator
and Clients were connected with 10Gbps links, because many digital content producers
have started to use 10GbE network interface controllers (NICs) as the price of NICs de-
clines. In addition, the capacity of the Internet backbone is increasing; some providers
are now providing 10Gbps connectivity to end users. Thus, 10GbE is used in Clients
to evaluate the Content Espresso system to take the latest networking realities into con-
sideration. Figure 6.7 shows the experimental environment, while the specifications of
each physical machine is shown in Table 6.1.
The 72 Chunk Servers are logically divided into six Chunk Server Clusters by a virtual

local area network (VLAN). The Cluster Head module is installed in one Chunk Server
machine in each cluster. Three of the four Clients are dummies to emulate simultaneous
access to Content Espresso; the remaining Client is used to measure processing time.
The average RTT between machines is shown in Table 4.2.
1,272,000-byte, 12,720,000-byte, 127,200,000-byte, and 1,272,000,000-byte files

were generated and stored with various FEC block sizes to evaluate the performance

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 42

12 Chunk Servers

Cluster 1

File Manager
Storage
Allocator

1Gbps

12 Chunk Servers

Cluster 2
12 Chunk Servers

Cluster 3
12 Chunk Servers

Cluster 4
12 Chunk Servers

Cluster 5
12 Chunk Servers

Cluster 6

Dummy
Clients

1Gbps x 12 1Gbps x 12

10Gbps x 4 10Gbps x 2

10Gbps x 4

10Gbps

10Gbps

10Gbps

1Gbps

Client

IBM

Dell Dell

NETGEAR
Chunk Generator

10Gbps 10Gbps

10Gbps

Figure 4.1: Experimental environment for evaluating the Content Espresso system.

Table 4.1: Specifications of physical machines.
Modules CPU RAM Network
Client Core i7-2600 (3.40GHz) 16GB 10GbE
Dummy Client Core i7-3770 (3.40GHz) 32GB 10GbE
File Manager Core i7-3770 (3.40GHz) 8GB 1GbE
Storage Allocator Core i7-3770 (3.40GHz) 8GB 1GbE
Chunk Generator Core i7-2600 (3.40GHz) 16GB 10GbE
Chunk Server Pentium G640 (2.80GHz) 16GB 1GbE

Table 4.2: Average RTTs between machines.
Section RTT

Client ⇐⇒ File Manager 0.36 ms
File Manager ⇐⇒ Storage Allocator 0.23 ms
Storage Allocator ⇐⇒ Chunk Server 0.23 ms
Client ⇐⇒ Chunk Server 0.38 ms
Client ⇐⇒ Chunk Generator 0.40 ms
Storage Allocator ⇐⇒ Chunk Generator 0.27 ms

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 43

Table 4.3: Files and FEC block parameters for evaluation.
File Name Original Size HData # of FEC Block
File A-1 1,272,000 bytes 1,000 1
File B-1 12,720,000 bytes 1,000 10
File B-2 12,720,000 bytes 10,000 1
File C-1 127,200,000 bytes 1,000 100
File C-2 127,200,000 bytes 10,000 10
File C-3 127,200,000 bytes 100,000 1
File D-1 1,272,000,000 bytes 1,000 1,000
File D-2 1,272,000,000 bytes 10,000 100
File D-3 1,272,000,000 bytes 100,000 10

Table 4.4: Additional round-trip network delays between Client and Clusters.
Env. CL1 CL2 CL3 CL4 CL5 CL6
Delay 0 0ms 0ms 0ms 0ms 0ms 0ms
Delay 1 30ms 30ms 30ms 30ms 30ms 30ms
Delay 2 30ms 30ms 30ms 100ms 100ms 100ms
Delay 3 30ms 30ms 100ms 100ms 200ms 200ms
Delay 4 100ms 100ms 100ms 100ms 100ms 100ms
Delay 5 200ms 200ms 200ms 200ms 200ms 200ms

of Content Espresso system in terms of file size and the number of FEC blocks. Table
4.3 shows the list of files used in the evaluation. HData is the data block height described
in Subsection 2.4.2.
In order to evaluate the file retrieval and storing performance of the Content Espresso

system in the assumed network environment, delays and packet loss rates are added to
the network with the tc command. The File Manager, Storage Allocator, and Chunk
Generator are all assumed to be located physically close to the Client in this evaluation,
as shown in Figure 4.2. Thus, delay and packet loss is added between the Client and
each Chunk Server Cluster (CL1 - CL6).
Table 4.4 shows the combinations of the added round-trip delays. Six patterns (Delay

0 - Delay 5) are used to emulate a global network environment. The round-trip delay
times of 30ms, 100ms, and 200ms were chosen to reflect actual network delays. Assum-
ing that the machine with the Client module is in Japan, 30ms, 100ms, and 200ms delays
suggest that the Chunk Server Clusters are located in Japan, the US, and Europe respec-
tively. Table 4.5 shows the combinations of the added packet loss rates. Seven patterns
(Loss 0 - Loss 6) were used to emulate a lossy network environment. The packet loss
rate of 0.3% was chosen by to reflect actual service level agreements (SLAs) in ISPs
[13, 14].

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 44

File
Manager

Storage
Allocator

Client

Chunk
Generator

…

12 Chunk Servers

Cluster 6

12 Chunk Servers

Cluster 1

Delay and/or Loss

Delay and/or Loss

…
…

Parameter: CL1

Parameter: CL6

Figure 4.2: Emulated global environment for evaluating the Content Espresso system.

Table 4.5: Additional network packet loss rates between Client and Clusters.
Env. CL1 CL2 CL3 CL4 CL5 CL6
Loss 0 0% 0% 0% 0% 0% 0%
Loss 1 0.3% 0% 0% 0% 0% 0%
Loss 2 0.3% 0.3% 0% 0% 0% 0%
Loss 3 0.3% 0.3% 0.3% 0% 0% 0%
Loss 4 0.3% 0.3% 0.3% 0.3% 0% 0%
Loss 5 0.3% 0.3% 0.3% 0.3% 0.3% 0%
Loss 6 0.3% 0.3% 0.3% 0.3% 0.3% 0.3%

4.3 System performance

4.3.1 Metadata access performance

Although Content Espresso distributes the metadata of stored files to File Managers,
multiple processes requesting access to the same file simultaneously causes a high work-
load for the File Manager and may lead to performance degradation. In order to evaluate
the File Manager’s simultaneous processing capability, the metadata request response
time of the Client was measured; three dummy clients sent metadata requests to the File
Manager ranging from 1,000 requests per second to 15,000 requests per second.
Figure 4.3 shows the box plots of the results: the lower graph is an enlarged version of

the upper graph. The diamond-shaped dots indicate the average value, while the circles
indicate outliers. Although the average response time gradually increases as the number
of simultaneous requests increases, the median does not increase until 15,000 requests
per second is reached. The metadata request response time was not measured above
15,000 requests per second because there is the bottleneck of the number of connections
in File Manager. These results thus confirm that a single File Manager can deal with
fewer than 15,000 simultaneous requests per second without performance degradation,
which is sufficient from the viewpoint of the C10K problem [15].

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 45

Simultanious Requests Per Second
1000 3000 5000 7000 9000 11000 13000 15000

0.
00

 0

.0
2

 0
.0

4

0.
06

0.

08

 0
.1

0
R

es
po

ns
e

Ti
m

e
(s

ec
)

1000 3000 5000 7000 9000 11000 13000 15000

R
es

po
ns

e
Ti

m
e

(s
ec

)
0.

00
10

 0
.0

01
5

 0
.0

02
0

 0
.0

02
5

 0
.0

03
0

 0
.0

03
5

 0
.0

04
0

Simultanious Requests Per Second

(a) Y-axis is between 0 to 0.1.

(b) Y-axis is between 0.001 to 0.004.

Figure 4.3: Metadata response time of the File Manager when simultaneous requests
arrive.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 46

4.3.2 File retrieval performance
When the Content Espresso system receives a file retrieval request through a Client
module, the Chunk Servers send chunks to the Client using UDP at the requested rate.
When that rate is 1,000Mbps and there are 72 Chunk Servers, each Chunk Server sends
chunks to the Client at 1, 000/72 ≈ 13.9 Mbps. After the Client has received the chunks
to a certain extent (typically, the HData chunks have arrived), it tries to recover non-
received chunks until all chunks are recovered. In this evaluation, the period of time
between the moment when the Client requests file retrieval from the File Manager and
the moment when the Client finishes receiving and recovering all chunks was measured
to reveal the effects of file size and the location of Chunk Server Clusters on file retrieval
performance.

File retrieval throughput in various file sizes

In order to evaluate the file retrieval performance at various file sizes, the file retrieval
time and file retrieval throughput were measured using Files A-1, B-2, C-3, and D-3
(Table 4.3) by changing the requested file retrieval rate from 500Mbps to 3.5Gbps. Fig-
ure 4.4 lays out the relationship between the requested file retrieval rate and actual file
retrieval throughput. The actual file retrieval throughput of File D-3 is almost same as
the requested file retrieval rate, while the actual file retrieval throughput of File A-1 is
no higher, even though the requested file retrieval rate is much higher. The performance
degradation for small-size files is caused by the overhead of accessing File Manager
before chunk retrieval. Therefore, the larger a file is, the better the file retrieval perfor-
mance in the Content Espresso system.
This evaluation also reveals that the maximum file retrieval rate in Content Espresso

is around 3.0 - 3.5Gbps. Most files cannot be recovered by FEC when the rate is over
3.5Gbps because of overflow in the UDP socket buffer that is due to the Linux kernel’s
performance problems in UDP retrieval. High-speed packet IO libraries such as netmap
[16] and DPDK [17] could help solve this problem.

File retrieval time comparison in various network environments of Chunk Server
Clusters

In order to evaluate the file retrieval performance in various network environments of
Chunk Server Cluster locations, file retrieval times with Content Espresso and TCP-
based chunk retrieval were measured by changing the Chunk Server Cluster network
environment (Tables 4.4 and 4.5). TCP-based chunk retrieval is implemented to compare
the file retrieval performance of Content Espresso to that of existing TCP-based chunk
retrieval. In TCP-based chunk retrieval, the Client establishes a TCP connection with
each Chunk Server and retrieves data chunks of the target file. In Content Espresso, the
file retrieval time was measured at file retrieval rates of 1Gbps, 2Gbps, and 3Gbps.
Figures 4.5 - 4.7 present the comparison of the file retrieve time when the Chunk

Server Clusters are located in a network environment with additional levels of delay.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 47

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500 1000 1500 2000 2500 3000 3500

Fi
le

Re
tri

ev
al

+
FE

C
Th

ro
ug

hp
ut

 (M
bp

s)

Requested File Retrieval Rate (Mbps)

File A-1 (1,272,000 bytes)
File B-2 (12,720,000 bytes)
File C-3 (127,200,000 bytes)
File D-3 (1,272,000,000 bytes)

Figure 4.4: File retrieval throughput using A-1, B-2, C-3, and D-3 files.

TCP shows better performance than Content Espresso (3Gbps) in Delay 0, which em-
ulates an environment in which all Chunk Servers are located in the Client’s LAN, re-
gardless of file size. TCP can utilize a 10Gbps link more efficiently than the Content
Espresso system when the RTT and packet loss is small because the maximum file re-
trieval performance of the Content Espresso system is about 3.0 - 3.5Gbps in its current
implementation. However, Delay 0 is not a realistic environment because the Content
Espresso system assumes that Chunk Server Clusters are installed in multiple organiza-
tions.

TCP has also better performance than Content Espresso (3Gbps) in Delay 1 and Delay
2 when File D-1 is used. In general, TCP throughput is initially low and becomes higher
because of TCP’s slow start. Since the file retrieval is finished before the TCP window
size becomes large enough to make a difference when a file is small, its average file
retrieval performance is low. Thus, TCP performance for File D-1 is better than for
File B-1 or File C-1. The request overhead of the Content Espresso system becomes
larger when the RTT between the Client and the Chunk Servers is longer because the
Content Espresso system uses TCP to send the request messages to the Chunk Servers.
However, the chunk retrieval time of the Content Espresso system is not affected by the
RTT. Since the request messages are quite small in comparison to the chunk data, the
request overhead can be ignored with larger file sizes. Therefore, it is not necessary
for the Content Espresso system to consider and adjust for the locations of the Chunk
Servers.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 48

Figures 4.8 - 4.10 present the comparative file retrieval times when Chunk Server
Clusters are located in a lossy network environment. In this experiment, a 30ms RTT for
each Chunk Server Cluster is added in the same environment as Delay 1 to emulate a re-
alistic environment. The Content Espresso system (3Gbps) has better performance than
TCP, except that File D-1 is used in the Loss 0 environment because of TCP’s slow start
and the performance limits of Content Espresso described above. The request overhead
of the Content Espresso system is not affected by packet loss but by the RTT between
the Client and the Chunk Servers. While TCP is significantly affected by packet loss,
the chunk retrieval time of the Content Espresso system is not affected. Therefore, the
Content Espresso system is tolerant of packet loss, and it is not necessary to consider and
adjust for the network conditions of the Chunk Server Clusters, as long as the network
provider ensures that the packet loss rate is within SLA parameters.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 49

0

0.5

1

1.5

2

2.5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

Espresso (1Gbps) Espresso (2Gbps) Espresso (3Gbps) TCP

Fi
le

 R
et

ire
va

l T
im

e
(s

ec
)	

Retrieval Request Rate	

 TCP Retrieval Time

 Chunk Retrieval Time

 Request Overhead

Figure 4.5: File B-1 retrieval time under various delay environments.

0

1

2

3

4

5

6

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

Espresso (1Gbps) Espresso (2Gbps) Espresso (3Gbps) TCP

Fi
le

 R
et

ire
va

l T
im

e
(s

ec
)	

Retrieval Request Rate	

 TCP Retrieval Time

 Chunk Retrieval Time

 Request Overhead

Figure 4.6: File C-1 retrieval time under various delay environments.

0

2

4

6

8

10

12

14

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

D
el

ay
 0

D

el
ay

 1

D
el

ay
 2

D

el
ay

 3

D
el

ay
 4

D

el
ay

 5

Espresso (1Gbps) Espresso (2Gbps) Espresso (3Gbps) TCP

Fi
le

 R
et

ire
va

l T
im

e
(s

ec
)	

Retrieval Request Rate	

 TCP Retrieval Time

 Chunk Retrieval Time

 Request Overhead

Figure 4.7: File D-1 retrieval time under various delay environments.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Espresso (1Gbps) Espresso (2Gbps) Espresso (3Gbps) TCP

Fi
le

 R
et

ire
va

l T
im

e
(s

ec
)	

Retrieval Request Rate	

 TCP Retrieval Time

 Chunk Retrieval Time

 Request Overhead

Figure 4.8: File B-1 retrieval time under various loss environments.

0

0.5

1

1.5

2

2.5

3

3.5

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Espresso (1Gbps) Espresso (2Gbps) Espresso (3Gbps) TCP

Fi
le

 R
et

ire
va

l T
im

e
(s

ec
)	

Retrieval Request Rate	

 TCP Retrieval Time

 Chunk Retrieval Time

 Request Overhead

Figure 4.9: File C-1 retrieval time under various loss environments.

0

5

10

15

20

25

30

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Lo
ss

 0

Lo
ss

 1

Lo
ss

 2

Lo
ss

 3

Lo
ss

 4

Lo
ss

 5

Lo
ss

 6

Espresso (1Gbps) Espresso (2Gbps) Espresso (3Gbps) TCP

Fi
le

 R
et

ire
va

l T
im

e
(s

ec
)	

Retrieval Request Rate	

 TCP Retrieval Time

 Chunk Retrieval Time

 Request Overhead

Figure 4.10: File D-1 retrieval time under various loss environments.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 51

4.3.3 File storing performance
When a Client stores a file to the Content Espresso system, it sends the file data to
the Chunk Generator using TCP. The Chunk Generator has multiple threads that can
simultaneously process different pieces of the file data. Thus, after the Chunk Gener-
ator receives part of the file data for generating a single FEC block from the Client,
it starts making parity data of the file data, splitting the file data and parity data into
chunks, and sending them to the cluster heads one after another. In this evaluation, the
period of time between starting to send the file to the Chunk Generator and receiving the
WRITE FINISH message was measured.

File storing throughput in various file sizes

In order to evaluate file storing performance at various file sizes, the file storing time
was measured and file retrieval throughput calculated using the files shown in Table 4.3.
Figure 4.11 describes the file storing throughput. The result shows that larger files have
better performance than smaller files, which is caused by the overhead of establishing a
TCP connection between the Client and the Chunk Generator. Establishing a TCP con-
nection before beginning to store a file might improve this performance. However, this
is not a practical solution because the Content Espresso system assumes that chunk gen-
erators are chosen dynamically for each request, after taking into account the distance
from the Client and its workload.
The results also show that, with the same file size, a small FEC block has better

performance than a large FEC block, because the Chunk Generator can start generating
parity data and sending chunks to the cluster heads as soon as the Chunk Generator
receives file data that is the size of the FEC block. Therefore, using large files and small
FEC blocks is key to high throughput file storing. It would be possible to store a large
number of small files with high throughput by interleaving file storing, e.g., by sending
several requests simultaneously.

File storing time comparison in various network environments of Chunk Server
Clusters

In order to evaluate file storing performance in different network environments and
Chunk Server Cluster locations, file storing times were measured as network Chunk
Server Clusters environment changed as shown in Tables 4.4 and 4.5.
Figure 4.12 presents the file storing time of File C-1 when the Chunk Server Clusters

are located in a network environment with an additional delay. The results show that
file storing times in the Delay 3 and Delay 5 environments are slower than in the other
environments, which is due to the fact that Delay 3 and Delay 5 both contain 200ms
worth of extra distance from the Chunk Server Clusters. Figure 4.13 presents the file
storing time of File C-1 when the Chunk Server Clusters are located in a lossy network
environment. In this experiment, 30ms of RTT is added to each Chunk Server Cluster
in the same environment as Delay 1 to emulate a practical environment. The result

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 52

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1e+06 1e+07 1e+09 1e+10

St
or

in
g

Th
ro

ug
hp

ut
 (M

bp
s)

 1e+08
File Size (bytes)

HData = 1,000
HData = 10,000
HData = 100,000

File D-1

File A-1

File C-2

File B-1

File C-1
File D-2
File D-3

File B-2

File C-3

Figure 4.11: File storing throughput using files shown in Table 4.3.

shows that any lossy network environments (Loss 1 - 5) cause significant performance
degradation of file storing.
These results confirm that the file storing performance of the Content Espresso system

becomes worse if even only one of the Chunk Server Clusters is located far away from
the Client or is in a lossy network environment. However, the Content Espresso system
focuses on fast file retrieval because it is designed for large file sharing among digital
content producers, who operate in a sector in which large and even massive files are
stored once and retrieved many times. Thus, the performance degradation of the file
storing performance does not significantly affect the overall performance of Content
Espresso; the same conclusion can be drawn when File B-1 and D-1 are used for this
particular evaluation.

4.4 Appropriate FEC block size
Content Espresso allows users to specify the FEC block size for each file. Using large-
size FEC blocks causes performance degradation because of the amount of time it takes
to generate parity data and to recover lost chunks. On the other hand, small-size FEC
blocks are weak in terms of burst packet loss and chunk recovery failure. For this part
of the evaluation of Content Espresso, the file retrieval success rate was measured using
different retrieval rates and various file types (shown in Table 4.3) to reveal the most
appropriate FEC block size.
Figure 4.14 presents the retrieval success rate as changing the file retrieval rate using

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 53

0

1

2

3

4

5

6

7

8

Delay 0 Delay 1 Delay 2 Delay 3 Delay 4 Delay 5

Fi
le

 W
rit

e
Ti

m
e

(s
ec

)

Environment

WriteTime

FILE IO

Figure 4.12: File storing throughput under various delay environments using the files
shown in Table 4.3.

0

5

10

15

20

25

30

Loss 0 Loss 1 Loss 2 Loss 3 Loss 4 Loss 5 Loss 6

Fi
le

 W
rit

e
Ti

m
e

(s
ec

)

Environment

WriteTime

FILE IO

Figure 4.13: File storing throughput using the files shown in Table 4.3.

a 1,272,000,000-byte file when HData is 1,000, 10,000, or 100,000. The number of FEC

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 54

blocks is 1, 10, and 100 when HData is 100,000, 10,000, and 1,000 respectively. The
results show that the retrieval success rate is more than 80% when HData is 10,000 and
100,000, but that it decreases rapidly when HData is 1,000.
Figure 4.15 presents the retrieval success rate as changing the file retrieval rate

when HData is 1,000 and 1,272,000-byte, 12,720,000-byte, 127,200,000-byte, and
1,272,000,000-byte files are utilized. The number of the FEC blocks is 1, 10, 100,
and 1,000 when the file size is 1,272,000 bytes, 12,720,000 bytes, 127,200,000 bytes,
and 1,272,000,000 bytes respectively. The results show that the retrieval success rates
of the 1,272,000-byte file and the 12,720,000-byte file are above 80% when the retrieval
rate is between 500Mbps and 3,000Mbps.
Taken together, these results confirm that the Content Espresso system shows better

file retrieval success rates when the number of FEC blocks is 1 or 10. Therefore, this
evaluation concludes that the appropriate FEC block size is approximately 10% of the
original file size.

4.5 System availability
Content Espresso utilizes multiple commodity servers as Chunk Servers, which must
have lower availability than special servers designed for providing high throughput and
high-availability storage and retrieval services. The recovery capability of the Content
Espresso system is determined by the redundancy rate (HParity/HData). When the redun-
dancy rate is r, HData ∗ r/2 of lost chunks can be recovered by the LDGM coding in the
Client. For example, when HData is 1,000 and HParity is 200, 100 chunks lost in each
block can be recovered. The total availability A of the Content Espresso system can be
calculated as follows, when N is the total number of Chunk Servers, n is the number of
tolerable Chunk Server failures, and a is the availability of each Chunk Server:

A =
n∑

k=0

(1 − a)kaN−knCk

In this evaluation, the total availability of the Content Espresso A is calculated when
a user appends 10%, 20%, or 30% redundant data to the original file. Then, the relation-
ship among the availability of each Chunk Server, the number of Chunk Servers, and the
availability of Content Espresso and its conditions for achieving availability at the five
nines (99.999%) level is discussed.
Figure 4.16 lays out the relationship between the number of Chunk Servers and the

total availability when the redundancy rate is 10%. The file availability decreases as
the number Chunk Servers increases when the availability of each Chunk Server is less
than 0.95. To achieve five nines (99.999%) availability, the system requires at least 200
Chunk Servers with 0.99 availability.
Figure 4.17 presents the relationship between the number of chunk Servers and the

total availability when the redundancy rate is 20%. The file availability increases as

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 55

 0

 10

 20

 30

 40

 50

 60

 70

 80
 90

 100

 500 1000 1500 2000 2500 3000 3500

Re
tri

ev
al

Su
cc

ee
d

Ra
te

 (%
)

Requested File Retrieval Rate (Mbps)

File C-1 (HData = 1,000)
File C-2 (HData = 10,000)
File C-3 (HData = 100,000)

Figure 4.14: File retrieval and error recovery success rates for a 127,200,000-byte file.

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500

Re
tri

ev
al

Su
cc

ee
d

Ra
te

 (%
)

Requested File Retrieval Rate (Mbps)

File A-1 (1,272,000 bytes)
File B-1 (12,720,000 bytes)
File C-1 (127,200,000 bytes)
File D-1 (1,272,000,000 bytes)

Figure 4.15: File retrieval and error recovery success rates when HData = 1, 000.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 56

the number of Chunk Servers increases when the availability of each Chunk Server is
more than 0.91. To achieve five nines (99.999%) availability, the system requires 50
Chunk Servers with 0.99 availability, 60 Chunk Servers that have 0.99 availability, 100
Chunk Servers with 0.98 availability, 160 Chunk Servers that have 0.97 availability, or
240 Chunk Servers that have 0.96 availability.
Figure 4.18 shows the relationship between the number of Chunk Servers and the

total availability when the redundancy rate is 30%. The file availability increases as the
number of Chunk Servers increases at any kind of Chunk Server availability. To achieve
five nines (99.999%) availability, the system requires 40 Chunk Servers that have 0.99 or
0.98 availability, 60 Chunk Servers that have 0.97 availability, 100 Chunk Servers that
have 0.96 availability, 120 Chunk Servers that have 0.95 availability, 160 Chunk Servers
that have 0.94 availability, or 220 Chunk Servers that have 0.93 availability.

4.6 Summary
This section evaluated Content Espresso by measuring metadata access performance, file
retrieval performance, and file storing performance in an assumed Chunk Server envi-
ronment by emulating a WAN. Then, the appropriate FEC size and the system availabil-
ity of Content Espresso were discussed. The result of the metadata access performance
evaluation confirms that Content Espresso can deal with more than 15,000 simultane-
ous requests per second to a single File Manager without performance degradation. The
result of the file retrieval performance evaluation confirms that Content Espresso can
deliver stored files faster than TCP-based protocol when the RTT between the Chunk
Servers and the Client is longer than 30ms or only one of the Chunk Server Clusters
is in a lossy network environment. The result of the file storing performance revealed
that the file storing performance becomes worse if even only one of the Chunk Server
Clusters is located far away from the Client or is in a lossy network environment. The
evaluation of the FEC block size showed that Content Espresso should chose the ap-
proximately 10% of the original file size as a FEC block size. Finally, the evaluation of
the system availability shows the relationship between the number of Chunk Servers and
the total availability. Users can select neccesary redundancy rate by using the results.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 4. EVALUATION OF CONTENT ESPRESSO 57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

Av
ail

ab
ilit

y o
f C

on
te

nt
 E

sp
re

ss
o

Number of Chunk Servers

a = 0.99
a = 0.98
a = 0.97
a = 0.96
a = 0.95
a = 0.94
a = 0.93
a = 0.92
a = 0.91
a = 0.90

Figure 4.16: Relationship between file availability and the number of Chunk Servers
when 10% redundancy is appended.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

Av
ail

ab
ilit

y o
f C

on
te

nt
 E

sp
re

ss
o

Number of Chunk Servers

a = 0.99
a = 0.98
a = 0.97
a = 0.96
a = 0.95
a = 0.94
a = 0.93
a = 0.92
a = 0.91
a = 0.90

Figure 4.17: Relationship between file availability and the number of Chunk Servers
when 20% redundancy is appended.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

Av
ail

ab
ilit

y o
f C

on
te

nt
 E

sp
re

ss
o

Number of Chunk Servers

a = 0.99
a = 0.98
a = 0.97
a = 0.96
a = 0.95
a = 0.94
a = 0.93
a = 0.92
a = 0.91
a = 0.90

Figure 4.18: Relationship between file availability and the number of Chunk Servers
when 30% redundancy is appended.
Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment

and its Applications

Chapter 5

Demitasse: A Network-Oriented UHD
Video Playback System

5.1 Background

With the decreasing price of equipment for video productions, many video production
companies have started making high-resolution content in UHD (3840 x 2160 pixels).
Generally, a video producer shoots source videos and stores them as a sequence of video
component files. For example, the first component file is named FILE 001, the second
FILE 002, etc. For low cost and quick video creation, video producers share content files
with post-production companies all over the world using shared storage that is connected
to the Internet. Post-production companies must retrieve these content files from storage
and process them according to the instructions of the video producer. Post-production
companies must be to play video back easily, but this can be difficult. First, a post-
production company has to retrieve the component files of a particular video production
from the shared storage. Then, they have to play the component files back, usually in
order, with a video playback application. This remains challenging even when Internet
access to the storage servers is as rapid as 10Gbps.
This chapter proposes Demitasse, a network-oriented video playback system using

Content Espresso. The performance requirements of Demitasse are as follows: 1) Demi-
tasse must play uncompressed UHD video stored in shared storage on the Internet; 2)
Demitasse must be able to edit the order of component files and share them immedi-
ately without retrieving all the component files; 3) Demitasse must not require making
duplicate copies of component files. In order to satisfy these requirements Demitasse
uses two technologies: Content Espresso and Catalogue System. For storing video com-
ponent files, Demitasse uses Content Espresso, a distributed storage system for large
file sharing. Content Espresso enables low cost data storage and high throughput file
transmission, regardless of the location of clients, by using FEC and UDP. To describe
and store relationships among component files, Demitasse uses Catalogue System, a dis-
tributed graph database. Catalogue System enables users to edit file relations by using a

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 59

directed graph. In this chapter, Demitasse is designed, implemented, and its performance
evaluated. The results confirm that Demitasse achieves uncompressed UHD playback at
30fps.

5.2 Catalogue System

5.2.1 Cencept of the Catalogue System
With the rapid growth of content files on the Internet, text-based search engines such
as Yahoo! and especially Google have been developed and are widely used to search
for specific content. However, one problem with text-based search engines is that they
require knowing the appropriate keywords beforehand, even when those who want to
find something do not have deep insights into the topic. Catalogue System stores and
shares catalogues globally in a distributed and autonomous way. A catalogue represents
at least one relation among files by a directed graph. An object is defined as either a file
or a catalogue. A catalogue can associate not only files but also other catalogues with
one another. Looking up catalogues from a focused catalogue is also possible. The size
of a catalogue is not restricted. Figure 5.1 represents an overview of objects and three
kinds of users called File Owners, Cataloguers, and Clients. File owners create files and
make them shareable over the Internet. Each shared file is managed by the file owner and
is identified by a globally unique identifier. A cataloguer creates catalogues by choosing
one or more pairs of objects and make those catalogues shareable on the Internet. Clients
retrieve catalogues containing a given object with a reverse lookup approach. They can
navigate across directed graphs in the catalogues to reach another object.

5.2.2 System architecture
The Catalogue System is composed of three modules: File Manager, Catalogue System,
and Graph Manager.

File Manager

The File Manager manages files identified by their GFIDs (as a reminder, global file
IDs). A Single File Manager is located in the domain of a file owner. When a client
requests a file specified by a GFID to the File Manager identified by the File Manager
ID in the GFID, the File Manager returns that file to the client.

Catalogue Server

The Catalogue Server manages the catalogues. It is located in the domain of a cataloguer.
Once a cataloguer obtains a Catalogue Server ID, a Catalogue Server can be launched.
The cataloguer can store catalogues and control the access to each of their catalogues.
The Catalogue Servers are managed in a distributed manner so that the cataloguers are

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 60

(2) Cataloguers

(1) File Owners

(3) Clients

Separated

Cat Lovers
Physicists

Catalogues

FilesIsaac Newton

Identified by global unique ID

Abraham Lincoln

Winston Churchill

Aristotle

Albert Einstein

create create

create

retrieve

retrieve
PNG

PNG

PNG

PNG

PNG

create

A file group with a directed graph

Figure 5.1: Overview of objects and users.

able to secure their catalogues as their assets. The cataloguers may entrust catalogue
management to a service provider if it is technically difficult for the cataloguers to man-
age the equipment, the way some users choose mail hosting services such as Gmail, in
which mail messages are managed by third-party servers.

Graph Manager

The Graph Manager controls mappings for reverse lookup and parts of catalogues. It is
placed in the domain of the File Managers or the Catalogue Servers. The Graph Man-
ager is responsible for managing two types of information: mappings for reverse lookup
from a child object to parent catalogues, and edges connecting source and destination
object vertex identifiers. A reverse lookup mapping consists of the child object identifier
and the GCID of the parent catalogue, which enables clients to refer to all parent cata-
logues that contain the object of interest. When a cataloguer creates a new catalogue, an
edge is pushed into two Graph Managers that manage the source and destination objects
respectively. Thus, each Graph Manager has edges that originate from or terminate at
objects in the domain of that Graph Manager. When a client retrieves an object, the
client can retrieve all the edges that are connected to the object.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 61

5.3 Design of Demitasse

5.3.1 Design overview

As noted above, the performance requirements of Demitasse are as follows: 1) Demi-
tasse must play uncompressed UHD video stored in shared storage on the Internet; 2)
Demitasse must be able to edit the order of component files and share them immedi-
ately without retrieving all the component files; 3) Demitasse must not require making
duplicate copies of component files.
Demitasse uses Content Espresso to store video component files to satisfy require-

ments 1) and 3) and the Catalogue System to store and share the relationship among
video component files to satisfy requirements 2) and 3). Figure 5.2 offers a visual
overview of Demitasse. Initially, cameras shoot video content, divide it into compo-
nent video files, and store those files with Content Espresso. Then, the cameras store the
relationships among the files to the Catalogue System as catalogues. When a Demitasse
Client, a client-side application of Demitasse, plays back stored video, it retrieves the
catalogues from Catalogue System, obtains the GFIDs of the video component files, re-
trieves the video component files from Content Espresso, and plays them back one after
another.
Demitasse can deal with any type of file as a video component file. Thus, Demitasse

enables users to select the format of those files. For example, some producers may select
a single uncompressed frame image file as their preferred video component file, while
others some may select a single MPEG container file as their preferred video compo-
nent file. In this design and implementation, Demitasse uses a single uncompressed
frame image file as a single video component file to avoid any influence by encoding or
decoding and compression or decompression in the Demitasse Client.

5.3.2 Demitasse Catalogue

Demitasse uses Demitasse Catalogue, a special structure of catalogues, to store and
share the relations of video component files. Demitasse Catalogue should be designed
to take the features of video component files into account. First, each video has metadata
such as title, author, and frame rate that differs from video to video. In order to allow
users to use flexible metadata description, the Demitasse Catalogue should have a GFID
for the metadata file instead of managing the metadata directly as a property of the
catalogue. Thus, users can write the required metadata into the metadata file in their own
preferred fashion. Second, video content may have multiple angles, so the Demitasse
Client should be able to select an angle when it is in playback mode. In order to deal with
multi-angle video, Demitasse Catalogue thus needs a GFID of the file that contains the
angle information for each video component file and the Catalogue ID of the catalogue
that contains the GFIDs of the different angles. Finally, a user often wants to move
through their video content both directions forward and backward rapidly. In order
to start playback from any component files immediately in the Demitasse Client, the

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 62

Catalogue
System

Content
Espresso

Camera 1 Camera 2

Demitasse
Client

Store
reference
information

Store
frame files

Retrieve
catalogues

Retrieve
frame files

Reconstruction of
video and playback

Figure 5.2: Overview of Demitasse. Demitasse uses Catalogue System to store the
file relations between video component files and Content Espresso to store the video
component files temselves.

Demitasse Catalogue should have a hierarchical structure that allows users to seek the
GFID of a specific component file.

The Demitasse Catalogue is designed as shown in Figure 5.3. It is composed of five
types of catalogue: video metadata catalogue, video catalogue, segment catalogue,man-
ual catalogue, and viewpoint catalogue. Each circle in Figure 5.3 describes an object,
either a GFID or a Global Catalogue ID (GCID). The first object of each catalogue is a
GCID of that catalogue. A video metadata catalogue stores the GCID of a single video
catalogue and a single GFID of the video metadata file. The video metadata file, written
in XML, includes the title, author, frame rate, and total number of frames and is stored
in a storage system such as a local file system or Content Espresso. A video catalogue
stores the order of GCIDs of a segment catalogue. The last object in a video catalogue is
the endpoint object, which indicates the end of the video. A segment catalogue includes
the order of the GCIDs of manual catalogues; the number of manual catalogues inside
a single segment catalogue can be determined by the creator of a particular Demitasse
catalogue. In the current implementation, however, a single segment catalogue contains
one second of video content. Thus, if the frame rate of the video is 30fps, each seg-
ment catalogue contains 30 manual catalogues. A manual catalogue contains a GCID
of the viewpoint catalogue and a GFID of the manual file. The manual file, written in
XML, has the metadata of the viewpoint catalogue, such as the number of viewpoints
and the resolution of each viewpoint. The viewpoint catalogue stores one or more video
component file GFIDs.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 63

Video
Catalogue

1

2

3

Segment Catalogue

(CAM1)

(CAM2)

Viewpoint
Catalogue

Manual
Catalogue

Manual File (XML)

Video Metadata Catalogue

2

3

E

E

Figure 5.3: Video content description using Catalogue.

5.3.3 Demitasse Catalogue API
A Demitasse Catalogue has a complicated structure, which can make it difficult for
users to seek and find a specific GFID by using the Catalogue Client API provided by
Catalogue System. Therefore, Demitasse provides users with an API written in C++ to
deal with Demitasse Catalogues more easily. The API has six main functions, as shown
in Table 5.1.
The function setMetaInfoCatalogue() sets the GCID of the video content’s

video metadata catalogue. When this function is called, the function accesses the Cat-
alogue Server and retrieves the requested video metadata catalogue by using Catalogue
Client API. Then, the function acquires the GCID of the video catalogue and the GFID
of the video metadata file from the video metadata catalogue. When getMetaInfo()
is called, the function reads the video metadata file from the storage and parses it. Demi-
tasse can access video metadata by using the getMetaInfo() function.
The loadVideoCatalogue() function is used to retrieve the video catalogue

from the Catalogue Server by using the GCID in the video metadata catalogue. The
video catalogue has multiple GCIDs for the segment catalogues. When the start()

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 64

Table 5.1: Demitasse Catalogue API functions.
Function Argument
int setMetaInfoCatalogue (CATALOGID& mICatId)
int getMetaInfo (char* metaInfoString)
int start ()
bool next (FILEID& fileId, int camId)
bool nextAll (FILEID* fileId, int nCam)
int seek (int n)

function is called, the function retrieves the first and second segment catalogues from the
Catalogue Server. The function also parses the segment catalogues, acquires the GCIDs
of the manual catalogues, and retrieves and parses the manual catalogues. Each manual
catalogue contains the GCID of a viewpoint catalogue and the GFID of a manual file.
When the manual catalogue is retrieved and parsed, the function acquires the viewpoint
catalogue and the manual file.
The next() function is used to acquire the GFID of the next video component file.

The second argument of the next() function is angle identifier. Thus, Demitasse can
select the angle by changing the second argument. When the Demitasse requires the
GFIDs of all angles, the nextAll() function can be used.

5.3.4 System modules
Demitasse is composed of Content Espresso, Catalogue System, and Demitasse Client.
Content Espresso and the Catalogue System have been described in Chapter 2 and Sec-
tion 5.2 respectively. The Demitasse Client, which is detailed below, is composed of
four modules: Frame Buffer, Catalogue Receiver, Frame Receiver, and Frame Viewer.
Figure 6.5 lays out the relationship among these modules.

Frame Buffer

Frame Buffer is a ring buffer designed for sharing GFID and frame image data among
the Catalogue Receiver, Frame Receiver, and Frame Viewer. The size of the ring buffer
can be determined by users.
Each Frame Buffer entry has one of the five following statuses: NO FILEID,

SET FILEID, RECV WAIT, RECV FIN, or FEC FAIL. NO FILEID indicates that the
Frame Buffer entry does not have the file ID of a video component file. SET FILEID
indicates that the Frame Buffer entry does have a valid video component file ID but
Demitasse Client has not yet requested the file to Content Espresso. RECV WAIT indi-
cates that the Frame Buffer entry has a valid video component file ID and that Demitasse
Client is retrieving the file from Content Espresso. RECV FIN indicates the file from
Content Espresso. RECV FIN indicates that the Demitasse Client has retrieved the video
component file from Content Espresso and that the retrieved data is valid. FEC FAIL

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 65

Chunk Servers

Catalogue Client API

File Manager

Content
Espresso

Frame Viewer

Demitasse
Catalogue

Demitasse
Espresso

Demitasse
Client

Catalogue System

Catalogue Server

Frame Buffer

Espresso
Client API

Demitasse
Espresso

Espresso
Client API…

Figure 5.4: Demitasse has four modules: Frame Buffer, Catalogue Receiver, Frame
Receiver, and Frame Viewer.

indicates that the Demitasse Client has retrieved the video component file from Content
Espresso and that the retrieved data is invalid due to a failure in Content Espresso in
recovering undelivered chunks.
Frame Buffer manages three pointers: SET FILEID POINTER, RE-

CEIVE FRAME POINTER, and VIEW FRAME POINTER. SET FILEID POINTER
indicates the frame buffer entry at which Catalogue Receiver should insert the next
GFID. RECEIVE FRAME POINTER indicates the frame buffer entry at which Frame
Receiver should obtain a GFID to send a file retrieval request to Content Espresso
and store the retrieved file data. VIEW FRAME POINTER indicates the frame buffer
entry at which Frame Viewer should obtain the video component file data for playback
purposes.

Catalogue Receiver

The Catalogue Receiver accesses a Catalogue Server to retrieve each catalogue that com-
poses the overall Demitasse Catalogue, acquires the GFID that the Demitasse Client
should play back next, and inserts the GFID into the frame buffer entry that is indicated
by the SET FILEID POINTER using the Demitasse Catalogue API. Figure 5.6 details
the workflow of a Catalogue Receiver thread, which consists of an initial phase and a
catalogue insertion phase. In the initial phase, the Catalogue Receiver sets the GCID of
the MetaInfo catalogue by using the setMetaInfoCatalogue() function and re-
trieves the MetaInfo catalogue by using the getMetaInfo() function. The MetaInfo

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 66

SET_FILEID
_POINTER

NO_FILEID
NO_FILEID

N
O

_FILEIDR
EC

V_
FI

N

RECV_F
IN

RECV_FIN

SET_FILEID
SET_F

ILEID

SE
T_

FI
LE

ID

SE
T_

FI
LE

ID

RECV_WAIT

RECV_WAIT

Frame Viewer thread

RECEIVE_FRAME
_POINTER

VIEW_FRAME
_POINTER

cccccccc
Frame Receiver

threads

Catalogue Receiver
thread

Frame
Buffer

Figure 5.5: Frame Buffer and the status of each entry; Frame Buffer
has set the SET FILEID POINTER, the RECEIVE FRAME POINTER, and the
VIEW FRAME POINTER.

file that contains the metadata of the video is retrieved and parsed with the getMetaInfo()
function, after which the metadata is shared with Frame Receiver, Frame Viewer, and
Frame Buffer.

The catalogue insertion phase begins when the start() function is called and
continues until the next() function in the Demitasse Catalogue API returns a value
of −1. First, the Catalogue Receiver locks the SET FILEID MUTEX, acquires the
pointer of the Frame Buffer entry that the SET FILEID POINTER points, increases
the SET FILEID POINTER, and unlocks the SET FILEID MUTEX. Then, the Cata-
logue Receiver locks the BUFFER MUTEX of the Frame Buffer entry and checks its
status. If the status is not NO FILEID, the Catalogue Receiver sleeps until the status
becomes NO FILEID. Otherwise, the Catalogue Receiver acquires the next GFID with
the next() function, stores the GFID in the Frame Buffer entry, changes the status
to SET FILEID, unlocks the BUFFER MUTEX, and notifies the Frame Receiver that
the BUFFER MUTEX has been unlocked. Finally, the Catalogue Receiver sleeps for a
short time before continuing the catalogue insertion phase to adjust the GFID insertion
rate. When the Frame Receiver works on multiple threads and the catalogue insertion
rate becomes too rapid, simultaneous file retrieval requests to Content Espresso occur,
which can cause chunk losses due to high network utilization.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 67

Acquire
the Video Metadata

Catalogue

End of the Catalogue

Acquire the pointer of the
Frame Buffer entry

Finish

Acquire the video
metadata file

Acquire the next GFID

Insert the next GFID to the
Frame Buffer entry

Change the status of the
Frame Buffer entry to

SET_FILEID

Increment the
SET_FILEID_POINTER

Sleep to control the GFID
insertion rate

Figure 5.6: Flow chart of a Catalogue Receiver thread.

Frame Receiver

Frame Receiver acquires the GFID from the Frame Buffer entry indicated by RE-
CEIVE FRAME POINTER, retrieves the frame image file from Content Espresso by
using Content Espresso Client API and stores the retrieved frame image data in the
Frame Buffer entry. Figure 5.7 details the workflow of a Frame Receiver thread, which
consists of an initial phase and a frame retrieval phase. In the initial phase, the Frame
Receiver establishes a connection with the Home File Manager, is authenticated by the
Home File Manager, and sets up the parameters, such as chunk retrieval rate, for retriev-
ing frame image files from Content Espresso.
The frame retrieval phase continues until the Catalogue Receiver finishes inserting the

GFID. First, the Frame Receiver locks the RECVFRAME MUTEX, acquires the pointer
of the Frame Buffer entry that the FRAME RECV POINTER indicates, increases the
FRAME RECV POINTER, and unlocks the RECVFRAME MUTEX. Then, the Frame
Receiver locks the BUFFER MUTEX of the Frame Buffer entry and checks its status.
If the status is not SET FILEID, the Frame Receiver sleeps until the status becomes
SET FILEID. Otherwise, the Frame Receiver acquires the GFID from the Frame Buffer
entry, allocates a buffer for the frame image file, and retrieves the frame image file from
Content Espresso. If the complete frame image file is received, the Frame Receiver
copies the received frame image data to the bitmap buffer in the Frame Buffer entry, and
changes the status to RECV FIN. Otherwise, the Frame Receiver changes the status to
FEC FAIL. Finally, the Frame Receiver unlocks the BUFFER MUTEX and notifies the
Frame Viewer that the BUFFER MUTEX has been unlocked.

Frame Viewer

Frame Viewer acquires the frame image data from the Frame Buffer entry indicated by
the VIEW FRAME POINTER and examines it, along with the frame rate written in the
video metadata file. Figure 5.8 details the workflow of a Frame Viewer thread, which

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 68

Connect to File Manager

End of the frames

Acquire the pointer of the
Frame Buffer entry

Finish

Authentication

Acquire the frame data
from Content Espresso

Load the frame data to the
bitmap buffer

Change the status of the
Frame Buffer entry to

RECV_FIN

Increment the
RECV_FRAME_POINTER

Change the status of the
Frame Buffer entry to

FEC_FAIL

Frame retrieval
failure

Figure 5.7: Flow chart of a Frame Receiver thread.

consists of an initial phase and a frame view phase. In the initial phase, the Frame
Viewer acquires the frame rate from video metadata shared by the Catalogue Receiver,
initializes OpenGL resources, and creates a window to view the frames. The frame view
phase continues until the all frames have been viewed or the window is closed by the
user.
First, the Frame Viewer acquires the pointer of the Frame Buffer entry indicated by

the VIEW FRAME POINTER. Then, the Frame Viewer locks the BUFFER MUTEX
and checks the status of the Frame Buffer entry. If the status is RECV FIN, the Frame
Viewer displays the frame image data to the window. If the status is FEC FAIL, the
Frame Viewer skips to display the frame. After that, the Frame Viewer changes the status
to NO FILEID and unlocks the BUFFER MUTEX. The Frame Viewer has to adjust the
frame display timing to satisfy the specified frame rate; the method for adjusting the
frame display timing is discussed in Subsection 5.3.6.

5.3.5 File retrieval interval

Demitasse Client has multiple Frame Receivers to retrieve frame files from Content
Espresso. If simultaneous file retrieval requests to Content Espresso occur, network
congestion can develop. Since Content Espresso uses UDP to retrieve chunks from
Chunk Servers, network congestion can cause significant packet losses, which in turn
leads to frame file retrieval failure in the Demitasse Client. Thus, Demitasse Client must
have a mechanism to control the file retrieval interval.
In order to avoid excessive simultaneous requests to Content Espresso, the Catalogue

Receiver controls the GFID insertion intervals. When there is no Frame Buffer entry

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 69

Initialize OpenGL

End of the video

Acquire the pointer of the
Frame Buffer entry

Finish

Create window for playback

Display the frame
Change the status of the

Frame Buffer entry to
NO_FILEID

Increment the
VIEW_FRAME_POINTER

Sleep to control the
frame rate

Status of the
Frame Buffer entry?

FEC_FAIL

RECV_FIN

Figure 5.8: Flow chart of a Frame Viewer thread.

with a status of SET FILEID and the Catalogue Receiver stops inserting GFIDs, the
Frame Receiver sleeps until the Catalogue Receiver inserts a newGFID. Therefore, if the
Catalogue Receiver inserts GFIDs at set intervals, the Frame Receiver will request frame
files from Content Espresso at the same intervals. The request interval is determined by
the size of the frame file S f rame, the chunk retrieval rate Rrecv, and the frame rate R f rame.
The request interval should be faster than the frame-viewing interval Tview and slower
than the chunk retrieval time Trecv. Tview and Trecv are calculated as follows:

Tview =
1

R f rame
(5.1)

Trecv =
S f rame

Rrecv
(5.2)

In the current implementation, the request interval is a little shorter than the frame
viewing interval to avoid the starvation of retrieved frame files in the Frame Buffer.
The Frame Buffer enables the Frame Viewer to continue to display video content even
though frame retrieval may have stopped for a short time. After buffered frames have
been consumed, the remainder of buffered frames becomes low and it is necessary to
increase the buffered frames to deal with the next frame retrieval stopping. If the request
interval is equal to the frame viewing interval, the number of buffered frames will no
longer increase. Thus, the request interval Trequest is defined as follows where the buffer
recovering rate is Rrecover:

Trequest =
1

R f rame + Rrecover
(5.3)

The buffer recovering rate Rrecover means an increase of Rrecover buffered files per sec-
ond. For example, when Rrecover is five, five buffered frames increase every second until
all Frame Buffer entries are occupied. Rrecover is determined by taking the available net-
work bandwidth into account. In the current implementation, Rrecover is set to one. This
buffer increasing mechanism is termed the buffer recovering mechanism.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 70

5.3.6 Frame rate adjusting mechanism

The Frame Viewer plays back retrieved frame files with the frame rate defined in the
MetaInfo file. The Demitasse Client uses OpenGL for displaying the frame files.
Since OpenGL does not have a frame rate control mechanism, it is necessary to im-
plement one. In order to adjust the frame rate, the Frame Viewer calculates the time
when the next frame should be displayed and waits until that time arrives by using
the usleep() function. First, the frame viewer obtains the base time tbase by using
gettimeofday() when the frame viewer displays the first frame. Then, the Frame
Viwer can calculate the time tn when the n-th frame should be displayed. After that,
the Frame Viewer calculates the sleep time Tsleep by using the current time. Both tn and
Tsleep can be calculated as follows by using the base time tbase, the frame rate R f rame, the
current time tcurrent, and the frame number n:

tn = tbase +
n

R f rame
Tsleep = tn − tcurrent (5.4)

5.3.7 Angle-switching mechanism

The Demitasse Client allows users to select specific angles in video content. The angle
information is written in theManual files by XML and are managed by Angle IDs, which
are consecutive numbers starting at zero; the default Angle ID is thus zero. When the
user changes the angle, the user inputs a specific Angle ID from an input device such as
a keyboard. The Frame Viewer detects the input and sends the requested Angle ID to
the Catalogue Receiver, which begins to select the file IDs that have the requested Angle
ID and inserting them into Frame Buffer entries. After the Frame Receiver retrieves the
new angle frame files, the Frame Viewer starts to display the requested angle frames.
Since the Demitasse Client has multiple Frame Buffer entries, an angle-switching delay
cannot be avoided.

5.4 Implementation of Demitasse

Demitasse Client is implemented with C++ and uses three external libraries and APIs:
OpenGL for displaying frames, Catalogue Client API for accessing the Catalogue Sys-
tem to retrieve catalogues, and Content Espresso Client API for accessing Content
Espresso to retrieve files.
OpenGL [18] is the computer industry’s standard API for defining 2-D and 3-D

graphic images. In order to use OpenGL with simple functions, GLFW [19] is used.
GLFW is an open source, multiplatform library for OpenGL that provides a simple API
for both creating windows, contexts, and surfaces and receiving input and events.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 71

5.5 Evaluation of Demitasse

5.5.1 Evaluation overview
Demitasse is a network-oriented UHD video playback system using that uses Content
Espresso and Catalogue System. The basic function of the Demitasse Client is retrieving
video component files and viewing them at a specified frame rate. In its current imple-
mentation, the Demitasse Client supports a bitmap image file as a video component file.
In this section, the file retrieval interval-adjusting mechanism, the frame rate control
mechanism, and the Frame Buffer recovering mechanism of the Demitasse Client are all
evaluated.

5.5.2 Experimental setup
In order to evaluate Demitasse, 72 Chunk Servers, a single File Manager, a single Stor-
age Allocator, a single Catalogue Server, and a single Demitasse Client were set up. In
addition, a tcpdump machine was also set up to capture packets. The tcpdump machine
had 10Gbps NIC and was connected with an optical coupler to the same NETGEAR
port switch that was connected to the Demitasse Client. An optical coupler can split
transmission data from optical fibers. Thus, the tcpdump machine can capture all pack-
ets with a destination of the Demitasse Client. The reason for preparing the tcpdump
machine in isolation from the Demitasse Client is to avoid having the tcpdump process
occupy the CPU of the Demitasse Client. Figure 5.9 describes the Demitasse evaluation
environment.
In order to evaluate Demitasse, two types of video content were used; uncompressed

UHD and uncompressed Full HD. Each kind of content was split into uncompressed
frame files and stored in Content Espresso. Table 5.2 shows the file type, file size, and
encoded file size of each frame image file. The file type shows the format of the frame
image file. In its current implementation, Demitasse can deal with bitmap files. File size
shows the size of each frame file, and the encoded file size is the size of the original file
size and the redundant data added by Content Espresso. These frame files are stored in
Content Espresso with the parameters shown in Table 5.3. In addition, in order to play
back the frame files in the Demitasse Client, five Demitasse Catalogues were created;
UHD 15fps, UHD 30fps, Full HD 15fps, Full HD 30fps, and Full HD 60fps, as shown
in Table 5.4. Since the available network bandwidth of Demitasse Client is 10Gbps, the
maximum frame rate of UHD video is 30fps, and since the maximum frame rate of the
Demitasse Client monitor is 60fps, the maximum frame rate of Full HD video is 60fps.

5.5.3 File retrieval interval
Demitasse determines the chunk retrieval rate when it retrieves the frame image files
from Content Espresso. The chunk retrieval rate should be faster than the video through-
put with FEC, as shown in Table 5.4. In this evaluation, the Demitasse Client plays back

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 72

12 Chunk Servers

Cluster 1

File Manager
Storage
Allocator

1Gbps

12 Chunk Servers

Cluster 2
12 Chunk Servers

Cluster 3
12 Chunk Servers

Cluster 4
12 Chunk Servers

Cluster 5
12 Chunk Servers

Cluster 6

1Gbps x 12 1Gbps x 12

10Gbps x 4 10Gbps x 2

10Gbps x 4

Demitasse
Client

IBM

Dell Dell

NETGEAR

Catalogue
Server

10Gbps 10Gbps

10Gbps

tcpdump
machine

optical
coupler

Figure 5.9: Experimental environment for evaluating Demitasse.

Table 5.2: Frame image specifications for the evaluation.

Image Size File Type File Size Enc File Size
UHD (3840 x 2160) 24bit BMP 24,883,254 byte 29,971,254 byte
Full HD (1920 x 1080) 24bit BMP 6,220,854 byte 7,492,854 byte

Table 5.3: Content Espresso parameters when frame image files are stored.

Parameter Name Parameter
Number of Clusters 6
Number of Chunk Servers 72
Chunk Size 1272
HData 1000
HParity 200

Full HD 15fps, Full HD 30fps, and Full HD 60fps videos with several chunk retrieval
rates and captures the arrival chunks by using the tcpdump machine shown in Figure 5.9.
After that, the captured data is analyzed and visualized to display the chunk arrival rate.
The Frame Receiver has to retrieve the video component files faster than video

throughput with FEC. For example, the video throughput with FEC of Full HD 15fps

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 73

Table 5.4: Video specifications for the evaluation.

Image Size Frame
rate

Video throughput Video throughput
with FEC

UHD (3840 x 2160) 15fps 2.99Gbps 3.60Gbps
UHD (3840 x 2160) 30fps 5.97Gbps 7.19Gbps
Full HD (1920 x 1080) 15fps 747Mbps 899Mbps
Full HD (1920 x 1080) 30fps 1.49Gpbs 1.80Gbps
Full HD (1920 x 1080) 60fps 2.99Gbps 3.60Gbps

video is 899Mbps, so the Frame Receiver should set a chunk retrieval rate faster than
899Mbps to take the chunk retrieval overhead of Content Espresso, such as accessing
File Manager, into due consideration.
In this evaluation, the chunk retrieval rates were set at 1Gbps, 2Gbps, 3Gbps, 4Gbps,

and 5Gbps for Full HD 15fps video playback. Figure 5.10 presents the respective chunk
arrival rates for one second; the file retrieval times become longer when the chunk re-
trieval rate is slower. This long chunk retrieval time might cause simultaneous file re-
trieval, which can lead to significant packet losses. Thus, the user should set a chunk
retrieval rate that is much faster than the video throughput with FEC so as to achieve
stable file retrieval.
The chunk retrieval rates were set at 3Gbps, 3.5Gbps, 4Gbps, 4.5Gbps, and 5Gbps in

the evaluation of Full HD 30fps, and at 4Gbps, 4.5Gbps, 5Gbps, 5.5Gbps, and 6Gbps
in the evaluation of Full HD 60fps, taking the video throughput with FEC into consid-
eration. Figures 5.11 and Figure 5.12 present the respective chunk arrival rates for one
second of those videos. The results show a trend that is similar to what was found with
Full HD 15fps video. The overall evaluation results confirm that the file retrieval interval
mechanism works correctly.

5.5.4 Frame rate control

Demitasse Client’s frame rate control mechanism, described in Subsection 5.3.6, was
evaluated by measuring the average frame rate every second in Full HD 15fps, Full HD
30fps, Full HD 60fps, UHD 15fps, and UHD 30fps video playback with 2Gbps, 4Gbps,
6Gbps, and 8Gbps retrieval rates. Figures 5.13 and 5.14 present the results for 100 sec-
onds of Full HD and UHD video respectively. The average frame rate of the first period
is faster than the expected frame rate in all measurements, because frame rate control-
ling does not work for the first several frames in the current Demitasse implementation.
After this initial period, the frame rate remains stable at all retrieval rates in Full HD
video playback. Therefore, these evaluation results confirm that the frame rate control
mechanism works well for Full HD video playback. In UHD 15fps video playback, the
frame rate is stable after the first period at any retrieval rate. However, in UHD 30fps

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 74

video playback, the frame rate is comparatively unstable at any retrieval rate, which
results from much of the CPU’s resources being utilized for retrieving chunks. As a re-
sult, Frame Viewer as implemented by OpenGL becomes a little unstable in displaying
each frame image. Nevertheless, the frame rate remains between 29 and 31. Therefore,
the results of this evaluation confirm that the frame rate control mechanism works well,
overall, in UHD video playback.

5.5.5 Frame Buffer status
Demitasse has a Frame Buffer for sharing GFIDs between the catalogue thread and
frame recv threads, store retrieved frame files from Content Espresso, and send frame
files to the frame play thread. A Frame Buffer has 30 entries, each of which has
one of the following statuses: NO FILEID, SET FILEID, RECV WAIT, RECV FIN,
FEC FAIL, or VIEW WAIT.
In this evaluation, Demitasse played back Full HD 15fps, Full HD 30fps, Full HD

60fps, UHD 15fps, and UHD 30fps video at 2Gbps, 4Gbps, 6Gbps, and 8Gbps retrieval
rates. The number of different statuses of Frame Buffer entries and the total number
of lost frames were measured every second for the first 100 seconds, and the results of
those measurements were visualized. Figures 5.15 to 5.17 present the measurements of
Full HD video playback and Figures 5.18 and 5.19 present the measurements of UHD
video playback. The x-axis is the number of frames, the right y-axis is the status of each
Frame Buffer entry, and the left y-axis is the number of lost frames. In Full HD video
playback, no frame files were lost during the measurement.
In the first measurement in Figure 5.15 (a), for example, 27 Frame Buffer entries had

NO FILEID status, one Frame Buffer entry had RECV WAIT status, and two Frame
Buffer entries had RECV FIN status. In its current implementation, the Demitasse
Client starts playing back the video as soon as the first frame file arrives; it does not
wait until the Frame Buffer is filled. Thus, 27 of 30 Frame Buffer entries are empty and
only two frames are buffered at the first measurement. The number of buffered frames
increases every measurement because the Demitasse Client has the Frame Buffer recov-
ering mechanism discussed in Subsection 5.3.5. Since the buffer recovering rate is set
at one in the current parameters, there is an increase of one buffered frame with each
measurement. This phase is called the buffering phase. After the buffering phase, 29 of
30 Frame Buffer entries take RECV FIN status and the number of RECV FIN entries
do not change. This phase is called the stable phase.
Frame Buffer entries with SET FILEID appeared in only one measurement shown

in Figure 5.17 because the Demitasse Client measures the status of the Frame Buffer
entries every second, but the Frame Receiver changes the status of the Frame Buffer
entry to RECV WAIT as soon as the Frame Receiver finds the SET FILEID status entry
and the Demitasse Client has a sufficient number of Frame Receivers.
The number of RECV WAIT entries increases when the frame rate increases, the file

retrieval rate decreases, and the frame size increases. For example, while the number
of RECV WAIT entries is zero in the stable phase of Full HD 15fps playback with a

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 75

2Gbps retrieval rate, it is two in the stable phase of Full HD 60fps playback at a 2Gbps
retrieval rate, as shown in Figure 5.15 (a) and Figure 5.17 (a). While there is only one
RECV WAIT entry is one in the stable phase of UHD 30fps playback at an 8Gbps re-
trieval rate, there are four in the stable phase of UHD 30ps playback at a 2Gbps retrieval
rate, as shown in Figure 5.19 (d) and Figure 5.19 (a). While the number of RECV WAIT
entries is zero in the stable phase of Full HD 15fps playback at a 2Gbps retrieval rate,
it is two in the stable phase of UHD 15fps playback at a 2Gbps retrieval rate, as shown
in Figure 5.15 (a) and Figure 5.18 (a). It is necessary to retrieve frame files with higher
throughput when the frame rate increases, when the file retrieval rate decreases, and
when the frame size increases. Thus, the Demitasse Client has to retrieve the frame files
using multiple Frame Receiver threads. Since the number of RECV WAIT entries is the
number of Frame Receiver threads working simultaneously, the number of RECV WAIT
entries increase when the frame rate increases, when the file retrieval rate decreases, and
when the frame size increases. High throughput file retrieval causes network congestion
that can lead to frame file retrieval failures. In this experiment, frame loss only occurred
in UHD 30fps video playback at retrieval rates above 4Gbps. In order to achieve stable
file retrieval and playback, it is necessary to determine the appropriate file retrieval rate.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 76

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
250000
500000
750000

1·106

1.25·106

1.5·106
B

it
s/

s

(a) Retrieval rate is 1Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
400000
800000
1.2·106

1.6·106

2·106

2.4·106

B
it

s/
s

(b) Retrieval rate is 2Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0

600000

1.2·106

1.8·106

2.4·106

3·106

B
it

s/
s

(c) Retrieval rate is 3Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
600000
1.2·106
1.8·106
2.4·106

3·106
3.6·106
4.2·106

B
it

s/
s

(d) Retrieval rate is 4Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
800000
1.6·106
2.4·106
3.2·106

4·106
4.8·106
5.6·106

B
it

s/
s

(e) Retrieval rate is 5Gbps.

Figure 5.10: Chunk arrival rate in Full HD at 15fps.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 77

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0

600000

1.2·106

1.8·106

2.4·106

3·106
B

it
s/

s

(a) Retrieval rate is 3Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
600000
1.2·106

1.8·106

2.4·106

3·106

3.6·106

B
it

s/
s

(b) Retrieval rate is 3.5Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
600000
1.2·106
1.8·106
2.4·106

3·106
3.6·106
4.2·106

B
it

s/
s

(c) Retrieval rate is 4Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
800000
1.6·106

2.4·106

3.2·106

4·106

4.8·106

B
it

s/
s

(d) Retrieval rate is 4.5Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
800000
1.6·106
2.4·106
3.2·106

4·106
4.8·106
5.6·106

B
it

s/
s

(e) Retrieval rate is 5Gbps.

Figure 5.11: Chunk arrival rate in Full HD at 30fps.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 78

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
1·106
2·106
3·106
4·106
5·106
6·106
7·106

B
it

s/
s

(a) Retrieval rate is 4Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
800000
1.6·106

2.4·106

3.2·106

4·106

4.8·106

B
it

s/
s

(b) Retrieval rate is 4.5Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
800000
1.6·106
2.4·106
3.2·106

4·106
4.8·106
5.6·106

B
it

s/
s

(c) Retrieval rate is 5Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
1·106

2·106

3·106

4·106

5·106

6·106

B
it

s/
s

(d) Retrieval rate is 5.5Gbps.

0 0.15 0.3 0.45 0.6 0.75 0.9
Time (s)

0
1·106
2·106
3·106
4·106
5·106
6·106

B
it

s/
s

(e) Retrieval rate is 6Gbps.

Figure 5.12: Chunk arrival rate in Full HD at 60fps.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 79

12

13

14

15

16

17

18

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

Pl
ay

ba
ck

 fr
am

es
/s

ec
on

d

Frame #

2Gbps

4Gbps

6Gbps

8Gbps

(a) Full HD 15fps.

27

28

29

30

31

32

33

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

Pl
ay

ba
ck

 fr
am

es
/s

ec
on

d

Frame #

2Gbps

4Gbps

6Gbps

8Gbps

(b) Full HD 30fps.

56

57

58

59

60

61

62

63

64

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

Pl
ay

ba
ck

 fr
am

es
/s

ec
on

d

Frame #

2Gbps

4Gbps

6Gbps

8Gbps

(c) Full HD 60fps.

Figure 5.13: Frame rate stability in Full HD playback.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 80

12

13

14

15

16

17

18

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

Pl
ay

ba
ck

 fr
am

es
/s

ec
on

d

Frame #

2Gbps

4Gbps

6Gbps

8Gbps

(a) UHD 15fps.

27

28

29

30

31

32

33

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

Pl
ay

ba
ck

 fr
am

es
/s

ec
on

d

Frame #

2Gbps

4Gbps

6Gbps

8Gbps

(b) UHD 30fps.

Figure 5.14: Frame rate stability in UHD playback.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 81

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(a
)
R
et
ri
ev
al
ra
te
is
2G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(b
)
R
et
ri
ev
al
ra
te
is
4G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(c
)
R
et
ri
ev
al
ra
te
is
6G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(d
)
R
et
ri
ev
al
ra
te
is
8G

bp
s.

Fi
gu
re

5.
15

:F
ra
m
e
bu
ff
er

st
at
us

in
15

fp
s
Fu

ll
H
D
vi
de
o
pl
ay
ba
ck

w
ith

2
-8

G
bp
s
re
tr
ie
va
l.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 82

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(a
)
R
et
ri
ev
al
ra
te
is
2G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(b
)
R
et
ri
ev
al
ra
te
is
4G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(c
)
R
et
ri
ev
al
ra
te
is
6G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(d
)
R
et
ri
ev
al
ra
te
is
8G

bp
s.

Fi
gu
re

5.
16

:F
ra
m
e
bu
ff
er

st
at
us

in
30

fp
s
Fu

ll
H
D
vi
de
o
pl
ay
ba
ck

w
ith

2
-8

G
bp
s
re
tr
ie
va
l.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 83

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

60
240
420
600
780
960

1140
1320
1500
1680
1860
2040
2220
2400
2580
2760
2940
3120
3300
3480
3660
3840
4020
4200
4380
4560
4740
4920
5100
5280
5460
5640
5820
6000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(a
)
R
et
ri
ev
al
ra
te
is
2G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

60
240
420
600
780
960

1140
1320
1500
1680
1860
2040
2220
2400
2580
2760
2940
3120
3300
3480
3660
3840
4020
4200
4380
4560
4740
4920
5100
5280
5460
5640
5820
6000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(b
)
R
et
ri
ev
al
ra
te
is
4G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

60
240
420
600
780
960

1140
1320
1500
1680
1860
2040
2220
2400
2580
2760
2940
3120
3300
3480
3660
3840
4020
4200
4380
4560
4740
4920
5100
5280
5460
5640
5820
6000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(c
)
R
et
ri
ev
al
ra
te
is
6G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

60
240
420
600
780
960

1140
1320
1500
1680
1860
2040
2220
2400
2580
2760
2940
3120
3300
3480
3660
3840
4020
4200
4380
4560
4740
4920
5100
5280
5460
5640
5820
6000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(d
)
R
et
ri
ev
al
ra
te
is
8G

bp
s.

Fi
gu
re

5.
17

:F
ra
m
e
bu
ff
er

st
at
us

in
60

fp
s
Fu

ll
H
D
vi
de
o
pl
ay
ba
ck

w
ith

2
-8

G
bp
s
re
tr
ie
va
l.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 84

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(a
)
R
et
ri
ev
al
ra
te
is
2G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(b
)
R
et
ri
ev
al
ra
te
is
4G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(c
)
R
et
ri
ev
al
ra
te
is
6G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

15
60

105
150
195
240
285
330
375
420
465
510
555
600
645
690
735
780
825
870
915
960

1005
1050
1095
1140
1185
1230
1275
1320
1365
1410
1455
1500

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(d
)
R
et
ri
ev
al
ra
te
is
8G

bp
s.

Fi
gu
re

5.
18

:F
ra
m
e
bu
ff
er

st
at
us

in
15

fp
s
U
H
D
vi
de
o
pl
ay
ba
ck

w
ith

2
-8

G
bp
s
re
tr
ie
va
l.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 85

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(a
)
R
et
ri
ev
al
ra
te
is
2G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(b
)
R
et
ri
ev
al
ra
te
is
4G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(c
)
R
et
ri
ev
al
ra
te
is
6G

bp
s.

0 1 2 3 4 5 6 7 8 9 10

0 5 10

15

20

25

30

30
120
210
300
390
480
570
660
750
840
930

1020
1110
1200
1290
1380
1470
1560
1650
1740
1830
1920
2010
2100
2190
2280
2370
2460
2550
2640
2730
2820
2910
3000

of lost frames

Status of each frame buffer entry

Fr
am

e

V
IE

W
_W

A
IT

FE

C
_F

A
IL

R

E
C

V
_F

IN

R
E

C
V

_W
A

IT

S
E

T_
FI

LE
ID

N

O
_F

IL
E

ID

LO
S

S

(d
)
R
et
ri
ev
al
ra
te
is
8G

bp
s.

Fi
gu
re

5.
19

:F
ra
m
e
bu
ff
er

st
at
us

in
30

fp
s
U
H
D
vi
de
o
pl
ay
ba
ck

w
ith

2
-8

G
bp
s
re
tr
ie
va
l.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 5. DEMITASSE: A NETWORK-ORIENTED UHD VIDEO
PLAYBACK SYSTEM 86

5.6 Summary
This chapter introduced Demitasse, a file-based video content playback system using
Content Espresso, and Catalogue System, as an example of Content Espresso appli-
cations. Demitasse stores video component files to Content Espresso and the relations
among those files as a Demitasse Catalogue to Catalogue System. The Demitasse Client,
which is a client-side application of Demitasse, retrieves the Demitasse Catalogue from
the Catalogue System, parses it, obtains the appropriate GFIDs, retrieves the correspond-
ing video component files from Content Espresso, and plays them back at the requested
frame rate. The Demitasse Client is composed of four modules: Frame Buffer, Cata-
logue Receiver, Frame Receiver, and Frame Viewer. The Demitasse Client is imple-
mented with Content Espresso API, Catalogue API, and OpenGL. In order to achieve
stable file retrieval and playback, a frame rate adjusting mechanism and a file retrieval
interval controlling mechanism are implemented. Although Demitasse is designed to
deal with any type of vide component files, the Demitasse Client supports a bitmap
image file as a video component file in its current implementation.
In order to evaluate the frame rate adjusting mechanism and the file retrieval interval

controlling mechanism, 79 physical machines including 72 Chunk Servers were pre-
pared to store video component files and the Demitasse Catalogue, and for playback of
the stored files. The results of the evaluation confirmed that both the frame rate adjust-
ing mechanism and the file retrieval interval controlling mechanism work correctly and
that Demitasse Client can play back, with acceptable stability, uncompressed Full HD
video files at up to 60fps and uncompressed UHD video files at up to 30fps. These re-
sults also mean that Content Espresso has enough storage IO performance to distribute
uncompressed UHD video content.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Chapter 6

Improvement of File Sharing
Performance of Web-Based
Collaboration Systems

6.1 Background

With the explosive growth in demand for remote collaboration over the Internet, many
web-based collaboration systems have been developed to support such work; examples
include Google Apps [20] and SAGE2 [2]. SAGE2 is a web-based collaboration system
that shares information on large high-resolution displays with other sites and enables
people in multiple locations to work together and view the same displays. Although
SAGE2 is useful for remote collaboration, it takes a long time to share large files like
high-resolution images between SAGE2 systems that are located far apart from each
other, because SAGE2 utilizes HTTP, a TCP-based protocol, to transmit files. Content
Espresso, a distributed storage system for global large file sharing, is designed and im-
plemented to provide a global high throughput large file sharing mechanism. Content
Espresso enables low cost data storage and high throughput file transmission regardless
of client location by using FEC and UDP, as described in Chapter 2.
This chapter aims to provide a high throughput file sharing mechanism for SAGE2

using Content Espresso that makes only minimal modifications to SAGE2. The mecha-
nism is offered based on three assumptions regarding remote collaboration with SAGE2.
First, multiple organizations located at various sites are involved in a remote collabora-
tion using SAGE2. Second, the SAGE2 system is installed in each organization. Finally,
each organization has multiple users who work with the SAGE2 system using their web
browsers.
An overview of the CE-based file sharing mechanism for SAGE2 is follows. First, the

files are stored in Content Espresso before sharing. Second, the file reference informa-
tion is shared among SAGE2 systems by using web technologies. Finally, each SAGE2
system accesses Content Espresso to retrieve files by using shared file reference infor-

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 88

Figure 6.1: A typical SAGE2 session; multiple SAGE2 applications are launched on the
Display Clients [2].

mation. To minimize modifications to SAGE2 and keep use the existing programming
approaches of today’s dominant web browsers, the Relay Server is introduced so that
SAGE2 systems can access Content Espresso. The Relay Server receives file retrieval
and storing requests from the SAGE2 system and relays them to Content Espresso. In
addition, the Relay Server serializes concurrent requests and caches the retrieved files to
manage and reduce network bandwidth utilization.
A CE-based file sharing mechanism for SAGE2 is designed and implemented. In or-

der to evaluate file sharing performance, Espresso Image Viewer, a simple bitmap image
viewer using Content Espresso, is developed as an application for SAGE2. The per-
formance of the CE-based file sharing mechanism is evaluated by comparing the file
sharing time using the CE-based mechanism with that using the original SAGE2 mech-
anism. The proposed mechanism can be applied to web-based collaboration systems
other than SAGE2 because it is designed and implemented using existing web browser-
based technologies.

6.2 Problems of SAGE2

6.2.1 Overview of SAGE2
SAGE2 is a collaborative platform for sharing information on large high-resolution dis-
plays with other sites. It enables groups to work together in front screens with the same
displays in order to solve problems that require managing a large volume of information
in high resolution. SAGE2 is implemented using cloud-based and browser-based tech-
nologies in order to enhance data-intensive collocated and remote collaboration. Figure
6.1 offers an example of collaborative work using SAGE2 at a single site.
A SAGE2 system consists primarily of the SAGE2 Server, Display Clients, SAGE2

applications, and Interaction Clients. The SAGE2 Server is a customized web server
that serves as the core component of the SAGE2 system. The Display Clients present

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 89

SAGE application windows on large high-resolution screens. SAGE2 applications pro-
vide users with a variety of functions to support collaborative work, while Interaction
Clients provide users with the ability to work with SAGE2. Users can launch SAGE2
applications to be viewed with the Display Clients and control those applications using
the Interaction Clients via their web browsers.
SAGE2 provides a JavaScript API to create native SAGE2 custom applications; this

enables rapid application integration and development in the community that is in-
terested in supporting multi-user collaborative environments. Thus, users are able to
develop SAGE2 custom applications with relative ease by using JavaScript and other
browser technologies such as jQuery [21].

6.2.2 Remote collaboration on SAGE2
When remote collaboration with SAGE2 involves two organizations, the SAGE2 system
is installed in each organization. Figure 6.2 shows an example of a remote collaboration
environment using SAGE2. The SAGE2 systems communicate with each other system
using HTTP.
The image file sharing procedure of SAGE2 between organization A and organization

B is as follows: 1) the image file is stored in the local storage of the SAGE2 Server at
organization A; 2) a user launches the default image viewer application and views the
image file on the Display Client in organization A using the Interaction Client; 3) that
user employs the Interaction Client to share the image file with organization B; 4) the
SAGE2 Server in organization B receives the file sharing request and relays it to the
organization B Display Client; 5) that Display Client launches its own default image
viewer application, and the application retrieves the image file from the SAGE2 Server
in the organization A using HTTP; 6) that default image viewer application shows the
image file.

6.2.3 Problems in large file sharing
Sharing large files with other organizations using SAGE2 has several problems. First, the
SAGE2 system uses HTTP to transmit the files to other SAGE2 systems. HTTP utilizes
TCP as its transport layer protocol, and TCP performance declines as the RTT between
end nodes increases. Thus, it can take an unacceptably long time to share large files with
other organizations, which and devalues the user experience with SAGE2 collaboration.
Second, the available network bandwidth is limited for any organization, no matter

the size. When collaborating members of one organization launch their SAGE2 applica-
tions and retrieve large files simultaneously, their network will likely become congested,
which causes file retrieval performance degradation and again affects productivity.
Finally, the SAGE2 application tends to retrieve the same files again when the ap-

plication is relaunched. In a collaborative work session, users must sometimes relaunch
applications or reload files, which only increases the stress on the organization’s network
bandwidth utilization.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 90

SAGE2 at Organization A SAGE2 at Organization B

Interaction Client

Interaction Client

SAGE2 Server

Display Clients
(web browser)

Interaction Client

Interaction Client

SAGE2 Server

Display Clients
(web browser)

Sharing
InformationLocal

Storage
Local

Storage

SAGE2 Apps.SAGE2 Apps.
HTTP

C
ontrol M

essage

Figure 6.2: An example of a remote collaboration environment using SAGE2 and the
image file sharing procedure.

6.3 Design of the proposed mechanism

6.3.1 System overview
This chapter proposes a CE-based file sharing mechanism to improve SAGE2’s large
file sharing performance. Content Espresso can deliver large files with high through-
put regardless of the RTT between SAGE2 systems because it utilizes UDP rather than
HTTP as a transport layer protocol. The Ticket File is introduced to share file reference
information between SAGE2 systems. Ticket files are shared using the existing SAGE2
file sharing mechanism because the value of SAGE2’s file sharing interface has been
demonstrated.
Suppose that a shared file is already stored in Content Espresso. After sharing the

Ticket File, each SAGE2 system retrieves the file from Content Espresso. Since major
modifications to the SAGE2 Server are necessary if it is to be made to access Content
Espresso, the proposed mechanism has SAGE2 applications access Content Espresso.
SAGE2 applications are written in JavaScript and work on Display Clients, one of which
is a web browser. Generally, web browsers do not receive UDP packets for security
reasons, so a Relay Server is introduced to facilitate message exchange between the
SAGE2 applications and Content Espresso. The Relay Server receives file retrieval re-
quests from the SAGE2 application using WebSocket, sends those requests to Content
Espresso, receives files, and pushes them to the requesting SAGE2 application(s). In
addition, the Relay Server serializes concurrent requests from SAGE2 applications and
caches the retrieved files to lower network bandwidth utilization. This mechanism can
be applied to web-based collaboration systems other than SAGE2 because it is designed
and implemented using existing web browser-based technologies.
Figure 6.3 offers an overview of the CE-based file sharing mechanism. First, the file is

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 91

SAGE2 at Organization A SAGE2 at Organization B

Interaction Client

Interaction Client

SAGE2 Server

Display Clients
(web browser)

Interaction Client

Interaction Client

SAGE2 Server

Display Clients
(web browser)

SAGE2 Apps.SAGE2 Apps.

Relay
Server

Content Espresso

Relay
Server

Sharing
Information

Ticket

Ticket

Ticket

HTTP

Relay

UDP

WebSocket

C
ontrol M

essage
Figure 6.3: Files are stored in Content Espresso; the Ticket File is shared among the
users on the existing web-based collaboration system.

stored in Content Espresso before sharing and its Ticket File is stored in the local storage
of the SAGE2 Server in organization A. Second, a user operates the Interaction Client
to share the Ticket File with the SAGE2 system in organization B. Third, the SAGE2
Server in organization B launches the SAGE2 Application and the SAGE2 Application
sends the file retrieval request to the Relay Server in organization B. Finally, the Relay
Server retrieves the file from Content Espresso and pushes the file to the requesting
SAGE2 Application via WebSocket.

6.3.2 Ticket File format

The proposed mechanism utilizes a Ticket File to share file reference information among
SAGE2 systems. The Ticket File is written in XML; its format is the same as the Ticket
File used in the multi-domain authentication and authorization system called Yamata-
no-Orochi [10, 11].
Figure 6.4 shows an example of the Ticket File format. The Service field describes the

service name that issues the Ticket File, the Date field shows the period of validity, the
Target field contains the file reference information, and the Ticket File is signed by the
service provider to protect the Ticket File from falsification. The Signature field has the
signature of the service provider. Since Content Espresso supports authentication and
authorization based on Yamata-no-Orochi, Content Espresso can provide file sharing
with reliable access control. Thus, the proposed mechanism can support authorized file
sharing if necessary.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 92

<?xml version="1.0"?>
<OrochiTicket>
 <Service>
 <ServiceName>Content_Espresso</ServiceName>
 <ServiceTicketId>6</ServiceTicketId>
 </Service>
 <Date>
 <IssueDate>2016-09-01T06:30:00</IssueDate>
 <NotValidBefore>2016-01-01T00:00:00</NotValidBefore>
 <NotValidAfter>2018-12-31T00:00:00</NotValidAfter>
 </Date>
 <Target>
 <Subjects>
 …………….
 </Subjects>
 <Resources>
 <Resource>00001732000000000000159000000001</Resource>
 </Resources>
 <Actions>
 <Action>Read</Action>
 </Actions>
 </Target>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 ……………
 </Signature>
</OrochiTicket>

GFID of the target file

Period of validity

Service information

Signature of the service provider

Figure 6.4: An example of the Ticket File format; the Resource field contains the GFID
of the target file.

6.3.3 Relay Server
The Relay Server is installed in each organization to provide SAGE2 applications with
an access interface to Content Espresso and to control the network bandwidth utilization
of the organizations. The Relay Server is composed of three components: WebSocket
Server, Request Manager, and Content Cache. Figure 6.5 presents the Relay Server
components and the relationship among Content Espresso, Relay Server, and SAGE2
applications.

WebSocket Server

WebSocket Server establishes WebSocket connections and accepts file retrieval and stor-
ing requests from SAGE2 applications running on the Display Clients. When the Web-
Socket Server receives a file retrieval request with a Ticket File from a SAGE2 appli-
cation, the WebSocket Server checks whether the Content Cache has the requested file.
If the file is found, WebSocket Server sends it to the SAGE2 application. Otherwise, it

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 93

places the request information in the Request Queue of the Request Manager and waits
until the file is delivered to the Content Cache, after which WebSocket Server sends
the file to the SAGE2 application. When the WebSocket Server receives a file storing
request from a SAGE2 application, it sends that request to Content Espresso using the
Content Espresso Client API. After the file is stored, the WebSocket Server receives a
Ticket File from the API and sends it on to the SAGE2 application.

Request Manager

The Request Manager has a Request Queue for serializing concurrent file retrieval re-
quests. WebSocket Server enqueues each file retrieval request with a Ticket File in the
Request Queue, while the Request Manager dequeues each request from the Request
Queue and sends it to Content Espresso using the Content Espresso Client API. After a
file is retrieved, the Request Manager places the retrieved file in the Content Cache and
notifies the WebSocket Server that file retrieval has been completed.
Request Manager manages the bandwidth utilization for file retrieval. Content

Espresso uses UDP to transmit chunks from Chunk Servers to clients. Excessive band-
width utilization causes packet loss and file retrieval performance degradation. Thus,
each client must determine the best chunk retrieval rate. The Request Manager controls
the file retrieval interval so as not to exceed the configured bandwidth.

Content Cache

The Content Cache keeps the data, GFID, status, and last access time of retrieved files
unless the available space for caching runs out. Retrieved files are likely to be requested
multiple times during collaborative work. If the Content Cache has the requested file,
that can reduce file retrieval time and bandwidth utilization. The size of a specific cache
space can be configured by a system administrator. When the cache space runs out, the
cache item that has not been used in the longest time is discarded so that a new cache
item can be inserted.
The Content Cache entry has two types of status: VALID and INVALID. The cache

entry is created by WebSocket Server when it enqueues the file retrieval request in the
Task Queue. A VALID status means that the cache entry has the correct file data, while
an INVALID status means that the cache entry does not have the file data because the
Request Manager did not finish retrieving the file.

6.4 Implementation

6.4.1 Relay Server
The Relay Server is implemented using the Content Espresso Client API in C++. Figure
6.6 presents the implementation of the Relay Server. The Relay Server is composed of a
Content Cache, a Task Queue, and two types of threads: WebSocket threads and Request

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 94

Chunk Servers

SAGE2 App.
Display
Clients

Espresso C++ API

File Manager

Content
Espresso

WebSocket Server

Content
Cache

SAGE2 App. SAGE2 App.

Request Manager Relay
Server

Figure 6.5: WebSocket Server, Request Manager, and Content Cache comprise the Relay
Server.

threads. A WebSocket thread is created for each WebSocket connection and receives the
file retrieval request from the web browser. Request threads are implemented using a
thread pool approach, dequeue file retrieval requests from the Task Queue, and send
them to Content Espresso using the Content Espresso Client API.

The Relay Server’s file retrieval procedure is as follows: 1) A SAGE2 application
establishes aWebSocket connection with theWebSocket Server; 2) the application sends
a Ticket File to the WebSocket Server; 3) the WebSocket Server parses the Ticket File
and acquires the file ID of the requested file; 4) theWebSocket Server checks whether the
Content Cache already has the requested file; 5) if the Content Cache has a cache entry
for the requested file and the cache status is VALID, the WebSocket Server sends the file
to theWeb browser using theWebSocket connection; 6) if the Content Cache has a cache
entry for the requested file but the cache status is INVALID, the WebSocket Server waits
until the status changes to VALID; 7) if the Content Cache does not have a cache entry
for the requested file, the WebSocket Server makes a cache entry with an INVALID
status in the Content Cache, enqueues the file retrieval request in the Task Queue, and
waits until file retrieval has been completed; 8) the Request Manager checks the Task
Queue, and if the request exists in the Task Queue, the Request Manager dequeues the
request and sends the file retrieval request to Content Espresso; 9) the Request Manager
finishes the file retrieval, adds the retrieved file to the cache entry, changes that status
to VALID, and notifies the WebSocket Server; 10) the WebSocket Server sends the
retrieved file to the web browser for use in the relevant SAGE2 application.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 95

WebSocket
Connection

Receive
Ticket File

…

Request Threads

Dequeue

Add Cache

C
on

te
nt

 E
sp

re
ss

oRequest

File

 or
Get Cache

Notify

No Cache
 Entry

HIT
Cache Cache Check

Retrieve Wait

Push
Task

N
o

Va
lid

 C
ac

he

Send
File

SA
G

E2
 A

pp
lic

at
io

n

File

Ticket File

WebSocket Threads

WebSocket
Hand Shake

Content Cache

Task Queue

Enqueue

Cache Check

Ticket

File or

 or

Figure 6.6: The Relay Server is composed of the Content Cache, the Task Queue, and
two types of threads, the WebSocket thread and the Request thread.

6.4.2 Espresso Image Viewer
A simple bitmap image viewer called Espresso Image Viewer is also implemented us-
ing the SAGE2 JavaScript API. The basic function of the Espresso Image Viewer is to
display bitmap files stored in Content Espresso on the SAGE2 Display Client. When a
Display Client user employs the Interaction Client to open a Ticket File, the Espresso
Image Viewer is launched on that user’s display. Then, the Espresso Image Viewer sends
the Ticket File to the Relay Server to retrieve the target file, acquires the target bitmap
file, and displays it. On the other hand, when a client employs Espresso Image Viewer
to have the Interaction Client to store a bitmap file, it sends the file to the Relay Server
to store it to Content Espresso and receives a Ticket File. The Espresso Image Viewer
then stores the Ticket File in the local SAGE2 Server storage.

6.5 Performance evaluation

6.5.1 Evaluation environment
In order to evaluate the performance of a CE-based file sharing mechanism on SAGE2,
16 physical servers were set up in Japan for Content Espresso and two physical client
machines in Hawaii for SAGE2. Figure 6.7 shows the experimental environment, while
the specifications of each physical machine are shown in Table 6.1.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 96

8 Chunk Servers

7 Chunk Servers

Espresso Server

Client B

Client A

Delay:
+! ms

SAGE2 Server

SAGE2 Display
Client

Espresso Image
Viewer

Relay ServerContent Espresso
Modules
(Japan)

SAGE2 Server

SAGE2 Display
Client

Espresso Image
Viewer

Relay Server

Ticket

~ ~

University of
Hawaii, Manoa

Pacific Wave
(LAX)

!""#$%%&'

WIDE
(Tokyo)

S
hare

!""(#$)*&'

RTT: 160ms

SINET
(Tokyo)

Cluster 1

Cluster 2

Figure 6.7: Evaluation environment.

Content Espresso is composed of five modules: File Manager, Storage Allocator,
Chunk Generator, Cluster Head, and Chunk Server. 15 physical machines are utilized
as Chunk Servers and divided into two Chunk Server Clusters (Cluster 1 and Cluster
2). One physical machine at each cluster was also utilized as a Cluster Head. The File
Manager, Storage Allocator, and Chunk Generator were installed on a remaining single
physical server called the Espresso Server. SAGE2 is composed of the SAGE2 Server,
Display Clients, Interaction Clients, and SAGE2 applications. A SAGE2 Server and
Display Client were installed on the client machines. In addition, a Relay Server was
installed on the client machines.

The Chunk Servers in Cluster 1 and an Espresso server were connected to a router
with a 1Gbps link. The Chunk Servers in Cluster 2 were connected to another router
with a 1Gbps link. The Cluster 1 network was connected to a router at the University of
Hawaii at Manoa via the SINET network, while the Cluster 2 network was connected to a
router at the University of Hawaii at Manoa via the WIDE network. Both networks were
connected to a router in Los Angeles before being connected to the Hawaiian location.
The average RTTs between the clients and Chunk Servers in Cluster 1 and Cluster 2 were
155 ms and 160ms respectively. A network delay could be added by using a Network
Link Conditioner with the computers relevant to client B.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 97

Table 6.1: Specifications of physical machines.
Modules OS CPU
Client A CentOS 6 Corei7 (3.40GHz)
Client B MacOS 10.8 Corei7 (3.40GHz)
Chunk Server Ubuntu 12.04 Pentium (2.80GHz)
Espresso Server CentOS 6 Corei7 (3.40GHz)

6.5.2 File sharing time comparison

This evaluation compares file sharing time with changing RTTs between client A and
client B using three types of image files: an uncompressed Full HD (1920 x 1080 pixel,
6.2MB) image file, an uncompressed UHD (3840 x 2160 pixel, 24.9MB) image file,
and an uncompressed 8K (7680 x 4320 pixel, 99.5MB) image file. The additional RTT
ranged from 1 ms to 300 ms, to take actual Internet circumstances into consideration.
Figures 6.8 to 6.10 show the results of file sharing time comparisons between the

existing SAGE2 and proposed CE-based file sharing mechanisms on SAGE2, using a
6.2 MB Full HD image file, a 24.9 MB UHD image file, and a 99.5 MB 8K image file
respectively. These figures show that, with the original SAGE2 file sharing mechanism,
file sharing time increased rapidly as the RTT between clients becomes larger. This is
because that mechanism uses HTTP to transmit large image files, and HTTP utilizes
TCP as a transport layer protocol; the performance of TCP worsens as RTTs between
senders and recipients become larger.
On the other hand, the file sharing time in the CE-based file sharing mechanism in-

creased gradually, because that mechanism only uses HTTP to transmit the Ticket File
and retrieves large image files using Content Espresso. The Ticket File is vastly smaller
than an image file and Content Espresso utilizes UDP for retrieving the image file. Thus,
the CE-based file sharing mechanism does not contribute significantly to performance
degradation.
In addition, these figures show the CE-based file sharing mechanism is faster than

the original SAGE2 file sharing mechanism when the RTT between the clients is above
10 ms; the difference in sharing time becomes significantly large when the RTT is 300
ms. The CE-based file sharing mechanism takes about two, three, and eight seconds for
the full HD, UHD image, and 8K images, respectively, while the existing SAGE2 file
sharing mechanism takes about 17, 50, and 200 seconds respectively.

6.5.3 File sharing throughput

The evaluation above confirmed that CE-based file sharing improves file sharing per-
formance when the RTT between the clients is longer than 10ms by demonstrating the
throughput of that mechanism with a 6.2 MB Full HD image file, a 24.9 MBUHD image
file, and a 99.5 MB 8K image file. Figure 6.11 shows the throughput of the CE-based file

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 98

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 10 100 1000

Fi
le

 s
ha

rin
g

tim
e

(m
se

c)

RTT between clients (msec)

SAGE2

SAGE2 with Espresso

Figure 6.8: File sharing time comparison when a 2.4MB Full HD image file is used.

0

10000

20000

30000

40000

50000

60000

1 10 100 1000

Fi
le

 s
ha

rin
g

tim
e

(m
se

c)

RTT between clients (msec)

SAGE2

SAGE2 with Espresso

Figure 6.9: File sharing time comparison when a 6MB UHD image file is used.

sharing mechanism. The results show that throughput was better as the file size became
larger because the file retrieval overhead in Content Espresso becomes comparatively

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 99

0

50000

100000

150000

200000

250000

1 10 100 1000

Fi
le

 s
ha

rin
g

tim
e

(m
se

c)

RTT between clients (msec)

SAGE2

SAGE2 with Espresso

Figure 6.10: File sharing time comparison when a 10MB 8K image file is used.

0

20

40

60

80

100

120

140

160

1 10 100 1000

Th
ro

ug
hp

ut
 o

f f
ile

 s
ha

rin
g

(M
bp

s)

RTT between clients (msec)

8K

UHD

Full HD

Figure 6.11: Throughput of CE-based file sharing on SAGE2.

small when file sizes are larger. Thus, the proposed mechanism is suitable for large file
sharing.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 6. IMPROVEMENT OF FILE SHARING PERFORMANCE
OF WEB-BASED COLLABORATION SYSTEMS 100

6.6 Summary
This chapter has proposed a global high throughput large file sharing mechanism for
web-based collaboration systems that uses Content Espresso. SAGE2 was selected as a
typically data-intensive collaboration system. SAGE2 shares information on large high-
resolution displays with other sites using web browser-based technologies. The CE-
based file sharing mechanism was designed and implemented by introducing the Ticket
File and Relay Server and integrating the mechanism into SAGE2, without requiring
significant modifications to that software.
In order to evaluate the proposed file sharing mechanism, the Espresso Image Viewer

was implemented as a SAGE2 Application. This chapter has evaluated the proposed
mechanism by comparing file sharing times between the existing SAGE2-based file
sharing mechanism and its CE-based file counterpart using Full HD, UHD, and 8K
uncompressed image files. The results of the evaluation have confirmed that the pro-
posed mechanism offers better performance than the existing SAGE2 mechanism when
the RTT between the sites is longer than 10 ms, with any type of file. The CE-based
file sharing mechanism was shown to improve large file sharing performance in remote
collaboration environments. The proposed mechanism can be applied to web-based col-
laboration systems other than SAGE2.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Chapter 7

Related Work

7.1 Overview

This chapter shows work related to Content Espresso. DRIP is a fundamental mecha-
nism of Content Espresso; it uses UDP to transmit the stored chunks and FEC to recover
lost chunks. Therefore, this chapter first discusses work related to transport layer proto-
cols to confirm why Content Espresso uses UDP-based chunk transmission. Then, this
chapter reviews and compares systems similar to Content Espresso from the viewpoint
of distributed storage systems. It then reviews FEC algorithms by comparing several
useful examples as application-layer FECs. Finally, studies of packet loss pattern mod-
els on the Internet are reviewed, because Content Espresso was evaluated by emulating
the packet loss actually found on the Internet in Chapter 4.

7.2 Transport layer protocol

Content Espresso adopts the file storage and retrieval mechanism shown in Chapter 2.
That mechanism uses UDP as a transport layer protocol to transmit chunks from Chunk
Servers to Client. This section shows related work that aims at high throughput data
transmission in a global environment. The transport layer protocols for high throughput
data transmission can be classified into TCP-based or TCP-like protocols and UDP-
based protocols.

7.2.1 TCP-based protocol

In order to achieve high throughput data transmission, many approaches have been pro-
posed. Modified TCP approaches such as FAST TCP [22], HighSpeed TCP [23], and
Scalable TCP [24] all reduce performance degradation in the delayed network and/or
lossy network environment by modifying the algorithms of the congestion control mech-
anism and/or the rate-controlling mechanism.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 102

Parallel TCP approaches such as MPTC [25], SCTP [26], PSockets [27], CAVERN-
soft [28], and GridFTP [29] use multiple TCP connections simultaneously and aggregate
them to achieve high-bandwidth data transmission. MPTC and SCTP are transport layer
implementations that improve data transmission throughput and resiliency. However,
when all paths share the same bottleneck link, the performance of MPTC and SCTP
actually becomes worse than standard TCP. PSockets, GridFTP, and CAVERNsoft offer
an application-level TCP connection aggregation approach. Although these application-
level parallel TCPs do achieve high throughput data transmission compared to standard
TCP, their performance degrades when network delays are long and/or packet loss rates
are large.

7.2.2 UDP-based protocol

In order to avoid the performance degradation due to network delays and packet losses,
UDP-based protocols [30, 31, 32, 33, 34, 35, 36] have been proposed. This subsection
discusses representative UDP-based protocols.

RBUDP [31] aims to keep the network pipe as full as possible during bulk data trans-
fer and avoid per-packet interactions. The sender establishes a TCP connection to send
and receive a signaling message before sending the actual data to the recipient(s). After
that, the sender sends the data using UDP. After data are sent, recipients send acknowl-
edgement messages to the sender. If some packets are lost, the sender retransmits the
lost packets. Since RBUDP adopts retransmission to achieve reliable data transfer, it is
important to estimate the available bandwidth correctly by using existing tools like iperf
[37], netperf [38], and nuttcp [39]. By contrast, Content Espresso does not retransmit
lost chunks; it recovers them by using FEC. Therefore, Content Espresso does not have
to estimate the available bandwidth correctly.

UDT [30] is a reliable UDP-based application-level data transport protocol for dis-
tributed data-intensive applications over high-speed WANs. UDT uses packet-based
sequencing and timer-based selective acknowledge. Unlike RBUDP, UDT has its own
rate control and bandwidth estimation mechanisms. In addition, the acknowledgement
message is sent as soon a packet loss event is detected and the lost packets are retrans-
mitted. Therefore, the performance of UDT becomes worse when the network packet
loss rate becomes higher.

QUIC (Quick UDP Internet Connections) [36] was designed at Google and aims at
improving the performance of HTTP-based data transmission in WANs. QUIC achieves
high throughput data transmission regardless of network delays between senders and re-
cipients by supporting multiplexed connections, providing a secure connection similar to
TLS/SSL, reducing latency between senders and recipients, and estimating the available
bandwidth. Although QUIC does provide high throughput data transmission in WANs,
it also retransmits lost packets, which causes performance degradation.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 103

7.3 Distributed storage system

Many distributed storage systems have been proposed and used for data storing and
sharing. They usually split a given file into small data chunks and store them to multiple
storage servers or devices with redundant data to achieve high availability, high relia-
bility, and high throughput, much like Content Espresso. Distributed storage systems
can be classified by redundancy technique, IO unit, and the number of storage providers
utilized.

7.3.1 Redundancy technique

There are three main redundancy techniques to achieve high reliability and availability;
using replication, employing FEC, and hybrids of the two. For example, GFS [40],
HDFS [41], and Wheel FS [42] use replication, while RobuSTore [43] and Cloud-RAID
[44] use FEC. Although replication is widely employed because its implementation is
simple, FEC requires users to calculate parities and recover lost data.
On the other hand, FEC requires less storage space than replication to achieve the

same availability and reliability levels. OceanStore [45] and Pond [46] use both repli-
cation and FEC. They use FEC to achieve reliable preservation by employing highly
reliable storage servers, which can be expensive, and replication to achieve high avail-
ability. Since Content Espresso aims at low storage cost, Content Espresso uses FEC for
achieving both high availability and reliability.

7.3.2 IO unit

Distributed storage systems can also be classified by IO unit; block, object, and file.
With distributed block storage systems such as OceanStore [45], HDFS [41], and iSCSI
RAID [47], files are split into evenly sized blocks of data and stored on multiple storage
devices. Distributed block storage systems manage file metadata in metadata servers but
usually do not have the metadata of each block of every file. Thus, users access specific
file blocks by using API (typically POSIX-like API) with file identifiers and offset of
file data.
With distributed object storage systems such as Ceph [48], Lustre [49], and Panasas

[50], files are split into various-sized data objects and stored in dedicated object storage
clusters. Distributed object storage manages the metadata of each object on metadata
servers and allows users to access that data. Although object storage has th advantage of
partial updating, the performance of metadata servers worsens as the number of objects
grows larger.
The IO unit of Content Espresso is a file; it does not manage metadata of chunks but

of files. Thus, Content Espresso reduces the number of metadata access events to some
extent. However, this situation can also occur using distributed object storage when a
file consists of only a single object. In order to clarify the technological differences

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 104

between Content Espresso and distributed object storage systems, Content Espresso,
Ceph, Gfarm, and GFS are compared in Table 7.1.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 105

Ta
bl
e
7.
1:

C
om

pa
ri
so
n
of

C
on

te
nt

E
sp
re
ss
o,

C
ep
h,
G
fa
rm

,a
nd

G
FS

.
E
sp
re
ss
o

C
ep
h

G
fa
rm

G
FS

IO
U
ni
t

Fi
le

O
bj
ec
t

Fi
le

C
hu
nk

U
ni
tS

iz
e

D
yn

am
ic

D
yn

am
ic

D
yn
am

ic
64
M
B

D
at
a
St
or
ag
e

C
hu

nk
Se
rv
er

R
A
D
O
S

FN
S

G
N

D
at
a
L
oc
at
io
n

Si
m
pl
e
St
ri
pi
ng

C
R
U
SH

D
H
T

A
vo
id

th
e
sa
m
e
ra
ck

of
th
e
re
pl
ic
at
io
ns
.

R
ed
un

da
nc
y
Te

ch
.

FE
C

R
ep
lic
at
io
n

R
ep
lic

at
io
n

R
ep
lic

at
io
n

R
ed
un

da
nc
y
L
ev
el

D
et
er
m
in
ed

by
ea
ch

ow
ne
ro

ffi
le

D
et
er
m
in
ed

by
st
or
ag
e

ad
m
in
is
tr
at
or

D
et
er
m
in
ed

by
st
or
ag
e

ad
m
in
is
tr
at
or

Ty
pi
ca
lly

th
re
e
re
pl
ic
as

M
et
ad

at
a
M
an

ag
em

en
t

O
w
ne
r
D
om

ai
n

B
as
ed

A
pp

ro
ac
h

D
yn

am
ic
Su

bt
re
e
Pa
rt
i-

tio
ni
ng

M
D
S

C
en
tr
al
iz
ed

A
pp
ro
ac
h

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 106

7.3.3 Number of data centers

The number of storage providers is one of the most important aspects of distributed
storage systems. This thesis defines distributed storage systems that use either a single
provider or multiple storage providers as the single storage provider model or the multi-
ple storage providers model respectively. It is assumed that RAID [6] and iSCSI RAID
[47] are used in LANs and that Spanner [51] uses a single data center to avoid high
data management cost. These technologies are classified into the single storage provider
model.
On the other hand, it is assumed that SPANStore [52], SafeStore [53], DEPSKY [54],

and Cloud-RAID [44] use multiple storage providers. SPANStore replicates files to
multiple cheap storage providers to achieve low cost and low latency and satisfy the
fault tolerance requirements of each application. This technique is quite similar to CDNs
such as Akamai [55], Limelight Networks [56], Mirror Image [57], and Level 3 [58], all
of which cache frequently accessed content files in edge servers to provide low-latency
access to those key files. Cloud-RAID splits files into small data chunks and stores them
on multiple storage providers; it utilizes FEC to achieve high availability and reliability,
which is similar to Content Espresso s̓ approach. The performance evaluation of Cloud-
RAID shows that using multiple storage providers can improve the IO throughput, but
that overall performance is dependent on the throughput performance of specific storage
providers. These technologies, including Content Espresso, are classified in the multiple
storage providers model.

7.3.4 Example of distributed storage system

This subsection examines each of the representative distributed storage systems in terms
of the criteria shown above.

Ceph

Ceph [48] is designed to achieve high throughput by using commodity hardware simi-
lar to Content Espresso. Ceph stores object data in object storage devices (OSDs) called
RADOS, while Content Espresso stores chunks in the ext4 file system of Chunk Servers.
As discussed previously, metadata server performance in distributed object storage sys-
tems worsens as the number of objects in a file grows larger. In order to avoid this
problem, Ceph has a highly reliable centralized metadata server cluster and adopts Dy-
namic Subtree Partitioning [59]; however, preparing many highly reliable servers carries
heavy costs. While Content Espresso stores chunks by striping to Chunk Servers, Ceph
utilizes CRUSH [60], which reduces object data movement and achieves scalability by
appending new OSDs. When new Chunk Servers are added in Content Espresso, it is not
necessary to move stored chunks to the new Chunk Servers because Content Espresso
stores chunks evenly across all Chunk Servers. Since both Ceph and Content Espresso
are designed to achieve high throughput by using commodity hardware, this thesis dis-

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 107

cusses the performance differences between Ceph and Content Espresso. [61] shows
that Ceph achieves 4Gbps read performance when using TCP tuning, four servers, and
4MB IO, thanks to the open-source RADOS Bench tool. This result shows that Ceph has
better performance than Content Espresso, at least within certain parameters. However,
this evaluation does not take into account either a truly global environment or the cost of
storage servers. Since the evaluation above utilizes TCP, the read performance would be
worse in a global environment. In addition, that evaluation uses high-performance, 10-
HDD servers intended for high-performance computing (HPC), which adds significant
costs to the organization seeking to work collaboratively across great distances.

Gfarm

The Gfarm Grid file system [62] is a global distributed file system for sharing data and
supporting distributed data-intensive computing. Storage of the Gfarm file system uses
a federation or collection of local file systems of computer nodes or commodity PCs.
Gfarm is composed of multiple file system nodes (FNS) a Metadata Server (MDS), and
a Gfarm client. This client is the library used to access the MDS and FNS from user
applications. The MDS manages file system metadata, file open status, file system node
status, global user accounts, and group membership information. The FNS is the storage
server and composed by Gfarm client, I/O Server, and local file system. Gfarm adopts
the file replication to ensure reliability and achieve high performance of data access file
replicas are managed by the central server to support close-to-open.

GFS

The Google File System (GFS) [40] is a scalable distributed file system for large dis-
tributed data-incentive applications. GFS consists of a single master, which manages the
metadata of stored chunks and multiple chunkservers that store the chunk data. The two
system assumptions of GFS that are similar to those of Content Espresso are as follows:
each system is built from very inexpensive commodity hardware and each stores a large
number of large files. However, GFS is assumed to be employed with the MapReduce
storage system [63], which is a framework for processing large data in large clusters.
Therefore, GFS focuses on the improvement of simultaneous read/write performance.
For example, GFP adopts a 64MB static-size chunk to reduce interaction with the mas-
ter, which does indeed improve read/write performance. GFS makes replications of
chunks to ensure system availability and reliability. Since it is assumed that GFS will
be deployed in a single data center, it is necessary to consider replica placement. GFS
typically has hundreds of chunkservers spread across many machine racks; GFS spreads
chunk replicas across racks to ensure data reliability.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 108

7.3.5 Cost analysis

Low cost storage is one of the core Content Espresso goals. This subsection discusses
the cost of Content Espresso in comparison with Ceph. Basically, Content Espresso
entails storage preparation costs, storage utilization costs, and networking costs. The
storage and retrieval mechanism of Content Espresso utilizes FEC rather than replication
because FEC can achieve the same level of availability and reliability at lower storage
utilization cost.
Content Espresso allows users to select the amount of redundancy for each file on

their own, which can help reduce storage utilization costs in comparison to systems that
adopt a fixed amount of redundancy such as RAID. As to storage preparation cost, Con-
tent Espresso has an advantage because it is assumed that the system uses commodity
hardware. For this thesis, Content Espresso was actually installed in a deployment that
used 72 Chunk Servers, each of which costs less than US$300. Thus, the total storage
preparation cost is about $21,600, which is much cheaper than how Ceph is configured
in [61]. On the other hand, the Content Espresso consumes more network bandwidth
than a replication-based approach because the system sends all chunks, including parity
chunks, to the client, which boosts networking costs. In order to mitigate this issue, the
overall amount of parity chunks sent for a given should be adjustable based on estimating
network conditions, but this remains a future goal.

7.4 Forward error correction

FEC is the key technology of Content Espresso because it utilizes FEC in the applica-
tion layer to recover lost chunks caused by storage server failure and packet loss during
transmission. In general, FEC in the application layer is called Application Layer FEC
(AL-FEC); a variety of FEC algorithms are used for AL-FEC, such as Reed-Solomon
[64], low-density parity check (LDPC) [65], LDGM [8], and Raptor Code [66]. Reed-
Solomon is used for many distributed storage systems, including RAID [6], OceanStore
[45], and RobuSTore [43]. However, decoding speed worsens as FEC block sizes grow
larger. [67] has shown that LDPC, LDGM, and Raptor Code demonstrate better perfor-
mance when the FEC block size is large. Turbo coding [68] also has better performance
in terms of error recovery ratio. [69] compares the performance and complexity of LDPC
and Turbo coding. The evaluation confirms that LDPC has a significantly lower com-
plexity than Turbo coding and LDPC recovers lost data faster than Turbo coding. Since
Turbo coding has a fixed number of iterations in the decoder, it is default to reduce the
decoding time. On the other hand, LDPC has potential for improving decoding time by
multiplexing decoding process. Since it is assumed that Content Espresso use large FEC
blocks, LDGM has been selected for this implementation. Content Espresso is designed
to allow for users to select their preferred FEC algorithm, but actually implementing
multiple FEC algorithm options in Content Espresso is a future goal.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 109

7.5 Packet loss pattern

Chapter 4 evaluates the performance of Content Espresso by emulating a packet loss
environment using the tc command. Currently, three packet loss models are imple-
mented with the tc command: the random loss model, the four-state Markov model,
and the Gilbert-Elliott loss model (which itself has special cases known as the Gilbert
loss model, the simple Gilbert loss model, and the Bernoulli loss model). This section
discusses studies of packet loss patterns on the Internet.
Gilbert [70] and Elliott [71] introduced a two-state Markov approach called the

Gilbert-Elliott model, which is widely used for emulating packet loss on the Internet.
The Gilbert-Elliott model is outlined in Figure 7.1, where G is the good state and B is
the bad state. k is the probability that the packet is transmitted while the system is in the
good state, h is the probability that the packet is transmitted while the system is in the
bad state, p is the loss probability, 1− r is the burst duration, and 1−h is the loss density.
The tc command adds packet losses according to the Gilbert-Elliott loss model and

its special cases (the Gilbert loss model, Simple Gilbert loss model, and Bernoulli loss
model) when the user selects their loss model. The Gilbert model is the Gilbert-Elliott
model where k = 1. The simple Gilbert model is the Gilbert model where h = 0. The
Bernoulli model is the Gilbert model where 1 − r = p. [72] found a simple Gilbert
model (k = 1, h = 0) useful for describing the characteristics of packet losses in Internet
connections and for deriving an error model for Internet video transmissions on top, as
lost packets will affect the perceived quality of the video transmission. Therefore, this
thesis selects the simple Gilbert model as a packet loss model.
Other than the two-state Markov model, [73] proposed a four-state Markov model.

Figure 7.2 depicts the four-state Markov model: state 1 means the packet was received
successfully; state 2 means the packet was received within a burst; state 3 means the
packet was lost within a burst; and state 4 means that the packet was lost within a gap.
This model is widely used to emulate the IEEE 802.11 channel. Since this thesis fo-
cuses on packet loss on the Internet, the four-state Markov model was not selected for
evaluating the system.

7.6 Summary

This chapter has reviewed several studies related to Content Espresso. First, the transport
layer protocol was reviewed. Since the performance of TCP degrades when the RTT be-
tween the file sender and the file recipient becomes large or the packet loss rate increases,
a TCP-based protocol is not appropriate for transmitting files in a global environment.
Several studies have tried to solve the problem by using parallel TCP or modified TCP.
However, they cannot avoid performance degradation. Thus, Content Espresso selects
UDP as the transport layer protocol. Several studies have focused on UDP’s transmis-
sion of files in a global environment. However, most examples retransmit lost packets
because UDP is an unreliable protocol, which causes performance degradation. Content

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 7. RELATED WORK 110

G
1-k

B
1-h

r

p

1-p 1-r

Figure 7.1: Gilbert-Elliott model.

1 234

Gap period Burst period

Figure 7.2: Four-state Markov model.

Espresso uses FEC to avoid having to retransmit lost chunks.
Second, the distributed storage systems were reviewed. The features of Content

Espresso are similar to distributed storage systems because Content Espresso uses a
metadata server and multiple storage servers. This review revealed the differences be-
tween Content Espresso and other systems from the viewpoint of redundancy technique,
IO unit, and the number of data centers. Third, the features of several FEC algorithms
were reviewed. Content Espresso adopts LDGM coding as its FEC algorithm because
its performance is better than the other algorithms with large block sizes. Finally, packet
loss patterns on the Internet were reviewed. This thesis evaluated Content Espresso’s
file retrieval and storage performance in a global environment in Chapter 4 by emulating
network packet loss rates and discussing it in comparison with several models of packet
loss on the Internet.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Chapter 8

Conclusion

8.1 Summary of this thesis

Large content file sharing over the Internet among people and organizations all over the
world has now become widespread with the rapid growth of multimedia devices, net-
working technologies, and cloud technologies. For example, video production compa-
nies usually share source video files with post-production companies to post-production
processes such as video editing, thus enabling low cost content creation. However, chal-
lenges remain in sharing a large number of large files with people with at low cost and
high speed on the Internet.
This thesis has introduced and detailed Content Espresso, which is a high throughput

large file sharing system for a global environment. Content Espresso uses four key
techniques: first, UDP was chosen to avoid performance degradation when the RTT or
packet loss rate between file senders and recipients becomes long and large, respectively.
In order to evaluate Content Espresso, an experimental environment was set up with
79 physical machines, including 72 inexpensive storage servers. This thesis evaluated
file metadata access performance, file storage and retrieval performance, FEC block
size, and system availability by emulating global environments with the tc command.
The results confirm that Content Espresso is capable of dealing with 15,000 requests
per second, achieving 1Gbps for file storage, and achieving more than 3Gbps for file
retrieval. File storage and retrieval performance are not significantly affected by network
conditions. Thus, it can be concluded that Content Espresso demonstrates the capability
to serve as a high throughput file sharing system on a global scale.
This thesis also demonstrated two Content Espresso applications: a network-oriented

uncompressed UHD video playback system called Demitasse and an approach to im-
proving the file sharing performance of SAGE2. Demitasse stores video component files
to Content Espresso and the relationships among those files to Catalogue System, which
is a distributed graph database. The Demitasse Client retrieves the relationships among
the video component files, obtains their GFIDs, retrieves the appropriate file from Con-
tent Espresso, and plays back the file. This thesis measured the video playback perfor-

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

CHAPTER 8. CONCLUSION 112

mance of Demitasse by using uncompressed Full HD and UHD video frame files. The
evaluation confirmed that Demitasse achieves playback of uncompressed UHD 30fps
video with a 7.19Gbps throughput involving FEC, with less than 0.1% frame loss by file
retrieval requests. Demitasse contributed to improving and evaluating the file retrieval
performance of Content Espresso.
SAGE2 is a web-based collaboration system that shares information on large high-

resolution displays with other sites, enabling people in multiple locations to work to-
gether and see the same displays. Since SAGE2 uses HTTP to share files, it takes a
long time to share those files in a global environment. This thesis integrates Content
Espresso into SAGE2 as a file sharing system to provide a high throughput file sharing
function. SAGE2 works on web-based technologies and communicates with other mod-
ules by using HTTP. However, Content Espresso does not communicate in HTTP. In
order to translate the protocol between SAGE2 and Content Espresso, the Relay Server
is introduced. This thesis measured file sharing time by emulating a global environment.
The results confirmed that Content Espresso improves the file sharing performance of
SAGE2 when the RTT to remote sites is greater than 10ms. This study contributes to
showing that Content Espresso can be applied to web-based applications.

8.2 Future work
This thesis mainly introduces Content Espresso. Since Content Espresso uses UDP
without any congestion control mechanism to deliver files with high throughput, its traf-
fic probably disturbs other TCP-based traffic such as HTTP traffic. It is important to
solve this problem if Content Espresso is used in the actual Internet. The author be-
lieves that this problem should be solved by two approaches. The first approach is to
use network-virtualization technologies. Network-virtualization technologies split the
physical network into several virtual network slices and each slice is assigned to each
application. These technologies separate Content Espresso traffic from other applica-
tion traffics. The second approach is to implement an automatic chunk delivering rate
control mechanism in Content Espresso. Although the first approach can solve that Con-
tent Espresso’s traffic disturbs other applications’ traffic, it cannot avoid disturbing other
Content Espresso’s traffic. In order to avoid it, Content Espresso should have the mecha-
nism to determine the chunk retrieval rate automatically taking network occupation into
consideration. This is future work of this study.
Finally, future plans of Content Espresso and its applications are mentioned. Content

Espresso shows that the one possibility to use UDP and FEC to store and delivering files
in the Internet. The author believes that Content Espresso is worth to use for various
industries that keep a large number of large files. In order to deploy Content Espresso
and its applications in the society, The author believes that Content Espresso and its
applications should be released as open source software and managed in a community.
The author starts considering concrete release and management plans of them from now
on.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

Bibliography

[1] Daisuke Ando, Fumio Teraoka, and Kunitake Kaneko. Storage and Retrieval
Mechanism for Large Files using Global Distributed Servers. IEICE Transactions
on Communications (Japanese Edition), Vol. 97, No. 10, pp. 861–872, 2014.

[2] T. Marrinan, J. Aurisano, A. Nishimoto, K. Bharadwaj, V. Mateevitsi, L. Renam-
bot, L. Long, A. Johnson, and J. Leigh. SAGE2: A new approach for data intensive
collaboration using Scalable Resolution Shared Displays. In Proceedings of Inter-
national Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), pp. 177–186, Oct. 2014.

[3] Jacob Poushter. Smartphone ownership and Internet usage continues to climb in
emerging economies. Pew Research Center, 2016.

[4] Dropbox. https://www.dropbox.com/.

[5] Google Drive. https://www.google.com/drive/.

[6] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). SIGMOD Record, Vol. 17, No. 3, pp. 109–
116, Jun. 1988.

[7] Motion Picture Association. Theatrical Market Statistics 2015. Apr. 2016.

[8] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low density
parity check codes. Electronics Letters, Vol. 33, No. 6, pp. 457–458, Mar. 1997.

[9] Sae-Young Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the design
of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE
Communications Letters, Vol. 5, No. 2, pp. 58–60, Feb. 2001.

[10] Yuki Atsuya, Kunitake Kaneko, and Fumio Teraoka. Yamata-no-Orochi: an Au-
thentication and Authorization Infrastructure for Internet Services. IPSJ Journal
(Japanese Edition), Vol. 55, No. 2, pp. 849–864, Feb. 2014.

[11] Kei Mikami, Daisuke Ando, Kunitake Kaneko, and Fumio Teraoka. Verification
of a Multi-Domain Authentication and Authorization Infrastructure Yamata-no-
Orochi. In Proceedings of the 11th International Conference on Future Internet
Technologies (CFI 2016), pp. 69–75, 2016.

https://www.dropbox.com/
https://www.google.com/drive/

BIBLIOGRAPHY 114

[12] MariaDB Foundation. Maria DB. https:/mariadb.org/.

[13] NTT America. Global Virtual Link SLA. https://www.us.ntt.net/
support/sla/global-virtual-link.cfm.

[14] NTT Europe. SLA of Global IP Network. http://www.eu.ntt.com/
jp/services/network/ip-network-transit/sla-of-global
-ip-network.html.

[15] Dan Kegel. The C10K problem. http://www.kegel.com/c10k.html,
2006.

[16] Luigi Rizzo and Matteo Landi. Netmap: Memory mapped access to network de-
vices. SIGCOMM Computer Communication Review, Vol. 41, No. 4, pp. 422–423,
Aug. 2011.

[17] DPDK. DPDK (DATA PLANE DEVELOPMENT KIT). http://dpdk.org/.

[18] OpenGL. https://www.opengl.org/.

[19] GLFW. http://www.glfw.org/.

[20] Google Apps. https://apps.google.com/.

[21] jQuery. https://jquery.com.

[22] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. FAST TCP: motiva-
tion, architecture, algorithms, performance. IEEE/ACM Transactions on Network-
ing (TON 2006), Vol. 14, No. 6, pp. 1246–1259, Dec. 2006.

[23] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experi-
mental), Dec. 2003.

[24] Tom Kelly. Scalable TCP: Improving Performance in Highspeed Wide Area Net-
works. SIGCOMM Computer Communication Review, Vol. 33, No. 2, pp. 83–91,
Apr. 2003.

[25] Sébastien Barré, Christoph Paasch, and Olivier Bonaventure. Multipath TCP: from
theory to practice. NETWORKING 2011, pp. 444–457, 2011.

[26] R Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Standard),
Sep. 2007.

[27] Harimath Sivakumar, Stuart Bailey, and Robert L Grossman. PSockets: The case
for application-level network striping for data intensive applications using high
speed wide area networks. In Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing (SC 2000), pp. 38–38, 2000.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

https:/mariadb.org/
https://www.us.ntt.net/support/sla/global-virtual-link.cfm
https://www.us.ntt.net/support/sla/global-virtual-link.cfm
http://www.kegel.com/c10k.html
http://dpdk.org/
https://www.opengl.org/
http://www.glfw.org/
https://apps.google.com/
https://jquery.com

BIBLIOGRAPHY 115

[28] Kyoung S. Park, Yong J. Cho, Naveen K. Krishnaprasad, Chris Scharver,
Michael J. Lewis, Jason Leigh, and Andrew E. Johnson. CAVERNsoft G2: A
Toolkit for High Performance Tele-immersive Collaboration. In Proceedings of
the ACM Symposium on Virtual Reality Software and Technology (VRST 2000),
pp. 8–15, 2000.

[29] Nicolas Kourtellis, Lydia Prieto, Adriana Iamnitchi, Gustavo Zarrate, and Dan
Fraser. Data Transfers in the Grid: Workload Analysis of Globus GridFTP. In
Proceedings of the 2008 International Workshop on Data-aware Distributed Com-
puting (DADC 2008), pp. 29–38, 2008.

[30] Yunhong Gu and Robert L Grossman. UDT: UDP-based data transfer for high-
speed wide area networks. Computer Networks, Vol. 51, No. 7, pp. 1777–1799,
2007.

[31] E. He, J. Leigh, O. Yu, and T.A. DeFanti. Reliable Blast UDP : predictable high
performance bulk data transfer. In Proceedings of the 2002 IEEE International
Conference on Cluster Computing, pp. 317–324, 2002.

[32] Kunitake Kaneko and Naohisa Ohta. Design and implementation of live image file
feeding to dome theaters. Future Generation Computer Systems, Vol. 27, No. 7,
pp. 944–951, 2011.

[33] Yunhong Gu and Robert Grossman. SABUL: A transport protocol for grid com-
puting. Journal of Grid Computing, Vol. 1, No. 4, pp. 377–386, 2003.

[34] Xuan Zheng, Anant PadmanathMudambi, andMalathi Veeraraghavan. Frtp: Fixed
rate transport protocol–a modified version of sabul for end-to-end circuits. In Pro-
ceedings of Broadnets, 2004.

[35] Qishi Wu and Nageswara SV Rao. Protocol for high-speed data transport over
dedicated channels. In Proceedings of Third International Workshop on Protocols
for Long-Distance Networks (PFLDnet 2005), 2005.

[36] Ryan Hamilton, Janardhan Iyengar, Ian Swett, and Alyssa Wilk. QUIC: A UDP-
based secure and reliable transport for HTTP/2. IETF, draft-tsvwg-quic-protocol-
02, 2016.

[37] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. Iperf:
The TCP/UDP bandwidth measurement tool. http://dast.nlanr.net/
Projects, 2005.

[38] Rick Jones, et al. NetPerf: a network performance benchmark. Information Net-
works Division, Hewlett-Packard Company, 1996.

[39] nuttcp. http://www.nuttcp.net/.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

http://dast.nlanr.net/Projects
http://dast.nlanr.net/Projects
http://www.nuttcp.net/

BIBLIOGRAPHY 116

[40] Sanjay Ghemawat, Howard Gobioff, and Shun T. Leung. The Google file sys-
tem. In Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP 2003), pp. 29–43, 2003.

[41] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies, pp. 1–10, 2010.

[42] Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer, Jinyang Li, M. Frans
Kaashoek, and Robert Morris. Flexible, Wide-Area Storage for Distributed Sys-
tems with WheelFS. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2009), Boston, MA, Apr. 2009.

[43] Huaxia Xia and Andrew A. Chien. RobuSTore: A Distributed Storage Architec-
ture with Robust and High Performance. In Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing (SC 2007), pp. 1–11, 2007.

[44] M. Schnjakin, D. Korsch, M. Schoenberg, and C. Meinel. Implementation of a
secure and reliable storage above the untrusted clouds. In Proceedings of the 8th
International Conference on Computer Science Education (ICCSE 2013), pp. 347–
353, Apr. 2013.

[45] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture for Global-
Scale Persistent Storage. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
190–201, 2000.

[46] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and
John Kubiatowicz. Pond: the OceanStore Prototype. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies (FAST 2003), pp. 1–14,
2003.

[47] Xubin He, Praveen Beedanagari, and Dan Zhou. Performance evaluation of dis-
tributed iSCSI RAID. In Proceedings of the International Workshop on Storage
Network Architecture and Parallel I/Os (SNAPI 2003), 2003.

[48] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: A Scalable, High-performance Distributed File System. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI 2006), pp. 307–320, 2006.

[49] S Donovan, G Huizenga, AJ Hutton, CC Ross, MK Petersen, and P Schwan. Lus-
tre: Building a file system for 1000-node clusters. In Proceedings of the Linux
Symposium 2003, 2003.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

BIBLIOGRAPHY 117

[50] Clusters Brent Welch, Brent Welch, and Garth Gibson. Managing Scalability in
Object Storage Systems for HPC Linux. In Proceedings of the 21st IEEE / 12th
NASA Goddard Conference on Mass Storage Systems and Technologies, pp. 433–
445, 2004.

[51] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. Spanner: Google&Rsquo;s Globally Distributed
Database. ACM Transactions on Computer Systems (TOCS), Vol. 31, No. 3, pp.
1–22, Aug. 2013.

[52] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. SPANStore: Cost-effective Geo-replicated Storage Spanning Mul-
tiple Cloud Services. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP 2013), pp. 292–308, 2013.

[53] Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin. SafeStore: A Durable and
Practical Storage System. In Proceedings of USENIX Annual Technical Confer-
ence, pp. 129–142, 2007.

[54] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa. DepSky: Dependable and Secure Storage in a Cloud-of-Clouds. ACM
Transactions on Storage (TOS), Vol. 9, No. 4, pp. 12:1–12:33, Nov. 2013.

[55] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The Akamai Network: A
Platform for High-performance Internet Applications. SIGOPS Operating Systems
Review, Vol. 44, No. 3, pp. 2–19, Aug. 2010.

[56] Limelight Networks. https://www.limelight.com/.

[57] Mirror Image. http://www.mirror-image.com/.

[58] Level 3. http://www.level3.com/en/products/content
-delivery-network/.

[59] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, and Ethan L. Miller. Dynamic
Metadata Management for Petabyte-Scale File Systems. In Proceedings of the
2004 ACM/IEEE Conference on Supercomputing (SC 2004), p. 4, 2004.

[60] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn. CRUSH:
Controlled, Scalable, Decentralized Placement of Replicated Data. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (SC 2006). ACM, 2006.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

https://www.limelight.com/
http://www.mirror-image.com/

BIBLIOGRAPHY 118

[61] Feiyi Wang, Mark Nelson, Sarp Oral, Scott Atchley, Sage Weil, Bradley W Set-
tlemyer, Blake Caldwell, and Jason Hill. Performance and Scalability Evaluation
of the Ceph Parallel File System. In Proceedings of the 8th Parallel Data Storage
Workshop, pp. 14–19, 2013.

[62] Osamu Tatebe, Kohei Hiraga, and Noriyuki Soda. Gfarm Grid File System. New
Generation Computing, Vol. 28, No. 3, pp. 257–275, 2010.

[63] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, Vol. 51, No. 1, pp. 107–113, 2008.

[64] Irving S Reed and Gustave Solomon. Polynomial Codes Over Certain Finite Fields.
Journal of the society for industrial and applied mathematics, Vol. 8, No. 2, pp.
300–304, 1960.

[65] Vincent Roca, Christoph Neumann, and David Furodet. Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes. Tech-
nical report, 2008.

[66] A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, Vol. 52,
No. 6, pp. 2551–2567, Jun. 2006.

[67] R. Montalban Gutierrez and G. Seco-Granados. Efficiency comparison of LDPC-
LDGM and Raptor codes for PL-FEC with very large block sizes. In Proceedings
of Wireless Telecommunications Symposium 2009, pp. 1–6, Apr. 2009.

[68] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting
coding and decoding: Turbo-codes. 1. In Proceedings of IEEE International Con-
ference on Communications (ICC 1993), Vol. 2, pp. 1064–1070, May 1993.

[69] Kjetil Fagervik and Arne Sjøthun Larssen. Performance and complexity compari-
son of low density parity check codes and turbo codes. In Proceedings of Norwe-
gian Signal Processing Symposium (NORSIG 2003), pp. 2–4, 2003.

[70] E. N. Gilbert. Capacity of a burst-noise channel. The Bell System Technical Jour-
nal, Vol. 39, No. 5, pp. 1253–1265, Sep. 1960.

[71] E. O. Elliott. Estimates of error rates for codes on burst-noise channels. The Bell
System Technical Journal, Vol. 42, No. 5, pp. 1977–1997, Sep. 1963.

[72] Bernd Girod, Klaus W. Stuhlmueller, M. Link, and U. Horn. Packet-loss-resilient
Internet video streaming. In Proceedings of SPIE 3653, pp. 833–844, Dec. 1998.

[73] Jeff McDougall, Jeevan Joseph John, Yi Yu, and Scott L Miller. An improved
channel model for mobile and ad-hoc network simulations. In Proceedings of
Communications, Internet, and Information Technology (CIIT 2004), pp. 352–357,
2004.

Daisuke Ando A Study on High Throughput Large File Sharing System for a Global Environment
and its Applications

	1 Introduction
	1.1 Background
	1.2 Definition of file sharing in a global environment
	1.3 Difficulties of network-based file sharing on the Internet
	1.4 Motivation of this study
	1.5 Contributions
	1.6 Structure of this thesis

	2 Design of Content Espresso
	2.1 Background
	2.2 Requirements
	2.2.1 High throughput file sharing in a global environment
	2.2.2 Low storage cost
	2.2.3 Sharing a large number of files securely

	2.3 Approach of Content Espresso
	2.3.1 Approach as a storage and retrieval mechanism
	2.3.2 Approach of the overall system

	2.4 System design
	2.4.1 Content Espresso modules
	2.4.2 FEC algorithm and FEC block size
	2.4.3 System availability

	2.5 File access procedure
	2.5.1 File retrieval sequence
	2.5.2 File storage sequence

	2.6 Client API

	3 Implementation of Content Espresso
	3.1 Implementation model of each module
	3.2 File Manger
	3.3 Storage Allocator
	3.4 Chunk Generator
	3.5 Cluster Head
	3.6 Chunk Server
	3.7 Client

	4 Evaluation of Content Espresso
	4.1 Evaluation overview
	4.2 Evaluation environment
	4.3 System performance
	4.3.1 Metadata access performance
	4.3.2 File retrieval performance
	4.3.3 File storing performance

	4.4 Appropriate FEC block size
	4.5 System availability
	4.6 Summary

	5 Demitasse: A Network-Oriented UHD Video Playback System
	5.1 Background
	5.2 Catalogue System
	5.2.1 Cencept of the Catalogue System
	5.2.2 System architecture

	5.3 Design of Demitasse
	5.3.1 Design overview
	5.3.2 Demitasse Catalogue
	5.3.3 Demitasse Catalogue API
	5.3.4 System modules
	5.3.5 File retrieval interval
	5.3.6 Frame rate adjusting mechanism
	5.3.7 Angle-switching mechanism

	5.4 Implementation of Demitasse
	5.5 Evaluation of Demitasse
	5.5.1 Evaluation overview
	5.5.2 Experimental setup
	5.5.3 File retrieval interval
	5.5.4 Frame rate control
	5.5.5 Frame Buffer status

	5.6 Summary

	6 Improvement of File Sharing Performance of Web-Based Collaboration Systems
	6.1 Background
	6.2 Problems of SAGE2
	6.2.1 Overview of SAGE2
	6.2.2 Remote collaboration on SAGE2
	6.2.3 Problems in large file sharing

	6.3 Design of the proposed mechanism
	6.3.1 System overview
	6.3.2 Ticket File format
	6.3.3 Relay Server

	6.4 Implementation
	6.4.1 Relay Server
	6.4.2 Espresso Image Viewer

	6.5 Performance evaluation
	6.5.1 Evaluation environment
	6.5.2 File sharing time comparison
	6.5.3 File sharing throughput

	6.6 Summary

	7 Related Work
	7.1 Overview
	7.2 Transport layer protocol
	7.2.1 TCP-based protocol
	7.2.2 UDP-based protocol

	7.3 Distributed storage system
	7.3.1 Redundancy technique
	7.3.2 IO unit
	7.3.3 Number of data centers
	7.3.4 Example of distributed storage system
	7.3.5 Cost analysis

	7.4 Forward error correction
	7.5 Packet loss pattern
	7.6 Summary

	8 Conclusion
	8.1 Summary of this thesis
	8.2 Future work

